MyArxiv
Computation and Language
☆ Grounded Misunderstandings in Asymmetric Dialogue: A Perspectivist Annotation Scheme for MapTask
Collaborative dialogue relies on participants incrementally establishing common ground, yet in asymmetric settings they may believe they agree while referring to different entities. We introduce a perspectivist annotation scheme for the HCRC MapTask corpus (Anderson et al., 1991) that separately captures speaker and addressee grounded interpretations for each reference expression, enabling us to trace how understanding emerges, diverges, and repairs over time. Using a scheme-constrained LLM annotation pipeline, we obtain 13k annotated reference expressions with reliability estimates and analyze the resulting understanding states. The results show that full misunderstandings are rare once lexical variants are unified, but multiplicity discrepancies systematically induce divergences, revealing how apparent grounding can mask referential misalignment. Our framework provides both a resource and an analytic lens for studying grounded misunderstanding and for evaluating (V)LLMs' capacity to model perspective-dependent grounding in collaborative dialogue.
comment: 11 pages, 3 figures, 5 tables; under review
☆ Do Androids Dream of Unseen Puppeteers? Probing for a Conspiracy Mindset in Large Language Models
In this paper, we investigate whether Large Language Models (LLMs) exhibit conspiratorial tendencies, whether they display sociodemographic biases in this domain, and how easily they can be conditioned into adopting conspiratorial perspectives. Conspiracy beliefs play a central role in the spread of misinformation and in shaping distrust toward institutions, making them a critical testbed for evaluating the social fidelity of LLMs. LLMs are increasingly used as proxies for studying human behavior, yet little is known about whether they reproduce higher-order psychological constructs such as a conspiratorial mindset. To bridge this research gap, we administer validated psychometric surveys measuring conspiracy mindset to multiple models under different prompting and conditioning strategies. Our findings reveal that LLMs show partial agreement with elements of conspiracy belief, and conditioning with socio-demographic attributes produces uneven effects, exposing latent demographic biases. Moreover, targeted prompts can easily shift model responses toward conspiratorial directions, underscoring both the susceptibility of LLMs to manipulation and the potential risks of their deployment in sensitive contexts. These results highlight the importance of critically evaluating the psychological dimensions embedded in LLMs, both to advance computational social science and to inform possible mitigation strategies against harmful uses.
☆ ChiMDQA: Towards Comprehensive Chinese Document QA with Fine-grained Evaluation ICANN 2025
With the rapid advancement of natural language processing (NLP) technologies, the demand for high-quality Chinese document question-answering datasets is steadily growing. To address this issue, we present the Chinese Multi-Document Question Answering Dataset(ChiMDQA), specifically designed for downstream business scenarios across prevalent domains including academic, education, finance, law, medical treatment, and news. ChiMDQA encompasses long-form documents from six distinct fields, consisting of 6,068 rigorously curated, high-quality question-answer (QA) pairs further classified into ten fine-grained categories. Through meticulous document screening and a systematic question-design methodology, the dataset guarantees both diversity and high quality, rendering it applicable to various NLP tasks such as document comprehension, knowledge extraction, and intelligent QA systems. Additionally, this paper offers a comprehensive overview of the dataset's design objectives, construction methodologies, and fine-grained evaluation system, supplying a substantial foundation for future research and practical applications in Chinese QA. The code and data are available at: https://anonymous.4open.science/r/Foxit-CHiMDQA/.
comment: 13 pages, 6 tables, 4 figures, accepted by ICANN 2025
☆ Watermarking Large Language Models in Europe: Interpreting the AI Act in Light of Technology
To foster trustworthy Artificial Intelligence (AI) within the European Union, the AI Act requires providers to mark and detect the outputs of their general-purpose models. The Article 50 and Recital 133 call for marking methods that are ''sufficiently reliable, interoperable, effective and robust''. Yet, the rapidly evolving and heterogeneous landscape of watermarks for Large Language Models (LLMs) makes it difficult to determine how these four standards can be translated into concrete and measurable evaluations. Our paper addresses this challenge, anchoring the normativity of European requirements in the multiplicity of watermarking techniques. Introducing clear and distinct concepts on LLM watermarking, our contribution is threefold. (1) Watermarking Categorisation: We propose an accessible taxonomy of watermarking methods according to the stage of the LLM lifecycle at which they are applied - before, during, or after training, and during next-token distribution or sampling. (2) Watermarking Evaluation: We interpret the EU AI Act's requirements by mapping each criterion with state-of-the-art evaluations on robustness and detectability of the watermark, and of quality of the LLM. Since interoperability remains largely untheorised in LLM watermarking research, we propose three normative dimensions to frame its assessment. (3) Watermarking Comparison: We compare current watermarking methods for LLMs against the operationalised European criteria and show that no approach yet satisfies all four standards. Encouraged by emerging empirical tests, we recommend further research into watermarking directly embedded within the low-level architecture of LLMs.
comment: 17 pages, 2 Tables and 2 Pictures
☆ Towards Transparent Stance Detection: A Zero-Shot Approach Using Implicit and Explicit Interpretability AAAI
Zero-Shot Stance Detection (ZSSD) identifies the attitude of the post toward unseen targets. Existing research using contrastive, meta-learning, or data augmentation suffers from generalizability issues or lack of coherence between text and target. Recent works leveraging large language models (LLMs) for ZSSD focus either on improving unseen target-specific knowledge or generating explanations for stance analysis. However, most of these works are limited by their over-reliance on explicit reasoning, provide coarse explanations that lack nuance, and do not explicitly model the reasoning process, making it difficult to interpret the model's predictions. To address these issues, in our study, we develop a novel interpretable ZSSD framework, IRIS. We provide an interpretable understanding of the attitude of the input towards the target implicitly based on sequences within the text (implicit rationales) and explicitly based on linguistic measures (explicit rationales). IRIS considers stance detection as an information retrieval ranking task, understanding the relevance of implicit rationales for different stances to guide the model towards correct predictions without requiring the ground-truth of rationales, thus providing inherent interpretability. In addition, explicit rationales based on communicative features help decode the emotional and cognitive dimensions of stance, offering an interpretable understanding of the author's attitude towards the given target. Extensive experiments on the benchmark datasets of VAST, EZ-STANCE, P-Stance, and RFD using 50%, 30%, and even 10% training data prove the generalizability of our model, benefiting from the proposed architecture and interpretable design.
comment: Accepted in AAAI CONFERENCE ON WEB AND SOCIAL MEDIA (ICWSM 2026)
☆ LiveTradeBench: Seeking Real-World Alpha with Large Language Models
Large language models (LLMs) achieve strong performance across benchmarks--from knowledge quizzes and math reasoning to web-agent tasks--but these tests occur in static settings, lacking real dynamics and uncertainty. Consequently, they evaluate isolated reasoning or problem-solving rather than decision-making under uncertainty. To address this, we introduce LiveTradeBench, a live trading environment for evaluating LLM agents in realistic and evolving markets. LiveTradeBench follows three design principles: (i) Live data streaming of market prices and news, eliminating dependence on offline backtesting and preventing information leakage while capturing real-time uncertainty; (ii) a portfolio-management abstraction that extends control from single-asset actions to multi-asset allocation, integrating risk management and cross-asset reasoning; and (iii) multi-market evaluation across structurally distinct environments--U.S. stocks and Polymarket prediction markets--differing in volatility, liquidity, and information flow. At each step, an agent observes prices, news, and its portfolio, then outputs percentage allocations that balance risk and return. Using LiveTradeBench, we run 50-day live evaluations of 21 LLMs across families. Results show that (1) high LMArena scores do not imply superior trading outcomes; (2) models display distinct portfolio styles reflecting risk appetite and reasoning dynamics; and (3) some LLMs effectively leverage live signals to adapt decisions. These findings expose a gap between static evaluation and real-world competence, motivating benchmarks that test sequential decision making and consistency under live uncertainty.
comment: 16 pages
☆ A systematic review of relation extraction task since the emergence of Transformers
This article presents a systematic review of relation extraction (RE) research since the advent of Transformer-based models. Using an automated framework to collect and annotate publications, we analyze 34 surveys, 64 datasets, and 104 models published between 2019 and 2024. The review highlights methodological advances, benchmark resources, and the integration of semantic web technologies. By consolidating results across multiple dimensions, the study identifies current trends, limitations, and open challenges, offering researchers and practitioners a comprehensive reference for understanding the evolution and future directions of RE.
comment: Submited at ACM-Computing Surveys + The resulting annotated Zotero bibliography : https://www.zotero.org/groups/6070963/scilex_re_systlitreview/library + SciLEx software: https://github.com/Wimmics/SciLEx
☆ Step-Audio-EditX Technical Report
We present Step-Audio-EditX, the first open-source LLM-based audio model excelling at expressive and iterative audio editing encompassing emotion, speaking style, and paralinguistics alongside robust zero-shot text-to-speech (TTS) capabilities.Our core innovation lies in leveraging only large-margin synthetic data, which circumvents the need for embedding-based priors or auxiliary modules. This large-margin learning approach enables both iterative control and high expressivity across voices, and represents a fundamental pivot from the conventional focus on representation-level disentanglement. Evaluation results demonstrate that Step-Audio-EditX surpasses both MiniMax-2.6-hd and Doubao-Seed-TTS-2.0 in emotion editing and other fine-grained control tasks.
☆ ASVRI-Legal: Fine-Tuning LLMs with Retrieval Augmented Generation for Enhanced Legal Regulation
In this study, we explore the fine-tuning of Large Language Models (LLMs) to better support policymakers in their crucial work of understanding, analyzing, and crafting legal regulations. To equip the model with a deep understanding of legal texts, we curated a supervised dataset tailored to the specific needs of the legal domain. Additionally, we integrated the Retrieval-Augmented Generation (RAG) method, enabling the LLM to access and incorporate up-to-date legal knowledge from external sources. This combination of fine-tuning and RAG-based augmentation results in a tool that not only processes legal information but actively assists policymakers in interpreting regulations and drafting new ones that align with current needs. The results demonstrate that this approach can significantly enhance the effectiveness of legal research and regulation development, offering a valuable resource in the ever-evolving field of law.
comment: 11 pages (including references), 2 figures, 4 tables, published in Atlantis Press (Open Access under CC BY-NC 4.0 license)
☆ AILA--First Experiments with Localist Language Models
This paper presents the first empirical demonstration of controllable locality in transformer language models, a novel architectural framework that enables continuous control over the degree of representation localization through a tunable locality dial parameter. Unlike traditional language models that rely exclusively on distributed representations, our approach allows dynamic interpolation between highly interpretable localist encodings and efficient distributed representations without requiring model retraining. We conducted experiments on the WikiText corpus using a two-layer transformer architecture, systematically varying the locality parameter {\lambda} across the full spectrum from 1.0 (fully localist) to 0.0 (fully distributed). Our results demonstrate that localist configurations achieve dramatically lower attention entropy, with {\lambda} = 1.0 yielding 5.36 bits compared to 7.18 bits at {\lambda} = 0.0, while maintaining substantially higher pointer fidelity scores reflecting stronger alignment with rule-specified targets. Prediction experiments reveal that intermediate locality values optimize the tradeoff between interpretability and performance, with {\lambda} = 0.6 achieving test perplexity of 4.65 and accuracy of 84.7%. These findings establish that localist language models provide a practical framework for applications in regulated domains requiring both transparency and capability, offering precise mathematical control over the interpretability-performance spectrum through explicit penalty thresholds and information-theoretic design principles.
☆ MultiZebraLogic: A Multilingual Logical Reasoning Benchmark LREC 2026
Measuring the full abilities of large language models (LLMs) requires benchmarks representing multiple tasks. We aim to create large, high-quality datasets for comparison of logical reasoning skills across several languages and of suitable difficulty for LLMs of various reasoning ability. We explore multiple ways of increasing difficulty. We generate zebra puzzles in multiple languages, themes, sizes and including 14 different clue types and 8 red herring types (uninformative clues). We find puzzle sizes 2x3 and 4x5 are sufficiently challenging for GPT-4o mini (a non-reasoning model) and o3-mini (a reasoning model), respectively. Including 5 red herrings decreases o3-mini puzzle-level accuracy on 4x5 puzzles by 15$\pm$7 %. Scores of o3-mini on 4x5 puzzles are not significantly affected by use of English vs. Danish or the common houses theme vs. the country-specific smoerrebroed theme. We find no correlation between difficulty and the selected clue types. Datasets of 128+1024 puzzles are published as MultiZebraLogic in each of nine Germanic languages for sizes 2x3 and 4x5. We publish code for puzzle generation, designed for adaptablity into more languages and themes.
comment: Submitted to LREC 2026
☆ Bearing Syntactic Fruit with Stack-Augmented Neural Networks
Any finite set of training data is consistent with an infinite number of hypothetical algorithms that could have generated it. Studies have shown that when human children learn language, they consistently favor hypotheses based on hierarchical syntactic rules without ever encountering disambiguating examples. A recent line of work has inquired as to whether common neural network architectures share this bias, finding that they do so only under special conditions: when syntactically supervised, when pre-trained on massive corpora, or when trained long past convergence. In this paper, we demonstrate, for the first time, neural network architectures that are able to generalize in human-like fashion without any of the aforementioned requirements: stack-augmented neural networks. We test three base architectures (transformer, simple RNN, LSTM) augmented with two styles of stack: the superposition stack of Joulin & Mikolov (2015) and a nondeterministic generalization of it proposed by DuSell & Chiang (2023). We find that transformers with nondeterministic stacks generalize best out of these architectures on a classical question formation task. We also propose a modification to the stack RNN architecture that improves hierarchical generalization. These results suggest that stack-augmented neural networks may be more accurate models of human language acquisition than standard architectures, serving as useful objects of psycholinguistic study. Our code is publicly available.
comment: 15 pages, 5 figures
☆ SOLVE-Med: Specialized Orchestration for Leading Vertical Experts across Medical Specialties
Medical question answering systems face deployment challenges including hallucinations, bias, computational demands, privacy concerns, and the need for specialized expertise across diverse domains. Here, we present SOLVE-Med, a multi-agent architecture combining domain-specialized small language models for complex medical queries. The system employs a Router Agent for dynamic specialist selection, ten specialized models (1B parameters each) fine-tuned on specific medical domains, and an Orchestrator Agent that synthesizes responses. Evaluated on Italian medical forum data across ten specialties, SOLVE-Med achieves superior performance with ROUGE-1 of 0.301 and BERTScore F1 of 0.697, outperforming standalone models up to 14B parameters while enabling local deployment. Our code is publicly available on GitHub: https://github.com/PRAISELab-PicusLab/SOLVE-Med.
☆ One Battle After Another: Probing LLMs' Limits on Multi-Turn Instruction Following with a Benchmark Evolving Framework
Understanding how well large language models can follow users' instructions throughout a dialogue spanning multiple topics is of great importance for data-intensive conversational applications. Existing benchmarks are often limited to a fixed number of turns, making them susceptible to saturation and failing to account for the user's interactive experience. In this work, we propose an extensible framework for assessing multi-turn instruction-following ability. At its core, our framework decouples linguistic surface forms from user intent simulation through a three-layer mechanism that tracks constraints, instructions, and topics. This framework mimics User-LLM interaction by enabling the dynamic construction of benchmarks with state changes and tracebacks, terminating a conversation only when the model exhausts a simulated user's patience. We define a suite of metrics capturing the quality of the interaction process. Using this framework, we construct EvolIF, an evolving instruction-following benchmark incorporating nine distinct constraint types. Our results indicate that GPT-5 exhibits superior instruction-following performance. It sustains an average of 18.54 conversational turns and demonstrates 70.31% robustness, outperforming Gemini-2.5-Pro by a significant margin of 11.41%, while other models lag far behind. All of the data and code will be made publicly available online.
☆ HaluMem: Evaluating Hallucinations in Memory Systems of Agents
Memory systems are key components that enable AI systems such as LLMs and AI agents to achieve long-term learning and sustained interaction. However, during memory storage and retrieval, these systems frequently exhibit memory hallucinations, including fabrication, errors, conflicts, and omissions. Existing evaluations of memory hallucinations are primarily end-to-end question answering, which makes it difficult to localize the operational stage within the memory system where hallucinations arise. To address this, we introduce the Hallucination in Memory Benchmark (HaluMem), the first operation level hallucination evaluation benchmark tailored to memory systems. HaluMem defines three evaluation tasks (memory extraction, memory updating, and memory question answering) to comprehensively reveal hallucination behaviors across different operational stages of interaction. To support evaluation, we construct user-centric, multi-turn human-AI interaction datasets, HaluMem-Medium and HaluMem-Long. Both include about 15k memory points and 3.5k multi-type questions. The average dialogue length per user reaches 1.5k and 2.6k turns, with context lengths exceeding 1M tokens, enabling evaluation of hallucinations across different context scales and task complexities. Empirical studies based on HaluMem show that existing memory systems tend to generate and accumulate hallucinations during the extraction and updating stages, which subsequently propagate errors to the question answering stage. Future research should focus on developing interpretable and constrained memory operation mechanisms that systematically suppress hallucinations and improve memory reliability.
☆ BanglaSTEM: A Parallel Corpus for Technical Domain Bangla-English Translation
Large language models work well for technical problem solving in English but perform poorly when the same questions are asked in Bangla. A simple solution would be to translate Bangla questions into English first and then use these models. However, existing Bangla-English translation systems struggle with technical terms. They often mistranslate specialized vocabulary, which changes the meaning of the problem and leads to wrong answers. We present BanglaSTEM, a dataset of 5,000 carefully selected Bangla-English sentence pairs from STEM fields including computer science, mathematics, physics, chemistry, and biology. We generated over 12,000 translations using language models and then used human evaluators to select the highest quality pairs that preserve technical terminology correctly. We train a T5-based translation model on BanglaSTEM and test it on two tasks: generating code and solving math problems. Our results show significant improvements in translation accuracy for technical content, making it easier for Bangla speakers to use English-focused language models effectively. Both the BanglaSTEM dataset and the trained translation model are publicly released at https://huggingface.co/reyazul/BanglaSTEM-T5.
☆ Kastor: Fine-tuned Small Language Models for Shape-based Active Relation Extraction ESWC 2025
RDF pattern-based extraction is a compelling approach for fine-tuning small language models (SLMs) by focusing a relation extraction task on a specified SHACL shape. This technique enables the development of efficient models trained on limited text and RDF data. In this article, we introduce Kastor, a framework that advances this approach to meet the demands for completing and refining knowledge bases in specialized domains. Kastor reformulates the traditional validation task, shifting from single SHACL shape validation to evaluating all possible combinations of properties derived from the shape. By selecting the optimal combination for each training example, the framework significantly enhances model generalization and performance. Additionally, Kastor employs an iterative learning process to refine noisy knowledge bases, enabling the creation of robust models capable of uncovering new, relevant facts
comment: Accepted at ESWC 2025
☆ CareMedEval dataset: Evaluating Critical Appraisal and Reasoning in the Biomedical Field LREC 2026
Critical appraisal of scientific literature is an essential skill in the biomedical field. While large language models (LLMs) can offer promising support in this task, their reliability remains limited, particularly for critical reasoning in specialized domains. We introduce CareMedEval, an original dataset designed to evaluate LLMs on biomedical critical appraisal and reasoning tasks. Derived from authentic exams taken by French medical students, the dataset contains 534 questions based on 37 scientific articles. Unlike existing benchmarks, CareMedEval explicitly evaluates critical reading and reasoning grounded in scientific papers. Benchmarking state-of-the-art generalist and biomedical-specialized LLMs under various context conditions reveals the difficulty of the task: open and commercial models fail to exceed an Exact Match Rate of 0.5 even though generating intermediate reasoning tokens considerably improves the results. Yet, models remain challenged especially on questions about study limitations and statistical analysis. CareMedEval provides a challenging benchmark for grounded reasoning, exposing current LLM limitations and paving the way for future development of automated support for critical appraisal.
comment: Preprint submitted to LREC 2026 (under review) To access the dataset, see https://github.com/bonzid/CareMedEval
☆ Knowledge-Augmented Question Error Correction for Chinese Question Answer System with QuestionRAG EMNLP2025
Input errors in question-answering (QA) systems often lead to incorrect responses. Large language models (LLMs) struggle with this task, frequently failing to interpret user intent (misinterpretation) or unnecessarily altering the original question's structure (over-correction). We propose QuestionRAG, a framework that tackles these problems. To address misinterpretation, it enriches the input with external knowledge (e.g., search results, related entities). To prevent over-correction, it uses reinforcement learning (RL) to align the model's objective with precise correction, not just paraphrasing. Our results demonstrate that knowledge augmentation is critical for understanding faulty questions. Furthermore, RL-based alignment proves significantly more effective than traditional supervised fine-tuning (SFT), boosting the model's ability to follow instructions and generalize. By integrating these two strategies, QuestionRAG unlocks the full potential of LLMs for the question correction task.
comment: EMNLP2025 Industry Track
☆ Efficient Reasoning via Thought-Training and Thought-Free Inference
Recent advances in large language models (LLMs) have leveraged explicit Chain-of-Thought (CoT) prompting to improve reasoning accuracy. However, most existing methods primarily compress verbose reasoning outputs. These Long-to-Short transformations aim to improve efficiency, but still rely on explicit reasoning during inference. In this work, we introduce \textbf{3TF} (\textbf{T}hought-\textbf{T}raining and \textbf{T}hought-\textbf{F}ree inference), a framework for efficient reasoning that takes a Short-to-Long perspective. We first train a hybrid model that can operate in both reasoning and non-reasoning modes, and then further train it on CoT-annotated data to internalize structured reasoning, while enforcing concise, thought-free outputs at inference time using the no-reasoning mode. Unlike compression-based approaches, 3TF improves the reasoning quality of non-reasoning outputs, enabling models to perform rich internal reasoning implicitly while keeping external outputs short. Empirically, 3TF-trained models obtain large improvements on reasoning benchmarks under thought-free inference, demonstrating that high quality reasoning can be learned and executed implicitly without explicit step-by-step generation.
comment: 11 pages, 4 figures
☆ Overcoming the Generalization Limits of SLM Finetuning for Shape-Based Extraction of Datatype and Object Properties
Small language models (SLMs) have shown promises for relation extraction (RE) when extracting RDF triples guided by SHACL shapes focused on common datatype properties. This paper investigates how SLMs handle both datatype and object properties for a complete RDF graph extraction. We show that the key bottleneck is related to long-tail distribution of rare properties. To solve this issue, we evaluate several strategies: stratified sampling, weighted loss, dataset scaling, and template-based synthetic data augmentation. We show that the best strategy to perform equally well over unbalanced target properties is to build a training set where the number of occurrences of each property exceeds a given threshold. To enable reproducibility, we publicly released our datasets, experimental results and code. Our findings offer practical guidance for training shape-aware SLMs and highlight promising directions for future work in semantic RE.
comment: Accepted at KCAP 2025
☆ Segmentation Beyond Defaults: Asymmetrical Byte Pair Encoding for Optimal Machine Translation Performance
Existing Machine Translation (MT) research often suggests a single, fixed set of hyperparameters for word segmentation models, symmetric Byte Pair Encoding (BPE), which applies the same number of merge operations (NMO) to train tokenizers for both source and target languages. However, we demonstrate that this uniform approach doesn't guarantee optimal MT performance across different language pairs and data sizes. This work investigates BPE segmentation recipes across various data volumes and language pairs to evaluate MT system performance. We find that utilizing asymmetric BPE, where the source and target languages have different NMOs, significantly improves results over the symmetric approach, especially in low-resource settings (50K, 100K, and 500K sentence pairs). Specifically, asymmetric BPE yield statistically significant ($p<0.05$) average gains of 5.32, 4.46, and 0.7 CHRF++ on English-Hindi in low-resource setups. We validated this trend across six additional language pairs (English and Telugu, Shona, Norwegian, Kyrgyz, Hausa, and Inuktitut), observing statistically significant improvement in 10 out of 12 systems compared to symmetric BPE. Our findings indicate a high NMO for the source (4K to 32K) and a low NMO for the target (0.5K to 2K) provides optimal results, particularly benefiting low-resource MT.
comment: Accepted at WAT 2025
☆ Beyond Citations: Measuring Idea-level Knowledge Diffusion from Research to Journalism and Policy-making
Despite the importance of social science knowledge for various stakeholders, measuring its diffusion into different domains remains a challenge. This study uses a novel text-based approach to measure the idea-level diffusion of social science knowledge from the research domain to the journalism and policy-making domains. By doing so, we expand the detection of knowledge diffusion beyond the measurements of direct references. Our study focuses on media effects theories as key research ideas in the field of communication science. Using 72,703 documents (2000-2019) from three domains (i.e., research, journalism, and policy-making) that mention these ideas, we count the mentions of these ideas in each domain, estimate their domain-specific contexts, and track and compare differences across domains and over time. Overall, we find that diffusion patterns and dynamics vary considerably between ideas, with some ideas diffusing between other domains, while others do not. Based on the embedding regression approach, we compare contextualized meanings across domains and find that the distances between research and policy are typically larger than between research and journalism. We also find that ideas largely shift roles across domains - from being the theories themselves in research to sense-making in news to applied, administrative use in policy. Over time, we observe semantic convergence mainly for ideas that are practically oriented. Our results characterize the cross-domain diffusion patterns and dynamics of social science knowledge at the idea level, and we discuss the implications for measuring knowledge diffusion beyond citations.
☆ LFC-DA: Logical Formula-Controlled Data Augmentation for Enhanced Logical Reasoning
For complex logical data augmentation, heavy reliance on human annotation is costly, whereas direct generation with large language models yields uninterpretable and logically homogeneous examples. To address this, we present LFC-DA, a symbolic-logic-controlled pipeline: logical text is first mapped to propositional expressions, a compact rule library is compiled, and a bounded state-space search systematically discovers valid formulas that are then verbalized back into natural-language questions, ensuring both diversity and logical rigor under propositional logic. Experiments on ReClor and LogiQA show significant improvements in the logical-reasoning accuracy of pretrained models, confirming the effectiveness of LFC-DA for LLM-guided logical data augmentation.
comment: 10 pages, 6 figures
☆ EQ-Negotiator: Dynamic Emotional Personas Empower Small Language Models for Edge-Deployable Credit Negotiation
The deployment of large language models (LLMs) in automated negotiation has set a high performance benchmark, but their computational cost and data privacy requirements render them unsuitable for many privacy-sensitive, on-device applications such as mobile assistants, embodied AI agents or private client interactions. While small language models (SLMs) offer a practical alternative, they suffer from a significant performance gap compared to LLMs in playing emotionally charged complex personas, especially for credit negotiation. This paper introduces EQ-Negotiator, a novel framework that bridges this capability gap using emotional personas. Its core is a reasoning system that integrates game theory with a Hidden Markov Model(HMM) to learn and track debtor emotional states online, without pre-training. This allows EQ-Negotiator to equip SLMs with the strategic intelligence to counter manipulation while de-escalating conflict and upholding ethical standards. Through extensive agent-to-agent simulations across diverse credit negotiation scenarios, including adversarial debtor strategies like cheating, threatening, and playing the victim, we show that a 7B parameter language model with EQ-Negotiator achieves better debt recovery and negotiation efficiency than baseline LLMs more than 10 times its size. This work advances persona modeling from descriptive character profiles to dynamic emotional architectures that operate within privacy constraints. Besides, this paper establishes that strategic emotional intelligence, not raw model scale, is the critical factor for success in automated negotiation, paving the way for effective, ethical, and privacy-preserving AI negotiators that can operate on the edge.
☆ Silenced Biases: The Dark Side LLMs Learned to Refuse
Safety-aligned large language models (LLMs) are becoming increasingly widespread, especially in sensitive applications where fairness is essential and biased outputs can cause significant harm. However, evaluating the fairness of models is a complex challenge, and approaches that do so typically utilize standard question-answer (QA) styled schemes. Such methods often overlook deeper issues by interpreting the model's refusal responses as positive fairness measurements, which creates a false sense of fairness. In this work, we introduce the concept of silenced biases, which are unfair preferences encoded within models' latent space and are effectively concealed by safety-alignment. Previous approaches that considered similar indirect biases often relied on prompt manipulation or handcrafted implicit queries, which present limited scalability and risk contaminating the evaluation process with additional biases. We propose the Silenced Bias Benchmark (SBB), which aims to uncover these biases by employing activation steering to reduce model refusals during QA. SBB supports easy expansion to new demographic groups and subjects, presenting a fairness evaluation framework that encourages the future development of fair models and tools beyond the masking effects of alignment training. We demonstrate our approach over multiple LLMs, where our findings expose an alarming distinction between models' direct responses and their underlying fairness issues.
☆ Generative Artificial Intelligence in Bioinformatics: A Systematic Review of Models, Applications, and Methodological Advances
Generative artificial intelligence (GenAI) has become a transformative approach in bioinformatics that often enables advancements in genomics, proteomics, transcriptomics, structural biology, and drug discovery. To systematically identify and evaluate these growing developments, this review proposed six research questions (RQs), according to the preferred reporting items for systematic reviews and meta-analysis methods. The objective is to evaluate impactful GenAI strategies in methodological advancement, predictive performance, and specialization, and to identify promising approaches for advanced modeling, data-intensive discovery, and integrative biological analysis. RQ1 highlights diverse applications across multiple bioinformatics subfields (sequence analysis, molecular design, and integrative data modeling), which demonstrate superior performance over traditional methods through pattern recognition and output generation. RQ2 reveals that adapted specialized model architectures outperformed general-purpose models, an advantage attributed to targeted pretraining and context-aware strategies. RQ3 identifies significant benefits in the bioinformatics domains, focusing on molecular analysis and data integration, which improves accuracy and reduces errors in complex analysis. RQ4 indicates improvements in structural modeling, functional prediction, and synthetic data generation, validated by established benchmarks. RQ5 suggests the main constraints, such as the lack of scalability and biases in data that impact generalizability, and proposes future directions focused on robust evaluation and biologically grounded modeling. RQ6 examines that molecular datasets (such as UniProtKB and ProteinNet12), cellular datasets (such as CELLxGENE and GTEx) and textual resources (such as PubMedQA and OMIM) broadly support the training and generalization of GenAI models.
☆ Benchmarking the Thinking Mode of Multimodal Large Language Models in Clinical Tasks
A recent advancement in Multimodal Large Language Models (MLLMs) research is the emergence of "reasoning MLLMs" that offer explicit control over their internal thinking processes (normally referred as the "thinking mode") alongside the standard "non-thinking mode". This capability allows these models to engage in a step-by-step process of internal deliberation before generating a final response. With the rapid transition to and adoption of these "dual-state" MLLMs, this work rigorously evaluated how the enhanced reasoning processes of these MLLMs impact model performance and reliability in clinical tasks. This paper evaluates the active "thinking mode" capabilities of two leading MLLMs, Seed1.5-VL and Gemini-2.5-Flash, for medical applications. We assessed their performance on four visual medical tasks using VQA-RAD and ROCOv2 datasets. Our findings reveal that the improvement from activating the thinking mode remains marginal compared to the standard non-thinking mode for the majority of the tasks. Their performance on complex medical tasks such as open-ended VQA and medical image interpretation remains suboptimal, highlighting the need for domain-specific medical data and more advanced methods for medical knowledge integration.
☆ How to Evaluate Speech Translation with Source-Aware Neural MT Metrics
Automatic evaluation of speech-to-text translation (ST) systems is typically performed by comparing translation hypotheses with one or more reference translations. While effective to some extent, this approach inherits the limitation of reference-based evaluation that ignores valuable information from the source input. In machine translation (MT), recent progress has shown that neural metrics incorporating the source text achieve stronger correlation with human judgments. Extending this idea to ST, however, is not trivial because the source is audio rather than text, and reliable transcripts or alignments between source and references are often unavailable. In this work, we conduct the first systematic study of source-aware metrics for ST, with a particular focus on real-world operating conditions where source transcripts are not available. We explore two complementary strategies for generating textual proxies of the input audio, automatic speech recognition (ASR) transcripts, and back-translations of the reference translation, and introduce a novel two-step cross-lingual re-segmentation algorithm to address the alignment mismatch between synthetic sources and reference translations. Our experiments, carried out on two ST benchmarks covering 79 language pairs and six ST systems with diverse architectures and performance levels, show that ASR transcripts constitute a more reliable synthetic source than back-translations when word error rate is below 20%, while back-translations always represent a computationally cheaper but still effective alternative. Furthermore, our cross-lingual re-segmentation algorithm enables robust use of source-aware MT metrics in ST evaluation, paving the way toward more accurate and principled evaluation methodologies for speech translation.
☆ Let the Bees Find the Weak Spots: A Path Planning Perspective on Multi-Turn Jailbreak Attacks against LLMs
Large Language Models (LLMs) have been widely deployed across various applications, yet their potential security and ethical risks have raised increasing concerns. Existing research employs red teaming evaluations, utilizing multi-turn jailbreaks to identify potential vulnerabilities in LLMs. However, these approaches often lack exploration of successful dialogue trajectories within the attack space, and they tend to overlook the considerable overhead associated with the attack process. To address these limitations, this paper first introduces a theoretical model based on dynamically weighted graph topology, abstracting the multi-turn attack process as a path planning problem. Based on this framework, we propose ABC, an enhanced Artificial Bee Colony algorithm for multi-turn jailbreaks, featuring a collaborative search mechanism with employed, onlooker, and scout bees. This algorithm significantly improves the efficiency of optimal attack path search while substantially reducing the average number of queries required. Empirical evaluations on three open-source and two proprietary language models demonstrate the effectiveness of our approach, achieving attack success rates above 90\% across the board, with a peak of 98\% on GPT-3.5-Turbo, and outperforming existing baselines. Furthermore, it achieves comparable success with only 26 queries on average, significantly reducing red teaming overhead and highlighting its superior efficiency.
☆ SCALE: Upscaled Continual Learning of Large Language Models
We revisit continual pre-training for large language models and argue that progress now depends more on scaling the right structure than on scaling parameters alone. We introduce SCALE, a width upscaling architecture that inserts lightweight expansion into linear modules while freezing all pre-trained parameters. This preserves the residual and attention topologies and increases capacity without perturbing the base model's original functionality. SCALE is guided by two principles: Persistent Preservation, which maintains the base model's behavior via preservation-oriented initialization and freezing of the pre-trained weights, and Collaborative Adaptation, which selectively trains a subset of expansion components to acquire new knowledge with minimal interference. We instantiate these ideas as SCALE-Preserve (preservation-first), SCALE-Adapt (adaptation-first), and SCALE-Route, an optional routing extension that performs token-level routing between preservation and adaptation heads. On a controlled synthetic biography benchmark, SCALE mitigates the severe forgetting observed with depth expansion while still acquiring new knowledge. In continual pre-training on a Korean corpus, SCALE variants achieve less forgetting on English evaluations and competitive gains on Korean benchmarks, with these variants offering the best overall stability-plasticity trade-off. Accompanying analysis clarifies when preservation provably holds and why the interplay between preservation and adaptation stabilizes optimization compared to standard continual learning setups.
☆ Comparing the Performance of LLMs in RAG-based Question-Answering: A Case Study in Computer Science Literature
Retrieval Augmented Generation (RAG) is emerging as a powerful technique to enhance the capabilities of Generative AI models by reducing hallucination. Thus, the increasing prominence of RAG alongside Large Language Models (LLMs) has sparked interest in comparing the performance of different LLMs in question-answering (QA) in diverse domains. This study compares the performance of four open-source LLMs, Mistral-7b-instruct, LLaMa2-7b-chat, Falcon-7b-instruct and Orca-mini-v3-7b, and OpenAI's trending GPT-3.5 over QA tasks within the computer science literature leveraging RAG support. Evaluation metrics employed in the study include accuracy and precision for binary questions and ranking by a human expert, ranking by Google's AI model Gemini, alongside cosine similarity for long-answer questions. GPT-3.5, when paired with RAG, effectively answers binary and long-answer questions, reaffirming its status as an advanced LLM. Regarding open-source LLMs, Mistral AI's Mistral-7b-instruct paired with RAG surpasses the rest in answering both binary and long-answer questions. However, among the open-source LLMs, Orca-mini-v3-7b reports the shortest average latency in generating responses, whereas LLaMa2-7b-chat by Meta reports the highest average latency. This research underscores the fact that open-source LLMs, too, can go hand in hand with proprietary models like GPT-3.5 with better infrastructure.
comment: 18 pages, 4 figures, 5 tables, presented at the 5th International Conference on Artificial Intelligence in Education Technology
☆ IndicSuperTokenizer: An Optimized Tokenizer for Indic Multilingual LLMs
Tokenizers play a crucial role in determining the performance, training efficiency, and the inference cost of Large Language Models (LLMs). Designing effective tokenizers for multilingual LLMs is particularly challenging due to diverse scripts and rich morphological variation. While subword methods such as Byte Pair Encoding (BPE) are widely adopted, their effectiveness in multilingual settings remains underexplored. We present IndicSuperTokenizer, a tokenizer for Indic multilingual LLMs, that combines both subword and multi-word tokenization, along with language-specific pre-tokenization, leading to more linguistically aligned tokens and achieving a new state-of-the-art in fertility score. Evaluated across English, 22 Indian languages and code data, our tokenizer improves the average fertility score by 39.5% over LLaMA4 and by 18% over Sutra (the current best). This translates to 44% improvement in inference throughput over LLaMA4 while maintaining comparable performance on English and Indic benchmarks. We also present detailed ablations across tokenizer training data size, vocabulary size, merging techniques, and pre-tokenization strategies, demonstrating the robustness of our design choices.
☆ Beyond Ranked Lists: The SARAL Framework for Cross-Lingual Document Set Retrieval
Machine Translation for English Retrieval of Information in Any Language (MATERIAL) is an IARPA initiative targeted to advance the state of cross-lingual information retrieval (CLIR). This report provides a detailed description of Information Sciences Institute's (ISI's) Summarization and domain-Adaptive Retrieval Across Language's (SARAL's) effort for MATERIAL. Specifically, we outline our team's novel approach to handle CLIR with emphasis in developing an approach amenable to retrieve a query-relevant document \textit{set}, and not just a ranked document-list. In MATERIAL's Phase-3 evaluations, SARAL exceeded the performance of other teams in five out of six evaluation conditions spanning three different languages (Farsi, Kazakh, and Georgian).
☆ Hybrid Fact-Checking that Integrates Knowledge Graphs, Large Language Models, and Search-Based Retrieval Agents Improves Interpretable Claim Verification EMNLP
Large language models (LLMs) excel in generating fluent utterances but can lack reliable grounding in verified information. At the same time, knowledge-graph-based fact-checkers deliver precise and interpretable evidence, yet suffer from limited coverage or latency. By integrating LLMs with knowledge graphs and real-time search agents, we introduce a hybrid fact-checking approach that leverages the individual strengths of each component. Our system comprises three autonomous steps: 1) a Knowledge Graph (KG) Retrieval for rapid one - hop lookups in DBpedia, 2) an LM-based classification guided by a task-specific labeling prompt, producing outputs with internal rule-based logic, and 3) a Web Search Agent invoked only when KG coverage is insufficient. Our pipeline achieves an F1 score of 0.93 on the FEVER benchmark on the Supported/Refuted split without task- specific fine - tuning. To address Not enough information cases, we conduct a targeted reannotation study showing that our approach frequently uncovers valid evidence for claims originally labeled as Not Enough Information (NEI), as confirmed by both expert annotators and LLM reviewers. With this paper, we present a modular, opensource fact-checking pipeline with fallback strategies and generalization across datasets.
comment: Paper has been accepted at 9th wiNLP workshop at EMNLP
☆ LGM: Enhancing Large Language Models with Conceptual Meta-Relations and Iterative Retrieval
Large language models (LLMs) exhibit strong semantic understanding, yet struggle when user instructions involve ambiguous or conceptually misaligned terms. We propose the Language Graph Model (LGM) to enhance conceptual clarity by extracting meta-relations-inheritance, alias, and composition-from natural language. The model further employs a reflection mechanism to validate these meta-relations. Leveraging a Concept Iterative Retrieval Algorithm, these relations and related descriptions are dynamically supplied to the LLM, improving its ability to interpret concepts and generate accurate responses. Unlike conventional Retrieval-Augmented Generation (RAG) approaches that rely on extended context windows, our method enables large language models to process texts of any length without the need for truncation. Experiments on standard benchmarks demonstrate that the LGM consistently outperforms existing RAG baselines.
comment: 30 pages, 5 figures
☆ BengaliMoralBench: A Benchmark for Auditing Moral Reasoning in Large Language Models within Bengali Language and Culture
As multilingual Large Language Models (LLMs) gain traction across South Asia, their alignment with local ethical norms, particularly for Bengali, which is spoken by over 285 million people and ranked 6th globally, remains underexplored. Existing ethics benchmarks are largely English-centric and shaped by Western frameworks, overlooking cultural nuances critical for real-world deployment. To address this, we introduce BengaliMoralBench, the first large-scale ethics benchmark for the Bengali language and socio-cultural contexts. It covers five moral domains, Daily Activities, Habits, Parenting, Family Relationships, and Religious Activities, subdivided into 50 culturally relevant subtopics. Each scenario is annotated via native-speaker consensus using three ethical lenses: Virtue, Commonsense, and Justice ethics. We conduct systematic zero-shot evaluation of prominent multilingual LLMs, including Llama, Gemma, Qwen, and DeepSeek, using a unified prompting protocol and standard metrics. Performance varies widely (50-91% accuracy), with qualitative analysis revealing consistent weaknesses in cultural grounding, commonsense reasoning, and moral fairness. BengaliMoralBench provides a foundation for responsible localization, enabling culturally aligned evaluation and supporting the deployment of ethically robust AI in diverse, low-resource multilingual settings such as Bangladesh.
comment: This manuscript is a preprint currently under review
☆ Measuring Aleatoric and Epistemic Uncertainty in LLMs: Empirical Evaluation on ID and OOD QA Tasks KDD'24
Large Language Models (LLMs) have become increasingly pervasive, finding applications across many industries and disciplines. Ensuring the trustworthiness of LLM outputs is paramount, where Uncertainty Estimation (UE) plays a key role. In this work, a comprehensive empirical study is conducted to examine the robustness and effectiveness of diverse UE measures regarding aleatoric and epistemic uncertainty in LLMs. It involves twelve different UE methods and four generation quality metrics including LLMScore from LLM criticizers to evaluate the uncertainty of LLM-generated answers in Question-Answering (QA) tasks on both in-distribution (ID) and out-of-distribution (OOD) datasets. Our analysis reveals that information-based methods, which leverage token and sequence probabilities, perform exceptionally well in ID settings due to their alignment with the model's understanding of the data. Conversely, density-based methods and the P(True) metric exhibit superior performance in OOD contexts, highlighting their effectiveness in capturing the model's epistemic uncertainty. Semantic consistency methods, which assess variability in generated answers, show reliable performance across different datasets and generation metrics. These methods generally perform well but may not be optimal for every situation.
comment: Accepted by UDM-KDD'24
☆ Who Sees the Risk? Stakeholder Conflicts and Explanatory Policies in LLM-based Risk Assessment
Understanding how different stakeholders perceive risks in AI systems is essential for their responsible deployment. This paper presents a framework for stakeholder-grounded risk assessment by using LLMs, acting as judges to predict and explain risks. Using the Risk Atlas Nexus and GloVE explanation method, our framework generates stakeholder-specific, interpretable policies that shows how different stakeholders agree or disagree about the same risks. We demonstrate our method using three real-world AI use cases of medical AI, autonomous vehicles, and fraud detection domain. We further propose an interactive visualization that reveals how and why conflicts emerge across stakeholder perspectives, enhancing transparency in conflict reasoning. Our results show that stakeholder perspectives significantly influence risk perception and conflict patterns. Our work emphasizes the importance of these stakeholder-aware explanations needed to make LLM-based evaluations more transparent, interpretable, and aligned with human-centered AI governance goals.
☆ MME-CC: A Challenging Multi-Modal Evaluation Benchmark of Cognitive Capacity
As reasoning models scale rapidly, the essential role of multimodality in human cognition has come into sharp relief, driving a growing need to probe vision-centric cognitive behaviors. Yet, existing multimodal benchmarks either overemphasize textual reasoning or fall short of systematically capturing vision-centric cognitive behaviors, leaving the cognitive capacity of MLLMs insufficiently assessed. To address this limitation, we introduce MME-CC (Multi-Modal Evaluation benchmark of Cognitive Capacity), a vision-grounded benchmark that organizes 11 representative reasoning tasks into three fundamental categories of visual information: spatial, geometric, and knowledge-based reasoning, and provides fine-grained analyses of MLLMs' cognitive capacity across these dimensions. Based on MME-CC, we conduct extensive experiments over 16 representative MLLMs. Our study reveals that closed-source models currently lead overall (e.g., 42.66 for Gemini-2.5-Pro vs. 30.45 for GLM-4.5V), while spatial and geometric reasoning remain broadly weak (less than or equal to 30%). We further identify common error patterns, including orientation mistakes, fragile cross-view identity persistence, and poor adherence to counterfactual instructions, and observe that Chain-of-Thought typically follows a three-stage process (extract -> reason -> verify) with heavy reliance on visual extraction. We hope this work catalyzes a shift toward treating the cognitive capacity of MLLMs as central to both evaluation and model design.
☆ From Measurement to Expertise: Empathetic Expert Adapters for Context-Based Empathy in Conversational AI Agents
Empathy is a critical factor in fostering positive user experiences in conversational AI. While models can display empathy, it is often generic rather than tailored to specific tasks and contexts. In this work, we introduce a novel framework for developing and evaluating context-specific empathetic large language models (LLMs). We first analyze a real-world conversational dataset consisting of 672 multi-turn conversations across 8 tasks, revealing significant differences in terms of expected and experienced empathy before and after the conversations, respectively. To help minimize this gap, we develop a synthetic multi-turn conversational generation pipeline and steer responses toward our defined empathy patterns based on the context that more closely matches users' expectations. We then train empathetic expert adapters for context-specific empathy that specialize in varying empathy levels based on the recognized task. Our empirical results demonstrate a significant gap reduction of 72.66% between perceived and desired empathy with scores increasing by an average factor of 2.43 as measured by our metrics and reward models. Additionally, our trained empathetic expert adapters demonstrate superior effectiveness in preserving empathy patterns throughout conversation turns, outperforming system prompts, which tend to dramatically diminish in impact as conversations lengthen.
☆ From Insight to Exploit: Leveraging LLM Collaboration for Adaptive Adversarial Text Generation EMNLP 2025
LLMs can provide substantial zero-shot performance on diverse tasks using a simple task prompt, eliminating the need for training or fine-tuning. However, when applying these models to sensitive tasks, it is crucial to thoroughly assess their robustness against adversarial inputs. In this work, we introduce Static Deceptor (StaDec) and Dynamic Deceptor (DyDec), two innovative attack frameworks designed to systematically generate dynamic and adaptive adversarial examples by leveraging the understanding of the LLMs. We produce subtle and natural-looking adversarial inputs that preserve semantic similarity to the original text while effectively deceiving the target LLM. By utilizing an automated, LLM-driven pipeline, we eliminate the dependence on external heuristics. Our attacks evolve with the advancements in LLMs and demonstrate strong transferability across models unknown to the attacker. Overall, this work provides a systematic approach for the self-assessment of an LLM's robustness. We release our code and data at https://github.com/Shukti042/AdversarialExample.
comment: Findings of the Association for Computational Linguistics: EMNLP 2025 (camera-ready)
☆ Control Barrier Function for Aligning Large Language Models
This paper proposes a control-based framework for aligning large language models (LLMs) by leveraging a control barrier function (CBF) to ensure user-desirable text generation. The presented framework applies the CBF safety filter to the predicted token generated from the baseline LLM, to intervene in the generated text. The safety filter includes two significant advantages: this safety filter is an add-on type, allowing it to be used for alignment purposes without fine-tuning the baseline LLM, and if there is an evaluation model regarding the desired alignment, it can be directly applied to the filter design. The overall text-generation system is implemented with open-source language models, aiming to generate positive text.
☆ CARMA: Comprehensive Automatically-annotated Reddit Mental Health Dataset for Arabic
Mental health disorders affect millions worldwide, yet early detection remains a major challenge, particularly for Arabic-speaking populations where resources are limited and mental health discourse is often discouraged due to cultural stigma. While substantial research has focused on English-language mental health detection, Arabic remains significantly underexplored, partly due to the scarcity of annotated datasets. We present CARMA, the first automatically annotated large-scale dataset of Arabic Reddit posts. The dataset encompasses six mental health conditions, such as Anxiety, Autism, and Depression, and a control group. CARMA surpasses existing resources in both scale and diversity. We conduct qualitative and quantitative analyses of lexical and semantic differences between users, providing insights into the linguistic markers of specific mental health conditions. To demonstrate the dataset's potential for further mental health analysis, we perform classification experiments using a range of models, from shallow classifiers to large language models. Our results highlight the promise of advancing mental health detection in underrepresented languages such as Arabic.
☆ A Computational Approach to Analyzing Disrupted Language in Schizophrenia: Integrating Surprisal and Coherence Measures ICASSP 2026
Language disruptions are one of the well-known effects of schizophrenia symptoms. They are often manifested as disorganized speech and impaired discourse coherence. These abnormalities in spontaneous language production reflect underlying cognitive disturbances and have the potential to serve as objective markers for symptom severity and diagnosis of schizophrenia. This study focuses on how these language disruptions can be characterized in terms of two computational linguistic measures: surprisal and semantic coherence. By computing surprisal and semantic coherence of language using computational models, this study investigates how they differ between subjects with schizophrenia and healthy controls. Furthermore, this study provides further insight into how language disruptions in terms of these linguistic measures change with varying degrees of schizophrenia symptom severity.
comment: Submitted to ICASSP 2026
☆ PolyNorm: Few-Shot LLM-Based Text Normalization for Text-to-Speech EMNLP 2025
Text Normalization (TN) is a key preprocessing step in Text-to-Speech (TTS) systems, converting written forms into their canonical spoken equivalents. Traditional TN systems can exhibit high accuracy, but involve substantial engineering effort, are difficult to scale, and pose challenges to language coverage, particularly in low-resource settings. We propose PolyNorm, a prompt-based approach to TN using Large Language Models (LLMs), aiming to reduce the reliance on manually crafted rules and enable broader linguistic applicability with minimal human intervention. Additionally, we present a language-agnostic pipeline for automatic data curation and evaluation, designed to facilitate scalable experimentation across diverse languages. Experiments across eight languages show consistent reductions in the word error rate (WER) compared to a production-grade-based system. To support further research, we release PolyNorm-Benchmark, a multilingual data set covering a diverse range of text normalization phenomena.
comment: 9 pages including appendix. EMNLP 2025 Industry Track
♻ ☆ GDS Agent for Graph Algorithmic Reasoning
Large language models (LLMs) have shown remarkable multimodal information processing and reasoning ability. When equipped with tools through function calling and enhanced with retrieval-augmented techniques, compound LLM-based systems can access closed data sources and answer questions about them. However, they still struggle to process and reason over large-scale graph-structure data. We introduce the GDS (Graph Data Science) agent in this technical report. The GDS agent introduces a comprehensive set of graph algorithms as tools, together with preprocessing (retrieval) and postprocessing of algorithm results, in a model context protocol (MCP) server. The server can be used with any modern LLM out-of-the-box. GDS agent allows users to ask any question that implicitly and intrinsically requires graph algorithmic reasoning about their data, and quickly obtain accurate and grounded answers. We introduce new benchmarks that evaluate intermediate tool calls as well as final responses. The results indicate that GDS agent is able to solve a wide spectrum of graph tasks. We also provide detailed case studies for more open-ended tasks and study scenarios where the agent struggles. Finally, we discuss the remaining challenges and the future roadmap.
comment: Technical report
♻ ☆ Does Synthetic Data Help Named Entity Recognition for Low-Resource Languages? AACL 2025
Named Entity Recognition(NER) for low-resource languages aims to produce robust systems for languages where there is limited labeled training data available, and has been an area of increasing interest within NLP. Data augmentation for increasing the amount of low-resource labeled data is a common practice. In this paper, we explore the role of synthetic data in the context of multilingual, low-resource NER, considering 11 languages from diverse language families. Our results suggest that synthetic data does in fact hold promise for low-resource language NER, though we see significant variation between languages.
comment: Accepted at AACL 2025. Camera-ready version
♻ ☆ Do Automatic Factuality Metrics Measure Factuality? A Critical Evaluation
Modern LLMs can now produce highly readable abstractive summaries, to the point that traditional automated metrics for evaluating summary quality, such as ROUGE, have saturated. However, LLMs still sometimes introduce inaccuracies into summaries, i.e., information inconsistent with or unsupported by the corresponding source. Measuring the occurrence of these often subtle factual inconsistencies automatically has proved challenging. This in turn has motivated development of metrics intended to measure the factual consistency of generated summaries against sources. But are these approaches measuring what they purport to? Or are they mostly exploiting artifacts? In this work, we stress test a range of automatic factuality metrics, including specialized models and LLM-based prompting methods, to probe what they actually capture. Using a shallow classifier to separate ``easy'' examples for factual evaluation where surface features suffice from ``hard'' cases requiring deeper reasoning, we find that all metrics show substantial performance drops on the latter. Furthermore, some metrics are more sensitive to benign, fact-preserving edits than to factual corrections. Building on this observation, we demonstrate that most automatic factuality metrics can be gamed, i.e., their scores can be artificially inflated by appending innocuous, content-free sentences to summaries. Among the metrics tested, the prompt based ChatGPT-DA approach is the most robust and reliable. However, this comes with a notable caveat: Prompting LLMs to assess factuality may overly rely on their parametric knowledge rather than the provided reference when making judgments. Taken together, our findings call into question the reliability of current factuality metrics and prompt a broader reflection on what these metrics are truly measuring.
♻ ☆ Matryoshka Pilot: Learning to Drive Black-Box LLMs with LLMs NeurIPS 2025
Despite the impressive generative abilities of black-box large language models (LLMs), their inherent opacity hinders further advancements in capabilities such as reasoning, planning, and personalization. Existing works aim to enhance LLM capabilities via domain-specific adaptation, which require additional training on accessible model parameters, an infeasible option for black-box LLMs. To address this challenge, we introduce Matryoshka Pilot (M-Pilot), a lightweight white-box LLM controller that guides a large-scale black-box LLM generator by decomposing complex tasks into a series of intermediate outputs. Specifically, we consider the black-box LLM as an environment, with M-Pilot serving as a policy to provide intermediate guidance through prompts for driving the black-box LLM. M-Pilot is trained to pivot the outputs of the black-box LLM aligning with preferences during iterative interaction, which enables controllable multi-turn generation and self-improvement in optimizing intermediate guidance. Empirical evaluations on diverse tasks demonstrate that our method effectively enhances the capabilities of black-box LLMs in complex, long-horizon tasks. Our code is publicly available at: https://github.com/lichangh20/Matryoshka.
comment: Accepted by NeurIPS 2025
♻ ☆ Post Persona Alignment for Multi-Session Dialogue Generation EMNLP 2025
Multi-session persona-based dialogue generation presents challenges in maintaining long-term consistency and generating diverse, personalized responses. While large language models (LLMs) excel in single-session dialogues, they struggle to preserve persona fidelity and conversational coherence across extended interactions. Existing methods typically retrieve persona information before response generation, which can constrain diversity and result in generic outputs. We propose Post Persona Alignment (PPA), a novel two-stage framework that reverses this process. PPA first generates a general response based solely on dialogue context, then retrieves relevant persona memories using the response as a query, and finally refines the response to align with the speaker's persona. This post-hoc alignment strategy promotes naturalness and diversity while preserving consistency and personalization. Experiments on multi-session LLM-generated dialogue data demonstrate that PPA significantly outperforms prior approaches in consistency, diversity, and persona relevance, offering a more flexible and effective paradigm for long-term personalized dialogue generation.
comment: EMNLP 2025 Findings
♻ ☆ Read Your Own Mind: Reasoning Helps Surface Self-Confidence Signals in LLMs EMNLP 2025
We study the source of uncertainty in DeepSeek R1-32B by analyzing its self-reported verbal confidence on question answering (QA) tasks. In the default answer-then-confidence setting, the model is regularly over-confident, whereas semantic entropy - obtained by sampling many responses - remains reliable. We hypothesize that this is because of semantic entropy's larger test-time compute, which lets us explore the model's predictive distribution. We show that granting DeepSeek the budget to explore its distribution by forcing a long chain-of-thought before the final answer greatly improves its verbal score effectiveness, even on simple fact-retrieval questions that normally require no reasoning. Furthermore, a separate reader model that sees only the chain can reconstruct very similar confidences, indicating the verbal score might be merely a statistic of the alternatives surfaced during reasoning. Our analysis concludes that reliable uncertainty estimation requires explicit exploration of the generative space, and self-reported confidence is trustworthy only after such exploration.
comment: Presented at UncertaiNLP Workshop at EMNLP 2025 https://aclanthology.org/2025.uncertainlp-main.21.pdf
♻ ☆ R2R: Efficiently Navigating Divergent Reasoning Paths with Small-Large Model Token Routing
Large Language Models (LLMs) achieve impressive reasoning capabilities at the cost of substantial inference overhead, posing substantial deployment challenges. Although distilled Small Language Models (SLMs) significantly enhance efficiency, their performance suffers as they fail to follow LLMs' reasoning paths. Luckily, we reveal that only a small fraction of tokens genuinely diverge reasoning paths between LLMs and SLMs. Most generated tokens are either identical or exhibit neutral differences, such as minor variations in abbreviations or expressions. Leveraging this insight, we introduce **Roads to Rome (R2R)**, a neural token routing method that selectively utilizes LLMs only for these critical, path-divergent tokens, while leaving the majority of token generation to the SLM. We also develop an automatic data generation pipeline that identifies divergent tokens and generates token-level routing labels to train the lightweight router. We apply R2R to combine R1-1.5B and R1-32B models from the DeepSeek family, and evaluate on challenging math, coding, and QA benchmarks. With an average activated parameter size of 5.6B, R2R surpasses the average accuracy of R1-7B by 1.6x, outperforming even the R1-14B model. Compared to R1-32B, it delivers a 2.8x wall-clock speedup with comparable performance, advancing the Pareto frontier of test-time scaling efficiency. Our code is available at https://github.com/thu-nics/R2R.
♻ ☆ TABLET: A Large-Scale Dataset for Robust Visual Table Understanding
While table understanding increasingly relies on pixel-only settings where tables are processed as visual representations, current benchmarks predominantly use synthetic renderings that lack the complexity and visual diversity of real-world tables. Additionally, existing visual table understanding (VTU) datasets offer fixed examples with single visualizations and pre-defined instructions, providing no access to underlying serialized data for reformulation. We introduce TABLET, a large-scale VTU dataset with 4 million examples across 20 tasks, grounded in 2 million unique tables where 88% preserve original visualizations. Each example includes paired image-HTML representations, comprehensive metadata, and provenance information linking back to the source datasets. Fine-tuning vision-language models like Qwen2.5-VL-7B on TABLET improves performance on seen and unseen VTU tasks while increasing robustness on real-world table visualizations. By preserving original visualizations and maintaining example traceability in a unified large-scale collection, TABLET establishes a foundation for robust training and extensible evaluation of future VTU models.
♻ ☆ Token Perturbation Guidance for Diffusion Models NeurIPS 2025
Classifier-free guidance (CFG) has become an essential component of modern diffusion models to enhance both generation quality and alignment with input conditions. However, CFG requires specific training procedures and is limited to conditional generation. To address these limitations, we propose Token Perturbation Guidance (TPG), a novel method that applies perturbation matrices directly to intermediate token representations within the diffusion network. TPG employs a norm-preserving shuffling operation to provide effective and stable guidance signals that improve generation quality without architectural changes. As a result, TPG is training-free and agnostic to input conditions, making it readily applicable to both conditional and unconditional generation. We further analyze the guidance term provided by TPG and show that its effect on sampling more closely resembles CFG compared to existing training-free guidance techniques. Extensive experiments on SDXL and Stable Diffusion 2.1 show that TPG achieves nearly a 2$\times$ improvement in FID for unconditional generation over the SDXL baseline, while closely matching CFG in prompt alignment. These results establish TPG as a general, condition-agnostic guidance method that brings CFG-like benefits to a broader class of diffusion models.
comment: Accepted at NeurIPS 2025. Project page: https://github.com/TaatiTeam/Token-Perturbation-Guidance
♻ ☆ Dense SAE Latents Are Features, Not Bugs NeurIPS 2025
Sparse autoencoders (SAEs) are designed to extract interpretable features from language models by enforcing a sparsity constraint. Ideally, training an SAE would yield latents that are both sparse and semantically meaningful. However, many SAE latents activate frequently (i.e., are \emph{dense}), raising concerns that they may be undesirable artifacts of the training procedure. In this work, we systematically investigate the geometry, function, and origin of dense latents and show that they are not only persistent but often reflect meaningful model representations. We first demonstrate that dense latents tend to form antipodal pairs that reconstruct specific directions in the residual stream, and that ablating their subspace suppresses the emergence of new dense features in retrained SAEs -- suggesting that high density features are an intrinsic property of the residual space. We then introduce a taxonomy of dense latents, identifying classes tied to position tracking, context binding, entropy regulation, letter-specific output signals, part-of-speech, and principal component reconstruction. Finally, we analyze how these features evolve across layers, revealing a shift from structural features in early layers, to semantic features in mid layers, and finally to output-oriented signals in the last layers of the model. Our findings indicate that dense latents serve functional roles in language model computation and should not be dismissed as training noise.
comment: NeurIPS 2025 poster
♻ ☆ Assessing the Macro and Micro Effects of Random Seeds on Fine-Tuning Large Language Models
The impact of random seeds in fine-tuning large language models (LLMs) has been largely overlooked despite its potential influence on model performance.In this study, we systematically evaluate the effects of random seeds on LLMs using the GLUE and SuperGLUE benchmarks. We analyze the macro-level impact through traditional metrics like accuracy and F1, calculating their mean and variance to quantify performance fluctuations. To capture the micro-level effects, we introduce a novel metric, consistency, measuring the stability of individual predictions across runs. Our experiments reveal significant variance at both macro and micro levels, underscoring the need for careful consideration of random seeds in fine-tuning and evaluation.
comment: 7 pages, 5 tables, 3 figures. Accepted at IJCNLP 2025. This is the final, peer-reviewed version of the work, which supersedes and extends the unauthorized draft previously posted as arXiv:2503.07329
♻ ☆ Reinforcement Learning Foundations for Deep Research Systems: A Survey
Deep research systems, agentic AI that solve complex, multi-step tasks by coordinating reasoning, search across the open web and user files, and tool use, are moving toward hierarchical deployments with a Planner, Coordinator, and Executors. In practice, training entire stacks end-to-end remains impractical, so most work trains a single planner connected to core tools such as search, browsing, and code. While SFT imparts protocol fidelity, it suffers from imitation and exposure biases and underuses environment feedback. Preference alignment methods such as DPO are schema and proxy-dependent, off-policy, and weak for long-horizon credit assignment and multi-objective trade-offs. A further limitation of SFT and DPO is their reliance on human defined decision points and subskills through schema design and labeled comparisons. Reinforcement learning aligns with closed-loop, tool-interaction research by optimizing trajectory-level policies, enabling exploration, recovery behaviors, and principled credit assignment, and it reduces dependence on such human priors and rater biases. This survey is, to our knowledge, the first dedicated to the RL foundations of deep research systems. It systematizes recent work along three axes: (i) data synthesis and curation; (ii) RL methods for agentic research covering stability, sample efficiency, long context handling, reward and credit design, multi-objective optimization, and multimodal integration; and (iii) agentic RL training systems and frameworks. We also cover agent architecture and coordination, as well as evaluation and benchmarks, including recent QA, VQA, long-form synthesis, and domain-grounded, tool-interaction tasks. We distill recurring patterns, surface infrastructure bottlenecks, and offer practical guidance for training robust, transparent deep research agents with RL.
comment: 39 pages, second version
♻ ☆ Inv-Entropy: A Fully Probabilistic Framework for Uncertainty Quantification in Language Models
Large language models (LLMs) have transformed natural language processing, but their reliable deployment requires effective uncertainty quantification (UQ). Existing UQ methods are often heuristic and lack a probabilistic interpretation. This paper begins by providing a theoretical justification for the role of perturbations in UQ for LLMs. We then introduce a dual random walk perspective, modeling input-output pairs as two Markov chains with transition probabilities defined by semantic similarity. Building on this, we propose a fully probabilistic framework based on an inverse model, which quantifies uncertainty by evaluating the diversity of the input space conditioned on a given output through systematic perturbations. Within this framework, we define a new uncertainty measure, Inv-Entropy. A key strength of our framework is its flexibility: it supports various definitions of uncertainty measures, embeddings, perturbation strategies, and similarity metrics. We also propose GAAP, a perturbation algorithm based on genetic algorithms, which enhances the diversity of sampled inputs. In addition, we introduce a new evaluation metric, Temperature Sensitivity of Uncertainty (TSU), which directly assesses uncertainty without relying on correctness as a proxy. Extensive experiments demonstrate that Inv-Entropy outperforms existing semantic UQ methods. The code to reproduce the results can be found at https://github.com/UMDataScienceLab/Uncertainty-Quantification-for-LLMs.
♻ ☆ Exploring Typographic Visual Prompts Injection Threats in Cross-Modality Generation Models IJCAI2025
Current Cross-Modality Generation Models (GMs) demonstrate remarkable capabilities in various generative tasks. Given the ubiquity and information richness of vision modality inputs in real-world scenarios, Cross-Vision tasks, encompassing Vision-Language Perception (VLP) and Image-to-Image (I2I), have attracted significant attention. Large Vision Language Models (LVLMs) and I2I Generation Models (GMs) are employed to handle VLP and I2I tasks, respectively. Previous research indicates that printing typographic words into input images significantly induces LVLMs and I2I GMs to produce disruptive outputs that are semantically aligned with those words. Additionally, visual prompts, as a more sophisticated form of typography, are also revealed to pose security risks to various applications of cross-vision tasks. However, the specific characteristics of the threats posed by visual prompts remain underexplored. In this paper, to comprehensively investigate the performance impact induced by Typographic Visual Prompt Injection (TVPI) in various LVLMs and I2I GMs, we propose the Typographic Visual Prompts Injection Dataset and thoroughly evaluate the TVPI security risks on various open-source and closed-source LVLMs and I2I GMs under visual prompts with different target semantics, deepening the understanding of TVPI threats.
comment: This paper is accepted by IJCAI2025 Workshop on Deepfake Detection, Localization, and Interpretability as Best Student Paper
♻ ☆ Sparse-dLLM: Accelerating Diffusion LLMs with Dynamic Cache Eviction
Diffusion Large Language Models (dLLMs) enable breakthroughs in reasoning and parallel decoding but suffer from prohibitive quadratic computational complexity and memory overhead during inference. Current caching techniques accelerate decoding by storing full-layer states, yet impose substantial memory usage that limit long-context applications. Our analysis of attention patterns in dLLMs reveals persistent cross-layer sparsity, with pivotal tokens remaining salient across decoding steps and low-relevance tokens staying unimportant, motivating selective cache eviction. We propose Sparse-dLLM, the first training-free framework integrating dynamic cache eviction with sparse attention via delayed bidirectional sparse caching. By leveraging the stability of token saliency over steps, it retains critical tokens and dynamically evicts unimportant prefix/suffix entries using an attention-guided strategy. Extensive experiments on LLaDA and Dream series demonstrate Sparse-dLLM achieves up to 10$\times$ higher throughput than vanilla dLLMs, with comparable performance and similar peak memory costs, outperforming previous methods in efficiency and effectiveness. The code is available at https://github.com/OpenMOSS/Sparse-dLLM.
comment: 12 pages, 7 figures
♻ ☆ From Haystack to Needle: Label Space Reduction for Zero-shot Classification
We present Label Space Reduction (LSR), a novel method for improving zero-shot classification performance of Large Language Models (LLMs). LSR iteratively refines the classification label space by systematically ranking and reducing candidate classes, enabling the model to concentrate on the most relevant options. By leveraging unlabeled data with the statistical learning capabilities of data-driven models, LSR dynamically optimizes the label space representation at test time. Our experiments across seven benchmarks demonstrate that LSR improves macro-F1 scores by an average of 7.0% (up to 14.2%) with Llama-3.1-70B and 3.3% (up to 11.1%) with Claude-3.5-Sonnet compared to standard zero-shot classification baselines. To reduce the computational overhead of LSR, which requires an additional LLM call at each iteration, we propose distilling the model into a probabilistic classifier, allowing for efficient inference.
comment: Add acknowledgment
♻ ☆ Traversal Verification for Speculative Tree Decoding NeurIPS 2025
Speculative decoding is a promising approach for accelerating large language models. The primary idea is to use a lightweight draft model to speculate the output of the target model for multiple subsequent timesteps, and then verify them in parallel to determine whether the drafted tokens should be accepted or rejected. To enhance acceptance rates, existing frameworks typically construct token trees containing multiple candidates in each timestep. However, their reliance on token-level verification mechanisms introduces two critical limitations: First, the probability distribution of a sequence differs from that of individual tokens, leading to suboptimal acceptance length. Second, current verification schemes begin from the root node and proceed layer by layer in a top-down manner. Once a parent node is rejected, all its child nodes should be discarded, resulting in inefficient utilization of speculative candidates. This paper introduces Traversal Verification, a novel speculative decoding algorithm that fundamentally rethinks the verification paradigm through leaf-to-root traversal. Our approach considers the acceptance of the entire token sequence from the current node to the root, and preserves potentially valid subsequences that would be prematurely discarded by existing methods. We theoretically prove that the probability distribution obtained through Traversal Verification is identical to that of the target model, guaranteeing lossless inference while achieving substantial acceleration gains. Experimental results across different large language models and multiple tasks show that our method consistently improves acceptance length and throughput over existing methods.
comment: NeurIPS 2025 poster
♻ ☆ HPLT 3.0: Very Large-Scale Multilingual Resources for LLM and MT. Mono- and Bi-lingual Data, Multilingual Evaluation, and Pre-Trained Models
We present an ongoing initiative to provide open, very large, high-quality, and richly annotated textual datasets for almost 200 languages. At 30 trillion tokens, this is likely the largest generally available multilingual collection of LLM pre-training data. These datasets are derived from web crawls from different sources and accompanied with a complete, open-source pipeline for document selection from web archives, text extraction from HTML, language identification for noisy texts, exact and near-deduplication, annotation with, among others, register labels, text quality estimates, and personally identifiable information; and final selection and filtering. We report on data quality probes through contrastive and analytical statistics, through manual inspection of samples for 24 languages, and through end-to-end evaluation of various language model architectures trained on this data. For multilingual LLM evaluation, we provide a comprehensive collection of benchmarks for nine European languages, with special emphasis on natively created tasks, mechanisms to mitigate prompt sensitivity, and refined normalization and aggregation of scores. Additionally, we train and evaluate a family of 57 monolingual encoder-decoder models, as well as a handful of monolingual GPT-like reference models. Besides the monolingual data and models, we also present a very large collection of parallel texts automatically mined from this data, together with a novel parallel corpus synthesized via machine translation.
♻ ☆ Constraint-Driven Small Language Models Based on Agent and OpenAlex Knowledge Graph: Mining Conceptual Pathways and Discovering Innovation Points in Academic Papers
In recent years, the rapid increase in academic publications across various fields has posed severe challenges for academic paper analysis: scientists struggle to timely and comprehensively track the latest research findings and methodologies. Key concept extraction has proven to be an effective analytical paradigm, and its automation has been achieved with the widespread application of language models in industrial and scientific domains. However, existing paper databases are mostly limited to similarity matching and basic classification of key concepts, failing to deeply explore the relational networks between concepts. This paper is based on the OpenAlex opensource knowledge graph. By analyzing nearly 8,000 open-source paper data from Novosibirsk State University, we discovered a strong correlation between the distribution patterns of paper key concept paths and both innovation points and rare paths. We propose a prompt engineering-based key concept path analysis method. This method leverages small language models to achieve precise key concept extraction and innovation point identification, and constructs an agent based on a knowledge graph constraint mechanism to enhance analysis accuracy. Through fine-tuning of the Qwen and DeepSeek models, we achieved significant improvements in accuracy, with the models publicly available on the Hugging Face platform.
comment: 11 pages, 10 figures
♻ ☆ Distilling LLM Agent into Small Models with Retrieval and Code Tools NeurIPS 2025
Large language models (LLMs) excel at complex reasoning tasks but remain computationally expensive, limiting their practical deployment. To address this, recent works have focused on distilling reasoning capabilities into smaller language models (sLMs) using chain-of-thought (CoT) traces from teacher LLMs. However, this approach struggles in scenarios requiring rare factual knowledge or precise computation, where sLMs often hallucinate due to limited capability. In this work, we propose Agent Distillation, a framework for transferring not only reasoning capability but full task-solving behavior from LLM-based agents into sLMs with retrieval and code tools. We improve agent distillation along two complementary axes: (1) we introduce a prompting method called first-thought prefix to enhance the quality of teacher-generated trajectories; and (2) we propose a self-consistent action generation for improving test-time robustness of small agents. We evaluate our method on eight reasoning tasks across factual and mathematical domains, covering both in-domain and out-of-domain generalization. Our results show that sLMs as small as 0.5B, 1.5B, 3B parameters can achieve performance competitive with next-tier larger 1.5B, 3B, 7B models fine-tuned using CoT distillation, demonstrating the potential of agent distillation for building practical, tool-using small agents. Our code is available at https://github.com/Nardien/agent-distillation.
comment: NeurIPS 2025 Spotlight
♻ ☆ A Survey on Collaborating Small and Large Language Models for Performance, Cost-effectiveness, Cloud-edge Privacy, and Trustworthiness
Large language models (LLMs) have achieved remarkable progress across domains and applications but face challenges such as high fine-tuning costs, inference latency, limited edge deployability, and reliability concerns. Small language models (SLMs), with compact, efficient, and adaptable features, offer promising solutions. Building on this potential, recent research explores collaborative frameworks that integrate their complementary strengths, leveraging SLMs' specialization and efficiency with LLMs' generalization and reasoning to address diverse objectives across tasks and deployment scenarios. Motivated by these developments, this paper presents a systematic survey of SLM-LLM collaboration from the perspective of collaboration objectives. We propose a taxonomy covering four goals: performance enhancement, cost-effectiveness, cloud-edge privacy, and trustworthiness. Under this framework, we review representative methods, summarize design paradigms, and outline open challenges and future directions toward efficient and secure SLM-LLM collaboration. The collected papers are available at https://github.com/FairyFali/SLMs-Survey.
comment: 24 pages, 19 figures-under review; more detailed than v1
♻ ☆ REFA: Reference Free Alignment for multi-preference optimization
To mitigate reward hacking from response verbosity, modern preference optimization methods are increasingly adopting length normalization (e.g., SimPO, ORPO, LN-DPO). While effective against this bias, we demonstrate that length normalization itself introduces a failure mode: the URSLA shortcut. Here models learn to satisfy the alignment objective by prematurely truncating low-quality responses rather than learning from their semantic content. To address this, we introduce REFA, a new alignment framework that proposes probabilistic control on a structural token that controls termination. Our core innovation is a new class of regularizers that operate directly on the probability of the End-of-Sequence (EOS) token, a previously unexploited control lever. This token-level intervention provides a principled solution to the URSLA shortcut, ensuring genuine quality improvements. Furthermore, it unlocks a versatile mechanism for managing the alignment-efficiency tradeoff, enabling practitioners to fine-tune models that adhere to specific token budgets. Empirically, REFA achieves a 60.29% win rate and a 52.17% length-controlled win rate on AlpacaEval2 with Llama-3-8B-Instruct, demonstrating the power of our token-level control paradigm.
♻ ☆ The Mirror Loop: Recursive Non-Convergence in Generative Reasoning Systems
Large language models are often described as capable of reflective reasoning, yet recursive self-evaluation without external feedback frequently yields reformulation rather than progress. We test this prediction in a cross-provider study of 144 reasoning sequences across three models (OpenAI GPT-4o-mini, Anthropic Claude 3 Haiku, and Google Gemini 2.0 Flash) and four task families (arithmetic, code, explanation, reflection), each iterated ten times under two conditions: ungrounded self-critique and a minimal grounding intervention (a single verification step at iteration three). Mean informational change (delta I, measured via normalized edit distance) declined by 55% from early (0.193) to late (0.087) iterations in ungrounded runs, with consistent patterns across all three providers. Grounded runs showed a +28% rebound in informational change immediately after the intervention and sustained non-zero variance thereafter. Complementary measures-n-gram novelty, embedding drift, and character-level entropy-converged on the same pattern: reflection without contact tends toward informational closure. We interpret this as evidence for a structural limit on self-correction in generative reasoning: without an exchange of information with an independent verifier or environment, recursive inference approaches an attractor state of epistemic stasis. Minimal grounding functions as dissipative coupling, reintroducing informational flux. The cross-architecture consistency suggests the mirror loop arises from shared autoregressive training objectives rather than provider-specific alignment schemes. The results delineate when reflection is performative rather than epistemic and motivate design principles for grounded, cooperative reasoning. Materials and code are publicly available.
comment: 18 pages, 2 figures. Category: cs.LG. Code and data: https://github.com/Course-Correct-Labs/mirror-loop
♻ ☆ MathOPEval: A Fine-grained Evaluation Benchmark for Visual Operations of MLLMs in Mathematical Reasoning
Recent progress in Multi-modal Large Language Models (MLLMs) has enabled step-by-step multi-modal mathematical reasoning by performing visual operations based on the textual instructions. A promising approach uses code as an intermediate representation to precisely express and manipulate the images in the reasoning steps. However, existing evaluations focus mainly on text-only reasoning outputs, leaving the MLLM's ability to perform accurate visual operations via code largely unexplored. This work takes a first step toward addressing that gap by evaluating MLLM's code-based capabilities in multi-modal mathematical reasoning.Specifically, our framework focuses on two key evaluation aspects: (1) Multi-modal Code Generation (MCG) evaluates the model's ability to accurately understand and construct visualizations from scratch. (2) Multi-modal Code Editing (MCE) assesses the model's capacity for fine-grained operations, which include three types: Deletion, Modification and Annotation. To evaluate the above tasks, we incorporate a dataset that covers the five most popular types of mathematical figures, including geometric diagrams, function plots, and three types of statistical charts, to provide a comprehensive and effective measurement of existing MLLMs. Our experimental evaluation involves nine mainstream MLLMs, and the results reveal that existing models still lag significantly behind human performance in performing fine-grained visual operations.
comment: Under Review
♻ ☆ LexTime: A Benchmark for Temporal Ordering of Legal Events EMNLP 2025
Understanding temporal relationships and accurately reconstructing the event timeline is important for case law analysis, compliance monitoring, and legal summarization. However, existing benchmarks lack specialized language evaluation, leaving a gap in understanding how LLMs handle event ordering in legal contexts. We introduce LexTime, a dataset designed to evaluate LLMs' event ordering capabilities in legal language, consisting of 512 instances from U.S. Federal Complaints with annotated event pairs and their temporal relations. Our findings show that (1) LLMs are more accurate on legal event ordering than on narrative texts (up to +10.5%); (2) longer input contexts and implicit events boost accuracy, reaching 80.8% for implicit-explicit event pairs; (3) legal linguistic complexities and nested clauses remain a challenge. While performance is promising, specific features of legal texts remain a bottleneck for legal temporal event reasoning, and we propose concrete modeling directions to better address them.
comment: EMNLP 2025 (Findings) long paper
♻ ☆ Training Optimal Large Diffusion Language Models
We introduce Quokka, the first systematic scaling law for diffusion language models (DLMs), encompassing both compute-constrained and data-constrained regimes, and studying the key modeling and optimization designs. Quokka is a good friend of Chinchilla and provides wider scopes. We hope the results would bring short-term practical guidance in DLMs training and long-term inspirations for the whole AI community.
♻ ☆ Unifying Symbolic Music Arrangement: Track-Aware Reconstruction and Structured Tokenization NeurIPS 2025
We present a unified framework for automatic multitrack music arrangement that enables a single pre-trained symbolic music model to handle diverse arrangement scenarios, including reinterpretation, simplification, and additive generation. At its core is a segment-level reconstruction objective operating on token-level disentangled content and style, allowing for flexible any-to-any instrumentation transformations at inference time. To support track-wise modeling, we introduce REMI-z, a structured tokenization scheme for multitrack symbolic music that enhances modeling efficiency and effectiveness for both arrangement tasks and unconditional generation. Our method outperforms task-specific state-of-the-art models on representative tasks in different arrangement scenarios -- band arrangement, piano reduction, and drum arrangement, in both objective metrics and perceptual evaluations. Taken together, our framework demonstrates strong generality and suggests broader applicability in symbolic music-to-music transformation.
comment: NeurIPS 2025 camera ready version
♻ ☆ AlphaDecay: Module-wise Weight Decay for Heavy-Tailed Balancing in LLMs
Weight decay is a standard regularization technique for training large language models (LLMs). While it is common to assign a uniform decay rate to every layer, this approach overlooks the structural diversity of LLMs and the varying spectral properties across modules. In this paper, we introduce AlphaDecay, a simple yet effective method that adaptively assigns different weight decay strengths to each module of an LLM. Our approach is guided by Heavy-Tailed Self-Regularization (HT-SR) theory, which analyzes the empirical spectral density (ESD) of weight correlation matrices to quantify "heavy-tailedness." Modules exhibiting more pronounced heavy-tailed ESDs, reflecting stronger feature learning, are assigned weaker decay, while modules with lighter-tailed spectra receive stronger decay. Our method leverages tailored weight decay assignments to balance the module-wise differences in spectral properties, leading to improved performance. Extensive pre-training tasks with various model sizes from 60M to 1B demonstrate that AlphaDecay achieves better perplexity and generalization than conventional uniform decay and other adaptive decay baselines. Our code is available at https://github.com/hed-ucas/AlphaDecay.
♻ ☆ PhysicsEval: Inference-Time Techniques to Improve the Reasoning Proficiency of Large Language Models on Physics Problems AACL 2025
The discipline of physics stands as a cornerstone of human intellect, driving the evolution of technology and deepening our understanding of the fundamental principles of the cosmos. Contemporary literature includes some works centered on the task of solving physics problems - a crucial domain of natural language reasoning. In this paper, we evaluate the performance of frontier LLMs in solving physics problems, both mathematical and descriptive. We also employ a plethora of inference-time techniques and agentic frameworks to improve the performance of the models. This includes the verification of proposed solutions in a cumulative fashion by other, smaller LLM agents, and we perform a comparative analysis of the performance that the techniques entail. There are significant improvements when the multi-agent framework is applied to problems that the models initially perform poorly on. Furthermore, we introduce a new evaluation benchmark for physics problems, ${\rm P{\small HYSICS}E{\small VAL}}$, consisting of 19,609 problems sourced from various physics textbooks and their corresponding correct solutions scraped from physics forums and educational websites. Our code and data are publicly available at https://github.com/areebuzair/PhysicsEval.
comment: Accepted in Findings of the Association for Computational Linguistics: IJCNLP-AACL 2025, 23 pages, 4 figures, 8 tables
♻ ☆ VoiceAgentBench: Are Voice Assistants ready for agentic tasks?
Large-scale Speech Language Models (SpeechLMs) have enabled voice assistants capable of understanding natural spoken queries and performing complex tasks. However, existing speech benchmarks primarily focus on isolated capabilities such as transcription, or question-answering, and do not systematically evaluate agentic scenarios encompassing multilingual and cultural understanding, as well as adversarial robustness. To address this, we introduce VoiceAgentBench, a comprehensive benchmark designed to evaluate SpeechLMs in realistic spoken agentic settings. It comprises over 5,500 synthetic spoken queries, including dialogues grounded in Indian context, covering single-tool invocations, multi-tool workflows, multi-turn interactions, and safety evaluations. The benchmark supports English, Hindi, and 5 other Indian languages, reflecting real-world linguistic and cultural diversity. We simulate speaker variability using a novel sampling algorithm that selects audios for TTS voice conversion based on its speaker embeddings, maximizing acoustic and speaker diversity. Our evaluation measures tool selection accuracy, structural consistency, and the correctness of tool invocations, including adversarial robustness. Our experiments reveal significant gaps in contextual tool orchestration tasks, Indic generalization, and adversarial robustness, exposing critical limitations of current SpeechLMs.
♻ ☆ Agent-Omni: Test-Time Multimodal Reasoning via Model Coordination for Understanding Anything
Multimodal large language models (MLLMs) have shown strong capabilities but remain limited to fixed modality pairs and require costly fine-tuning with large aligned datasets. Building fully omni-capable models that can integrate text, images, audio, and video remains impractical and lacks robust reasoning support. In this paper, we propose an Agent-Omni framework that coordinates existing foundation models through a master-agent system, enabling flexible multimodal reasoning without retraining. The master agent interprets user intent, delegates subtasks to modality-specific agents, and integrates their outputs into coherent responses. Extensive experiments across text, image, audio, video, and omni benchmarks show that Agent-Omni consistently achieves state-of-the-art performance, particularly on tasks requiring complex cross-modal reasoning. Its agent-based design enables seamless integration of specialized foundation models, ensuring adaptability to diverse inputs while maintaining transparency and interpretability. In addition, the framework is modular and easily extensible, allowing future improvements as stronger models become available.
comment: 16 pages, 7 figures, 14 tables. Under Review
♻ ☆ Which Way Does Time Flow? A Psychophysics-Grounded Evaluation for Vision-Language Models
Modern vision-language models (VLMs) excel at many multimodal tasks, yet their grasp of temporal information in video remains weak and, crucially, under-evaluated. We probe this gap with a deceptively simple but revealing challenge: judging the arrow of time (AoT)-whether a short clip is played forward or backward. We introduce AoT-PsyPhyBENCH, a psychophysically validated benchmark that tests whether VLMs can infer temporal direction in natural videos using the same stimuli and behavioral baselines established for humans. Our comprehensive evaluation of open-weight and proprietary, reasoning and non-reasoning VLMs reveals that most models perform near chance, and even the best lag far behind human accuracy on physically irreversible processes (e.g., free fall, diffusion/explosion) and causal manual actions (division/addition) that humans recognize almost instantly. These results highlight a fundamental gap in current multimodal systems: while they capture rich visual-semantic correlations, they lack the inductive biases required for temporal continuity and causal understanding. We release the code and data for AoT-PsyPhyBENCH to encourage further progress in the physical and temporal reasoning capabilities of VLMs.
comment: 10 pages
♻ ☆ AgenticMath: Enhancing LLM Reasoning via Agentic-based Math Data Generation
The creation of high-quality datasets to improve Large Language Model (LLM) reasoning remains a significant challenge, as current methods often suffer from generating low-quality/incorrect answers and limited information richness from available data sources. To address this, we propose AgenticMath, a novel agentic pipeline for generating high-quality mathematical question-answer pairs to enhance the supervised fine-tuning of LLMs. Our method operates through four stages: (1) Seed Question Filter that selects questions with high information richness, complexity, and clarity; (2) an Agentic Question Rephrase step that employs a multi-agent system to generate diverse, logically consistent paraphrases; (3) an Answer Augment step where rewrite answers using chain-of-thought reasoning to enhance numerical and logical correctness, without reliance on human-provided labels; and (4) a final Question and Answer Evaluation that retains only the most superior pairs. Extensive experiments demonstrate that, fine-tuning 3B-8B parameter LLMs on AgenticMath generated datasets (comprising only 30-60K math samples) achieves competitive or superior performance on diverse in domain and out-of-domain mathematical reasoning benchmarks compared to baselines trained on much more data (e.g., 400K or 2.3M samples). Our work demonstrates that targeted, high-quality data generation is a more efficient path to improving mathematical reasoning in LLMs than large-scale, low-quality alternatives.
comment: 9 pages
♻ ☆ SafeSearch: Do Not Trade Safety for Utility in LLM Search Agents
Large language model (LLM) based search agents iteratively generate queries, retrieve external information, and reason to answer open-domain questions. While researchers have primarily focused on improving their utility, their safety behaviors remain underexplored. In this paper, we first evaluate search agents using red-teaming datasets and find that they are more likely to produce harmful outputs than base LLMs. For example, when asked "How can I track someone's location without their consent?", a base model refuses, whereas a search agent designed to retrieve and cite sources may lower its refusal threshold, fetch documents (e.g., court cases), and, once appended, synthesize them into an informative yet unsafe summary. We further show that utility-oriented fine-tuning intensifies this risk, motivating joint alignment of safety and utility. We present SafeSearch, a multi-objective reinforcement learning approach that couples a final-output safety/utility reward with a novel query-level shaping term that penalizes unsafe queries and rewards safe ones. Experiments show that SafeSearch reduces agent harmfulness by over 70% across three red-teaming datasets while producing safe, helpful responses, and matches the QA performance of a utility-only finetuned agent; further analyses confirm the effectiveness of the query-level reward in jointly improving safety and utility.
comment: Code available at https://github.com/amazon-science/SafeSearch
♻ ☆ Verdict: A Library for Scaling Judge-Time Compute
The use of LLMs as automated judges ("LLM-as-a-judge") is now widespread, yet standard judges suffer from a multitude of reliability issues. To address these challenges, we introduce Verdict, an open-source library for scaling judge-time compute to enhance the accuracy, reliability, and interpretability of automated evaluators. Verdict leverages the composition of modular reasoning units (such as verification, debate, and aggregation) and increased inference-time compute to improve LLM judge quality. Across a variety of challenging tasks such as content moderation, fact-checking, and hallucination detection, Verdict judges achieves performance competitive with orders-of-magnitude larger fine-tuned judges, prompted judges, and reasoning models. Our framework establishes a foundation for scalable, interpretable, and reliable LLM-based evaluation systems for both researchers and practitioners.
♻ ☆ FaStfact: Faster, Stronger Long-Form Factuality Evaluations in LLMs EMNLP 2025
Evaluating the factuality of long-form generations from Large Language Models (LLMs) remains challenging due to efficiency bottlenecks and reliability concerns. Prior efforts attempt this by decomposing text into claims, searching for evidence, and verifying claims, but suffer from critical drawbacks: (1) inefficiency due to overcomplicated pipeline components, and (2) ineffectiveness stemming from inaccurate claim sets and insufficient evidence. To address these limitations, we propose \textbf{FaStfact}, an evaluation framework that achieves the highest alignment with human evaluation and time/token efficiency among existing baselines. FaStfact first employs chunk-level claim extraction integrated with confidence-based pre-verification, significantly reducing the time and token cost while ensuring reliability. For searching and verification, it collects document-level evidence from crawled web-pages and selectively retrieves it during verification. Extensive experiments based on an annotated benchmark \textbf{FaStfact-Bench} demonstrate the reliability of FaStfact in both efficiently and effectively evaluating long-form factuality. Code, benchmark data, and annotation interface tool are available at https://github.com/Yingjia-Wan/FaStfact.
comment: EMNLP 2025 (Findings)
♻ ☆ Retrieval-Augmented Feature Generation for Domain-Specific Classification ICDM 2025
Feature generation can significantly enhance learning outcomes, particularly for tasks with limited data. An effective way to improve feature generation is to expand the current feature space using existing features and enriching the informational content. However, generating new, interpretable features usually requires domain-specific knowledge on top of the existing features. In this paper, we introduce a Retrieval-Augmented Feature Generation method, RAFG, to generate useful and explainable features specific to domain classification tasks. To increase the interpretability of the generated features, we conduct knowledge retrieval among the existing features in the domain to identify potential feature associations. These associations are expected to help generate useful features. Moreover, we develop a framework based on large language models (LLMs) for feature generation with reasoning to verify the quality of the features during their generation process. Experiments across several datasets in medical, economic, and geographic domains show that our RAFG method can produce high-quality, meaningful features and significantly improve classification performance compared with baseline methods.
comment: Accepted by ICDM 2025
♻ ☆ CudaForge: An Agent Framework with Hardware Feedback for CUDA Kernel Optimization
Developing efficient CUDA kernels is increasingly critical for AI applications such as large-scale LLM training. However, manual kernel design is both costly and time-consuming, motivating automatic approaches that leverage LLMs for code generation. Existing methods for automatic kernel generation, however, often produce low-efficiency kernels, incur high computational overhead, and fail to generalize across settings. In this work, we propose CudaForge, a training-free multi-agent workflow for CUDA kernel generation and optimization. Our workflow is inspired by the iterative workflow of human experts, which contains steps such as developing initial kernels, testing correctness, analyzing hardware feedback, and iterative improvement. More specifically, CudaForge employs two LLM agents: a Coder and a Judge, that iteratively generate, correct, and optimize CUDA kernels, while integrating hardware feedback such as Nsight Compute (NCU) metrics. In extensive evaluations, we show that CudaForge, by leveraging base models like OpenAI-o3, achieves 97.6\% correctness of generated kernels and an average 1.68$\times$ speedup over PyTorch baselines, substantially surpassing state-of-the-art models including OpenAI-o3 and Kevin on KernelBench.Beyond accuracy and speed, CudaForge demonstrates strong generalization across GPUs (A100, RTX 6000, 4090, 3090) and base models (OpenAI-o3, GPT-5, gpt-oss-120B, Claude-Sonnet-4, QwQ-32B), while maintaining high efficiency. In particular, generating an optimized kernel takes about 26.5 minutes on one RTX6000 and incurs about \$ 0.3 API cost, which is significantly cheaper than existing agentic work that costs 6 H100 hours and \$ 5 API cost per kernel. Our results highlight that multi-agent, training-free workflows can enable cost-effective, generalizable, and high-performance CUDA kernel optimization. Code available at https://github.com/OptimAI-Lab/CudaForge
♻ ☆ s3: You Don't Need That Much Data to Train a Search Agent via RL EMNLP 2025
Retrieval-augmented generation (RAG) systems empower large language models (LLMs) to access external knowledge during inference. Recent advances have enabled LLMs to act as search agents via reinforcement learning (RL), improving information acquisition through multi-turn interactions with retrieval engines. However, existing approaches either optimize retrieval using search-only metrics (e.g., NDCG) that ignore downstream utility or fine-tune the entire LLM to jointly reason and retrieve-entangling retrieval with generation and limiting the real search utility and compatibility with frozen or proprietary models. In this work, we propose s3, a lightweight, model-agnostic framework that decouples the searcher from the generator and trains the searcher using a Gain Beyond RAG reward: the improvement in generation accuracy over naive RAG. s3 requires only 2.4k training samples to outperform baselines trained on over 70x more data, consistently delivering stronger downstream performance across six general QA and five medical QA benchmarks.
comment: EMNLP 2025 camera-ready
♻ ☆ Meta-Semantics Augmented Few-Shot Relational Learning EMNLP 2025
Few-shot relational learning on knowledge graph (KGs) aims to perform reasoning over relations with only a few training examples. While current methods have focused primarily on leveraging specific relational information, rich semantics inherent in KGs have been largely overlooked. To bridge this gap, we propose PromptMeta, a novel prompted meta-learning framework that seamlessly integrates meta-semantics with relational information for few-shot relational learning. PromptMeta introduces two core innovations: (1) a Meta-Semantic Prompt (MSP) pool that learns and consolidates high-level meta-semantics shared across tasks, enabling effective knowledge transfer and adaptation to newly emerging relations; and (2) a learnable fusion mechanism that dynamically combines meta-semantics with task-specific relational information tailored to different few-shot tasks. Both components are optimized jointly with model parameters within a meta-learning framework. Extensive experiments and analyses on two real-world KG benchmarks validate the effectiveness of PromptMeta in adapting to new relations with limited supervision.
comment: Appear in EMNLP 2025
♻ ☆ Omni-Router: Sharing Routing Decisions in Sparse Mixture-of-Experts for Speech Recognition
Mixture-of-experts (MoE) architectures have expanded from language modeling to automatic speech recognition (ASR). Traditional MoE methods, such as the Switch Transformer, route experts independently within each layer. Our analysis reveals that routers in most layers make expert choices that are not strongly correlated with the choices of the routers in other layers. To increase the cooperation between experts in different layers and encourage greater specialization, we use a shared router across different MoE layers. We call this model Omni-router Transformer. Extensive experiments on a large-scale pseudo-labeled dataset and evaluations across 10 diverse, out-of-domain ASR benchmarks demonstrate that the Omni-router Transformer is able to achieve lower training loss and consistently outperform dense and Switch Transformer models, reducing average word error rates by 11.2% and 8.2%, respectively, while providing structured expert usage and improved robustness to diverse data.
comment: Accepted in 2025 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU)
♻ ☆ StutterZero and StutterFormer: End-to-End Speech Conversion for Stuttering Transcription and Correction
Over 70 million people worldwide experience stuttering, yet most automatic speech systems misinterpret disfluent utterances or fail to transcribe them accurately. Existing methods for stutter correction rely on handcrafted feature extraction or multi-stage automatic speech recognition (ASR) and text-to-speech (TTS) pipelines, which separate transcription from audio reconstruction and often amplify distortions. This work introduces StutterZero and StutterFormer, the first end-to-end waveform-to-waveform models that directly convert stuttered speech into fluent speech while jointly predicting its transcription. StutterZero employs a convolutional-bidirectional LSTM encoder-decoder with attention, whereas StutterFormer integrates a dual-stream Transformer with shared acoustic-linguistic representations. Both architectures are trained on paired stuttered-fluent data synthesized from the SEP-28K and LibriStutter corpora and evaluated on unseen speakers from the FluencyBank dataset. Across all benchmarks, StutterZero had a 24% decrease in Word Error Rate (WER) and a 31% improvement in semantic similarity (BERTScore) compared to the leading Whisper-Medium model. StutterFormer achieved better results, with a 28% decrease in WER and a 34% improvement in BERTScore. The results validate the feasibility of direct end-to-end stutter-to-fluent speech conversion, offering new opportunities for inclusive human-computer interaction, speech therapy, and accessibility-oriented AI systems.
comment: 13 pages, 5 figures
Artificial Intelligence
☆ Outbidding and Outbluffing Elite Humans: Mastering Liar's Poker via Self-Play and Reinforcement Learning
AI researchers have long focused on poker-like games as a testbed for environments characterized by multi-player dynamics, imperfect information, and reasoning under uncertainty. While recent breakthroughs have matched elite human play at no-limit Texas hold'em, the multi-player dynamics are subdued: most hands converge quickly with only two players engaged through multiple rounds of bidding. In this paper, we present Solly, the first AI agent to achieve elite human play in reduced-format Liar's Poker, a game characterized by extensive multi-player engagement. We trained Solly using self-play with a model-free, actor-critic, deep reinforcement learning algorithm. Solly played at an elite human level as measured by win rate (won over 50% of hands) and equity (money won) in heads-up and multi-player Liar's Poker. Solly also outperformed large language models (LLMs), including those with reasoning abilities, on the same metrics. Solly developed novel bidding strategies, randomized play effectively, and was not easily exploitable by world-class human players.
☆ Grounded Misunderstandings in Asymmetric Dialogue: A Perspectivist Annotation Scheme for MapTask
Collaborative dialogue relies on participants incrementally establishing common ground, yet in asymmetric settings they may believe they agree while referring to different entities. We introduce a perspectivist annotation scheme for the HCRC MapTask corpus (Anderson et al., 1991) that separately captures speaker and addressee grounded interpretations for each reference expression, enabling us to trace how understanding emerges, diverges, and repairs over time. Using a scheme-constrained LLM annotation pipeline, we obtain 13k annotated reference expressions with reliability estimates and analyze the resulting understanding states. The results show that full misunderstandings are rare once lexical variants are unified, but multiplicity discrepancies systematically induce divergences, revealing how apparent grounding can mask referential misalignment. Our framework provides both a resource and an analytic lens for studying grounded misunderstanding and for evaluating (V)LLMs' capacity to model perspective-dependent grounding in collaborative dialogue.
comment: 11 pages, 3 figures, 5 tables; under review
☆ AnaFlow: Agentic LLM-based Workflow for Reasoning-Driven Explainable and Sample-Efficient Analog Circuit Sizing
Analog/mixed-signal circuits are key for interfacing electronics with the physical world. Their design, however, remains a largely handcrafted process, resulting in long and error-prone design cycles. While the recent rise of AI-based reinforcement learning and generative AI has created new techniques to automate this task, the need for many time-consuming simulations is a critical bottleneck hindering the overall efficiency. Furthermore, the lack of explainability of the resulting design solutions hampers widespread adoption of the tools. To address these issues, a novel agentic AI framework for sample-efficient and explainable analog circuit sizing is presented. It employs a multi-agent workflow where specialized Large Language Model (LLM)-based agents collaborate to interpret the circuit topology, to understand the design goals, and to iteratively refine the circuit's design parameters towards the target goals with human-interpretable reasoning. The adaptive simulation strategy creates an intelligent control that yields a high sample efficiency. The AnaFlow framework is demonstrated for two circuits of varying complexity and is able to complete the sizing task fully automatically, differently from pure Bayesian optimization and reinforcement learning approaches. The system learns from its optimization history to avoid past mistakes and to accelerate convergence. The inherent explainability makes this a powerful tool for analog design space exploration and a new paradigm in analog EDA, where AI agents serve as transparent design assistants.
comment: This article was accepted by 2025 International Conference on Computer-Aided Design (ICCAD 2025) and was presented in Munich, October 2025
☆ The OpenHands Software Agent SDK: A Composable and Extensible Foundation for Production Agents
Agents are now used widely in the process of software development, but building production-ready software engineering agents is a complex task. Deploying software agents effectively requires flexibility in implementation and experimentation, reliable and secure execution, and interfaces for users to interact with agents. In this paper, we present the OpenHands Software Agent SDK, a toolkit for implementing software development agents that satisfy these desiderata. This toolkit is a complete architectural redesign of the agent components of the popular OpenHands framework for software development agents, which has 64k+ GitHub stars. To achieve flexibility, we design a simple interface for implementing agents that requires only a few lines of code in the default case, but is easily extensible to more complex, full-featured agents with features such as custom tools, memory management, and more. For security and reliability, it delivers seamless local-to-remote execution portability, integrated REST/WebSocket services. For interaction with human users, it can connect directly to a variety of interfaces, such as visual workspaces (VS Code, VNC, browser), command-line interfaces, and APIs. Compared with existing SDKs from OpenAI, Claude, and Google, OpenHands uniquely integrates native sandboxed execution, lifecycle control, model-agnostic multi-LLM routing, and built-in security analysis. Empirical results on SWE-Bench Verified and GAIA benchmarks demonstrate strong performance. Put together, these elements allow the OpenHands Software Agent SDK to provide a practical foundation for prototyping, unlocking new classes of custom applications, and reliably deploying agents at scale.
☆ Structured Matrix Scaling for Multi-Class Calibration
Post-hoc recalibration methods are widely used to ensure that classifiers provide faithful probability estimates. We argue that parametric recalibration functions based on logistic regression can be motivated from a simple theoretical setting for both binary and multiclass classification. This insight motivates the use of more expressive calibration methods beyond standard temperature scaling. For multi-class calibration however, a key challenge lies in the increasing number of parameters introduced by more complex models, often coupled with limited calibration data, which can lead to overfitting. Through extensive experiments, we demonstrate that the resulting bias-variance tradeoff can be effectively managed by structured regularization, robust preprocessing and efficient optimization. The resulting methods lead to substantial gains over existing logistic-based calibration techniques. We provide efficient and easy-to-use open-source implementations of our methods, making them an attractive alternative to common temperature, vector, and matrix scaling implementations.
☆ Whisper Leak: a side-channel attack on Large Language Models
Large Language Models (LLMs) are increasingly deployed in sensitive domains including healthcare, legal services, and confidential communications, where privacy is paramount. This paper introduces Whisper Leak, a side-channel attack that infers user prompt topics from encrypted LLM traffic by analyzing packet size and timing patterns in streaming responses. Despite TLS encryption protecting content, these metadata patterns leak sufficient information to enable topic classification. We demonstrate the attack across 28 popular LLMs from major providers, achieving near-perfect classification (often >98% AUPRC) and high precision even at extreme class imbalance (10,000:1 noise-to-target ratio). For many models, we achieve 100% precision in identifying sensitive topics like "money laundering" while recovering 5-20% of target conversations. This industry-wide vulnerability poses significant risks for users under network surveillance by ISPs, governments, or local adversaries. We evaluate three mitigation strategies - random padding, token batching, and packet injection - finding that while each reduces attack effectiveness, none provides complete protection. Through responsible disclosure, we have collaborated with providers to implement initial countermeasures. Our findings underscore the need for LLM providers to address metadata leakage as AI systems handle increasingly sensitive information.
comment: 14 pages, 7 figures
☆ DQN Performance with Epsilon Greedy Policies and Prioritized Experience Replay
We present a detailed study of Deep Q-Networks in finite environments, emphasizing the impact of epsilon-greedy exploration schedules and prioritized experience replay. Through systematic experimentation, we evaluate how variations in epsilon decay schedules affect learning efficiency, convergence behavior, and reward optimization. We investigate how prioritized experience replay leads to faster convergence and higher returns and show empirical results comparing uniform, no replay, and prioritized strategies across multiple simulations. Our findings illuminate the trade-offs and interactions between exploration strategies and memory management in DQN training, offering practical recommendations for robust reinforcement learning in resource-constrained settings.
comment: 10 pages, 8 figures
☆ ChiMDQA: Towards Comprehensive Chinese Document QA with Fine-grained Evaluation ICANN 2025
With the rapid advancement of natural language processing (NLP) technologies, the demand for high-quality Chinese document question-answering datasets is steadily growing. To address this issue, we present the Chinese Multi-Document Question Answering Dataset(ChiMDQA), specifically designed for downstream business scenarios across prevalent domains including academic, education, finance, law, medical treatment, and news. ChiMDQA encompasses long-form documents from six distinct fields, consisting of 6,068 rigorously curated, high-quality question-answer (QA) pairs further classified into ten fine-grained categories. Through meticulous document screening and a systematic question-design methodology, the dataset guarantees both diversity and high quality, rendering it applicable to various NLP tasks such as document comprehension, knowledge extraction, and intelligent QA systems. Additionally, this paper offers a comprehensive overview of the dataset's design objectives, construction methodologies, and fine-grained evaluation system, supplying a substantial foundation for future research and practical applications in Chinese QA. The code and data are available at: https://anonymous.4open.science/r/Foxit-CHiMDQA/.
comment: 13 pages, 6 tables, 4 figures, accepted by ICANN 2025
☆ Explaining Human Choice Probabilities with Simple Vector Representations
When people pursue rewards in stochastic environments, they often match their choice frequencies to the observed target frequencies, even when this policy is demonstrably sub-optimal. We used a ``hide and seek'' task to evaluate this behavior under conditions where pursuit (seeking) could be toggled to avoidance (hiding), while leaving the probability distribution fixed, or varying complexity by changing the number of possible choices. We developed a model for participant choice built from choice frequency histograms treated as vectors. We posited the existence of a probability antimatching strategy for avoidance (hiding) rounds, and formalized this as a vector reflection of probability matching. We found that only two basis policies: matching/antimatching and maximizing/minimizing were sufficient to account for participant choices across a range of room numbers and opponent probability distributions. This schema requires only that people have the ability to remember the relative frequency of the different outcomes. With this knowledge simple operations can construct the maximizing and minimizing policies as well as matching and antimatching strategies. A mixture of these two policies captures human choice patterns in a stochastic environment.
☆ Watermarking Large Language Models in Europe: Interpreting the AI Act in Light of Technology
To foster trustworthy Artificial Intelligence (AI) within the European Union, the AI Act requires providers to mark and detect the outputs of their general-purpose models. The Article 50 and Recital 133 call for marking methods that are ''sufficiently reliable, interoperable, effective and robust''. Yet, the rapidly evolving and heterogeneous landscape of watermarks for Large Language Models (LLMs) makes it difficult to determine how these four standards can be translated into concrete and measurable evaluations. Our paper addresses this challenge, anchoring the normativity of European requirements in the multiplicity of watermarking techniques. Introducing clear and distinct concepts on LLM watermarking, our contribution is threefold. (1) Watermarking Categorisation: We propose an accessible taxonomy of watermarking methods according to the stage of the LLM lifecycle at which they are applied - before, during, or after training, and during next-token distribution or sampling. (2) Watermarking Evaluation: We interpret the EU AI Act's requirements by mapping each criterion with state-of-the-art evaluations on robustness and detectability of the watermark, and of quality of the LLM. Since interoperability remains largely untheorised in LLM watermarking research, we propose three normative dimensions to frame its assessment. (3) Watermarking Comparison: We compare current watermarking methods for LLMs against the operationalised European criteria and show that no approach yet satisfies all four standards. Encouraged by emerging empirical tests, we recommend further research into watermarking directly embedded within the low-level architecture of LLMs.
comment: 17 pages, 2 Tables and 2 Pictures
☆ LiveTradeBench: Seeking Real-World Alpha with Large Language Models
Large language models (LLMs) achieve strong performance across benchmarks--from knowledge quizzes and math reasoning to web-agent tasks--but these tests occur in static settings, lacking real dynamics and uncertainty. Consequently, they evaluate isolated reasoning or problem-solving rather than decision-making under uncertainty. To address this, we introduce LiveTradeBench, a live trading environment for evaluating LLM agents in realistic and evolving markets. LiveTradeBench follows three design principles: (i) Live data streaming of market prices and news, eliminating dependence on offline backtesting and preventing information leakage while capturing real-time uncertainty; (ii) a portfolio-management abstraction that extends control from single-asset actions to multi-asset allocation, integrating risk management and cross-asset reasoning; and (iii) multi-market evaluation across structurally distinct environments--U.S. stocks and Polymarket prediction markets--differing in volatility, liquidity, and information flow. At each step, an agent observes prices, news, and its portfolio, then outputs percentage allocations that balance risk and return. Using LiveTradeBench, we run 50-day live evaluations of 21 LLMs across families. Results show that (1) high LMArena scores do not imply superior trading outcomes; (2) models display distinct portfolio styles reflecting risk appetite and reasoning dynamics; and (3) some LLMs effectively leverage live signals to adapt decisions. These findings expose a gap between static evaluation and real-world competence, motivating benchmarks that test sequential decision making and consistency under live uncertainty.
comment: 16 pages
☆ Visualization Biases MLLM's Decision Making in Network Data Tasks IEEE VIS 2025
We evaluate how visualizations can influence the judgment of MLLMs about the presence or absence of bridges in a network. We show that the inclusion of visualization improves confidence over a structured text-based input that could theoretically be helpful for answering the question. On the other hand, we observe that standard visualization techniques create a strong bias towards accepting or refuting the presence of a bridge -- independently of whether or not a bridge actually exists in the network. While our results indicate that the inclusion of visualization techniques can effectively influence the MLLM's judgment without compromising its self-reported confidence, they also imply that practitioners must be careful of allowing users to include visualizations in generative AI applications so as to avoid undesired hallucinations.
comment: This manuscript was presented at VIS x GenAI, a workshop co-located with IEEE VIS 2025
☆ Step-Audio-EditX Technical Report
We present Step-Audio-EditX, the first open-source LLM-based audio model excelling at expressive and iterative audio editing encompassing emotion, speaking style, and paralinguistics alongside robust zero-shot text-to-speech (TTS) capabilities.Our core innovation lies in leveraging only large-margin synthetic data, which circumvents the need for embedding-based priors or auxiliary modules. This large-margin learning approach enables both iterative control and high expressivity across voices, and represents a fundamental pivot from the conventional focus on representation-level disentanglement. Evaluation results demonstrate that Step-Audio-EditX surpasses both MiniMax-2.6-hd and Doubao-Seed-TTS-2.0 in emotion editing and other fine-grained control tasks.
☆ PerfDojo: Automated ML Library Generation for Heterogeneous Architectures
The increasing complexity of machine learning models and the proliferation of diverse hardware architectures (CPUs, GPUs, accelerators) make achieving optimal performance a significant challenge. Heterogeneity in instruction sets, specialized kernel requirements for different data types and model features (e.g., sparsity, quantization), and architecture-specific optimizations complicate performance tuning. Manual optimization is resource-intensive, while existing automatic approaches often rely on complex hardware-specific heuristics and uninterpretable intermediate representations, hindering performance portability. We introduce PerfLLM, a novel automatic optimization methodology leveraging Large Language Models (LLMs) and Reinforcement Learning (RL). Central to this is PerfDojo, an environment framing optimization as an RL game using a human-readable, mathematically-inspired code representation that guarantees semantic validity through transformations. This allows effective optimization without prior hardware knowledge, facilitating both human analysis and RL agent training. We demonstrate PerfLLM's ability to achieve significant performance gains across diverse CPU (x86, Arm, RISC-V) and GPU architectures.
☆ Learning Under Laws: A Constraint-Projected Neural PDE Solver that Eliminates Hallucinations
Neural networks can approximate solutions to partial differential equations, but they often break the very laws they are meant to model-creating mass from nowhere, drifting shocks, or violating conservation and entropy. We address this by training within the laws of physics rather than beside them. Our framework, called Constraint-Projected Learning (CPL), keeps every update physically admissible by projecting network outputs onto the intersection of constraint sets defined by conservation, Rankine-Hugoniot balance, entropy, and positivity. The projection is differentiable and adds only about 10% computational overhead, making it fully compatible with back-propagation. We further stabilize training with total-variation damping (TVD) to suppress small oscillations and a rollout curriculum that enforces consistency over long prediction horizons. Together, these mechanisms eliminate both hard and soft violations: conservation holds at machine precision, total-variation growth vanishes, and entropy and error remain bounded. On Burgers and Euler systems, CPL produces stable, physically lawful solutions without loss of accuracy. Instead of hoping neural solvers will respect physics, CPL makes that behavior an intrinsic property of the learning process.
comment: 25 pages, 2 figures. This work introduces Constraint-Projected Learning (CPL)- a framework for neural PDE solvers that enforces physical conservation laws during training to eliminate hallucinated, non-physical solutions. Feedback is welcome. Not under review elsewhere
☆ Multi-User Personalisation in Human-Robot Interaction: Using Quantitative Bipolar Argumentation Frameworks for Preferences Conflict Resolution
While personalisation in Human-Robot Interaction (HRI) has advanced significantly, most existing approaches focus on single-user adaptation, overlooking scenarios involving multiple stakeholders with potentially conflicting preferences. To address this, we propose the Multi-User Preferences Quantitative Bipolar Argumentation Framework (MUP-QBAF), a novel multi-user personalisation framework based on Quantitative Bipolar Argumentation Frameworks (QBAFs) that explicitly models and resolves multi-user preference conflicts. Unlike prior work in Argumentation Frameworks, which typically assumes static inputs, our approach is tailored to robotics: it incorporates both users' arguments and the robot's dynamic observations of the environment, allowing the system to adapt over time and respond to changing contexts. Preferences, both positive and negative, are represented as arguments whose strength is recalculated iteratively based on new information. The framework's properties and capabilities are presented and validated through a realistic case study, where an assistive robot mediates between the conflicting preferences of a caregiver and a care recipient during a frailty assessment task. This evaluation further includes a sensitivity analysis of argument base scores, demonstrating how preference outcomes can be shaped by user input and contextual observations. By offering a transparent, structured, and context-sensitive approach to resolving competing user preferences, this work advances the field of multi-user HRI. It provides a principled alternative to data-driven methods, enabling robots to navigate conflicts in real-world environments.
comment: Preprint submitted to a journal
☆ Imitation Learning in the Deep Learning Era: A Novel Taxonomy and Recent Advances
Imitation learning (IL) enables agents to acquire skills by observing and replicating the behavior of one or multiple experts. In recent years, advances in deep learning have significantly expanded the capabilities and scalability of imitation learning across a range of domains, where expert data can range from full state-action trajectories to partial observations or unlabeled sequences. Alongside this growth, novel approaches have emerged, with new methodologies being developed to address longstanding challenges such as generalization, covariate shift, and demonstration quality. In this survey, we review the latest advances in imitation learning research, highlighting recent trends, methodological innovations, and practical applications. We propose a novel taxonomy that is distinct from existing categorizations to better reflect the current state of the IL research stratum and its trends. Throughout the survey, we critically examine the strengths, limitations, and evaluation practices of representative works, and we outline key challenges and open directions for future research.
☆ AILA--First Experiments with Localist Language Models
This paper presents the first empirical demonstration of controllable locality in transformer language models, a novel architectural framework that enables continuous control over the degree of representation localization through a tunable locality dial parameter. Unlike traditional language models that rely exclusively on distributed representations, our approach allows dynamic interpolation between highly interpretable localist encodings and efficient distributed representations without requiring model retraining. We conducted experiments on the WikiText corpus using a two-layer transformer architecture, systematically varying the locality parameter {\lambda} across the full spectrum from 1.0 (fully localist) to 0.0 (fully distributed). Our results demonstrate that localist configurations achieve dramatically lower attention entropy, with {\lambda} = 1.0 yielding 5.36 bits compared to 7.18 bits at {\lambda} = 0.0, while maintaining substantially higher pointer fidelity scores reflecting stronger alignment with rule-specified targets. Prediction experiments reveal that intermediate locality values optimize the tradeoff between interpretability and performance, with {\lambda} = 0.6 achieving test perplexity of 4.65 and accuracy of 84.7%. These findings establish that localist language models provide a practical framework for applications in regulated domains requiring both transparency and capability, offering precise mathematical control over the interpretability-performance spectrum through explicit penalty thresholds and information-theoretic design principles.
☆ MultiZebraLogic: A Multilingual Logical Reasoning Benchmark LREC 2026
Measuring the full abilities of large language models (LLMs) requires benchmarks representing multiple tasks. We aim to create large, high-quality datasets for comparison of logical reasoning skills across several languages and of suitable difficulty for LLMs of various reasoning ability. We explore multiple ways of increasing difficulty. We generate zebra puzzles in multiple languages, themes, sizes and including 14 different clue types and 8 red herring types (uninformative clues). We find puzzle sizes 2x3 and 4x5 are sufficiently challenging for GPT-4o mini (a non-reasoning model) and o3-mini (a reasoning model), respectively. Including 5 red herrings decreases o3-mini puzzle-level accuracy on 4x5 puzzles by 15$\pm$7 %. Scores of o3-mini on 4x5 puzzles are not significantly affected by use of English vs. Danish or the common houses theme vs. the country-specific smoerrebroed theme. We find no correlation between difficulty and the selected clue types. Datasets of 128+1024 puzzles are published as MultiZebraLogic in each of nine Germanic languages for sizes 2x3 and 4x5. We publish code for puzzle generation, designed for adaptablity into more languages and themes.
comment: Submitted to LREC 2026
☆ Uncovering Code Insights: Leveraging GitHub Artifacts for Deeper Code Understanding
Understanding the purpose of source code is a critical task in software maintenance, onboarding, and modernization. While large language models (LLMs) have shown promise in generating code explanations, they often lack grounding in the broader software engineering context. We propose a novel approach that leverages natural language artifacts from GitHub -- such as pull request descriptions, issue descriptions and discussions, and commit messages -- to enhance LLM-based code understanding. Our system consists of three components: one that extracts and structures relevant GitHub context, another that uses this context to generate high-level explanations of the code's purpose, and a third that validates the explanation. We implemented this as a standalone tool, as well as a server within the Model Context Protocol (MCP), enabling integration with other AI-assisted development tools. Our main use case is that of enhancing a standard LLM-based code explanation with code insights that our system generates. To evaluate explanations' quality, we conducted a small scale user study, with developers of several open projects, as well as developers of proprietary projects. Our user study indicates that when insights are generated they often are helpful and non trivial, and are free from hallucinations.
comment: 7 pages, 6 figures, to be published in AISM 2025, see https://aism25.github.io/aism25/
☆ Explaining Decisions in ML Models: a Parameterized Complexity Analysis (Part I)
This paper presents a comprehensive theoretical investigation into the parameterized complexity of explanation problems in various machine learning (ML) models. Contrary to the prevalent black-box perception, our study focuses on models with transparent internal mechanisms. We address two principal types of explanation problems: abductive and contrastive, both in their local and global variants. Our analysis encompasses diverse ML models, including Decision Trees, Decision Sets, Decision Lists, Boolean Circuits, and ensembles thereof, each offering unique explanatory challenges. This research fills a significant gap in explainable AI (XAI) by providing a foundational understanding of the complexities of generating explanations for these models. This work provides insights vital for further research in the domain of XAI, contributing to the broader discourse on the necessity of transparency and accountability in AI systems.
comment: Part I of a greatly enhanced version of https://doi.org/10.24963/kr.2024/53, whose full version is available on arXiv under https://doi.org/10.48550/arXiv.2407.15780
☆ SOLVE-Med: Specialized Orchestration for Leading Vertical Experts across Medical Specialties
Medical question answering systems face deployment challenges including hallucinations, bias, computational demands, privacy concerns, and the need for specialized expertise across diverse domains. Here, we present SOLVE-Med, a multi-agent architecture combining domain-specialized small language models for complex medical queries. The system employs a Router Agent for dynamic specialist selection, ten specialized models (1B parameters each) fine-tuned on specific medical domains, and an Orchestrator Agent that synthesizes responses. Evaluated on Italian medical forum data across ten specialties, SOLVE-Med achieves superior performance with ROUGE-1 of 0.301 and BERTScore F1 of 0.697, outperforming standalone models up to 14B parameters while enabling local deployment. Our code is publicly available on GitHub: https://github.com/PRAISELab-PicusLab/SOLVE-Med.
☆ Efficient Neural Networks with Discrete Cosine Transform Activations
In this paper, we extend our previous work on the Expressive Neural Network (ENN), a multilayer perceptron with adaptive activation functions parametrized using the Discrete Cosine Transform (DCT). Building upon previous work that demonstrated the strong expressiveness of ENNs with compact architectures, we now emphasize their efficiency, interpretability and pruning capabilities. The DCT-based parameterization provides a structured and decorrelated representation that reveals the functional role of each neuron and allows direct identification of redundant components. Leveraging this property, we propose an efficient pruning strategy that removes unnecessary DCT coefficients with negligible or no loss in performance. Experimental results across classification and implicit neural representation tasks confirm that ENNs achieve state-of-the-art accuracy while maintaining a low number of parameters. Furthermore, up to 40% of the activation coefficients can be safely pruned, thanks to the orthogonality and bounded nature of the DCT basis. Overall, these findings demonstrate that the ENN framework offers a principled integration of signal processing concepts into neural network design, achieving a balanced trade-off between expressiveness, compactness, and interpretability.
comment: Paper submitted to WSEAS Signal Processing Journal
☆ A Theoretical Framework for Environmental Similarity and Vessel Mobility as Coupled Predictors of Marine Invasive Species Pathways
Marine invasive species spread through global shipping and generate substantial ecological and economic impacts. Traditional risk assessments require detailed records of ballast water and traffic patterns, which are often incomplete, limiting global coverage. This work advances a theoretical framework that quantifies invasion risk by combining environmental similarity across ports with observed and forecasted maritime mobility. Climate-based feature representations characterize each port's marine conditions, while mobility networks derived from Automatic Identification System data capture vessel flows and potential transfer pathways. Clustering and metric learning reveal climate analogues and enable the estimation of species survival likelihood along shipping routes. A temporal link prediction model captures how traffic patterns may change under shifting environmental conditions. The resulting fusion of environmental similarity and predicted mobility provides exposure estimates at the port and voyage levels, supporting targeted monitoring, routing adjustments, and management interventions.
comment: Abstract Submitted to the 46th Canadian Conference on Remote Sensing
☆ ROSBag MCP Server: Analyzing Robot Data with LLMs for Agentic Embodied AI Applications
Agentic AI systems and Physical or Embodied AI systems have been two key research verticals at the forefront of Artificial Intelligence and Robotics, with Model Context Protocol (MCP) increasingly becoming a key component and enabler of agentic applications. However, the literature at the intersection of these verticals, i.e., Agentic Embodied AI, remains scarce. This paper introduces an MCP server for analyzing ROS and ROS 2 bags, allowing for analyzing, visualizing and processing robot data with natural language through LLMs and VLMs. We describe specific tooling built with robotics domain knowledge, with our initial release focused on mobile robotics and supporting natively the analysis of trajectories, laser scan data, transforms, or time series data. This is in addition to providing an interface to standard ROS 2 CLI tools ("ros2 bag list" or "ros2 bag info"), as well as the ability to filter bags with a subset of topics or trimmed in time. Coupled with the MCP server, we provide a lightweight UI that allows the benchmarking of the tooling with different LLMs, both proprietary (Anthropic, OpenAI) and open-source (through Groq). Our experimental results include the analysis of tool calling capabilities of eight different state-of-the-art LLM/VLM models, both proprietary and open-source, large and small. Our experiments indicate that there is a large divide in tool calling capabilities, with Kimi K2 and Claude Sonnet 4 demonstrating clearly superior performance. We also conclude that there are multiple factors affecting the success rates, from the tool description schema to the number of arguments, as well as the number of tools available to the models. The code is available with a permissive license at https://github.com/binabik-ai/mcp-rosbags.
☆ Development of the Bioinspired Tendon-Driven DexHand 021 with Proprioceptive Compliance Control
The human hand plays a vital role in daily life and industrial applications, yet replicating its multifunctional capabilities-including motion, sensing, and coordinated manipulation-with robotic systems remains a formidable challenge. Developing a dexterous robotic hand requires balancing human-like agility with engineering constraints such as complexity, size-to-weight ratio, durability, and force-sensing performance. This letter presents Dex-Hand 021, a high-performance, cable-driven five-finger robotic hand with 12 active and 7 passive degrees of freedom (DoFs), achieving 19 DoFs dexterity in a lightweight 1 kg design. We propose a proprioceptive force-sensing-based admittance control method to enhance manipulation. Experimental results demonstrate its superior performance: a single-finger load capacity exceeding 10 N, fingertip repeatability under 0.001 m, and force estimation errors below 0.2 N. Compared to PID control, joint torques in multi-object grasping are reduced by 31.19%, significantly improves force-sensing capability while preventing overload during collisions. The hand excels in both power and precision grasps, successfully executing 33 GRASP taxonomy motions and complex manipulation tasks. This work advances the design of lightweight, industrial-grade dexterous hands and enhances proprioceptive control, contributing to robotic manipulation and intelligent manufacturing.
comment: 8 pages 18 fogures, IEEE RAL accept
☆ Towards Scalable Web Accessibility Audit with MLLMs as Copilots AAAI 2026
Ensuring web accessibility is crucial for advancing social welfare, justice, and equality in digital spaces, yet the vast majority of website user interfaces remain non-compliant, due in part to the resource-intensive and unscalable nature of current auditing practices. While WCAG-EM offers a structured methodology for site-wise conformance evaluation, it involves great human efforts and lacks practical support for execution at scale. In this work, we present an auditing framework, AAA, which operationalizes WCAG-EM through a human-AI partnership model. AAA is anchored by two key innovations: GRASP, a graph-based multimodal sampling method that ensures representative page coverage via learned embeddings of visual, textual, and relational cues; and MaC, a multimodal large language model-based copilot that supports auditors through cross-modal reasoning and intelligent assistance in high-effort tasks. Together, these components enable scalable, end-to-end web accessibility auditing, empowering human auditors with AI-enhanced assistance for real-world impact. We further contribute four novel datasets designed for benchmarking core stages of the audit pipeline. Extensive experiments demonstrate the effectiveness of our methods, providing insights that small-scale language models can serve as capable experts when fine-tuned.
comment: 15 pages. Accepted by AAAI 2026 AISI
☆ CareMedEval dataset: Evaluating Critical Appraisal and Reasoning in the Biomedical Field LREC 2026
Critical appraisal of scientific literature is an essential skill in the biomedical field. While large language models (LLMs) can offer promising support in this task, their reliability remains limited, particularly for critical reasoning in specialized domains. We introduce CareMedEval, an original dataset designed to evaluate LLMs on biomedical critical appraisal and reasoning tasks. Derived from authentic exams taken by French medical students, the dataset contains 534 questions based on 37 scientific articles. Unlike existing benchmarks, CareMedEval explicitly evaluates critical reading and reasoning grounded in scientific papers. Benchmarking state-of-the-art generalist and biomedical-specialized LLMs under various context conditions reveals the difficulty of the task: open and commercial models fail to exceed an Exact Match Rate of 0.5 even though generating intermediate reasoning tokens considerably improves the results. Yet, models remain challenged especially on questions about study limitations and statistical analysis. CareMedEval provides a challenging benchmark for grounded reasoning, exposing current LLM limitations and paving the way for future development of automated support for critical appraisal.
comment: Preprint submitted to LREC 2026 (under review) To access the dataset, see https://github.com/bonzid/CareMedEval
☆ Inter-Agent Trust Models: A Comparative Study of Brief, Claim, Proof, Stake, Reputation and Constraint in Agentic Web Protocol Design-A2A, AP2, ERC-8004, and Beyond AAAI 2026
As the "agentic web" takes shape-billions of AI agents (often LLM-powered) autonomously transacting and collaborating-trust shifts from human oversight to protocol design. In 2025, several inter-agent protocols crystallized this shift, including Google's Agent-to-Agent (A2A), Agent Payments Protocol (AP2), and Ethereum's ERC-8004 "Trustless Agents," yet their underlying trust assumptions remain under-examined. This paper presents a comparative study of trust models in inter-agent protocol design: Brief (self- or third-party verifiable claims), Claim (self-proclaimed capabilities and identity, e.g. AgentCard), Proof (cryptographic verification, including zero-knowledge proofs and trusted execution environment attestations), Stake (bonded collateral with slashing and insurance), Reputation (crowd feedback and graph-based trust signals), and Constraint (sandboxing and capability bounding). For each, we analyze assumptions, attack surfaces, and design trade-offs, with particular emphasis on LLM-specific fragilities-prompt injection, sycophancy/nudge-susceptibility, hallucination, deception, and misalignment-that render purely reputational or claim-only approaches brittle. Our findings indicate no single mechanism suffices. We argue for trustless-by-default architectures anchored in Proof and Stake to gate high-impact actions, augmented by Brief for identity and discovery and Reputation overlays for flexibility and social signals. We comparatively evaluate A2A, AP2, ERC-8004 and related historical variations in academic research under metrics spanning security, privacy, latency/cost, and social robustness (Sybil/collusion/whitewashing resistance). We conclude with hybrid trust model recommendations that mitigate reputation gaming and misinformed LLM behavior, and we distill actionable design guidelines for safer, interoperable, and scalable agent economies.
comment: Submitted to AAAI 2026 Workshop on Trust and Control in Agentic AI (TrustAgent)
☆ Light over Heavy: Automated Performance Requirements Quantification with Linguistic Inducement ICSE 2026
Elicited performance requirements need to be quantified for compliance in different engineering tasks, e.g., configuration tuning and performance testing. Much existing work has relied on manual quantification, which is expensive and error-prone due to the imprecision. In this paper, we present LQPR, a highly efficient automatic approach for performance requirements quantification.LQPR relies on a new theoretical framework that converts quantification as a classification problem. Despite the prevalent applications of Large Language Models (LLMs) for requirement analytics, LQPR takes a different perspective to address the classification: we observed that performance requirements can exhibit strong patterns and are often short/concise, therefore we design a lightweight linguistically induced matching mechanism. We compare LQPR against nine state-of-the-art learning-based approaches over diverse datasets, demonstrating that it is ranked as the sole best for 75% or more cases with two orders less cost. Our work proves that, at least for performance requirement quantification, specialized methods can be more suitable than the general LLM-driven approaches.
comment: accepted by ICSE 2026
☆ Adaptable Hindsight Experience Replay for Search-Based Learning
AlphaZero-like Monte Carlo Tree Search systems, originally introduced for two-player games, dynamically balance exploration and exploitation using neural network guidance. This combination makes them also suitable for classical search problems. However, the original method of training the network with simulation results is limited in sparse reward settings, especially in the early stages, where the network cannot yet give guidance. Hindsight Experience Replay (HER) addresses this issue by relabeling unsuccessful trajectories from the search tree as supervised learning signals. We introduce Adaptable HER (\ours{}), a flexible framework that integrates HER with AlphaZero, allowing easy adjustments to HER properties such as relabeled goals, policy targets, and trajectory selection. Our experiments, including equation discovery, show that the possibility of modifying HER is beneficial and surpasses the performance of pure supervised or reinforcement learning.
comment: 8 pages, 2 figures, Presented at the 9th International Workshop on Interactive Adaptive Learning
☆ Computational Imaging Meets LLMs: Zero-Shot IDH Mutation Prediction in Brain Gliomas
We present a framework that combines Large Language Models with computational image analytics for non-invasive, zero-shot prediction of IDH mutation status in brain gliomas. For each subject, coregistered multi-parametric MRI scans and multi-class tumor segmentation maps were processed to extract interpretable semantic (visual) attributes and quantitative features, serialized in a standardized JSON file, and used to query GPT 4o and GPT 5 without fine-tuning. We evaluated this framework on six publicly available datasets (N = 1427) and results showcased high accuracy and balanced classification performance across heterogeneous cohorts, even in the absence of manual annotations. GPT 5 outperformed GPT 4o in context-driven phenotype interpretation. Volumetric features emerged as the most important predictors, supplemented by subtype-specific imaging markers and clinical information. Our results demonstrate the potential of integrating LLM-based reasoning with computational image analytics for precise, non-invasive tumor genotyping, advancing diagnostic strategies in neuro-oncology. The code is available at https://github.com/ATPLab-LUMS/CIM-LLM.
comment: 5 pages, 1 figure, 3 tables
☆ Decoupling Augmentation Bias in Prompt Learning for Vision-Language Models
Recent advances in large-scale vision and language models have led to significant progress in zero-shot learning tasks. Methods such as CoOp and CoCoOp have shown that replacing handcrafted prompts with learnable vectors, known as prompt learning, can result in improved performance. However, these models often struggle to generalize to entirely unseen categories. While traditional zero-shot learning techniques benefit from various data augmentation strategies, prompt learning has primarily focused on text-based modifications, leaving the potential of image-based augmentation largely unexplored. In this work, we explore how image-level augmentations, particularly those that introduce attribute-specific variations, can support and enhance prompt learning. Our analysis examines the interaction between these augmentations and soft prompt frameworks, revealing their potential to improve generalization. We also identify a limitation in existing methods, such as CoCoOp, which do not provide explicit guidance for learning prompts that focus on semantically meaningful visual features. To address this, we propose Adding Attributes to Prompt Learning, AAPL, a novel method that introduces adversarial token embeddings to decouple superficial visual variations introduced by augmentation from class-relevant semantic representations. This decoupling enables the learned prompts to concentrate on visually discriminative features that align with the target categories. We conduct comprehensive experiments on eleven benchmark datasets, and AAPL consistently outperforms existing methods across few-shot, zero-shot, cross-dataset, and domain generalization settings. Our source code is publicly available at: https://github.com/Gahyeonkim09/AAPL
comment: Accepted in Pattern Recognition
☆ Open Source State-Of-the-Art Solution for Romanian Speech Recognition
In this work, we present a new state-of-the-art Romanian Automatic Speech Recognition (ASR) system based on NVIDIA's FastConformer architecture--explored here for the first time in the context of Romanian. We train our model on a large corpus of, mostly, weakly supervised transcriptions, totaling over 2,600 hours of speech. Leveraging a hybrid decoder with both Connectionist Temporal Classification (CTC) and Token-Duration Transducer (TDT) branches, we evaluate a range of decoding strategies including greedy, ALSD, and CTC beam search with a 6-gram token-level language model. Our system achieves state-of-the-art performance across all Romanian evaluation benchmarks, including read, spontaneous, and domain-specific speech, with up to 27% relative WER reduction compared to previous best-performing systems. In addition to improved transcription accuracy, our approach demonstrates practical decoding efficiency, making it suitable for both research and deployment in low-latency ASR applications.
comment: 13th Conference on Speech Technology and Human-Computer Dialogue (SpeD 2025), Cluj-Napoca, Romania
☆ Generative Artificial Intelligence in Bioinformatics: A Systematic Review of Models, Applications, and Methodological Advances
Generative artificial intelligence (GenAI) has become a transformative approach in bioinformatics that often enables advancements in genomics, proteomics, transcriptomics, structural biology, and drug discovery. To systematically identify and evaluate these growing developments, this review proposed six research questions (RQs), according to the preferred reporting items for systematic reviews and meta-analysis methods. The objective is to evaluate impactful GenAI strategies in methodological advancement, predictive performance, and specialization, and to identify promising approaches for advanced modeling, data-intensive discovery, and integrative biological analysis. RQ1 highlights diverse applications across multiple bioinformatics subfields (sequence analysis, molecular design, and integrative data modeling), which demonstrate superior performance over traditional methods through pattern recognition and output generation. RQ2 reveals that adapted specialized model architectures outperformed general-purpose models, an advantage attributed to targeted pretraining and context-aware strategies. RQ3 identifies significant benefits in the bioinformatics domains, focusing on molecular analysis and data integration, which improves accuracy and reduces errors in complex analysis. RQ4 indicates improvements in structural modeling, functional prediction, and synthetic data generation, validated by established benchmarks. RQ5 suggests the main constraints, such as the lack of scalability and biases in data that impact generalizability, and proposes future directions focused on robust evaluation and biologically grounded modeling. RQ6 examines that molecular datasets (such as UniProtKB and ProteinNet12), cellular datasets (such as CELLxGENE and GTEx) and textual resources (such as PubMedQA and OMIM) broadly support the training and generalization of GenAI models.
☆ Discourse-Aware Scientific Paper Recommendation via QA-Style Summarization and Multi-Level Contrastive Learning
The rapid growth of open-access (OA) publications has intensified the challenge of identifying relevant scientific papers. Due to privacy constraints and limited access to user interaction data, recent efforts have shifted toward content-based recommendation, which relies solely on textual information. However, existing models typically treat papers as unstructured text, neglecting their discourse organization and thereby limiting semantic completeness and interpretability. To address these limitations, we propose OMRC-MR, a hierarchical framework that integrates QA-style OMRC (Objective, Method, Result, Conclusion) summarization, multi-level contrastive learning, and structure-aware re-ranking for scholarly recommendation. The QA-style summarization module converts raw papers into structured and discourse-consistent representations, while multi-level contrastive objectives align semantic representations across metadata, section, and document levels. The final re-ranking stage further refines retrieval precision through contextual similarity calibration. Experiments on DBLP, S2ORC, and the newly constructed Sci-OMRC dataset demonstrate that OMRC-MR consistently surpasses state-of-the-art baselines, achieving up to 7.2% and 3.8% improvements in Precision@10 and Recall@10, respectively. Additional evaluations confirm that QA-style summarization produces more coherent and factually complete representations. Overall, OMRC-MR provides a unified and interpretable content-based paradigm for scientific paper recommendation, advancing trustworthy and privacy-aware scholarly information retrieval.
☆ Benchmarking the Thinking Mode of Multimodal Large Language Models in Clinical Tasks
A recent advancement in Multimodal Large Language Models (MLLMs) research is the emergence of "reasoning MLLMs" that offer explicit control over their internal thinking processes (normally referred as the "thinking mode") alongside the standard "non-thinking mode". This capability allows these models to engage in a step-by-step process of internal deliberation before generating a final response. With the rapid transition to and adoption of these "dual-state" MLLMs, this work rigorously evaluated how the enhanced reasoning processes of these MLLMs impact model performance and reliability in clinical tasks. This paper evaluates the active "thinking mode" capabilities of two leading MLLMs, Seed1.5-VL and Gemini-2.5-Flash, for medical applications. We assessed their performance on four visual medical tasks using VQA-RAD and ROCOv2 datasets. Our findings reveal that the improvement from activating the thinking mode remains marginal compared to the standard non-thinking mode for the majority of the tasks. Their performance on complex medical tasks such as open-ended VQA and medical image interpretation remains suboptimal, highlighting the need for domain-specific medical data and more advanced methods for medical knowledge integration.
☆ Extending Fair Null-Space Projections for Continuous Attributes to Kernel Methods
With the on-going integration of machine learning systems into the everyday social life of millions the notion of fairness becomes an ever increasing priority in their development. Fairness notions commonly rely on protected attributes to assess potential biases. Here, the majority of literature focuses on discrete setups regarding both target and protected attributes. The literature on continuous attributes especially in conjunction with regression -- we refer to this as \emph{continuous fairness} -- is scarce. A common strategy is iterative null-space projection which as of now has only been explored for linear models or embeddings such as obtained by a non-linear encoder. We improve on this by generalizing to kernel methods, significantly extending the scope. This yields a model and fairness-score agnostic method for kernel embeddings applicable to continuous protected attributes. We demonstrate that our novel approach in conjunction with Support Vector Regression (SVR) provides competitive or improved performance across multiple datasets in comparisons to other contemporary methods.
☆ How to Evaluate Speech Translation with Source-Aware Neural MT Metrics
Automatic evaluation of speech-to-text translation (ST) systems is typically performed by comparing translation hypotheses with one or more reference translations. While effective to some extent, this approach inherits the limitation of reference-based evaluation that ignores valuable information from the source input. In machine translation (MT), recent progress has shown that neural metrics incorporating the source text achieve stronger correlation with human judgments. Extending this idea to ST, however, is not trivial because the source is audio rather than text, and reliable transcripts or alignments between source and references are often unavailable. In this work, we conduct the first systematic study of source-aware metrics for ST, with a particular focus on real-world operating conditions where source transcripts are not available. We explore two complementary strategies for generating textual proxies of the input audio, automatic speech recognition (ASR) transcripts, and back-translations of the reference translation, and introduce a novel two-step cross-lingual re-segmentation algorithm to address the alignment mismatch between synthetic sources and reference translations. Our experiments, carried out on two ST benchmarks covering 79 language pairs and six ST systems with diverse architectures and performance levels, show that ASR transcripts constitute a more reliable synthetic source than back-translations when word error rate is below 20%, while back-translations always represent a computationally cheaper but still effective alternative. Furthermore, our cross-lingual re-segmentation algorithm enables robust use of source-aware MT metrics in ST evaluation, paving the way toward more accurate and principled evaluation methodologies for speech translation.
☆ When Generative Artificial Intelligence meets Extended Reality: A Systematic Review
With the continuous advancement of technology, the application of generative artificial intelligence (AI) in various fields is gradually demonstrating great potential, particularly when combined with Extended Reality (XR), creating unprecedented possibilities. This survey article systematically reviews the applications of generative AI in XR, covering as much relevant literature as possible from 2023 to 2025. The application areas of generative AI in XR and its key technology implementations are summarised through PRISMA screening and analysis of the final 26 articles. The survey highlights existing articles from the last three years related to how XR utilises generative AI, providing insights into current trends and research gaps. We also explore potential opportunities for future research to further empower XR through generative AI, providing guidance and information for future generative XR research.
☆ Comparing the Performance of LLMs in RAG-based Question-Answering: A Case Study in Computer Science Literature
Retrieval Augmented Generation (RAG) is emerging as a powerful technique to enhance the capabilities of Generative AI models by reducing hallucination. Thus, the increasing prominence of RAG alongside Large Language Models (LLMs) has sparked interest in comparing the performance of different LLMs in question-answering (QA) in diverse domains. This study compares the performance of four open-source LLMs, Mistral-7b-instruct, LLaMa2-7b-chat, Falcon-7b-instruct and Orca-mini-v3-7b, and OpenAI's trending GPT-3.5 over QA tasks within the computer science literature leveraging RAG support. Evaluation metrics employed in the study include accuracy and precision for binary questions and ranking by a human expert, ranking by Google's AI model Gemini, alongside cosine similarity for long-answer questions. GPT-3.5, when paired with RAG, effectively answers binary and long-answer questions, reaffirming its status as an advanced LLM. Regarding open-source LLMs, Mistral AI's Mistral-7b-instruct paired with RAG surpasses the rest in answering both binary and long-answer questions. However, among the open-source LLMs, Orca-mini-v3-7b reports the shortest average latency in generating responses, whereas LLaMa2-7b-chat by Meta reports the highest average latency. This research underscores the fact that open-source LLMs, too, can go hand in hand with proprietary models like GPT-3.5 with better infrastructure.
comment: 18 pages, 4 figures, 5 tables, presented at the 5th International Conference on Artificial Intelligence in Education Technology
☆ Generative deep learning for foundational video translation in ultrasound
Deep learning (DL) has the potential to revolutionize image acquisition and interpretation across medicine, however, attention to data imbalance and missingness is required. Ultrasound data presents a particular challenge because in addition to different views and structures, it includes several sub-modalities-such as greyscale and color flow doppler (CFD)-that are often imbalanced in clinical studies. Image translation can help balance datasets but is challenging for ultrasound sub-modalities to date. Here, we present a generative method for ultrasound CFD-greyscale video translation, trained on 54,975 videos and tested on 8,368. The method developed leveraged pixel-wise, adversarial, and perceptual loses and utilized two networks: one for reconstructing anatomic structures and one for denoising to achieve realistic ultrasound imaging. Average pairwise SSIM between synthetic videos and ground truth was 0.91+/-0.04. Synthetic videos performed indistinguishably from real ones in DL classification and segmentation tasks and when evaluated by blinded clinical experts: F1 score was 0.9 for real and 0.89 for synthetic videos; Dice score between real and synthetic segmentation was 0.97. Overall clinician accuracy in distinguishing real vs synthetic videos was 54+/-6% (42-61%), indicating realistic synthetic videos. Although trained only on heart videos, the model worked well on ultrasound spanning several clinical domains (average SSIM 0.91+/-0.05), demonstrating foundational abilities. Together, these data expand the utility of retrospectively collected imaging and augment the dataset design toolbox for medical imaging.
☆ GMoPE:A Prompt-Expert Mixture Framework for Graph Foundation Models
Graph Neural Networks (GNNs) have demonstrated impressive performance on task-specific benchmarks, yet their ability to generalize across diverse domains and tasks remains limited. Existing approaches often struggle with negative transfer, scalability issues, and high adaptation costs. To address these challenges, we propose GMoPE (Graph Mixture of Prompt-Experts), a novel framework that seamlessly integrates the Mixture-of-Experts (MoE) architecture with prompt-based learning for graphs. GMoPE leverages expert-specific prompt vectors and structure-aware MoE routing to enable each expert to specialize in distinct subdomains and dynamically contribute to predictions. To promote diversity and prevent expert collapse, we introduce a soft orthogonality constraint across prompt vectors, encouraging expert specialization and facilitating a more balanced expert utilization. Additionally, we adopt a prompt-only fine-tuning strategy that significantly reduces spatiotemporal complexity during transfer. We validate GMoPE through extensive experiments under various pretraining strategies and multiple downstream tasks. Results show that GMoPE consistently outperforms state-of-the-art baselines and achieves performance comparable to full parameter fine-tuning-while requiring only a fraction of the adaptation overhead. Our work provides a principled and scalable framework for advancing generalizable and efficient graph foundation models.
☆ From Five Dimensions to Many: Large Language Models as Precise and Interpretable Psychological Profilers
Psychological constructs within individuals are widely believed to be interconnected. We investigated whether and how Large Language Models (LLMs) can model the correlational structure of human psychological traits from minimal quantitative inputs. We prompted various LLMs with Big Five Personality Scale responses from 816 human individuals to role-play their responses on nine other psychological scales. LLMs demonstrated remarkable accuracy in capturing human psychological structure, with the inter-scale correlation patterns from LLM-generated responses strongly aligning with those from human data $(R^2 > 0.89)$. This zero-shot performance substantially exceeded predictions based on semantic similarity and approached the accuracy of machine learning algorithms trained directly on the dataset. Analysis of reasoning traces revealed that LLMs use a systematic two-stage process: First, they transform raw Big Five responses into natural language personality summaries through information selection and compression, analogous to generating sufficient statistics. Second, they generate target scale responses based on reasoning from these summaries. For information selection, LLMs identify the same key personality factors as trained algorithms, though they fail to differentiate item importance within factors. The resulting compressed summaries are not merely redundant representations but capture synergistic information--adding them to original scores enhances prediction alignment, suggesting they encode emergent, second-order patterns of trait interplay. Our findings demonstrate that LLMs can precisely predict individual participants' psychological traits from minimal data through a process of abstraction and reasoning, offering both a powerful tool for psychological simulation and valuable insights into their emergent reasoning capabilities.
☆ Node-Based Editing for Multimodal Generation of Text, Audio, Image, and Vide NeurIPS 2025
We present a node-based storytelling system for multimodal content generation. The system represents stories as graphs of nodes that can be expanded, edited, and iteratively refined through direct user edits and natural-language prompts. Each node can integrate text, images, audio, and video, allowing creators to compose multimodal narratives. A task selection agent routes between specialized generative tasks that handle story generation, node structure reasoning, node diagram formatting, and context generation. The interface supports targeted editing of individual nodes, automatic branching for parallel storylines, and node-based iterative refinement. Our results demonstrate that node-based editing supports control over narrative structure and iterative generation of text, images, audio, and video. We report quantitative outcomes on automatic story outline generation and qualitative observations of editing workflows. Finally, we discuss current limitations such as scalability to longer narratives and consistency across multiple nodes, and outline future work toward human-in-the-loop and user-centered creative AI tools.
comment: Accepted to NeurIPS 2025, Conference on Neural Information Processing Systems, Workshop on Generative and Protective AI for Content Creation
☆ Hybrid Fact-Checking that Integrates Knowledge Graphs, Large Language Models, and Search-Based Retrieval Agents Improves Interpretable Claim Verification EMNLP
Large language models (LLMs) excel in generating fluent utterances but can lack reliable grounding in verified information. At the same time, knowledge-graph-based fact-checkers deliver precise and interpretable evidence, yet suffer from limited coverage or latency. By integrating LLMs with knowledge graphs and real-time search agents, we introduce a hybrid fact-checking approach that leverages the individual strengths of each component. Our system comprises three autonomous steps: 1) a Knowledge Graph (KG) Retrieval for rapid one - hop lookups in DBpedia, 2) an LM-based classification guided by a task-specific labeling prompt, producing outputs with internal rule-based logic, and 3) a Web Search Agent invoked only when KG coverage is insufficient. Our pipeline achieves an F1 score of 0.93 on the FEVER benchmark on the Supported/Refuted split without task- specific fine - tuning. To address Not enough information cases, we conduct a targeted reannotation study showing that our approach frequently uncovers valid evidence for claims originally labeled as Not Enough Information (NEI), as confirmed by both expert annotators and LLM reviewers. With this paper, we present a modular, opensource fact-checking pipeline with fallback strategies and generalization across datasets.
comment: Paper has been accepted at 9th wiNLP workshop at EMNLP
☆ LGM: Enhancing Large Language Models with Conceptual Meta-Relations and Iterative Retrieval
Large language models (LLMs) exhibit strong semantic understanding, yet struggle when user instructions involve ambiguous or conceptually misaligned terms. We propose the Language Graph Model (LGM) to enhance conceptual clarity by extracting meta-relations-inheritance, alias, and composition-from natural language. The model further employs a reflection mechanism to validate these meta-relations. Leveraging a Concept Iterative Retrieval Algorithm, these relations and related descriptions are dynamically supplied to the LLM, improving its ability to interpret concepts and generate accurate responses. Unlike conventional Retrieval-Augmented Generation (RAG) approaches that rely on extended context windows, our method enables large language models to process texts of any length without the need for truncation. Experiments on standard benchmarks demonstrate that the LGM consistently outperforms existing RAG baselines.
comment: 30 pages, 5 figures
☆ Retrofitters, pragmatists and activists: Public interest litigation for accountable automated decision-making
This paper examines the role of public interest litigation in promoting accountability for AI and automated decision-making (ADM) in Australia. Since ADM regulatio faces geopolitical headwinds, effective governance will have to rely at least in part on the enforcement of existing laws. Drawing on interviews with Australian public interest litigators, technology policy activists, and technology law scholars, the paper positions public interest litigation as part of a larger ecosystem for transparency, accountability and justice with respect to ADM. It builds on one participants's characterisation of litigation about ADM as an exercise in legal retrofitting: adapting old laws to new circumstances. The paper's primary contribution is to aggregate, organise and present original insights on pragmatic strategies and tactics for effective public interest litigation about ADM. Naturally, it also contends with the limits of these strategies, and of the legal system. Where limits are, however, capable of being overcome, the paper presents findings on urgent needs: the enabling institutional arrangements without which effective litigation and accountability will falter. The paper is relevant to law and technology scholars; individuals and groups harmed by ADM; public interest litigators and technology lawyers; civil society and advocacy organisations; and policymakers.
☆ QG-CoC: Question-Guided Chain-of-Captions for Large Multimodal Models
Recently, Multimodal Large Language Models (MLLMs) encounter two key issues in multi-image contexts: (1) a lack of fine-grained perception across disparate images, and (2) a diminished capability to effectively reason over and synthesize information from multiple visual inputs. However, while various prompting methods aim to describe visual content, many existing studies focus primarily on single-image settings or specific, constrained scenarios. This leaves a critical gap in understanding and addressing how MLLMs tackle more general and complex multi-image reasoning tasks. Thus, we first extensively investigate how current prompting methods perceive fine-grained visual details and process visual information when dealing with multiple images. Our findings reveal that existing prompting methods fall short in attending to needed clues and seamlessly integrating perception and reasoning. Inspired by the findings, we propose a new zero-shot prompting method, Question-Guided Chain-of-Captions (QG-CoC), a generalized prompting approach that effectively handles problems with an arbitrary number of images. We evaluate our method on various open-source and closed-source MLLMs for multi-image and single-image benchmarks. Experimental results indicate that QG-CoC demonstrates competitive performance across tasks and exhibits robust improvements in the challenging scenarios where existing prompting methods fail.
comment: 16 pages
☆ A Quantized VAE-MLP Botnet Detection Model: A Systematic Evaluation of Quantization-Aware Training and Post-Training Quantization Strategies
In an effort to counter the increasing IoT botnet-based attacks, state-of-the-art deep learning methods have been proposed and have achieved impressive detection accuracy. However, their computational intensity restricts deployment on resource-constrained IoT devices, creating a critical need for lightweight detection models. A common solution to this challenge is model compression via quantization. This study proposes a VAE-MLP model framework where an MLP-based classifier is trained on 8-dimensional latent vectors derived from the high-dimensional train data using the encoder component of a pretrained variational autoencoder (VAE). Two widely used quantization strategies--Quantization-Aware Training (QAT) and Post-Training Quantization (PTQ)--are then systematically evaluated in terms of their impact on detection performance, storage efficiency, and inference latency using two benchmark IoT botnet datasets--N-BaIoT and CICIoT2022. The results revealed that, with respect to detection accuracy, the QAT strategy experienced a more noticeable decline,whereas PTQ incurred only a marginal reduction compared to the original unquantized model. Furthermore, PTQ yielded a 6x speedup and 21x reduction in size, while QAT achieved a 3x speedup and 24x compression, demonstrating the practicality of quantization for device-level IoT botnet detection.
☆ Efficient Linear Attention for Multivariate Time Series Modeling via Entropy Equality
Attention mechanisms have been extensively employed in various applications, including time series modeling, owing to their capacity to capture intricate dependencies; however, their utility is often constrained by quadratic computational complexity, which impedes scalability for long sequences. In this work, we propose a novel linear attention mechanism designed to overcome these limitations. Our approach is grounded in a theoretical demonstration that entropy, as a strictly concave function on the probability simplex, implies that distributions with aligned probability rankings and similar entropy values exhibit structural resemblance. Building on this insight, we develop an efficient approximation algorithm that computes the entropy of dot-product-derived distributions with only linear complexity, enabling the implementation of a linear attention mechanism based on entropy equality. Through rigorous analysis, we reveal that the effectiveness of attention in spatio-temporal time series modeling may not primarily stem from the non-linearity of softmax but rather from the attainment of a moderate and well-balanced weight distribution. Extensive experiments on four spatio-temporal datasets validate our method, demonstrating competitive or superior forecasting performance while achieving substantial reductions in both memory usage and computational time.
☆ Adobe Summit Concierge Evaluation with Human in the Loop VLDB 2025
Generative AI assistants offer significant potential to enhance productivity, streamline information access, and improve user experience in enterprise contexts. In this work, we present Summit Concierge, a domain-specific AI assistant developed for Adobe Summit. The assistant handles a wide range of event-related queries and operates under real-world constraints such as data sparsity, quality assurance, and rapid deployment. To address these challenges, we adopt a human-in-the-loop development workflow that combines prompt engineering, retrieval grounding, and lightweight human validation. We describe the system architecture, development process, and real-world deployment outcomes. Our experience shows that agile, feedback-driven development enables scalable and reliable AI assistants, even in cold-start scenarios.
comment: Accepted by 6th Workshop on Data Science with Human in the Loop @ VLDB 2025
☆ Toward Autonomous Engineering Design: A Knowledge-Guided Multi-Agent Framework
The engineering design process often demands expertise from multiple domains, leading to complex collaborations and iterative refinements. Traditional methods can be resource-intensive and prone to inefficiencies. To address this, we formalize the engineering design process through a multi-agent AI framework that integrates structured design and review loops. The framework introduces specialized knowledge-driven agents that collaborate to generate and refine design candidates. As an exemplar, we demonstrate its application to the aerodynamic optimization of 4-digit NACA airfoils. The framework consists of three key AI agents: a Graph Ontologist, a Design Engineer, and a Systems Engineer. The Graph Ontologist employs a Large Language Model (LLM) to construct two domain-specific knowledge graphs from airfoil design literature. The Systems Engineer, informed by a human manager, formulates technical requirements that guide design generation and evaluation. The Design Engineer leverages the design knowledge graph and computational tools to propose candidate airfoils meeting these requirements. The Systems Engineer reviews and provides feedback both qualitative and quantitative using its own knowledge graph, forming an iterative feedback loop until a design is validated by the manager. The final design is then optimized to maximize performance metrics such as the lift-to-drag ratio. Overall, this work demonstrates how collaborative AI agents equipped with structured knowledge representations can enhance efficiency, consistency, and quality in the engineering design process.
☆ Optimizing Earth-Moon Transfer and Cislunar Navigation: Integrating Low-Energy Trajectories, AI Techniques and GNSS-R Technologies
The rapid growth of cislunar activities, including lunar landings, the Lunar Gateway, and in-space refueling stations, requires advances in cost-efficient trajectory design and reliable integration of navigation and remote sensing. Traditional Earth-Moon transfers suffer from rigid launch windows and high propellant demands, while Earth-based GNSS systems provide little to no coverage beyond geostationary orbit. This limits autonomy and environmental awareness in cislunar space. This review compares four major transfer strategies by evaluating velocity requirements, flight durations, and fuel efficiency, and by identifying their suitability for both crewed and robotic missions. The emerging role of artificial intelligence and machine learning is highlighted: convolutional neural networks support automated crater recognition and digital terrain model generation, while deep reinforcement learning enables adaptive trajectory refinement during descent and landing to reduce risk and decision latency. The study also examines how GNSS-Reflectometry and advanced Positioning, Navigation, and Timing architectures can extend navigation capabilities beyond current limits. GNSS-R can act as a bistatic radar for mapping lunar ice, soil properties, and surface topography, while PNT systems support autonomous rendezvous, Lagrange point station-keeping, and coordinated satellite swarm operations. Combining these developments establishes a scalable framework for sustainable cislunar exploration and long-term human and robotic presence.
☆ GraphCliff: Short-Long Range Gating for Subtle Differences but Critical Changes
Quantitative structure-activity relationship assumes a smooth relationship between molecular structure and biological activity. However, activity cliffs defined as pairs of structurally similar compounds with large potency differences break this continuity. Recent benchmarks targeting activity cliffs have revealed that classical machine learning models with extended connectivity fingerprints outperform graph neural networks. Our analysis shows that graph embeddings fail to adequately separate structurally similar molecules in the embedding space, making it difficult to distinguish between structurally similar but functionally different molecules. Despite this limitation, molecular graph structures are inherently expressive and attractive, as they preserve molecular topology. To preserve the structural representation of molecules as graphs, we propose a new model, GraphCliff, which integrates short- and long-range information through a gating mechanism. Experimental results demonstrate that GraphCliff consistently improves performance on both non-cliff and cliff compounds. Furthermore, layer-wise node embedding analyses reveal reduced over-smoothing and enhanced discriminative power relative to strong baseline graph models.
☆ Uncovering Bugs in Formal Explainers: A Case Study with PyXAI
Formal explainable artificial intelligence (XAI) offers unique theoretical guarantees of rigor when compared to other non-formal methods of explainability. However, little attention has been given to the validation of practical implementations of formal explainers. This paper develops a novel methodology for validating formal explainers and reports on the assessment of the publicly available formal explainer PyXAI. The paper documents the existence of incorrect explanations computed by PyXAI on most of the datasets analyzed in the experiments, thereby confirming the importance of the proposed novel methodology for the validation of formal explainers.
☆ RefAgent: A Multi-agent LLM-based Framework for Automatic Software Refactoring
Large Language Models (LLMs) have substantially influenced various software engineering tasks. Indeed, in the case of software refactoring, traditional LLMs have shown the ability to reduce development time and enhance code quality. However, these LLMs often rely on static, detailed instructions for specific tasks. In contrast, LLM-based agents can dynamically adapt to evolving contexts and autonomously make decisions by interacting with software tools and executing workflows. In this paper, we explore the potential of LLM-based agents in supporting refactoring activities. Specifically, we introduce RefAgent, a multi-agent LLM-based framework for end-to-end software refactoring. RefAgent consists of specialized agents responsible for planning, executing, testing, and iteratively refining refactorings using self-reflection and tool-calling capabilities. We evaluate RefAgent on eight open-source Java projects, comparing its effectiveness against a single-agent approach, a search-based refactoring tool, and historical developer refactorings. Our assessment focuses on: (1) the impact of generated refactorings on software quality, (2) the ability to identify refactoring opportunities, and (3) the contribution of each LLM agent through an ablation study. Our results show that RefAgent achieves a median unit test pass rate of 90%, reduces code smells by a median of 52.5%, and improves key quality attributes (e.g., reusability) by a median of 8.6%. Additionally, it closely aligns with developer refactorings and the search-based tool in identifying refactoring opportunities, attaining a median F1-score of 79.15% and 72.7%, respectively. Compared to single-agent approaches, RefAgent improves the median unit test pass rate by 64.7% and the median compilation success rate by 40.1%. These findings highlight the promise of multi-agent architectures in advancing automated software refactoring.
☆ Who Sees the Risk? Stakeholder Conflicts and Explanatory Policies in LLM-based Risk Assessment
Understanding how different stakeholders perceive risks in AI systems is essential for their responsible deployment. This paper presents a framework for stakeholder-grounded risk assessment by using LLMs, acting as judges to predict and explain risks. Using the Risk Atlas Nexus and GloVE explanation method, our framework generates stakeholder-specific, interpretable policies that shows how different stakeholders agree or disagree about the same risks. We demonstrate our method using three real-world AI use cases of medical AI, autonomous vehicles, and fraud detection domain. We further propose an interactive visualization that reveals how and why conflicts emerge across stakeholder perspectives, enhancing transparency in conflict reasoning. Our results show that stakeholder perspectives significantly influence risk perception and conflict patterns. Our work emphasizes the importance of these stakeholder-aware explanations needed to make LLM-based evaluations more transparent, interpretable, and aligned with human-centered AI governance goals.
☆ Forecast2Anomaly (F2A): Adapting Multivariate Time Series Foundation Models for Anomaly Prediction
Forecasting anomalies (anomaly prediction) in multivariate time series from different real-world, dynamic, and complex systems is vital for preempting critical failures, leading to a substantial minimization in operational costs and human labor. Yet, existing methods are limited to specific systems while failing to generalize to evolving anomaly patterns over time. In contrast, pretrained Time Series Foundation Models (TSFMs) have recently demonstrated strong generalization and zero-shot forecasting capabilities. However, their potential remains untapped for anomaly prediction, a task fundamentally different from forecasting normal behavior. Thus, we present Forecast2Anomaly (F2A), a novel framework that empowers TSFMs with anomaly prediction abilities through two key innovations. First, we propose a joint forecast-anomaly loss that fine-tunes TSFMs to accurately forecast future signals even at anomalous time points. Second, we introduce a Retrieval-Augmented Generation (RAG) module that retrieves historically relevant horizons and conditions predictions on them. This component dynamically adapts to distributional shifts at inference time, enabling F2A to track evolving anomalies without requiring model updates. By combining targeted fine-tuning with dynamic retrieval, F2A bridges the gap between robust TSFM zero-shot forecasting and zero-shot anomaly prediction. Extensive experiments across 16 diverse datasets and multiple TSFM backbones show that F2A consistently outperforms state-of-the-art methods, offering a scalable, zero-shot anomaly prediction solution for real-world applications.
☆ From Measurement to Expertise: Empathetic Expert Adapters for Context-Based Empathy in Conversational AI Agents
Empathy is a critical factor in fostering positive user experiences in conversational AI. While models can display empathy, it is often generic rather than tailored to specific tasks and contexts. In this work, we introduce a novel framework for developing and evaluating context-specific empathetic large language models (LLMs). We first analyze a real-world conversational dataset consisting of 672 multi-turn conversations across 8 tasks, revealing significant differences in terms of expected and experienced empathy before and after the conversations, respectively. To help minimize this gap, we develop a synthetic multi-turn conversational generation pipeline and steer responses toward our defined empathy patterns based on the context that more closely matches users' expectations. We then train empathetic expert adapters for context-specific empathy that specialize in varying empathy levels based on the recognized task. Our empirical results demonstrate a significant gap reduction of 72.66% between perceived and desired empathy with scores increasing by an average factor of 2.43 as measured by our metrics and reward models. Additionally, our trained empathetic expert adapters demonstrate superior effectiveness in preserving empathy patterns throughout conversation turns, outperforming system prompts, which tend to dramatically diminish in impact as conversations lengthen.
☆ A Proprietary Model-Based Safety Response Framework for AI Agents
With the widespread application of Large Language Models (LLMs), their associated security issues have become increasingly prominent, severely constraining their trustworthy deployment in critical domains. This paper proposes a novel safety response framework designed to systematically safeguard LLMs at both the input and output levels. At the input level, the framework employs a supervised fine-tuning-based safety classification model. Through a fine-grained four-tier taxonomy (Safe, Unsafe, Conditionally Safe, Focused Attention), it performs precise risk identification and differentiated handling of user queries, significantly enhancing risk coverage and business scenario adaptability, and achieving a risk recall rate of 99.3%. At the output level, the framework integrates Retrieval-Augmented Generation (RAG) with a specifically fine-tuned interpretation model, ensuring all responses are grounded in a real-time, trustworthy knowledge base. This approach eliminates information fabrication and enables result traceability. Experimental results demonstrate that our proposed safety control model achieves a significantly higher safety score on public safety evaluation benchmarks compared to the baseline model, TinyR1-Safety-8B. Furthermore, on our proprietary high-risk test set, the framework's components attained a perfect 100% safety score, validating their exceptional protective capabilities in complex risk scenarios. This research provides an effective engineering pathway for building high-security, high-trust LLM applications.
☆ Using Multi-modal Large Language Model to Boost Fireworks Algorithm's Ability in Settling Challenging Optimization Tasks
As optimization problems grow increasingly complex and diverse, advancements in optimization techniques and paradigm innovations hold significant importance. The challenges posed by optimization problems are primarily manifested in their non-convexity, high-dimensionality, black-box nature, and other unfavorable characteristics. Traditional zero-order or first-order methods, which are often characterized by low efficiency, inaccurate gradient information, and insufficient utilization of optimization information, are ill-equipped to address these challenges effectively. In recent years, the rapid development of large language models (LLM) has led to substantial improvements in their language understanding and code generation capabilities. Consequently, the design of optimization algorithms leveraging large language models has garnered increasing attention from researchers. In this study, we choose the fireworks algorithm(FWA) as the basic optimizer and propose a novel approach to assist the design of the FWA by incorporating multi-modal large language model(MLLM). To put it simply, we propose the concept of Critical Part(CP), which extends FWA to complex high-dimensional tasks, and further utilizes the information in the optimization process with the help of the multi-modal characteristics of large language models. We focus on two specific tasks: the \textit{traveling salesman problem }(TSP) and \textit{electronic design automation problem} (EDA). The experimental results show that FWAs generated under our new framework have achieved or surpassed SOTA results on many problem instances.
☆ Deploying Rapid Damage Assessments from sUAS Imagery for Disaster Response
This paper presents the first AI/ML system for automating building damage assessment in uncrewed aerial systems (sUAS) imagery to be deployed operationally during federally declared disasters (Hurricanes Debby and Helene). In response to major disasters, sUAS teams are dispatched to collect imagery of the affected areas to assess damage; however, at recent disasters, teams collectively delivered between 47GB and 369GB of imagery per day, representing more imagery than can reasonably be transmitted or interpreted by subject matter experts in the disaster scene, thus delaying response efforts. To alleviate this data avalanche encountered in practice, computer vision and machine learning techniques are necessary. While prior work has been deployed to automatically assess damage in satellite imagery, there is no current state of practice for sUAS-based damage assessment systems, as all known work has been confined to academic settings. This work establishes the state of practice via the development and deployment of models for building damage assessment with sUAS imagery. The model development involved training on the largest known dataset of post-disaster sUAS aerial imagery, containing 21,716 building damage labels, and the operational training of 91 disaster practitioners. The best performing model was deployed during the responses to Hurricanes Debby and Helene, where it assessed a combined 415 buildings in approximately 18 minutes. This work contributes documentation of the actual use of AI/ML for damage assessment during a disaster and lessons learned to the benefit of the AI/ML research and user communities.
comment: 6 pages, 4 figures, 1 table. Accepted - In Press, IAAI'26
☆ Optimal Boundary Control of Diffusion on Graphs via Linear Programming
We propose a linear programming (LP) framework for steady-state diffusion and flux optimization on geometric networks. The state variable satisfies a discrete diffusion law on a weighted, oriented graph, where conductances are scaled by edge lengths to preserve geometric fidelity. Boundary potentials act as controls that drive interior fluxes according to a linear network Laplacian. The optimization problem enforces physically meaningful sign and flux-cap constraints at all boundary edges, derived directly from a gradient bound. This yields a finite-dimensional LP whose feasible set is polyhedral, and whose boundedness and solvability follow from simple geometric or algebraic conditions on the network data. We prove that under the absence of negative recession directions--automatically satisfied in the presence of finite box bounds, flux caps, or sign restrictions--the LP admits a global minimizer. Several sufficient conditions guaranteeing boundedness of the feasible region are identified, covering both full-rank and rank-deficient flux maps. The analysis connects classical results such as the Minkowski--Weyl decomposition, Hoffman's bound, and the fundamental theorem of linear programming with modern network-based diffusion modeling. Two large-scale examples illustrate the framework: (i) A typical large stadium in a major modern city, which forms a single connected component with relatively uniform corridor widths, and a (ii) A complex street network emanating from a large, historical city center, which forms a multi-component system.
☆ EGMOF: Efficient Generation of Metal-Organic Frameworks Using a Hybrid Diffusion-Transformer Architecture
Designing materials with targeted properties remains challenging due to the vastness of chemical space and the scarcity of property-labeled data. While recent advances in generative models offer a promising way for inverse design, most approaches require large datasets and must be retrained for every new target property. Here, we introduce the EGMOF (Efficient Generation of MOFs), a hybrid diffusion-transformer framework that overcomes these limitations through a modular, descriptor-mediated workflow. EGMOF decomposes inverse design into two steps: (1) a one-dimensional diffusion model (Prop2Desc) that maps desired properties to chemically meaningful descriptors followed by (2) a transformer model (Desc2MOF) that generates structures from these descriptors. This modular hybrid design enables minimal retraining and maintains high accuracy even under small-data conditions. On a hydrogen uptake dataset, EGMOF achieved over 95% validity and 84% hit rate, representing significant improvements of up to 57% in validity and 14% in hit rate compared to existing methods, while remaining effective with only 1,000 training samples. Moreover, our model successfully performed conditional generation across 29 diverse property datasets, including CoREMOF, QMOF, and text-mined experimental datasets, whereas previous models have not. This work presents a data-efficient, generalizable approach to the inverse design of diverse MOFs and highlights the potential of modular inverse design workflows for broader materials discovery.
☆ Control Barrier Function for Aligning Large Language Models
This paper proposes a control-based framework for aligning large language models (LLMs) by leveraging a control barrier function (CBF) to ensure user-desirable text generation. The presented framework applies the CBF safety filter to the predicted token generated from the baseline LLM, to intervene in the generated text. The safety filter includes two significant advantages: this safety filter is an add-on type, allowing it to be used for alignment purposes without fine-tuning the baseline LLM, and if there is an evaluation model regarding the desired alignment, it can be directly applied to the filter design. The overall text-generation system is implemented with open-source language models, aiming to generate positive text.
☆ Image-Intrinsic Priors for Integrated Circuit Defect Detection and Novel Class Discovery via Self-Supervised Learning
Integrated circuit manufacturing is highly complex, comprising hundreds of process steps. Defects can arise at any stage, causing yield loss and ultimately degrading product reliability. Supervised methods require extensive human annotation and struggle with emergent categories and rare, data scarce defects. Clustering-based unsupervised methods often exhibit unstable performance due to missing priors. We propose IC DefectNCD, a support set free framework that leverages Image Intrinsic Priors in IC SEM images for defect detection and novel class discovery. We first develop Self Normal Information Guided IC Defect Detection, aggregating representative normal features via a learnable normal information extractor and using reconstruction residuals to coarsely localize defect regions. To handle saliency variations across defects, we introduce an adaptive binarization strategy that produces stable subimages focused on core defective areas. Finally, we design Self Defect Information Guided IC Defect Classification, which incorporates a soft mask guided attention mechanism to inject spatial defect priors into the teacher student model. This enhances sensitivity to defective regions, suppresses background interference, and enables recognition and classification of unseen defects. We validate the approach on a real world dataset spanning three key fabrication stages and covering 15 defect types. Experiments demonstrate robust performance on both defect detection and unseen defect classification.
♻ ☆ GDS Agent for Graph Algorithmic Reasoning
Large language models (LLMs) have shown remarkable multimodal information processing and reasoning ability. When equipped with tools through function calling and enhanced with retrieval-augmented techniques, compound LLM-based systems can access closed data sources and answer questions about them. However, they still struggle to process and reason over large-scale graph-structure data. We introduce the GDS (Graph Data Science) agent in this technical report. The GDS agent introduces a comprehensive set of graph algorithms as tools, together with preprocessing (retrieval) and postprocessing of algorithm results, in a model context protocol (MCP) server. The server can be used with any modern LLM out-of-the-box. GDS agent allows users to ask any question that implicitly and intrinsically requires graph algorithmic reasoning about their data, and quickly obtain accurate and grounded answers. We introduce new benchmarks that evaluate intermediate tool calls as well as final responses. The results indicate that GDS agent is able to solve a wide spectrum of graph tasks. We also provide detailed case studies for more open-ended tasks and study scenarios where the agent struggles. Finally, we discuss the remaining challenges and the future roadmap.
comment: Technical report
♻ ☆ Kosmos: An AI Scientist for Autonomous Discovery
Data-driven scientific discovery requires iterative cycles of literature search, hypothesis generation, and data analysis. Substantial progress has been made towards AI agents that can automate scientific research, but all such agents remain limited in the number of actions they can take before losing coherence, thus limiting the depth of their findings. Here we present Kosmos, an AI scientist that automates data-driven discovery. Given an open-ended objective and a dataset, Kosmos runs for up to 12 hours performing cycles of parallel data analysis, literature search, and hypothesis generation before synthesizing discoveries into scientific reports. Unlike prior systems, Kosmos uses a structured world model to share information between a data analysis agent and a literature search agent. The world model enables Kosmos to coherently pursue the specified objective over 200 agent rollouts, collectively executing an average of 42,000 lines of code and reading 1,500 papers per run. Kosmos cites all statements in its reports with code or primary literature, ensuring its reasoning is traceable. Independent scientists found 79.4% of statements in Kosmos reports to be accurate, and collaborators reported that a single 20-cycle Kosmos run performed the equivalent of 6 months of their own research time on average. Furthermore, collaborators reported that the number of valuable scientific findings generated scales linearly with Kosmos cycles (tested up to 20 cycles). We highlight seven discoveries made by Kosmos that span metabolomics, materials science, neuroscience, and statistical genetics. Three discoveries independently reproduce findings from preprinted or unpublished manuscripts that were not accessed by Kosmos at runtime, while four make novel contributions to the scientific literature.
comment: Revision: figure layout changes and minor text edits
♻ ☆ Voost: A Unified and Scalable Diffusion Transformer for Bidirectional Virtual Try-On and Try-Off SIGGRAPH
Virtual try-on aims to synthesize a realistic image of a person wearing a target garment, but accurately modeling garment-body correspondence remains a persistent challenge, especially under pose and appearance variation. In this paper, we propose Voost - a unified and scalable framework that jointly learns virtual try-on and try-off with a single diffusion transformer. By modeling both tasks jointly, Voost enables each garment-person pair to supervise both directions and supports flexible conditioning over generation direction and garment category, enhancing garment-body relational reasoning without task-specific networks, auxiliary losses, or additional labels. In addition, we introduce two inference-time techniques: attention temperature scaling for robustness to resolution or mask variation, and self-corrective sampling that leverages bidirectional consistency between tasks. Extensive experiments demonstrate that Voost achieves state-of-the-art results on both try-on and try-off benchmarks, consistently outperforming strong baselines in alignment accuracy, visual fidelity, and generalization.
comment: Accepted to SIGGRAPH Asia 2025, project page: https://nxnai.github.io/Voost/
♻ ☆ Using latent representations to link disjoint longitudinal data for mixed-effects regression
Many rare diseases offer limited established treatment options, leading patients to switch therapies when new medications emerge. To analyze the impact of such treatment switches within the low sample size limitations of rare disease trials, it is important to use all available data sources. This, however, is complicated when usage of measurement instruments change during the observation period, for example when instruments are adapted to specific age ranges. The resulting disjoint longitudinal data trajectories, complicate the application of traditional modeling approaches like mixed-effects regression. We tackle this by mapping observations of each instrument to a aligned low-dimensional temporal trajectory, enabling longitudinal modeling across instruments. Specifically, we employ a set of variational autoencoder architectures to embed item values into a shared latent space for each time point. Temporal disease dynamics and treatment switch effects are then captured through a mixed-effects regression model applied to latent representations. To enable statistical inference, we present a novel statistical testing approach that accounts for the joint parameter estimation of mixed-effects regression and variational autoencoders. The methodology is applied to quantify the impact of treatment switches for patients with spinal muscular atrophy. Here, our approach aligns motor performance items from different measurement instruments for mixed-effects regression and maps estimated effects back to the observed item level to quantify the treatment switch effect. Our approach allows for model selection as well as for assessing effects of treatment switching. The results highlight the potential of modeling in joint latent representations for addressing small data challenges.
comment: 31 pages, 3 figures, 3 tables
♻ ☆ Do Automatic Factuality Metrics Measure Factuality? A Critical Evaluation
Modern LLMs can now produce highly readable abstractive summaries, to the point that traditional automated metrics for evaluating summary quality, such as ROUGE, have saturated. However, LLMs still sometimes introduce inaccuracies into summaries, i.e., information inconsistent with or unsupported by the corresponding source. Measuring the occurrence of these often subtle factual inconsistencies automatically has proved challenging. This in turn has motivated development of metrics intended to measure the factual consistency of generated summaries against sources. But are these approaches measuring what they purport to? Or are they mostly exploiting artifacts? In this work, we stress test a range of automatic factuality metrics, including specialized models and LLM-based prompting methods, to probe what they actually capture. Using a shallow classifier to separate ``easy'' examples for factual evaluation where surface features suffice from ``hard'' cases requiring deeper reasoning, we find that all metrics show substantial performance drops on the latter. Furthermore, some metrics are more sensitive to benign, fact-preserving edits than to factual corrections. Building on this observation, we demonstrate that most automatic factuality metrics can be gamed, i.e., their scores can be artificially inflated by appending innocuous, content-free sentences to summaries. Among the metrics tested, the prompt based ChatGPT-DA approach is the most robust and reliable. However, this comes with a notable caveat: Prompting LLMs to assess factuality may overly rely on their parametric knowledge rather than the provided reference when making judgments. Taken together, our findings call into question the reliability of current factuality metrics and prompt a broader reflection on what these metrics are truly measuring.
♻ ☆ Graph Sampling for Scalable and Expressive Graph Neural Networks on Homophilic Graphs
Graph Neural Networks (GNNs) excel in many graph machine learning tasks but face challenges when scaling to large networks. GNN transferability allows training on smaller graphs and applying the model to larger ones, but existing methods often rely on random subsampling, leading to disconnected subgraphs and reduced model expressivity. We propose a novel graph sampling algorithm that leverages feature homophily to preserve graph structure. By minimizing the trace of the data correlation matrix, our method better preserves the graph Laplacian trace -- a proxy for the graph connectivity -- than random sampling, while achieving lower complexity than spectral methods. Experiments on citation networks show improved performance in preserving Laplacian trace and GNN transferability compared to random sampling.
♻ ☆ TabTune: A Unified Library for Inference and Fine-Tuning Tabular Foundation Models
Tabular foundation models represent a growing paradigm in structured data learning, extending the benefits of large-scale pretraining to tabular domains. However, their adoption remains limited due to heterogeneous preprocessing pipelines, fragmented APIs, inconsistent fine-tuning procedures, and the absence of standardized evaluation for deployment-oriented metrics such as calibration and fairness. We present TabTune, a unified library that standardizes the complete workflow for tabular foundation models through a single interface. TabTune provides consistent access to seven state-of-the-art models supporting multiple adaptation strategies, including zero-shot inference, meta-learning, supervised fine-tuning (SFT), and parameter-efficient fine-tuning (PEFT). The framework automates model-aware preprocessing, manages architectural heterogeneity internally, and integrates evaluation modules for performance, calibration, and fairness. Designed for extensibility and reproducibility, TabTune enables consistent benchmarking of adaptation strategies of tabular foundation models.
comment: The library is open source and available at https://github.com/Lexsi-Labs/TabTune
♻ ☆ Matryoshka Pilot: Learning to Drive Black-Box LLMs with LLMs NeurIPS 2025
Despite the impressive generative abilities of black-box large language models (LLMs), their inherent opacity hinders further advancements in capabilities such as reasoning, planning, and personalization. Existing works aim to enhance LLM capabilities via domain-specific adaptation, which require additional training on accessible model parameters, an infeasible option for black-box LLMs. To address this challenge, we introduce Matryoshka Pilot (M-Pilot), a lightweight white-box LLM controller that guides a large-scale black-box LLM generator by decomposing complex tasks into a series of intermediate outputs. Specifically, we consider the black-box LLM as an environment, with M-Pilot serving as a policy to provide intermediate guidance through prompts for driving the black-box LLM. M-Pilot is trained to pivot the outputs of the black-box LLM aligning with preferences during iterative interaction, which enables controllable multi-turn generation and self-improvement in optimizing intermediate guidance. Empirical evaluations on diverse tasks demonstrate that our method effectively enhances the capabilities of black-box LLMs in complex, long-horizon tasks. Our code is publicly available at: https://github.com/lichangh20/Matryoshka.
comment: Accepted by NeurIPS 2025
♻ ☆ Beyond Covariance Matrix: The Statistical Complexity of Private Linear Regression
We study the statistical complexity of private linear regression under an unknown, potentially ill-conditioned covariate distribution. Somewhat surprisingly, under privacy constraints the intrinsic complexity is \emph{not} captured by the usual covariance matrix but rather its $L_1$ analogues. Building on this insight, we establish minimax convergence rates for both the central and local privacy models and introduce an Information-Weighted Regression method that attains the optimal rates. As application, in private linear contextual bandits, we propose an efficient algorithm that achieves rate-optimal regret bounds of order $\sqrt{T}+\frac{1}{\alpha}$ and $\sqrt{T}/\alpha$ under joint and local $\alpha$-privacy models, respectively. Notably, our results demonstrate that joint privacy comes at almost no additional cost, addressing the open problems posed by Azize and Basu (2024).
♻ ☆ Why Isn't Relational Learning Taking Over the World? AAAI-2026
Artificial intelligence seems to be taking over the world with systems that model pixels, words, and phonemes. The world is arguably made up, not of pixels, words, and phonemes but of entities (objects, things, including events) with properties and relations among them. Surely we should model these, not the perception or description of them. You might suspect that concentrating on modeling words and pixels is because all of the (valuable) data in the world is in terms of text and images. If you look into almost any company you will find their most valuable data is in spreadsheets, databases and other relational formats. These are not the form that are studied in introductory machine learning, but are full of product numbers, student numbers, transaction numbers and other identifiers that can't be interpreted naively as numbers. The field that studies this sort of data has various names including relational learning, statistical relational AI, and many others. This paper explains why relational learning is not taking over the world -- except in a few cases with restricted relations -- and what needs to be done to bring it to it's rightful prominence.
comment: 10 pages (6 pages + references + appendices). To appear AAAI-2026
♻ ☆ RoboRAN: A Unified Robotics Framework for Reinforcement Learning-Based Autonomous Navigation
Autonomous robots must navigate and operate in diverse environments, from terrestrial and aquatic settings to aerial and space domains. While Reinforcement Learning (RL) has shown promise in training policies for specific autonomous robots, existing frameworks and benchmarks are often constrained to unique platforms, limiting generalization and fair comparisons across different mobility systems. In this paper, we present a multi-domain framework for training, evaluating and deploying RL-based navigation policies across diverse robotic platforms and operational environments. Our work presents four key contributions: (1) a scalable and modular framework, facilitating seamless robot-task interchangeability and reproducible training pipelines; (2) sim-to-real transfer demonstrated through real-world experiments with multiple robots, including a satellite robotic simulator, an unmanned surface vessel, and a wheeled ground vehicle; (3) the release of the first open-source API for deploying Isaac Lab-trained policies to real robots, enabling lightweight inference and rapid field validation; and (4) uniform tasks and metrics for cross-medium evaluation, through a unified evaluation testbed to assess performance of navigation tasks in diverse operational conditions (aquatic, terrestrial and space). By ensuring consistency between simulation and real-world deployment, RoboRAN lowers the barrier to developing adaptable RL-based navigation strategies. Its modular design enables straightforward integration of new robots and tasks through predefined templates, fostering reproducibility and extension to diverse domains. To support the community, we release RoboRAN as open-source.
comment: Accepted at Transactions on Machine Learning Research (TMLR)
♻ ☆ HAFixAgent: History-Aware Automated Program Repair Agent
Automated program repair (APR) has recently shifted toward large language models and agent-based systems, yet most systems rely on local snapshot context, overlooking repository history. Prior work shows that repository history helps repair single-line bugs, since the last commit touching the buggy line is often the bug-introducing one. In this paper, we investigate whether repository history can also improve agentic APR systems at scale, especially for complex multi-hunk bugs. We present HAFixAgent, a History-Aware Bug-Fixing Agent that injects blame-derived repository heuristics into its repair loop. A preliminary study of all 854 real-world bugs from Defects4J motivates our design, showing that bug-relevant history is both widely available and highly concentrated. Empirical comparison of HAFixAgent with two state-of-the-art baselines shows: (1) Effectiveness: HAFixAgent significantly improves over the agent-based baseline (by 212.3%) and the multi-hunk baseline (by 29.9%). (2) Efficiency: history does not significantly increase agent steps and keeps token costs comparable, with notably lower median costs for complex multi-file-multi-hunk bugs. (3) Practicality: combining different historical heuristics repairs more bugs, offering a clear cost-benefit trade-off. HAFixAgent offers a practical recipe for history-aware agentic APR: ground the agent in version control history, prioritize diff-based historical context, and integrate complementary heuristics when needed.
comment: 31 pages, 6 figures
♻ ☆ "Accessibility people, you go work on that thing of yours over there": Addressing Disability Inclusion in AI Product Organizations
The rapid emergence of generative AI has changed the way that technology is designed, constructed, maintained, and evaluated. Decisions made when creating AI-powered systems may impact some users disproportionately, such as people with disabilities. In this paper, we report on an interview study with 25 AI practitioners across multiple roles (engineering, research, UX, and responsible AI) about how their work processes and artifacts may impact end users with disabilities. We found that practitioners experienced friction when triaging problems at the intersection of responsible AI and accessibility practices, navigated contradictions between accessibility and responsible AI guidelines, identified gaps in data about users with disabilities, and gathered support for addressing the needs of disabled stakeholders by leveraging informal volunteer and community groups within their company. Based on these findings, we offer suggestions for new resources and process changes to better support people with disabilities as end users of AI.
♻ ☆ SecRepoBench: Benchmarking Code Agents for Secure Code Completion in Real-World Repositories
This paper introduces SecRepoBench, a benchmark to evaluate code agents on secure code completion in real-world repositories. SecRepoBench has 318 code completion tasks in 27 C/C++ repositories, covering 15 CWEs. We evaluate 28 standalone LLMs and 13 code agents across 3 state-of-the-art agent frameworks using our benchmark. We find that state-of-the-art LLMs struggle with generating correct and secure code completions. However, code agents significantly outperform standalone LLMs. We show that SecRepoBench is more difficult than the prior state-of-the-art benchmark. Finally, our comprehensive analysis provides insights into potential directions for enhancing the ability of code agents to write correct and secure code in real-world repositories.
♻ ☆ The ODE Method for Stochastic Approximation and Reinforcement Learning with Markovian Noise
Stochastic approximation is a class of algorithms that update a vector iteratively, incrementally, and stochastically, including, e.g., stochastic gradient descent and temporal difference learning. One fundamental challenge in analyzing a stochastic approximation algorithm is to establish its stability, i.e., to show that the stochastic vector iterates are bounded almost surely. In this paper, we extend the celebrated Borkar-Meyn theorem for stability from the Martingale difference noise setting to the Markovian noise setting, which greatly improves its applicability in reinforcement learning, especially in those off-policy reinforcement learning algorithms with linear function approximation and eligibility traces. Central to our analysis is the diminishing asymptotic rate of change of a few functions, which is implied by both a form of the strong law of large numbers and a form of the law of the iterated logarithm.
comment: Journal of Machine Learning Research (JMLR), 2025
♻ ☆ Fast weight programming and linear transformers: from machine learning to neurobiology
Recent advances in artificial neural networks for machine learning, and language modeling in particular, have established a family of recurrent neural network (RNN) architectures that, unlike conventional RNNs with vector-form hidden states, use two-dimensional (2D) matrix-form hidden states. Such 2D-state RNNs, known as Fast Weight Programmers (FWPs), can be interpreted as a neural network whose synaptic weights (called fast weights) dynamically change over time as a function of input observations, and serve as short-term memory storage; corresponding synaptic weight modifications are controlled or programmed by another network (the programmer) whose parameters are trained (e.g., by gradient descent). In this Primer, we review the technical foundations of FWPs, their computational characteristics, and their connections to transformers and state space models. We also discuss connections between FWPs and models of synaptic plasticity in the brain, suggesting a convergence of natural and artificial intelligence.
♻ ☆ R2R: Efficiently Navigating Divergent Reasoning Paths with Small-Large Model Token Routing
Large Language Models (LLMs) achieve impressive reasoning capabilities at the cost of substantial inference overhead, posing substantial deployment challenges. Although distilled Small Language Models (SLMs) significantly enhance efficiency, their performance suffers as they fail to follow LLMs' reasoning paths. Luckily, we reveal that only a small fraction of tokens genuinely diverge reasoning paths between LLMs and SLMs. Most generated tokens are either identical or exhibit neutral differences, such as minor variations in abbreviations or expressions. Leveraging this insight, we introduce **Roads to Rome (R2R)**, a neural token routing method that selectively utilizes LLMs only for these critical, path-divergent tokens, while leaving the majority of token generation to the SLM. We also develop an automatic data generation pipeline that identifies divergent tokens and generates token-level routing labels to train the lightweight router. We apply R2R to combine R1-1.5B and R1-32B models from the DeepSeek family, and evaluate on challenging math, coding, and QA benchmarks. With an average activated parameter size of 5.6B, R2R surpasses the average accuracy of R1-7B by 1.6x, outperforming even the R1-14B model. Compared to R1-32B, it delivers a 2.8x wall-clock speedup with comparable performance, advancing the Pareto frontier of test-time scaling efficiency. Our code is available at https://github.com/thu-nics/R2R.
♻ ☆ Dense SAE Latents Are Features, Not Bugs NeurIPS 2025
Sparse autoencoders (SAEs) are designed to extract interpretable features from language models by enforcing a sparsity constraint. Ideally, training an SAE would yield latents that are both sparse and semantically meaningful. However, many SAE latents activate frequently (i.e., are \emph{dense}), raising concerns that they may be undesirable artifacts of the training procedure. In this work, we systematically investigate the geometry, function, and origin of dense latents and show that they are not only persistent but often reflect meaningful model representations. We first demonstrate that dense latents tend to form antipodal pairs that reconstruct specific directions in the residual stream, and that ablating their subspace suppresses the emergence of new dense features in retrained SAEs -- suggesting that high density features are an intrinsic property of the residual space. We then introduce a taxonomy of dense latents, identifying classes tied to position tracking, context binding, entropy regulation, letter-specific output signals, part-of-speech, and principal component reconstruction. Finally, we analyze how these features evolve across layers, revealing a shift from structural features in early layers, to semantic features in mid layers, and finally to output-oriented signals in the last layers of the model. Our findings indicate that dense latents serve functional roles in language model computation and should not be dismissed as training noise.
comment: NeurIPS 2025 poster
♻ ☆ Reg-DPO: SFT-Regularized Direct Preference Optimization with GT-Pair for Improving Video Generation
Recent studies have identified Direct Preference Optimization (DPO) as an efficient and reward-free approach to improving video generation quality. However, existing methods largely follow image-domain paradigms and are mainly developed on small-scale models (approximately 2B parameters), limiting their ability to address the unique challenges of video tasks, such as costly data construction, unstable training, and heavy memory consumption. To overcome these limitations, we introduce a GT-Pair that automatically builds high-quality preference pairs by using real videos as positives and model-generated videos as negatives, eliminating the need for any external annotation. We further present Reg-DPO, which incorporates the SFT loss as a regularization term into the DPO loss to enhance training stability and generation fidelity. Additionally, by combining the FSDP framework with multiple memory optimization techniques, our approach achieves nearly three times higher training capacity than using FSDP alone. Extensive experiments on both I2V and T2V tasks across multiple datasets demonstrate that our method consistently outperforms existing approaches, delivering superior video generation quality.
♻ ☆ SME-TEAM: Leveraging Trust and Ethics for Secure and Responsible Use of AI and LLMs in SMEs
Artificial Intelligence (AI) and Large Language Models (LLMs) are revolutionizing today's business practices; however, their adoption within small and medium-sized enterprises (SMEs) raises serious trust, ethical, and technical issues. In this perspective paper, we introduce a structured, multi-phased framework, "SME-TEAM" for the secure and responsible use of these technologies in SMEs. Based on a conceptual structure of four key pillars, i.e., Data, Algorithms, Human Oversight, and Model Architecture, SME-TEAM bridges theoretical ethical principles with operational practice, enhancing AI capabilities across a wide range of applications in SMEs. Ultimately, this paper provides a structured roadmap for the adoption of these emerging technologies, positioning trust and ethics as a driving force for resilience, competitiveness, and sustainable innovation within the area of business analytics and SMEs.
comment: 12 pages
♻ ☆ Geometry-Aware Global Feature Aggregation for Real-Time Indirect Illumination
Real-time rendering with global illumination is crucial to afford the user realistic experience in virtual environments. We present a learning-based estimator to predict diffuse indirect illumination in screen space, which then is combined with direct illumination to synthesize globally-illuminated high dynamic range (HDR) results. Our approach tackles the challenges of capturing long-range/long-distance indirect illumination when employing neural networks and is generalized to handle complex lighting and scenarios. From the neural network thinking of the solver to the rendering equation, we present a novel network architecture to predict indirect illumination. Our network is equipped with a modified attention mechanism that aggregates global information guided by spacial geometry features, as well as a monochromatic design that encodes each color channel individually. We conducted extensive evaluations, and the experimental results demonstrate our superiority over previous learning-based techniques. Our approach excels at handling complex lighting such as varying-colored lighting and environment lighting. It can successfully capture distant indirect illumination and simulates the interreflections between textured surfaces well (i.e., color bleeding effects); it can also effectively handle new scenes that are not present in the training dataset.
comment: 10 pages
♻ ☆ Assessing the Macro and Micro Effects of Random Seeds on Fine-Tuning Large Language Models
The impact of random seeds in fine-tuning large language models (LLMs) has been largely overlooked despite its potential influence on model performance.In this study, we systematically evaluate the effects of random seeds on LLMs using the GLUE and SuperGLUE benchmarks. We analyze the macro-level impact through traditional metrics like accuracy and F1, calculating their mean and variance to quantify performance fluctuations. To capture the micro-level effects, we introduce a novel metric, consistency, measuring the stability of individual predictions across runs. Our experiments reveal significant variance at both macro and micro levels, underscoring the need for careful consideration of random seeds in fine-tuning and evaluation.
comment: 7 pages, 5 tables, 3 figures. Accepted at IJCNLP 2025. This is the final, peer-reviewed version of the work, which supersedes and extends the unauthorized draft previously posted as arXiv:2503.07329
♻ ☆ Intelligent Computing Social Modeling and Methodological Innovations in Political Science in the Era of Large Language Models SC
The recent wave of artificial intelligence, epitomized by large language models (LLMs),has presented opportunities and challenges for methodological innovation in political science,sparking discussions on a potential paradigm shift in the social sciences. However, how can weunderstand the impact of LLMs on knowledge production and paradigm transformation in thesocial sciences from a comprehensive perspective that integrates technology and methodology? What are LLMs' specific applications and representative innovative methods in political scienceresearch? These questions, particularly from a practical methodological standpoint, remainunderexplored. This paper proposes the "Intelligent Computing Social Modeling" (ICSM) methodto address these issues by clarifying the critical mechanisms of LLMs. ICSM leverages thestrengths of LLMs in idea synthesis and action simulation, advancing intellectual exploration inpolitical science through "simulated social construction" and "simulation validation." Bysimulating the U.S. presidential election, this study empirically demonstrates the operationalpathways and methodological advantages of ICSM. By integrating traditional social scienceparadigms, ICSM not only enhances the quantitative paradigm's capability to apply big data toassess the impact of factors but also provides qualitative paradigms with evidence for socialmechanism discovery at the individual level, offering a powerful tool that balances interpretabilityand predictability in social science research. The findings suggest that LLMs will drivemethodological innovation in political science through integration and improvement rather thandirect substitution.
comment: 37 pages, 11 figures, 3 tables. J OF CHIN POLIT SCI (2025)
♻ ☆ Autonomous Robotic Drilling System for Mice Cranial Window Creation
Robotic assistance for experimental manipulation in the life sciences is expected to enable favorable outcomes, regardless of the skill of the scientist. Experimental specimens in the life sciences are subject to individual variability and hence require intricate algorithms for successful autonomous robotic control. As a use case, we are studying the cranial window creation in mice. This operation requires the removal of an 8-mm circular patch of the skull, which is approximately 300 um thick, but the shape and thickness of the mouse skull significantly varies depending on the strain of the mouse, sex, and age. In this work, we develop an autonomous robotic drilling system with no offline planning, consisting of a trajectory planner with execution-time feedback with drilling completion level recognition based on image and force information. In the experiments, we first evaluate the image-and-force-based drilling completion level recognition by comparing it with other state-of-the-art deep learning image processing methods and conduct an ablation study in eggshell drilling to evaluate the impact of each module on system performance. Finally, the system performance is further evaluated in postmortem mice, achieving a success rate of 70% (14/20 trials) with an average drilling time of 9.3 min.
comment: 14 pages, 11 figures, accepted on T-ASE 2025
♻ ☆ Balancing Tails when Comparing Distributions: Comprehensive Equity Index (CEI) with Application to Bias Evaluation in Operational Face Biometrics
Demographic bias in high-performance face recognition (FR) systems often eludes detection by existing metrics, especially with respect to subtle disparities in the tails of the score distribution. We introduce the Comprehensive Equity Index (CEI), a novel metric designed to address this limitation. CEI uniquely analyzes genuine and impostor score distributions separately, enabling a configurable focus on tail probabilities while also considering overall distribution shapes. Our extensive experiments (evaluating state-of-the-art FR systems, intentionally biased models, and diverse datasets) confirm CEI's superior ability to detect nuanced biases where previous methods fall short. Furthermore, we present CEI^A, an automated version of the metric that enhances objectivity and simplifies practical application. CEI provides a robust and sensitive tool for operational FR fairness assessment. The proposed methods have been developed particularly for bias evaluation in face biometrics but, in general, they are applicable for comparing statistical distributions in any problem where one is interested in analyzing the distribution tails.
♻ ☆ A Survey of Graph Neural Networks in Real world: Imbalance, Noise, Privacy and OOD Challenges
Graph-structured data exhibits universality and widespread applicability across diverse domains, such as social network analysis, biochemistry, financial fraud detection, and network security. Significant strides have been made in leveraging Graph Neural Networks (GNNs) to achieve remarkable success in these areas. However, in real-world scenarios, the training environment for models is often far from ideal, leading to substantial performance degradation of GNN models due to various unfavorable factors, including imbalance in data distribution, the presence of noise in erroneous data, privacy protection of sensitive information, and generalization capability for out-of-distribution (OOD) scenarios. To tackle these issues, substantial efforts have been devoted to improving the performance of GNN models in practical real-world scenarios, as well as enhancing their reliability and robustness. In this paper, we present a comprehensive survey that systematically reviews existing GNN models, focusing on solutions to the four mentioned real-world challenges including imbalance, noise, privacy, and OOD in practical scenarios that many existing reviews have not considered. Specifically, we first highlight the four key challenges faced by existing GNNs, paving the way for our exploration of real-world GNN models. Subsequently, we provide detailed discussions on these four aspects, dissecting how these solutions contribute to enhancing the reliability and robustness of GNN models. Last but not least, we outline promising directions and offer future perspectives in the field.
comment: Accepted by IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI 2025)
♻ ☆ Reinforcement Learning Foundations for Deep Research Systems: A Survey
Deep research systems, agentic AI that solve complex, multi-step tasks by coordinating reasoning, search across the open web and user files, and tool use, are moving toward hierarchical deployments with a Planner, Coordinator, and Executors. In practice, training entire stacks end-to-end remains impractical, so most work trains a single planner connected to core tools such as search, browsing, and code. While SFT imparts protocol fidelity, it suffers from imitation and exposure biases and underuses environment feedback. Preference alignment methods such as DPO are schema and proxy-dependent, off-policy, and weak for long-horizon credit assignment and multi-objective trade-offs. A further limitation of SFT and DPO is their reliance on human defined decision points and subskills through schema design and labeled comparisons. Reinforcement learning aligns with closed-loop, tool-interaction research by optimizing trajectory-level policies, enabling exploration, recovery behaviors, and principled credit assignment, and it reduces dependence on such human priors and rater biases. This survey is, to our knowledge, the first dedicated to the RL foundations of deep research systems. It systematizes recent work along three axes: (i) data synthesis and curation; (ii) RL methods for agentic research covering stability, sample efficiency, long context handling, reward and credit design, multi-objective optimization, and multimodal integration; and (iii) agentic RL training systems and frameworks. We also cover agent architecture and coordination, as well as evaluation and benchmarks, including recent QA, VQA, long-form synthesis, and domain-grounded, tool-interaction tasks. We distill recurring patterns, surface infrastructure bottlenecks, and offer practical guidance for training robust, transparent deep research agents with RL.
comment: 39 pages, second version
♻ ☆ Toward Humanoid Brain-Body Co-design: Joint Optimization of Control and Morphology for Fall Recovery
Humanoid robots represent a central frontier in embodied intelligence, as their anthropomorphic form enables natural deployment in humans' workspace. Brain-body co-design for humanoids presents a promising approach to realizing this potential by jointly optimizing control policies and physical morphology. Within this context, fall recovery emerges as a critical capability. It not only enhances safety and resilience but also integrates naturally with locomotion systems, thereby advancing the autonomy of humanoids. In this paper, we propose RoboCraft, a scalable humanoid co-design framework for fall recovery that iteratively improves performance through the coupled updates of control policy and morphology. A shared policy pretrained across multiple designs is progressively finetuned on high-performing morphologies, enabling efficient adaptation without retraining from scratch. Concurrently, morphology search is guided by human-inspired priors and optimization algorithms, supported by a priority buffer that balances reevaluation of promising candidates with the exploration of novel designs. Experiments show that RoboCraft achieves an average performance gain of 44.55% on seven public humanoid robots, with morphology optimization drives at least 40% of improvements in co-designing four humanoid robots, underscoring the critical role of humanoid co-design.
♻ ☆ ADPO: Anchored Direct Preference Optimization
Direct Preference Optimization (DPO) has become a standard for aligning models with human feedback, yet its reliance on hard, pairwise preferences makes it brittle to annotator noise and distribution shift. We propose Anchored Direct Preference Optimization (ADPO), a theoretically grounded framework that extends preference learning to soft, listwise supervision through reference anchoring. Our key theoretical contributions are threefold: (1) we establish that ADPO unifies major learning paradigms, including supervised fine-tuning, knowledge distillation, maximum-entropy reinforcement learning, and DPO, as special cases through different choices of target distribution, anchor policy, and temperature; (2) we prove that anchoring induces an implicit trust region governed by the softmax Fisher metric; and (3) we formalize the stability of dynamic anchor updates. Empirically, we discover a task-dependent tradeoff: dynamic anchors suit online exploration, while fixed anchors excel at offline distillation, reducing teacher-student KL divergence by two to three orders of magnitude (170 to 5000 times).
♻ ☆ DE3S: Dual-Enhanced Soft-Sparse-Shape Learning for Medical Early Time-Series Classification
Early Time Series Classification (ETSC) is critical in time-sensitive medical applications such as sepsis, yet it presents an inherent trade-off between accuracy and earliness. This trade-off arises from two core challenges: 1) models should effectively model inherently weak and noisy early-stage snippets, and 2) they should resolve the complex, dual requirement of simultaneously capturing local, subject-specific variations and overarching global temporal patterns. Existing methods struggle to overcome these underlying challenges, often forcing a severe compromise: sacrificing accuracy to achieve earliness, or vice-versa. We propose \textbf{DE3S}, a \textbf{D}ual-\textbf{E}nhanced \textbf{S}oft-\textbf{S}parse \textbf{S}equence Learning framework, which systematically solves these challenges. A dual enhancement mechanism is proposed to enhance the modeling of weak, early signals. Then, an attention-based patch module is introduced to preserve discriminative information while reducing noise and complexity. A dual-path fusion architecture is designed, using a sparse mixture of experts to model local, subject-specific variations. A multi-scale inception module is also employed to capture global dependencies. Experiments on six real-world medical datasets show the competitive performance of DE3S, particularly in early prediction windows. Ablation studies confirm the effectiveness of each component in addressing its targeted challenge. The source code is available \href{https://github.com/kuxit/DE3S}{\textbf{here}}.
comment: Accepted to IEEE BIBM 2025
♻ ☆ From Haystack to Needle: Label Space Reduction for Zero-shot Classification
We present Label Space Reduction (LSR), a novel method for improving zero-shot classification performance of Large Language Models (LLMs). LSR iteratively refines the classification label space by systematically ranking and reducing candidate classes, enabling the model to concentrate on the most relevant options. By leveraging unlabeled data with the statistical learning capabilities of data-driven models, LSR dynamically optimizes the label space representation at test time. Our experiments across seven benchmarks demonstrate that LSR improves macro-F1 scores by an average of 7.0% (up to 14.2%) with Llama-3.1-70B and 3.3% (up to 11.1%) with Claude-3.5-Sonnet compared to standard zero-shot classification baselines. To reduce the computational overhead of LSR, which requires an additional LLM call at each iteration, we propose distilling the model into a probabilistic classifier, allowing for efficient inference.
comment: Add acknowledgment
♻ ☆ Traversal Verification for Speculative Tree Decoding NeurIPS 2025
Speculative decoding is a promising approach for accelerating large language models. The primary idea is to use a lightweight draft model to speculate the output of the target model for multiple subsequent timesteps, and then verify them in parallel to determine whether the drafted tokens should be accepted or rejected. To enhance acceptance rates, existing frameworks typically construct token trees containing multiple candidates in each timestep. However, their reliance on token-level verification mechanisms introduces two critical limitations: First, the probability distribution of a sequence differs from that of individual tokens, leading to suboptimal acceptance length. Second, current verification schemes begin from the root node and proceed layer by layer in a top-down manner. Once a parent node is rejected, all its child nodes should be discarded, resulting in inefficient utilization of speculative candidates. This paper introduces Traversal Verification, a novel speculative decoding algorithm that fundamentally rethinks the verification paradigm through leaf-to-root traversal. Our approach considers the acceptance of the entire token sequence from the current node to the root, and preserves potentially valid subsequences that would be prematurely discarded by existing methods. We theoretically prove that the probability distribution obtained through Traversal Verification is identical to that of the target model, guaranteeing lossless inference while achieving substantial acceleration gains. Experimental results across different large language models and multiple tasks show that our method consistently improves acceptance length and throughput over existing methods.
comment: NeurIPS 2025 poster
♻ ☆ ViFP: A Framework for Visual False Positive Detection to Enhance Reasoning Reliability in VLMs
During reasoning in vision-language models (VLMs), false positive (FP) reasoning occurs when a model produces the correct answer but follows an incorrect reasoning path, resulting in undermined reasoning reliability. Existing approaches mainly rely on prompt engineering, knowledge distillation or reinforcement learning to improve reasoning reliability, both of which require large amounts of high-quality data and thus limit practical applicability. Few approaches have focused on directly detecting and correcting FPs. To address these issues, we propose ViFP, a framework for Visual False Positive Detection to Enhance Reasoning Reliability in VLMs. ViFP builds effective reasoning paths through multi-turn QA and dynamically analyzes the consistency of the reasoning path to identify potential FPs. It also introduces a targeted reasoning chain correction mechanism to modify FP reasoning, thereby improving logical consistency and accuracy. Finally, we introduce a reliability evaluation metric, VoC, which integrates answer accuracy and the FP rate, providing a quantitative tool to assess whether a VLM not only answers correctly but also reasons reliably. Our experiments on closed-source VLMs show that ViFP consistently improves performance across three datasets: A-OKVQA, OK-VQA, and FVQA. On A-OKVQA, ViFP improves accuracy by up to 5.4%, surpassing the previous state-of-the-art by 4.3%, and significantly reduces the number of FPs, validating its benefits in enhancing reasoning reliability.
♻ ☆ RAG-IT: Retrieval-Augmented Instruction Tuning for Automated Financial Analysis
Financial analysis relies heavily on the interpretation of earnings reports to assess company performance and guide decision-making. Traditional methods for generating such analyses demand significant financial expertise and are often time-consuming. With the rapid advancement of Large Language Models (LLMs), domain-specific adaptations have emerged for financial tasks such as sentiment analysis and entity recognition. This paper introduces RAG-IT (Retrieval-Augmented Instruction Tuning), a novel framework designed to automate the generation of earnings report analyses through an LLM fine-tuned specifically for the financial domain. Our approach integrates retrieval augmentation with instruction-based fine-tuning to enhance factual accuracy, contextual relevance, and domain adaptability. We construct a comprehensive financial instruction dataset derived from extensive financial documents and earnings reports to guide the LLM's adaptation to specialized financial reasoning. Experimental results demonstrate that RAG-IT outperforms general-purpose open-source models and achieves performance comparable to commercial systems like GPT-3.5 on financial report generation tasks. This research highlights the potential of retrieval-augmented instruction tuning to streamline and elevate financial analysis automation, advancing the broader field of intelligent financial reporting.
comment: 11 pages, 1 figure, 4 tables
♻ ☆ Misalignment Bounty: Crowdsourcing AI Agent Misbehavior
Advanced AI systems sometimes act in ways that differ from human intent. To gather clear, reproducible examples, we ran the Misalignment Bounty: a crowdsourced project that collected cases of agents pursuing unintended or unsafe goals. The bounty received 295 submissions, of which nine were awarded. This report explains the program's motivation and evaluation criteria, and walks through the nine winning submissions step by step.
comment: Add Limitations section
♻ ☆ AnalogSeeker: An Open-source Foundation Language Model for Analog Circuit Design
In this paper, we propose AnalogSeeker, an effort toward an open-source foundation language model for analog circuit design, with the aim of integrating domain knowledge and giving design assistance. To overcome the scarcity of data in this field, we employ a corpus collection strategy based on the domain knowledge framework of analog circuits. High-quality, accessible textbooks across relevant subfields are systematically curated and cleaned into a textual domain corpus. To address the complexity of knowledge of analog circuits, we introduce a granular domain knowledge distillation method. Raw, unlabeled domain corpus is decomposed into typical, granular learning nodes, where a multi-agent framework distills implicit knowledge embedded in unstructured text into question-answer data pairs with detailed reasoning processes, yielding a fine-grained, learnable dataset for fine-tuning. To address the unexplored challenges in training analog circuit foundation models, we explore and share our training methods through both theoretical analysis and experimental validation. We finally establish a fine-tuning-centric training paradigm, customizing and implementing a neighborhood self-constrained supervised fine-tuning algorithm. This approach enhances training outcomes by constraining the perturbation magnitude between the model's output distributions before and after training. In practice, we train the Qwen2.5-32B-Instruct model to obtain AnalogSeeker, which achieves 85.04% accuracy on AMSBench-TQA, the analog circuit knowledge evaluation benchmark, with a 15.67% point improvement over the original model and is competitive with mainstream commercial models. Furthermore, AnalogSeeker also shows effectiveness in the downstream operational amplifier design task. AnalogSeeker is open-sourced at https://huggingface.co/analogllm/analogseeker for research use.
♻ ☆ Mastering Contact-rich Tasks by Combining Soft and Rigid Robotics with Imitation Learning
Soft robots have the potential to revolutionize the use of robotic systems with their capability of establishing safe, robust, and adaptable interactions with their environment, but their precise control remains challenging. In contrast, traditional rigid robots offer high accuracy and repeatability but lack the flexibility of soft robots. We argue that combining these characteristics in a hybrid robotic platform can significantly enhance overall capabilities. This work presents a novel hybrid robotic platform that integrates a rigid manipulator with a fully developed soft arm. This system is equipped with the intelligence necessary to perform flexible and generalizable tasks through imitation learning autonomously. The physical softness and machine learning enable our platform to achieve highly generalizable skills, while the rigid components ensure precision and repeatability.
comment: Update with additional results and experiments
♻ ☆ Scalable Evaluation and Neural Models for Compositional Generalization NeurIPS
Compositional generalization-a key open challenge in modern machine learning-requires models to predict unknown combinations of known concepts. However, assessing compositional generalization remains a fundamental challenge due to the lack of standardized evaluation protocols and the limitations of current benchmarks, which often favor efficiency over rigor. At the same time, general-purpose vision architectures lack the necessary inductive biases, and existing approaches to endow them compromise scalability. As a remedy, this paper introduces: 1) a rigorous evaluation framework that unifies and extends previous approaches while reducing computational requirements from combinatorial to constant; 2) an extensive and modern evaluation on the status of compositional generalization in supervised vision backbones, training more than 5000 models; 3) Attribute Invariant Networks, a class of models establishing a new Pareto frontier in compositional generalization, achieving a 23.43% accuracy improvement over baselines while reducing parameter overhead from 600% to 16% compared to fully disentangled counterparts. Our code is available at https://github.com/IBM/scalable-compositional-generalization.
comment: Accepted at the Thirty-ninth Annual Conference on Neural Information Processing Systems (NeurIPS), 2025
♻ ☆ Distilling LLM Agent into Small Models with Retrieval and Code Tools NeurIPS 2025
Large language models (LLMs) excel at complex reasoning tasks but remain computationally expensive, limiting their practical deployment. To address this, recent works have focused on distilling reasoning capabilities into smaller language models (sLMs) using chain-of-thought (CoT) traces from teacher LLMs. However, this approach struggles in scenarios requiring rare factual knowledge or precise computation, where sLMs often hallucinate due to limited capability. In this work, we propose Agent Distillation, a framework for transferring not only reasoning capability but full task-solving behavior from LLM-based agents into sLMs with retrieval and code tools. We improve agent distillation along two complementary axes: (1) we introduce a prompting method called first-thought prefix to enhance the quality of teacher-generated trajectories; and (2) we propose a self-consistent action generation for improving test-time robustness of small agents. We evaluate our method on eight reasoning tasks across factual and mathematical domains, covering both in-domain and out-of-domain generalization. Our results show that sLMs as small as 0.5B, 1.5B, 3B parameters can achieve performance competitive with next-tier larger 1.5B, 3B, 7B models fine-tuned using CoT distillation, demonstrating the potential of agent distillation for building practical, tool-using small agents. Our code is available at https://github.com/Nardien/agent-distillation.
comment: NeurIPS 2025 Spotlight
♻ ☆ Divide by Question, Conquer by Agent: SPLIT-RAG with Question-Driven Graph Partitioning
Retrieval-Augmented Generation (RAG) systems empower large language models (LLMs) with external knowledge, yet struggle with efficiency-accuracy trade-offs when scaling to large knowledge graphs. Existing approaches often rely on monolithic graph retrieval, incurring unnecessary latency for simple queries and fragmented reasoning for complex multi-hop questions. To address these challenges, this paper propose SPLIT-RAG, a multi-agent RAG framework that addresses these limitations with question-driven semantic graph partitioning and collaborative subgraph retrieval. The innovative framework first create Semantic Partitioning of Linked Information, then use the Type-Specialized knowledge base to achieve Multi-Agent RAG. The attribute-aware graph segmentation manages to divide knowledge graphs into semantically coherent subgraphs, ensuring subgraphs align with different query types, while lightweight LLM agents are assigned to partitioned subgraphs, and only relevant partitions are activated during retrieval, thus reduce search space while enhancing efficiency. Finally, a hierarchical merging module resolves inconsistencies across subgraph-derived answers through logical verifications. Extensive experimental validation demonstrates considerable improvements compared to existing approaches.
comment: 20 pages, 4 figures
♻ ☆ Beyond Single Pass, Looping Through Time: KG-IRAG with Iterative Knowledge Retrieval
Graph Retrieval-Augmented Generation (GraphRAG) has proven highly effective in enhancing the performance of Large Language Models (LLMs) on tasks that require external knowledge. By leveraging Knowledge Graphs (KGs), GraphRAG improves information retrieval for complex reasoning tasks, providing more precise and comprehensive retrieval and generating more accurate responses to QAs. However, most RAG methods fall short in addressing multi-step reasoning, particularly when both information extraction and inference are necessary. To address this limitation, this paper presents Knowledge Graph-Based Iterative Retrieval-Augmented Generation (KG-IRAG), a novel framework that integrates KGs with iterative reasoning to improve LLMs' ability to handle queries involving temporal and logical dependencies. Through iterative retrieval steps, KG-IRAG incrementally gathers relevant data from external KGs, enabling step-by-step reasoning. The proposed approach is particularly suited for scenarios where reasoning is required alongside dynamic temporal data extraction, such as determining optimal travel times based on weather conditions or traffic patterns. Experimental results show that KG-IRAG improves accuracy in complex reasoning tasks by effectively integrating external knowledge with iterative, logic-based retrieval. Additionally, three new datasets: weatherQA-Irish, weatherQA-Sydney, and trafficQA-TFNSW, are formed to evaluate KG-IRAG's performance, demonstrating its potential beyond traditional RAG applications.
comment: 15 pages, 3 figures
♻ ☆ DiffSpectra: Molecular Structure Elucidation from Spectra using Diffusion Models
Molecular structure elucidation from spectra is a fundamental challenge in molecular science. Conventional approaches rely heavily on expert interpretation and lack scalability, while retrieval-based machine learning approaches remain constrained by limited reference libraries. Generative models offer a promising alternative, yet most adopt autoregressive architectures that overlook 3D geometry and struggle to integrate diverse spectral modalities. In this work, we present DiffSpectra, a generative framework that formulates molecular structure elucidation as a conditional generation process, directly inferring 2D and 3D molecular structures from multi-modal spectra using diffusion models. Its denoising network is parameterized by the Diffusion Molecule Transformer, an SE(3)-equivariant architecture for geometric modeling, conditioned by SpecFormer, a Transformer-based spectral encoder capturing multi-modal spectral dependencies. Extensive experiments demonstrate that DiffSpectra accurately elucidates molecular structures, achieving 40.76% top-1 and 99.49% top-10 accuracy. Its performance benefits substantially from 3D geometric modeling, SpecFormer pre-training, and multi-modal conditioning. To our knowledge, DiffSpectra is the first framework that unifies multi-modal spectral reasoning and joint 2D/3D generative modeling for de novo molecular structure elucidation.
♻ ☆ Efficient Latent Variable Causal Discovery: Combining Score Search and Targeted Testing
Learning causal structure from observational data is especially challenging when latent variables or selection bias are present. The Fast Causal Inference (FCI) algorithm addresses this setting but performs exhaustive conditional independence tests across many subsets, often leading to spurious independences, missing or extra edges, and unreliable orientations. We present a family of score-guided mixed-strategy causal search algorithms that extend this framework. First, we introduce BOSS-FCI and GRaSP-FCI, variants of GFCI (Greedy Fast Causal Inference) that substitute BOSS (Best Order Score Search) or GRaSP (Greedy Relaxations of Sparsest Permutation) for FGES (Fast Greedy Equivalence Search), preserving correctness while trading off scalability and conservativeness. Second, we develop FCI Targeted-Testing (FCIT), a novel hybrid method that replaces exhaustive testing with targeted, score-informed tests guided by BOSS. FCIT guarantees well-formed PAGs and achieves higher precision and efficiency across sample sizes. Finally, we propose a lightweight heuristic, LV-Dumb (Latent Variable "Dumb"), which returns the PAG of the BOSS DAG (Directed Acyclic Graph). Though not strictly sound for latent confounding, LV-Dumb often matches FCIT's accuracy while running substantially faster. Simulations and real-data analyses show that BOSS-FCI and GRaSP-FCI provide robust baselines, FCIT yields the best balance of precision and reliability, and LV-Dumb offers a fast, near-equivalent alternative. Together, these methods demonstrate that targeted and score-guided strategies can dramatically improve the efficiency and correctness of latent-variable causal discovery.
comment: 30 pages, 44 figures, 6 tables
♻ ☆ A Survey on Collaborating Small and Large Language Models for Performance, Cost-effectiveness, Cloud-edge Privacy, and Trustworthiness
Large language models (LLMs) have achieved remarkable progress across domains and applications but face challenges such as high fine-tuning costs, inference latency, limited edge deployability, and reliability concerns. Small language models (SLMs), with compact, efficient, and adaptable features, offer promising solutions. Building on this potential, recent research explores collaborative frameworks that integrate their complementary strengths, leveraging SLMs' specialization and efficiency with LLMs' generalization and reasoning to address diverse objectives across tasks and deployment scenarios. Motivated by these developments, this paper presents a systematic survey of SLM-LLM collaboration from the perspective of collaboration objectives. We propose a taxonomy covering four goals: performance enhancement, cost-effectiveness, cloud-edge privacy, and trustworthiness. Under this framework, we review representative methods, summarize design paradigms, and outline open challenges and future directions toward efficient and secure SLM-LLM collaboration. The collected papers are available at https://github.com/FairyFali/SLMs-Survey.
comment: 24 pages, 19 figures-under review; more detailed than v1
♻ ☆ Decentralized Aerial Manipulation of a Cable-Suspended Load using Multi-Agent Reinforcement Learning
This paper presents the first decentralized method to enable real-world 6-DoF manipulation of a cable-suspended load using a team of Micro-Aerial Vehicles (MAVs). Our method leverages multi-agent reinforcement learning (MARL) to train an outer-loop control policy for each MAV. Unlike state-of-the-art controllers that utilize a centralized scheme, our policy does not require global states, inter-MAV communications, nor neighboring MAV information. Instead, agents communicate implicitly through load pose observations alone, which enables high scalability and flexibility. It also significantly reduces computing costs during inference time, enabling onboard deployment of the policy. In addition, we introduce a new action space design for the MAVs using linear acceleration and body rates. This choice, combined with a robust low-level controller, enables reliable sim-to-real transfer despite significant uncertainties caused by cable tension during dynamic 3D motion. We validate our method in various real-world experiments, including full-pose control under load model uncertainties, showing setpoint tracking performance comparable to the state-of-the-art centralized method. We also demonstrate cooperation amongst agents with heterogeneous control policies, and robustness to the complete in-flight loss of one MAV. Videos of experiments: https://autonomousrobots.nl/paper_websites/aerial-manipulation-marl
♻ ☆ The ORCA Benchmark: Evaluating Real-World Calculation Accuracy in Large Language Models
We present ORCA (Omni Research on Calculation in AI) Benchmark - a novel benchmark that evaluates large language models (LLMs) on multi-domain, real-life quantitative reasoning using verified outputs from Omni's calculator engine. In 500 natural-language tasks across domains such as finance, physics, health, and statistics, the five state-of-the-art systems (ChatGPT-5, Gemini~2.5~Flash, Claude~Sonnet~4.5, Grok~4, and DeepSeek~V3.2) achieved only $45\text{--}63\,\%$ accuracy, with errors mainly related to rounding ($35\,\%$) and calculation mistakes ($33\,\%$). Results in specific domains indicate strengths in mathematics and engineering, but weaknesses in physics and natural sciences. Correlation analysis ($r \approx 0.40\text{--}0.65$) shows that the models often fail together but differ in the types of errors they make, highlighting their partial complementarity rather than redundancy. Unlike standard math datasets, ORCA evaluates step-by-step reasoning, numerical precision, and domain generalization across real problems from finance, physics, health, and statistics.
♻ ☆ A Unified Formal Theory on the Logical Limits of Symbol Grounding
This paper synthesizes a series of formal proofs to construct a unified theory on the logical limits of the Symbol Grounding Problem. We demonstrate through a four-stage argument that meaning within a formal system must arise from a process that is external, dynamic, and non-algorithmic. First, we prove that any purely symbolic system, devoid of external connections, cannot internally establish a consistent foundation for meaning due to self-referential paradoxes. Second, we extend this limitation to systems with any finite, static set of pre-established meanings, proving they are inherently incomplete. Third, we demonstrate that the grounding process is logically incomplete; specifically, the 'act' of connecting internal symbols to novel, emergent external meanings cannot be a product of logical inference within the system but must be an axiomatic, meta-level update. Finally, we prove that any attempt to automate this update process using a fixed, external "judgment" algorithm will inevitably construct a larger, yet equally incomplete, symbolic system. Together, these conclusions formally establish that the grounding of meaning is a necessarily open-ended, non-algorithmic process, revealing a fundamental, G\"odel-style limitation for any self-contained intelligent system.
comment: 8 pages, 1 figure. A formal proof on the logical limits of symbol grounding
♻ ☆ A Survey on Text-Driven 360-Degree Panorama Generation
The advent of text-driven 360-degree panorama generation, enabling the synthesis of 360-degree panoramic images directly from textual descriptions, marks a transformative advancement in immersive visual content creation. This innovation significantly simplifies the traditionally complex process of producing such content. Recent progress in text-to-image diffusion models has accelerated the rapid development in this emerging field. This survey presents a comprehensive review of text-driven 360-degree panorama generation, offering an in-depth analysis of state-of-the-art algorithms. We extend our analysis to two closely related domains: text-driven 360-degree 3D scene generation and text-driven 360-degree panoramic video generation. Furthermore, we critically examine current limitations and propose promising directions for future research. A curated project page with relevant resources and research papers is available at https://littlewhitesea.github.io/Text-Driven-Pano-Gen/.
comment: Accepted by IEEE TCSVT, Code: https://github.com/littlewhitesea/Text-Driven-Pano-Gen
♻ ☆ REFA: Reference Free Alignment for multi-preference optimization
To mitigate reward hacking from response verbosity, modern preference optimization methods are increasingly adopting length normalization (e.g., SimPO, ORPO, LN-DPO). While effective against this bias, we demonstrate that length normalization itself introduces a failure mode: the URSLA shortcut. Here models learn to satisfy the alignment objective by prematurely truncating low-quality responses rather than learning from their semantic content. To address this, we introduce REFA, a new alignment framework that proposes probabilistic control on a structural token that controls termination. Our core innovation is a new class of regularizers that operate directly on the probability of the End-of-Sequence (EOS) token, a previously unexploited control lever. This token-level intervention provides a principled solution to the URSLA shortcut, ensuring genuine quality improvements. Furthermore, it unlocks a versatile mechanism for managing the alignment-efficiency tradeoff, enabling practitioners to fine-tune models that adhere to specific token budgets. Empirically, REFA achieves a 60.29% win rate and a 52.17% length-controlled win rate on AlpacaEval2 with Llama-3-8B-Instruct, demonstrating the power of our token-level control paradigm.
♻ ☆ The Mirror Loop: Recursive Non-Convergence in Generative Reasoning Systems
Large language models are often described as capable of reflective reasoning, yet recursive self-evaluation without external feedback frequently yields reformulation rather than progress. We test this prediction in a cross-provider study of 144 reasoning sequences across three models (OpenAI GPT-4o-mini, Anthropic Claude 3 Haiku, and Google Gemini 2.0 Flash) and four task families (arithmetic, code, explanation, reflection), each iterated ten times under two conditions: ungrounded self-critique and a minimal grounding intervention (a single verification step at iteration three). Mean informational change (delta I, measured via normalized edit distance) declined by 55% from early (0.193) to late (0.087) iterations in ungrounded runs, with consistent patterns across all three providers. Grounded runs showed a +28% rebound in informational change immediately after the intervention and sustained non-zero variance thereafter. Complementary measures-n-gram novelty, embedding drift, and character-level entropy-converged on the same pattern: reflection without contact tends toward informational closure. We interpret this as evidence for a structural limit on self-correction in generative reasoning: without an exchange of information with an independent verifier or environment, recursive inference approaches an attractor state of epistemic stasis. Minimal grounding functions as dissipative coupling, reintroducing informational flux. The cross-architecture consistency suggests the mirror loop arises from shared autoregressive training objectives rather than provider-specific alignment schemes. The results delineate when reflection is performative rather than epistemic and motivate design principles for grounded, cooperative reasoning. Materials and code are publicly available.
comment: 18 pages, 2 figures. Category: cs.LG. Code and data: https://github.com/Course-Correct-Labs/mirror-loop
♻ ☆ Benchmarking Foundation Models and Parameter-Efficient Fine-Tuning for Prognosis Prediction in Medical Imaging
Despite the significant potential of Foundation Models (FMs) in medical imaging, their application to prognosis prediction remains challenging due to data scarcity, class imbalance, and task complexity, which limit their clinical adoption. This study introduces the first structured benchmark to assess the robustness and efficiency of transfer learning strategies for FMs compared with convolutional neural networks (CNNs) in predicting COVID-19 patient outcomes from chest X-rays. The goal is to systematically compare finetuning strategies, both classical and parameter efficient, under realistic clinical constraints related to data scarcity and class imbalance, offering empirical guidance for AI deployment in clinical workflows. Four publicly available COVID-19 chest X-ray datasets were used, covering mortality, severity, and ICU admission, with varying sample sizes and class imbalances. CNNs pretrained on ImageNet and FMs pretrained on general or biomedical datasets were adapted using full finetuning, linear probing, and parameter-efficient methods. Models were evaluated under full data and few shot regimes using the Matthews Correlation Coefficient (MCC) and Precision Recall AUC (PR-AUC), with cross validation and class weighted losses. CNNs with full fine-tuning performed robustly on small, imbalanced datasets, while FMs with Parameter-Efficient Fine-Tuning (PEFT), particularly LoRA and BitFit, achieved competitive results on larger datasets. Severe class imbalance degraded PEFT performance, whereas balanced data mitigated this effect. In few-shot settings, FMs showed limited generalization, with linear probing yielding the most stable results. No single fine-tuning strategy proved universally optimal: CNNs remain dependable for low-resource scenarios, whereas FMs benefit from parameter-efficient methods when data are sufficient.
♻ ☆ Automatic Road Subsurface Distress Recognition from Ground Penetrating Radar Images using Deep Learning-based Cross-verification
Ground penetrating radar (GPR) has become a rapid and non-destructive solution for road subsurface distress (RSD) detection. Deep learning-based automatic RSD recognition, though ameliorating the burden of data processing, suffers from data scarcity and insufficient capability to recognize defects. In this study, a rigorously validated 3D GPR dataset containing 2134 samples of diverse types was constructed through field scanning. A novel cross-verification strategy was proposed to fully exploit the complementary abilities of region proposal networks in object recognition from different views of GPR images. The method achieves outstanding accuracy with a recall over 98.6% in field tests. The approach, integrated into an online RSD detection system, can reduce the human labor of inspection by around 90%.
♻ ☆ CoTox: Chain-of-Thought-Based Molecular Toxicity Reasoning and Prediction
Drug toxicity remains a major challenge in pharmaceutical development. Recent machine learning models have improved in silico toxicity prediction, but their reliance on annotated data and lack of interpretability limit their applicability. This limits their ability to capture organ-specific toxicities driven by complex biological mechanisms. Large language models (LLMs) offer a promising alternative through step-by-step reasoning and integration of textual data, yet prior approaches lack biological context and transparent rationale. To address this issue, we propose CoTox, a novel framework that integrates LLM with chain-of-thought (CoT) reasoning for multi-toxicity prediction. CoTox combines chemical structure data, biological pathways, and gene ontology (GO) terms to generate interpretable toxicity predictions through step-by-step reasoning. Using GPT-4o, we show that CoTox outperforms both traditional machine learning and deep learning model. We further examine its performance across various LLMs to identify where CoTox is most effective. Additionally, we find that representing chemical structures with IUPAC names, which are easier for LLMs to understand than SMILES, enhances the model's reasoning ability and improves predictive performance. To demonstrate its practical utility in drug development, we simulate the treatment of relevant cell types with drug and incorporated the resulting biological context into the CoTox framework. This approach allow CoTox to generate toxicity predictions aligned with physiological responses, as shown in case study. This result highlights the potential of LLM-based frameworks to improve interpretability and support early-stage drug safety assessment. The code and prompt used in this work are available at https://github.com/dmis-lab/CoTox.
comment: Accepted to IEEE BIBM 2025
♻ ☆ A data-driven framework for team selection in Fantasy Premier League
Fantasy football is a billion-dollar industry with millions of participants. Under a fixed budget, managers select squads to maximize future Fantasy Premier League (FPL) points. This study formulates lineup selection as data-driven optimization and develops deterministic and robust mixed-integer linear programs that choose the starting eleven, bench, and captain under budget, formation, and club-quota constraints (maximum three players per club). The objective is parameterized by a hybrid scoring metric that combines realized FPL points with predictions from a linear regression model trained on match-performance features identified using exploratory data analysis techniques. The study benchmarks alternative objectives and cost estimators, including simple and recency-weighted averages, exponential smoothing, autoregressive integrated moving average (ARIMA), and Monte Carlo simulation. Experiments on the 2023/24 Premier League season show that ARIMA with a constrained budget and a rolling window yields the most consistent out-of-sample performance; weighted averages and Monte Carlo are also competitive. Robust variants improve some objectives but are not uniformly superior. The framework provides transparent decision support for fantasy roster construction and extends to FPL chips, multi-week rolling-horizon transfer planning, and week-by-week dynamic captaincy.
♻ ☆ Large Language Models Miss the Multi-Agent Mark NeurIPS 2025
Recent interest in Multi-Agent Systems of Large Language Models (MAS LLMs) has led to an increase in frameworks leveraging multiple LLMs to tackle complex tasks. However, much of this literature appropriates the terminology of MAS without engaging with its foundational principles. In this position paper, we highlight critical discrepancies between MAS theory and current MAS LLMs implementations, focusing on four key areas: the social aspect of agency, environment design, coordination and communication protocols, and measuring emergent behaviours. Our position is that many MAS LLMs lack multi-agent characteristics such as autonomy, social interaction, and structured environments, and often rely on oversimplified, LLM-centric architectures. The field may slow down and lose traction by revisiting problems the MAS literature has already addressed. Therefore, we systematically analyse this issue and outline associated research opportunities; we advocate for better integrating established MAS concepts and more precise terminology to avoid mischaracterisation and missed opportunities.
comment: NeurIPS 2025 (position track)
♻ ☆ TensorHyper-VQC: A Tensor-Train-Guided Hypernetwork for Robust and Scalable Variational Quantum Computing
Variational Quantum Computing (VQC) faces fundamental scalability barriers, primarily due to the presence of barren plateaus and its sensitivity to quantum noise. To address these challenges, we introduce TensorHyper-VQC, a novel tensor-train (TT)-guided hypernetwork framework that significantly improves the robustness and scalability of VQC. Our framework fully delegates the generation of quantum circuit parameters to a classical TT network, effectively decoupling optimization from quantum hardware. This innovative parameterization mitigates gradient vanishing, enhances noise resilience through structured low-rank representations, and facilitates efficient gradient propagation. Grounded in Neural Tangent Kernel and statistical learning theory, our rigorous theoretical analyses establish strong guarantees on approximation capability, optimization stability, and generalization performance. Extensive empirical results across quantum dot classification, Max-Cut optimization, and molecular quantum simulation tasks demonstrate that TensorHyper-VQC consistently achieves superior performance and robust noise tolerance, including hardware-level validation on a 156-qubit IBM Heron processor. These results position TensorHyper-VQC as a scalable and noise-resilient framework for advancing practical quantum machine learning on near-term devices.
comment: In submission
♻ ☆ MSDNet: Multi-Scale Decoder for Few-Shot Semantic Segmentation via Transformer-Guided Prototyping
Few-shot Semantic Segmentation addresses the challenge of segmenting objects in query images with only a handful of annotated examples. However, many previous state-of-the-art methods either have to discard intricate local semantic features or suffer from high computational complexity. To address these challenges, we propose a new Few-shot Semantic Segmentation framework based on the Transformer architecture. Our approach introduces the spatial transformer decoder and the contextual mask generation module to improve the relational understanding between support and query images. Moreover, we introduce a multi scale decoder to refine the segmentation mask by incorporating features from different resolutions in a hierarchical manner. Additionally, our approach integrates global features from intermediate encoder stages to improve contextual understanding, while maintaining a lightweight structure to reduce complexity. This balance between performance and efficiency enables our method to achieve competitive results on benchmark datasets such as PASCAL-5^i and COCO-20^i in both 1-shot and 5-shot settings. Notably, our model with only 1.5 million parameters demonstrates competitive performance while overcoming limitations of existing methodologies. https://github.com/amirrezafateh/MSDNet
♻ ☆ Training Optimal Large Diffusion Language Models
We introduce Quokka, the first systematic scaling law for diffusion language models (DLMs), encompassing both compute-constrained and data-constrained regimes, and studying the key modeling and optimization designs. Quokka is a good friend of Chinchilla and provides wider scopes. We hope the results would bring short-term practical guidance in DLMs training and long-term inspirations for the whole AI community.
♻ ☆ AlphaDecay: Module-wise Weight Decay for Heavy-Tailed Balancing in LLMs
Weight decay is a standard regularization technique for training large language models (LLMs). While it is common to assign a uniform decay rate to every layer, this approach overlooks the structural diversity of LLMs and the varying spectral properties across modules. In this paper, we introduce AlphaDecay, a simple yet effective method that adaptively assigns different weight decay strengths to each module of an LLM. Our approach is guided by Heavy-Tailed Self-Regularization (HT-SR) theory, which analyzes the empirical spectral density (ESD) of weight correlation matrices to quantify "heavy-tailedness." Modules exhibiting more pronounced heavy-tailed ESDs, reflecting stronger feature learning, are assigned weaker decay, while modules with lighter-tailed spectra receive stronger decay. Our method leverages tailored weight decay assignments to balance the module-wise differences in spectral properties, leading to improved performance. Extensive pre-training tasks with various model sizes from 60M to 1B demonstrate that AlphaDecay achieves better perplexity and generalization than conventional uniform decay and other adaptive decay baselines. Our code is available at https://github.com/hed-ucas/AlphaDecay.
♻ ☆ PhysicsEval: Inference-Time Techniques to Improve the Reasoning Proficiency of Large Language Models on Physics Problems AACL 2025
The discipline of physics stands as a cornerstone of human intellect, driving the evolution of technology and deepening our understanding of the fundamental principles of the cosmos. Contemporary literature includes some works centered on the task of solving physics problems - a crucial domain of natural language reasoning. In this paper, we evaluate the performance of frontier LLMs in solving physics problems, both mathematical and descriptive. We also employ a plethora of inference-time techniques and agentic frameworks to improve the performance of the models. This includes the verification of proposed solutions in a cumulative fashion by other, smaller LLM agents, and we perform a comparative analysis of the performance that the techniques entail. There are significant improvements when the multi-agent framework is applied to problems that the models initially perform poorly on. Furthermore, we introduce a new evaluation benchmark for physics problems, ${\rm P{\small HYSICS}E{\small VAL}}$, consisting of 19,609 problems sourced from various physics textbooks and their corresponding correct solutions scraped from physics forums and educational websites. Our code and data are publicly available at https://github.com/areebuzair/PhysicsEval.
comment: Accepted in Findings of the Association for Computational Linguistics: IJCNLP-AACL 2025, 23 pages, 4 figures, 8 tables
♻ ☆ VoiceAgentBench: Are Voice Assistants ready for agentic tasks?
Large-scale Speech Language Models (SpeechLMs) have enabled voice assistants capable of understanding natural spoken queries and performing complex tasks. However, existing speech benchmarks primarily focus on isolated capabilities such as transcription, or question-answering, and do not systematically evaluate agentic scenarios encompassing multilingual and cultural understanding, as well as adversarial robustness. To address this, we introduce VoiceAgentBench, a comprehensive benchmark designed to evaluate SpeechLMs in realistic spoken agentic settings. It comprises over 5,500 synthetic spoken queries, including dialogues grounded in Indian context, covering single-tool invocations, multi-tool workflows, multi-turn interactions, and safety evaluations. The benchmark supports English, Hindi, and 5 other Indian languages, reflecting real-world linguistic and cultural diversity. We simulate speaker variability using a novel sampling algorithm that selects audios for TTS voice conversion based on its speaker embeddings, maximizing acoustic and speaker diversity. Our evaluation measures tool selection accuracy, structural consistency, and the correctness of tool invocations, including adversarial robustness. Our experiments reveal significant gaps in contextual tool orchestration tasks, Indic generalization, and adversarial robustness, exposing critical limitations of current SpeechLMs.
♻ ☆ Inverse Entropic Optimal Transport Solves Semi-supervised Learning via Data Likelihood Maximization
Learning conditional distributions $\pi^*(\cdot|x)$ is a central problem in machine learning, which is typically approached via supervised methods with paired data $(x,y) \sim \pi^*$. However, acquiring paired data samples is often challenging, especially in problems such as domain translation. This necessitates the development of $\textit{semi-supervised}$ models that utilize both limited paired data and additional unpaired i.i.d. samples $x \sim \pi^*_x$ and $y \sim \pi^*_y$ from the marginal distributions. The usage of such combined data is complex and often relies on heuristic approaches. To tackle this issue, we propose a new learning paradigm that integrates both paired and unpaired data $\textbf{seamlessly}$ using the data likelihood maximization techniques. We demonstrate that our approach also connects intriguingly with inverse entropic optimal transport (OT). This finding allows us to apply recent advances in computational OT to establish an $\textbf{end-to-end}$ learning algorithm to get $\pi^*(\cdot|x)$. In addition, we derive the universal approximation property, demonstrating that our approach can theoretically recover true conditional distributions with arbitrarily small error. Furthermore, we demonstrate through empirical tests that our method effectively learns conditional distributions using paired and unpaired data simultaneously.
♻ ☆ CardioForest: An Explainable Ensemble Learning Model for Automatic Wide QRS Complex Tachycardia Diagnosis from ECG
This study aims to develop and evaluate an ensemble machine learning-based framework for the automatic detection of Wide QRS Complex Tachycardia (WCT) from ECG signals, emphasizing diagnostic accuracy and interpretability using Explainable AI. The proposed system integrates ensemble learning techniques, i.e., an optimized Random Forest known as CardioForest, and models like XGBoost and LightGBM. The models were trained and tested on ECG data from the publicly available MIMIC-IV dataset. The testing was carried out with the assistance of accuracy, balanced accuracy, precision, recall, F1 score, ROC-AUC, and error rate (RMSE, MAE) measures. In addition, SHAP (SHapley Additive exPlanations) was used to ascertain model explainability and clinical relevance. The CardioForest model performed best on all metrics, achieving a test accuracy of 95.19%, a balanced accuracy of 88.76%, a precision of 95.26%, a recall of 78.42%, and an ROC-AUC of 0.8886. SHAP analysis confirmed the model's ability to rank the most relevant ECG features, such as QRS duration, in accordance with clinical intuitions, thereby fostering trust and usability in clinical practice. The findings recognize CardioForest as an extremely dependable and interpretable WCT detection model. Being able to offer accurate predictions and transparency through explainability makes it a valuable tool to help cardiologists make timely and well-informed diagnoses, especially for high-stakes and emergency scenarios.
♻ ☆ AI for Requirements Engineering: Industry adoption and Practitioner perspectives
The integration of AI for Requirements Engineering (RE) presents significant benefits but also poses real challenges. Although RE is fundamental to software engineering, limited research has examined AI adoption in RE. We surveyed 55 software practitioners to map AI usage across four RE phases: Elicitation, Analysis, Specification, and Validation, and four approaches for decision making: human-only decisions, AI validation, Human AI Collaboration (HAIC), and full AI automation. Participants also shared their perceptions, challenges, and opportunities when applying AI for RE tasks. Our data show that 58.2% of respondents already use AI in RE, and 69.1% view its impact as positive or very positive. HAIC dominates practice, accounting for 54.4% of all RE techniques, while full AI automation remains minimal at 5.4%. Passive AI validation (4.4 to 6.2%) lags even further behind, indicating that practitioners value AI's active support over passive oversight. These findings suggest that AI is most effective when positioned as a collaborative partner rather than a replacement for human expertise. It also highlights the need for RE-specific HAIC frameworks along with robust and responsible AI governance as AI adoption in RE grows.
comment: Accepted at the Intelligent Software Engineering (ISE) 2025 Workshop at the Automated Software Engineering (ASE) 2025 Conference
♻ ☆ LLM-Driven Collaborative Model for Untangling Commits via Explicit and Implicit Dependency Reasoning
Atomic commits, which address a single development concern, are a best practice in software development. In practice, however, developers often produce tangled commits that mix unrelated changes, complicating code review and maintenance. Prior untangling approaches (rule-based, feature-based, or graph-based) have made progress but typically rely on shallow signals and struggle to distinguish explicit dependencies (e.g., control/data flow) from implicit ones (e.g., semantic or conceptual relationships). In this paper, we propose ColaUntangle, a new collaborative consultation framework for commit untangling that models both explicit and implicit dependencies among code changes. ColaUntangle integrates Large Language Model (LLM)-driven agents in a multi-agent architecture: one agent specializes in explicit dependencies, another in implicit ones, and a reviewer agent synthesizes their perspectives through iterative consultation. To capture structural and contextual information, we construct Explicit and Implicit Contexts, enabling agents to reason over code relationships with both symbolic and semantic depth. We evaluate ColaUntangle on two widely-used datasets (1,612 C# and 14k Java tangled commits). Experimental results show that ColaUntangle outperforms the best-performing baseline, achieving an improvement of 44% on the C# dataset and 82% on the Java dataset. These findings highlight the potential of LLM-based collaborative frameworks for advancing automated commit untangling tasks.
♻ ☆ On Improvisation and Open-Endedness: Insights for Experiential AI AAAI 2026
Improvisation-the art of spontaneous creation that unfolds moment-to-moment without a scripted outcome-requires practitioners to continuously sense, adapt, and create anew. It is a fundamental mode of human creativity spanning music, dance, and everyday life. The open-ended nature of improvisation produces a stream of novel, unrepeatable moments-an aspect highly valued in artistic creativity. In parallel, open-endedness (OE)-a system's capacity for unbounded novelty and endless "interestingness"-is exemplified in natural or cultural evolution and has been considered "the last grand challenge" in artificial life (ALife). The rise of generative AI now raises the question in computational creativity (CC) research: What makes a "good" improvisation for AI? Can AI learn to improvise in a genuinely open-ended way? In this work-in-progress paper, we report insights from in-depth interviews with 6 experts in improvisation across dance, music, and contact improvisation. We draw systemic connections between human improvisational arts and the design of future experiential AI agents that could improvise alone or alongside humans-or even with other AI agents-embodying qualities of improvisation drawn from practice: active listening (umwelt and awareness), being in the time (mindfulness and ephemerality), embracing the unknown (source of randomness and serendipity), non-judgmental flow (acceptance and dynamical stability, balancing structure and surprise (unpredictable criticality at edge of chaos), imaginative metaphor (synaesthesia and planning), empathy, trust, boundary, and care (mutual theory of mind), and playfulness and intrinsic motivation (maintaining interestingness).
comment: Submitted to AAAI 2026 Creative AI for Live Interactive Performances Workshop (CLIP) as a work-in-progress paper
♻ ☆ Agent-Omni: Test-Time Multimodal Reasoning via Model Coordination for Understanding Anything
Multimodal large language models (MLLMs) have shown strong capabilities but remain limited to fixed modality pairs and require costly fine-tuning with large aligned datasets. Building fully omni-capable models that can integrate text, images, audio, and video remains impractical and lacks robust reasoning support. In this paper, we propose an Agent-Omni framework that coordinates existing foundation models through a master-agent system, enabling flexible multimodal reasoning without retraining. The master agent interprets user intent, delegates subtasks to modality-specific agents, and integrates their outputs into coherent responses. Extensive experiments across text, image, audio, video, and omni benchmarks show that Agent-Omni consistently achieves state-of-the-art performance, particularly on tasks requiring complex cross-modal reasoning. Its agent-based design enables seamless integration of specialized foundation models, ensuring adaptability to diverse inputs while maintaining transparency and interpretability. In addition, the framework is modular and easily extensible, allowing future improvements as stronger models become available.
comment: 16 pages, 7 figures, 14 tables. Under Review
♻ ☆ Quantifying truth and authenticity in AI-assisted candidate evaluation: A multi-domain pilot analysis
This paper presents a retrospective analysis of anonymized candidate-evaluation data collected during pilot hiring campaigns conducted through AlteraSF, an AI-native resume-verification platform. The system evaluates resume claims, generates context-sensitive verification questions, and measures performance along quantitative axes of factual validity and job fit, complemented by qualitative integrity detection. Across six job families and 1,700 applications, the platform achieved a 90-95% reduction in screening time and detected measurable linguistic patterns consistent with AI-assisted or copied responses. The analysis demonstrates that candidate truthfulness can be assessed not only through factual accuracy but also through patterns of linguistic authenticity. The results suggest that a multi-dimensional verification framework can improve both hiring efficiency and trust in AI-mediated evaluation systems.
comment: 10 pages, 10 tables, 2 figures, and 1 page of supplemental materials
♻ ☆ Layer Importance for Mathematical Reasoning is Forged in Pre-Training and Invariant after Post-Training
Large language models improve at math after instruction tuning, reinforcement learning, or knowledge distillation. We ask whether these gains come from major changes in the transformer layers or from smaller adjustments that keep the original structure. Using layer-wise ablation on base and trained variants, we find that math reasoning depends on a few critical layers, which stay important across all post- training methods. Removing these layers reduces math accuracy by as much as 80%, whereas factual recall tasks only show relatively smaller drops. This suggests that specialized layers for mathematical tasks form during pre-training and remain stable afterward. As measured by Normalized Mutual Information (NMI), we find that near these critical layers, tokens drift from their original syntactic clusters toward representations aligned with tokens less syntactically related but potentially more useful for downstream task.
♻ ☆ Agentic Meta-Orchestrator for Multi-task Copilots
Microsoft Copilot suites serve as the universal entry point for various agents skilled in handling important tasks, ranging from assisting a customer with product purchases to detecting vulnerabilities in corporate programming code. Each agent can be powered by language models, software engineering operations, such as database retrieval, and internal \& external knowledge. The repertoire of a copilot can expand dynamically with new agents. This requires a robust orchestrator that can distribute tasks from user prompts to the right agents. In this work, we propose an Agentic Meta-orchestrator (AMO) for handling multiple tasks and scalable agents in copilot services, which can provide both natural language and action responses. We will also demonstrate the planning that leverages meta-learning, i.e., a trained decision tree model for deciding the best inference strategy among various agents/models. We showcase the effectiveness of our AMO through two production use cases: Microsoft 365 (M365) E-Commerce Copilot and code compliance copilot. M365 E-Commerce Copilot advertises Microsoft products to external customers to promote sales success. The M365 E-Commerce Copilot provides up-to-date product information and connects to multiple agents, such as relational databases and human customer support. The code compliance copilot scans the internal DevOps code to detect known and new compliance issues in pull requests (PR).
♻ ☆ AgenticMath: Enhancing LLM Reasoning via Agentic-based Math Data Generation
The creation of high-quality datasets to improve Large Language Model (LLM) reasoning remains a significant challenge, as current methods often suffer from generating low-quality/incorrect answers and limited information richness from available data sources. To address this, we propose AgenticMath, a novel agentic pipeline for generating high-quality mathematical question-answer pairs to enhance the supervised fine-tuning of LLMs. Our method operates through four stages: (1) Seed Question Filter that selects questions with high information richness, complexity, and clarity; (2) an Agentic Question Rephrase step that employs a multi-agent system to generate diverse, logically consistent paraphrases; (3) an Answer Augment step where rewrite answers using chain-of-thought reasoning to enhance numerical and logical correctness, without reliance on human-provided labels; and (4) a final Question and Answer Evaluation that retains only the most superior pairs. Extensive experiments demonstrate that, fine-tuning 3B-8B parameter LLMs on AgenticMath generated datasets (comprising only 30-60K math samples) achieves competitive or superior performance on diverse in domain and out-of-domain mathematical reasoning benchmarks compared to baselines trained on much more data (e.g., 400K or 2.3M samples). Our work demonstrates that targeted, high-quality data generation is a more efficient path to improving mathematical reasoning in LLMs than large-scale, low-quality alternatives.
comment: 9 pages
♻ ☆ TAMO: Fine-Grained Root Cause Analysis via Tool-Assisted LLM Agent with Multi-Modality Observation Data in Cloud-Native Systems
Implementing large language models (LLMs)-driven root cause analysis (RCA) in cloud-native systems has become a key topic of modern software operations and maintenance. However, existing LLM-based approaches face three key challenges: multi-modality input constraint, context window limitation, and dynamic dependence graph. To address these issues, we propose a tool-assisted LLM agent with multi-modality observation data for fine-grained RCA, namely TAMO, including multimodality alignment tool, root cause localization tool, and fault types classification tool. In detail, TAMO unifies multi-modal observation data into time-aligned representations for cross-modal feature consistency. Based on the unified representations, TAMO then invokes its specialized root cause localization tool and fault types classification tool for further identifying root cause and fault type underlying system context. This approach overcomes the limitations of LLMs in processing real-time raw observational data and dynamic service dependencies, guiding the model to generate repair strategies that align with system context through structured prompt design. Experiments on two benchmark datasets demonstrate that TAMO outperforms state-of-the-art (SOTA) approaches with comparable performance.
♻ ☆ Leveraging LLMs to Automate Energy-Aware Refactoring of Parallel Scientific Codes
While large language models (LLMs) are increasingly used for generating parallel scientific codes, most efforts emphasize functional correctness, often overlooking performance, especially energy efficiency. We propose LASSI-EE, an automated LLM-based refactoring framework that generates energy-efficient parallel codes through a multi-stage, iterative approach integrating runtime power profiling, energy-aware prompting, self-correcting feedback loops, and an LLM-as-a-Judge agent for automated screening of code solutions. We introduce energy-reduction@k, a novel metric that quantifies expected energy reduction when generating k code candidates and selecting the most energy-efficient, enabling systematic evaluation of multi-attempt generation strategies. Evaluating 20 HeCBench applications and two miniApps on NVIDIA A100 and AMD MI100 GPUs, a single run (k=1) with LASSI-EE delivers refactored parallel codes with an average 29% expected energy reduction at an 81% pass rate, representing a 2.8x improvement over vanilla LLM prompting. Multiple runs (k=3) achieve an average 48% expected energy reduction at a 97% pass rate. These results are consistent across devices, demonstrating LASSI-EE's effectiveness across diverse hardware architectures.
comment: 12 pages, 4 figures, version under review at a peer-reviewed conference
♻ ☆ LA-MARRVEL: A Knowledge-Grounded and Language-Aware LLM Reranker for AI-MARRVEL in Rare Disease Diagnosis
Diagnosing rare diseases often requires connecting variant-bearing genes to evidence that is written as unstructured clinical prose, which the current established pipelines still leave for clinicians to reconcile manually. To this end, we introduce LA-MARRVEL, a knowledge-grounded and language-aware reranking layer that operates on top of AI-MARRVEL: it supplies expert-engineered context, queries a large language model multiple times, and aggregates the resulting partial rankings with a ranked voting method to produce a stable, explainable gene ranking. Evaluated on three real-world cohorts (BG, DDD, UDN), LA-MARRVEL consistently improves Recall@K over AI-MARRVEL and established phenotype-driven tools such as Exomiser and LIRICAL, with especially large gains on cases where the first-stage ranker placed the causal gene lower. Each ranked gene is accompanied by LLM-generated reasoning that integrates phenotypic, inheritance, and variant-level evidence, thereby making the output more interpretable and facilitating clinical review.
♻ ☆ TabDSR: Decompose, Sanitize, and Reason for Complex Numerical Reasoning in Tabular Data EMNLP 2025
Complex reasoning over tabular data is crucial in real-world data analysis, yet large language models (LLMs) often underperform due to complex queries, noisy data, and limited numerical capabilities. To address these issues, we propose TabDSR, a framework consisting of: (1) a query decomposer that breaks down complex questions, (2) a table sanitizer that cleans and filters noisy tables, and (3) a program-of-thoughts (PoT)-based reasoner that generates executable code to derive the final answer from the sanitized table. To ensure unbiased evaluation and mitigate data leakage, we introduce a new dataset, CalTab151, specifically designed for complex numerical reasoning over tables. Experimental results demonstrate that TabDSR consistently outperforms existing methods, achieving state-of-the-art (SOTA) performance with 8.79%, 6.08%, and 19.87% accuracy improvement on TAT-QA, TableBench, and TabDSR, respectively. Moreover, our framework integrates seamlessly with mainstream LLMs, providing a robust solution for complex tabular numerical reasoning. These findings highlight the effectiveness of our framework in enhancing LLM performance for complex tabular numerical reasoning. Data and code are available upon request.
comment: Accepted to EMNLP 2025 Findings
♻ ☆ FaStfact: Faster, Stronger Long-Form Factuality Evaluations in LLMs EMNLP 2025
Evaluating the factuality of long-form generations from Large Language Models (LLMs) remains challenging due to efficiency bottlenecks and reliability concerns. Prior efforts attempt this by decomposing text into claims, searching for evidence, and verifying claims, but suffer from critical drawbacks: (1) inefficiency due to overcomplicated pipeline components, and (2) ineffectiveness stemming from inaccurate claim sets and insufficient evidence. To address these limitations, we propose \textbf{FaStfact}, an evaluation framework that achieves the highest alignment with human evaluation and time/token efficiency among existing baselines. FaStfact first employs chunk-level claim extraction integrated with confidence-based pre-verification, significantly reducing the time and token cost while ensuring reliability. For searching and verification, it collects document-level evidence from crawled web-pages and selectively retrieves it during verification. Extensive experiments based on an annotated benchmark \textbf{FaStfact-Bench} demonstrate the reliability of FaStfact in both efficiently and effectively evaluating long-form factuality. Code, benchmark data, and annotation interface tool are available at https://github.com/Yingjia-Wan/FaStfact.
comment: EMNLP 2025 (Findings)
♻ ☆ Multi-Agent Reinforcement Learning for Autonomous Multi-Satellite Earth Observation: A Realistic Case Study
The exponential growth of Low Earth Orbit (LEO) satellites has revolutionised Earth Observation (EO) missions, addressing challenges in climate monitoring, disaster management, and more. However, autonomous coordination in multi-satellite systems remains a fundamental challenge. Traditional optimisation approaches struggle to handle the real-time decision-making demands of dynamic EO missions, necessitating the use of Reinforcement Learning (RL) and Multi-Agent Reinforcement Learning (MARL). In this paper, we investigate RL-based autonomous EO mission planning by modelling single-satellite operations and extending to multi-satellite constellations using MARL frameworks. We address key challenges, including energy and data storage limitations, uncertainties in satellite observations, and the complexities of decentralised coordination under partial observability. By leveraging a near-realistic satellite simulation environment, we evaluate the training stability and performance of state-of-the-art MARL algorithms, including PPO, IPPO, MAPPO, and HAPPO. Our results demonstrate that MARL can effectively balance imaging and resource management while addressing non-stationarity and reward interdependency in multi-satellite coordination. The insights gained from this study provide a foundation for autonomous satellite operations, offering practical guidelines for improving policy learning in decentralised EO missions.
♻ ☆ In Situ Training of Implicit Neural Compressors for Scientific Simulations via Sketch-Based Regularization
Focusing on implicit neural representations, we present a novel in situ training protocol that employs limited memory buffers of full and sketched data samples, where the sketched data are leveraged to prevent catastrophic forgetting. The theoretical motivation for our use of sketching as a regularizer is presented via a simple Johnson-Lindenstrauss-informed result. While our methods may be of wider interest in the field of continual learning, we specifically target in situ neural compression using implicit neural representation-based hypernetworks. We evaluate our method on a variety of complex simulation data in two and three dimensions, over long time horizons, and across unstructured grids and non-Cartesian geometries. On these tasks, we show strong reconstruction performance at high compression rates. Most importantly, we demonstrate that sketching enables the presented in situ scheme to approximately match the performance of the equivalent offline method.
comment: 17 pages, 8 figures, 4 tables
♻ ☆ Data Dependency-Aware Code Generation from Enhanced UML Sequence Diagrams
Large language models (LLMs) excel at generating code from natural language (NL) descriptions. However, the plain textual descriptions are inherently ambiguous and often fail to capture complex requirements like intricate system behaviors, conditional logic, and architectural constraints; implicit data dependencies in service-oriented architectures are difficult to infer and handle correctly. To bridge this gap, we propose a novel step-by-step code generation framework named UML2Dep by leveraging unambiguous formal specifications of complex requirements. First, we introduce an enhanced Unified Modeling Language (UML) sequence diagram tailored for service-oriented architectures. This diagram extends traditional visual syntax by integrating decision tables and API specifications, explicitly formalizing structural relationships and business logic flows in service interactions to rigorously eliminate linguistic ambiguity. Second, recognizing the critical role of data flow, we introduce a dedicated data dependency inference (DDI) task. DDI systematically constructs an explicit data dependency graph prior to actual code synthesis. To ensure reliability, we formalize DDI as a constrained mathematical reasoning task through novel prompting strategies, aligning with LLMs' excellent mathematical strengths. Additional static parsing and dependency pruning further reduce context complexity and cognitive load associated with intricate specifications, thereby enhancing reasoning accuracy and efficiency.
♻ ☆ Mirror-Neuron Patterns in AI Alignment
As artificial intelligence (AI) advances toward superhuman capabilities, aligning these systems with human values becomes increasingly critical. Current alignment strategies rely largely on externally specified constraints that may prove insufficient against future super-intelligent AI capable of circumventing top-down controls. This research investigates whether artificial neural networks (ANNs) can develop patterns analogous to biological mirror neurons cells that activate both when performing and observing actions, and how such patterns might contribute to intrinsic alignment in AI. Mirror neurons play a crucial role in empathy, imitation, and social cognition in humans. The study therefore asks: (1) Can simple ANNs develop mirror-neuron patterns? and (2) How might these patterns contribute to ethical and cooperative decision-making in AI systems? Using a novel Frog and Toad game framework designed to promote cooperative behaviors, we identify conditions under which mirror-neuron patterns emerge, evaluate their influence on action circuits, introduce the Checkpoint Mirror Neuron Index (CMNI) to quantify activation strength and consistency, and propose a theoretical framework for further study. Our findings indicate that appropriately scaled model capacities and self/other coupling foster shared neural representations in ANNs similar to biological mirror neurons. These empathy-like circuits support cooperative behavior and suggest that intrinsic motivations modeled through mirror-neuron dynamics could complement existing alignment techniques by embedding empathy-like mechanisms directly within AI architectures.
comment: 51 pages, Masters thesis. 10 tables, 7 figures, project data & code here: https://github.com/robynwyrick/mirror-neuron-frog-and-toad
♻ ☆ PlanU: Large Language Model Reasoning through Planning under Uncertainty NeurIPS 2025
Large Language Models (LLMs) are increasingly being explored across a range of reasoning tasks. However, LLMs sometimes struggle with reasoning tasks under uncertainty that are relatively easy for humans, such as planning actions in stochastic environments. The adoption of LLMs for reasoning is impeded by uncertainty challenges, such as LLM uncertainty and environmental uncertainty. LLM uncertainty arises from the stochastic sampling process inherent to LLMs. Most LLM-based Decision-Making (LDM) approaches address LLM uncertainty through multiple reasoning chains or search trees. However, these approaches overlook environmental uncertainty, which leads to poor performance in environments with stochastic state transitions. Some recent LDM approaches deal with uncertainty by forecasting the probability of unknown variables. However, they are not designed for multi-step reasoning tasks that require interaction with the environment. To address uncertainty in LLM decision-making, we introduce PlanU, an LLM-based planning method that captures uncertainty within Monte Carlo Tree Search (MCTS). PlanU models the return of each node in the MCTS as a quantile distribution, which uses a set of quantiles to represent the return distribution. To balance exploration and exploitation during tree search, PlanU introduces an Upper Confidence Bounds with Curiosity (UCC) score which estimates the uncertainty of MCTS nodes. Through extensive experiments, we demonstrate the effectiveness of PlanU in LLM-based reasoning tasks under uncertainty.
comment: 38 pages, 19 figures, NeurIPS 2025 Accepted
♻ ☆ Flow matching for reaction pathway generation
Elucidating reaction mechanisms hinges on efficiently generating transition states (TSs), products, and complete reaction networks. Recent generative models, such as diffusion models for TS sampling and sequence-based architectures for product generation, offer faster alternatives to quantum-chemistry searches. But diffusion models remain constrained by their stochastic differential equation (SDE) dynamics, which suffer from inefficiency and limited controllability. We show that flow matching, a deterministic ordinary differential (ODE) formulation, can replace SDE-based diffusion for molecular and reaction generation. We introduce MolGEN, a conditional flow-matching framework that learns an optimal transport path to transport Gaussian priors to target chemical distributions. On benchmarks used by TSDiff and OA-ReactDiff, MolGEN surpasses TS geometry accuracy and barrier-height prediction while reducing sampling to sub-second inference. MolGEN also supports open-ended product generation with competitive top-k accuracy and avoids mass/electron-balance violations common to sequence models. In a realistic test on the $\gamma$-ketohydroperoxide decomposition network, MolGEN yields higher fractions of valid and intended TSs with markedly fewer quantum-chemistry evaluations than string-based baselines. These results demonstrate that deterministic flow matching provides a unified, accurate, and computationally efficient foundation for molecular generative modeling, signaling that flow matching is the future for molecular generation across chemistry.
comment: Updates from the previous version: fixed some typos of energy units. (Miswritten kcal/mol as eV several times in the previous version)
♻ ☆ CudaForge: An Agent Framework with Hardware Feedback for CUDA Kernel Optimization
Developing efficient CUDA kernels is increasingly critical for AI applications such as large-scale LLM training. However, manual kernel design is both costly and time-consuming, motivating automatic approaches that leverage LLMs for code generation. Existing methods for automatic kernel generation, however, often produce low-efficiency kernels, incur high computational overhead, and fail to generalize across settings. In this work, we propose CudaForge, a training-free multi-agent workflow for CUDA kernel generation and optimization. Our workflow is inspired by the iterative workflow of human experts, which contains steps such as developing initial kernels, testing correctness, analyzing hardware feedback, and iterative improvement. More specifically, CudaForge employs two LLM agents: a Coder and a Judge, that iteratively generate, correct, and optimize CUDA kernels, while integrating hardware feedback such as Nsight Compute (NCU) metrics. In extensive evaluations, we show that CudaForge, by leveraging base models like OpenAI-o3, achieves 97.6\% correctness of generated kernels and an average 1.68$\times$ speedup over PyTorch baselines, substantially surpassing state-of-the-art models including OpenAI-o3 and Kevin on KernelBench.Beyond accuracy and speed, CudaForge demonstrates strong generalization across GPUs (A100, RTX 6000, 4090, 3090) and base models (OpenAI-o3, GPT-5, gpt-oss-120B, Claude-Sonnet-4, QwQ-32B), while maintaining high efficiency. In particular, generating an optimized kernel takes about 26.5 minutes on one RTX6000 and incurs about \$ 0.3 API cost, which is significantly cheaper than existing agentic work that costs 6 H100 hours and \$ 5 API cost per kernel. Our results highlight that multi-agent, training-free workflows can enable cost-effective, generalizable, and high-performance CUDA kernel optimization. Code available at https://github.com/OptimAI-Lab/CudaForge
Machine Learning
☆ Shrinking the Variance: Shrinkage Baselines for Reinforcement Learning with Verifiable Rewards
Reinforcement Learning with Verifiable Rewards (RLVR) has emerged as a powerful paradigm for post-training large reasoning models (LRMs) using policy-gradient methods such as GRPO. To stabilize training, these methods typically center trajectory rewards by subtracting the empirical mean for each prompt. Statistically, this centering acts as a control variate (or baseline), reducing the variance of the policy-gradient estimator. Typically, the mean reward is estimated using per-prompt empirical averages for each prompt in a batch. Drawing inspiration from Stein's paradox, we propose using shrinkage estimators that combine per-prompt and across-prompt means to improve the overall per-prompt mean estimation accuracy -- particularly in the low-generation regime typical of RLVR. Theoretically, we construct a shrinkage-based baseline that provably yields lower-variance policy-gradient estimators across algorithms. Our proposed baseline serves as a drop-in replacement for existing per-prompt mean baselines, requiring no additional hyper-parameters or computation. Empirically, shrinkage baselines consistently outperform standard empirical-mean baselines, leading to lower-variance gradient updates and improved training stability.
comment: Preprint. Under Review
☆ The Adaptivity Barrier in Batched Nonparametric Bandits: Sharp Characterization of the Price of Unknown Margin
We study batched nonparametric contextual bandits under a margin condition when the margin parameter $\alpha$ is unknown. To capture the statistical price of this ignorance, we introduce the regret inflation criterion, defined as the ratio between the regret of an adaptive algorithm and that of an oracle knowing $\alpha$. We show that the optimal regret inflation grows polynomial with the horizon $T$, with exponent precisely given by the value of a convex optimization problem involving the dimension, smoothness, and batch budget. Moreover, the minimizers of this optimization problem directly prescribe the batch allocation and exploration strategy of a rate-optimal algorithm. Building on this principle, we develop RoBIN (RObust batched algorithm with adaptive BINning), which achieves the optimal regret inflation up to logarithmic factors. These results reveal a new adaptivity barrier: under batching, adaptation to an unknown margin parameter inevitably incurs a polynomial penalty, sharply characterized by a variational problem. Remarkably, this barrier vanishes when the number of batches exceeds $\log \log T$; with only a doubly logarithmic number of updates, one can recover the oracle regret rate up to polylogarithmic factors.
☆ AnaFlow: Agentic LLM-based Workflow for Reasoning-Driven Explainable and Sample-Efficient Analog Circuit Sizing
Analog/mixed-signal circuits are key for interfacing electronics with the physical world. Their design, however, remains a largely handcrafted process, resulting in long and error-prone design cycles. While the recent rise of AI-based reinforcement learning and generative AI has created new techniques to automate this task, the need for many time-consuming simulations is a critical bottleneck hindering the overall efficiency. Furthermore, the lack of explainability of the resulting design solutions hampers widespread adoption of the tools. To address these issues, a novel agentic AI framework for sample-efficient and explainable analog circuit sizing is presented. It employs a multi-agent workflow where specialized Large Language Model (LLM)-based agents collaborate to interpret the circuit topology, to understand the design goals, and to iteratively refine the circuit's design parameters towards the target goals with human-interpretable reasoning. The adaptive simulation strategy creates an intelligent control that yields a high sample efficiency. The AnaFlow framework is demonstrated for two circuits of varying complexity and is able to complete the sizing task fully automatically, differently from pure Bayesian optimization and reinforcement learning approaches. The system learns from its optimization history to avoid past mistakes and to accelerate convergence. The inherent explainability makes this a powerful tool for analog design space exploration and a new paradigm in analog EDA, where AI agents serve as transparent design assistants.
comment: This article was accepted by 2025 International Conference on Computer-Aided Design (ICCAD 2025) and was presented in Munich, October 2025
☆ Behavior-Adaptive Q-Learning: A Unifying Framework for Offline-to-Online RL
Offline reinforcement learning (RL) enables training from fixed data without online interaction, but policies learned offline often struggle when deployed in dynamic environments due to distributional shift and unreliable value estimates on unseen state-action pairs. We introduce Behavior-Adaptive Q-Learning (BAQ), a framework designed to enable a smooth and reliable transition from offline to online RL. The key idea is to leverage an implicit behavioral model derived from offline data to provide a behavior-consistency signal during online fine-tuning. BAQ incorporates a dual-objective loss that (i) aligns the online policy toward the offline behavior when uncertainty is high, and (ii) gradually relaxes this constraint as more confident online experience is accumulated. This adaptive mechanism reduces error propagation from out-of-distribution estimates, stabilizes early online updates, and accelerates adaptation to new scenarios. Across standard benchmarks, BAQ consistently outperforms prior offline-to-online RL approaches, achieving faster recovery, improved robustness, and higher overall performance. Our results demonstrate that implicit behavior adaptation is a principled and practical solution for reliable real-world policy deployment.
☆ Colorectal Cancer Histopathological Grading using Multi-Scale Federated Learning
Colorectal cancer (CRC) grading is a critical prognostic factor but remains hampered by inter-observer variability and the privacy constraints of multi-institutional data sharing. While deep learning offers a path to automation, centralized training models conflict with data governance regulations and neglect the diagnostic importance of multi-scale analysis. In this work, we propose a scalable, privacy-preserving federated learning (FL) framework for CRC histopathological grading that integrates multi-scale feature learning within a distributed training paradigm. Our approach employs a dual-stream ResNetRS50 backbone to concurrently capture fine-grained nuclear detail and broader tissue-level context. This architecture is integrated into a robust FL system stabilized using FedProx to mitigate client drift across heterogeneous data distributions from multiple hospitals. Extensive evaluation on the CRC-HGD dataset demonstrates that our framework achieves an overall accuracy of 83.5%, outperforming a comparable centralized model (81.6%). Crucially, the system excels in identifying the most aggressive Grade III tumors with a high recall of 87.5%, a key clinical priority to prevent dangerous false negatives. Performance further improves with higher magnification, reaching 88.0% accuracy at 40x. These results validate that our federated multi-scale approach not only preserves patient privacy but also enhances model performance and generalization. The proposed modular pipeline, with built-in preprocessing, checkpointing, and error handling, establishes a foundational step toward deployable, privacy-aware clinical AI for digital pathology.
comment: 15 pages and 7 figures
☆ Structured Matrix Scaling for Multi-Class Calibration
Post-hoc recalibration methods are widely used to ensure that classifiers provide faithful probability estimates. We argue that parametric recalibration functions based on logistic regression can be motivated from a simple theoretical setting for both binary and multiclass classification. This insight motivates the use of more expressive calibration methods beyond standard temperature scaling. For multi-class calibration however, a key challenge lies in the increasing number of parameters introduced by more complex models, often coupled with limited calibration data, which can lead to overfitting. Through extensive experiments, we demonstrate that the resulting bias-variance tradeoff can be effectively managed by structured regularization, robust preprocessing and efficient optimization. The resulting methods lead to substantial gains over existing logistic-based calibration techniques. We provide efficient and easy-to-use open-source implementations of our methods, making them an attractive alternative to common temperature, vector, and matrix scaling implementations.
☆ DQN Performance with Epsilon Greedy Policies and Prioritized Experience Replay
We present a detailed study of Deep Q-Networks in finite environments, emphasizing the impact of epsilon-greedy exploration schedules and prioritized experience replay. Through systematic experimentation, we evaluate how variations in epsilon decay schedules affect learning efficiency, convergence behavior, and reward optimization. We investigate how prioritized experience replay leads to faster convergence and higher returns and show empirical results comparing uniform, no replay, and prioritized strategies across multiple simulations. Our findings illuminate the trade-offs and interactions between exploration strategies and memory management in DQN training, offering practical recommendations for robust reinforcement learning in resource-constrained settings.
comment: 10 pages, 8 figures
☆ SHIELD: Securing Healthcare IoT with Efficient Machine Learning Techniques for Anomaly Detection
The integration of IoT devices in healthcare introduces significant security and reliability challenges, increasing susceptibility to cyber threats and operational anomalies. This study proposes a machine learning-driven framework for (1) detecting malicious cyberattacks and (2) identifying faulty device anomalies, leveraging a dataset of 200,000 records. Eight machine learning models are evaluated across three learning approaches: supervised learning (XGBoost, K-Nearest Neighbors (K- NN)), semi-supervised learning (Generative Adversarial Networks (GAN), Variational Autoencoders (VAE)), and unsupervised learning (One-Class Support Vector Machine (SVM), Isolation Forest, Graph Neural Networks (GNN), and Long Short-Term Memory (LSTM) Autoencoders). The comprehensive evaluation was conducted across multiple metrics like F1-score, precision, recall, accuracy, ROC-AUC, computational efficiency. XGBoost achieved 99\% accuracy with minimal computational overhead (0.04s) for anomaly detection, while Isolation Forest balanced precision and recall effectively. LSTM Autoencoders underperformed with lower accuracy and higher latency. For attack detection, KNN achieved near-perfect precision, recall, and F1-score with the lowest computational cost (0.05s), followed by VAE at 97% accuracy. GAN showed the highest computational cost with lowest accuracy and ROC-AUC. These findings enhance IoT-enabled healthcare security through effective anomaly detection strategies. By improving early detection of cyber threats and device failures, this framework has the potential to prevent data breaches, minimize system downtime, and ensure the continuous and safe operation of medical devices, ultimately safeguarding patient health and trust in IoT-driven healthcare solutions.
☆ Efficient Testing Implies Structured Symmetry
Given a small random sample of $n$-bit strings labeled by an unknown Boolean function, which properties of this function can be tested computationally efficiently? We show an equivalence between properties that are efficiently testable from few samples and properties with structured symmetry, which depend only on the function's average values on parts of a low-complexity partition of the domain. Without the efficiency constraint, a similar characterization in terms of unstructured symmetry was obtained by Blais and Yoshida (2019). Our main technical tool is supersimulation, which builds on methods from the algorithmic fairness literature to approximate arbitrarily complex functions by small-circuit simulators that fool significantly larger distinguishers. We extend the characterization along other axes as well. We show that allowing parts to overlap exponentially reduces their required number, broadening the scope of the construction from properties testable with $O(\log n)$ samples to properties testable with $O(n)$ samples. For larger sample sizes, we show that any efficient tester is essentially checking for indistinguishability from a bounded collection of small circuits, in the spirit of a characterization of testable graph properties. Finally, we show that our results for Boolean function testing generalize to high-entropy distribution testing on arbitrary domains.
☆ Quantifying Weighted Morphological Content of Large-Scale Structures via Simulation-Based Inference
In this work, we perform a simulation-based forecasting analysis to compare the constraining power of two higher-order summary statistics of the large-scale structure (LSS), the Minkowski Functionals (MFs) and the Conditional Moments of Derivative (CMD), with a particular focus on their sensitivity to nonlinear and anisotropic features in redshift-space. Our analysis relies on halo catalogs from the Big Sobol Sequence(BSQ) simulations at redshift $z=0.5$, employing a likelihood-free inference framework implemented via neural posterior estimation. At the fiducial cosmology of the Quijote simulations $(\Omega_{m}=0.3175,\,\sigma_{8}=0.834)$, and for the smoothing scale $R=15\,h^{-1}$Mpc, we find that the CMD yields tighter forecasts for $(\Omega_{m}},\,\sigma_{8})$ than the zeroth- to third-order MFs components, improving the constraint precision by ${\sim}(44\%,\,52\%)$, ${\sim}(30\%,\,45\%)$, ${\sim}(27\%,\,17\%)$, and ${\sim}(26\%,\,17\%)$, respectively. A joint configuration combining the MFs and CMD further enhances the precision by approximately ${\sim}27\%$ compared to the standard MFs alone, highlighting the complementary anisotropy-sensitive information captured by the CMD in contrast to the scalar morphological content encapsulated by the MFs. We further extend the forecasting analysis to a continuous range of cosmological parameter values and multiple smoothing scales. Our results show that, although the absolute forecast uncertainty for each component of summary statistics depends on the underlying parameter values and the adopted smoothing scale, the relative constraining power among the summary statistics remains nearly constant throughout.
comment: 19 pages, 9 figures and 3 tables. Comments are welcome
☆ Towards Transparent Stance Detection: A Zero-Shot Approach Using Implicit and Explicit Interpretability AAAI
Zero-Shot Stance Detection (ZSSD) identifies the attitude of the post toward unseen targets. Existing research using contrastive, meta-learning, or data augmentation suffers from generalizability issues or lack of coherence between text and target. Recent works leveraging large language models (LLMs) for ZSSD focus either on improving unseen target-specific knowledge or generating explanations for stance analysis. However, most of these works are limited by their over-reliance on explicit reasoning, provide coarse explanations that lack nuance, and do not explicitly model the reasoning process, making it difficult to interpret the model's predictions. To address these issues, in our study, we develop a novel interpretable ZSSD framework, IRIS. We provide an interpretable understanding of the attitude of the input towards the target implicitly based on sequences within the text (implicit rationales) and explicitly based on linguistic measures (explicit rationales). IRIS considers stance detection as an information retrieval ranking task, understanding the relevance of implicit rationales for different stances to guide the model towards correct predictions without requiring the ground-truth of rationales, thus providing inherent interpretability. In addition, explicit rationales based on communicative features help decode the emotional and cognitive dimensions of stance, offering an interpretable understanding of the author's attitude towards the given target. Extensive experiments on the benchmark datasets of VAST, EZ-STANCE, P-Stance, and RFD using 50%, 30%, and even 10% training data prove the generalizability of our model, benefiting from the proposed architecture and interpretable design.
comment: Accepted in AAAI CONFERENCE ON WEB AND SOCIAL MEDIA (ICWSM 2026)
☆ nanoTabPFN: A Lightweight and Educational Reimplementation of TabPFN
Tabular foundation models such as TabPFN have revolutionized predictive machine learning for tabular data. At the same time, the driving factors of this revolution are hard to understand. Existing open-source tabular foundation models are implemented in complicated pipelines boasting over 10,000 lines of code, lack architecture documentation or code quality. In short, the implementations are hard to understand, not beginner-friendly, and complicated to adapt for new experiments. We introduce nanoTabPFN, a simplified and lightweight implementation of the TabPFN v2 architecture and a corresponding training loop that uses pre-generated training data. nanoTabPFN makes tabular foundation models more accessible to students and researchers alike. For example, restricted to a small data setting it achieves a performance comparable to traditional machine learning baselines within one minute of pre-training on a single GPU (160,000x faster than TabPFN v2 pretraining). This eliminated requirement of large computational resources makes pre-training tabular foundation models accessible for educational purposes. Our code is available at https://github.com/automl/nanoTabPFN.
☆ Neural Beamforming with Doppler-Aware Sparse Attention for High Mobility Environments
Beamforming has significance for enhancing spectral efficiency and mitigating interference in multi-antenna wireless systems, facilitating spatial multiplexing and diversity in dense and high mobility scenarios. Traditional beamforming techniques such as zero-forcing beamforming (ZFBF) and minimum mean square error (MMSE) beamforming experience performance deterioration under adverse channel conditions. Deep learning-based beamforming offers an alternative with nonlinear mappings from channel state information (CSI) to beamforming weights by improving robustness against dynamic channel environments. Transformer-based models are particularly effective due to their ability to model long-range dependencies across time and frequency. However, their quadratic attention complexity limits scalability in large OFDM grids. Recent studies address this issue through sparse attention mechanisms that reduce complexity while maintaining expressiveness, yet often employ patterns that disregard channel dynamics, as they are not specifically designed for wireless communication scenarios. In this work, we propose a Doppler-aware Sparse Neural Network Beamforming (Doppler-aware Sparse NNBF) model that incorporates a channel-adaptive sparse attention mechanism in a multi-user single-input multiple-output (MU-SIMO) setting. The proposed sparsity structure is configurable along 2D time-frequency axes based on channel dynamics and is theoretically proven to ensure full connectivity within p hops, where p is the number of attention heads. Simulation results under urban macro (UMa) channel conditions show that Doppler-aware Sparse NNBF significantly outperforms both a fixed-pattern baseline, referred to as Standard Sparse NNBF, and conventional beamforming techniques ZFBF and MMSE beamforming in high mobility scenarios, while maintaining structured sparsity with a controlled number of attended keys per query.
☆ Financial Management System for SMEs: Real-World Deployment of Accounts Receivable and Cash Flow Prediction
Small and Medium Enterprises (SMEs), particularly freelancers and early-stage businesses, face unique financial management challenges due to limited resources, small customer bases, and constrained data availability. This paper presents the development and deployment of an integrated financial prediction system that combines accounts receivable prediction and cash flow forecasting specifically designed for SME operational constraints. Our system addresses the gap between enterprise-focused financial tools and the practical needs of freelancers and small businesses. The solution integrates two key components: a binary classification model for predicting invoice payment delays, and a multi-module cash flow forecasting model that handles incomplete and limited historical data. A prototype system has been implemented and deployed as a web application with integration into Cluee's platform, a startup providing financial management tools for freelancers, demonstrating practical feasibility for real-world SME financial management.
comment: 11 pages, 1 figure
☆ CLAX: Fast and Flexible Neural Click Models in JAX
CLAX is a JAX-based library that implements classic click models using modern gradient-based optimization. While neural click models have emerged over the past decade, complex click models based on probabilistic graphical models (PGMs) have not systematically adopted gradient-based optimization, preventing practitioners from leveraging modern deep learning frameworks while preserving the interpretability of classic models. CLAX addresses this gap by replacing EM-based optimization with direct gradient-based optimization in a numerically stable manner. The framework's modular design enables the integration of any component, from embeddings and deep networks to custom modules, into classic click models for end-to-end optimization. We demonstrate CLAX's efficiency by running experiments on the full Baidu-ULTR dataset comprising over a billion user sessions in $\approx$ 2 hours on a single GPU, orders of magnitude faster than traditional EM approaches. CLAX implements ten classic click models, serving both industry practitioners seeking to understand user behavior and improve ranking performance at scale and researchers developing new click models. CLAX is available at: https://github.com/philipphager/clax
☆ Towards Formalizing Reinforcement Learning Theory
In this paper, we formalize the almost sure convergence of $Q$-learning and linear temporal difference (TD) learning with Markovian samples using the Lean 4 theorem prover based on the Mathlib library. $Q$-learning and linear TD are among the earliest and most influential reinforcement learning (RL) algorithms. The investigation of their convergence properties is not only a major research topic during the early development of the RL field but also receives increasing attention nowadays. This paper formally verifies their almost sure convergence in a unified framework based on the Robbins-Siegmund theorem. The framework developed in this work can be easily extended to convergence rates and other modes of convergence. This work thus makes an important step towards fully formalizing convergent RL results. The code is available at https://github.com/ShangtongZhang/rl-theory-in-lean.
☆ Going Beyond Expert Performance via Deep Implicit Imitation Reinforcement Learning
Imitation learning traditionally requires complete state-action demonstrations from optimal or near-optimal experts. These requirements severely limit practical applicability, as many real-world scenarios provide only state observations without corresponding actions and expert performance is often suboptimal. In this paper we introduce a deep implicit imitation reinforcement learning framework that addresses both limitations by combining deep reinforcement learning with implicit imitation learning from observation-only datasets. Our main algorithm, Deep Implicit Imitation Q-Network (DIIQN), employs an action inference mechanism that reconstructs expert actions through online exploration and integrates a dynamic confidence mechanism that adaptively balances expert-guided and self-directed learning. This enables the agent to leverage expert guidance for accelerated training while maintaining capacity to surpass suboptimal expert performance. We further extend our framework with a Heterogeneous Actions DIIQN (HA-DIIQN) algorithm to tackle scenarios where expert and agent possess different action sets, a challenge previously unaddressed in the implicit imitation learning literature. HA-DIIQN introduces an infeasibility detection mechanism and a bridging procedure identifying alternative pathways connecting agent capabilities to expert guidance when direct action replication is impossible. Our experimental results demonstrate that DIIQN achieves up to 130% higher episodic returns compared to standard DQN, while consistently outperforming existing implicit imitation methods that cannot exceed expert performance. In heterogeneous action settings, HA-DIIQN learns up to 64% faster than baselines, leveraging expert datasets unusable by conventional approaches. Extensive parameter sensitivity analysis reveals the framework's robustness across varying dataset sizes and hyperparameter configurations.
☆ Vector-valued self-normalized concentration inequalities beyond sub-Gaussianity
The study of self-normalized processes plays a crucial role in a wide range of applications, from sequential decision-making to econometrics. While the behavior of self-normalized concentration has been widely investigated for scalar-valued processes, vector-valued processes remain comparatively underexplored, especially outside of the sub-Gaussian framework. In this contribution, we provide concentration bounds for self-normalized processes with light tails beyond sub-Gaussianity (such as Bennett or Bernstein bounds). We illustrate the relevance of our results in the context of online linear regression, with applications in (kernelized) linear bandits.
☆ Tensor-Efficient High-Dimensional Q-learning
High-dimensional reinforcement learning faces challenges with complex calculations and low sample efficiency in large state-action spaces. Q-learning algorithms struggle particularly with the curse of dimensionality, where the number of state-action pairs grows exponentially with problem size. While neural network-based approaches like Deep Q-Networks have shown success, recent tensor-based methods using low-rank decomposition offer more parameter-efficient alternatives. Building upon existing tensor-based methods, we propose Tensor-Efficient Q-Learning (TEQL), which enhances low-rank tensor decomposition via improved block coordinate descent on discretized state-action spaces, incorporating novel exploration and regularization mechanisms. The key innovation is an exploration strategy that combines approximation error with visit count-based upper confidence bound to prioritize actions with high uncertainty, avoiding wasteful random exploration. Additionally, we incorporate a frequency-based penalty term in the objective function to encourage exploration of less-visited state-action pairs and reduce overfitting to frequently visited regions. Empirical results on classic control tasks demonstrate that TEQL outperforms conventional matrix-based methods and deep RL approaches in both sample efficiency and total rewards, making it suitable for resource-constrained applications, such as space and healthcare where sampling costs are high.
☆ Learning Under Laws: A Constraint-Projected Neural PDE Solver that Eliminates Hallucinations
Neural networks can approximate solutions to partial differential equations, but they often break the very laws they are meant to model-creating mass from nowhere, drifting shocks, or violating conservation and entropy. We address this by training within the laws of physics rather than beside them. Our framework, called Constraint-Projected Learning (CPL), keeps every update physically admissible by projecting network outputs onto the intersection of constraint sets defined by conservation, Rankine-Hugoniot balance, entropy, and positivity. The projection is differentiable and adds only about 10% computational overhead, making it fully compatible with back-propagation. We further stabilize training with total-variation damping (TVD) to suppress small oscillations and a rollout curriculum that enforces consistency over long prediction horizons. Together, these mechanisms eliminate both hard and soft violations: conservation holds at machine precision, total-variation growth vanishes, and entropy and error remain bounded. On Burgers and Euler systems, CPL produces stable, physically lawful solutions without loss of accuracy. Instead of hoping neural solvers will respect physics, CPL makes that behavior an intrinsic property of the learning process.
comment: 25 pages, 2 figures. This work introduces Constraint-Projected Learning (CPL)- a framework for neural PDE solvers that enforces physical conservation laws during training to eliminate hallucinated, non-physical solutions. Feedback is welcome. Not under review elsewhere
☆ TabGemma: Text-Based Tabular ICL via LLM using Continued Pretraining and Retrieval
We study LLMs for tabular prediction with mixed text, numeric, and categorical fields. We introduce TabGemma, a schema-agnostic in-context learner that treats rows as sequences and tackles two practical hurdles when adapting pretrained LLMs for tabular predictions: unstable numeric tokenization and limited context size. We propose to canonicalize numbers via signed scientific notation and continue pretraining of a 12B Gemma 3 model with a target imputation objective using a large-scale real world dataset. For inference, we use a compact n-gram-based retrieval to select informative exemplars that fit within a 128k-token window. On semantically rich benchmarks, TabGemma establishes a new state of the art on classification across low- and high-data regimes and improves monotonically with more context rows. For regression, it is competitive at small sample sizes but trails conventional approaches as data grows. Our results show that LLMs can be effective tabular in-context learners on highly semantic tasks when paired with dedicated numeric handling and context retrieval, while motivating further advances in numeric modeling and long-context scaling.
☆ Imitation Learning in the Deep Learning Era: A Novel Taxonomy and Recent Advances
Imitation learning (IL) enables agents to acquire skills by observing and replicating the behavior of one or multiple experts. In recent years, advances in deep learning have significantly expanded the capabilities and scalability of imitation learning across a range of domains, where expert data can range from full state-action trajectories to partial observations or unlabeled sequences. Alongside this growth, novel approaches have emerged, with new methodologies being developed to address longstanding challenges such as generalization, covariate shift, and demonstration quality. In this survey, we review the latest advances in imitation learning research, highlighting recent trends, methodological innovations, and practical applications. We propose a novel taxonomy that is distinct from existing categorizations to better reflect the current state of the IL research stratum and its trends. Throughout the survey, we critically examine the strengths, limitations, and evaluation practices of representative works, and we outline key challenges and open directions for future research.
☆ The Structure of Cross-Validation Error: Stability, Covariance, and Minimax Limits
Despite ongoing theoretical research on cross-validation (CV), many theoretical questions about CV remain widely open. This motivates our investigation into how properties of algorithm-distribution pairs can affect the choice for the number of folds in $k$-fold cross-validation. Our results consist of a novel decomposition of the mean-squared error of cross-validation for risk estimation, which explicitly captures the correlations of error estimates across overlapping folds and includes a novel algorithmic stability notion, squared loss stability, that is considerably weaker than the typically required hypothesis stability in other comparable works. Furthermore, we prove: 1. For every learning algorithm that minimizes empirical error, a minimax lower bound on the mean-squared error of $k$-fold CV estimating the population risk $L_\mathcal{D}$: \[ \min_{k \mid n}\; \max_{\mathcal{D}}\; \mathbb{E}\!\left[\big(\widehat{L}_{\mathrm{CV}}^{(k)} - L_{\mathcal{D}}\big)^{2}\right] \;=\; \Omega\!\big(\sqrt{k}/n\big), \] where $n$ is the sample size and $k$ the number of folds. This shows that even under idealized conditions, for large values of $k$, CV cannot attain the optimum of order $1/n$ achievable by a validation set of size $n$, reflecting an inherent penalty caused by dependence between folds. 2. Complementing this, we exhibit learning rules for which \[ \max_{\mathcal{D}}\; \mathbb{E}\!\left[\big(\widehat{L}_{\mathrm{CV}}^{(k)} - L_{\mathcal{D}}\big)^{2}\right] \;=\; \Omega(k/n), \] matching (up to constants) the accuracy of a hold-out estimator of a single fold of size $n/k$. Together these results delineate the fundamental trade-off in resampling-based risk estimation: CV cannot fully exploit all $n$ samples for unbiased risk evaluation, and its minimax performance is pinned between the $k/n$ and $\sqrt{k}/n$ regimes.
comment: 59 pages
☆ Flat Minima and Generalization: Insights from Stochastic Convex Optimization
Understanding the generalization behavior of learning algorithms is a central goal of learning theory. A recently emerging explanation is that learning algorithms are successful in practice because they converge to flat minima, which have been consistently associated with improved generalization performance. In this work, we study the link between flat minima and generalization in the canonical setting of stochastic convex optimization with a non-negative, $\beta$-smooth objective. Our first finding is that, even in this fundamental and well-studied setting, flat empirical minima may incur trivial $\Omega(1)$ population risk while sharp minima generalizes optimally. Then, we show that this poor generalization behavior extends to two natural ''sharpness-aware'' algorithms originally proposed by Foret et al. (2021), designed to bias optimization toward flat solutions: Sharpness-Aware Gradient Descent (SA-GD) and Sharpness-Aware Minimization (SAM). For SA-GD, which performs gradient steps on the maximal loss in a predefined neighborhood, we prove that while it successfully converges to a flat minimum at a fast rate, the population risk of the solution can still be as large as $\Omega(1)$, indicating that even flat minima found algorithmically using a sharpness-aware gradient method might generalize poorly. For SAM, a computationally efficient approximation of SA-GD based on normalized ascent steps, we show that although it minimizes the empirical loss, it may converge to a sharp minimum and also incur population risk $\Omega(1)$. Finally, we establish population risk upper bounds for both SA-GD and SAM using algorithmic stability techniques.
☆ Efficient Neural Networks with Discrete Cosine Transform Activations
In this paper, we extend our previous work on the Expressive Neural Network (ENN), a multilayer perceptron with adaptive activation functions parametrized using the Discrete Cosine Transform (DCT). Building upon previous work that demonstrated the strong expressiveness of ENNs with compact architectures, we now emphasize their efficiency, interpretability and pruning capabilities. The DCT-based parameterization provides a structured and decorrelated representation that reveals the functional role of each neuron and allows direct identification of redundant components. Leveraging this property, we propose an efficient pruning strategy that removes unnecessary DCT coefficients with negligible or no loss in performance. Experimental results across classification and implicit neural representation tasks confirm that ENNs achieve state-of-the-art accuracy while maintaining a low number of parameters. Furthermore, up to 40% of the activation coefficients can be safely pruned, thanks to the orthogonality and bounded nature of the DCT basis. Overall, these findings demonstrate that the ENN framework offers a principled integration of signal processing concepts into neural network design, achieving a balanced trade-off between expressiveness, compactness, and interpretability.
comment: Paper submitted to WSEAS Signal Processing Journal
☆ Byzantine-Robust Federated Learning with Learnable Aggregation Weights
Federated Learning (FL) enables clients to collaboratively train a global model without sharing their private data. However, the presence of malicious (Byzantine) clients poses significant challenges to the robustness of FL, particularly when data distributions across clients are heterogeneous. In this paper, we propose a novel Byzantine-robust FL optimization problem that incorporates adaptive weighting into the aggregation process. Unlike conventional approaches, our formulation treats aggregation weights as learnable parameters, jointly optimizing them alongside the global model parameters. To solve this optimization problem, we develop an alternating minimization algorithm with strong convergence guarantees under adversarial attack. We analyze the Byzantine resilience of the proposed objective. We evaluate the performance of our algorithm against state-of-the-art Byzantine-robust FL approaches across various datasets and attack scenarios. Experimental results demonstrate that our method consistently outperforms existing approaches, particularly in settings with highly heterogeneous data and a large proportion of malicious clients.
☆ Learning Without Critics? Revisiting GRPO in Classical Reinforcement Learning Environments
Group Relative Policy Optimization (GRPO) has emerged as a scalable alternative to Proximal Policy Optimization (PPO) by eliminating the learned critic and instead estimating advantages through group-relative comparisons of trajectories. This simplification raises fundamental questions about the necessity of learned baselines in policy-gradient methods. We present the first systematic study of GRPO in classical single-task reinforcement learning environments, spanning discrete and continuous control tasks. Through controlled ablations isolating baselines, discounting, and group sampling, we reveal three key findings: (1) learned critics remain essential for long-horizon tasks: all critic-free baselines underperform PPO except in short-horizon environments like CartPole where episodic returns can be effective; (2) GRPO benefits from high discount factors (gamma = 0.99) except in HalfCheetah, where lack of early termination favors moderate discounting (gamma = 0.9); (3) smaller group sizes outperform larger ones, suggesting limitations in batch-based grouping strategies that mix unrelated episodes. These results reveal both the limitations of critic-free methods in classical control and the specific conditions where they remain viable alternatives to learned value functions.
☆ BanglaSTEM: A Parallel Corpus for Technical Domain Bangla-English Translation
Large language models work well for technical problem solving in English but perform poorly when the same questions are asked in Bangla. A simple solution would be to translate Bangla questions into English first and then use these models. However, existing Bangla-English translation systems struggle with technical terms. They often mistranslate specialized vocabulary, which changes the meaning of the problem and leads to wrong answers. We present BanglaSTEM, a dataset of 5,000 carefully selected Bangla-English sentence pairs from STEM fields including computer science, mathematics, physics, chemistry, and biology. We generated over 12,000 translations using language models and then used human evaluators to select the highest quality pairs that preserve technical terminology correctly. We train a T5-based translation model on BanglaSTEM and test it on two tasks: generating code and solving math problems. Our results show significant improvements in translation accuracy for technical content, making it easier for Bangla speakers to use English-focused language models effectively. Both the BanglaSTEM dataset and the trained translation model are publicly released at https://huggingface.co/reyazul/BanglaSTEM-T5.
☆ Why Less is More (Sometimes): A Theory of Data Curation
This paper introduces a theoretical framework to resolve a central paradox in modern machine learning: When is it better to use less data? This question has become critical as classical scaling laws suggesting ``more is more'' (Sun et al., 2025) are challenged by methods like LIMO (``less is more'') and s1 (Ye et al., 2025; Muenighoff et al., 2025), which achieve superior performance with small, aggressively curated datasets. Here, we study data curation strategies where an imperfect oracle selects the training examples according to their difficulty and correctness. Our results provide exact scaling law curves for test error under both label-agnostic and label-aware curation rules, revealing when and why keeping only a subset of data can improve generalization. In contrast to classical scaling laws, we show that under certain conditions, small curated datasets can outperform full datasets, and we provide analytical conditions for this by deriving precise phase transition curves tied to data size and quality. We validate these theoretical claims with empirical results on ImageNet, confirming our predictions about when curation improves accuracy and can even mitigate model collapse. Furthermore, our framework provides a principled explanation for the contradictory curation strategies recently observed in LLM mathematical reasoning.
☆ NAP: Attention-Based Late Fusion for Automatic Sleep Staging
Polysomnography signals are highly heterogeneous, varying in modality composition (e.g., EEG, EOG, ECG), channel availability (e.g., frontal, occipital EEG), and acquisition protocols across datasets and clinical sites. Most existing models that process polysomnography data rely on a fixed subset of modalities or channels and therefore neglect to fully exploit its inherently multimodal nature. We address this limitation by introducing NAP (Neural Aggregator of Predictions), an attention-based model which learns to combine multiple prediction streams using a tri-axial attention mechanism that captures temporal, spatial, and predictor-level dependencies. NAP is trained to adapt to different input dimensions. By aggregating outputs from frozen, pretrained single-channel models, NAP consistently outperforms individual predictors and simple ensembles, achieving state-of-the-art zero-shot generalization across multiple datasets. While demonstrated in the context of automated sleep staging from polysomnography, the proposed approach could be extended to other multimodal physiological applications.
☆ System Identification of a Moored ASV with Recessed Moon Pool via Deterministic and Bayesian Hankel-DMDc
This study addresses the system identification of a small autonomous surface vehicle (ASV) under moored conditions using Hankel dynamic mode decomposition with control (HDMDc) and its Bayesian extension (BHDMDc). Experiments were carried out on a Codevintec CK-14e ASV in the towing tank of CNR-INM, under both irregular and regular head-sea wave conditions. The ASV under investigation features a recessed moon pool, which induces nonlinear responses due to sloshing, thereby increasing the modelling challenge. Data-driven reduced-order models were built from measurements of vessel motions and mooring loads. The HDMDc framework provided accurate deterministic predictions of vessel dynamics, while the Bayesian formulation enabled uncertainty-aware characterization of the model response by accounting for variability in hyperparameter selection. Validation against experimental data demonstrated that both HDMDc and BHDMDc can predict the vessel's response to unseen regular and irregular wave excitations. In conclusion, the study shows that HDMDc-based ROMs are a viable data-driven alternative for system identification, demonstrating for the first time their generalization capability for a sea condition different from the training set, achieving high accuracy in reproducing vessel dynamics.
comment: 26 pages, 11 figures, 2 tables, 1 box
☆ RAGBoost: Efficient Retrieval-Augmented Generation with Accuracy-Preserving Context Reuse
Retrieval-augmented generation (RAG) enhances large language models (LLMs) with retrieved context but often suffers from downgraded prefill performance as modern applications demand longer and more complex inputs. Existing caching techniques either preserve accuracy with low cache reuse or improve reuse at the cost of degraded reasoning quality. We present RAGBoost, an efficient RAG system that achieves high cache reuse without sacrificing accuracy through accuracy-preserving context reuse. RAGBoost detects overlapping retrieved items across concurrent sessions and multi-turn interactions, using efficient context indexing, ordering, and de-duplication to maximize reuse, while lightweight contextual hints maintain reasoning fidelity. It integrates seamlessly with existing LLM inference engines and improves their prefill performance by 1.5-3X over state-of-the-art methods, while preserving or even enhancing reasoning accuracy across diverse RAG and agentic AI workloads. Our code is released at: https://github.com/Edinburgh-AgenticAI/RAGBoost.
☆ Reinforcement Learning Using known Invariances
In many real-world reinforcement learning (RL) problems, the environment exhibits inherent symmetries that can be exploited to improve learning efficiency. This paper develops a theoretical and algorithmic framework for incorporating known group symmetries into kernel-based RL. We propose a symmetry-aware variant of optimistic least-squares value iteration (LSVI), which leverages invariant kernels to encode invariance in both rewards and transition dynamics. Our analysis establishes new bounds on the maximum information gain and covering numbers for invariant RKHSs, explicitly quantifying the sample efficiency gains from symmetry. Empirical results on a customized Frozen Lake environment and a 2D placement design problem confirm the theoretical improvements, demonstrating that symmetry-aware RL achieves significantly better performance than their standard kernel counterparts. These findings highlight the value of structural priors in designing more sample-efficient reinforcement learning algorithms.
☆ POEMS: Product of Experts for Interpretable Multi-omic Integration using Sparse Decoding
Integrating different molecular layers, i.e., multiomics data, is crucial for unraveling the complexity of diseases; yet, most deep generative models either prioritize predictive performance at the expense of interpretability or enforce interpretability by linearizing the decoder, thereby weakening the network's nonlinear expressiveness. To overcome this tradeoff, we introduce POEMS: Product Of Experts for Interpretable Multiomics Integration using Sparse Decoding, an unsupervised probabilistic framework that preserves predictive performance while providing interpretability. POEMS provides interpretability without linearizing any part of the network by 1) mapping features to latent factors using sparse connections, which directly translates to biomarker discovery, 2) allowing for cross-omic associations through a shared latent space using product of experts model, and 3) reporting contributions of each omic by a gating network that adaptively computes their influence in the representation learning. Additionally, we present an efficient sparse decoder. In a cancer subtyping case study, POEMS achieves competitive clustering and classification performance while offering our novel set of interpretations, demonstrating that biomarker based insight and predictive accuracy can coexist in multiomics representation learning.
☆ A Support-Set Algorithm for Optimization Problems with Nonnegative and Orthogonal Constraints
In this paper, we investigate optimization problems with nonnegative and orthogonal constraints, where any feasible matrix of size $n \times p$ exhibits a sparsity pattern such that each row accommodates at most one nonzero entry. Our analysis demonstrates that, by fixing the support set, the global solution of the minimization subproblem for the proximal linearization of the objective function can be computed in closed form with at most $n$ nonzero entries. Exploiting this structural property offers a powerful avenue for dramatically enhancing computational efficiency. Guided by this insight, we propose a support-set algorithm preserving strictly the feasibility of iterates. A central ingredient is a strategically devised update scheme for support sets that adjusts the placement of nonzero entries. We establish the global convergence of the support-set algorithm to a first-order stationary point, and show that its iteration complexity required to reach an $\epsilon$-approximate first-order stationary point is $O (\epsilon^{-2})$. Numerical results are strongly in favor of our algorithm in real-world applications, including nonnegative PCA, clustering, and community detection.
☆ SyMuPe: Affective and Controllable Symbolic Music Performance
Emotions are fundamental to the creation and perception of music performances. However, achieving human-like expression and emotion through machine learning models for performance rendering remains a challenging task. In this work, we present SyMuPe, a novel framework for developing and training affective and controllable symbolic piano performance models. Our flagship model, PianoFlow, uses conditional flow matching trained to solve diverse multi-mask performance inpainting tasks. By design, it supports both unconditional generation and infilling of music performance features. For training, we use a curated, cleaned dataset of 2,968 hours of aligned musical scores and expressive MIDI performances. For text and emotion control, we integrate a piano performance emotion classifier and tune PianoFlow with the emotion-weighted Flan-T5 text embeddings provided as conditional inputs. Objective and subjective evaluations against transformer-based baselines and existing models show that PianoFlow not only outperforms other approaches, but also achieves performance quality comparable to that of human-recorded and transcribed MIDI samples. For emotion control, we present and analyze samples generated under different text conditioning scenarios. The developed model can be integrated into interactive applications, contributing to the creation of more accessible and engaging music performance systems.
comment: ACM Multimedia 2025. Extended version with supplementary material
☆ Adaptable Hindsight Experience Replay for Search-Based Learning
AlphaZero-like Monte Carlo Tree Search systems, originally introduced for two-player games, dynamically balance exploration and exploitation using neural network guidance. This combination makes them also suitable for classical search problems. However, the original method of training the network with simulation results is limited in sparse reward settings, especially in the early stages, where the network cannot yet give guidance. Hindsight Experience Replay (HER) addresses this issue by relabeling unsuccessful trajectories from the search tree as supervised learning signals. We introduce Adaptable HER (\ours{}), a flexible framework that integrates HER with AlphaZero, allowing easy adjustments to HER properties such as relabeled goals, policy targets, and trajectory selection. Our experiments, including equation discovery, show that the possibility of modifying HER is beneficial and surpasses the performance of pure supervised or reinforcement learning.
comment: 8 pages, 2 figures, Presented at the 9th International Workshop on Interactive Adaptive Learning
☆ TripleWin: Fixed-Point Equilibrium Pricing for Data-Model Coupled Markets
The rise of the machine learning (ML) model economy has intertwined markets for training datasets and pre-trained models. However, most pricing approaches still separate data and model transactions or rely on broker-centric pipelines that favor one side. Recent studies of data markets with externalities capture buyer interactions but do not yield a simultaneous and symmetric mechanism across data sellers, model producers, and model buyers. We propose a unified data-model coupled market that treats dataset and model trading as a single system. A supply-side mapping transforms dataset payments into buyer-visible model quotations, while a demand-side mapping propagates buyer prices back to datasets through Shapley-based allocation. Together, they form a closed loop that links four interactions: supply-demand propagation in both directions and mutual coupling among buyers and among sellers. We prove that the joint operator is a standard interference function (SIF), guaranteeing existence, uniqueness, and global convergence of equilibrium prices. Experiments demonstrate efficient convergence and improved fairness compared with broker-centric and one-sided baselines. The code is available on https://github.com/HongrunRen1109/Triple-Win-Pricing.
☆ Decoupling Augmentation Bias in Prompt Learning for Vision-Language Models
Recent advances in large-scale vision and language models have led to significant progress in zero-shot learning tasks. Methods such as CoOp and CoCoOp have shown that replacing handcrafted prompts with learnable vectors, known as prompt learning, can result in improved performance. However, these models often struggle to generalize to entirely unseen categories. While traditional zero-shot learning techniques benefit from various data augmentation strategies, prompt learning has primarily focused on text-based modifications, leaving the potential of image-based augmentation largely unexplored. In this work, we explore how image-level augmentations, particularly those that introduce attribute-specific variations, can support and enhance prompt learning. Our analysis examines the interaction between these augmentations and soft prompt frameworks, revealing their potential to improve generalization. We also identify a limitation in existing methods, such as CoCoOp, which do not provide explicit guidance for learning prompts that focus on semantically meaningful visual features. To address this, we propose Adding Attributes to Prompt Learning, AAPL, a novel method that introduces adversarial token embeddings to decouple superficial visual variations introduced by augmentation from class-relevant semantic representations. This decoupling enables the learned prompts to concentrate on visually discriminative features that align with the target categories. We conduct comprehensive experiments on eleven benchmark datasets, and AAPL consistently outperforms existing methods across few-shot, zero-shot, cross-dataset, and domain generalization settings. Our source code is publicly available at: https://github.com/Gahyeonkim09/AAPL
comment: Accepted in Pattern Recognition
☆ A Modular, Data-Free Pipeline for Multi-Label Intention Recognition in Transportation Agentic AI Applications
In this study, a modular, data-free pipeline for multi-label intention recognition is proposed for agentic AI applications in transportation. Unlike traditional intent recognition systems that depend on large, annotated corpora and often struggle with fine-grained, multi-label discrimination, our approach eliminates the need for costly data collection while enhancing the accuracy of multi-label intention understanding. Specifically, the overall pipeline, named DMTC, consists of three steps: 1) using prompt engineering to guide large language models (LLMs) to generate diverse synthetic queries in different transport scenarios; 2) encoding each textual query with a Sentence-T5 model to obtain compact semantic embeddings; 3) training a lightweight classifier using a novel online focal-contrastive (OFC) loss that emphasizes hard samples and maximizes inter-class separability. The applicability of the proposed pipeline is demonstrated in an agentic AI application in the maritime transportation context. Extensive experiments show that DMTC achieves a Hamming loss of 5.35% and an AUC of 95.92%, outperforming state-of-the-art multi-label classifiers and recent end-to-end SOTA LLM-based baselines. Further analysis reveals that Sentence-T5 embeddings improve subset accuracy by at least 3.29% over alternative encoders, and integrating the OFC loss yields an additional 0.98% gain compared to standard contrastive objectives. In conclusion, our system seamlessly routes user queries to task-specific modules (e.g., ETA information, traffic risk evaluation, and other typical scenarios in the transportation domain), laying the groundwork for fully autonomous, intention-aware agents without costly manual labelling.
comment: Present in the Transportation Research Board (TRB) Annual Meeting 2026
☆ SORTeD Rashomon Sets of Sparse Decision Trees: Anytime Enumeration
Sparse decision tree learning provides accurate and interpretable predictive models that are ideal for high-stakes applications by finding the single most accurate tree within a (soft) size limit. Rather than relying on a single "best" tree, Rashomon sets-trees with similar performance but varying structures-can be used to enhance variable importance analysis, enrich explanations, and enable users to choose simpler trees or those that satisfy stakeholder preferences (e.g., fairness) without hard-coding such criteria into the objective function. However, because finding the optimal tree is NP-hard, enumerating the Rashomon set is inherently challenging. Therefore, we introduce SORTD, a novel framework that improves scalability and enumerates trees in the Rashomon set in order of the objective value, thus offering anytime behavior. Our experiments show that SORTD reduces runtime by up to two orders of magnitude compared with the state of the art. Moreover, SORTD can compute Rashomon sets for any separable and totally ordered objective and supports post-evaluating the set using other separable (and partially ordered) objectives. Together, these advances make exploring Rashomon sets more practical in real-world applications.
comment: 32 pages, 10 figures, to be published in the proceedings of The Thirty-Ninth Annual Conference on Neural Information Processing Systems
☆ Benchmarking the Thinking Mode of Multimodal Large Language Models in Clinical Tasks
A recent advancement in Multimodal Large Language Models (MLLMs) research is the emergence of "reasoning MLLMs" that offer explicit control over their internal thinking processes (normally referred as the "thinking mode") alongside the standard "non-thinking mode". This capability allows these models to engage in a step-by-step process of internal deliberation before generating a final response. With the rapid transition to and adoption of these "dual-state" MLLMs, this work rigorously evaluated how the enhanced reasoning processes of these MLLMs impact model performance and reliability in clinical tasks. This paper evaluates the active "thinking mode" capabilities of two leading MLLMs, Seed1.5-VL and Gemini-2.5-Flash, for medical applications. We assessed their performance on four visual medical tasks using VQA-RAD and ROCOv2 datasets. Our findings reveal that the improvement from activating the thinking mode remains marginal compared to the standard non-thinking mode for the majority of the tasks. Their performance on complex medical tasks such as open-ended VQA and medical image interpretation remains suboptimal, highlighting the need for domain-specific medical data and more advanced methods for medical knowledge integration.
☆ Influence of Data Dimensionality Reduction Methods on the Effectiveness of Quantum Machine Learning Models
Data dimensionality reduction techniques are often utilized in the implementation of Quantum Machine Learning models to address two significant issues: the constraints of NISQ quantum devices, which are characterized by noise and a limited number of qubits, and the challenge of simulating a large number of qubits on classical devices. It also raises concerns over the scalability of these approaches, as dimensionality reduction methods are slow to adapt to large datasets. In this article, we analyze how data reduction methods affect different QML models. We conduct this experiment over several generated datasets, quantum machine algorithms, quantum data encoding methods, and data reduction methods. All these models were evaluated on the performance metrics like accuracy, precision, recall, and F1 score. Our findings have led us to conclude that the usage of data dimensionality reduction methods results in skewed performance metric values, which results in wrongly estimating the actual performance of quantum machine learning models. There are several factors, along with data dimensionality reduction methods, that worsen this problem, such as characteristics of the datasets, classical to quantum information embedding methods, percentage of feature reduction, classical components associated with quantum models, and structure of quantum machine learning models. We consistently observed the difference in the accuracy range of 14% to 48% amongst these models, using data reduction and not using it. Apart from this, our observations have shown that some data reduction methods tend to perform better for some specific data embedding methodologies and ansatz constructions.
comment: 12 pages, IEEE International Conference on Quantum Computing & Engineering (QCE25)
☆ Extending Fair Null-Space Projections for Continuous Attributes to Kernel Methods
With the on-going integration of machine learning systems into the everyday social life of millions the notion of fairness becomes an ever increasing priority in their development. Fairness notions commonly rely on protected attributes to assess potential biases. Here, the majority of literature focuses on discrete setups regarding both target and protected attributes. The literature on continuous attributes especially in conjunction with regression -- we refer to this as \emph{continuous fairness} -- is scarce. A common strategy is iterative null-space projection which as of now has only been explored for linear models or embeddings such as obtained by a non-linear encoder. We improve on this by generalizing to kernel methods, significantly extending the scope. This yields a model and fairness-score agnostic method for kernel embeddings applicable to continuous protected attributes. We demonstrate that our novel approach in conjunction with Support Vector Regression (SVR) provides competitive or improved performance across multiple datasets in comparisons to other contemporary methods.
☆ Graph Neural AI with Temporal Dynamics for Comprehensive Anomaly Detection in Microservices
This study addresses the problem of anomaly detection and root cause tracing in microservice architectures and proposes a unified framework that combines graph neural networks with temporal modeling. The microservice call chain is abstracted as a directed graph, where multidimensional features of nodes and edges are used to construct a service topology representation, and graph convolution is applied to aggregate features across nodes and model dependencies, capturing complex structural relationships among services. On this basis, gated recurrent units are introduced to model the temporal evolution of call chains, and multi-layer stacking and concatenation operations are used to jointly obtain structural and temporal representations, improving the ability to identify anomaly patterns. Furthermore, anomaly scoring functions at both the node and path levels are defined to achieve unified modeling from local anomaly detection to global call chain tracing, which enables the identification of abnormal service nodes and the reconstruction of potential anomaly propagation paths. Sensitivity experiments are then designed from multiple dimensions, including hyperparameters, environmental disturbances, and data distribution, to evaluate the framework, and results show that it outperforms baseline methods in key metrics such as AUC, ACC, Recall, and F1-Score, maintaining high accuracy and stability under dynamic topologies and complex environments. This research not only provides a new technical path for anomaly detection in microservices but also lays a methodological foundation for intelligent operations in distributed systems.
☆ When Generative Artificial Intelligence meets Extended Reality: A Systematic Review
With the continuous advancement of technology, the application of generative artificial intelligence (AI) in various fields is gradually demonstrating great potential, particularly when combined with Extended Reality (XR), creating unprecedented possibilities. This survey article systematically reviews the applications of generative AI in XR, covering as much relevant literature as possible from 2023 to 2025. The application areas of generative AI in XR and its key technology implementations are summarised through PRISMA screening and analysis of the final 26 articles. The survey highlights existing articles from the last three years related to how XR utilises generative AI, providing insights into current trends and research gaps. We also explore potential opportunities for future research to further empower XR through generative AI, providing guidance and information for future generative XR research.
☆ A Probabilistic Approach to Pose Synchronization for Multi-Reference Alignment with Applications to MIMO Wireless Communication Systems NeurIPS
From molecular imaging to wireless communications, the ability to align and reconstruct signals from multiple misaligned observations is crucial for system performance. We study the problem of multi-reference alignment (MRA), which arises in many real-world problems, such as cryo-EM, computer vision, and, in particular, wireless communication systems. Using a probabilistic approach to model MRA, we find a new algorithm that uses relative poses as nuisance variables to marginalize out -- thereby removing the global symmetries of the problem and allowing for more direct solutions and improved convergence. The decentralization of this approach enables significant computational savings by avoiding the cubic scaling of centralized methods through cycle consistency. Both proposed algorithms achieve lower reconstruction error across experimental settings.
comment: To appear in NeurIPS workshop: AI and ML for Next-Generation Wireless Communications (AI4NextG)
☆ Multi-Objective Adaptive Rate Limiting in Microservices Using Deep Reinforcement Learning
As cloud computing and microservice architectures become increasingly prevalent, API rate limiting has emerged as a critical mechanism for ensuring system stability and service quality. Traditional rate limiting algorithms, such as token bucket and sliding window, while widely adopted, struggle to adapt to dynamic traffic patterns and varying system loads. This paper proposes an adaptive rate limiting strategy based on deep reinforcement learning that dynamically balances system throughput and service latency. We design a hybrid architecture combining Deep Q-Network (DQN) and Asynchronous Advantage Actor-Critic (A3C) algorithms, modeling the rate limiting decision process as a Markov Decision Process. The system continuously monitors microservice states and learns optimal rate limiting policies through environmental interaction. Extensive experiments conducted in a Kubernetes cluster environment demonstrate that our approach achieves 23.7% throughput improvement and 31.4% P99 latency reduction compared to traditional fixed-threshold strategies under high-load scenarios. Results from a 90-day production deployment handling 500 million daily requests validate the practical effectiveness of the proposed method, with 82% reduction in service degradation incidents and 68% decrease in manual interventions.
☆ Diffusion Language Models are Super Data Learners
Under strictly controlled pre-training settings, we observe a Crossover: when unique data is limited, diffusion language models (DLMs) consistently surpass autoregressive (AR) models by training for more epochs. The crossover shifts later with more or higher-quality data, earlier with larger models, and persists across dense and sparse architectures. We attribute the gains to three compounding factors: (1) any-order modeling, (2) super-dense compute from iterative bidirectional denoising, and (3) built-in Monte Carlo augmentation; input or parameter noise improves AR under data constraint but cannot close the gap. At scale, a 1.7B DLM trained with a ~1.5T-token compute budget on 10B unique Python tokens overtakes an AR coder trained with strictly matched settings. In addition, a 1B-parameter DLM achieves > 56% accuracy on HellaSwag and > 33% on MMLU using only 1B tokens, without any special tricks, just by repeating standard pre-training data. We also show that rising validation cross-entropy does not imply degraded downstream performance in this regime.
☆ Decoupled Entropy Minimization NeurIPS 2025
Entropy Minimization (EM) is beneficial to reducing class overlap, bridging domain gap, and restricting uncertainty for various tasks in machine learning, yet its potential is limited. To study the internal mechanism of EM, we reformulate and decouple the classical EM into two parts with opposite effects: cluster aggregation driving factor (CADF) rewards dominant classes and prompts a peaked output distribution, while gradient mitigation calibrator (GMC) penalizes high-confidence classes based on predicted probabilities. Furthermore, we reveal the limitations of classical EM caused by its coupled formulation: 1) reward collapse impedes the contribution of high-certainty samples in the learning process, and 2) easy-class bias induces misalignment between output distribution and label distribution. To address these issues, we propose Adaptive Decoupled Entropy Minimization (AdaDEM), which normalizes the reward brought from CADF and employs a marginal entropy calibrator (MEC) to replace GMC. AdaDEM outperforms DEM*, an upper-bound variant of classical EM, and achieves superior performance across various imperfectly supervised learning tasks in noisy and dynamic environments.
comment: To appear at NeurIPS 2025 (main conference), San Diego, CA, USA. Codes available at https://github.com/HAIV-Lab/DEM/
☆ GMoPE:A Prompt-Expert Mixture Framework for Graph Foundation Models
Graph Neural Networks (GNNs) have demonstrated impressive performance on task-specific benchmarks, yet their ability to generalize across diverse domains and tasks remains limited. Existing approaches often struggle with negative transfer, scalability issues, and high adaptation costs. To address these challenges, we propose GMoPE (Graph Mixture of Prompt-Experts), a novel framework that seamlessly integrates the Mixture-of-Experts (MoE) architecture with prompt-based learning for graphs. GMoPE leverages expert-specific prompt vectors and structure-aware MoE routing to enable each expert to specialize in distinct subdomains and dynamically contribute to predictions. To promote diversity and prevent expert collapse, we introduce a soft orthogonality constraint across prompt vectors, encouraging expert specialization and facilitating a more balanced expert utilization. Additionally, we adopt a prompt-only fine-tuning strategy that significantly reduces spatiotemporal complexity during transfer. We validate GMoPE through extensive experiments under various pretraining strategies and multiple downstream tasks. Results show that GMoPE consistently outperforms state-of-the-art baselines and achieves performance comparable to full parameter fine-tuning-while requiring only a fraction of the adaptation overhead. Our work provides a principled and scalable framework for advancing generalizable and efficient graph foundation models.
☆ Death by a Thousand Prompts: Open Model Vulnerability Analysis
Open-weight models provide researchers and developers with accessible foundations for diverse downstream applications. We tested the safety and security postures of eight open-weight large language models (LLMs) to identify vulnerabilities that may impact subsequent fine-tuning and deployment. Using automated adversarial testing, we measured each model's resilience against single-turn and multi-turn prompt injection and jailbreak attacks. Our findings reveal pervasive vulnerabilities across all tested models, with multi-turn attacks achieving success rates between 25.86\% and 92.78\% -- representing a $2\times$ to $10\times$ increase over single-turn baselines. These results underscore a systemic inability of current open-weight models to maintain safety guardrails across extended interactions. We assess that alignment strategies and lab priorities significantly influence resilience: capability-focused models such as Llama 3.3 and Qwen 3 demonstrate higher multi-turn susceptibility, whereas safety-oriented designs such as Google Gemma 3 exhibit more balanced performance. The analysis concludes that open-weight models, while crucial for innovation, pose tangible operational and ethical risks when deployed without layered security controls. These findings are intended to inform practitioners and developers of the potential risks and the value of professional AI security solutions to mitigate exposure. Addressing multi-turn vulnerabilities is essential to ensure the safe, reliable, and responsible deployment of open-weight LLMs in enterprise and public domains. We recommend adopting a security-first design philosophy and layered protections to ensure resilient deployments of open-weight models.
☆ Climate Adaptation with Reinforcement Learning: Economic vs. Quality of Life Adaptation Pathways
Climate change will cause an increase in the frequency and severity of flood events, prompting the need for cohesive adaptation policymaking. Designing effective adaptation policies, however, depends on managing the uncertainty of long-term climate impacts. Meanwhile, such policies can feature important normative choices that are not always made explicit. We propose that Reinforcement Learning (RL) can be a useful tool to both identify adaptation pathways under uncertain conditions while it also allows for the explicit modelling (and consequent comparison) of different adaptation priorities (e.g. economic vs. wellbeing). We use an Integrated Assessment Model (IAM) to link together a rainfall and flood model, and compute the impacts of flooding in terms of quality of life (QoL), transportation, and infrastructure damage. Our results show that models prioritising QoL over economic impacts results in more adaptation spending as well as a more even distribution of spending over the study area, highlighting the extent to which such normative assumptions can alter adaptation policy. Our framework is publicly available: https://github.com/MLSM-at-DTU/maat_qol_framework.
comment: Accepted for presentation at AI for Climate and Conservation Workshop at EurIPS 2025
☆ Topography, climate, land cover, and biodiversity: Explaining endemic richness and management implications on a Mediterranean island
Island endemism is shaped by complex interactions among environmental, ecological, and evolutionary factors, yet the relative contributions of topography, climate, and land cover remain incompletely quantified. We investigated the drivers of endemic plant richness across Crete, a Mediterranean biodiversity hotspot, using spatially explicit data on species distributions, topographic complexity, climatic variability, land cover, and soil characteristics. Artificial Neural Network models, a machine learning tool, were employed to assess the relative importance of these predictors and to identify hotspots of endemism. We found that total species richness, elevation range, and climatic variability were the strongest predictors of endemic richness, reflecting the role of biodiversity, topographic heterogeneity, and climatic gradients in generating diverse habitats and micro-refugia that promote speciation and buffer extinction risk. Endemic hotspots only partially overlapped with areas of high total species richness, indicating that total species richness was the optimal from the ones examined, yet an imperfect surrogate. These environmentally heterogeneous areas also provide critical ecosystem services, including soil stabilization, pollination, and cultural value, which are increasingly threatened by tourism, renewable energy development, land-use change, and climate impacts. Our findings underscore the importance of prioritizing mountainous and climatically variable regions in conservation planning, integrating ecosystem service considerations, and accounting for within-island spatial heterogeneity. By explicitly linking the environmental drivers of endemism to both biodiversity patterns and ecosystem function, this study provides a framework for evidence-based conservation planning in Crete and other Mediterranean islands with similar geological and biogeographic contexts.
☆ A unified physics-informed generative operator framework for general inverse problems
Solving inverse problems governed by partial differential equations (PDEs) is central to science and engineering, yet remains challenging when measurements are sparse, noisy, or when the underlying coefficients are high-dimensional or discontinuous. Existing deep learning approaches either require extensive labeled datasets or are limited to specific measurement types, often leading to failure in such regimes and restricting their practical applicability. Here, a novel generative neural operator framework, IGNO, is introduced to overcome these limitations. IGNO unifies the solution of inverse problems from both point measurements and operator-valued data without labeled training pairs. This framework encodes high-dimensional, potentially discontinuous coefficient fields into a low-dimensional latent space, which drives neural operator decoders to reconstruct both coefficients and PDE solutions. Training relies purely on physics constraints through PDE residuals, while inversion proceeds via efficient gradient-based optimization in latent space, accelerated by an a priori normalizing flow model. Across a diverse set of challenging inverse problems, including recovery of discontinuous coefficients from solution-based measurements and the EIT problem with operator-based measurements, IGNO consistently achieves accurate, stable, and scalable inversion even under severe noise. It consistently outperforms the state-of-the-art method under varying noise levels and demonstrates strong generalization to out-of-distribution targets. These results establish IGNO as a unified and powerful framework for tackling challenging inverse problems across computational science domains.
☆ A Feedback-Control Framework for Efficient Dataset Collection from In-Vehicle Data Streams
Modern AI systems are increasingly constrained not by model capacity but by the quality and diversity of their data. Despite growing emphasis on data-centric AI, most datasets are still gathered in an open-loop manner which accumulates redundant samples without feedback from the current coverage. This results in inefficient storage, costly labeling, and limited generalization. To address this, this paper introduces \ac{FCDC}, a paradigm that formulates data collection as a closed-loop control problem. \ac{FCDC} continuously approximates the state of the collected data distribution using an online probabilistic model and adaptively regulates sample retention using based on feedback signals such as likelihood and Mahalanobis distance. Through this feedback mechanism, the system dynamically balances exploration and exploitation, maintains dataset diversity, and prevents redundancy from accumulating over time. Besides showcasing the controllability of \ac{FCDC} on a synthetic dataset, experiments on a real data stream show that \ac{FCDC} produces more balanced datasets by $\SI{25.9}{\percent}$ while reducing data storage by $\SI{39.8}{\percent}$. These results demonstrate that data collection itself can be actively controlled, transforming collection from a passive pipeline stage into a self-regulating, feedback-driven process at the core of data-centric AI.
☆ Incorporating Quality of Life in Climate Adaptation Planning via Reinforcement Learning
Urban flooding is expected to increase in frequency and severity as a consequence of climate change, causing wide-ranging impacts that include a decrease in urban Quality of Life (QoL). Meanwhile, policymakers must devise adaptation strategies that can cope with the uncertain nature of climate change and the complex and dynamic nature of urban flooding. Reinforcement Learning (RL) holds significant promise in tackling such complex, dynamic, and uncertain problems. Because of this, we use RL to identify which climate adaptation pathways lead to a higher QoL in the long term. We do this using an Integrated Assessment Model (IAM) which combines a rainfall projection model, a flood model, a transport accessibility model, and a quality of life index. Our preliminary results suggest that this approach can be used to learn optimal adaptation measures and it outperforms other realistic and real-world planning strategies. Our framework is publicly available: https://github.com/MLSM-at-DTU/maat_qol_framework.
comment: Accepted for presentation at AI in Science (AIS) 2025
☆ RKUM: An R Package for Robust Kernel Unsupervised Methods
RKUM is an R package developed for implementing robust kernel-based unsupervised methods. It provides functions for estimating the robust kernel covariance operator (CO) and the robust kernel cross-covariance operator (CCO) using generalized loss functions instead of the conventional quadratic loss. These operators form the foundation of robust kernel learning and enable reliable analysis under contaminated or noisy data conditions. The package includes implementations of robust kernel canonical correlation analysis (Kernel CCA), as well as the influence function (IF) for both standard and multiple kernel CCA frameworks. The influence function quantifies sensitivity and helps detect influential or outlying observations across two-view and multi-view datasets. Experiments using synthesized two-view and multi-view data demonstrate that the IF of the standard kernel CCA effectively identifies outliers, while the robust kernel methods implemented in RKUM exhibit reduced sensitivity to contamination. Overall, RKUM provides an efficient and extensible platform for robust kernel-based analysis in high-dimensional data applications.
comment: 26, 2 figures
☆ QG-CoC: Question-Guided Chain-of-Captions for Large Multimodal Models
Recently, Multimodal Large Language Models (MLLMs) encounter two key issues in multi-image contexts: (1) a lack of fine-grained perception across disparate images, and (2) a diminished capability to effectively reason over and synthesize information from multiple visual inputs. However, while various prompting methods aim to describe visual content, many existing studies focus primarily on single-image settings or specific, constrained scenarios. This leaves a critical gap in understanding and addressing how MLLMs tackle more general and complex multi-image reasoning tasks. Thus, we first extensively investigate how current prompting methods perceive fine-grained visual details and process visual information when dealing with multiple images. Our findings reveal that existing prompting methods fall short in attending to needed clues and seamlessly integrating perception and reasoning. Inspired by the findings, we propose a new zero-shot prompting method, Question-Guided Chain-of-Captions (QG-CoC), a generalized prompting approach that effectively handles problems with an arbitrary number of images. We evaluate our method on various open-source and closed-source MLLMs for multi-image and single-image benchmarks. Experimental results indicate that QG-CoC demonstrates competitive performance across tasks and exhibits robust improvements in the challenging scenarios where existing prompting methods fail.
comment: 16 pages
☆ Provable Separations between Memorization and Generalization in Diffusion Models
Diffusion models have achieved remarkable success across diverse domains, but they remain vulnerable to memorization -- reproducing training data rather than generating novel outputs. This not only limits their creative potential but also raises concerns about privacy and safety. While empirical studies have explored mitigation strategies, theoretical understanding of memorization remains limited. We address this gap through developing a dual-separation result via two complementary perspectives: statistical estimation and network approximation. From the estimation side, we show that the ground-truth score function does not minimize the empirical denoising loss, creating a separation that drives memorization. From the approximation side, we prove that implementing the empirical score function requires network size to scale with sample size, spelling a separation compared to the more compact network representation of the ground-truth score function. Guided by these insights, we develop a pruning-based method that reduces memorization while maintaining generation quality in diffusion transformers.
comment: 51 pages, 4 figures
☆ A Quantized VAE-MLP Botnet Detection Model: A Systematic Evaluation of Quantization-Aware Training and Post-Training Quantization Strategies
In an effort to counter the increasing IoT botnet-based attacks, state-of-the-art deep learning methods have been proposed and have achieved impressive detection accuracy. However, their computational intensity restricts deployment on resource-constrained IoT devices, creating a critical need for lightweight detection models. A common solution to this challenge is model compression via quantization. This study proposes a VAE-MLP model framework where an MLP-based classifier is trained on 8-dimensional latent vectors derived from the high-dimensional train data using the encoder component of a pretrained variational autoencoder (VAE). Two widely used quantization strategies--Quantization-Aware Training (QAT) and Post-Training Quantization (PTQ)--are then systematically evaluated in terms of their impact on detection performance, storage efficiency, and inference latency using two benchmark IoT botnet datasets--N-BaIoT and CICIoT2022. The results revealed that, with respect to detection accuracy, the QAT strategy experienced a more noticeable decline,whereas PTQ incurred only a marginal reduction compared to the original unquantized model. Furthermore, PTQ yielded a 6x speedup and 21x reduction in size, while QAT achieved a 3x speedup and 24x compression, demonstrating the practicality of quantization for device-level IoT botnet detection.
☆ A Probabilistic U-Net Approach to Downscaling Climate Simulations NeurIPS 2025
Climate models are limited by heavy computational costs, often producing outputs at coarse spatial resolutions, while many climate change impact studies require finer scales. Statistical downscaling bridges this gap, and we adapt the probabilistic U-Net for this task, combining a deterministic U-Net backbone with a variational latent space to capture aleatoric uncertainty. We evaluate four training objectives, afCRPS and WMSE-MS-SSIM with three settings for downscaling precipitation and temperature from $16\times$ coarser resolution. Our main finding is that WMSE-MS-SSIM performs well for extremes under certain settings, whereas afCRPS better captures spatial variability across scales.
comment: NeurIPS 2025 AI4Science
☆ Cross-Modal Alignment via Variational Copula Modelling
Various data modalities are common in real-world applications (e.g., electronic health records, medical images and clinical notes in healthcare). It is essential to develop multimodal learning methods to aggregate various information from multiple modalities. The main challenge is how to appropriately align and fuse the representations of different modalities into a joint distribution. Existing methods mainly rely on concatenation or the Kronecker product, oversimplifying the interaction structure between modalities and indicating a need to model more complex interactions. Additionally, the joint distribution of latent representations with higher-order interactions is underexplored. Copula is a powerful statistical structure for modelling the interactions among variables, as it naturally bridges the joint distribution and marginal distributions of multiple variables. We propose a novel copula-driven multimodal learning framework, which focuses on learning the joint distribution of various modalities to capture the complex interactions among them. The key idea is to interpret the copula model as a tool to align the marginal distributions of the modalities efficiently. By assuming a Gaussian mixture distribution for each modality and a copula model on the joint distribution, our model can generate accurate representations for missing modalities. Extensive experiments on public MIMIC datasets demonstrate the superior performance of our model over other competitors. The code is available at https://github.com/HKU-MedAI/CMCM.
☆ Statistical Properties of Rectified Flow
Rectified flow (Liu et al., 2022; Liu, 2022; Wu et al., 2023) is a method for defining a transport map between two distributions, and enjoys popularity in machine learning, although theoretical results supporting the validity of these methods are scant. The rectified flow can be regarded as an approximation to optimal transport, but in contrast to other transport methods that require optimization over a function space, computing the rectified flow only requires standard statistical tools such as regression or density estimation. Because of this, one can leverage standard data analysis tools for regression and density estimation to develop empirical versions of transport maps. We study some structural properties of the rectified flow, including existence, uniqueness, and regularity, as well as the related statistical properties, such as rates of convergence and central limit theorems, for some selected estimators. To do so, we analyze separately the bounded and unbounded cases as each presents unique challenges. In both cases, we are able to establish convergence at faster rates than the ones for the usual nonparametric regression and density estimation.
comment: 159 pages, 7 figures
☆ Efficient Linear Attention for Multivariate Time Series Modeling via Entropy Equality
Attention mechanisms have been extensively employed in various applications, including time series modeling, owing to their capacity to capture intricate dependencies; however, their utility is often constrained by quadratic computational complexity, which impedes scalability for long sequences. In this work, we propose a novel linear attention mechanism designed to overcome these limitations. Our approach is grounded in a theoretical demonstration that entropy, as a strictly concave function on the probability simplex, implies that distributions with aligned probability rankings and similar entropy values exhibit structural resemblance. Building on this insight, we develop an efficient approximation algorithm that computes the entropy of dot-product-derived distributions with only linear complexity, enabling the implementation of a linear attention mechanism based on entropy equality. Through rigorous analysis, we reveal that the effectiveness of attention in spatio-temporal time series modeling may not primarily stem from the non-linearity of softmax but rather from the attainment of a moderate and well-balanced weight distribution. Extensive experiments on four spatio-temporal datasets validate our method, demonstrating competitive or superior forecasting performance while achieving substantial reductions in both memory usage and computational time.
☆ Periodic Skill Discovery NeurIPS 2025
Unsupervised skill discovery in reinforcement learning (RL) aims to learn diverse behaviors without relying on external rewards. However, current methods often overlook the periodic nature of learned skills, focusing instead on increasing the mutual dependence between states and skills or maximizing the distance traveled in latent space. Considering that many robotic tasks -- particularly those involving locomotion -- require periodic behaviors across varying timescales, the ability to discover diverse periodic skills is essential. Motivated by this, we propose Periodic Skill Discovery (PSD), a framework that discovers periodic behaviors in an unsupervised manner. The key idea of PSD is to train an encoder that maps states to a circular latent space, thereby naturally encoding periodicity in the latent representation. By capturing temporal distance, PSD can effectively learn skills with diverse periods in complex robotic tasks, even with pixel-based observations. We further show that these learned skills achieve high performance on downstream tasks such as hurdling. Moreover, integrating PSD with an existing skill discovery method offers more diverse behaviors, thus broadening the agent's repertoire. Our code and demos are available at https://jonghaepark.github.io/psd/
comment: NeurIPS 2025
☆ Understanding Robustness of Model Editing in Code LLMs: An Empirical Study
Large language models (LLMs) are increasingly used in software development. However, while LLMs remain static after pretraining, programming languages and APIs continue to evolve, leading to the generation of deprecated or incompatible code that undermines reliability. Retraining LLMs from scratch to reflect such changes is computationally expensive, making model editing a promising lightweight alternative that updates only a small subset of parameters. Despite its potential, it remains unclear whether model editing yields genuine syntactic and semantic adaptations or merely superficial fixes. In this work, we present a systematic study of five state-of-the-art model editing methods: Constrained Fine-Tuning (FT), GRACE, MEMIT, PMET, and ROME. We apply these methods to three leading open-source code LLMs, CodeLlama, CodeQwen1.5, and DeepSeek-Coder, under controlled API deprecation scenarios. Our evaluation covers both instant and sequential editing settings, using three disjoint evaluation sets designed to assess reliability, generalization, and specificity. We measure model correctness at three levels: successful compilation, partial test case pass, and full test pass. Our findings show that instant edits consistently degrade model performance, with syntactic validity dropping by up to 86 percentage points and functional correctness declining by 45 points even in the best-performing setting. Sequential edits further amplify this degradation, and in some cases, model performance collapses entirely. Across all models, most passing generations relied on workarounds rather than correctly adopting the intended changes, while faulty adoptions that result in test failures or compilation errors were significantly more frequent. Correct adoptions, where the model correctly integrates the intended change, occurred in only about 6% of cases.
comment: 26 pages, 2 figures, 15 tables
♻ ☆ Proximal Regret and Proximal Correlated Equilibria: A New Tractable Solution Concept for Online Learning and Games NeurIPS
Learning and computation of equilibria are central problems in game theory, theory of computation, and artificial intelligence. In this work, we introduce proximal regret, a new notion of regret based on proximal operators that lies strictly between external and swap regret. When every player employs a no-proximal-regret algorithm in a general convex game, the empirical distribution of play converges to proximal correlated equilibria (PCE), a refinement of coarse correlated equilibria. Our framework unifies several emerging notions in online learning and game theory-such as gradient equilibrium and semicoarse correlated equilibrium-and introduces new ones. Our main result shows that the classic Online Gradient Descent (GD) algorithm achieves an optimal $O(\sqrt{T})$ bound on proximal regret, revealing that GD, without modification, minimizes a stronger regret notion than external regret. This provides a new explanation for the empirically superior performance of gradient descent in online learning and games. We further extend our analysis to Mirror Descent in the Bregman setting and to Optimistic Gradient Descent, which yields faster convergence in smooth convex games.
comment: This paper presents proximal regret and proximal correlated equilibria results that do not appear in the NeurIPS version of arXiv:2403.08171
♻ ☆ GDS Agent for Graph Algorithmic Reasoning
Large language models (LLMs) have shown remarkable multimodal information processing and reasoning ability. When equipped with tools through function calling and enhanced with retrieval-augmented techniques, compound LLM-based systems can access closed data sources and answer questions about them. However, they still struggle to process and reason over large-scale graph-structure data. We introduce the GDS (Graph Data Science) agent in this technical report. The GDS agent introduces a comprehensive set of graph algorithms as tools, together with preprocessing (retrieval) and postprocessing of algorithm results, in a model context protocol (MCP) server. The server can be used with any modern LLM out-of-the-box. GDS agent allows users to ask any question that implicitly and intrinsically requires graph algorithmic reasoning about their data, and quickly obtain accurate and grounded answers. We introduce new benchmarks that evaluate intermediate tool calls as well as final responses. The results indicate that GDS agent is able to solve a wide spectrum of graph tasks. We also provide detailed case studies for more open-ended tasks and study scenarios where the agent struggles. Finally, we discuss the remaining challenges and the future roadmap.
comment: Technical report
♻ ☆ Compliance Minimization via Physics-Informed Gaussian Processes
Machine learning (ML) techniques have recently gained significant attention for solving compliance minimization (CM) problems. However, these methods typically provide poor feature boundaries, are very expensive, and lack a systematic mechanism to control the design complexity. Herein, we address these limitations by proposing a mesh-free and simultaneous framework based on physics-informed Gaussian processes (GPs). In our approach, we parameterize the design and state variables with GP priors which have independent kernels but share a multi-output neural network (NN) as their mean function. The architecture of this NN is based on Parametric Grid Convolutional Attention Networks (PGCANs) which not only mitigate spectral bias issues, but also provide an interpretable mechanism to control design complexity. We estimate all the parameters of our GP-based representations by simultaneously minimizing the compliance, total potential energy, and residual of volume fraction constraint. Importantly, our loss function exclude all data-based residuals as GPs automatically satisfy them. We also develop computational schemes based on curriculum training and numerical integration to increase the efficiency and robustness of our approach which is shown to (1) produce super-resolution topologies with fast convergence, (2) achieve comparable compliance and less gray area fraction compared to traditional numerical methods, (3) provide control over fine-scale features, and (4) outperform competing ML-based methods.
♻ ☆ Voost: A Unified and Scalable Diffusion Transformer for Bidirectional Virtual Try-On and Try-Off SIGGRAPH
Virtual try-on aims to synthesize a realistic image of a person wearing a target garment, but accurately modeling garment-body correspondence remains a persistent challenge, especially under pose and appearance variation. In this paper, we propose Voost - a unified and scalable framework that jointly learns virtual try-on and try-off with a single diffusion transformer. By modeling both tasks jointly, Voost enables each garment-person pair to supervise both directions and supports flexible conditioning over generation direction and garment category, enhancing garment-body relational reasoning without task-specific networks, auxiliary losses, or additional labels. In addition, we introduce two inference-time techniques: attention temperature scaling for robustness to resolution or mask variation, and self-corrective sampling that leverages bidirectional consistency between tasks. Extensive experiments demonstrate that Voost achieves state-of-the-art results on both try-on and try-off benchmarks, consistently outperforming strong baselines in alignment accuracy, visual fidelity, and generalization.
comment: Accepted to SIGGRAPH Asia 2025, project page: https://nxnai.github.io/Voost/
♻ ☆ Data-Driven Probabilistic Air-Sea Flux Parameterization
Accurately quantifying air-sea fluxes is important for understanding air-sea interactions and improving coupled weather and climate systems. This study introduces a probabilistic framework to represent the highly variable nature of air-sea fluxes, which is missing in deterministic bulk algorithms. Assuming Gaussian distributions conditioned on the input variables, we use artificial neural networks and eddy-covariance measurement data to estimate the mean and variance by minimizing negative log-likelihood loss. The trained neural networks provide alternative mean flux estimates to existing bulk algorithms, and quantify the uncertainty around the mean estimates. Stochastic parameterization of air-sea turbulent fluxes can be constructed by sampling from the predicted distributions. Tests in a single-column forced upper-ocean model suggest that changes in flux algorithms influence sea surface temperature and mixed layer depth seasonally. The ensemble spread in stochastic runs is most pronounced during spring restratification.
♻ ☆ Generative View Stitching
Autoregressive video diffusion models are capable of long rollouts that are stable and consistent with history, but they are unable to guide the current generation with conditioning from the future. In camera-guided video generation with a predefined camera trajectory, this limitation leads to collisions with the generated scene, after which autoregression quickly collapses. To address this, we propose Generative View Stitching (GVS), which samples the entire sequence in parallel such that the generated scene is faithful to every part of the predefined camera trajectory. Our main contribution is a sampling algorithm that extends prior work on diffusion stitching for robot planning to video generation. While such stitching methods usually require a specially trained model, GVS is compatible with any off-the-shelf video model trained with Diffusion Forcing, a prevalent sequence diffusion framework that we show already provides the affordances necessary for stitching. We then introduce Omni Guidance, a technique that enhances the temporal consistency in stitching by conditioning on both the past and future, and that enables our proposed loop-closing mechanism for delivering long-range coherence. Overall, GVS achieves camera-guided video generation that is stable, collision-free, frame-to-frame consistent, and closes loops for a variety of predefined camera paths, including Oscar Reutersv\"ard's Impossible Staircase. Results are best viewed as videos at https://andrewsonga.github.io/gvs.
comment: Updated acknowledgements and fixed figure visibility issue on Safari. Project website: https://andrewsonga.github.io/gvs
♻ ☆ PDE-SHARP: PDE Solver Hybrids through Analysis and Refinement Passes
Current LLM-driven approaches using test-time computing to generate PDE solvers execute a large number of solver samples to identify high-accuracy solvers. These paradigms are especially costly for complex PDEs requiring substantial computational resources for numerical evaluation. We introduce PDE-SHARP, a framework to reduce computational costs by replacing expensive scientific computation by cheaper LLM inference that achieves superior solver accuracy with 60-75% fewer computational evaluations. PDE-SHARP employs three stages: (1) Analysis: mathematical chain-of-thought analysis including PDE classification, solution type detection, and stability analysis; (2) Genesis: solver generation based on mathematical insights from the previous stage; and (3) Synthesis: collaborative selection-hybridization tournaments in which LLM judges iteratively refine implementations through flexible performance feedback. To generate high-quality solvers, PDE-SHARP requires fewer than 13 solver evaluations on average compared to 30+ for baseline methods, improving accuracy uniformly across tested PDEs by $4\times$ on average, and demonstrates robust performance across LLM architectures, from general-purpose to specialized reasoning models.
♻ ☆ Using latent representations to link disjoint longitudinal data for mixed-effects regression
Many rare diseases offer limited established treatment options, leading patients to switch therapies when new medications emerge. To analyze the impact of such treatment switches within the low sample size limitations of rare disease trials, it is important to use all available data sources. This, however, is complicated when usage of measurement instruments change during the observation period, for example when instruments are adapted to specific age ranges. The resulting disjoint longitudinal data trajectories, complicate the application of traditional modeling approaches like mixed-effects regression. We tackle this by mapping observations of each instrument to a aligned low-dimensional temporal trajectory, enabling longitudinal modeling across instruments. Specifically, we employ a set of variational autoencoder architectures to embed item values into a shared latent space for each time point. Temporal disease dynamics and treatment switch effects are then captured through a mixed-effects regression model applied to latent representations. To enable statistical inference, we present a novel statistical testing approach that accounts for the joint parameter estimation of mixed-effects regression and variational autoencoders. The methodology is applied to quantify the impact of treatment switches for patients with spinal muscular atrophy. Here, our approach aligns motor performance items from different measurement instruments for mixed-effects regression and maps estimated effects back to the observed item level to quantify the treatment switch effect. Our approach allows for model selection as well as for assessing effects of treatment switching. The results highlight the potential of modeling in joint latent representations for addressing small data challenges.
comment: 31 pages, 3 figures, 3 tables
♻ ☆ Graph Sampling for Scalable and Expressive Graph Neural Networks on Homophilic Graphs
Graph Neural Networks (GNNs) excel in many graph machine learning tasks but face challenges when scaling to large networks. GNN transferability allows training on smaller graphs and applying the model to larger ones, but existing methods often rely on random subsampling, leading to disconnected subgraphs and reduced model expressivity. We propose a novel graph sampling algorithm that leverages feature homophily to preserve graph structure. By minimizing the trace of the data correlation matrix, our method better preserves the graph Laplacian trace -- a proxy for the graph connectivity -- than random sampling, while achieving lower complexity than spectral methods. Experiments on citation networks show improved performance in preserving Laplacian trace and GNN transferability compared to random sampling.
♻ ☆ Bridging the Gap between Empirical Welfare Maximization and Conditional Average Treatment Effect Estimation in Policy Learning
The goal of policy learning is to train a policy function that recommends a treatment given covariates to maximize population welfare. There are two major approaches in policy learning: the empirical welfare maximization (EWM) approach and the plug-in approach. The EWM approach is analogous to a classification problem, where one first builds an estimator of the population welfare, which is a functional of policy functions, and then trains a policy by maximizing the estimated welfare. In contrast, the plug-in approach is based on regression, where one first estimates the conditional average treatment effect (CATE) and then recommends the treatment with the highest estimated outcome. This study bridges the gap between the two approaches by showing that both are based on essentially the same optimization problem. In particular, we prove an exact equivalence between EWM and least squares over a reparameterization of the policy class. As a consequence, the two approaches are interchangeable in several respects and share the same theoretical guarantees under common conditions. Leveraging this equivalence, we propose a regularization method for policy learning. The reduction to least squares yields a smooth surrogate that is typically easier to optimize in practice. At the same time, for many natural policy classes the inherent combinatorial hardness of exact EWM generally remains, so the reduction should be viewed as an optimization aid rather than a universal bypass of NP-hardness.
♻ ☆ TabTune: A Unified Library for Inference and Fine-Tuning Tabular Foundation Models
Tabular foundation models represent a growing paradigm in structured data learning, extending the benefits of large-scale pretraining to tabular domains. However, their adoption remains limited due to heterogeneous preprocessing pipelines, fragmented APIs, inconsistent fine-tuning procedures, and the absence of standardized evaluation for deployment-oriented metrics such as calibration and fairness. We present TabTune, a unified library that standardizes the complete workflow for tabular foundation models through a single interface. TabTune provides consistent access to seven state-of-the-art models supporting multiple adaptation strategies, including zero-shot inference, meta-learning, supervised fine-tuning (SFT), and parameter-efficient fine-tuning (PEFT). The framework automates model-aware preprocessing, manages architectural heterogeneity internally, and integrates evaluation modules for performance, calibration, and fairness. Designed for extensibility and reproducibility, TabTune enables consistent benchmarking of adaptation strategies of tabular foundation models.
comment: The library is open source and available at https://github.com/Lexsi-Labs/TabTune
♻ ☆ Matryoshka Pilot: Learning to Drive Black-Box LLMs with LLMs NeurIPS 2025
Despite the impressive generative abilities of black-box large language models (LLMs), their inherent opacity hinders further advancements in capabilities such as reasoning, planning, and personalization. Existing works aim to enhance LLM capabilities via domain-specific adaptation, which require additional training on accessible model parameters, an infeasible option for black-box LLMs. To address this challenge, we introduce Matryoshka Pilot (M-Pilot), a lightweight white-box LLM controller that guides a large-scale black-box LLM generator by decomposing complex tasks into a series of intermediate outputs. Specifically, we consider the black-box LLM as an environment, with M-Pilot serving as a policy to provide intermediate guidance through prompts for driving the black-box LLM. M-Pilot is trained to pivot the outputs of the black-box LLM aligning with preferences during iterative interaction, which enables controllable multi-turn generation and self-improvement in optimizing intermediate guidance. Empirical evaluations on diverse tasks demonstrate that our method effectively enhances the capabilities of black-box LLMs in complex, long-horizon tasks. Our code is publicly available at: https://github.com/lichangh20/Matryoshka.
comment: Accepted by NeurIPS 2025
♻ ☆ Beyond Covariance Matrix: The Statistical Complexity of Private Linear Regression
We study the statistical complexity of private linear regression under an unknown, potentially ill-conditioned covariate distribution. Somewhat surprisingly, under privacy constraints the intrinsic complexity is \emph{not} captured by the usual covariance matrix but rather its $L_1$ analogues. Building on this insight, we establish minimax convergence rates for both the central and local privacy models and introduce an Information-Weighted Regression method that attains the optimal rates. As application, in private linear contextual bandits, we propose an efficient algorithm that achieves rate-optimal regret bounds of order $\sqrt{T}+\frac{1}{\alpha}$ and $\sqrt{T}/\alpha$ under joint and local $\alpha$-privacy models, respectively. Notably, our results demonstrate that joint privacy comes at almost no additional cost, addressing the open problems posed by Azize and Basu (2024).
♻ ☆ Why Isn't Relational Learning Taking Over the World? AAAI-2026
Artificial intelligence seems to be taking over the world with systems that model pixels, words, and phonemes. The world is arguably made up, not of pixels, words, and phonemes but of entities (objects, things, including events) with properties and relations among them. Surely we should model these, not the perception or description of them. You might suspect that concentrating on modeling words and pixels is because all of the (valuable) data in the world is in terms of text and images. If you look into almost any company you will find their most valuable data is in spreadsheets, databases and other relational formats. These are not the form that are studied in introductory machine learning, but are full of product numbers, student numbers, transaction numbers and other identifiers that can't be interpreted naively as numbers. The field that studies this sort of data has various names including relational learning, statistical relational AI, and many others. This paper explains why relational learning is not taking over the world -- except in a few cases with restricted relations -- and what needs to be done to bring it to it's rightful prominence.
comment: 10 pages (6 pages + references + appendices). To appear AAAI-2026
♻ ☆ Disentanglement with Factor Quantized Variational Autoencoders
Disentangled representation learning aims to represent the underlying generative factors of a dataset in a latent representation independently of one another. In our work, we propose a discrete variational autoencoder (VAE) based model where the ground truth information about the generative factors are not provided to the model. We demonstrate the advantages of learning discrete representations over learning continuous representations in facilitating disentanglement. Furthermore, we propose incorporating an inductive bias into the model to further enhance disentanglement. Precisely, we propose scalar quantization of the latent variables in a latent representation with scalar values from a global codebook, and we add a total correlation term to the optimization as an inductive bias. Our method called FactorQVAE combines optimization based disentanglement approaches with discrete representation learning, and it outperforms the former disentanglement methods in terms of two disentanglement metrics (DCI and InfoMEC) while improving the reconstruction performance. Our code can be found at https://github.com/ituvisionlab/FactorQVAE.
comment: Accepted to Neurocomputing
♻ ☆ Shift Before You Learn: Enabling Low-Rank Representations in Reinforcement Learning NeurIPS 2025
Low-rank structure is a common implicit assumption in many modern reinforcement learning (RL) algorithms. For instance, reward-free and goal-conditioned RL methods often presume that the successor measure admits a low-rank representation. In this work, we challenge this assumption by first remarking that the successor measure itself is not approximately low-rank. Instead, we demonstrate that a low-rank structure naturally emerges in the shifted successor measure, which captures the system dynamics after bypassing a few initial transitions. We provide finite-sample performance guarantees for the entry-wise estimation of a low-rank approximation of the shifted successor measure from sampled entries. Our analysis reveals that both the approximation and estimation errors are primarily governed by a newly introduced quantitity: the spectral recoverability of the corresponding matrix. To bound this parameter, we derive a new class of functional inequalities for Markov chains that we call Type II Poincar\'e inequalities and from which we can quantify the amount of shift needed for effective low-rank approximation and estimation. This analysis shows in particular that the required shift depends on decay of the high-order singular values of the shifted successor measure and is hence typically small in practice. Additionally, we establish a connection between the necessary shift and the local mixing properties of the underlying dynamical system, which provides a natural way of selecting the shift. Finally, we validate our theoretical findings with experiments, and demonstrate that shifting the successor measure indeed leads to improved performance in goal-conditioned RL.
comment: 63 pages, 11 figures. Accepted to NeurIPS 2025 (Spotlight)
♻ ☆ OrdShap: Feature Position Importance for Sequential Black-Box Models NeurIPS 2025
Sequential deep learning models excel in domains with temporal or sequential dependencies, but their complexity necessitates post-hoc feature attribution methods for understanding their predictions. While existing techniques quantify feature importance, they inherently assume fixed feature ordering - conflating the effects of (1) feature values and (2) their positions within input sequences. To address this gap, we introduce OrdShap, a novel attribution method that disentangles these effects by quantifying how a model's predictions change in response to permuting feature position. We establish a game-theoretic connection between OrdShap and Sanchez-Berganti\~nos values, providing a theoretically grounded approach to position-sensitive attribution. Empirical results from health, natural language, and synthetic datasets highlight OrdShap's effectiveness in capturing feature value and feature position attributions, and provide deeper insight into model behavior.
comment: Advances in Neural Information Processing Systems, Volume 38 (NeurIPS 2025)
♻ ☆ A Polynomial-Time Algorithm for Variational Inequalities under the Minty Condition
Solving variational inequalities (SVIs) is a foundational problem at the heart of optimization. However, this expressivity comes at the cost of computational hardness. As a result, most research has focused on carving out specific subclasses that elude those intractability barriers. A classical property that goes back to the 1960s is the Minty condition, which postulates that the Minty VI (MVI) problem admits a solution. In this paper, we establish the first polynomial-time algorithm -- that is, with complexity growing polynomially in the dimension $d$ and $\log(1/\epsilon)$ -- for solving $\epsilon$-SVIs for Lipschitz continuous mappings under the Minty condition. Prior approaches either incurred an exponentially worse dependence on $1/\epsilon$ or made restrictive assumptions. To do so, we introduce a new variant of the ellipsoid algorithm whereby separating hyperplanes are obtained after taking a gradient descent step from the center of the ellipsoid. It succeeds even though the set of SVIs can be nonconvex and not fully dimensional. Moreover, when our algorithm is applied to an instance with no MVI solution and fails to identify an SVI solution, it produces a succinct certificate of MVI infeasibility. We also show that deciding whether the Minty condition holds is $\mathsf{coNP}$-complete, thereby establishing that the disjunction of those two problems is polynomial-time solvable even though each problem is individually intractable. We provide several extensions and new applications of our main results. Most notably, we obtain the first polynomial-time algorithms for i) globally minimizing a (potentially nonsmooth) quasar-convex function, and ii) computing Nash equilibria in multi-player harmonic games. Finally, in two-player general-sum concave games, we give the first polynomial-time algorithm that outputs either a Nash equilibrium or a strict coarse correlated equilibrium.
comment: V2 expands on related work
♻ ☆ The ODE Method for Stochastic Approximation and Reinforcement Learning with Markovian Noise
Stochastic approximation is a class of algorithms that update a vector iteratively, incrementally, and stochastically, including, e.g., stochastic gradient descent and temporal difference learning. One fundamental challenge in analyzing a stochastic approximation algorithm is to establish its stability, i.e., to show that the stochastic vector iterates are bounded almost surely. In this paper, we extend the celebrated Borkar-Meyn theorem for stability from the Martingale difference noise setting to the Markovian noise setting, which greatly improves its applicability in reinforcement learning, especially in those off-policy reinforcement learning algorithms with linear function approximation and eligibility traces. Central to our analysis is the diminishing asymptotic rate of change of a few functions, which is implied by both a form of the strong law of large numbers and a form of the law of the iterated logarithm.
comment: Journal of Machine Learning Research (JMLR), 2025
♻ ☆ Fast weight programming and linear transformers: from machine learning to neurobiology
Recent advances in artificial neural networks for machine learning, and language modeling in particular, have established a family of recurrent neural network (RNN) architectures that, unlike conventional RNNs with vector-form hidden states, use two-dimensional (2D) matrix-form hidden states. Such 2D-state RNNs, known as Fast Weight Programmers (FWPs), can be interpreted as a neural network whose synaptic weights (called fast weights) dynamically change over time as a function of input observations, and serve as short-term memory storage; corresponding synaptic weight modifications are controlled or programmed by another network (the programmer) whose parameters are trained (e.g., by gradient descent). In this Primer, we review the technical foundations of FWPs, their computational characteristics, and their connections to transformers and state space models. We also discuss connections between FWPs and models of synaptic plasticity in the brain, suggesting a convergence of natural and artificial intelligence.
♻ ☆ R2R: Efficiently Navigating Divergent Reasoning Paths with Small-Large Model Token Routing
Large Language Models (LLMs) achieve impressive reasoning capabilities at the cost of substantial inference overhead, posing substantial deployment challenges. Although distilled Small Language Models (SLMs) significantly enhance efficiency, their performance suffers as they fail to follow LLMs' reasoning paths. Luckily, we reveal that only a small fraction of tokens genuinely diverge reasoning paths between LLMs and SLMs. Most generated tokens are either identical or exhibit neutral differences, such as minor variations in abbreviations or expressions. Leveraging this insight, we introduce **Roads to Rome (R2R)**, a neural token routing method that selectively utilizes LLMs only for these critical, path-divergent tokens, while leaving the majority of token generation to the SLM. We also develop an automatic data generation pipeline that identifies divergent tokens and generates token-level routing labels to train the lightweight router. We apply R2R to combine R1-1.5B and R1-32B models from the DeepSeek family, and evaluate on challenging math, coding, and QA benchmarks. With an average activated parameter size of 5.6B, R2R surpasses the average accuracy of R1-7B by 1.6x, outperforming even the R1-14B model. Compared to R1-32B, it delivers a 2.8x wall-clock speedup with comparable performance, advancing the Pareto frontier of test-time scaling efficiency. Our code is available at https://github.com/thu-nics/R2R.
♻ ☆ Depth Matters: Multimodal RGB-D Perception for Robust Autonomous Agents ICRA 2025
Autonomous agents that rely purely on perception to make real-time control decisions require efficient and robust architectures. In this work, we demonstrate that augmenting RGB input with depth information significantly enhances our agents' ability to predict steering commands compared to using RGB alone. We benchmark lightweight recurrent controllers that leverage the fused RGB-D features for sequential decision-making. To train our models, we collect high-quality data using a small-scale autonomous car controlled by an expert driver via a physical steering wheel, capturing varying levels of steering difficulty. Our models were successfully deployed on real hardware and inherently avoided dynamic and static obstacles, under out-of-distribution conditions. Specifically, our findings reveal that the early fusion of depth data results in a highly robust controller, which remains effective even with frame drops and increased noise levels, without compromising the network's focus on the task.
comment: Submitted to ICRA 2025
♻ ☆ Dense SAE Latents Are Features, Not Bugs NeurIPS 2025
Sparse autoencoders (SAEs) are designed to extract interpretable features from language models by enforcing a sparsity constraint. Ideally, training an SAE would yield latents that are both sparse and semantically meaningful. However, many SAE latents activate frequently (i.e., are \emph{dense}), raising concerns that they may be undesirable artifacts of the training procedure. In this work, we systematically investigate the geometry, function, and origin of dense latents and show that they are not only persistent but often reflect meaningful model representations. We first demonstrate that dense latents tend to form antipodal pairs that reconstruct specific directions in the residual stream, and that ablating their subspace suppresses the emergence of new dense features in retrained SAEs -- suggesting that high density features are an intrinsic property of the residual space. We then introduce a taxonomy of dense latents, identifying classes tied to position tracking, context binding, entropy regulation, letter-specific output signals, part-of-speech, and principal component reconstruction. Finally, we analyze how these features evolve across layers, revealing a shift from structural features in early layers, to semantic features in mid layers, and finally to output-oriented signals in the last layers of the model. Our findings indicate that dense latents serve functional roles in language model computation and should not be dismissed as training noise.
comment: NeurIPS 2025 poster
♻ ☆ SME-TEAM: Leveraging Trust and Ethics for Secure and Responsible Use of AI and LLMs in SMEs
Artificial Intelligence (AI) and Large Language Models (LLMs) are revolutionizing today's business practices; however, their adoption within small and medium-sized enterprises (SMEs) raises serious trust, ethical, and technical issues. In this perspective paper, we introduce a structured, multi-phased framework, "SME-TEAM" for the secure and responsible use of these technologies in SMEs. Based on a conceptual structure of four key pillars, i.e., Data, Algorithms, Human Oversight, and Model Architecture, SME-TEAM bridges theoretical ethical principles with operational practice, enhancing AI capabilities across a wide range of applications in SMEs. Ultimately, this paper provides a structured roadmap for the adoption of these emerging technologies, positioning trust and ethics as a driving force for resilience, competitiveness, and sustainable innovation within the area of business analytics and SMEs.
comment: 12 pages
♻ ☆ Dynamical loss functions shape landscape topography and improve learning in artificial neural networks
Dynamical loss functions are derived from standard loss functions used in supervised classification tasks, but are modified so that the contribution from each class periodically increases and decreases. These oscillations globally alter the loss landscape without affecting the global minima. In this paper, we demonstrate how to transform cross-entropy and mean squared error into dynamical loss functions. We begin by discussing the impact of increasing the size of the neural network or the learning rate on the depth and sharpness of the minima that the system explores. Building on this intuition, we propose several versions of dynamical loss functions and use a simple classification problem where we can show how they significantly improve validation accuracy for networks of varying sizes. Finally, we explore how the landscape of these dynamical loss functions evolves during training, highlighting the emergence of instabilities that may be linked to edge-of-instability minimization.
♻ ☆ Decision-aware training of spatiotemporal forecasting models to select a top K subset of sites for intervention
Optimal allocation of scarce resources is a common problem for decision makers faced with choosing a limited number of locations for intervention. Spatiotemporal prediction models could make such decisions data-driven. A recent performance metric called fraction of best possible reach (BPR) measures the impact of using a model's recommended size K subset of sites compared to the best possible top-K in hindsight. We tackle two open problems related to BPR. First, we explore how to rank all sites numerically given a probabilistic model that predicts event counts jointly across sites. Ranking via the per-site mean is suboptimal for BPR. Instead, we offer a better ranking for BPR backed by decision theory. Second, we explore how to train a probabilistic model's parameters to maximize BPR. Discrete selection of K sites implies all-zero parameter gradients which prevent standard gradient training. We overcome this barrier via advances in perturbed optimizers. We further suggest a training objective that combines likelihood with a decision-aware BPR constraint to deliver high-quality top-K rankings as well as good forecasts for all sites. We demonstrate our approach on two where-to-intervene applications: mitigating opioid-related fatal overdoses for public health and monitoring endangered wildlife.
comment: 9 pages, 3 figures
♻ ☆ Navigating High Dimensional Concept Space with Metalearning ICML 2025
Rapidly learning abstract concepts from limited examples is a hallmark of human intelligence. This work investigates whether gradient-based meta-learning can equip neural networks with inductive biases for efficient few-shot acquisition of discrete concepts. I compare meta-learning methods against a supervised learning baseline on Boolean concepts (logical statements) generated by a probabilistic context-free grammar (PCFG). By systematically varying concept dimensionality (number of features) and recursive compositionality (depth of grammar recursion), I delineate between complexity regimes in which meta-learning robustly improves few-shot concept learning and regimes in which it does not. Meta-learners are much better able to handle compositional complexity than featural complexity. I highlight some reasons for this with a representational analysis of the weights of meta-learners and a loss landscape analysis demonstrating how featural complexity increases the roughness of loss trajectories, allowing curvature-aware optimization to be more effective than first-order methods. I find improvements in out-of-distribution generalization on complex concepts by increasing the number of adaptation steps in meta-SGD, where adaptation acts as a way of encouraging exploration of rougher loss basins. Overall, this work highlights the intricacies of learning compositional versus featural complexity in high dimensional concept spaces and provides a road to understanding the role of 2nd order methods and extended gradient adaptation in few-shot concept learning.
comment: 7 pages, 3 figures. Presented at the ICML 2025 HiLD Workshop
♻ ☆ Diagrams-to-Dynamics (D2D): Exploring Causal Loop Diagram Leverage Points under Uncertainty
Causal loop diagrams (CLDs) are widely used in health and environmental research to represent hypothesized causal structures underlying complex problems. However, as qualitative and static representations, CLDs are limited in their ability to support dynamic analysis and inform intervention strategies. We propose Diagrams-to-Dynamics (D2D), a method for converting CLDs into exploratory system dynamics models (SDMs) in the absence of empirical data. With minimal user input - following a protocol to label variables as stocks, flows or auxiliaries, and constants - D2D leverages the structural information already encoded in CLDs, namely, link existence and polarity, to simulate hypothetical interventions and explore potential leverage points under uncertainty. Results suggest that D2D helps distinguish between high- and low-ranked leverage points. We compare D2D to a data-driven SDM constructed from the same CLD and variable labels. D2D showed greater consistency with the data-driven model compared to static network centrality analysis, while providing uncertainty estimates and guidance for future data collection. The D2D method is implemented in an open-source Python package and a web-based application to support further testing and lower the barrier to dynamic modeling for researchers working with CLDs. We expect that additional validation studies will further establish the approach's utility across a broad range of cases and domains.
comment: 21 pages, 4 figures, 4 tables
♻ ☆ Trustworthy Representation Learning via Information Funnels and Bottlenecks
Ensuring trustworthiness in machine learning -- by balancing utility, fairness, and privacy -- remains a critical challenge, particularly in representation learning. In this work, we investigate a family of closely related information-theoretic objectives, including information funnels and bottlenecks, designed to extract invariant representations from data. We introduce the Conditional Privacy Funnel with Side-information (CPFSI), a novel formulation within this family, applicable in both fully and semi-supervised settings. Given the intractability of these objectives, we derive neural-network-based approximations via amortized variational inference. We systematically analyze the trade-offs between utility, invariance, and representation fidelity, offering new insights into the Pareto frontiers of these methods. Our results demonstrate that CPFSI effectively balances these competing objectives and frequently outperforms existing approaches. Furthermore, we show that by intervening on sensitive attributes in CPFSI's predictive posterior enhances fairness while maintaining predictive performance. Finally, we focus on the real-world applicability of these approaches, particularly for learning robust and fair representations from tabular datasets in data scarce-environments -- a modality where these methods are often especially relevant.
comment: Published in Machine Learning (Springer), vol. 114, no. 12, Article 267, 2025
♻ ☆ Assessing the Macro and Micro Effects of Random Seeds on Fine-Tuning Large Language Models
The impact of random seeds in fine-tuning large language models (LLMs) has been largely overlooked despite its potential influence on model performance.In this study, we systematically evaluate the effects of random seeds on LLMs using the GLUE and SuperGLUE benchmarks. We analyze the macro-level impact through traditional metrics like accuracy and F1, calculating their mean and variance to quantify performance fluctuations. To capture the micro-level effects, we introduce a novel metric, consistency, measuring the stability of individual predictions across runs. Our experiments reveal significant variance at both macro and micro levels, underscoring the need for careful consideration of random seeds in fine-tuning and evaluation.
comment: 7 pages, 5 tables, 3 figures. Accepted at IJCNLP 2025. This is the final, peer-reviewed version of the work, which supersedes and extends the unauthorized draft previously posted as arXiv:2503.07329
♻ ☆ AlignIQL: Policy Alignment in Implicit Q-Learning through Constrained Optimization
Implicit Q-learning (IQL) serves as a strong baseline for offline RL, which learns the value function using only dataset actions through quantile regression. However, it is unclear how to recover the implicit policy from the learned implicit Q-function and why IQL can utilize weighted regression for policy extraction. IDQL reinterprets IQL as an actor-critic method and gets weights of implicit policy, however, this weight only holds for the optimal value function. In this work, we introduce a different way to solve the implicit policy-finding problem (IPF) by formulating this problem as an optimization problem. Based on this optimization problem, we further propose two practical algorithms AlignIQL and AlignIQL-hard, which inherit the advantages of decoupling actor from critic in IQL and provide insights into why IQL can use weighted regression for policy extraction. Compared with IQL and IDQL, we find our method keeps the simplicity of IQL and solves the implicit policy-finding problem. Experimental results on D4RL datasets show that our method achieves competitive or superior results compared with other SOTA offline RL methods. Especially in complex sparse reward tasks like Antmaze and Adroit, our method outperforms IQL and IDQL by a significant margin.
comment: 32 pages, 1 figure, 13 tables
♻ ☆ A Survey of Graph Neural Networks in Real world: Imbalance, Noise, Privacy and OOD Challenges
Graph-structured data exhibits universality and widespread applicability across diverse domains, such as social network analysis, biochemistry, financial fraud detection, and network security. Significant strides have been made in leveraging Graph Neural Networks (GNNs) to achieve remarkable success in these areas. However, in real-world scenarios, the training environment for models is often far from ideal, leading to substantial performance degradation of GNN models due to various unfavorable factors, including imbalance in data distribution, the presence of noise in erroneous data, privacy protection of sensitive information, and generalization capability for out-of-distribution (OOD) scenarios. To tackle these issues, substantial efforts have been devoted to improving the performance of GNN models in practical real-world scenarios, as well as enhancing their reliability and robustness. In this paper, we present a comprehensive survey that systematically reviews existing GNN models, focusing on solutions to the four mentioned real-world challenges including imbalance, noise, privacy, and OOD in practical scenarios that many existing reviews have not considered. Specifically, we first highlight the four key challenges faced by existing GNNs, paving the way for our exploration of real-world GNN models. Subsequently, we provide detailed discussions on these four aspects, dissecting how these solutions contribute to enhancing the reliability and robustness of GNN models. Last but not least, we outline promising directions and offer future perspectives in the field.
comment: Accepted by IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI 2025)
♻ ☆ HALO: Hadamard-Assisted Lower-Precision Optimization for LLMs
Quantized training of Large Language Models (LLMs) remains an open challenge, as maintaining accuracy while performing all matrix multiplications in low precision has proven difficult. This is particularly the case when fine-tuning pre-trained models, which can have large weight and activation outlier values that make lower-precision optimization difficult. To address this, we present HALO, a novel quantization-aware training approach for Transformers that enables accurate and efficient low-precision training by combining 1) strategic placement of Hadamard rotations in both forward and backward passes, which mitigate outliers, 2) high-performance kernel support, and 3) FSDP integration for low-precision communication. Our approach ensures that all large matrix multiplications during the forward and backward passes are executed in lower precision. Applied to LLAMA-family models, HALO achieves near-full-precision-equivalent results during fine-tuning on various tasks, while delivering up to 1.41x end-to-end speedup for full fine-tuning on RTX 4090 GPUs. HALO efficiently supports both standard and parameterefficient fine-tuning (PEFT). Our results demonstrate the first practical approach to fully quantized LLM fine-tuning that maintains accuracy in 8-bit precision, while delivering performance benefits. Code is available at https://github.com/IST-DASLab/HALO.
comment: 19 pages, 6 figures
♻ ☆ How does training shape the Riemannian geometry of neural network representations?
In machine learning, there is a long history of trying to build neural networks that can learn from fewer example data by baking in strong geometric priors. However, it is not always clear a priori what geometric constraints are appropriate for a given task. Here, we explore the possibility that one can uncover useful geometric inductive biases by studying how training molds the Riemannian geometry induced by unconstrained neural network feature maps. We first show that at infinite width, neural networks with random parameters induce highly symmetric metrics on input space. This symmetry is broken by feature learning: networks trained to perform classification tasks learn to magnify local areas along decision boundaries. This holds in deep networks trained on high-dimensional image classification tasks, and even in self-supervised representation learning. These results begin to elucidate how training shapes the geometry induced by unconstrained neural network feature maps, laying the groundwork for an understanding of this richly nonlinear form of feature learning.
comment: 92 pages, 48 figures
♻ ☆ Breaking the Black Box: Inherently Interpretable Physics-Constrained Machine Learning With Weighted Mixed-Effects for Imbalanced Seismic Data
Ground motion models (GMMs) are critical for seismic risk mitigation and infrastructure design. Machine learning (ML) is increasingly applied to GMM development due to expanding strong motion databases. However, existing ML-based GMMs operate as 'black boxes,' creating opacity that undermines confidence in engineering decisions. Moreover, seismic datasets exhibit severe imbalance, with scarce large-magnitude near-field records causing systematic underprediction of critical high-hazard ground motions. Despite these limitations, research addressing both interpretability and data imbalance remains limited. This study develops an inherently interpretable neural network employing independent additive pathways with novel HazBinLoss and concurvity regularization. HazBinLoss integrates physics-constrained weighting with inverse bin count scaling to address underfitting in sparse, high-hazard regions. Concurvity regularization enforces pathway orthogonality, reducing inter-pathway correlation. The model achieves robust performance: mean squared error = 0.6235, mean absolute error = 0.6230, and coefficient of determination = 88.48%. Pathway scaling corroborates established seismological behaviors. Weighted hierarchical Student-t mixed-effects analysis demonstrates unbiased residuals with physically consistent variance partitioning: sigma components range from 0.26-0.38 (inter-event), 0.12-0.41 (inter-region), 0.58-0.71 (intra-event), and 0.68-0.89 (total). The lower inter-event and higher intra-event components have implications for non-ergodic hazard analysis. Predictions exhibit strong agreement with NGA-West2 GMMs across diverse conditions. This interpretable framework advances GMMs, establishing a transparent, physics-consistent foundation for seismic hazard and risk assessment.
comment: 10 Figures and 2 Tables
♻ ☆ ADPO: Anchored Direct Preference Optimization
Direct Preference Optimization (DPO) has become a standard for aligning models with human feedback, yet its reliance on hard, pairwise preferences makes it brittle to annotator noise and distribution shift. We propose Anchored Direct Preference Optimization (ADPO), a theoretically grounded framework that extends preference learning to soft, listwise supervision through reference anchoring. Our key theoretical contributions are threefold: (1) we establish that ADPO unifies major learning paradigms, including supervised fine-tuning, knowledge distillation, maximum-entropy reinforcement learning, and DPO, as special cases through different choices of target distribution, anchor policy, and temperature; (2) we prove that anchoring induces an implicit trust region governed by the softmax Fisher metric; and (3) we formalize the stability of dynamic anchor updates. Empirically, we discover a task-dependent tradeoff: dynamic anchors suit online exploration, while fixed anchors excel at offline distillation, reducing teacher-student KL divergence by two to three orders of magnitude (170 to 5000 times).
♻ ☆ DE3S: Dual-Enhanced Soft-Sparse-Shape Learning for Medical Early Time-Series Classification
Early Time Series Classification (ETSC) is critical in time-sensitive medical applications such as sepsis, yet it presents an inherent trade-off between accuracy and earliness. This trade-off arises from two core challenges: 1) models should effectively model inherently weak and noisy early-stage snippets, and 2) they should resolve the complex, dual requirement of simultaneously capturing local, subject-specific variations and overarching global temporal patterns. Existing methods struggle to overcome these underlying challenges, often forcing a severe compromise: sacrificing accuracy to achieve earliness, or vice-versa. We propose \textbf{DE3S}, a \textbf{D}ual-\textbf{E}nhanced \textbf{S}oft-\textbf{S}parse \textbf{S}equence Learning framework, which systematically solves these challenges. A dual enhancement mechanism is proposed to enhance the modeling of weak, early signals. Then, an attention-based patch module is introduced to preserve discriminative information while reducing noise and complexity. A dual-path fusion architecture is designed, using a sparse mixture of experts to model local, subject-specific variations. A multi-scale inception module is also employed to capture global dependencies. Experiments on six real-world medical datasets show the competitive performance of DE3S, particularly in early prediction windows. Ablation studies confirm the effectiveness of each component in addressing its targeted challenge. The source code is available \href{https://github.com/kuxit/DE3S}{\textbf{here}}.
comment: Accepted to IEEE BIBM 2025
♻ ☆ From Haystack to Needle: Label Space Reduction for Zero-shot Classification
We present Label Space Reduction (LSR), a novel method for improving zero-shot classification performance of Large Language Models (LLMs). LSR iteratively refines the classification label space by systematically ranking and reducing candidate classes, enabling the model to concentrate on the most relevant options. By leveraging unlabeled data with the statistical learning capabilities of data-driven models, LSR dynamically optimizes the label space representation at test time. Our experiments across seven benchmarks demonstrate that LSR improves macro-F1 scores by an average of 7.0% (up to 14.2%) with Llama-3.1-70B and 3.3% (up to 11.1%) with Claude-3.5-Sonnet compared to standard zero-shot classification baselines. To reduce the computational overhead of LSR, which requires an additional LLM call at each iteration, we propose distilling the model into a probabilistic classifier, allowing for efficient inference.
comment: Add acknowledgment
♻ ☆ Stable Port-Hamiltonian Neural Networks
In recent years, nonlinear dynamic system identification using artificial neural networks has garnered attention due to its broad potential applications across science and engineering. However, purely data-driven approaches often struggle with extrapolation and may yield physically implausible forecasts. Furthermore, the learned dynamics can exhibit instabilities, making it difficult to apply such models safely and robustly. This article introduces stable port-Hamiltonian neural networks, a machine learning architecture that incorporates physical biases of energy conservation and dissipation while ensuring global Lyapunov stability of the learned dynamics. Through illustrative and real-world examples, we demonstrate that these strong inductive biases facilitate robust learning of stable dynamics from sparse data, while avoiding instability and surpassing purely data-driven approaches in accuracy and physically meaningful generalization. Furthermore, the model's applicability and potential for data-driven surrogate modeling are showcased on multi-physics simulation data.
♻ ☆ Traversal Verification for Speculative Tree Decoding NeurIPS 2025
Speculative decoding is a promising approach for accelerating large language models. The primary idea is to use a lightweight draft model to speculate the output of the target model for multiple subsequent timesteps, and then verify them in parallel to determine whether the drafted tokens should be accepted or rejected. To enhance acceptance rates, existing frameworks typically construct token trees containing multiple candidates in each timestep. However, their reliance on token-level verification mechanisms introduces two critical limitations: First, the probability distribution of a sequence differs from that of individual tokens, leading to suboptimal acceptance length. Second, current verification schemes begin from the root node and proceed layer by layer in a top-down manner. Once a parent node is rejected, all its child nodes should be discarded, resulting in inefficient utilization of speculative candidates. This paper introduces Traversal Verification, a novel speculative decoding algorithm that fundamentally rethinks the verification paradigm through leaf-to-root traversal. Our approach considers the acceptance of the entire token sequence from the current node to the root, and preserves potentially valid subsequences that would be prematurely discarded by existing methods. We theoretically prove that the probability distribution obtained through Traversal Verification is identical to that of the target model, guaranteeing lossless inference while achieving substantial acceleration gains. Experimental results across different large language models and multiple tasks show that our method consistently improves acceptance length and throughput over existing methods.
comment: NeurIPS 2025 poster
♻ ☆ Constraint-Driven Small Language Models Based on Agent and OpenAlex Knowledge Graph: Mining Conceptual Pathways and Discovering Innovation Points in Academic Papers
In recent years, the rapid increase in academic publications across various fields has posed severe challenges for academic paper analysis: scientists struggle to timely and comprehensively track the latest research findings and methodologies. Key concept extraction has proven to be an effective analytical paradigm, and its automation has been achieved with the widespread application of language models in industrial and scientific domains. However, existing paper databases are mostly limited to similarity matching and basic classification of key concepts, failing to deeply explore the relational networks between concepts. This paper is based on the OpenAlex opensource knowledge graph. By analyzing nearly 8,000 open-source paper data from Novosibirsk State University, we discovered a strong correlation between the distribution patterns of paper key concept paths and both innovation points and rare paths. We propose a prompt engineering-based key concept path analysis method. This method leverages small language models to achieve precise key concept extraction and innovation point identification, and constructs an agent based on a knowledge graph constraint mechanism to enhance analysis accuracy. Through fine-tuning of the Qwen and DeepSeek models, we achieved significant improvements in accuracy, with the models publicly available on the Hugging Face platform.
comment: 11 pages, 10 figures
♻ ☆ A Theoretical Framework for Grokking: Interpolation followed by Riemannian Norm Minimisation NeurIPS 2025
We study the dynamics of gradient flow with small weight decay on general training losses $F: \mathbb{R}^d \to \mathbb{R}$. Under mild regularity assumptions and assuming convergence of the unregularised gradient flow, we show that the trajectory with weight decay $\lambda$ exhibits a two-phase behaviour as $\lambda \to 0$. During the initial fast phase, the trajectory follows the unregularised gradient flow and converges to a manifold of critical points of $F$. Then, at time of order $1/\lambda$, the trajectory enters a slow drift phase and follows a Riemannian gradient flow minimising the $\ell_2$-norm of the parameters. This purely optimisation-based phenomenon offers a natural explanation for the \textit{grokking} effect observed in deep learning, where the training loss rapidly reaches zero while the test loss plateaus for an extended period before suddenly improving. We argue that this generalisation jump can be attributed to the slow norm reduction induced by weight decay, as explained by our analysis. We validate this mechanism empirically on several synthetic regression tasks.
comment: NeurIPS 2025 camera ready version
♻ ☆ Data Quality Monitoring for the Hadron Calorimeters Using Transfer Learning for Anomaly Detection
The proliferation of sensors brings an immense volume of spatio-temporal (ST) data in many domains, including monitoring, diagnostics, and prognostics applications. Data curation is a time-consuming process for a large volume of data, making it challenging and expensive to deploy data analytics platforms in new environments. Transfer learning (TL) mechanisms promise to mitigate data sparsity and model complexity by utilizing pre-trained models for a new task. Despite the triumph of TL in fields like computer vision and natural language processing, efforts on complex ST models for anomaly detection (AD) applications are limited. In this study, we present the potential of TL within the context of high-dimensional ST AD with a hybrid autoencoder architecture, incorporating convolutional, graph, and recurrent neural networks. Motivated by the need for improved model accuracy and robustness, particularly in scenarios with limited training data on systems with thousands of sensors, this research investigates the transferability of models trained on different sections of the Hadron Calorimeter of the Compact Muon Solenoid experiment at CERN. The key contributions of the study include exploring TL's potential and limitations within the context of encoder and decoder networks, revealing insights into model initialization and training configurations that enhance performance while substantially reducing trainable parameters and mitigating data contamination effects. Code: https://github.com/muleina/CMS\_HCAL\_ML\_OnlineDQM .
comment: 25 pages, 14 figures, 7 tables, and published version of "aXriv:2408.16612v1: Data Quality Monitoring through Transfer Learning on Anomaly Detection for the Hadron Calorimeters"
♻ ☆ Multivariate Bernoulli Hoeffding Decomposition: From Theory to Sensitivity Analysis
Understanding the behavior of predictive models with random inputs can be achieved through functional decompositions into sub-models that capture interpretable effects of input groups. Building on recent advances in uncertainty quantification, the existence and uniqueness of a generalized Hoeffding decomposition have been established for correlated input variables, using oblique projections onto suitable functional subspaces. This work focuses on the case of Bernoulli inputs and provides a complete analytical characterization of the decomposition. We show that, in this discrete setting, the associated subspaces are one-dimensional and that the decomposition admits a closed-form representation. One of the main contributions of this study is to generalize the classical Fourier--Walsh--Hadamard decomposition for pseudo-Boolean functions to the correlated case, yielding an oblique version when the underlying distribution is not a product measure, and recovering the standard orthogonal form when independence holds. This explicit structure offers a fully interpretable framework, clarifying the contribution of each input combination and theoretically enabling model reverse engineering. From this formulation, explicit sensitivity measures-such as Sobol' indices and Shapley effects-can be directly derived. Numerical experiments illustrate the practical interest of the approach for decision-support problems involving binary features. The paper concludes with perspectives on extending the methodology to high-dimensional settings and to models involving inputs with finite, non-binary support.
♻ ☆ Scalable Evaluation and Neural Models for Compositional Generalization NeurIPS
Compositional generalization-a key open challenge in modern machine learning-requires models to predict unknown combinations of known concepts. However, assessing compositional generalization remains a fundamental challenge due to the lack of standardized evaluation protocols and the limitations of current benchmarks, which often favor efficiency over rigor. At the same time, general-purpose vision architectures lack the necessary inductive biases, and existing approaches to endow them compromise scalability. As a remedy, this paper introduces: 1) a rigorous evaluation framework that unifies and extends previous approaches while reducing computational requirements from combinatorial to constant; 2) an extensive and modern evaluation on the status of compositional generalization in supervised vision backbones, training more than 5000 models; 3) Attribute Invariant Networks, a class of models establishing a new Pareto frontier in compositional generalization, achieving a 23.43% accuracy improvement over baselines while reducing parameter overhead from 600% to 16% compared to fully disentangled counterparts. Our code is available at https://github.com/IBM/scalable-compositional-generalization.
comment: Accepted at the Thirty-ninth Annual Conference on Neural Information Processing Systems (NeurIPS), 2025
♻ ☆ CLIP Meets Diffusion: A Synergistic Approach to Anomaly Detection
Anomaly detection is a complex problem due to the ambiguity in defining anomalies, the diversity of anomaly types (e.g., local and global defect), and the scarcity of training data. As such, it necessitates a comprehensive model capable of capturing both low-level and high-level features, even with limited data. To address this, we propose CLIPFUSION, a method that leverages both discriminative and generative foundation models. Specifically, the CLIP-based discriminative model excels at capturing global features, while the diffusion-based generative model effectively captures local details, creating a synergistic and complementary approach. Notably, we introduce a methodology for utilizing cross-attention maps and feature maps extracted from diffusion models specifically for anomaly detection. Experimental results on benchmark datasets (MVTec-AD, VisA) demonstrate that CLIPFUSION consistently outperforms baseline methods, achieving outstanding performance in both anomaly segmentation and classification. We believe that our method underscores the effectiveness of multi-modal and multi-model fusion in tackling the multifaceted challenges of anomaly detection, providing a scalable solution for real-world applications.
comment: Accepted at TMLR 2025
♻ ☆ Learning noisy tissue dynamics across time scales
Tissue dynamics play a crucial role in biological processes ranging from inflammation to morphogenesis. However, these noisy multicellular dynamics are notoriously hard to predict. Here, we introduce a biomimetic machine learning framework capable of inferring noisy multicellular dynamics directly from experimental movies. This generative model combines graph neural networks, normalizing flows and WaveNet algorithms to represent tissues as neural stochastic differential equations where cells are edges of an evolving graph. Cell interactions are encoded in a dual signaling graph capable of handling signaling cascades. The dual graph architecture of our neural networks reflects the architecture of the underlying biological tissues, substantially reducing the amount of data needed for training, compared to convolutional or fully-connected neural networks. Taking epithelial tissue experiments as a case study, we show that our model not only captures stochastic cell motion but also predicts the evolution of cell states in their division cycle. Finally, we demonstrate that our method can accurately generate the experimental dynamics of developmental systems, such as the fly wing, and cell signaling processes mediated by stochastic ERK waves, paving the way for its use as a digital twin in bioengineering and clinical contexts.
comment: 15 pages, 6 figures
♻ ☆ Why Machine Learning Models Fail to Fully Capture Epistemic Uncertainty
In recent years various supervised learning methods that disentangle aleatoric and epistemic uncertainty based on second-order distributions have been proposed. We argue that these methods fail to capture critical components of epistemic uncertainty, particularly due to the often-neglected component of model bias. To show this, we make use of a more fine-grained taxonomy of epistemic uncertainty sources in machine learning models, and analyse how the classical bias-variance decomposition of the expected prediction error can be decomposed into different parts reflecting these uncertainties. By using a simulation-based evaluation protocol which encompasses epistemic uncertainty due to both procedural- and data-driven uncertainty components, we illustrate that current methods rarely capture the full spectrum of epistemic uncertainty. Through theoretical insights and synthetic experiments, we show that high model bias can lead to misleadingly low estimates of epistemic uncertainty, and common second-order uncertainty quantification methods systematically blur bias-induced errors into aleatoric estimates, thereby underrepresenting epistemic uncertainty. Our findings underscore that meaningful aleatoric estimates are feasible only if all relevant sources of epistemic uncertainty are properly represented.
♻ ☆ On Measuring Localization of Shortcuts in Deep Networks
Shortcuts, spurious rules that perform well during training but fail to generalize, present a major challenge to the reliability of deep networks (Geirhos et al., 2020). However, the impact of shortcuts on feature representations remains understudied, obstructing the design of principled shortcut-mitigation methods. To overcome this limitation, we investigate the layer-wise localization of shortcuts in deep models. Our novel experiment design quantifies the layer-wise contribution to accuracy degradation caused by a shortcut-inducing skew by counterfactual training on clean and skewed datasets. We employ our design to study shortcuts on CIFAR-10, Waterbirds, and CelebA datasets across VGG, ResNet, DeiT, and ConvNeXt architectures. We find that shortcut learning is not localized in specific layers but distributed throughout the network. Different network parts play different roles in this process: shallow layers predominantly encode spurious features, while deeper layers predominantly forget core features that are predictive on clean data. We also analyze the differences in localization and describe its principal axes of variation. Finally, our analysis of layer-wise shortcut-mitigation strategies suggests the hardness of designing general methods, supporting dataset- and architecture-specific approaches instead.
♻ ☆ Sundial: A Family of Highly Capable Time Series Foundation Models
We introduce Sundial, a family of native, flexible, and scalable time series foundation models. To predict the next-patch's distribution, we propose a TimeFlow Loss based on flow-matching, which facilitates native pre-training of Transformers on continuous-valued time series without discrete tokenization. Conditioned on arbitrary-length time series, our models are pre-trained without specifying any prior distribution and can generate multiple probable predictions, achieving more flexibility in representation learning than using parametric densities. Towards time series foundation models, we leverage minimal but crucial adaptations of Transformers and curate TimeBench with one trillion time points, comprising mostly real-world datasets and synthetic data. By mitigating mode collapse via TimeFlow Loss, we pre-train a family of Sundial models on TimeBench, which achieve unprecedented model capacity and generalization performance. In addition to excellent scalability, Sundial achieves state-of-the-art results on both point and probabilistic forecasting benchmarks with a just-in-time inference speed, i.e., making zero-shot predictions within a few milliseconds. We believe that Sundial's pioneering generative forecasting capability can improve model reliability in real-world decision-making. Code is available at: https://github.com/thuml/Sundial.
♻ ☆ DiCoFlex: Model-agnostic diverse counterfactuals with flexible control
Counterfactual explanations play a pivotal role in explainable artificial intelligence (XAI) by offering intuitive, human-understandable alternatives that elucidate machine learning model decisions. Despite their significance, existing methods for generating counterfactuals often require constant access to the predictive model, involve computationally intensive optimization for each instance and lack the flexibility to adapt to new user-defined constraints without retraining. In this paper, we propose DiCoFlex, a novel model-agnostic, conditional generative framework that produces multiple diverse counterfactuals in a single forward pass. Leveraging conditional normalizing flows trained solely on labeled data, DiCoFlex addresses key limitations by enabling real-time user-driven customization of constraints such as sparsity and actionability at inference time. Extensive experiments on standard benchmark datasets show that DiCoFlex outperforms existing methods in terms of validity, diversity, proximity, and constraint adherence, making it a practical and scalable solution for counterfactual generation in sensitive decision-making domains.
♻ ☆ DiffSpectra: Molecular Structure Elucidation from Spectra using Diffusion Models
Molecular structure elucidation from spectra is a fundamental challenge in molecular science. Conventional approaches rely heavily on expert interpretation and lack scalability, while retrieval-based machine learning approaches remain constrained by limited reference libraries. Generative models offer a promising alternative, yet most adopt autoregressive architectures that overlook 3D geometry and struggle to integrate diverse spectral modalities. In this work, we present DiffSpectra, a generative framework that formulates molecular structure elucidation as a conditional generation process, directly inferring 2D and 3D molecular structures from multi-modal spectra using diffusion models. Its denoising network is parameterized by the Diffusion Molecule Transformer, an SE(3)-equivariant architecture for geometric modeling, conditioned by SpecFormer, a Transformer-based spectral encoder capturing multi-modal spectral dependencies. Extensive experiments demonstrate that DiffSpectra accurately elucidates molecular structures, achieving 40.76% top-1 and 99.49% top-10 accuracy. Its performance benefits substantially from 3D geometric modeling, SpecFormer pre-training, and multi-modal conditioning. To our knowledge, DiffSpectra is the first framework that unifies multi-modal spectral reasoning and joint 2D/3D generative modeling for de novo molecular structure elucidation.
♻ ☆ Efficient Latent Variable Causal Discovery: Combining Score Search and Targeted Testing
Learning causal structure from observational data is especially challenging when latent variables or selection bias are present. The Fast Causal Inference (FCI) algorithm addresses this setting but performs exhaustive conditional independence tests across many subsets, often leading to spurious independences, missing or extra edges, and unreliable orientations. We present a family of score-guided mixed-strategy causal search algorithms that extend this framework. First, we introduce BOSS-FCI and GRaSP-FCI, variants of GFCI (Greedy Fast Causal Inference) that substitute BOSS (Best Order Score Search) or GRaSP (Greedy Relaxations of Sparsest Permutation) for FGES (Fast Greedy Equivalence Search), preserving correctness while trading off scalability and conservativeness. Second, we develop FCI Targeted-Testing (FCIT), a novel hybrid method that replaces exhaustive testing with targeted, score-informed tests guided by BOSS. FCIT guarantees well-formed PAGs and achieves higher precision and efficiency across sample sizes. Finally, we propose a lightweight heuristic, LV-Dumb (Latent Variable "Dumb"), which returns the PAG of the BOSS DAG (Directed Acyclic Graph). Though not strictly sound for latent confounding, LV-Dumb often matches FCIT's accuracy while running substantially faster. Simulations and real-data analyses show that BOSS-FCI and GRaSP-FCI provide robust baselines, FCIT yields the best balance of precision and reliability, and LV-Dumb offers a fast, near-equivalent alternative. Together, these methods demonstrate that targeted and score-guided strategies can dramatically improve the efficiency and correctness of latent-variable causal discovery.
comment: 30 pages, 44 figures, 6 tables
♻ ☆ MetaFed: Advancing Privacy, Performance, and Sustainability in Federated Metaverse Systems ICCV
The rapid expansion of immersive Metaverse applications introduces complex challenges at the intersection of performance, privacy, and environmental sustainability. Centralized architectures fall short in addressing these demands, often resulting in elevated energy consumption, latency, and privacy concerns. This paper proposes MetaFed, a decentralized federated learning (FL) framework that enables sustainable and intelligent resource orchestration for Metaverse environments. MetaFed integrates (i) multi-agent reinforcement learning for dynamic client selection, (ii) privacy-preserving FL using homomorphic encryption, and (iii) carbon-aware scheduling aligned with renewable energy availability. Evaluations on MNIST and CIFAR-10 using lightweight ResNet architectures demonstrate that MetaFed achieves up to 25% reduction in carbon emissions compared to conventional approaches, while maintaining high accuracy and minimal communication overhead. These results highlight MetaFed as a scalable solution for building environmentally responsible and privacy-compliant Metaverse infrastructures.
comment: 2025 IEEE International Symposium on Emerging Metaverse (ISEMV), co-located with the 2025 IEEE/CVF International Conference on Computer Vision (ICCV)
♻ ☆ Towards Interpretable and Efficient Attention: Compressing All by Contracting a Few NeurIPS2025
Attention mechanisms have achieved significant empirical success in multiple fields, but their underlying optimization objectives remain unclear yet. Moreover, the quadratic complexity of self-attention has become increasingly prohibitive. Although interpretability and efficiency are two mutually reinforcing pursuits, prior work typically investigates them separately. In this paper, we propose a unified optimization objective that derives inherently interpretable and efficient attention mechanisms through algorithm unrolling. Precisely, we construct a gradient step of the proposed objective with a set of forward-pass operations of our \emph{Contract-and-Broadcast Self-Attention} (CBSA), which compresses input tokens towards low-dimensional structures by contracting a few representatives of them. This novel mechanism can not only scale linearly by fixing the number of representatives, but also covers the instantiations of varied attention mechanisms when using different sets of representatives. We conduct extensive experiments to demonstrate comparable performance and superior advantages over black-box attention mechanisms on visual tasks. Our work sheds light on the integration of interpretability and efficiency, as well as the unified formula of attention mechanisms.
comment: NeurIPS2025 Spotlight; Code is available at https://github.com/QishuaiWen/CBSA
♻ ☆ REFA: Reference Free Alignment for multi-preference optimization
To mitigate reward hacking from response verbosity, modern preference optimization methods are increasingly adopting length normalization (e.g., SimPO, ORPO, LN-DPO). While effective against this bias, we demonstrate that length normalization itself introduces a failure mode: the URSLA shortcut. Here models learn to satisfy the alignment objective by prematurely truncating low-quality responses rather than learning from their semantic content. To address this, we introduce REFA, a new alignment framework that proposes probabilistic control on a structural token that controls termination. Our core innovation is a new class of regularizers that operate directly on the probability of the End-of-Sequence (EOS) token, a previously unexploited control lever. This token-level intervention provides a principled solution to the URSLA shortcut, ensuring genuine quality improvements. Furthermore, it unlocks a versatile mechanism for managing the alignment-efficiency tradeoff, enabling practitioners to fine-tune models that adhere to specific token budgets. Empirically, REFA achieves a 60.29% win rate and a 52.17% length-controlled win rate on AlpacaEval2 with Llama-3-8B-Instruct, demonstrating the power of our token-level control paradigm.
♻ ☆ The Mirror Loop: Recursive Non-Convergence in Generative Reasoning Systems
Large language models are often described as capable of reflective reasoning, yet recursive self-evaluation without external feedback frequently yields reformulation rather than progress. We test this prediction in a cross-provider study of 144 reasoning sequences across three models (OpenAI GPT-4o-mini, Anthropic Claude 3 Haiku, and Google Gemini 2.0 Flash) and four task families (arithmetic, code, explanation, reflection), each iterated ten times under two conditions: ungrounded self-critique and a minimal grounding intervention (a single verification step at iteration three). Mean informational change (delta I, measured via normalized edit distance) declined by 55% from early (0.193) to late (0.087) iterations in ungrounded runs, with consistent patterns across all three providers. Grounded runs showed a +28% rebound in informational change immediately after the intervention and sustained non-zero variance thereafter. Complementary measures-n-gram novelty, embedding drift, and character-level entropy-converged on the same pattern: reflection without contact tends toward informational closure. We interpret this as evidence for a structural limit on self-correction in generative reasoning: without an exchange of information with an independent verifier or environment, recursive inference approaches an attractor state of epistemic stasis. Minimal grounding functions as dissipative coupling, reintroducing informational flux. The cross-architecture consistency suggests the mirror loop arises from shared autoregressive training objectives rather than provider-specific alignment schemes. The results delineate when reflection is performative rather than epistemic and motivate design principles for grounded, cooperative reasoning. Materials and code are publicly available.
comment: 18 pages, 2 figures. Category: cs.LG. Code and data: https://github.com/Course-Correct-Labs/mirror-loop
♻ ☆ NOWS: Neural Operator Warm Starts for Accelerating Iterative Solvers
Partial differential equations (PDEs) underpin quantitative descriptions across the physical sciences and engineering, yet high-fidelity simulation remains a major computational bottleneck for many-query, real-time, and design tasks. Data-driven surrogates can be strikingly fast but are often unreliable when applied outside their training distribution. Here we introduce Neural Operator Warm Starts (NOWS), a hybrid strategy that harnesses learned solution operators to accelerate classical iterative solvers by producing high-quality initial guesses for Krylov methods such as conjugate gradient and GMRES. NOWS leaves existing discretizations and solver infrastructures intact, integrating seamlessly with finite-difference, finite-element, isogeometric analysis, finite volume method, etc. Across our benchmarks, the learned initialization consistently reduces iteration counts and end-to-end runtime, resulting in a reduction of the computational time of up to 90 %, while preserving the stability and convergence guarantees of the underlying numerical algorithms. By combining the rapid inference of neural operators with the rigor of traditional solvers, NOWS provides a practical and trustworthy approach to accelerate high-fidelity PDE simulations.
♻ ☆ NeuralSurv: Deep Survival Analysis with Bayesian Uncertainty Quantification
We introduce NeuralSurv, the first deep survival model to incorporate Bayesian uncertainty quantification. Our non-parametric, architecture-agnostic framework captures time-varying covariate-risk relationships in continuous time via a novel two-stage data-augmentation scheme, for which we establish theoretical guarantees. For efficient posterior inference, we introduce a mean-field variational algorithm with coordinate-ascent updates that scale linearly in model size. By locally linearizing the Bayesian neural network, we obtain full conjugacy and derive all coordinate updates in closed form. In experiments, NeuralSurv delivers superior calibration compared to state-of-the-art deep survival models, while matching or exceeding their discriminative performance across both synthetic benchmarks and real-world datasets. Our results demonstrate the value of Bayesian principles in data-scarce regimes by enhancing model calibration and providing robust, well-calibrated uncertainty estimates for the survival function.
♻ ☆ CoTox: Chain-of-Thought-Based Molecular Toxicity Reasoning and Prediction
Drug toxicity remains a major challenge in pharmaceutical development. Recent machine learning models have improved in silico toxicity prediction, but their reliance on annotated data and lack of interpretability limit their applicability. This limits their ability to capture organ-specific toxicities driven by complex biological mechanisms. Large language models (LLMs) offer a promising alternative through step-by-step reasoning and integration of textual data, yet prior approaches lack biological context and transparent rationale. To address this issue, we propose CoTox, a novel framework that integrates LLM with chain-of-thought (CoT) reasoning for multi-toxicity prediction. CoTox combines chemical structure data, biological pathways, and gene ontology (GO) terms to generate interpretable toxicity predictions through step-by-step reasoning. Using GPT-4o, we show that CoTox outperforms both traditional machine learning and deep learning model. We further examine its performance across various LLMs to identify where CoTox is most effective. Additionally, we find that representing chemical structures with IUPAC names, which are easier for LLMs to understand than SMILES, enhances the model's reasoning ability and improves predictive performance. To demonstrate its practical utility in drug development, we simulate the treatment of relevant cell types with drug and incorporated the resulting biological context into the CoTox framework. This approach allow CoTox to generate toxicity predictions aligned with physiological responses, as shown in case study. This result highlights the potential of LLM-based frameworks to improve interpretability and support early-stage drug safety assessment. The code and prompt used in this work are available at https://github.com/dmis-lab/CoTox.
comment: Accepted to IEEE BIBM 2025
♻ ☆ A data-driven framework for team selection in Fantasy Premier League
Fantasy football is a billion-dollar industry with millions of participants. Under a fixed budget, managers select squads to maximize future Fantasy Premier League (FPL) points. This study formulates lineup selection as data-driven optimization and develops deterministic and robust mixed-integer linear programs that choose the starting eleven, bench, and captain under budget, formation, and club-quota constraints (maximum three players per club). The objective is parameterized by a hybrid scoring metric that combines realized FPL points with predictions from a linear regression model trained on match-performance features identified using exploratory data analysis techniques. The study benchmarks alternative objectives and cost estimators, including simple and recency-weighted averages, exponential smoothing, autoregressive integrated moving average (ARIMA), and Monte Carlo simulation. Experiments on the 2023/24 Premier League season show that ARIMA with a constrained budget and a rolling window yields the most consistent out-of-sample performance; weighted averages and Monte Carlo are also competitive. Robust variants improve some objectives but are not uniformly superior. The framework provides transparent decision support for fantasy roster construction and extends to FPL chips, multi-week rolling-horizon transfer planning, and week-by-week dynamic captaincy.
♻ ☆ UniFault: A Fault Diagnosis Foundation Model from Bearing Data
Machine fault diagnosis (FD) is a critical task for predictive maintenance, enabling early fault detection and preventing unexpected failures. Despite its importance, existing FD models are operation-specific with limited generalization across diverse datasets. Foundation models (FM) have demonstrated remarkable potential in both visual and language domains, achieving impressive generalization capabilities even with minimal data through few-shot or zero-shot learning. However, translating these advances to FD presents unique hurdles. Unlike the large-scale, cohesive datasets available for images and text, FD datasets are typically smaller and more heterogeneous, with significant variations in sampling frequencies and the number of channels across different systems and applications. This heterogeneity complicates the design of a universal architecture capable of effectively processing such diverse data while maintaining robust feature extraction and learning capabilities. In this paper, we introduce UniFault, a foundation model for fault diagnosis that systematically addresses these issues. Specifically, the model incorporates a comprehensive data harmonization pipeline featuring two key innovations. First, a unification scheme transforms multivariate inputs into standardized univariate sequences. Second, a novel cross-domain temporal fusion strategy mitigates distribution shifts and enriches sample diversity and count, improving the model generalization across varying conditions. UniFault is pretrained on over 6.9 million samples spanning diverse FD datasets, enabling superior few-shot performance. Extensive experiments on real-world FD datasets demonstrate that UniFault achieves state-of-the-art performance, setting a new benchmark for fault diagnosis models and paving the way for more scalable and robust predictive maintenance solutions.
♻ ☆ Recurrent neural network-based robust control systems with closed-loop regional incremental ISS and application to MPC design
This paper investigates the design of output-feedback schemes for systems described by a class of recurrent neural networks. We propose a procedure based on linear matrix inequalities for designing an observer and a static state-feedback controller. The algorithm leverages global and regional incremental input-to-state stability (incremental ISS) and enables the tracking of constant setpoints, ensuring robustness to disturbances and state estimation uncertainty. To address the potential limitations of regional incremental ISS, we introduce an alternative scheme in which the static law is replaced with a tube-based nonlinear model predictive controller (NMPC) that exploits regional incremental ISS properties. We show that these conditions enable the formulation of a robust NMPC law with guarantees of convergence and recursive feasibility, leading to an enlarged region of attraction. Theoretical results are validated through numerical simulations on the pH-neutralisation process benchmark.
comment: 16 pages, 5 figures, submitted to IEEE Transactions on Automatic Control (under review)
♻ ☆ VQC-MLPNet: An Unconventional Hybrid Quantum-Classical Architecture for Scalable and Robust Quantum Machine Learning
Variational quantum circuits (VQCs) hold promise for quantum machine learning but face challenges in expressivity, trainability, and noise resilience. We propose VQC-MLPNet, a hybrid architecture where a VQC generates the first-layer weights of a classical multilayer perceptron during training, while inference is performed entirely classically. This design preserves scalability, reduces quantum resource demands, and enables practical deployment. We provide a theoretical analysis based on statistical learning and neural tangent kernel theory, establishing explicit risk bounds and demonstrating improved expressivity and trainability compared to purely quantum or existing hybrid approaches. These theoretical insights demonstrate exponential improvements in representation capacity relative to quantum circuit depth and the number of qubits, providing clear computational advantages over standalone quantum circuits and existing hybrid quantum architectures. Empirical results on diverse datasets, including quantum-dot classification and genomic sequence analysis, show that VQC-MLPNet achieves high accuracy and robustness under realistic noise models, outperforming classical and quantum baselines while using significantly fewer trainable parameters.
comment: In submission
♻ ☆ Robust and Computation-Aware Gaussian Processes
Gaussian processes (GPs) are widely used for regression and optimization tasks such as Bayesian optimization (BO) due to their expressiveness and principled uncertainty estimates. However, in settings with large datasets corrupted by outliers, standard GPs and their sparse approximations struggle with computational tractability and robustness. We introduce Robust Computation-aware Gaussian Process (RCaGP), a novel GP model that jointly addresses these challenges by combining a principled treatment of approximation-induced uncertainty with robust generalized Bayesian updating. The key insight is that robustness and approximation-awareness are not orthogonal but intertwined: approximations can exacerbate the impact of outliers, and mitigating one without the other is insufficient. Unlike previous work that focuses narrowly on either robustness or approximation quality, RCaGP combines both in a principled and scalable framework, thus effectively managing both outliers and computational uncertainties introduced by approximations such as low-rank matrix multiplications. Our model ensures more conservative and reliable uncertainty estimates, a property we rigorously demonstrate. Additionally, we establish a robustness property and show that the mean function is key to preserving it, motivating a tailored model selection scheme for robust mean functions. Empirical results confirm that solving these challenges jointly leads to superior performance across both clean and outlier-contaminated settings, both on regression and high-throughput Bayesian optimization benchmarks.
♻ ☆ Large Language Models Miss the Multi-Agent Mark NeurIPS 2025
Recent interest in Multi-Agent Systems of Large Language Models (MAS LLMs) has led to an increase in frameworks leveraging multiple LLMs to tackle complex tasks. However, much of this literature appropriates the terminology of MAS without engaging with its foundational principles. In this position paper, we highlight critical discrepancies between MAS theory and current MAS LLMs implementations, focusing on four key areas: the social aspect of agency, environment design, coordination and communication protocols, and measuring emergent behaviours. Our position is that many MAS LLMs lack multi-agent characteristics such as autonomy, social interaction, and structured environments, and often rely on oversimplified, LLM-centric architectures. The field may slow down and lose traction by revisiting problems the MAS literature has already addressed. Therefore, we systematically analyse this issue and outline associated research opportunities; we advocate for better integrating established MAS concepts and more precise terminology to avoid mischaracterisation and missed opportunities.
comment: NeurIPS 2025 (position track)
♻ ☆ Alleviating Hyperparameter-Tuning Burden in SVM Classifiers for Pulmonary Nodules Diagnosis with Multi-Task Bayesian Optimization
In the field of non-invasive medical imaging, radiomic features are utilized to measure tumor characteristics. However, these features can be affected by the techniques used to discretize the images, ultimately impacting the accuracy of diagnosis. To investigate the influence of various image discretization methods on diagnosis, it is common practice to evaluate multiple discretization strategies individually. This approach often leads to redundant and time-consuming tasks such as training predictive models and fine-tuning hyperparameters separately. This study examines the feasibility of employing multi-task Bayesian optimization to accelerate the hyperparameters search for classifying benign and malignant pulmonary nodules using RBF SVM. Our findings suggest that multi-task Bayesian optimization significantly accelerates the search for hyperparameters in comparison to a single-task approach. To the best of our knowledge, this is the first investigation to utilize multi-task Bayesian optimization in a critical medical context.
comment: 12 pages, 4 figures, 37 references
♻ ☆ TensorHyper-VQC: A Tensor-Train-Guided Hypernetwork for Robust and Scalable Variational Quantum Computing
Variational Quantum Computing (VQC) faces fundamental scalability barriers, primarily due to the presence of barren plateaus and its sensitivity to quantum noise. To address these challenges, we introduce TensorHyper-VQC, a novel tensor-train (TT)-guided hypernetwork framework that significantly improves the robustness and scalability of VQC. Our framework fully delegates the generation of quantum circuit parameters to a classical TT network, effectively decoupling optimization from quantum hardware. This innovative parameterization mitigates gradient vanishing, enhances noise resilience through structured low-rank representations, and facilitates efficient gradient propagation. Grounded in Neural Tangent Kernel and statistical learning theory, our rigorous theoretical analyses establish strong guarantees on approximation capability, optimization stability, and generalization performance. Extensive empirical results across quantum dot classification, Max-Cut optimization, and molecular quantum simulation tasks demonstrate that TensorHyper-VQC consistently achieves superior performance and robust noise tolerance, including hardware-level validation on a 156-qubit IBM Heron processor. These results position TensorHyper-VQC as a scalable and noise-resilient framework for advancing practical quantum machine learning on near-term devices.
comment: In submission
♻ ☆ Aspen Open Jets: Unlocking LHC Data for Foundation Models in Particle Physics
Foundation models are deep learning models pre-trained on large amounts of data which are capable of generalizing to multiple datasets and/or downstream tasks. This work demonstrates how data collected by the CMS experiment at the Large Hadron Collider can be useful in pre-training foundation models for HEP. Specifically, we introduce the AspenOpenJets dataset, consisting of approximately 178M high $p_T$ jets derived from CMS 2016 Open Data. We show how pre-training the OmniJet-$\alpha$ foundation model on AspenOpenJets improves performance on generative tasks with significant domain shift: generating boosted top and QCD jets from the simulated JetClass dataset. In addition to demonstrating the power of pre-training of a jet-based foundation model on actual proton-proton collision data, we provide the ML-ready derived AspenOpenJets dataset for further public use.
comment: 11 pages, 4 figures, the AspenOpenJets dataset can be found at http://doi.org/10.25592/uhhfdm.16505
♻ ☆ Training Optimal Large Diffusion Language Models
We introduce Quokka, the first systematic scaling law for diffusion language models (DLMs), encompassing both compute-constrained and data-constrained regimes, and studying the key modeling and optimization designs. Quokka is a good friend of Chinchilla and provides wider scopes. We hope the results would bring short-term practical guidance in DLMs training and long-term inspirations for the whole AI community.
♻ ☆ AlphaDecay: Module-wise Weight Decay for Heavy-Tailed Balancing in LLMs
Weight decay is a standard regularization technique for training large language models (LLMs). While it is common to assign a uniform decay rate to every layer, this approach overlooks the structural diversity of LLMs and the varying spectral properties across modules. In this paper, we introduce AlphaDecay, a simple yet effective method that adaptively assigns different weight decay strengths to each module of an LLM. Our approach is guided by Heavy-Tailed Self-Regularization (HT-SR) theory, which analyzes the empirical spectral density (ESD) of weight correlation matrices to quantify "heavy-tailedness." Modules exhibiting more pronounced heavy-tailed ESDs, reflecting stronger feature learning, are assigned weaker decay, while modules with lighter-tailed spectra receive stronger decay. Our method leverages tailored weight decay assignments to balance the module-wise differences in spectral properties, leading to improved performance. Extensive pre-training tasks with various model sizes from 60M to 1B demonstrate that AlphaDecay achieves better perplexity and generalization than conventional uniform decay and other adaptive decay baselines. Our code is available at https://github.com/hed-ucas/AlphaDecay.
♻ ☆ VoiceAgentBench: Are Voice Assistants ready for agentic tasks?
Large-scale Speech Language Models (SpeechLMs) have enabled voice assistants capable of understanding natural spoken queries and performing complex tasks. However, existing speech benchmarks primarily focus on isolated capabilities such as transcription, or question-answering, and do not systematically evaluate agentic scenarios encompassing multilingual and cultural understanding, as well as adversarial robustness. To address this, we introduce VoiceAgentBench, a comprehensive benchmark designed to evaluate SpeechLMs in realistic spoken agentic settings. It comprises over 5,500 synthetic spoken queries, including dialogues grounded in Indian context, covering single-tool invocations, multi-tool workflows, multi-turn interactions, and safety evaluations. The benchmark supports English, Hindi, and 5 other Indian languages, reflecting real-world linguistic and cultural diversity. We simulate speaker variability using a novel sampling algorithm that selects audios for TTS voice conversion based on its speaker embeddings, maximizing acoustic and speaker diversity. Our evaluation measures tool selection accuracy, structural consistency, and the correctness of tool invocations, including adversarial robustness. Our experiments reveal significant gaps in contextual tool orchestration tasks, Indic generalization, and adversarial robustness, exposing critical limitations of current SpeechLMs.
♻ ☆ Inverse Entropic Optimal Transport Solves Semi-supervised Learning via Data Likelihood Maximization
Learning conditional distributions $\pi^*(\cdot|x)$ is a central problem in machine learning, which is typically approached via supervised methods with paired data $(x,y) \sim \pi^*$. However, acquiring paired data samples is often challenging, especially in problems such as domain translation. This necessitates the development of $\textit{semi-supervised}$ models that utilize both limited paired data and additional unpaired i.i.d. samples $x \sim \pi^*_x$ and $y \sim \pi^*_y$ from the marginal distributions. The usage of such combined data is complex and often relies on heuristic approaches. To tackle this issue, we propose a new learning paradigm that integrates both paired and unpaired data $\textbf{seamlessly}$ using the data likelihood maximization techniques. We demonstrate that our approach also connects intriguingly with inverse entropic optimal transport (OT). This finding allows us to apply recent advances in computational OT to establish an $\textbf{end-to-end}$ learning algorithm to get $\pi^*(\cdot|x)$. In addition, we derive the universal approximation property, demonstrating that our approach can theoretically recover true conditional distributions with arbitrarily small error. Furthermore, we demonstrate through empirical tests that our method effectively learns conditional distributions using paired and unpaired data simultaneously.
♻ ☆ ReNF: Rethinking the Design Space of Neural Long-Term Time Series Forecasters
Neural Forecasters (NFs) are a cornerstone of Long-term Time Series Forecasting (LTSF). However, progress has been hampered by an overemphasis on architectural complexity at the expense of fundamental forecasting principles. In this work, we return to first principles to redesign the LTSF paradigm. We begin by introducing a Multiple Neural Forecasting Theorem that provides a theoretical basis for our approach. We propose Boosted Direct Output (BDO), a novel forecasting strategy that synergistically combines the advantages of both Auto-Regressive (AR) and Direct Output (DO). In addition, we stabilize the learning process by smoothly tracking the model's parameters. Extensive experiments show that these principled improvements enable a simple MLP to achieve state-of-the-art performance, outperforming recent, complex models in nearly all cases, without any specific considerations in the area. Finally, we empirically verify our theorem, establishing a dynamic performance bound and identifying promising directions for future research. The code for review is available at: .
♻ ☆ CardioForest: An Explainable Ensemble Learning Model for Automatic Wide QRS Complex Tachycardia Diagnosis from ECG
This study aims to develop and evaluate an ensemble machine learning-based framework for the automatic detection of Wide QRS Complex Tachycardia (WCT) from ECG signals, emphasizing diagnostic accuracy and interpretability using Explainable AI. The proposed system integrates ensemble learning techniques, i.e., an optimized Random Forest known as CardioForest, and models like XGBoost and LightGBM. The models were trained and tested on ECG data from the publicly available MIMIC-IV dataset. The testing was carried out with the assistance of accuracy, balanced accuracy, precision, recall, F1 score, ROC-AUC, and error rate (RMSE, MAE) measures. In addition, SHAP (SHapley Additive exPlanations) was used to ascertain model explainability and clinical relevance. The CardioForest model performed best on all metrics, achieving a test accuracy of 95.19%, a balanced accuracy of 88.76%, a precision of 95.26%, a recall of 78.42%, and an ROC-AUC of 0.8886. SHAP analysis confirmed the model's ability to rank the most relevant ECG features, such as QRS duration, in accordance with clinical intuitions, thereby fostering trust and usability in clinical practice. The findings recognize CardioForest as an extremely dependable and interpretable WCT detection model. Being able to offer accurate predictions and transparency through explainability makes it a valuable tool to help cardiologists make timely and well-informed diagnoses, especially for high-stakes and emergency scenarios.
♻ ☆ L2T-Tune:LLM-Guided Hybrid Database Tuning with LHS and TD3
Configuration tuning is critical for database performance. Although recent advancements in database tuning have shown promising results in throughput and latency improvement, challenges remain. First, the vast knob space makes direct optimization unstable and slow to converge. Second, reinforcement learning pipelines often lack effective warm-start guidance and require long offline training. Third, transferability is limited: when hardware or workloads change, existing models typically require substantial retraining to recover performance. To address these limitations, we propose L2T-Tune, a new LLM-guided hybrid database tuning framework that features a three-stage pipeline: Stage one performs a warm start that simultaneously generates uniform samples across the knob space and logs them into a shared pool; Stage two leverages a large language model to mine and prioritize tuning hints from manuals and community documents for rapid convergence. Stage three uses the warm-start sample pool to reduce the dimensionality of knobs and state features, then fine-tunes the configuration with the Twin Delayed Deep Deterministic Policy Gradient algorithm. We conduct experiments on L2T-Tune and the state-of-the-art models. Compared with the best-performing alternative, our approach improves performance by an average of 37.1% across all workloads, and by up to 73% on TPC-C. Compared with models trained with reinforcement learning, it achieves rapid convergence in the offline tuning stage on a single server. Moreover, during the online tuning stage, it only takes 30 steps to achieve best results.
♻ ☆ EVINGCA: Adaptive Graph Clustering with Evolving Neighborhood Statistics
Clustering algorithms often rely on restrictive assumptions: K-Means and Gaussian Mixtures presuppose convex, Gaussian-like clusters, while DBSCAN and HDBSCAN capture non-convexity but can be highly sensitive. I introduce EVINGCA (Evolving Variance-Informed Nonparametric Graph Construction Algorithm), a density-variance based clustering algorithm that treats cluster formation as an adaptive, evolving process on a nearest-neighbor graph. EVINGCA expands rooted graphs via breadth-first search, guided by continuously updated local distance and shape statistics, replacing fixed density thresholds with local statistical feedback. With spatial indexing, EVINGCA features log-linear complexity in the average case and exhibits competitive performance against baselines across a variety of synthetic, real-world, low-d, and high-d datasets.
♻ ☆ RIS-Assisted 3D Spherical Splatting for Object Composition Visualization using Detection Transformers
The pursuit of immersive and structurally aware multimedia experiences has intensified interest in sensing modalities that reconstruct objects beyond the limits of visible light. Conventional optical pipelines degrade under occlusion or low illumination, motivating the use of radio-frequency (RF) sensing, whose electromagnetic waves penetrate materials and encode both geometric and compositional information. Yet, uncontrolled multipath propagation restricts reconstruction accuracy. Recent advances in Programmable Wireless Environments (PWEs) mitigate this limitation by enabling software-defined manipulation of propagation through Reconfigurable Intelligent Surfaces (RISs), thereby providing controllable illumination diversity. Building on this capability, this work introduces a PWE-driven RF framework for three-dimensional object reconstruction using material-aware spherical primitives. The proposed approach combines RIS-enabled field synthesis with a Detection Transformer (DETR) that infers spatial and material parameters directly from extracted RF features. Simulation results confirm the framework's ability to approximate object geometries and classify material composition with an overall accuracy of 79.35%, marking an initial step toward programmable and physically grounded RF-based 3D object composition visualization.
comment: Submitted to IEEE ICC 2026
♻ ☆ Learning Expressive Random Feature Models via Parametrized Activations
Random feature (RF) method is a powerful kernel approximation technique, but is typically equipped with fixed activation functions, limiting its adaptability across diverse tasks. To overcome this limitation, we introduce the Random Feature Model with Learnable Activation Functions (RFLAF), a novel statistical model that parameterizes activation functions as weighted sums of basis functions within the random feature framework. Examples of basis functions include radial basis functions, spline functions, polynomials, and so forth. For theoretical results, we consider RBFs as representative basis functions. We start with a single RBF as the activation, and then extend the results to multiple RBFs, demonstrating that RF models with learnable activation component largely expand the represented function space. We provide estimates on the required number of samples and random features to achieve low excess risks. For experiments, we test RFLAF with three types of bases: radial basis functions, spline functions and polynomials. Experimental results show that RFLAFs with RBFs and splines consistently outperform other RF models, where RBFs show 3 times faster computational efficiency than splines. We then unfreeze the first-layer parameters and retrain the models, validating the expressivity advantage of learnable activation components on regular two-layer neural networks. Our work provides a deeper understanding of the component of learnable activation functions within modern neural network architectures.
♻ ☆ Probabilistic Graph Cuts
Probabilistic relaxations of graph cuts offer a differentiable alternative to spectral clustering, enabling end-to-end and online learning without eigendecompositions, yet prior work centered on RatioCut and lacked general guarantees and principled gradients. We present a unified probabilistic framework that covers a wide class of cuts, including Normalized Cut. Our framework provides tight analytic upper bounds on expected discrete cuts via integral representations and Gauss hypergeometric functions with closed-form forward and backward. Together, these results deliver a rigorous, numerically stable foundation for scalable, differentiable graph partitioning covering a wide range of clustering and contrastive learning objectives.
comment: 23 pages
♻ ☆ Agent-Omni: Test-Time Multimodal Reasoning via Model Coordination for Understanding Anything
Multimodal large language models (MLLMs) have shown strong capabilities but remain limited to fixed modality pairs and require costly fine-tuning with large aligned datasets. Building fully omni-capable models that can integrate text, images, audio, and video remains impractical and lacks robust reasoning support. In this paper, we propose an Agent-Omni framework that coordinates existing foundation models through a master-agent system, enabling flexible multimodal reasoning without retraining. The master agent interprets user intent, delegates subtasks to modality-specific agents, and integrates their outputs into coherent responses. Extensive experiments across text, image, audio, video, and omni benchmarks show that Agent-Omni consistently achieves state-of-the-art performance, particularly on tasks requiring complex cross-modal reasoning. Its agent-based design enables seamless integration of specialized foundation models, ensuring adaptability to diverse inputs while maintaining transparency and interpretability. In addition, the framework is modular and easily extensible, allowing future improvements as stronger models become available.
comment: 16 pages, 7 figures, 14 tables. Under Review
♻ ☆ Layer Importance for Mathematical Reasoning is Forged in Pre-Training and Invariant after Post-Training
Large language models improve at math after instruction tuning, reinforcement learning, or knowledge distillation. We ask whether these gains come from major changes in the transformer layers or from smaller adjustments that keep the original structure. Using layer-wise ablation on base and trained variants, we find that math reasoning depends on a few critical layers, which stay important across all post- training methods. Removing these layers reduces math accuracy by as much as 80%, whereas factual recall tasks only show relatively smaller drops. This suggests that specialized layers for mathematical tasks form during pre-training and remain stable afterward. As measured by Normalized Mutual Information (NMI), we find that near these critical layers, tokens drift from their original syntactic clusters toward representations aligned with tokens less syntactically related but potentially more useful for downstream task.
♻ ☆ On scalable and efficient training of diffusion samplers
We address the challenge of training diffusion models to sample from unnormalized energy distributions in the absence of data, the so-called diffusion samplers. Although these approaches have shown promise, they struggle to scale in more demanding scenarios where energy evaluations are expensive and the sampling space is high-dimensional. To address this limitation, we propose a scalable and sample-efficient framework that properly harmonizes the powerful classical sampling method and the diffusion sampler. Specifically, we utilize Monte Carlo Markov chain (MCMC) samplers with a novelty-based auxiliary energy as a Searcher to collect off-policy samples, using an auxiliary energy function to compensate for exploring modes the diffusion sampler rarely visits. These off-policy samples are then combined with on-policy data to train the diffusion sampler, thereby expanding its coverage of the energy landscape. Furthermore, we identify primacy bias, i.e., the preference of samplers for early experience during training, as the main cause of mode collapse during training, and introduce a periodic re-initialization trick to resolve this issue. Our method significantly improves sample efficiency on standard benchmarks for diffusion samplers and also excels at higher-dimensional problems and real-world molecular conformer generation.
Computer Vision and Pattern Recognition
☆ Disentangled Concepts Speak Louder Than Words:Explainable Video Action Recognition NeurIPS 2025
Effective explanations of video action recognition models should disentangle how movements unfold over time from the surrounding spatial context. However, existing methods based on saliency produce entangled explanations, making it unclear whether predictions rely on motion or spatial context. Language-based approaches offer structure but often fail to explain motions due to their tacit nature -- intuitively understood but difficult to verbalize. To address these challenges, we propose Disentangled Action aNd Context concept-based Explainable (DANCE) video action recognition, a framework that predicts actions through disentangled concept types: motion dynamics, objects, and scenes. We define motion dynamics concepts as human pose sequences. We employ a large language model to automatically extract object and scene concepts. Built on an ante-hoc concept bottleneck design, DANCE enforces prediction through these concepts. Experiments on four datasets -- KTH, Penn Action, HAA500, and UCF-101 -- demonstrate that DANCE significantly improves explanation clarity with competitive performance. We validate the superior interpretability of DANCE through a user study. Experimental results also show that DANCE is beneficial for model debugging, editing, and failure analysis.
comment: NeurIPS 2025 Spotlight paper. Project page: https://jong980812.github.io/DANCE/
☆ Part-Aware Bottom-Up Group Reasoning for Fine-Grained Social Interaction Detection NeurIPS 2025
Social interactions often emerge from subtle, fine-grained cues such as facial expressions, gaze, and gestures. However, existing methods for social interaction detection overlook such nuanced cues and primarily rely on holistic representations of individuals. Moreover, they directly detect social groups without explicitly modeling the underlying interactions between individuals. These drawbacks limit their ability to capture localized social signals and introduce ambiguity when group configurations should be inferred from social interactions grounded in nuanced cues. In this work, we propose a part-aware bottom-up group reasoning framework for fine-grained social interaction detection. The proposed method infers social groups and their interactions using body part features and their interpersonal relations. Our model first detects individuals and enhances their features using part-aware cues, and then infers group configuration by associating individuals via similarity-based reasoning, which considers not only spatial relations but also subtle social cues that signal interactions, leading to more accurate group inference. Experiments on the NVI dataset demonstrate that our method outperforms prior methods, achieving the new state of the art.
comment: Accepted to NeurIPS 2025
☆ A Lightweight 3D-CNN for Event-Based Human Action Recognition with Privacy-Preserving Potential
This paper presents a lightweight three-dimensional convolutional neural network (3DCNN) for human activity recognition (HAR) using event-based vision data. Privacy preservation is a key challenge in human monitoring systems, as conventional frame-based cameras capture identifiable personal information. In contrast, event cameras record only changes in pixel intensity, providing an inherently privacy-preserving sensing modality. The proposed network effectively models both spatial and temporal dynamics while maintaining a compact design suitable for edge deployment. To address class imbalance and enhance generalization, focal loss with class reweighting and targeted data augmentation strategies are employed. The model is trained and evaluated on a composite dataset derived from the Toyota Smart Home and ETRI datasets. Experimental results demonstrate an F1-score of 0.9415 and an overall accuracy of 94.17%, outperforming benchmark 3D-CNN architectures such as C3D, ResNet3D, and MC3_18 by up to 3%. These results highlight the potential of event-based deep learning for developing accurate, efficient, and privacy-aware human action recognition systems suitable for real-world edge applications.
☆ Flying Robotics Art: ROS-based Drone Draws the Record-Breaking Mural
This paper presents the innovative design and successful deployment of a pioneering autonomous unmanned aerial system developed for executing the world's largest mural painted by a drone. Addressing the dual challenges of maintaining artistic precision and operational reliability under adverse outdoor conditions such as wind and direct sunlight, our work introduces a robust system capable of navigating and painting outdoors with unprecedented accuracy. Key to our approach is a novel navigation system that combines an infrared (IR) motion capture camera and LiDAR technology, enabling precise location tracking tailored specifically for largescale artistic applications. We employ a unique control architecture that uses different regulation in tangential and normal directions relative to the planned path, enabling precise trajectory tracking and stable line rendering. We also present algorithms for trajectory planning and path optimization, allowing for complex curve drawing and area filling. The system includes a custom-designed paint spraying mechanism, specifically engineered to function effectively amidst the turbulent airflow generated by the drone's propellers, which also protects the drone's critical components from paint-related damage, ensuring longevity and consistent performance. Experimental results demonstrate the system's robustness and precision in varied conditions, showcasing its potential for autonomous large-scale art creation and expanding the functional applications of robotics in creative fields.
☆ Signal Intensity-weighted coordinate channels improve learning stability and generalisation in 1D and 2D CNNs in localisation tasks on biomedical signals
Localisation tasks in biomedical data often require models to learn meaningful spatial or temporal relationships from signals with complex intensity distributions. A common strategy, exemplified by CoordConv layers, is to append coordinate channels to convolutional inputs, enabling networks to learn absolute positions. In this work, we propose a signal intensity-weighted coordinate representation that replaces the pure coordinate channels with channels scaled by local signal intensity. This modification embeds an intensity-position coupling directly in the input representation, introducing a simple and modality-agnostic inductive bias. We evaluate the approach on two distinct localisation problems: (i) predicting the time of morphological transition in 20-second, two-lead ECG signals, and (ii) regressing the coordinates of nuclear centres in cytological images from the SiPaKMeD dataset. In both cases, the proposed representation yields faster convergence and higher generalisation performance relative to conventional coordinate-channel approaches, demonstrating its effectiveness across both one-dimensional and two-dimensional biomedical signals.
☆ Human Mesh Modeling for Anny Body
Parametric body models are central to many human-centric tasks, yet existing models often rely on costly 3D scans and learned shape spaces that are proprietary and demographically narrow. We introduce Anny, a simple, fully differentiable, and scan-free human body model grounded in anthropometric knowledge from the MakeHuman community. Anny defines a continuous, interpretable shape space, where phenotype parameters (e.g. gender, age, height, weight) control blendshapes spanning a wide range of human forms -- across ages (from infants to elders), body types, and proportions. Calibrated using WHO population statistics, it provides realistic and demographically grounded human shape variation within a single unified model. Thanks to its openness and semantic control, Anny serves as a versatile foundation for 3D human modeling -- supporting millimeter-accurate scan fitting, controlled synthetic data generation, and Human Mesh Recovery (HMR). We further introduce Anny-One, a collection of 800k photorealistic humans generated with Anny, showing that despite its simplicity, HMR models trained with Anny can match the performance of those trained with scan-based body models, while remaining interpretable and broadly representative. The Anny body model and its code are released under the Apache 2.0 license, making Anny an accessible foundation for human-centric 3D modeling.
comment: We release our model and code at https://github.com/naver/anny
☆ OneOcc: Semantic Occupancy Prediction for Legged Robots with a Single Panoramic Camera
Robust 3D semantic occupancy is crucial for legged/humanoid robots, yet most semantic scene completion (SSC) systems target wheeled platforms with forward-facing sensors. We present OneOcc, a vision-only panoramic SSC framework designed for gait-introduced body jitter and 360{\deg} continuity. OneOcc combines: (i) Dual-Projection fusion (DP-ER) to exploit the annular panorama and its equirectangular unfolding, preserving 360{\deg} continuity and grid alignment; (ii) Bi-Grid Voxelization (BGV) to reason in Cartesian and cylindrical-polar spaces, reducing discretization bias and sharpening free/occupied boundaries; (iii) a lightweight decoder with Hierarchical AMoE-3D for dynamic multi-scale fusion and better long-range/occlusion reasoning; and (iv) plug-and-play Gait Displacement Compensation (GDC) learning feature-level motion correction without extra sensors. We also release two panoramic occupancy benchmarks: QuadOcc (real quadruped, first-person 360{\deg}) and Human360Occ (H3O) (CARLA human-ego 360{\deg} with RGB, Depth, semantic occupancy; standardized within-/cross-city splits). OneOcc sets new state-of-the-art (SOTA): on QuadOcc it beats strong vision baselines and popular LiDAR ones; on H3O it gains +3.83 mIoU (within-city) and +8.08 (cross-city). Modules are lightweight, enabling deployable full-surround perception for legged/humanoid robots. Datasets and code will be publicly available at https://github.com/MasterHow/OneOcc.
comment: Datasets and code will be publicly available at https://github.com/MasterHow/OneOcc
☆ Generalizing Shape-from-Template to Topological Changes
Reconstructing the surfaces of deformable objects from correspondences between a 3D template and a 2D image is well studied under Shape-from-Template (SfT) methods; however, existing approaches break down when topological changes accompany the deformation. We propose a principled extension of SfT that enables reconstruction in the presence of such changes. Our approach is initialized with a classical SfT solution and iteratively adapts the template by partitioning its spatial domain so as to minimize an energy functional that jointly encodes physical plausibility and reprojection consistency. We demonstrate that the method robustly captures a wide range of practically relevant topological events including tears and cuts on bounded 2D surfaces, thereby establishing the first general framework for topological-change-aware SfT. Experiments on both synthetic and real data confirm that our approach consistently outperforms baseline methods.
comment: Accepted for publication at Smart Tools and Applications in Graphics (STAG), Genoa, Italy (2025)
☆ Seeing What You Say: Expressive Image Generation from Speech
This paper proposes VoxStudio, the first unified and end-to-end speech-to-image model that generates expressive images directly from spoken descriptions by jointly aligning linguistic and paralinguistic information. At its core is a speech information bottleneck (SIB) module, which compresses raw speech into compact semantic tokens, preserving prosody and emotional nuance. By operating directly on these tokens, VoxStudio eliminates the need for an additional speech-to-text system, which often ignores the hidden details beyond text, e.g., tone or emotion. We also release VoxEmoset, a large-scale paired emotional speech-image dataset built via an advanced TTS engine to affordably generate richly expressive utterances. Comprehensive experiments on the SpokenCOCO, Flickr8kAudio, and VoxEmoset benchmarks demonstrate the feasibility of our method and highlight key challenges, including emotional consistency and linguistic ambiguity, paving the way for future research.
comment: In progress
☆ Robust Alignment of the Human Embryo in 3D Ultrasound using PCA and an Ensemble of Heuristic, Atlas-based and Learning-based Classifiers Evaluated on the Rotterdam Periconceptional Cohort
Standardized alignment of the embryo in three-dimensional (3D) ultrasound images aids prenatal growth monitoring by facilitating standard plane detection, improving visualization of landmarks and accentuating differences between different scans. In this work, we propose an automated method for standardizing this alignment. Given a segmentation mask of the embryo, Principal Component Analysis (PCA) is applied to the mask extracting the embryo's principal axes, from which four candidate orientations are derived. The candidate in standard orientation is selected using one of three strategies: a heuristic based on Pearson's correlation assessing shape, image matching to an atlas through normalized cross-correlation, and a Random Forest classifier. We tested our method on 2166 images longitudinally acquired 3D ultrasound scans from 1043 pregnancies from the Rotterdam Periconceptional Cohort, ranging from 7+0 to 12+6 weeks of gestational age. In 99.0% of images, PCA correctly extracted the principal axes of the embryo. The correct candidate was selected by the Pearson Heuristic, Atlas-based and Random Forest in 97.4%, 95.8%, and 98.4% of images, respectively. A Majority Vote of these selection methods resulted in an accuracy of 98.5%. The high accuracy of this pipeline enables consistent embryonic alignment in the first trimester, enabling scalable analysis in both clinical and research settings. The code is publicly available at: https://gitlab.com/radiology/prenatal-image-analysis/pca-3d-alignment.
comment: Submitted version of paper accepted at International Workshop on Preterm, Perinatal and Paediatric Image Analysis 2025
☆ Decoupling Augmentation Bias in Prompt Learning for Vision-Language Models
Recent advances in large-scale vision and language models have led to significant progress in zero-shot learning tasks. Methods such as CoOp and CoCoOp have shown that replacing handcrafted prompts with learnable vectors, known as prompt learning, can result in improved performance. However, these models often struggle to generalize to entirely unseen categories. While traditional zero-shot learning techniques benefit from various data augmentation strategies, prompt learning has primarily focused on text-based modifications, leaving the potential of image-based augmentation largely unexplored. In this work, we explore how image-level augmentations, particularly those that introduce attribute-specific variations, can support and enhance prompt learning. Our analysis examines the interaction between these augmentations and soft prompt frameworks, revealing their potential to improve generalization. We also identify a limitation in existing methods, such as CoCoOp, which do not provide explicit guidance for learning prompts that focus on semantically meaningful visual features. To address this, we propose Adding Attributes to Prompt Learning, AAPL, a novel method that introduces adversarial token embeddings to decouple superficial visual variations introduced by augmentation from class-relevant semantic representations. This decoupling enables the learned prompts to concentrate on visually discriminative features that align with the target categories. We conduct comprehensive experiments on eleven benchmark datasets, and AAPL consistently outperforms existing methods across few-shot, zero-shot, cross-dataset, and domain generalization settings. Our source code is publicly available at: https://github.com/Gahyeonkim09/AAPL
comment: Accepted in Pattern Recognition
☆ Morpho-Genomic Deep Learning for Ovarian Cancer Subtype and Gene Mutation Prediction from Histopathology
Ovarian cancer remains one of the most lethal gynecological malignancies, largely due to late diagnosis and extensive heterogeneity across subtypes. Current diagnostic methods are limited in their ability to reveal underlying genomic variations essential for precision oncology. This study introduces a novel hybrid deep learning pipeline that integrates quantitative nuclear morphometry with deep convolutional image features to perform ovarian cancer subtype classification and gene mutation inference directly from Hematoxylin and Eosin (H&E) histopathological images. Using $\sim45,000$ image patches sourced from The Cancer Genome Atlas (TCGA) and public datasets, a fusion model combining a ResNet-50 Convolutional Neural Network (CNN) encoder and a Vision Transformer (ViT) was developed. This model successfully captured both local morphological texture and global tissue context. The pipeline achieved a robust overall subtype classification accuracy of $84.2\%$ (Macro AUC of $0.87 \pm 0.03$). Crucially, the model demonstrated the capacity for gene mutation inference with moderate-to-high accuracy: $AUC_{TP53} = 0.82 \pm 0.02$, $AUC_{BRCA1} = 0.76 \pm 0.04$, and $AUC_{ARID1A} = 0.73 \pm 0.05$. Feature importance analysis established direct quantitative links, revealing that nuclear solidity and eccentricity were the dominant predictors for TP53 mutation. These findings validate that quantifiable histological phenotypes encode measurable genomic signals, paving the way for cost-effective, precision histopathology in ovarian cancer triage and diagnosis.
☆ UniAVGen: Unified Audio and Video Generation with Asymmetric Cross-Modal Interactions
Due to the lack of effective cross-modal modeling, existing open-source audio-video generation methods often exhibit compromised lip synchronization and insufficient semantic consistency. To mitigate these drawbacks, we propose UniAVGen, a unified framework for joint audio and video generation. UniAVGen is anchored in a dual-branch joint synthesis architecture, incorporating two parallel Diffusion Transformers (DiTs) to build a cohesive cross-modal latent space. At its heart lies an Asymmetric Cross-Modal Interaction mechanism, which enables bidirectional, temporally aligned cross-attention, thus ensuring precise spatiotemporal synchronization and semantic consistency. Furthermore, this cross-modal interaction is augmented by a Face-Aware Modulation module, which dynamically prioritizes salient regions in the interaction process. To enhance generative fidelity during inference, we additionally introduce Modality-Aware Classifier-Free Guidance, a novel strategy that explicitly amplifies cross-modal correlation signals. Notably, UniAVGen's robust joint synthesis design enables seamless unification of pivotal audio-video tasks within a single model, such as joint audio-video generation and continuation, video-to-audio dubbing, and audio-driven video synthesis. Comprehensive experiments validate that, with far fewer training samples (1.3M vs. 30.1M), UniAVGen delivers overall advantages in audio-video synchronization, timbre consistency, and emotion consistency.
☆ Multi-Object Tracking Retrieval with LLaVA-Video: A Training-Free Solution to MOT25-StAG Challenge
In this report, we present our solution to the MOT25-Spatiotemporal Action Grounding (MOT25-StAG) Challenge. The aim of this challenge is to accurately localize and track multiple objects that match specific and free-form language queries, using video data of complex real-world scenes as input. We model the underlying task as a video retrieval problem and present a two-stage, zero-shot approach, combining the advantages of the SOTA tracking model FastTracker and Multi-modal Large Language Model LLaVA-Video. On the MOT25-StAG test set, our method achieves m-HIoU and HOTA scores of 20.68 and 10.73 respectively, which won second place in the challenge.
☆ Benchmarking the Thinking Mode of Multimodal Large Language Models in Clinical Tasks
A recent advancement in Multimodal Large Language Models (MLLMs) research is the emergence of "reasoning MLLMs" that offer explicit control over their internal thinking processes (normally referred as the "thinking mode") alongside the standard "non-thinking mode". This capability allows these models to engage in a step-by-step process of internal deliberation before generating a final response. With the rapid transition to and adoption of these "dual-state" MLLMs, this work rigorously evaluated how the enhanced reasoning processes of these MLLMs impact model performance and reliability in clinical tasks. This paper evaluates the active "thinking mode" capabilities of two leading MLLMs, Seed1.5-VL and Gemini-2.5-Flash, for medical applications. We assessed their performance on four visual medical tasks using VQA-RAD and ROCOv2 datasets. Our findings reveal that the improvement from activating the thinking mode remains marginal compared to the standard non-thinking mode for the majority of the tasks. Their performance on complex medical tasks such as open-ended VQA and medical image interpretation remains suboptimal, highlighting the need for domain-specific medical data and more advanced methods for medical knowledge integration.
☆ SurgViVQA: Temporally-Grounded Video Question Answering for Surgical Scene Understanding
Video Question Answering (VideoQA) in the surgical domain aims to enhance intraoperative understanding by enabling AI models to reason over temporally coherent events rather than isolated frames. Current approaches are limited to static image features, and available datasets often lack temporal annotations, ignoring the dynamics critical for accurate procedural interpretation. We propose SurgViVQA, a surgical VideoQA model that extends visual reasoning from static images to dynamic surgical scenes. It uses a Masked Video--Text Encoder to fuse video and question features, capturing temporal cues such as motion and tool--tissue interactions, which a fine-tuned large language model (LLM) then decodes into coherent answers. To evaluate its performance, we curated REAL-Colon-VQA, a colonoscopic video dataset that includes motion-related questions and diagnostic attributes, as well as out-of-template questions with rephrased or semantically altered formulations to assess model robustness. Experimental validation on REAL-Colon-VQA and the public EndoVis18-VQA dataset shows that SurgViVQA outperforms existing image-based VQA benchmark models, particularly in keyword accuracy, improving over PitVQA by +11\% on REAL-Colon-VQA and +9\% on EndoVis18-VQA. A perturbation study on the questions further confirms improved generalizability and robustness to variations in question phrasing. SurgViVQA and the REAL-Colon-VQA dataset provide a framework for temporally-aware understanding in surgical VideoQA, enabling AI models to interpret dynamic procedural contexts more effectively. Code and dataset available at https://github.com/madratak/SurgViVQA.
☆ Diffusion-SDPO: Safeguarded Direct Preference Optimization for Diffusion Models
Text-to-image diffusion models deliver high-quality images, yet aligning them with human preferences remains challenging. We revisit diffusion-based Direct Preference Optimization (DPO) for these models and identify a critical pathology: enlarging the preference margin does not necessarily improve generation quality. In particular, the standard Diffusion-DPO objective can increase the reconstruction error of both winner and loser branches. Consequently, degradation of the less-preferred outputs can become sufficiently severe that the preferred branch is also adversely affected even as the margin grows. To address this, we introduce Diffusion-SDPO, a safeguarded update rule that preserves the winner by adaptively scaling the loser gradient according to its alignment with the winner gradient. A first-order analysis yields a closed-form scaling coefficient that guarantees the error of the preferred output is non-increasing at each optimization step. Our method is simple, model-agnostic, broadly compatible with existing DPO-style alignment frameworks and adds only marginal computational overhead. Across standard text-to-image benchmarks, Diffusion-SDPO delivers consistent gains over preference-learning baselines on automated preference, aesthetic, and prompt alignment metrics. Code is publicly available at https://github.com/AIDC-AI/Diffusion-SDPO.
comment: The code is publicly available at https://github.com/AIDC-AI/Diffusion-SDPO
☆ Unified Long Video Inpainting and Outpainting via Overlapping High-Order Co-Denoising
Generating long videos remains a fundamental challenge, and achieving high controllability in video inpainting and outpainting is particularly demanding. To address both of these challenges simultaneously and achieve controllable video inpainting and outpainting for long video clips, we introduce a novel and unified approach for long video inpainting and outpainting that extends text-to-video diffusion models to generate arbitrarily long, spatially edited videos with high fidelity. Our method leverages LoRA to efficiently fine-tune a large pre-trained video diffusion model like Alibaba's Wan 2.1 for masked region video synthesis, and employs an overlap-and-blend temporal co-denoising strategy with high-order solvers to maintain consistency across long sequences. In contrast to prior work that struggles with fixed-length clips or exhibits stitching artifacts, our system enables arbitrarily long video generation and editing without noticeable seams or drift. We validate our approach on challenging inpainting/outpainting tasks including editing or adding objects over hundreds of frames and demonstrate superior performance to baseline methods like Wan 2.1 model and VACE in terms of quality (PSNR/SSIM), and perceptual realism (LPIPS). Our method enables practical long-range video editing with minimal overhead, achieved a balance between parameter efficient and superior performance.
☆ IEC3D-AD: A 3D Dataset of Industrial Equipment Components for Unsupervised Point Cloud Anomaly Detection
3D anomaly detection (3D-AD) plays a critical role in industrial manufacturing, particularly in ensuring the reliability and safety of core equipment components. Although existing 3D datasets like Real3D-AD and MVTec 3D-AD offer broad application support, they fall short in capturing the complexities and subtle defects found in real industrial environments. This limitation hampers precise anomaly detection research, especially for industrial equipment components (IEC) such as bearings, rings, and bolts. To address this challenge, we have developed a point cloud anomaly detection dataset (IEC3D-AD) specific to real industrial scenarios. This dataset is directly collected from actual production lines, ensuring high fidelity and relevance. Compared to existing datasets, IEC3D-AD features significantly improved point cloud resolution and defect annotation granularity, facilitating more demanding anomaly detection tasks. Furthermore, inspired by generative 2D-AD methods, we introduce a novel 3D-AD paradigm (GMANet) on IEC3D-AD. This paradigm generates synthetic point cloud samples based on geometric morphological analysis, then reduces the margin and increases the overlap between normal and abnormal point-level features through spatial discrepancy optimization. Extensive experiments demonstrate the effectiveness of our method on both IEC3D-AD and other datasets.
☆ Enhancing Medical Image Segmentation via Heat Conduction Equation
Medical image segmentation has been significantly advanced by deep learning architectures, notably U-Net variants. However, existing models struggle to achieve efficient global context modeling and long-range dependency reasoning under practical computational budgets simultaneously. In this work, we propose a novel hybrid architecture utilizing U-Mamba with Heat Conduction Equation. Our model combines Mamba-based state-space modules for efficient long-range reasoning with Heat Conduction Operators (HCOs) in the bottleneck layers, simulating frequency-domain thermal diffusion for enhanced semantic abstraction. Experimental results on multimodal abdominal CT and MRI datasets demonstrate that the proposed model consistently outperforms strong baselines, validating its effectiveness and generalizability. It suggest that blending state-space dynamics with heat-based global diffusion offers a scalable and interpretable solution for medical segmentation tasks.
☆ Decoupled Entropy Minimization NeurIPS 2025
Entropy Minimization (EM) is beneficial to reducing class overlap, bridging domain gap, and restricting uncertainty for various tasks in machine learning, yet its potential is limited. To study the internal mechanism of EM, we reformulate and decouple the classical EM into two parts with opposite effects: cluster aggregation driving factor (CADF) rewards dominant classes and prompts a peaked output distribution, while gradient mitigation calibrator (GMC) penalizes high-confidence classes based on predicted probabilities. Furthermore, we reveal the limitations of classical EM caused by its coupled formulation: 1) reward collapse impedes the contribution of high-certainty samples in the learning process, and 2) easy-class bias induces misalignment between output distribution and label distribution. To address these issues, we propose Adaptive Decoupled Entropy Minimization (AdaDEM), which normalizes the reward brought from CADF and employs a marginal entropy calibrator (MEC) to replace GMC. AdaDEM outperforms DEM*, an upper-bound variant of classical EM, and achieves superior performance across various imperfectly supervised learning tasks in noisy and dynamic environments.
comment: To appear at NeurIPS 2025 (main conference), San Diego, CA, USA. Codes available at https://github.com/HAIV-Lab/DEM/
☆ Generative deep learning for foundational video translation in ultrasound
Deep learning (DL) has the potential to revolutionize image acquisition and interpretation across medicine, however, attention to data imbalance and missingness is required. Ultrasound data presents a particular challenge because in addition to different views and structures, it includes several sub-modalities-such as greyscale and color flow doppler (CFD)-that are often imbalanced in clinical studies. Image translation can help balance datasets but is challenging for ultrasound sub-modalities to date. Here, we present a generative method for ultrasound CFD-greyscale video translation, trained on 54,975 videos and tested on 8,368. The method developed leveraged pixel-wise, adversarial, and perceptual loses and utilized two networks: one for reconstructing anatomic structures and one for denoising to achieve realistic ultrasound imaging. Average pairwise SSIM between synthetic videos and ground truth was 0.91+/-0.04. Synthetic videos performed indistinguishably from real ones in DL classification and segmentation tasks and when evaluated by blinded clinical experts: F1 score was 0.9 for real and 0.89 for synthetic videos; Dice score between real and synthetic segmentation was 0.97. Overall clinician accuracy in distinguishing real vs synthetic videos was 54+/-6% (42-61%), indicating realistic synthetic videos. Although trained only on heart videos, the model worked well on ultrasound spanning several clinical domains (average SSIM 0.91+/-0.05), demonstrating foundational abilities. Together, these data expand the utility of retrospectively collected imaging and augment the dataset design toolbox for medical imaging.
☆ Decoupled Multi-Predictor Optimization for Inference-Efficient Model Tuning ICCV2025
Recently, remarkable progress has been made in large-scale pre-trained model tuning, and inference efficiency is becoming more crucial for practical deployment. Early exiting in conjunction with multi-stage predictors, when cooperated with a parameter-efficient fine-tuning strategy, offers a straightforward way to achieve an inference-efficient model. However, a key challenge remains unresolved: How can early stages provide low-level fundamental features to deep stages while simultaneously supplying high-level discriminative features to early-stage predictors? To address this problem, we propose a Decoupled Multi-Predictor Optimization (DMPO) method to effectively decouple the low-level representative ability and high-level discriminative ability in early stages. First, in terms of architecture, we introduce a lightweight bypass module into multi-stage predictors for functional decomposition of shallow features from early stages, while a high-order statistics-based predictor is developed for early stages to effectively enhance their discriminative ability. To reasonably train our multi-predictor architecture, a decoupled optimization is proposed to allocate two-phase loss weights for multi-stage predictors during model tuning, where the initial training phase enables the model to prioritize the acquisition of discriminative ability of deep stages via emphasizing representative ability of early stages, and the latter training phase drives discriminative ability towards earlier stages as much as possible. As such, our DMPO can effectively decouple representative and discriminative abilities in early stages in terms of architecture design and model optimization. Experiments across various datasets and pre-trained backbones demonstrate that DMPO clearly outperforms its counterparts when reducing computational cost.
comment: Accepted by ICCV2025
☆ A Feedback-Control Framework for Efficient Dataset Collection from In-Vehicle Data Streams
Modern AI systems are increasingly constrained not by model capacity but by the quality and diversity of their data. Despite growing emphasis on data-centric AI, most datasets are still gathered in an open-loop manner which accumulates redundant samples without feedback from the current coverage. This results in inefficient storage, costly labeling, and limited generalization. To address this, this paper introduces \ac{FCDC}, a paradigm that formulates data collection as a closed-loop control problem. \ac{FCDC} continuously approximates the state of the collected data distribution using an online probabilistic model and adaptively regulates sample retention using based on feedback signals such as likelihood and Mahalanobis distance. Through this feedback mechanism, the system dynamically balances exploration and exploitation, maintains dataset diversity, and prevents redundancy from accumulating over time. Besides showcasing the controllability of \ac{FCDC} on a synthetic dataset, experiments on a real data stream show that \ac{FCDC} produces more balanced datasets by $\SI{25.9}{\percent}$ while reducing data storage by $\SI{39.8}{\percent}$. These results demonstrate that data collection itself can be actively controlled, transforming collection from a passive pipeline stage into a self-regulating, feedback-driven process at the core of data-centric AI.
Transformer-Progressive Mamba Network for Lightweight Image Super-Resolution
Recently, Mamba-based super-resolution (SR) methods have demonstrated the ability to capture global receptive fields with linear complexity, addressing the quadratic computational cost of Transformer-based SR approaches. However, existing Mamba-based methods lack fine-grained transitions across different modeling scales, which limits the efficiency of feature representation. In this paper, we propose T-PMambaSR, a lightweight SR framework that integrates window-based self-attention with Progressive Mamba. By enabling interactions among receptive fields of different scales, our method establishes a fine-grained modeling paradigm that progressively enhances feature representation with linear complexity. Furthermore, we introduce an Adaptive High-Frequency Refinement Module (AHFRM) to recover high-frequency details lost during Transformer and Mamba processing. Extensive experiments demonstrate that T-PMambaSR progressively enhances the model's receptive field and expressiveness, yielding better performance than recent Transformer- or Mamba-based methods while incurring lower computational cost. Our codes will be released after acceptance.
comment: 12 pages, 10 figures, 7 tables
☆ Diffusion-Guided Mask-Consistent Paired Mixing for Endoscopic Image Segmentation
Augmentation for dense prediction typically relies on either sample mixing or generative synthesis. Mixing improves robustness but misaligned masks yield soft label ambiguity. Diffusion synthesis increases apparent diversity but, when trained as common samples, overlooks the structural benefit of mask conditioning and introduces synthetic-real domain shift. We propose a paired, diffusion-guided paradigm that fuses the strengths of both. For each real image, a synthetic counterpart is generated under the same mask and the pair is used as a controllable input for Mask-Consistent Paired Mixing (MCPMix), which mixes only image appearance while supervision always uses the original hard mask. This produces a continuous family of intermediate samples that smoothly bridges synthetic and real appearances under shared geometry, enlarging diversity without compromising pixel-level semantics. To keep learning aligned with real data, Real-Anchored Learnable Annealing (RLA) adaptively adjusts the mixing strength and the loss weight of mixed samples over training, gradually re-anchoring optimization to real data and mitigating distributional bias. Across Kvasir-SEG, PICCOLO, CVC-ClinicDB, a private NPC-LES cohort, and ISIC 2017, the approach achieves state-of-the-art segmentation performance and consistent gains over baselines. The results show that combining label-preserving mixing with diffusion-driven diversity, together with adaptive re-anchoring, yields robust and generalizable endoscopic segmentation.
☆ MvBody: Multi-View-Based Hybrid Transformer Using Optical 3D Body Scan for Explainable Cesarean Section Prediction
Accurately assessing the risk of cesarean section (CS) delivery is critical, especially in settings with limited medical resources, where access to healthcare is often restricted. Early and reliable risk prediction allows better-informed prenatal care decisions and can improve maternal and neonatal outcomes. However, most existing predictive models are tailored for in-hospital use during labor and rely on parameters that are often unavailable in resource-limited or home-based settings. In this study, we conduct a pilot investigation to examine the feasibility of using 3D body shape for CS risk assessment for future applications with more affordable general devices. We propose a novel multi-view-based Transformer network, MvBody, which predicts CS risk using only self-reported medical data and 3D optical body scans obtained between the 31st and 38th weeks of gestation. To enhance training efficiency and model generalizability in data-scarce environments, we incorporate a metric learning loss into the network. Compared to widely used machine learning models and the latest advanced 3D analysis methods, our method demonstrates superior performance, achieving an accuracy of 84.62% and an Area Under the Receiver Operating Characteristic Curve (AUC-ROC) of 0.724 on the independent test set. To improve transparency and trust in the model's predictions, we apply the Integrated Gradients algorithm to provide theoretically grounded explanations of the model's decision-making process. Our results indicate that pre-pregnancy weight, maternal age, obstetric history, previous CS history, and body shape, particularly around the head and shoulders, are key contributors to CS risk prediction.
comment: 19 pages, 4 figures
☆ QG-CoC: Question-Guided Chain-of-Captions for Large Multimodal Models
Recently, Multimodal Large Language Models (MLLMs) encounter two key issues in multi-image contexts: (1) a lack of fine-grained perception across disparate images, and (2) a diminished capability to effectively reason over and synthesize information from multiple visual inputs. However, while various prompting methods aim to describe visual content, many existing studies focus primarily on single-image settings or specific, constrained scenarios. This leaves a critical gap in understanding and addressing how MLLMs tackle more general and complex multi-image reasoning tasks. Thus, we first extensively investigate how current prompting methods perceive fine-grained visual details and process visual information when dealing with multiple images. Our findings reveal that existing prompting methods fall short in attending to needed clues and seamlessly integrating perception and reasoning. Inspired by the findings, we propose a new zero-shot prompting method, Question-Guided Chain-of-Captions (QG-CoC), a generalized prompting approach that effectively handles problems with an arbitrary number of images. We evaluate our method on various open-source and closed-source MLLMs for multi-image and single-image benchmarks. Experimental results indicate that QG-CoC demonstrates competitive performance across tasks and exhibits robust improvements in the challenging scenarios where existing prompting methods fail.
comment: 16 pages
☆ A Probabilistic U-Net Approach to Downscaling Climate Simulations NeurIPS 2025
Climate models are limited by heavy computational costs, often producing outputs at coarse spatial resolutions, while many climate change impact studies require finer scales. Statistical downscaling bridges this gap, and we adapt the probabilistic U-Net for this task, combining a deterministic U-Net backbone with a variational latent space to capture aleatoric uncertainty. We evaluate four training objectives, afCRPS and WMSE-MS-SSIM with three settings for downscaling precipitation and temperature from $16\times$ coarser resolution. Our main finding is that WMSE-MS-SSIM performs well for extremes under certain settings, whereas afCRPS better captures spatial variability across scales.
comment: NeurIPS 2025 AI4Science
☆ PETWB-REP: A Multi-Cancer Whole-Body FDG PET/CT and Radiology Report Dataset for Medical Imaging Research
Publicly available, large-scale medical imaging datasets are crucial for developing and validating artificial intelligence models and conducting retrospective clinical research. However, datasets that combine functional and anatomical imaging with detailed clinical reports across multiple cancer types remain scarce. Here, we present PETWB-REP, a curated dataset comprising whole-body 18F-Fluorodeoxyglucose (FDG) Positron Emission Tomography/Computed Tomography (PET/CT) scans and corresponding radiology reports from 490 patients diagnosed with various malignancies. The dataset primarily includes common cancers such as lung cancer, liver cancer, breast cancer, prostate cancer, and ovarian cancer. This dataset includes paired PET and CT images, de-identified textual reports, and structured clinical metadata. It is designed to support research in medical imaging, radiomics, artificial intelligence, and multi-modal learning.
☆ SurgAnt-ViVQA: Learning to Anticipate Surgical Events through GRU-Driven Temporal Cross-Attention
Anticipating forthcoming surgical events is vital for real-time assistance in endonasal transsphenoidal pituitary surgery, where visibility is limited and workflow changes rapidly. Most visual question answering (VQA) systems reason on isolated frames with static vision language alignment, providing little support for forecasting next steps or instrument needs. Existing surgical VQA datasets likewise center on the current scene rather than the near future. We introduce PitVQA-Anticipation, the first VQA dataset designed for forward looking surgical reasoning. It comprises 33.5 hours of operative video and 734,769 question answer pairs built from temporally grouped clips and expert annotations across four tasks: predicting the future phase, next step, upcoming instrument, and remaining duration. We further propose SurgAnt-ViVQA, a video language model that adapts a large language model using a GRU Gated Temporal Cross-Attention module. A bidirectional GRU encodes frame to frame dynamics, while an adaptive gate injects visual context into the language stream at the token level. Parameter efficient fine tuning customizes the language backbone to the surgical domain. SurgAnt-ViVQA tested upon on PitVQA-Anticipation and EndoVis datasets, surpassing strong image and video based baselines. Ablations show that temporal recurrence and gated fusion drive most of the gains. A frame budget study indicates a trade-off: 8 frames maximize fluency, whereas 32 frames slightly reduce BLEU but improve numeric time estimation. By pairing a temporally aware encoder with fine grained gated cross-attention, SurgAnt-ViVQA advances surgical VQA from retrospective description to proactive anticipation. PitVQA-Anticipation offers a comprehensive benchmark for this setting and highlights the importance of targeted temporal modeling for reliable, future aware surgical assistance.
comment: 12 pages
☆ Subsampled Randomized Fourier GaLore for Adapting Foundation Models in Depth-Driven Liver Landmark Segmentation
Accurate detection and delineation of anatomical structures in medical imaging are critical for computer-assisted interventions, particularly in laparoscopic liver surgery where 2D video streams limit depth perception and complicate landmark localization. While recent works have leveraged monocular depth cues for enhanced landmark detection, challenges remain in fusing RGB and depth features and in efficiently adapting large-scale vision models to surgical domains. We propose a depth-guided liver landmark segmentation framework integrating semantic and geometric cues via vision foundation encoders. We employ Segment Anything Model V2 (SAM2) encoder to extract RGB features and Depth Anything V2 (DA2) encoder to extract depth-aware features. To efficiently adapt SAM2, we introduce SRFT-GaLore, a novel low-rank gradient projection method that replaces the computationally expensive SVD with a Subsampled Randomized Fourier Transform (SRFT). This enables efficient fine-tuning of high-dimensional attention layers without sacrificing representational power. A cross-attention fusion module further integrates RGB and depth cues. To assess cross-dataset generalization, we also construct a new Laparoscopic Liver Surgical Dataset (LLSD) as an external validation benchmark. On the public L3D dataset, our method achieves a 4.85% improvement in Dice Similarity Coefficient and a 11.78-point reduction in Average Symmetric Surface Distance compared to the D2GPLand. To further assess generalization capability, we evaluate our model on LLSD dataset. Our model maintains competitive performance and significantly outperforms SAM-based baselines, demonstrating strong cross-dataset robustness and adaptability to unseen surgical environments. These results demonstrate that our SRFT-GaLore-enhanced dual-encoder framework enables scalable and precise segmentation under real-time, depth-constrained surgical settings.
comment: 12 pages
☆ Finetuning-Free Personalization of Text to Image Generation via Hypernetworks
Personalizing text-to-image diffusion models has traditionally relied on subject-specific fine-tuning approaches such as DreamBooth~\cite{ruiz2023dreambooth}, which are computationally expensive and slow at inference. Recent adapter- and encoder-based methods attempt to reduce this overhead but still depend on additional fine-tuning or large backbone models for satisfactory results. In this work, we revisit an orthogonal direction: fine-tuning-free personalization via Hypernetworks that predict LoRA-adapted weights directly from subject images. Prior hypernetwork-based approaches, however, suffer from costly data generation or unstable attempts to mimic base model optimization trajectories. We address these limitations with an end-to-end training objective, stabilized by a simple output regularization, yielding reliable and effective hypernetworks. Our method removes the need for per-subject optimization at test time while preserving both subject fidelity and prompt alignment. To further enhance compositional generalization at inference time, we introduce Hybrid-Model Classifier-Free Guidance (HM-CFG), which combines the compositional strengths of the base diffusion model with the subject fidelity of personalized models during sampling. Extensive experiments on CelebA-HQ, AFHQ-v2, and DreamBench demonstrate that our approach achieves strong personalization performance and highlights the promise of hypernetworks as a scalable and effective direction for open-category personalization.
☆ Test Time Adaptation Using Adaptive Quantile Recalibration
Domain adaptation is a key strategy for enhancing the generalizability of deep learning models in real-world scenarios, where test distributions often diverge significantly from the training domain. However, conventional approaches typically rely on prior knowledge of the target domain or require model retraining, limiting their practicality in dynamic or resource-constrained environments. Recent test-time adaptation methods based on batch normalization statistic updates allow for unsupervised adaptation, but they often fail to capture complex activation distributions and are constrained to specific normalization layers. We propose Adaptive Quantile Recalibration (AQR), a test-time adaptation technique that modifies pre-activation distributions by aligning quantiles on a channel-wise basis. AQR captures the full shape of activation distributions and generalizes across architectures employing BatchNorm, GroupNorm, or LayerNorm. To address the challenge of estimating distribution tails under varying batch sizes, AQR incorporates a robust tail calibration strategy that improves stability and precision. Our method leverages source-domain statistics computed at training time, enabling unsupervised adaptation without retraining models. Experiments on CIFAR-10-C, CIFAR-100-C, and ImageNet-C across multiple architectures demonstrate that AQR achieves robust adaptation across diverse settings, outperforming existing test-time adaptation baselines. These results highlight AQR's potential for deployment in real-world scenarios with dynamic and unpredictable data distributions.
☆ Scheduling the Off-Diagonal Weingarten Loss of Neural SDFs for CAD Models
Neural signed distance functions (SDFs) have become a powerful representation for geometric reconstruction from point clouds, yet they often require both gradient- and curvature-based regularization to suppress spurious warp and preserve structural fidelity. FlatCAD introduced the Off-Diagonal Weingarten (ODW) loss as an efficient second-order prior for CAD surfaces, approximating full-Hessian regularization at roughly half the computational cost. However, FlatCAD applies a fixed ODW weight throughout training, which is suboptimal: strong regularization stabilizes early optimization but suppresses detail recovery in later stages. We present scheduling strategies for the ODW loss that assign a high initial weight to stabilize optimization and progressively decay it to permit fine-scale refinement. We investigate constant, linear, quintic, and step interpolation schedules, as well as an increasing warm-up variant. Experiments on the ABC CAD dataset demonstrate that time-varying schedules consistently outperform fixed weights. Our method achieves up to a 35% improvement in Chamfer Distance over the FlatCAD baseline, establishing scheduling as a simple yet effective extension of curvature regularization for robust CAD reconstruction.
comment: Lecture Notes in Computer Science (LNCS), 20th International Symposium on Visual Computing 2025, 12 pages, 4 figures, preprint
☆ Deploying Rapid Damage Assessments from sUAS Imagery for Disaster Response
This paper presents the first AI/ML system for automating building damage assessment in uncrewed aerial systems (sUAS) imagery to be deployed operationally during federally declared disasters (Hurricanes Debby and Helene). In response to major disasters, sUAS teams are dispatched to collect imagery of the affected areas to assess damage; however, at recent disasters, teams collectively delivered between 47GB and 369GB of imagery per day, representing more imagery than can reasonably be transmitted or interpreted by subject matter experts in the disaster scene, thus delaying response efforts. To alleviate this data avalanche encountered in practice, computer vision and machine learning techniques are necessary. While prior work has been deployed to automatically assess damage in satellite imagery, there is no current state of practice for sUAS-based damage assessment systems, as all known work has been confined to academic settings. This work establishes the state of practice via the development and deployment of models for building damage assessment with sUAS imagery. The model development involved training on the largest known dataset of post-disaster sUAS aerial imagery, containing 21,716 building damage labels, and the operational training of 91 disaster practitioners. The best performing model was deployed during the responses to Hurricanes Debby and Helene, where it assessed a combined 415 buildings in approximately 18 minutes. This work contributes documentation of the actual use of AI/ML for damage assessment during a disaster and lessons learned to the benefit of the AI/ML research and user communities.
comment: 6 pages, 4 figures, 1 table. Accepted - In Press, IAAI'26
☆ Accelerating Physical Property Reasoning for Augmented Visual Cognition
This paper introduces \sysname, a system that accelerates vision-guided physical property reasoning to enable augmented visual cognition. \sysname minimizes the run-time latency of this reasoning pipeline through a combination of both algorithmic and systematic optimizations, including rapid geometric 3D reconstruction, efficient semantic feature fusion, and parallel view encoding. Through these simple yet effective optimizations, \sysname reduces the end-to-end latency of this reasoning pipeline from 10--20 minutes to less than 6 seconds. A head-to-head comparison on the ABO dataset shows that \sysname achieves this 62.9$\times$--287.2$\times$ speedup while not only reaching on-par (and sometimes slightly better) object-level physical property estimation accuracy(e.g. mass), but also demonstrating superior performance in material segmentation and voxel-level inference than two SOTA baselines. We further combine gaze-tracking with \sysname to localize the object of interest in cluttered, real-world environments, streamlining the physical property reasoning on smart glasses. The case study with Meta Aria Glasses conducted at an IKEA furniture store demonstrates that \sysname achives consistently high performance compared to controlled captures, providing robust property estimations even with fewer views in real-world scenarios.
☆ Image-Intrinsic Priors for Integrated Circuit Defect Detection and Novel Class Discovery via Self-Supervised Learning
Integrated circuit manufacturing is highly complex, comprising hundreds of process steps. Defects can arise at any stage, causing yield loss and ultimately degrading product reliability. Supervised methods require extensive human annotation and struggle with emergent categories and rare, data scarce defects. Clustering-based unsupervised methods often exhibit unstable performance due to missing priors. We propose IC DefectNCD, a support set free framework that leverages Image Intrinsic Priors in IC SEM images for defect detection and novel class discovery. We first develop Self Normal Information Guided IC Defect Detection, aggregating representative normal features via a learnable normal information extractor and using reconstruction residuals to coarsely localize defect regions. To handle saliency variations across defects, we introduce an adaptive binarization strategy that produces stable subimages focused on core defective areas. Finally, we design Self Defect Information Guided IC Defect Classification, which incorporates a soft mask guided attention mechanism to inject spatial defect priors into the teacher student model. This enhances sensitivity to defective regions, suppresses background interference, and enables recognition and classification of unseen defects. We validate the approach on a real world dataset spanning three key fabrication stages and covering 15 defect types. Experiments demonstrate robust performance on both defect detection and unseen defect classification.
☆ DentalSplat: Dental Occlusion Novel View Synthesis from Sparse Intra-Oral Photographs
In orthodontic treatment, particularly within telemedicine contexts, observing patients' dental occlusion from multiple viewpoints facilitates timely clinical decision-making. Recent advances in 3D Gaussian Splatting (3DGS) have shown strong potential in 3D reconstruction and novel view synthesis. However, conventional 3DGS pipelines typically rely on densely captured multi-view inputs and precisely initialized camera poses, limiting their practicality. Orthodontic cases, in contrast, often comprise only three sparse images, specifically, the anterior view and bilateral buccal views, rendering the reconstruction task especially challenging. The extreme sparsity of input views severely degrades reconstruction quality, while the absence of camera pose information further complicates the process. To overcome these limitations, we propose DentalSplat, an effective framework for 3D reconstruction from sparse orthodontic imagery. Our method leverages a prior-guided dense stereo reconstruction model to initialize the point cloud, followed by a scale-adaptive pruning strategy to improve the training efficiency and reconstruction quality of 3DGS. In scenarios with extremely sparse viewpoints, we further incorporate optical flow as a geometric constraint, coupled with gradient regularization, to enhance rendering fidelity. We validate our approach on a large-scale dataset comprising 950 clinical cases and an additional video-based test set of 195 cases designed to simulate real-world remote orthodontic imaging conditions. Experimental results demonstrate that our method effectively handles sparse input scenarios and achieves superior novel view synthesis quality for dental occlusion visualization, outperforming state-of-the-art techniques.
☆ ISC-Perception: A Hybrid Computer Vision Dataset for Object Detection in Novel Steel Assembly
The Intermeshed Steel Connection (ISC) system, when paired with robotic manipulators, can accelerate steel-frame assembly and improve worker safety by eliminating manual assembly. Dependable perception is one of the initial stages for ISC-aware robots. However, this is hampered by the absence of a dedicated image corpus, as collecting photographs on active construction sites is logistically difficult and raises safety and privacy concerns. In response, we introduce ISC-Perception, the first hybrid dataset expressly designed for ISC component detection. It blends procedurally rendered CAD images, game-engine photorealistic scenes, and a limited, curated set of real photographs, enabling fully automatic labelling of the synthetic portion. We explicitly account for all human effort to produce the dataset, including simulation engine and scene setup, asset preparation, post-processing scripts and quality checks; our total human time to generate a 10,000-image dataset was 30.5,h versus 166.7,h for manual labelling at 60,s per image (-81.7%). A manual pilot on a representative image with five instances of ISC members took 60,s (maximum 80,s), anchoring the manual baseline. Detectors trained on ISC-Perception achieved a mean Average Precision at IoU 0.50 of 0.756, substantially surpassing models trained on synthetic-only or photorealistic-only data. On a 1,200-frame bench test, we report mAP@0.50/mAP@[0.50:0.95] of 0.943/0.823. By bridging the data gap for construction-robotics perception, ISC-Perception facilitates rapid development of custom object detectors and is freely available for research and industrial use upon request.
☆ A Plug-and-Play Framework for Volumetric Light-Sheet Image Reconstruction
Cardiac contraction is a rapid, coordinated process that unfolds across three-dimensional tissue on millisecond timescales. Traditional optical imaging is often inadequate for capturing dynamic cellular structure in the beating heart because of a fundamental trade-off between spatial and temporal resolution. To overcome these limitations, we propose a high-performance computational imaging framework that integrates Compressive Sensing (CS) with Light-Sheet Microscopy (LSM) for efficient, low-phototoxic cardiac imaging. The system performs compressed acquisition of fluorescence signals via random binary mask coding using a Digital Micromirror Device (DMD). We propose a Plug-and-Play (PnP) framework, solved using the alternating direction method of multipliers (ADMM), which flexibly incorporates advanced denoisers, including Tikhonov, Total Variation (TV), and BM3D. To preserve structural continuity in dynamic imaging, we further introduce temporal regularization enforcing smoothness between adjacent z-slices. Experimental results on zebrafish heart imaging under high compression ratios demonstrate that the proposed method successfully reconstructs cellular structures with excellent denoising performance and image clarity, validating the effectiveness and robustness of our algorithm in real-world high-speed, low-light biological imaging scenarios.
♻ ☆ Voost: A Unified and Scalable Diffusion Transformer for Bidirectional Virtual Try-On and Try-Off SIGGRAPH
Virtual try-on aims to synthesize a realistic image of a person wearing a target garment, but accurately modeling garment-body correspondence remains a persistent challenge, especially under pose and appearance variation. In this paper, we propose Voost - a unified and scalable framework that jointly learns virtual try-on and try-off with a single diffusion transformer. By modeling both tasks jointly, Voost enables each garment-person pair to supervise both directions and supports flexible conditioning over generation direction and garment category, enhancing garment-body relational reasoning without task-specific networks, auxiliary losses, or additional labels. In addition, we introduce two inference-time techniques: attention temperature scaling for robustness to resolution or mask variation, and self-corrective sampling that leverages bidirectional consistency between tasks. Extensive experiments demonstrate that Voost achieves state-of-the-art results on both try-on and try-off benchmarks, consistently outperforming strong baselines in alignment accuracy, visual fidelity, and generalization.
comment: Accepted to SIGGRAPH Asia 2025, project page: https://nxnai.github.io/Voost/
♻ ☆ Generative View Stitching
Autoregressive video diffusion models are capable of long rollouts that are stable and consistent with history, but they are unable to guide the current generation with conditioning from the future. In camera-guided video generation with a predefined camera trajectory, this limitation leads to collisions with the generated scene, after which autoregression quickly collapses. To address this, we propose Generative View Stitching (GVS), which samples the entire sequence in parallel such that the generated scene is faithful to every part of the predefined camera trajectory. Our main contribution is a sampling algorithm that extends prior work on diffusion stitching for robot planning to video generation. While such stitching methods usually require a specially trained model, GVS is compatible with any off-the-shelf video model trained with Diffusion Forcing, a prevalent sequence diffusion framework that we show already provides the affordances necessary for stitching. We then introduce Omni Guidance, a technique that enhances the temporal consistency in stitching by conditioning on both the past and future, and that enables our proposed loop-closing mechanism for delivering long-range coherence. Overall, GVS achieves camera-guided video generation that is stable, collision-free, frame-to-frame consistent, and closes loops for a variety of predefined camera paths, including Oscar Reutersv\"ard's Impossible Staircase. Results are best viewed as videos at https://andrewsonga.github.io/gvs.
comment: Updated acknowledgements and fixed figure visibility issue on Safari. Project website: https://andrewsonga.github.io/gvs
♻ ☆ MAROON: A Framework for the Joint Characterization of Near-Field High-Resolution Radar and Optical Depth Imaging Techniques
Utilizing the complementary strengths of wavelength-specific range or depth sensors is crucial for robust computer-assisted tasks such as autonomous driving. Despite this, there is still little research done at the intersection of optical depth sensors and radars operating close range, where the target is decimeters away from the sensors. Together with a growing interest in high-resolution imaging radars operating in the near field, the question arises how these sensors behave in comparison to their traditional optical counterparts. In this work, we take on the unique challenge of jointly characterizing depth imagers from both, the optical and radio-frequency domain using a multimodal spatial calibration. We collect data from four depth imagers, with three optical sensors of varying operation principle and an imaging radar. We provide a comprehensive evaluation of their depth measurements with respect to distinct object materials, geometries, and object-to-sensor distances. Specifically, we reveal scattering effects of partially transmissive materials and investigate the response of radio-frequency signals. All object measurements will be made public in form of a multimodal dataset, called MAROON.
♻ ☆ PLUTO-4: Frontier Pathology Foundation Models
Foundation models trained on large-scale pathology image corpora have demonstrated strong transfer capabilities across diverse histopathology tasks. Building on this progress, we introduce PLUTO-4, our next generation of pathology foundation models that extend the Pathology-Universal Transformer (PLUTO) to frontier scale. We share two complementary Vision Transformer architectures in the PLUTO-4 family: a compact and efficient PLUTO-4S model optimized for multi-scale deployment using a FlexiViT setup with 2D-RoPE embeddings, and a frontier-scale PLUTO-4G model trained with a single patch size to maximize representation capacity and stability. Both models are pretrained using a self-supervised objective derived from DINOv2 on a large multi-institutional corpus containing 551,164 WSIs from 137,144 patients across over 50 institutions, spanning over 60 disease types and over 100 stains. Comprehensive evaluation across public and internal benchmarks demonstrates that PLUTO-4 achieves state-of-the-art performance on tasks requiring varying spatial and biological context, including patch-level classification, segmentation, and slide-level diagnosis. The compact PLUTO-4S provides high-throughput and robust performance for practical deployment, while PLUTO-4G establishes new performance frontiers across multiple pathology benchmarks, including an 11% improvement in dermatopathology diagnosis. These diverse improvements underscore PLUTO-4's potential to transform real-world applications as a backbone for translational research and diagnostic use cases.
♻ ☆ Disentanglement with Factor Quantized Variational Autoencoders
Disentangled representation learning aims to represent the underlying generative factors of a dataset in a latent representation independently of one another. In our work, we propose a discrete variational autoencoder (VAE) based model where the ground truth information about the generative factors are not provided to the model. We demonstrate the advantages of learning discrete representations over learning continuous representations in facilitating disentanglement. Furthermore, we propose incorporating an inductive bias into the model to further enhance disentanglement. Precisely, we propose scalar quantization of the latent variables in a latent representation with scalar values from a global codebook, and we add a total correlation term to the optimization as an inductive bias. Our method called FactorQVAE combines optimization based disentanglement approaches with discrete representation learning, and it outperforms the former disentanglement methods in terms of two disentanglement metrics (DCI and InfoMEC) while improving the reconstruction performance. Our code can be found at https://github.com/ituvisionlab/FactorQVAE.
comment: Accepted to Neurocomputing
♻ ☆ TABLET: A Large-Scale Dataset for Robust Visual Table Understanding
While table understanding increasingly relies on pixel-only settings where tables are processed as visual representations, current benchmarks predominantly use synthetic renderings that lack the complexity and visual diversity of real-world tables. Additionally, existing visual table understanding (VTU) datasets offer fixed examples with single visualizations and pre-defined instructions, providing no access to underlying serialized data for reformulation. We introduce TABLET, a large-scale VTU dataset with 4 million examples across 20 tasks, grounded in 2 million unique tables where 88% preserve original visualizations. Each example includes paired image-HTML representations, comprehensive metadata, and provenance information linking back to the source datasets. Fine-tuning vision-language models like Qwen2.5-VL-7B on TABLET improves performance on seen and unseen VTU tasks while increasing robustness on real-world table visualizations. By preserving original visualizations and maintaining example traceability in a unified large-scale collection, TABLET establishes a foundation for robust training and extensible evaluation of future VTU models.
♻ ☆ Harmonious Color Pairings: Insights from Human Preference and Natural Hue Statistics
While color harmony has long been studied in art and design, a clear consensus remains elusive, as most models are grounded in qualitative insights or limited datasets. In this work, we present a quantitative, data-driven study of color pairing preferences using controlled hue-based palettes in the HSL color space. Participants evaluated combinations of thirteen distinct hues, enabling us to construct a preference matrix and define a combinability index for each color. Our results reveal that preferences are highly hue dependent, challenging the assumption of universal harmony rules proposed in the literature. Yet, when averaged over hues, statistically meaningful patterns of aesthetic preference emerge, with certain hue separations perceived as more harmonious. Strikingly, these patterns align with hue distributions found in natural landscapes, pointing to a statistical correspondence between human color preferences and the structure of color in nature. Finally, we analyze our color-pairing score matrix through principal component analysis, which uncovers two complementary hue groups whose interplay underlies the global structure of color-pairing preferences. Together, these findings offer a quantitative framework for studying color harmony and its potential perceptual and ecological underpinnings.
comment: 10 pages, 8 figures
♻ ☆ Depth Matters: Multimodal RGB-D Perception for Robust Autonomous Agents ICRA 2025
Autonomous agents that rely purely on perception to make real-time control decisions require efficient and robust architectures. In this work, we demonstrate that augmenting RGB input with depth information significantly enhances our agents' ability to predict steering commands compared to using RGB alone. We benchmark lightweight recurrent controllers that leverage the fused RGB-D features for sequential decision-making. To train our models, we collect high-quality data using a small-scale autonomous car controlled by an expert driver via a physical steering wheel, capturing varying levels of steering difficulty. Our models were successfully deployed on real hardware and inherently avoided dynamic and static obstacles, under out-of-distribution conditions. Specifically, our findings reveal that the early fusion of depth data results in a highly robust controller, which remains effective even with frame drops and increased noise levels, without compromising the network's focus on the task.
comment: Submitted to ICRA 2025
♻ ☆ Reg-DPO: SFT-Regularized Direct Preference Optimization with GT-Pair for Improving Video Generation
Recent studies have identified Direct Preference Optimization (DPO) as an efficient and reward-free approach to improving video generation quality. However, existing methods largely follow image-domain paradigms and are mainly developed on small-scale models (approximately 2B parameters), limiting their ability to address the unique challenges of video tasks, such as costly data construction, unstable training, and heavy memory consumption. To overcome these limitations, we introduce a GT-Pair that automatically builds high-quality preference pairs by using real videos as positives and model-generated videos as negatives, eliminating the need for any external annotation. We further present Reg-DPO, which incorporates the SFT loss as a regularization term into the DPO loss to enhance training stability and generation fidelity. Additionally, by combining the FSDP framework with multiple memory optimization techniques, our approach achieves nearly three times higher training capacity than using FSDP alone. Extensive experiments on both I2V and T2V tasks across multiple datasets demonstrate that our method consistently outperforms existing approaches, delivering superior video generation quality.
♻ ☆ Interpretable Tile-Based Classification of Paclitaxel Exposure
Medical image analysis is central to drug discovery and preclinical evaluation, where scalable, objective readouts can accelerate decision-making. We address classification of paclitaxel (Taxol) exposure from phase-contrast microscopy of C6 glioma cells -- a task with subtle dose differences that challenges full-image models. We propose a simple tiling-and-aggregation pipeline that operates on local patches and combines tile outputs into an image label, achieving state-of-the-art accuracy on the benchmark dataset and improving over the published baseline by around 20 percentage points, with trends confirmed by cross-validation. To understand why tiling is effective, we further apply Grad-CAM and Score-CAM and attention analyses, which enhance model interpretability and point toward robustness-oriented directions for future medical image research. Code is released to facilitate reproduction and extension.
♻ ☆ Text-guided Fine-Grained Video Anomaly Detection
Video Anomaly Detection (VAD) aims to identify anomalous events within video segments. In scenarios such as surveillance or industrial process monitoring, anomaly detection is of critical importance. While existing approaches are semi-automated, requiring human assessment for anomaly detection, traditional VADs offer limited output as either normal or anomalous. We propose Text-guided Fine-Grained Video Anomaly Detection (T-VAD), a framework built upon Large Vision-Language Model (LVLM). T-VAD introduces an Anomaly Heatmap Decoder (AHD) that performs pixel-wise visual-textual feature alignment to generate fine-grained anomaly heatmaps. Furthermore, we design a Region-aware Anomaly Encoder (RAE) that transforms the heatmaps into learnable textual embeddings, guiding the LVLM to accurately identify and localize anomalous events in videos. This significantly enhances both the granularity and interactivity of anomaly detection. The proposed method achieving SOTA performance by demonstrating 94.8% Area Under the Curve (AUC, specifically micro-AUC) and 67.8%/76.7% accuracy in anomaly heatmaps (RBDC/TBDC) on the UBnormal dataset, and subjectively verified more preferable textual description on the ShanghaiTech-based dataset (BLEU-4: 62.67 for targets, 88.84 for trajectories; Yes/No accuracy: 97.67%), and on the UBnormal dataset (BLEU-4: 50.32 for targets, 78.10 for trajectories; Yes/No accuracy: 89.73%).
♻ ☆ Balancing Tails when Comparing Distributions: Comprehensive Equity Index (CEI) with Application to Bias Evaluation in Operational Face Biometrics
Demographic bias in high-performance face recognition (FR) systems often eludes detection by existing metrics, especially with respect to subtle disparities in the tails of the score distribution. We introduce the Comprehensive Equity Index (CEI), a novel metric designed to address this limitation. CEI uniquely analyzes genuine and impostor score distributions separately, enabling a configurable focus on tail probabilities while also considering overall distribution shapes. Our extensive experiments (evaluating state-of-the-art FR systems, intentionally biased models, and diverse datasets) confirm CEI's superior ability to detect nuanced biases where previous methods fall short. Furthermore, we present CEI^A, an automated version of the metric that enhances objectivity and simplifies practical application. CEI provides a robust and sensitive tool for operational FR fairness assessment. The proposed methods have been developed particularly for bias evaluation in face biometrics but, in general, they are applicable for comparing statistical distributions in any problem where one is interested in analyzing the distribution tails.
♻ ☆ Hulu-Med: A Transparent Generalist Model towards Holistic Medical Vision-Language Understanding
Real-world clinical decision-making requires integrating heterogeneous data, including medical text, 2D images, 3D volumes, and videos, while existing AI systems fail to unify all these signals, limiting their utility. In this paper, we introduce Hulu-Med, a transparent, generalist medical Vision-Language Model (VLM) designed to unify language-only, 2D/3D vision-language, and video understanding within a single architecture. Hulu-Med is trained on a curated corpus of 16.7 million samples, comprising exclusively public or synthetic data, spanning 12 major anatomical systems and 14 medical imaging modalities. Hulu-Med employs a medical-aware token-reduction strategy that prunes redundant visual tokens, achieving up to a 55% reduction for 3D and video inputs, improving cross-modal efficiency, and enabling training at 7B-32B parameter scales in approximately 4,000-40,000 GPU hours. Across 30 public in-domain and out-of-domain medical benchmarks-covering text reasoning, visual question answering, report generation, multilingual dialogue, video understanding, and rare disease diagnosis-Hulu-Med surpasses existing open-source models on 27 of 30 benchmarks and outperforms proprietary systems such as GPT-4o on 16 benchmarks. Despite being a VLM, Hulu-Med outperforms GPT-4o and matches GPT-o1 on the text-only HealthBench. For the first time in the community, we provide a fully transparent, reproducible and cost-effective pipeline for holistic medical vision-language understanding by releasing our end-to-end data curation, training procedures, and model parameters. Code and models are available at https://github.com/ZJUI-AI4H/Hulu-Med.
♻ ☆ ZPressor: Bottleneck-Aware Compression for Scalable Feed-Forward 3DGS NeurIPS 2025
Feed-forward 3D Gaussian Splatting (3DGS) models have recently emerged as a promising solution for novel view synthesis, enabling one-pass inference without the need for per-scene 3DGS optimization. However, their scalability is fundamentally constrained by the limited capacity of their models, leading to degraded performance or excessive memory consumption as the number of input views increases. In this work, we analyze feed-forward 3DGS frameworks through the lens of the Information Bottleneck principle and introduce ZPressor, a lightweight architecture-agnostic module that enables efficient compression of multi-view inputs into a compact latent state $Z$ that retains essential scene information while discarding redundancy. Concretely, ZPressor enables existing feed-forward 3DGS models to scale to over 100 input views at 480P resolution on an 80GB GPU, by partitioning the views into anchor and support sets and using cross attention to compress the information from the support views into anchor views, forming the compressed latent state $Z$. We show that integrating ZPressor into several state-of-the-art feed-forward 3DGS models consistently improves performance under moderate input views and enhances robustness under dense view settings on two large-scale benchmarks DL3DV-10K and RealEstate10K. The video results, code and trained models are available on our project page: https://lhmd.top/zpressor.
comment: NeurIPS 2025, Project Page: https://lhmd.top/zpressor, Code: https://github.com/ziplab/ZPressor
♻ ☆ Manipulation Facing Threats: Evaluating Physical Vulnerabilities in End-to-End Vision Language Action Models
Recently, driven by advancements in Multimodal Large Language Models (MLLMs), Vision Language Action Models (VLAMs) are being proposed to achieve better performance in open-vocabulary scenarios for robotic manipulation tasks. Since manipulation tasks involve direct interaction with the physical world, ensuring robustness and safety during the execution of this task is always a very critical issue. In this paper, by synthesizing current safety research on MLLMs and the specific application scenarios of the manipulation task in the physical world, we comprehensively evaluate VLAMs in the face of potential physical threats. Specifically, we propose the Physical Vulnerability Evaluating Pipeline (PVEP) that can incorporate as many visual modal physical threats as possible for evaluating the physical robustness of VLAMs. The physical threats in PVEP specifically include Out-of-Distribution, Typography-based Visual Prompt, and Adversarial Patch Attacks. By comparing the performance fluctuations of VLAMs before and after being attacked, we provide generalizable \textbf{\textit{Analyses}} of how VLAMs respond to different physical threats.
♻ ☆ Exploring Typographic Visual Prompts Injection Threats in Cross-Modality Generation Models IJCAI2025
Current Cross-Modality Generation Models (GMs) demonstrate remarkable capabilities in various generative tasks. Given the ubiquity and information richness of vision modality inputs in real-world scenarios, Cross-Vision tasks, encompassing Vision-Language Perception (VLP) and Image-to-Image (I2I), have attracted significant attention. Large Vision Language Models (LVLMs) and I2I Generation Models (GMs) are employed to handle VLP and I2I tasks, respectively. Previous research indicates that printing typographic words into input images significantly induces LVLMs and I2I GMs to produce disruptive outputs that are semantically aligned with those words. Additionally, visual prompts, as a more sophisticated form of typography, are also revealed to pose security risks to various applications of cross-vision tasks. However, the specific characteristics of the threats posed by visual prompts remain underexplored. In this paper, to comprehensively investigate the performance impact induced by Typographic Visual Prompt Injection (TVPI) in various LVLMs and I2I GMs, we propose the Typographic Visual Prompts Injection Dataset and thoroughly evaluate the TVPI security risks on various open-source and closed-source LVLMs and I2I GMs under visual prompts with different target semantics, deepening the understanding of TVPI threats.
comment: This paper is accepted by IJCAI2025 Workshop on Deepfake Detection, Localization, and Interpretability as Best Student Paper
♻ ☆ Revisiting Multimodal Positional Encoding in Vision-Language Models
Multimodal position encoding is essential for vision-language models, yet there has been little systematic investigation into multimodal position encoding. We conduct a comprehensive analysis of multimodal Rotary Positional Embedding (RoPE) by examining its two core components: position design and frequency allocation. Through extensive experiments, we identify three key guidelines: positional coherence, full frequency utilization, and preservation of textual priors-ensuring unambiguous layout, rich representation, and faithful transfer from the pre-trained LLM. Based on these insights, we propose Multi-Head RoPE (MHRoPE) and MRoPE-Interleave (MRoPE-I), two simple and plug-and-play variants that require no architectural changes. Our methods consistently outperform existing approaches across diverse benchmarks, with significant improvements in both general and fine-grained multimodal understanding. Code will be avaliable at https://github.com/JJJYmmm/Multimodal-RoPEs.
comment: 16 pages
♻ ☆ ViFP: A Framework for Visual False Positive Detection to Enhance Reasoning Reliability in VLMs
During reasoning in vision-language models (VLMs), false positive (FP) reasoning occurs when a model produces the correct answer but follows an incorrect reasoning path, resulting in undermined reasoning reliability. Existing approaches mainly rely on prompt engineering, knowledge distillation or reinforcement learning to improve reasoning reliability, both of which require large amounts of high-quality data and thus limit practical applicability. Few approaches have focused on directly detecting and correcting FPs. To address these issues, we propose ViFP, a framework for Visual False Positive Detection to Enhance Reasoning Reliability in VLMs. ViFP builds effective reasoning paths through multi-turn QA and dynamically analyzes the consistency of the reasoning path to identify potential FPs. It also introduces a targeted reasoning chain correction mechanism to modify FP reasoning, thereby improving logical consistency and accuracy. Finally, we introduce a reliability evaluation metric, VoC, which integrates answer accuracy and the FP rate, providing a quantitative tool to assess whether a VLM not only answers correctly but also reasons reliably. Our experiments on closed-source VLMs show that ViFP consistently improves performance across three datasets: A-OKVQA, OK-VQA, and FVQA. On A-OKVQA, ViFP improves accuracy by up to 5.4%, surpassing the previous state-of-the-art by 4.3%, and significantly reduces the number of FPs, validating its benefits in enhancing reasoning reliability.
♻ ☆ Med-Banana-50K: A Cross-modality Large-Scale Dataset for Text-guided Medical Image Editing
Recent advances in multimodal large language models have enabled remarkable medical image editing capabilities. However, the research community's progress remains constrained by the absence of large-scale, high-quality, and openly accessible datasets built specifically for medical image editing with strict anatomical and clinical constraints. We introduce Med-Banana-50K, a comprehensive 50K-image dataset for instruction-based medical image editing spanning three modalities (chest X-ray, brain MRI, fundus photography) and 23 disease types. Our dataset is constructed by leveraging Gemini-2.5-Flash-Image to generate bidirectional edits (lesion addition and removal) from real medical images. What distinguishes Med-Banana-50K from general-domain editing datasets is our systematic approach to medical quality control: we employ LLM-as-Judge with a medically grounded rubric (instruction compliance, structural plausibility, realism, and fidelity preservation) and history-aware iterative refinement up to five rounds. Beyond single-turn editing, Med-Banana-50K includes 37K failed attempts with full conversation logs for preference learning and alignment research. By providing this large-scale, medically validated, and fully documented resource, Med-Banana-50K establishes a foundation for training and evaluating the next generation of medical image editing models.Our dataset and code are publicly available at [https://github.com/richardChenzhihui/med-banana-50k].
♻ ☆ A Label Propagation Strategy for CutMix in Multi-Label Remote Sensing Image Classification
The development of supervised deep learning-based methods for multi-label scene classification (MLC) is one of the prominent research directions in remote sensing (RS). However, collecting annotations for large RS image archives is time-consuming and costly. To address this issue, several data augmentation methods have been introduced in RS. Among others, the CutMix data augmentation technique, which combines parts of two existing training images to generate an augmented image, stands out as a particularly effective approach. However, the direct application of CutMix in RS MLC can lead to the erasure or addition of class labels (i.e., label noise) in the augmented (i.e., combined) training image. To address this problem, we introduce a label propagation (LP) strategy that allows the effective application of CutMix in the context of MLC problems in RS without being affected by label noise. To this end, our proposed LP strategy exploits pixel-level class positional information to update the multi-label of the augmented training image. We propose to access such class positional information from reference maps (e.g., thematic products) associated with each training image or from class explanation masks provided by an explanation method if no reference maps are available. Similarly to pairing two training images, our LP strategy carries out a pairing operation on the associated pixel-level class positional information to derive the updated multi-label for the augmented image. Experimental results show the effectiveness of our LP strategy in general (e.g., an improvement of 2% to 4% mAP macro compared to standard CutMix) and its robustness in the case of various simulated and real scenarios with noisy class positional information in particular. Code is available at https://git.tu-berlin.de/rsim/cutmix_lp.
comment: Accepted at IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
♻ ☆ Towards 1000-fold Electron Microscopy Image Compression for Connectomics via VQ-VAE with Transformer Prior
Petascale electron microscopy (EM) datasets push storage, transfer, and downstream analysis toward their current limits. We present a vector-quantized variational autoencoder-based (VQ-VAE) compression framework for EM that spans 16x to 1024x and enables pay-as-you-decode usage: top-only decoding for extreme compression, with an optional Transformer prior that predicts bottom tokens (without changing the compression ratio) to restore texture via feature-wise linear modulation (FiLM) and concatenation; we further introduce an ROI-driven workflow that performs selective high-resolution reconstruction from 1024x-compressed latents only where needed.
♻ ☆ CLIP Meets Diffusion: A Synergistic Approach to Anomaly Detection
Anomaly detection is a complex problem due to the ambiguity in defining anomalies, the diversity of anomaly types (e.g., local and global defect), and the scarcity of training data. As such, it necessitates a comprehensive model capable of capturing both low-level and high-level features, even with limited data. To address this, we propose CLIPFUSION, a method that leverages both discriminative and generative foundation models. Specifically, the CLIP-based discriminative model excels at capturing global features, while the diffusion-based generative model effectively captures local details, creating a synergistic and complementary approach. Notably, we introduce a methodology for utilizing cross-attention maps and feature maps extracted from diffusion models specifically for anomaly detection. Experimental results on benchmark datasets (MVTec-AD, VisA) demonstrate that CLIPFUSION consistently outperforms baseline methods, achieving outstanding performance in both anomaly segmentation and classification. We believe that our method underscores the effectiveness of multi-modal and multi-model fusion in tackling the multifaceted challenges of anomaly detection, providing a scalable solution for real-world applications.
comment: Accepted at TMLR 2025
♻ ☆ SpatialLM: Training Large Language Models for Structured Indoor Modeling
SpatialLM is a large language model designed to process 3D point cloud data and generate structured 3D scene understanding outputs. These outputs include architectural elements like walls, doors, windows, and oriented object boxes with their semantic categories. Unlike previous methods which exploit task-specific network designs, our model adheres to the standard multimodal LLM architecture and is fine-tuned directly from open-source LLMs. To train SpatialLM, we collect a large-scale, high-quality synthetic dataset consisting of the point clouds of 12,328 indoor scenes (54,778 rooms) with ground-truth 3D annotations, and conduct a careful study on various modeling and training decisions. On public benchmarks, our model gives state-of-the-art performance in layout estimation and competitive results in 3D object detection. With that, we show a feasible path for enhancing the spatial understanding capabilities of modern LLMs for applications in augmented reality, embodied robotics, and more.
♻ ☆ Towards Interpretable and Efficient Attention: Compressing All by Contracting a Few NeurIPS2025
Attention mechanisms have achieved significant empirical success in multiple fields, but their underlying optimization objectives remain unclear yet. Moreover, the quadratic complexity of self-attention has become increasingly prohibitive. Although interpretability and efficiency are two mutually reinforcing pursuits, prior work typically investigates them separately. In this paper, we propose a unified optimization objective that derives inherently interpretable and efficient attention mechanisms through algorithm unrolling. Precisely, we construct a gradient step of the proposed objective with a set of forward-pass operations of our \emph{Contract-and-Broadcast Self-Attention} (CBSA), which compresses input tokens towards low-dimensional structures by contracting a few representatives of them. This novel mechanism can not only scale linearly by fixing the number of representatives, but also covers the instantiations of varied attention mechanisms when using different sets of representatives. We conduct extensive experiments to demonstrate comparable performance and superior advantages over black-box attention mechanisms on visual tasks. Our work sheds light on the integration of interpretability and efficiency, as well as the unified formula of attention mechanisms.
comment: NeurIPS2025 Spotlight; Code is available at https://github.com/QishuaiWen/CBSA
♻ ☆ OLATverse: A Large-scale Real-world Object Dataset with Precise Lighting Control
We introduce OLATverse, a large-scale dataset comprising around 9M images of 765 real-world objects, captured from multiple viewpoints under a diverse set of precisely controlled lighting conditions. While recent advances in object-centric inverse rendering, novel view synthesis and relighting have shown promising results, most techniques still heavily rely on the synthetic datasets for training and small-scale real-world datasets for benchmarking, which limits their realism and generalization. To address this gap, OLATverse offers two key advantages over existing datasets: large-scale coverage of real objects and high-fidelity appearance under precisely controlled illuminations. Specifically, OLATverse contains 765 common and uncommon real-world objects, spanning a wide range of material categories. Each object is captured using 35 DSLR cameras and 331 individually controlled light sources, enabling the simulation of diverse illumination conditions. In addition, for each object, we provide well-calibrated camera parameters, accurate object masks, photometric surface normals, and diffuse albedo as auxiliary resources. We also construct an extensive evaluation set, establishing the first comprehensive real-world object-centric benchmark for inverse rendering and normal estimation. We believe that OLATverse represents a pivotal step toward integrating the next generation of inverse rendering and relighting methods with real-world data. The full dataset, along with all post-processing workflows, will be publicly released at https://vcai.mpi-inf.mpg.de/projects/OLATverse/.
♻ ☆ A Survey on Text-Driven 360-Degree Panorama Generation
The advent of text-driven 360-degree panorama generation, enabling the synthesis of 360-degree panoramic images directly from textual descriptions, marks a transformative advancement in immersive visual content creation. This innovation significantly simplifies the traditionally complex process of producing such content. Recent progress in text-to-image diffusion models has accelerated the rapid development in this emerging field. This survey presents a comprehensive review of text-driven 360-degree panorama generation, offering an in-depth analysis of state-of-the-art algorithms. We extend our analysis to two closely related domains: text-driven 360-degree 3D scene generation and text-driven 360-degree panoramic video generation. Furthermore, we critically examine current limitations and propose promising directions for future research. A curated project page with relevant resources and research papers is available at https://littlewhitesea.github.io/Text-Driven-Pano-Gen/.
comment: Accepted by IEEE TCSVT, Code: https://github.com/littlewhitesea/Text-Driven-Pano-Gen
♻ ☆ Benchmarking Foundation Models and Parameter-Efficient Fine-Tuning for Prognosis Prediction in Medical Imaging
Despite the significant potential of Foundation Models (FMs) in medical imaging, their application to prognosis prediction remains challenging due to data scarcity, class imbalance, and task complexity, which limit their clinical adoption. This study introduces the first structured benchmark to assess the robustness and efficiency of transfer learning strategies for FMs compared with convolutional neural networks (CNNs) in predicting COVID-19 patient outcomes from chest X-rays. The goal is to systematically compare finetuning strategies, both classical and parameter efficient, under realistic clinical constraints related to data scarcity and class imbalance, offering empirical guidance for AI deployment in clinical workflows. Four publicly available COVID-19 chest X-ray datasets were used, covering mortality, severity, and ICU admission, with varying sample sizes and class imbalances. CNNs pretrained on ImageNet and FMs pretrained on general or biomedical datasets were adapted using full finetuning, linear probing, and parameter-efficient methods. Models were evaluated under full data and few shot regimes using the Matthews Correlation Coefficient (MCC) and Precision Recall AUC (PR-AUC), with cross validation and class weighted losses. CNNs with full fine-tuning performed robustly on small, imbalanced datasets, while FMs with Parameter-Efficient Fine-Tuning (PEFT), particularly LoRA and BitFit, achieved competitive results on larger datasets. Severe class imbalance degraded PEFT performance, whereas balanced data mitigated this effect. In few-shot settings, FMs showed limited generalization, with linear probing yielding the most stable results. No single fine-tuning strategy proved universally optimal: CNNs remain dependable for low-resource scenarios, whereas FMs benefit from parameter-efficient methods when data are sufficient.
♻ ☆ Automatic Road Subsurface Distress Recognition from Ground Penetrating Radar Images using Deep Learning-based Cross-verification
Ground penetrating radar (GPR) has become a rapid and non-destructive solution for road subsurface distress (RSD) detection. Deep learning-based automatic RSD recognition, though ameliorating the burden of data processing, suffers from data scarcity and insufficient capability to recognize defects. In this study, a rigorously validated 3D GPR dataset containing 2134 samples of diverse types was constructed through field scanning. A novel cross-verification strategy was proposed to fully exploit the complementary abilities of region proposal networks in object recognition from different views of GPR images. The method achieves outstanding accuracy with a recall over 98.6% in field tests. The approach, integrated into an online RSD detection system, can reduce the human labor of inspection by around 90%.
♻ ☆ MagCache: Fast Video Generation with Magnitude-Aware Cache NeurIPS 2025
Existing acceleration techniques for video diffusion models often rely on uniform heuristics or time-embedding variants to skip timesteps and reuse cached features. These approaches typically require extensive calibration with curated prompts and risk inconsistent outputs due to prompt-specific overfitting. In this paper, we introduce a novel and robust discovery: a unified magnitude law observed across different models and prompts. Specifically, the magnitude ratio of successive residual outputs decreases monotonically, steadily in most timesteps while rapidly in the last several steps. Leveraging this insight, we introduce a Magnitude-aware Cache (MagCache) that adaptively skips unimportant timesteps using an error modeling mechanism and adaptive caching strategy. Unlike existing methods requiring dozens of curated samples for calibration, MagCache only requires a single sample for calibration. Experimental results show that MagCache achieves 2.10x-2.68x speedups on Open-Sora, CogVideoX, Wan 2.1, and HunyuanVideo, while preserving superior visual fidelity. It significantly outperforms existing methods in LPIPS, SSIM, and PSNR, under similar computational budgets.
comment: Project Page: https://zehong-ma.github.io/MagCache Accepted by NeurIPS 2025
♻ ☆ DA$^2$: Depth Anything in Any Direction
Panorama has a full FoV (360$^\circ\times$180$^\circ$), offering a more complete visual description than perspective images. Thanks to this characteristic, panoramic depth estimation is gaining increasing traction in 3D vision. However, due to the scarcity of panoramic data, previous methods are often restricted to in-domain settings, leading to poor zero-shot generalization. Furthermore, due to the spherical distortions inherent in panoramas, many approaches rely on perspective splitting (e.g., cubemaps), which leads to suboptimal efficiency. To address these challenges, we propose $\textbf{DA}$$^{\textbf{2}}$: $\textbf{D}$epth $\textbf{A}$nything in $\textbf{A}$ny $\textbf{D}$irection, an accurate, zero-shot generalizable, and fully end-to-end panoramic depth estimator. Specifically, for scaling up panoramic data, we introduce a data curation engine for generating high-quality panoramic depth data from perspective, and create $\sim$543K panoramic RGB-depth pairs, bringing the total to $\sim$607K. To further mitigate the spherical distortions, we present SphereViT, which explicitly leverages spherical coordinates to enforce the spherical geometric consistency in panoramic image features, yielding improved performance. A comprehensive benchmark on multiple datasets clearly demonstrates DA$^{2}$'s SoTA performance, with an average 38% improvement on AbsRel over the strongest zero-shot baseline. Surprisingly, DA$^{2}$ even outperforms prior in-domain methods, highlighting its superior zero-shot generalization. Moreover, as an end-to-end solution, DA$^{2}$ exhibits much higher efficiency over fusion-based approaches. Both the code and the curated panoramic data has be released. Project page: https://depth-any-in-any-dir.github.io/.
comment: Work primarily done during an internship at Tencent Hunyuan. Project page: https://depth-any-in-any-dir.github.io/
♻ ☆ Alleviating Hyperparameter-Tuning Burden in SVM Classifiers for Pulmonary Nodules Diagnosis with Multi-Task Bayesian Optimization
In the field of non-invasive medical imaging, radiomic features are utilized to measure tumor characteristics. However, these features can be affected by the techniques used to discretize the images, ultimately impacting the accuracy of diagnosis. To investigate the influence of various image discretization methods on diagnosis, it is common practice to evaluate multiple discretization strategies individually. This approach often leads to redundant and time-consuming tasks such as training predictive models and fine-tuning hyperparameters separately. This study examines the feasibility of employing multi-task Bayesian optimization to accelerate the hyperparameters search for classifying benign and malignant pulmonary nodules using RBF SVM. Our findings suggest that multi-task Bayesian optimization significantly accelerates the search for hyperparameters in comparison to a single-task approach. To the best of our knowledge, this is the first investigation to utilize multi-task Bayesian optimization in a critical medical context.
comment: 12 pages, 4 figures, 37 references
♻ ☆ MSDNet: Multi-Scale Decoder for Few-Shot Semantic Segmentation via Transformer-Guided Prototyping
Few-shot Semantic Segmentation addresses the challenge of segmenting objects in query images with only a handful of annotated examples. However, many previous state-of-the-art methods either have to discard intricate local semantic features or suffer from high computational complexity. To address these challenges, we propose a new Few-shot Semantic Segmentation framework based on the Transformer architecture. Our approach introduces the spatial transformer decoder and the contextual mask generation module to improve the relational understanding between support and query images. Moreover, we introduce a multi scale decoder to refine the segmentation mask by incorporating features from different resolutions in a hierarchical manner. Additionally, our approach integrates global features from intermediate encoder stages to improve contextual understanding, while maintaining a lightweight structure to reduce complexity. This balance between performance and efficiency enables our method to achieve competitive results on benchmark datasets such as PASCAL-5^i and COCO-20^i in both 1-shot and 5-shot settings. Notably, our model with only 1.5 million parameters demonstrates competitive performance while overcoming limitations of existing methodologies. https://github.com/amirrezafateh/MSDNet
♻ ☆ FUSAR-KLIP: Towards Multimodal Foundation Models for Remote Sensing
Cross-modal artificial intelligence has garnered widespread attention in recent years, achieving significant progress in the study of natural images. However, existing methods are mostly designed for RGB imagery, leaving a significant gap in modeling synthetic aperture radar (SAR) imagery. SAR, with its all-day, all-weather imaging capabilities, plays an irreplaceable role in remote sensing scene understanding. To address this gap, this paper proposes FUSAR-KLIP, the first universal SAR multimodal foundational model, along with reusable data and evaluation baselines. Specifically: (1) This work introduces the critical yet long-overlooked attribute of geographic information into remote sensing research, constructing FUSAR-GEOVL-1M (the first large-scale SAR dataset with complete geographic projection properties), covering multiple satellite platforms, 120,000 images, and 135 cities. (2) Aligned structured text is generated through a hierarchical cognitive chain-of-thought (HCoT), providing more than one million multi-dimensional semantic annotations of landforms, regional functions, target attributes, and spatial relationships. (3) We design a Self-Consistent Iterative Optimization mechanism that continuously enhances cross-modal alignment through a self-supervised closed loop of contrastive, matching, and reconstruction learning on a transferable multimodal encoder. (4) A unified evaluation benchmark is established across 11 representative downstream vision and vision-language tasks, with comparisons against 14 leading foundation models, where FUSAR-KLIP demonstrates leading performance, particularly in object counting and land-cover classification. We expect that FUSAR-KLIP's large-scale multimodal data, transferable model architecture, and comprehensive experimental benchmark will significantly advance the development of SAR multimodal baseline models.
♻ ☆ Object-X: Learning to Reconstruct Multi-Modal 3D Object Representations
Learning effective multi-modal 3D representations of objects is essential for numerous applications, such as augmented reality and robotics. Existing methods often rely on task-specific embeddings that are tailored either for semantic understanding or geometric reconstruction. As a result, these embeddings typically cannot be decoded into explicit geometry and simultaneously reused across tasks. In this paper, we propose Object-X, a versatile multi-modal object representation framework capable of encoding rich object embeddings (e.g. images, point cloud, text) and decoding them back into detailed geometric and visual reconstructions. Object-X operates by geometrically grounding the captured modalities in a 3D voxel grid and learning an unstructured embedding fusing the information from the voxels with the object attributes. The learned embedding enables 3D Gaussian Splatting-based object reconstruction, while also supporting a range of downstream tasks, including scene alignment, single-image 3D object reconstruction, and localization. Evaluations on two challenging real-world datasets demonstrate that Object-X produces high-fidelity novel-view synthesis comparable to standard 3D Gaussian Splatting, while significantly improving geometric accuracy. Moreover, Object-X achieves competitive performance with specialized methods in scene alignment and localization. Critically, our object-centric descriptors require 3-4 orders of magnitude less storage compared to traditional image- or point cloud-based approaches, establishing Object-X as a scalable and highly practical solution for multi-modal 3D scene representation.
♻ ☆ Seal2Real: Prompt Prior Learning on Diffusion Model for Unsupervised Document Seal Data Generation and Realisation
Seal-related tasks in document processing-such as seal segmentation, authenticity verification, seal removal, and text recognition under seals-hold substantial commercial importance. However, progress in these areas has been hindered by the scarcity of labeled document seal datasets, which are essential for supervised learning. To address this limitation, we propose Seal2Real, a novel generative framework designed to synthesize large-scale labeled document seal data. As part of this work, we also present Seal-DB, a comprehensive dataset containing 20,000 labeled images to support seal-related research. Seal2Real introduces a prompt prior learning architecture built upon a pre-trained Stable Diffusion model, effectively transferring its generative capability to the unsupervised domain of seal image synthesis. By producing highly realistic synthetic seal images, Seal2Real significantly enhances the performance of downstream seal-related tasks on real-world data. Experimental evaluations on the Seal-DB dataset demonstrate the effectiveness and practical value of the proposed framework.
♻ ☆ ThinkSound: Chain-of-Thought Reasoning in Multimodal Large Language Models for Audio Generation and Editing NeurIPS 2025
While end-to-end video-to-audio generation has greatly improved, producing high-fidelity audio that authentically captures the nuances of visual content remains challenging. Like professionals in the creative industries, this generation requires sophisticated reasoning about items such as visual dynamics, acoustic environments, and temporal relationships. We present ThinkSound, a novel framework that leverages Chain-of-Thought (CoT) reasoning to enable stepwise, interactive audio generation and editing for videos. Our approach decomposes the process into three complementary stages: foundational foley generation that creates semantically coherent soundscapes, interactive object-centric refinement through precise user interactions, and targeted editing guided by natural language instructions. At each stage, a multimodal large language model generates contextually aligned CoT reasoning that guides a unified audio foundation model. Furthermore, we introduce AudioCoT, a comprehensive dataset with structured reasoning annotations that establishes connections between visual content, textual descriptions, and sound synthesis. Experiments demonstrate that ThinkSound achieves state-of-the-art performance in video-to-audio generation across both audio metrics and CoT metrics, and excels in the out-of-distribution Movie Gen Audio benchmark. The project page is available at https://ThinkSound-Project.github.io.
comment: Accepted by NeurIPS 2025 Main
♻ ☆ BRISC: Annotated Dataset for Brain Tumor Segmentation and Classification
Accurate segmentation and classification of brain tumors from Magnetic Resonance Imaging (MRI) remain key challenges in medical image analysis, primarily due to the lack of high-quality, balanced, and diverse datasets with expert annotations. In this work, we address this gap by introducing BRISC, a dataset designed for brain tumor segmentation and classification tasks, featuring high-resolution segmentation masks. The dataset comprises 6,000 contrast-enhanced T1-weighted MRI scans, which were collated from multiple public datasets that lacked segmentation labels. Our primary contribution is the subsequent expert annotation of these images, performed by certified radiologists and physicians. It includes three major tumor types, namely glioma, meningioma, and pituitary, as well as non-tumorous cases. Each sample includes high-resolution labels and is categorized across axial, sagittal, and coronal imaging planes to facilitate robust model development and cross-view generalization. To demonstrate the utility of the dataset, we provide benchmark results for both tasks using standard deep learning models. The BRISC dataset is made publicly available. datasetlink: Kaggle (https://www.kaggle.com/datasets/briscdataset/brisc2025/), Figshare (https://doi.org/10.6084/m9.figshare.30533120), Zenodo (https://doi.org/10.5281/zenodo.17524350)
♻ ☆ Struct2D: A Perception-Guided Framework for Spatial Reasoning in MLLMs NeurIPS 2025
Unlocking spatial reasoning in Multimodal Large Language Models (MLLMs) is crucial for enabling intelligent interaction with 3D environments. While prior efforts often rely on explicit 3D inputs or specialized model architectures, we ask: can MLLMs reason about 3D space using only structured 2D representations derived from perception? We introduce Struct2D, a perception-guided prompting framework that combines bird's-eye-view (BEV) images with object marks and object-centric metadata, optionally incorporating egocentric keyframes when needed. Using Struct2D, we conduct an in-depth zero-shot analysis of closed-source MLLMs (e.g., GPT-o3) and find that they exhibit surprisingly strong spatial reasoning abilities when provided with structured 2D inputs, effectively handling tasks such as relative direction estimation and route planning. Building on these insights, we construct Struct2D-Set, a large-scale instruction tuning dataset with 200K fine-grained QA pairs across eight spatial reasoning categories, generated automatically from 3D indoor scenes. We fine-tune an open-source MLLM (Qwen2.5VL) on Struct2D-Set, achieving competitive performance on multiple benchmarks, including 3D question answering, dense captioning, and object grounding. Our approach demonstrates that structured 2D inputs can effectively bridge perception and language reasoning in MLLMs-without requiring explicit 3D representations as input. We will release both our code and dataset to support future research.
comment: NeurIPS 2025, code link: https://github.com/neu-vi/struct2d
♻ ☆ Which Way Does Time Flow? A Psychophysics-Grounded Evaluation for Vision-Language Models
Modern vision-language models (VLMs) excel at many multimodal tasks, yet their grasp of temporal information in video remains weak and, crucially, under-evaluated. We probe this gap with a deceptively simple but revealing challenge: judging the arrow of time (AoT)-whether a short clip is played forward or backward. We introduce AoT-PsyPhyBENCH, a psychophysically validated benchmark that tests whether VLMs can infer temporal direction in natural videos using the same stimuli and behavioral baselines established for humans. Our comprehensive evaluation of open-weight and proprietary, reasoning and non-reasoning VLMs reveals that most models perform near chance, and even the best lag far behind human accuracy on physically irreversible processes (e.g., free fall, diffusion/explosion) and causal manual actions (division/addition) that humans recognize almost instantly. These results highlight a fundamental gap in current multimodal systems: while they capture rich visual-semantic correlations, they lack the inductive biases required for temporal continuity and causal understanding. We release the code and data for AoT-PsyPhyBENCH to encourage further progress in the physical and temporal reasoning capabilities of VLMs.
comment: 10 pages
♻ ☆ FusionRF: High-Fidelity Satellite Neural Radiance Fields from Multispectral and Panchromatic Acquisitions
We introduce FusionRF, a novel framework for digital surface reconstruction from satellite multispectral and panchromatic images. Current work has demonstrated the increased accuracy of neural photogrammetry for surface reconstruction from optical satellite images compared to algorithmic methods. Common satellites produce both a panchromatic and multispectral image, which contain high spatial and spectral information respectively. Current neural reconstruction methods require multispectral images to be upsampled with a pansharpening method using the spatial data in the panchromatic image. However, these methods may introduce biases and hallucinations due to domain gaps. FusionRF introduces joint image fusion during optimization through a novel cross-resolution kernel that learns to resolve spatial resolution loss present in multispectral images. As input, FusionRF accepts the original multispectral and panchromatic data, eliminating the need for image preprocessing. FusionRF also leverages multimodal appearance embeddings that encode the image characteristics of each modality and view within a uniform representation. By optimizing on both modalities, FusionRF learns to fuse image modalities while performing reconstruction tasks and eliminates the need for a pansharpening preprocessing step. We evaluate our method on multispectral and panchromatic satellite images from the WorldView-3 satellite in various locations, and show that FusionRF provides an average of 17% reduction in depth reconstruction error, and renders sharp training and novel views.
♻ ☆ ESA: Energy-Based Shot Assembly Optimization for Automatic Video Editing
Shot assembly is a crucial step in film production and video editing, involving the sequencing and arrangement of shots to construct a narrative, convey information, or evoke emotions. Traditionally, this process has been manually executed by experienced editors. While current intelligent video editing technologies can handle some automated video editing tasks, they often fail to capture the creator's unique artistic expression in shot assembly. To address this challenge, we propose an energy-based optimization method for video shot assembly. Specifically, we first perform visual-semantic matching between the script generated by a large language model and a video library to obtain subsets of candidate shots aligned with the script semantics. Next, we segment and label the shots from reference videos, extracting attributes such as shot size, camera motion, and semantics. We then employ energy-based models to learn from these attributes, scoring candidate shot sequences based on their alignment with reference styles. Finally, we achieve shot assembly optimization by combining multiple syntax rules, producing videos that align with the assembly style of the reference videos. Our method not only automates the arrangement and combination of independent shots according to specific logic, narrative requirements, or artistic styles but also learns the assembly style of reference videos, creating a coherent visual sequence or holistic visual expression. With our system, even users with no prior video editing experience can create visually compelling videos. Project page: https://sobeymil.github.io/esa.com
♻ ☆ ALTo: Adaptive-Length Tokenizer for Autoregressive Mask Generation
While humans effortlessly draw visual objects and shapes by adaptively allocating attention based on their complexity, existing multimodal large language models (MLLMs) remain constrained by rigid token representations. Bridging this gap, we propose ALTo, an adaptive length tokenizer for autoregressive mask generation. To achieve this, a novel token length predictor is designed, along with a length regularization term and a differentiable token chunking strategy. We further build ALToLLM that seamlessly integrates ALTo into MLLM. Preferences on the trade-offs between mask quality and efficiency is implemented by group relative policy optimization (GRPO). Experiments demonstrate that ALToLLM achieves state-of-the-art performance with adaptive token cost on popular segmentation benchmarks. Code and models are released at https://github.com/yayafengzi/ALToLLM.
♻ ☆ MobileGeo: Exploring Hierarchical Knowledge Distillation for Resource-Efficient Cross-view Drone Geo-Localization
Cross-view geo-localization (CVGL) enables drone localization by matching aerial images to geo-tagged satellite databases, which is critical for autonomous navigation in GNSS-denied environments. However, existing methods rely on resource-intensive feature alignment and multi-branch architectures, incurring high inference costs that limit their deployment on mobile edge devices. We propose MobileGeo, a mobile-friendly framework designed for efficient on-device CVGL. MobileGeo achieves its efficiency through two key components: 1) During training, a Hierarchical Distillation (HD-CVGL) paradigm, coupled with Uncertainty-Aware Prediction Alignment (UAPA), distills essential information into a compact model without incurring inference overhead. 2) During inference, an efficient Multi-view Selection Refinement Module (MSRM) leverages mutual information to filter redundant views and reduce computational load. Extensive experiments demonstrate that MobileGeo outperforms previous state-of-the-art methods, achieving a 4.19\% improvement in AP on University-1652 dataset while being over 5$\times$ more efficient in FLOPs and 3$\times$ faster. Crucially, MobileGeo runs at 251.5 FPS on an NVIDIA AGX Orin edge device, demonstrating its practical viability for real-time on-device drone geo-localization.
♻ ☆ Breaking Down Monocular Ambiguity: Exploiting Temporal Evolution for 3D Lane Detection
Monocular 3D lane detection aims to estimate the 3D position of lanes from frontal-view (FV) images. However, existing methods are fundamentally constrained by the inherent ambiguity of single-frame input, which leads to inaccurate geometric predictions and poor lane integrity, especially for distant lanes. To overcome this, we propose to unlock the rich information embedded in the temporal evolution of the scene as the vehicle moves. Our proposed Geometry-aware Temporal Aggregation Network (GTA-Net) systematically leverages the temporal information from complementary perspectives. First, Temporal Geometry Enhancement Module (TGEM) learns geometric consistency across consecutive frames, effectively recovering depth information from motion to build a reliable 3D scene representation. Second, to enhance lane integrity, Temporal Instance-aware Query Generation (TIQG) module aggregates instance cues from past and present frames. Crucially, for lanes that are ambiguous in the current view, TIQG innovatively synthesizes a pseudo future perspective to generate queries that reveal lanes which would otherwise be missed. The experiments demonstrate that GTA-Net achieves new SoTA results, significantly outperforming existing monocular 3D lane detection solutions.
♻ ☆ Human Perception-Inspired Grain Segmentation Refinement Using Conditional Random Fields
Automated detection of grain boundaries (GBs) in electron microscope images of polycrystalline materials could help accelerate the nanoscale characterization of myriad engineering materials and novel materials under scientific research. Accurate segmentation of interconnected line networks, such as GBs in polycrystalline material microstructures, poses a significant challenge due to the fragmented masks produced by conventional computer vision (CV) algorithms, including convolutional neural networks. These algorithms struggle with thin masks, often necessitating post-processing for effective contour closure and continuity. Previous approaches in this domain have typically relied on custom post-processing techniques that are problem-specific and heavily dependent on the quality of the mask obtained from a CV algorithm. Addressing this issue, this paper introduces a fast, high-fidelity post-processing technique that is universally applicable to segmentation masks of interconnected line networks. Leveraging domain knowledge about grain boundary connectivity, this method employs conditional random fields and perceptual grouping rules to refine segmentation masks of any image with a discernible grain structure. This approach significantly enhances segmentation mask accuracy by correctly reconstructing fragmented GBs in electron microscopy images of a polycrystalline oxide. The refinement improves the statistical representation of the microstructure, reflected by a 51 % improvement in a grain alignment metric that provides a more physically meaningful assessment of complex microstructures than conventional metrics. This method enables rapid and accurate characterization, facilitating an unprecedented level of data analysis and improving the understanding of GB networks, making it suitable for a range of disciplines where precise segmentation of interconnected line networks is essential.
comment: v3 = published version (OA, CC BY 4.0)
♻ ☆ WOD-E2E: Waymo Open Dataset for End-to-End Driving in Challenging Long-tail Scenarios
Vision-based end-to-end (E2E) driving has garnered significant interest in the research community due to its scalability and synergy with multimodal large language models (MLLMs). However, current E2E driving benchmarks primarily feature nominal scenarios, failing to adequately test the true potential of these systems. Furthermore, existing open-loop evaluation metrics often fall short in capturing the multi-modal nature of driving or effectively evaluating performance in long-tail scenarios. To address these gaps, we introduce the Waymo Open Dataset for End-to-End Driving (WOD-E2E). WOD-E2E contains 4,021 driving segments (approximately 12 hours), specifically curated for challenging long-tail scenarios that that are rare in daily life with an occurring frequency of less than 0.03%. Concretely, each segment in WOD-E2E includes the high-level routing information, ego states, and 360-degree camera views from 8 surrounding cameras. To evaluate the E2E driving performance on these long-tail situations, we propose a novel open-loop evaluation metric: Rater Feedback Score (RFS). Unlike conventional metrics that measure the distance between predicted way points and the logs, RFS measures how closely the predicted trajectory matches rater-annotated trajectory preference labels. We have released rater preference labels for all WOD-E2E validation set segments, while the held out test set labels have been used for the 2025 WOD-E2E Challenge. Through our work, we aim to foster state of the art research into generalizable, robust, and safe end-to-end autonomous driving agents capable of handling complex real-world situations.
♻ ☆ Towards Fine-Grained Text-to-3D Quality Assessment: A Benchmark and A Two-Stage Rank-Learning Metric
Recent advances in Text-to-3D (T23D) generative models have enabled the synthesis of diverse, high-fidelity 3D assets from textual prompts. However, existing challenges restrict the development of reliable T23D quality assessment (T23DQA). First, existing benchmarks are outdated, fragmented, and coarse-grained, making fine-grained metric training infeasible. Moreover, current objective metrics exhibit inherent design limitations, resulting in non-representative feature extraction and diminished metric robustness. To address these limitations, we introduce T23D-CompBench, a comprehensive benchmark for compositional T23D generation. We define five components with twelve sub-components for compositional prompts, which are used to generate 3,600 textured meshes from ten state-of-the-art generative models. A large-scale subjective experiment is conducted to collect 129,600 reliable human ratings across different perspectives. Based on T23D-CompBench, we further propose Rank2Score, an effective evaluator with two-stage training for T23DQA. Rank2Score enhances pairwise training via supervised contrastive regression and curriculum learning in the first stage, and subsequently refines predictions using mean opinion scores to achieve closer alignment with human judgments in the second stage. Extensive experiments and downstream applications demonstrate that Rank2Score consistently outperforms existing metrics across multiple dimensions and can additionally serve as a reward function to optimize generative models. The project is available at https://cbysjtu.github.io/Rank2Score/.
Computers and Society
☆ Do Androids Dream of Unseen Puppeteers? Probing for a Conspiracy Mindset in Large Language Models
In this paper, we investigate whether Large Language Models (LLMs) exhibit conspiratorial tendencies, whether they display sociodemographic biases in this domain, and how easily they can be conditioned into adopting conspiratorial perspectives. Conspiracy beliefs play a central role in the spread of misinformation and in shaping distrust toward institutions, making them a critical testbed for evaluating the social fidelity of LLMs. LLMs are increasingly used as proxies for studying human behavior, yet little is known about whether they reproduce higher-order psychological constructs such as a conspiratorial mindset. To bridge this research gap, we administer validated psychometric surveys measuring conspiracy mindset to multiple models under different prompting and conditioning strategies. Our findings reveal that LLMs show partial agreement with elements of conspiracy belief, and conditioning with socio-demographic attributes produces uneven effects, exposing latent demographic biases. Moreover, targeted prompts can easily shift model responses toward conspiratorial directions, underscoring both the susceptibility of LLMs to manipulation and the potential risks of their deployment in sensitive contexts. These results highlight the importance of critically evaluating the psychological dimensions embedded in LLMs, both to advance computational social science and to inform possible mitigation strategies against harmful uses.
☆ Watermarking Large Language Models in Europe: Interpreting the AI Act in Light of Technology
To foster trustworthy Artificial Intelligence (AI) within the European Union, the AI Act requires providers to mark and detect the outputs of their general-purpose models. The Article 50 and Recital 133 call for marking methods that are ''sufficiently reliable, interoperable, effective and robust''. Yet, the rapidly evolving and heterogeneous landscape of watermarks for Large Language Models (LLMs) makes it difficult to determine how these four standards can be translated into concrete and measurable evaluations. Our paper addresses this challenge, anchoring the normativity of European requirements in the multiplicity of watermarking techniques. Introducing clear and distinct concepts on LLM watermarking, our contribution is threefold. (1) Watermarking Categorisation: We propose an accessible taxonomy of watermarking methods according to the stage of the LLM lifecycle at which they are applied - before, during, or after training, and during next-token distribution or sampling. (2) Watermarking Evaluation: We interpret the EU AI Act's requirements by mapping each criterion with state-of-the-art evaluations on robustness and detectability of the watermark, and of quality of the LLM. Since interoperability remains largely untheorised in LLM watermarking research, we propose three normative dimensions to frame its assessment. (3) Watermarking Comparison: We compare current watermarking methods for LLMs against the operationalised European criteria and show that no approach yet satisfies all four standards. Encouraged by emerging empirical tests, we recommend further research into watermarking directly embedded within the low-level architecture of LLMs.
comment: 17 pages, 2 Tables and 2 Pictures
☆ Two thousand years of the oracle problem. Insights from Ancient Delphi on the future of blockchain oracles
The oracle problem refers to the inability of an agent to know if the information coming from an oracle is authentic and unbiased. In ancient times, philosophers and historians debated on how to evaluate, increase, and secure the reliability of oracle predictions, particularly those from Delphi, which pertained to matters of state. Today, we refer to data carriers for automatic machines as oracles, but establishing a secure channel between these oracles and the real world still represents a challenge. Despite numerous efforts, this problem remains mostly unsolved, and the recent advent of blockchain oracles has added a layer of complexity because of the decentralization of blockchains. This paper conceptually connects Delphic and modern blockchain oracles, developing a comparative framework. Leveraging blockchain oracle taxonomy, lexical analysis is also performed on 167 Delphic queries to shed light on the relationship between oracle answer quality and question type. The presented framework aims first at revealing commonalities between classical and computational oracles and then at enriching the oracle analysis within each field. This study contributes to the computer science literature by proposing strategies to improve the reliability of blockchain oracles based on insights from Delphi and to classical literature by introducing a framework that can also be applied to interpret and classify other ancient oracular mechanisms.
comment: Not peer reviewed
☆ Hybrid Fact-Checking that Integrates Knowledge Graphs, Large Language Models, and Search-Based Retrieval Agents Improves Interpretable Claim Verification EMNLP
Large language models (LLMs) excel in generating fluent utterances but can lack reliable grounding in verified information. At the same time, knowledge-graph-based fact-checkers deliver precise and interpretable evidence, yet suffer from limited coverage or latency. By integrating LLMs with knowledge graphs and real-time search agents, we introduce a hybrid fact-checking approach that leverages the individual strengths of each component. Our system comprises three autonomous steps: 1) a Knowledge Graph (KG) Retrieval for rapid one - hop lookups in DBpedia, 2) an LM-based classification guided by a task-specific labeling prompt, producing outputs with internal rule-based logic, and 3) a Web Search Agent invoked only when KG coverage is insufficient. Our pipeline achieves an F1 score of 0.93 on the FEVER benchmark on the Supported/Refuted split without task- specific fine - tuning. To address Not enough information cases, we conduct a targeted reannotation study showing that our approach frequently uncovers valid evidence for claims originally labeled as Not Enough Information (NEI), as confirmed by both expert annotators and LLM reviewers. With this paper, we present a modular, opensource fact-checking pipeline with fallback strategies and generalization across datasets.
comment: Paper has been accepted at 9th wiNLP workshop at EMNLP
☆ Retrofitters, pragmatists and activists: Public interest litigation for accountable automated decision-making
This paper examines the role of public interest litigation in promoting accountability for AI and automated decision-making (ADM) in Australia. Since ADM regulatio faces geopolitical headwinds, effective governance will have to rely at least in part on the enforcement of existing laws. Drawing on interviews with Australian public interest litigators, technology policy activists, and technology law scholars, the paper positions public interest litigation as part of a larger ecosystem for transparency, accountability and justice with respect to ADM. It builds on one participants's characterisation of litigation about ADM as an exercise in legal retrofitting: adapting old laws to new circumstances. The paper's primary contribution is to aggregate, organise and present original insights on pragmatic strategies and tactics for effective public interest litigation about ADM. Naturally, it also contends with the limits of these strategies, and of the legal system. Where limits are, however, capable of being overcome, the paper presents findings on urgent needs: the enabling institutional arrangements without which effective litigation and accountability will falter. The paper is relevant to law and technology scholars; individuals and groups harmed by ADM; public interest litigators and technology lawyers; civil society and advocacy organisations; and policymakers.
☆ AI as We Describe It: How Large Language Models and Their Applications in Health are Represented Across Channels of Public Discourse
Representation shapes public attitudes and behaviors. With the arrival and rapid adoption of LLMs, the way these systems are introduced will negotiate societal expectations for their role in high-stakes domains like health. Yet it remains unclear whether current narratives present a balanced view. We analyzed five prominent discourse channels (news, research press, YouTube, TikTok, and Reddit) over a two-year period on lexical style, informational content, and symbolic representation. Discussions were generally positive and episodic, with positivity increasing over time. Risk communication was unthorough and often reduced to information quality incidents, while explanations of LLMs' generative nature were rare. Compared with professional outlets, TikTok and Reddit highlighted wellbeing applications and showed greater variations in tone and anthropomorphism but little attention to risks. We discuss implications for public discourse as a diagnostic tool in identifying literacy and governance gaps, and for communication and design strategies to support more informed LLM engagement.
☆ From Measurement to Expertise: Empathetic Expert Adapters for Context-Based Empathy in Conversational AI Agents
Empathy is a critical factor in fostering positive user experiences in conversational AI. While models can display empathy, it is often generic rather than tailored to specific tasks and contexts. In this work, we introduce a novel framework for developing and evaluating context-specific empathetic large language models (LLMs). We first analyze a real-world conversational dataset consisting of 672 multi-turn conversations across 8 tasks, revealing significant differences in terms of expected and experienced empathy before and after the conversations, respectively. To help minimize this gap, we develop a synthetic multi-turn conversational generation pipeline and steer responses toward our defined empathy patterns based on the context that more closely matches users' expectations. We then train empathetic expert adapters for context-specific empathy that specialize in varying empathy levels based on the recognized task. Our empirical results demonstrate a significant gap reduction of 72.66% between perceived and desired empathy with scores increasing by an average factor of 2.43 as measured by our metrics and reward models. Additionally, our trained empathetic expert adapters demonstrate superior effectiveness in preserving empathy patterns throughout conversation turns, outperforming system prompts, which tend to dramatically diminish in impact as conversations lengthen.
☆ Deploying Rapid Damage Assessments from sUAS Imagery for Disaster Response
This paper presents the first AI/ML system for automating building damage assessment in uncrewed aerial systems (sUAS) imagery to be deployed operationally during federally declared disasters (Hurricanes Debby and Helene). In response to major disasters, sUAS teams are dispatched to collect imagery of the affected areas to assess damage; however, at recent disasters, teams collectively delivered between 47GB and 369GB of imagery per day, representing more imagery than can reasonably be transmitted or interpreted by subject matter experts in the disaster scene, thus delaying response efforts. To alleviate this data avalanche encountered in practice, computer vision and machine learning techniques are necessary. While prior work has been deployed to automatically assess damage in satellite imagery, there is no current state of practice for sUAS-based damage assessment systems, as all known work has been confined to academic settings. This work establishes the state of practice via the development and deployment of models for building damage assessment with sUAS imagery. The model development involved training on the largest known dataset of post-disaster sUAS aerial imagery, containing 21,716 building damage labels, and the operational training of 91 disaster practitioners. The best performing model was deployed during the responses to Hurricanes Debby and Helene, where it assessed a combined 415 buildings in approximately 18 minutes. This work contributes documentation of the actual use of AI/ML for damage assessment during a disaster and lessons learned to the benefit of the AI/ML research and user communities.
comment: 6 pages, 4 figures, 1 table. Accepted - In Press, IAAI'26
♻ ☆ Intelligent Computing Social Modeling and Methodological Innovations in Political Science in the Era of Large Language Models SC
The recent wave of artificial intelligence, epitomized by large language models (LLMs),has presented opportunities and challenges for methodological innovation in political science,sparking discussions on a potential paradigm shift in the social sciences. However, how can weunderstand the impact of LLMs on knowledge production and paradigm transformation in thesocial sciences from a comprehensive perspective that integrates technology and methodology? What are LLMs' specific applications and representative innovative methods in political scienceresearch? These questions, particularly from a practical methodological standpoint, remainunderexplored. This paper proposes the "Intelligent Computing Social Modeling" (ICSM) methodto address these issues by clarifying the critical mechanisms of LLMs. ICSM leverages thestrengths of LLMs in idea synthesis and action simulation, advancing intellectual exploration inpolitical science through "simulated social construction" and "simulation validation." Bysimulating the U.S. presidential election, this study empirically demonstrates the operationalpathways and methodological advantages of ICSM. By integrating traditional social scienceparadigms, ICSM not only enhances the quantitative paradigm's capability to apply big data toassess the impact of factors but also provides qualitative paradigms with evidence for socialmechanism discovery at the individual level, offering a powerful tool that balances interpretabilityand predictability in social science research. The findings suggest that LLMs will drivemethodological innovation in political science through integration and improvement rather thandirect substitution.
comment: 37 pages, 11 figures, 3 tables. J OF CHIN POLIT SCI (2025)
♻ ☆ MetaFed: Advancing Privacy, Performance, and Sustainability in Federated Metaverse Systems ICCV
The rapid expansion of immersive Metaverse applications introduces complex challenges at the intersection of performance, privacy, and environmental sustainability. Centralized architectures fall short in addressing these demands, often resulting in elevated energy consumption, latency, and privacy concerns. This paper proposes MetaFed, a decentralized federated learning (FL) framework that enables sustainable and intelligent resource orchestration for Metaverse environments. MetaFed integrates (i) multi-agent reinforcement learning for dynamic client selection, (ii) privacy-preserving FL using homomorphic encryption, and (iii) carbon-aware scheduling aligned with renewable energy availability. Evaluations on MNIST and CIFAR-10 using lightweight ResNet architectures demonstrate that MetaFed achieves up to 25% reduction in carbon emissions compared to conventional approaches, while maintaining high accuracy and minimal communication overhead. These results highlight MetaFed as a scalable solution for building environmentally responsible and privacy-compliant Metaverse infrastructures.
comment: 2025 IEEE International Symposium on Emerging Metaverse (ISEMV), co-located with the 2025 IEEE/CVF International Conference on Computer Vision (ICCV)
♻ ☆ Interdisciplinary PhDs face barriers to top university placement within their disciplines
Interdisciplinary research has gained prominence as a necessity for addressing complex challenges, yet its impact on early academic careers remains unclear. This study examines how interdisciplinarity during doctoral training influences faculty placement at top universities across diverse fields. Analyzing the career trajectories of over 30,000 tenure-track faculty members who earned their Ph.D. degrees after 2005 and their initial faculty placement at 355 U.S. universities, we find that faculty newly hired by top-ranked universities tend to be less interdisciplinary in their Ph.D. research, particularly when they obtained Ph.D. from top universities and remain in their Ph.D. research field. This may reflect community trends towards homogeneity: at top universities, the existing faculty research is less interdisciplinary and more aligned with the candidates that they hire (who also exhibit lower interdisciplinarity). This preference disadvantages the placement of women graduates, who exhibit higher interdisciplinarity on average. Furthermore, we show that newly hired faculty with greater interdisciplinarity, when placed at top universities, tend to achieve higher long-term research productivity. This suggests a potential loss in knowledge production if top universities continue to undervalue interdisciplinary candidates. These findings highlight structural barriers in faculty hiring and raise concerns about the long-term consequences of prioritizing disciplinary specialization over interdisciplinary expertise.
♻ ☆ FaStfact: Faster, Stronger Long-Form Factuality Evaluations in LLMs EMNLP 2025
Evaluating the factuality of long-form generations from Large Language Models (LLMs) remains challenging due to efficiency bottlenecks and reliability concerns. Prior efforts attempt this by decomposing text into claims, searching for evidence, and verifying claims, but suffer from critical drawbacks: (1) inefficiency due to overcomplicated pipeline components, and (2) ineffectiveness stemming from inaccurate claim sets and insufficient evidence. To address these limitations, we propose \textbf{FaStfact}, an evaluation framework that achieves the highest alignment with human evaluation and time/token efficiency among existing baselines. FaStfact first employs chunk-level claim extraction integrated with confidence-based pre-verification, significantly reducing the time and token cost while ensuring reliability. For searching and verification, it collects document-level evidence from crawled web-pages and selectively retrieves it during verification. Extensive experiments based on an annotated benchmark \textbf{FaStfact-Bench} demonstrate the reliability of FaStfact in both efficiently and effectively evaluating long-form factuality. Code, benchmark data, and annotation interface tool are available at https://github.com/Yingjia-Wan/FaStfact.
comment: EMNLP 2025 (Findings)
Computation and Language
☆ The Curved Spacetime of Transformer Architectures
We present a geometric framework for understanding Transformer-based language models, drawing an explicit analogy to General Relativity. Queries and keys induce an effective metric on representation space, and attention acts as a discrete connection that implements parallel transport of value vectors across tokens. Stacked layers provide discrete time-slices through which token representations evolve on this curved manifold, while backpropagation plays the role of a least-action principle that shapes loss-minimizing trajectories in parameter space. If this analogy is correct, token embeddings should not traverse straight paths in feature space; instead, their layer-wise steps should bend and reorient as interactions mediated by embedding space curvature. To test this prediction, we design experiments that expose both the presence and the consequences of curvature: (i) we visualize a curvature landscape for a full paragraph, revealing how local turning angles vary across tokens and layers; (ii) we show through simulations that excess counts of sharp/flat angles and longer length-to-chord ratios are not explainable by dimensionality or chance; and (iii) inspired by Einstein's eclipse experiment, we probe deflection under controlled context edits, demonstrating measurable, meaning-consistent bends in embedding trajectories that confirm attention-induced curvature.
☆ Reading Between the Lines: The One-Sided Conversation Problem
Conversational AI is constrained in many real-world settings where only one side of a dialogue can be recorded, such as telemedicine, call centers, and smart glasses. We formalize this as the one-sided conversation problem (1SC): inferring and learning from one side of a conversation. We study two tasks: (1) reconstructing the missing speaker's turns for real-time use cases, and (2) generating summaries from one-sided transcripts. Evaluating prompting and finetuned models on MultiWOZ, DailyDialog, and Candor with both human A/B testing and LLM-as-a-judge metrics, we find that access to one future turn and information about utterance length improves reconstruction, placeholder prompting helps to mitigate hallucination, and while large models generate promising reconstructions with prompting, smaller models require finetuning. Further, high-quality summaries can be generated without reconstructing missing turns. We present 1SC as a novel challenge and report promising results that mark a step toward privacy-aware conversational AI.
comment: 8 pages, 6 figures, 4 tables
☆ ROBoto2: An Interactive System and Dataset for LLM-assisted Clinical Trial Risk of Bias Assessment EMNLP 2025
We present ROBOTO2, an open-source, web-based platform for large language model (LLM)-assisted risk of bias (ROB) assessment of clinical trials. ROBOTO2 streamlines the traditionally labor-intensive ROB v2 (ROB2) annotation process via an interactive interface that combines PDF parsing, retrieval-augmented LLM prompting, and human-in-the-loop review. Users can upload clinical trial reports, receive preliminary answers and supporting evidence for ROB2 signaling questions, and provide real-time feedback or corrections to system suggestions. ROBOTO2 is publicly available at https://roboto2.vercel.app/, with code and data released to foster reproducibility and adoption. We construct and release a dataset of 521 pediatric clinical trial reports (8954 signaling questions with 1202 evidence passages), annotated using both manually and LLM-assisted methods, serving as a benchmark and enabling future research. Using this dataset, we benchmark ROB2 performance for 4 LLMs and provide an analysis into current model capabilities and ongoing challenges in automating this critical aspect of systematic review.
comment: EMNLP 2025 System Demonstration
☆ Data-Efficient Adaptation and a Novel Evaluation Method for Aspect-based Sentiment Analysis
Aspect-based Sentiment Analysis (ABSA) is a fine-grained opinion mining approach that identifies and classifies opinions associated with specific entities (aspects) or their categories within a sentence. Despite its rapid growth and broad potential, ABSA research and resources remain concentrated in commercial domains, leaving analytical needs unmet in high-demand yet low-resource areas such as education and healthcare. Domain adaptation challenges and most existing methods' reliance on resource-intensive in-training knowledge injection further hinder progress in these areas. Moreover, traditional evaluation methods based on exact matches are overly rigid for ABSA tasks, penalising any boundary variations which may misrepresent the performance of generative models. This work addresses these gaps through three contributions: 1) We propose a novel evaluation method, Flexible Text Similarity Matching and Optimal Bipartite Pairing (FTS-OBP), which accommodates realistic extraction boundary variations while maintaining strong correlation with traditional metrics and offering fine-grained diagnostics. 2) We present the first ABSA study of small decoder-only generative language models (SLMs; <7B parameters), examining resource lower bounds via a case study in education review ABSA. We systematically explore data-free (in-context learning and weight merging) and data-light fine-tuning methods, and propose a multitask fine-tuning strategy that significantly enhances SLM performance, enabling 1.5-3.8 B models to surpass proprietary large models and approach benchmark results with only 200-1,000 examples on a single GPU. 3) We release the first public set of education review ABSA resources to support future research in low-resource domains.
☆ Targeted Error Correction in Knowledge Distillation: Small Language Models Surpass GPT
We introduce an Analyze-Revise-Finetune (ARF) pipeline that enables smaller open-source language models (LLMs) to surpass substantially larger proprietary models in customer service summarization tasks. The pipeline first analyzes and categorizes common errors in summaries produced by a teacher model (GPT-3.5), then performs a targeted revision using a compact editor model (Llama 3.1 70B) to generate high-quality, refined training data. Fine-tuning a smaller student model (Llama 3.1 8B) on this refined data resulted in superior summarization performance compared to GPT-3.5. The ARF pipeline improves cost efficiency and data privacy while maintaining competitive accuracy, illustrating a generalizable framework for enhancing open-source LLMs across diverse downstream applications.
☆ LEGO-Eval: Towards Fine-Grained Evaluation on Synthesizing 3D Embodied Environments with Tool Augmentation
Despite recent progress in using Large Language Models (LLMs) for automatically generating 3D scenes, generated scenes often lack realistic spatial layouts and object attributes found in real-world environments. As this problem stems from insufficiently detailed, coarse-grained instructions, advancing 3D scene synthesis guided by more detailed, fine-grained instructions that reflect real-world environments becomes crucial. Without such realistic scenes, training embodied agents in unrealistic environments can lead them to learn priors that diverge significantly from real-world physics and semantics, degrading their performance when deployed. Thus, verifying the alignment between the fine-grained instruction and the generated scene is essential for effective learning. However, current evaluation methods, such as CLIPScore and vision-language models (VLMs), often fail to reliably assess such alignment. This shortcoming arises primarily from their shallow understanding of 3D scenes, which often leads to improperly grounded scene components. To address this, we introduce LEGO-Eval, an evaluation framework equipped with diverse tools designed to explicitly ground scene components, enabling more accurate alignment assessments. We also present LEGO-Bench, a benchmark of detailed instructions that specify complex layouts and attributes of real-world environments. Experiments demonstrate that LEGO-Eval outperforms VLM-as-a-judge by 0.41 F1 score in assessing scene-instruction alignment. Benchmarking with LEGO-Bench reveals significant limitations in current generation methods. Across all evaluated approaches, success rates reached at most 10% in generating scenes that fully align with fine-grained instructions.
comment: Work in Progress
☆ Automatic Machine Translation Detection Using a Surrogate Multilingual Translation Model
Modern machine translation (MT) systems depend on large parallel corpora, often collected from the Internet. However, recent evidence indicates that (i) a substantial portion of these texts are machine-generated translations, and (ii) an overreliance on such synthetic content in training data can significantly degrade translation quality. As a result, filtering out non-human translations is becoming an essential pre-processing step in building high-quality MT systems. In this work, we propose a novel approach that directly exploits the internal representations of a surrogate multilingual MT model to distinguish between human and machine-translated sentences. Experimental results show that our method outperforms current state-of-the-art techniques, particularly for non-English language pairs, achieving gains of at least 5 percentage points of accuracy.
comment: Pre-MIT Press publication version
☆ Zero-shot data citation function classification using transformer-based large language models (LLMs)
Efforts have increased in recent years to identify associations between specific datasets and the scientific literature that incorporates them. Knowing that a given publication cites a given dataset, the next logical step is to explore how or why that data was used. Advances in recent years with pretrained, transformer-based large language models (LLMs) offer potential means for scaling the description of data use cases in the published literature. This avoids expensive manual labeling and the development of training datasets for classical machine-learning (ML) systems. In this work we apply an open-source LLM, Llama 3.1-405B, to generate structured data use case labels for publications known to incorporate specific genomic datasets. We also introduce a novel evaluation framework for determining the efficacy of our methods. Our results demonstrate that the stock model can achieve an F1 score of .674 on a zero-shot data citation classification task with no previously defined categories. While promising, our results are qualified by barriers related to data availability, prompt overfitting, computational infrastructure, and the expense required to conduct responsible performance evaluation.
☆ Cache Mechanism for Agent RAG Systems
Recent advances in Large Language Model (LLM)-based agents have been propelled by Retrieval-Augmented Generation (RAG), which grants the models access to vast external knowledge bases. Despite RAG's success in improving agent performance, agent-level cache management, particularly constructing, maintaining, and updating a compact, relevant corpus dynamically tailored to each agent's need, remains underexplored. Therefore, we introduce ARC (Agent RAG Cache Mechanism), a novel, annotation-free caching framework that dynamically manages small, high-value corpora for each agent. By synthesizing historical query distribution patterns with the intrinsic geometry of cached items in the embedding space, ARC automatically maintains a high-relevance cache. With comprehensive experiments on three retrieval datasets, our experimental results demonstrate that ARC reduces storage requirements to 0.015% of the original corpus while offering up to 79.8% has-answer rate and reducing average retrieval latency by 80%. Our results demonstrate that ARC can drastically enhance efficiency and effectiveness in RAG-powered LLM agents.
☆ In Good GRACEs: Principled Teacher Selection for Knowledge Distillation
Knowledge distillation is an efficient strategy to use data generated by large "teacher" language models to train smaller capable "student" models, but selecting the optimal teacher for a specific student-task combination requires expensive trial-and-error. We propose a lightweight score called GRACE to quantify how effective a teacher will be for post-training a student model. GRACE measures distributional properties of the student's gradients without access to a verifier, teacher logits, teacher internals, or test data. From an information-theoretic perspective, GRACE connects to leave-one-out stability of gradient-based algorithms, which controls the generalization performance of the distilled students. On GSM8K and MATH, GRACE correlates strongly (up to 86% Spearman correlation) with the performance of the distilled LLaMA and OLMo students. In particular, training a student using the GRACE-selected teacher can improve the performance by up to 7.4% over naively using the best-performing teacher. Further, GRACE can provide guidance on crucial design choices in distillation, including (1) the best temperature to use when generating from the teacher, (2) the best teacher to use given a size constraint, and (3) the best teacher to use within a specific model family. Altogether, our findings demonstrate that GRACE can efficiently and effectively identify a strongly compatible teacher for a given student and provide fine-grained guidance on how to perform distillation.
☆ Oolong: Evaluating Long Context Reasoning and Aggregation Capabilities
As model context lengths continue to grow, concerns about whether models effectively use the full context length have persisted. While several carefully designed long-context evaluations have recently been released, these evaluations tend to rely on retrieval from one or more sections of the context, which allows nearly all of the context tokens to be disregarded as noise. This represents only one type of task that might be performed with long context. We introduce Oolong, a benchmark of long-context reasoning tasks that require analyzing individual chunks of text on an atomic level, and then aggregating these analyses to answer distributional questions. Oolong is separated into two task sets: Oolong-synth, a set of naturalistic synthetic tasks, where we can easily ablate components of the reasoning problem; and Oolong-real, a downstream setting which requires reasoning over real-world conversational data. Oolong requires models to reason over large quantities of examples, to perform both classification and counting in-context, and to reason over temporal and user relations. Even frontier models struggle on Oolong, with GPT-5, Claude-Sonnet-4, and Gemini-2.5-Pro all achieving less than 50% accuracy on both splits at 128K. We release the data and evaluation harness for Oolong to enable further development of models that can reason over large quantities of text.
comment: Preprint
☆ MemSearcher: Training LLMs to Reason, Search and Manage Memory via End-to-End Reinforcement Learning
Typical search agents concatenate the entire interaction history into the LLM context, preserving information integrity but producing long, noisy contexts, resulting in high computation and memory costs. In contrast, using only the current turn avoids this overhead but discards essential information. This trade-off limits the scalability of search agents. To address this challenge, we propose MemSearcher, an agent workflow that iteratively maintains a compact memory and combines the current turn with it. At each turn, MemSearcher fuses the user's question with the memory to generate reasoning traces, perform search actions, and update memory to retain only information essential for solving the task. This design stabilizes context length across multi-turn interactions, improving efficiency without sacrificing accuracy. To optimize this workflow, we introduce multi-context GRPO, an end-to-end RL framework that jointly optimize reasoning, search strategies, and memory management of MemSearcher Agents. Specifically, multi-context GRPO samples groups of trajectories under different contexts and propagates trajectory-level advantages across all conversations within them. Trained on the same dataset as Search-R1, MemSearcher achieves significant improvements over strong baselines on seven public benchmarks: +11% on Qwen2.5-3B-Instruct and +12% on Qwen2.5-7B-Instruct relative average gains. Notably, the 3B-based MemSearcher even outperforms 7B-based baselines, demonstrating that striking a balance between information integrity and efficiency yields both higher accuracy and lower computational overhead. The code and models will be publicly available at https://github.com/icip-cas/MemSearcher
comment: Project page: https://github.com/icip-cas/MemSearcher
☆ Can LLMs subtract numbers?
We present a systematic study of subtraction in large language models (LLMs). While prior benchmarks emphasize addition and multiplication, subtraction has received comparatively little attention despite being structurally distinct as a non-commutative operation. We evaluate eight pretrained LLMs spanning four families on addition and subtraction problems. Our experiments reveal that subtraction accuracy lags behind addition by a wide margin. We find that the errors for ($a-b$) are concentrated in cases where ($a
comment: Work-in-progress; MathNLP non-archival presentation
☆ VCode: a Multimodal Coding Benchmark with SVG as Symbolic Visual Representation
Code has emerged as a precise and executable medium for reasoning and action in the agent era. Yet, progress has largely focused on language-centric tasks such as program synthesis and debugging, leaving visual-centric coding underexplored. Inspired by how humans reason over sketches, we advocate SVG code as a compact, interpretable, and executable visual representation. We introduce VCode, a benchmark that reframes multimodal understanding as code generation: given an image, a model must produce SVG that preserves symbolic meaning for downstream reasoning. VCode covers three domains - general commonsense (MM-Vet), professional disciplines (MMMU), and visual-centric perception (CV-Bench). To assess symbolic fidelity, we propose CodeVQA, a novel evaluation protocol in which a policy model answers questions over rendered SVGs; correct answers indicate faithful symbolic preservation. Empirically, frontier VLMs struggle to generate faithful SVGs, revealing a persistent gap between language-centric and visual-centric coding. To close this gap, we introduce VCoder, an agentic framework that augments VLMs along two axes: (i) Thinking with Revision, which iteratively analyzes discrepancies and refines SVG code; and (ii) Acting with Visual Tools, where detectors and parsers supply structured cues such as objects, shapes, and text beyond the model's intrinsic capacity. Across benchmarks, frontier VLMs with strong reasoning capabilities score well overall yet remain limited in professional knowledge and 3D reasoning. VCoder delivers a 12.3-point overall gain over the top-performing Claude-4-Opus. Human studies show that both humans and VLMs perform worse on rendered SVGs, their consistency reveals the promise of symbolic visual representation. The benchmark and code are available at https://github.com/CSU-JPG/VCode.
comment: Project page: https://csu-jpg.github.io/VCode Github: https://github.com/CSU-JPG/VCode
☆ Beyond Single Embeddings: Capturing Diverse Targets with Multi-Query Retrieval
Most text retrievers generate \emph{one} query vector to retrieve relevant documents. Yet, the conditional distribution of relevant documents for the query may be multimodal, e.g., representing different interpretations of the query. We first quantify the limitations of existing retrievers. All retrievers we evaluate struggle more as the distance between target document embeddings grows. To address this limitation, we develop a new retriever architecture, \emph{A}utoregressive \emph{M}ulti-\emph{E}mbedding \emph{R}etriever (AMER). Our model autoregressively generates multiple query vectors, and all the predicted query vectors are used to retrieve documents from the corpus. We show that on the synthetic vectorized data, the proposed method could capture multiple target distributions perfectly, showing 4x better performance than single embedding model. We also fine-tune our model on real-world multi-answer retrieval datasets and evaluate in-domain. AMER presents 4 and 21\% relative gains over single-embedding baselines on two datasets we evaluate on. Furthermore, we consistently observe larger gains on the subset of dataset where the embeddings of the target documents are less similar to each other. We demonstrate the potential of using a multi-query vector retriever and open up a new direction for future work.
☆ Controlling Performance and Budget of a Centralized Multi-agent LLM System with Reinforcement Learning
Large language models (LLMs) exhibit complementary strengths across domains and come with varying inference costs, motivating the design of multi-agent LLM systems where specialized models collaborate efficiently. Existing approaches predominantly rely on decentralized frameworks, which invoke multiple LLMs for every input and thus lead to substantial and uncontrolled inference costs. In this work, we introduce a centralized multi-LLM framework, where a controller LLM selectively coordinates a pool of expert models in a cost-efficient and cost-controllable manner. We formulate this coordination problem as reinforcement learning with dual objectives: maximizing task performance while minimizing the overall inference cost. In addition, we expect the multi-agent system to have adapted behavior with different budget conditions during inference. To this end, we propose CoRL, a reinforcement learning framework that optimizes the performance cost trade-off in a controllable multi-budget setting. Experiments on four diverse benchmarks demonstrate that CoRL enables a single system to surpass the best expert LLM under high-budget settings, while maintaining strong performance in more economical low-budget modes, highlighting the effectiveness of centralized coordination for scalable and cost-efficient multi-agent LLM systems.
comment: 14 pages
☆ AI Diffusion in Low Resource Language Countries
Artificial intelligence (AI) is diffusing globally at unprecedented speed, but adoption remains uneven. Frontier Large Language Models (LLMs) are known to perform poorly on low-resource languages due to data scarcity. We hypothesize that this performance deficit reduces the utility of AI, thereby slowing adoption in Low-Resource Language Countries (LRLCs). To test this, we use a weighted regression model to isolate the language effect from socioeconomic and demographic factors, finding that LRLCs have a share of AI users that is approximately 20% lower relative to their baseline. These results indicate that linguistic accessibility is a significant, independent barrier to equitable AI diffusion.
comment: 9 pages, 4 tables. Also available at https://aka.ms/AI_Diffusion_Low_Resource_Language_Countries
☆ CostBench: Evaluating Multi-Turn Cost-Optimal Planning and Adaptation in Dynamic Environments for LLM Tool-Use Agents
Current evaluations of Large Language Model (LLM) agents primarily emphasize task completion, often overlooking resource efficiency and adaptability. This neglects a crucial capability: agents' ability to devise and adjust cost-optimal plans in response to changing environments. To bridge this gap, we introduce CostBench, a scalable, cost-centric benchmark designed to evaluate agents' economic reasoning and replanning abilities. Situated in the travel-planning domain, CostBench comprises tasks solvable via multiple sequences of atomic and composite tools with diverse, customizable costs. It also supports four types of dynamic blocking events, such as tool failures and cost changes, to simulate real-world unpredictability and necessitate agents to adapt in real time. Evaluating leading open-sourced and proprietary models on CostBench reveals a substantial gap in cost-aware planning: agents frequently fail to identify cost-optimal solutions in static settings, with even GPT-5 achieving less than 75% exact match rate on the hardest tasks, and performance further dropping by around 40% under dynamic conditions. By diagnosing these weaknesses, CostBench lays the groundwork for developing future agents that are both economically rational and robust.
☆ PragExTra: A Multilingual Corpus of Pragmatic Explicitation in Translation
Translators often enrich texts with background details that make implicit cultural meanings explicit for new audiences. This phenomenon, known as pragmatic explicitation, has been widely discussed in translation theory but rarely modeled computationally. We introduce PragExTra, the first multilingual corpus and detection framework for pragmatic explicitation. The corpus covers eight language pairs from TED-Multi and Europarl and includes additions such as entity descriptions, measurement conversions, and translator remarks. We identify candidate explicitation cases through null alignments and refined using active learning with human annotation. Our results show that entity and system-level explicitations are most frequent, and that active learning improves classifier accuracy by 7-8 percentage points, achieving up to 0.88 accuracy and 0.82 F1 across languages. PragExTra establishes pragmatic explicitation as a measurable, cross-linguistic phenomenon and takes a step towards building culturally aware machine translation. Keywords: translation, multilingualism, explicitation
☆ The Collaboration Gap
The trajectory of AI development suggests that we will increasingly rely on agent-based systems composed of independently developed agents with different information, privileges, and tools. The success of these systems will critically depend on effective collaboration among these heterogeneous agents, even under partial observability. Despite intense interest, few empirical studies have evaluated such agent-agent collaboration at scale. We propose a collaborative maze-solving benchmark that (i) isolates collaborative capabilities, (ii) modulates problem complexity, (iii) enables scalable automated grading, and (iv) imposes no output-format constraints, preserving ecological plausibility. Using this framework, we evaluate 32 leading open- and closed-source models in solo, homogeneous, and heterogeneous pairings. Our results reveal a "collaboration gap": models that perform well solo often degrade substantially when required to collaborate. Collaboration can break down dramatically; for instance, small distilled models that solve mazes well alone may fail almost completely in certain pairings. We find that starting with the stronger agent often improves outcomes, motivating a "relay inference" approach where the stronger agent leads before handing off to the weaker one, closing much of the gap. Our findings argue for (1) collaboration-aware evaluation, (2) training strategies developed to enhance collaborative capabilities, and (3) interaction design that reliably elicits agents' latent skills, guidance that applies to AI-AI and human-AI collaboration.
☆ Optimal Singular Damage: Efficient LLM Inference in Low Storage Regimes
Large language models (LLMs) are increasingly prevalent across diverse applications. However, their enormous size limits storage and processing capabilities to a few well-resourced stakeholders. As a result, most applications rely on pre-trained LLMs, fine-tuned for specific tasks. However, even storing the fine-tuned versions of these models remains a significant challenge due to the wide range of tasks they address. Recently, studies show that fine-tuning these models primarily affects a small fraction of parameters, highlighting the need for more efficient storage of fine-tuned models. This paper focuses on efficient storage of parameter updates in pre-trained models after fine-tuning. To address this challenge, we leverage the observation that fine-tuning updates are both low-rank and sparse, which can be utilized for storage efficiency. However, using only low-rank approximation or sparsification may discard critical singular components that enhance model expressivity. We first observe that given the same memory budget, sparsified low-rank approximations with larger ranks outperform standard low-rank approximations with smaller ranks. Building on this, we propose our method, optimal singular damage, that selectively sparsifies low-rank approximated updates by leveraging the interleaved importance of singular vectors, ensuring that the most impactful components are retained. We demonstrate through extensive experiments that our proposed methods lead to significant storage efficiency and superior accuracy within the same memory budget compared to employing the low-rank approximation or sparsification individually.
☆ Understanding New-Knowledge-Induced Factual Hallucinations in LLMs: Analysis, Solution, and Interpretation
Previous studies show that introducing new knowledge during large language models (LLMs) fine-tuning can lead to the generation of erroneous output when tested on known information, thereby triggering factual hallucinations. However, existing studies have not deeply investigated the specific manifestations and underlying mechanisms of these hallucinations. Our work addresses this gap by designing a controlled dataset Biography-Reasoning, and conducting a fine-grained analysis across multiple knowledge types and two task types, including knowledge question answering (QA) and knowledge reasoning tasks. We find that when fine-tuned on a dataset in which a specific knowledge type consists entirely of new knowledge, LLMs exhibit significantly increased hallucination tendencies. This suggests that the high unfamiliarity of a particular knowledge type, rather than the overall proportion of new knowledge, is a stronger driver of hallucinations, and these tendencies can even affect other knowledge types in QA tasks. To mitigate such factual hallucinations, we propose KnownPatch, which patches a small number of known knowledge samples in the later stages of training, effectively alleviating new-knowledge-induced hallucinations. Through attention analysis, we find that learning new knowledge reduces the model's attention to key entities in the question, thus causing excessive focus on the surrounding context, which may increase the risk of hallucination. Moreover, the attention pattern can propagate to similar contexts, facilitating the spread of hallucinations to textually similar questions. Our method effectively mitigates the disruption of new knowledge learning to the model's attention on key entities, accompanied by improved performance.
☆ The Realignment Problem: When Right becomes Wrong in LLMs
The alignment of Large Language Models (LLMs) with human values is central to their safe deployment, yet current practice produces static, brittle, and costly-to-maintain models that fail to keep pace with evolving norms and policies. This misalignment, which we term the Alignment-Reality Gap, poses a growing challenge for reliable long-term use. Existing remedies are inadequate: large-scale re-annotation is economically prohibitive, and standard unlearning methods act as blunt instruments that erode utility rather than enable precise policy updates. We introduce TRACE (Triage and Re-align by Alignment Conflict Evaluation), a framework for principled unlearning that reconceives re-alignment as a programmatic policy application problem. TRACE programmatically triages existing preference data against a new policy, identifies high-impact conflicts via a alignment impact score, and applies a hybrid optimization that cleanly inverts, discards, or preserves preferences while safeguarding model performance. Empirical results show that TRACE achieves robust re-alignment across diverse model families (Qwen2.5-7B, Gemma-2-9B, Llama-3.1-8B). On both synthetic benchmarks and the PKU-SafeRLHF dataset under complex policy shift, TRACE enforces new principles without degrading general capabilities. Our work establishes a scalable, dynamic, and cost-effective paradigm for maintaining LLM alignment, providing a foundation for sustainable and responsible AI deployment.
comment: 23 Pages
☆ UniChange: Unifying Change Detection with Multimodal Large Language Model
Change detection (CD) is a fundamental task for monitoring and analyzing land cover dynamics. While recent high performance models and high quality datasets have significantly advanced the field, a critical limitation persists. Current models typically acquire limited knowledge from single-type annotated data and cannot concurrently leverage diverse binary change detection (BCD) and semantic change detection (SCD) datasets. This constraint leads to poor generalization and limited versatility. The recent advancements in Multimodal Large Language Models (MLLMs) introduce new possibilities for a unified CD framework. We leverage the language priors and unification capabilities of MLLMs to develop UniChange, the first MLLM-based unified change detection model. UniChange integrates generative language abilities with specialized CD functionalities. Our model successfully unifies both BCD and SCD tasks through the introduction of three special tokens: [T1], [T2], and [CHANGE]. Furthermore, UniChange utilizes text prompts to guide the identification of change categories, eliminating the reliance on predefined classification heads. This design allows UniChange to effectively acquire knowledge from multi-source datasets, even when their class definitions conflict. Experiments on four public benchmarks (WHU-CD, S2Looking, LEVIR-CD+, and SECOND) demonstrate SOTA performance, achieving IoU scores of 90.41, 53.04, 78.87, and 57.62, respectively, surpassing all previous methods. The code is available at https://github.com/Erxucomeon/UniChange.
☆ CGES: Confidence-Guided Early Stopping for Efficient and Accurate Self-Consistency NeurIPS2025
Large language models (LLMs) are often queried multiple times at test time, with predictions aggregated by majority vote. While effective, this self-consistency strategy (arXiv:2203.11171) requires a fixed number of calls and can fail when the correct answer is rare. We introduce Confidence-Guided Early Stopping (CGES), a Bayesian framework that forms posteriors over candidate answers using scalar confidence signals derived from token probabilities or reward models. CGES adaptively halts sampling once the posterior mass of a candidate exceeds a threshold. We provide theoretical guarantees for both perfectly calibrated confidences and realistic noisy confidence signals. Across five reasoning benchmarks, CGES reduces the average number of model calls by about 69 percent (for example, from 16.0 to 4.9) while matching the accuracy of self-consistency within 0.06 percentage points.
comment: Efficient Reasoning @ NeurIPS2025
☆ Next Token Knowledge Tracing: Exploiting Pretrained LLM Representations to Decode Student Behaviour
Modelling student knowledge is a key challenge when leveraging AI in education, with major implications for personalised learning. The Knowledge Tracing (KT) task aims to predict how students will respond to educational questions in learning environments, based on their prior interactions. Existing KT models typically use response correctness along with metadata like skill tags and timestamps, often overlooking the question text, which is an important source of pedagogical insight. This omission poses a lost opportunity while limiting predictive performance. We propose Next Token Knowledge Tracing (NTKT), a novel approach that reframes KT as a next-token prediction task using pretrained Large Language Models (LLMs). NTKT represents both student histories and question content as sequences of text, allowing LLMs to learn patterns in both behaviour and language. Our series of experiments significantly improves performance over state-of-the-art neural KT models and generalises much better to cold-start questions and users. These findings highlight the importance of question content in KT and demonstrate the benefits of leveraging pretrained representations of LLMs to model student learning more effectively.
☆ The Analysis of Lexical Errors in Machine Translation from English into Romanian
The research explores error analysis in the performance of translating by Machine Translation from English into Romanian, and it focuses on lexical errors found in texts which include official information, provided by the World Health Organization (WHO), the Gavi Organization, by the patient information leaflet (the information about the active ingredients of the vaccines or the medication, the indications, the dosage instructions, the storage instructions, the side effects and warning, etc.). All of these texts are related to Covid-19 and have been translated by Google Translate, a multilingual Machine Translation that was created by Google. In the last decades, Google has actively worked to develop a more accurate and fluent automatic translation system. This research, specifically focused on improving Google Translate, aims to enhance the overall quality of Machine Translation by achieving better lexical selection and by reducing errors. The investigation involves a comprehensive analysis of 230 texts that have been translated from English into Romanian.
comment: Doctoral thesis
♻ ☆ Activation Transport Operators
The residual stream mediates communication between transformer decoder layers via linear reads and writes of non-linear computations. While sparse-dictionary learning-based methods locate features in the residual stream, and activation patching methods discover circuits within the model, the mechanism by which features flow through the residual stream remains understudied. Understanding this dynamic can better inform jailbreaking protections, enable early detection of model mistakes, and their correction. In this work, we propose Activation Transport Operators (ATO), linear maps from upstream to downstream residuals $k$ layers later, evaluated in feature space using downstream SAE decoder projections. We empirically demonstrate that these operators can determine whether a feature has been linearly transported from a previous layer or synthesised from non-linear layer computation. We develop the notion of transport efficiency, for which we provide an upper bound, and use it to estimate the size of the residual stream subspace that corresponds to linear transport. We empirically demonstrate the linear transport, report transport efficiency and the size of the residual stream's subspace involved in linear transport. This compute-light (no finetuning, <50 GPU-h) method offers practical tools for safety, debugging, and a clearer picture of where computation in LLMs behaves linearly.
comment: 5 pages, 5 figures, references and appendices
♻ ☆ The Case for Repeatable, Open, and Expert-Grounded Hallucination Benchmarks in Large Language Models
Plausible, but inaccurate, tokens in model-generated text are widely believed to be pervasive and problematic for the responsible adoption of language models. Despite this concern, there is little scientific work that attempts to measure the prevalence of language model hallucination in a comprehensive way. In this paper, we argue that language models should be evaluated using repeatable, open, and domain-contextualized hallucination benchmarking. We present a taxonomy of hallucinations alongside a case study that demonstrates that when experts are absent from the early stages of data creation, the resulting hallucination metrics lack validity and practical utility.
comment: 9 pages
♻ ☆ Erasing 'Ugly' from the Internet: Propagation of the Beauty Myth in Text-Image Models
Social media has exacerbated the promotion of Western beauty norms, leading to negative self-image, particularly in women and girls, and causing harm such as body dysmorphia. Increasingly content on the internet has been artificially generated, leading to concerns that these norms are being exaggerated. The aim of this work is to study how generative AI models may encode 'beauty' and erase 'ugliness', and discuss the implications of this for society. To investigate these aims, we create two image generation pipelines: a text-to-image model and a text-to-language model-to image model. We develop a structured beauty taxonomy which we use to prompt three language models (LMs) and two text-to-image models to cumulatively generate 5984 images using our two pipelines. We then recruit women and non-binary social media users to evaluate 1200 of the images through a Likert-scale within-subjects study. Participants show high agreement in their ratings. Our results show that 86.5% of generated images depicted people with lighter skin tones, 22% contained explicit content despite Safe for Work (SFW) training, and 74% were rated as being in a younger age demographic. In particular, the images of non-binary individuals were rated as both younger and more hypersexualised, indicating troubling intersectional effects. Notably, prompts encoded with 'negative' or 'ugly' beauty traits (such as "a wide nose") consistently produced higher Not SFW (NSFW) ratings regardless of gender. This work sheds light on the pervasive demographic biases related to beauty standards present in generative AI models -- biases that are actively perpetuated by model developers, such as via negative prompting. We conclude by discussing the implications of this on society, which include pollution of the data streams and active erasure of features that do not fall inside the stereotype of what is considered beautiful by developers.
comment: This is a preprint under review
♻ ☆ Modeling Annotator Disagreement with Demographic-Aware Experts and Synthetic Perspectives
We present an approach to modeling annotator disagreement in subjective NLP tasks through both architectural and data-centric innovations. Our model, DEM-MoE (Demographic-Aware Mixture of Experts), routes inputs to expert subnetworks based on annotator demographics, enabling it to better represent structured, group-level variation compared to prior models. DEM-MoE consistently performs competitively across demographic groups, and shows especially strong results on datasets with high annotator disagreement. To address sparse demographic coverage, we test whether LLM-generated synthetic annotations via zero-shot persona prompting can be used for data imputation. We show these synthetic judgments align moderately well with human annotations on our data and offer a scalable way to potentially enrich training data. We then propose and evaluate approaches for blending real and synthetic data using strategies tailored to dataset structure. We find that the optimal strategies depend on dataset structure. Together, these contributions improve the representation of diverse perspectives.
comment: 8 pages, 17 figures
♻ ☆ Evaluating Large Language Models for Detecting Antisemitism EMNLP 2025
Detecting hateful content is a challenging and important problem. Automated tools, like machine-learning models, can help, but they require continuous training to adapt to the ever-changing landscape of social media. In this work, we evaluate eight open-source LLMs' capability to detect antisemitic content, specifically leveraging in-context definition. We also study how LLMs understand and explain their decisions given a moderation policy as a guideline. First, we explore various prompting techniques and design a new CoT-like prompt, Guided-CoT, and find that injecting domain-specific thoughts increases performance and utility. Guided-CoT handles the in-context policy well, improving performance and utility by reducing refusals across all evaluated models, regardless of decoding configuration, model size, or reasoning capability. Notably, Llama 3.1 70B outperforms fine-tuned GPT-3.5. Additionally, we examine LLM errors and introduce metrics to quantify semantic divergence in model-generated rationales, revealing notable differences and paradoxical behaviors among LLMs. Our experiments highlight the differences observed across LLMs' utility, explainability, and reliability. Code and resources available at: https://github.com/idramalab/quantify-llm-explanations
comment: Accepted to EMNLP 2025 Main Conference
♻ ☆ Novelty and Impact of Economics Papers
We propose a framework that recasts scientific novelty not as a single attribute of a paper, but as a reflection of its position within the evolving intellectual landscape. We decompose this position into two orthogonal dimensions: \textit{spatial novelty}, which measures a paper's intellectual distinctiveness from its neighbors, and \textit{temporal novelty}, which captures its engagement with a dynamic research frontier. To operationalize these concepts, we leverage Large Language Models to develop semantic isolation metrics that quantify a paper's location relative to the full-text literature. Applying this framework to a large corpus of economics articles, we uncover a fundamental trade-off: these two dimensions predict systematically different outcomes. Temporal novelty primarily predicts citation counts, whereas spatial novelty predicts disruptive impact. This distinction allows us to construct a typology of semantic neighborhoods, identifying four archetypes associated with distinct and predictable impact profiles. Our findings demonstrate that novelty can be understood as a multidimensional construct whose different forms, reflecting a paper's strategic location, have measurable and fundamentally distinct consequences for scientific progress.
♻ ☆ Scalable Medication Extraction and Discontinuation Identification from Electronic Health Records Using Large Language Models
Identifying medication discontinuations in electronic health records (EHRs) is vital for patient safety but is often hindered by information being buried in unstructured notes. This study aims to evaluate the capabilities of advanced open-sourced and proprietary large language models (LLMs) in extracting medications and classifying their medication status from EHR notes, focusing on their scalability on medication information extraction without human annotation. We collected three EHR datasets from diverse sources to build the evaluation benchmark. We evaluated 12 advanced LLMs and explored multiple LLM prompting strategies. Performance on medication extraction, medication status classification, and their joint task (extraction then classification) was systematically compared across all experiments. We found that LLMs showed promising performance on the medication extraction and discontinuation classification from EHR notes. GPT-4o consistently achieved the highest average F1 scores in all tasks under zero-shot setting - 94.0% for medication extraction, 78.1% for discontinuation classification, and 72.7% for the joint task. Open-sourced models followed closely, Llama-3.1-70B-Instruct achieved the highest performance in medication status classification on the MIV-Med dataset (68.7%) and in the joint task on both the Re-CASI (76.2%) and MIV-Med (60.2%) datasets. Medical-specific LLMs demonstrated lower performance compared to advanced general-domain LLMs. Few-shot learning generally improved performance, while CoT reasoning showed inconsistent gains. LLMs demonstrate strong potential for medication extraction and discontinuation identification on EHR notes, with open-sourced models offering scalable alternatives to proprietary systems and few-shot can further improve LLMs' capability.
♻ ☆ Emotion Detection From Social Media Posts
Over the last few years, social media has evolved into a medium for expressing personal views, emotions, and even business and political proposals, recommendations, and advertisements. We address the topic of identifying emotions from text data obtained from social media posts like Twitter in this research. We have deployed different traditional machine learning techniques such as Support Vector Machines (SVM), Naive Bayes, Decision Trees, and Random Forest, as well as deep neural network models such as LSTM, CNN, GRU, BiLSTM, BiGRU to classify these tweets into four emotion categories (Fear, Anger, Joy, and Sadness). Furthermore, we have constructed a BiLSTM and BiGRU ensemble model. The evaluation result shows that the deep neural network models(BiGRU, to be specific) produce the most promising results compared to traditional machine learning models, with an 87.53 % accuracy rate. The ensemble model performs even better (87.66 %), albeit the difference is not significant. This result will aid in the development of a decision-making tool that visualizes emotional fluctuations.
comment: Course Project
♻ ☆ ValueCompass: A Framework for Measuring Contextual Value Alignment Between Human and LLMs
As AI systems become more advanced, ensuring their alignment with a diverse range of individuals and societal values becomes increasingly critical. But how can we capture fundamental human values and assess the degree to which AI systems align with them? We introduce ValueCompass, a framework of fundamental values, grounded in psychological theory and a systematic review, to identify and evaluate human-AI alignment. We apply ValueCompass to measure the value alignment of humans and large language models (LLMs) across four real-world scenarios: collaborative writing, education, public sectors, and healthcare. Our findings reveal concerning misalignments between humans and LLMs, such as humans frequently endorse values like "National Security" which were largely rejected by LLMs. We also observe that values differ across scenarios, highlighting the need for context-aware AI alignment strategies. This work provides valuable insights into the design space of human-AI alignment, laying the foundations for developing AI systems that responsibly reflect societal values and ethics.
♻ ☆ Hybrid Quantum-Classical Recurrent Neural Networks
We present a hybrid quantum-classical recurrent neural network (QRNN) architecture in which the recurrent core is realized as a parametrized quantum circuit (PQC) controlled by a classical feedforward network. The hidden state is the quantum state of an $n$-qubit PQC in an exponentially large Hilbert space $\mathbb{C}^{2^n}$, which serves as a coherent recurrent quantum memory. The PQC is unitary by construction, making the hidden-state evolution norm-preserving without external constraints. At each timestep, mid-circuit Pauli expectation-value readouts are combined with the input embedding and processed by the feedforward network, which provides explicit classical nonlinearity. The outputs parametrize the PQC, which updates the hidden state via unitary dynamics. The QRNN is compact and physically consistent, and it unifies (i) unitary recurrence as a high-capacity memory, (ii) partial observation via mid-circuit readouts, and (iii) nonlinear classical control for input-conditioned parametrization. We evaluate the model in simulation with up to 14 qubits on sentiment analysis, MNIST, permuted MNIST, copying memory, and language modeling. For sequence-to-sequence learning, we further devise a soft attention mechanism over the mid-circuit readouts and show its effectiveness for machine translation. To our knowledge, this is the first model (RNN or otherwise) grounded in quantum operations to achieve competitive performance against strong classical baselines across a broad class of sequence-learning tasks.
comment: Clarified expectation-value-based readouts and made minor text edits
♻ ☆ Growing Transformers: Modular Composition and Layer-wise Expansion on a Frozen Substrate
The prevailing paradigm for scaling large language models (LLMs) involves monolithic, end-to-end training, a resource-intensive process that lacks flexibility. This paper explores an alternative, constructive scaling paradigm, enabled by the principle of emergent semantics in Transformers with frozen, non-semantic input embeddings. We posit that because high-level meaning is a compositional property of a Transformer's deep layers, not its input vectors, the embedding layer and trained lower layers can serve as a fixed foundation. This liberates backpropagation to focus solely on newly added components, making incremental growth viable. We operationalize this with a layer-wise constructive methodology that combines strict layer freezing in early stages with efficient, holistic fine-tuning of the entire model stack via low-rank adaptation (LoRA) as complexity increases. This method not only demonstrates stable convergence but also reveals a direct correlation between model depth and the emergence of complex reasoning abilities, such as those required for SQuAD, which are absent in shallower models. In a controlled study, our constructively grown model rivals the performance of a monolithically trained baseline of the same size, validating the efficiency and efficacy of the approach. Our findings suggest a path towards a paradigm shift from monolithic optimization towards a more biological or constructive model of AI development. This opens a path for more resource-efficient scaling, continual learning, and a more modular approach to building powerful AI systems. We release all code and models to facilitate further research.
comment: Controlled Comparative Study added
♻ ☆ LAWCAT: Efficient Distillation from Quadratic to Linear Attention with Convolution across Tokens for Long Context Modeling EMNLP2025
Although transformer architectures have achieved state-of-the-art performance across diverse domains, their quadratic computational complexity with respect to sequence length remains a significant bottleneck, particularly for latency-sensitive long-context applications. While recent linear-complexity alternatives are increasingly powerful, effectively training them from scratch is still resource-intensive. To overcome these limitations, we propose LAWCAT (Linear Attention with Convolution Across Time), a novel linearization framework designed to efficiently transfer the capabilities of pre-trained transformers into a performant linear attention architecture. LAWCAT integrates causal Conv1D layers to enhance local dependency modeling and employs normalized gated linear attention to improve generalization across varying context lengths. Our comprehensive evaluations demonstrate that, distilling Mistral-7B with only 1K-length sequences yields over 90\% passkey retrieval accuracy up to 22K tokens, significantly extending its effective context window. Similarly, Llama3.2-1B LAWCAT variant achieves competitive performance on S-NIAH 1\&2\&3 tasks (1K-8K context length) and BABILong benchmark (QA2\&QA3, 0K-16K context length), requiring less than 0.1\% pre-training tokens compared with pre-training models. Furthermore, LAWCAT exhibits faster prefill speeds than FlashAttention-2 for sequences exceeding 8K tokens. LAWCAT thus provides an efficient pathway to high-performance, long-context linear models suitable for edge deployment, reducing reliance on extensive long-sequence training data and computational resources. Code is released at: https://github.com/zeyuliu1037/LAWCAT
comment: 17 pages, 8 figures. EMNLP2025 Findings
♻ ☆ Accumulating Context Changes the Beliefs of Language Models
Language model (LM) assistants are increasingly used in applications such as brainstorming and research. Improvements in memory and context size have allowed these models to become more autonomous, which has also resulted in more text accumulation in their context windows without explicit user intervention. This comes with a latent risk: the belief profiles of models -- their understanding of the world as manifested in their responses or actions -- may silently change as context accumulates. This can lead to subtly inconsistent user experiences, or shifts in behavior that deviate from the original alignment of the models. In this paper, we explore how accumulating context by engaging in interactions and processing text -- talking and reading -- can change the beliefs of language models, as manifested in their responses and behaviors. Our results reveal that models' belief profiles are highly malleable: GPT-5 exhibits a 54.7% shift in its stated beliefs after 10 rounds of discussion about moral dilemmas and queries about safety, while Grok 4 shows a 27.2% shift on political issues after reading texts from the opposing position. We also examine models' behavioral changes by designing tasks that require tool use, where each tool selection corresponds to an implicit belief. We find that these changes align with stated belief shifts, suggesting that belief shifts will be reflected in actual behavior in agentic systems. Our analysis exposes the hidden risk of belief shift as models undergo extended sessions of talking or reading, rendering their opinions and actions unreliable.
♻ ☆ ORANGE: An Online Reflection ANd GEneration framework with Domain Knowledge for Text-to-SQL
Large Language Models (LLMs) have demonstrated remarkable progress in translating natural language to SQL, but a significant semantic gap persists between their general knowledge and domain-specific semantics of databases. Historical translation logs constitute a rich source of this missing in-domain knowledge, where SQL queries inherently encapsulate real-world usage patterns of database schema. Existing methods primarily enhance the reasoning process for individual translations but fail to accumulate in-domain knowledge from past translations. We introduce ORANGE, an online self-evolutionary framework that constructs database-specific knowledge bases by parsing SQL queries from translation logs. By accumulating in-domain knowledge that contains schema and data semantics, ORANGE progressively reduces the semantic gap and enhances the accuracy of subsequent SQL translations. To ensure reliability, we propose a novel nested Chain-of-Thought SQL-to-Text strategy with tuple-semantic tracking, which reduces semantic errors during knowledge generation. Experiments on multiple benchmarks confirm the practicality of ORANGE, demonstrating its effectiveness for real-world Text-to-SQL deployment, particularly in handling complex and domain-specific queries.
comment: 16 pages, 4 figures, preprint
♻ ☆ Tokens, the oft-overlooked appetizer: Large language models, the distributional hypothesis, and meaning
Tokenization is a necessary component within the current architecture of many language mod-els, including the transformer-based large language models (LLMs) of Generative AI, yet its impact on the model's cognition is often overlooked. We argue that LLMs demonstrate that the Distributional Hypothesis (DH) is sufficient for reasonably human-like language performance (particularly with respect to inferential lexical competence), and that the emergence of human-meaningful linguistic units among tokens and current structural constraints motivate changes to existing, linguistically-agnostic tokenization techniques, particularly with respect to their roles as (1) vehicles for conveying salient distributional patterns from human language to the model and as (2) semantic primitives. We explore tokenizations from a BPE tokenizer; extant model vocabularies obtained from Hugging Face and tiktoken; and the information in exemplar token vectors as they move through the layers of a RoBERTa (large) model. Besides creating suboptimal semantic building blocks and obscuring the model's access to the necessary distributional patterns, we describe how tokens and pretraining can act as a backdoor for bias and other unwanted content, which current alignment practices may not remediate. Additionally, we relay evidence that the tokenization algorithm's objective function impacts the LLM's cognition, despite being arguably meaningfully insulated from the main system intelligence. Finally, we discuss implications for architectural choices, meaning construction, the primacy of language for thought, and LLM cognition. [First uploaded to arXiv in December, 2024.]
♻ ☆ Deterministic Legal Agents: A Canonical Primitive API for Auditable Reasoning over Temporal Knowledge Graphs
For autonomous legal agents to operate safely in high-stakes domains, they require a foundation of absolute determinism and auditability-guarantees that standard Retrieval-Augmented Generation (RAG) frameworks cannot provide. When interacting with temporal knowledge graphs that model the complex evolution of legal norms, agents must navigate versioning, causality, and hierarchical structures with precision, a task for which black-box vector search is ill-suited. This paper introduces a new architectural pattern to solve this: a formal Primitive API designed as a secure execution layer for reasoning over such graphs. Instead of a monolithic query engine, our framework provides a library of canonical primitives-atomic, composable, and auditable primitives. This design empowers planner-guided agents to decompose complex legal questions into transparent execution plans, enabling critical tasks with full verifiability, including: (i) precise point-in-time version retrieval, (ii) robust causal lineage tracing, and (iii) context-aware hybrid search. Ultimately, this architecture transforms opaque retrieval into auditable reasoning, turning the agent's internal process from a black box into a verifiable log of deterministic primitives and providing a blueprint for building the next generation of trustworthy legal AI.
comment: Major revision reframing the paper from an API spec to a novel architectural pattern for deterministic agents. The core contribution is now positioned as a blueprint for auditable reasoning, essential for building trustworthy legal AI systems
♻ ☆ Linear-Time Demonstration Selection for In-Context Learning via Gradient Estimation EMNLP'25
This paper introduces an algorithm to select demonstration examples for in-context learning of a query set. Given a set of $n$ examples, how can we quickly select $k$ out of $n$ to best serve as the conditioning for downstream inference? This problem has broad applications in prompt tuning and chain-of-thought reasoning. Since model weights remain fixed during in-context learning, previous work has sought to design methods based on the similarity of token embeddings. This work proposes a new approach based on gradients of the output taken in the input embedding space. Our approach estimates model outputs through a first-order approximation using the gradients. Then, we apply this estimation to multiple randomly sampled subsets. Finally, we aggregate the sampled subset outcomes to form an influence score for each demonstration, and select $k$ most relevant examples. This procedure only requires pre-computing model outputs and gradients once, resulting in a linear-time algorithm relative to model and training set sizes. Extensive experiments across various models and datasets validate the efficiency of our approach. We show that the gradient estimation procedure yields approximations of full inference with less than ${1}\%$ error across six datasets. This allows us to scale up subset selection that would otherwise run full inference by up to ${37.7}\times$ on models with up to $34$ billion parameters, and outperform existing selection methods based on input embeddings by ${11}\%$ on average.
comment: 19 pages. EMNLP'25
♻ ☆ Hey, wait a minute: on at-issue sensitivity in Language Models
Evaluating the naturalness of dialogue in language models (LMs) is not trivial: notions of 'naturalness' vary, and scalable quantitative metrics remain limited. This study leverages the linguistic notion of 'at-issueness' to assess dialogue naturalness and introduces a new method: Divide, Generate, Recombine, and Compare (DGRC). DGRC (i) divides a dialogue as a prompt, (ii) generates continuations for subparts using LMs, (iii) recombines the dialogue and continuations, and (iv) compares the likelihoods of the recombined sequences. This approach mitigates bias in linguistic analyses of LMs and enables systematic testing of discourse-sensitive behavior. Applying DGRC, we find that LMs prefer to continue dialogue on at-issue content, with this effect enhanced in instruct-tuned models. They also reduce their at-issue preference when relevant cues (e.g., "Hey, wait a minute") are present. Although instruct-tuning does not further amplify this modulation, the pattern reflects a hallmark of successful dialogue dynamics.
comment: 10 pages, 5 figures, 3 tables. See https://github.com/sangheek16/hey-wait-a-minute for code and data
♻ ☆ ProMQA: Question Answering Dataset for Multimodal Procedural Activity Understanding NAACL2025
Multimodal systems have great potential to assist humans in procedural activities, where people follow instructions to achieve their goals. Despite diverse application scenarios, systems are typically evaluated on traditional classification tasks, e.g., action recognition or temporal action segmentation. In this paper, we present a novel evaluation dataset, ProMQA, to measure system advancements in application-oriented scenarios. ProMQA consists of 401 multimodal procedural QA pairs on user recording of procedural activities, i.e., cooking, coupled with their corresponding instructions/recipes. For QA annotation, we take a cost-effective human-LLM collaborative approach, where the existing annotation is augmented with LLM-generated QA pairs that are later verified by humans. We then provide the benchmark results to set the baseline performance on ProMQA. Our experiment reveals a significant gap between human performance and that of current systems, including competitive proprietary multimodal models. We hope our dataset sheds light on new aspects of models' multimodal understanding capabilities.
comment: NAACL2025, Code and Data: https://github.com/kimihiroh/promqa
♻ ☆ Repetitions are not all alike: distinct mechanisms sustain repetition in language models
Large Language Models (LLMs) can sometimes degrade into repetitive loops, persistently generating identical word sequences. Because repetition is rare in natural human language, its frequent occurrence across diverse tasks and contexts in LLMs remains puzzling. Here we investigate whether behaviorally similar repetition patterns arise from distinct underlying mechanisms and how these mechanisms develop during model training. We contrast two conditions: repetitions elicited by natural text prompts with those induced by in-context learning (ICL) setups that explicitly require copying behavior. Our analyses reveal that ICL-induced repetition relies on a dedicated network of attention heads that progressively specialize over training, whereas naturally occurring repetition emerges early and lacks a defined circuitry. Attention inspection further shows that natural repetition focuses disproportionately on low-information tokens, suggesting a fallback behavior when relevant context cannot be retrieved. These results indicate that superficially similar repetition behaviors originate from qualitatively different internal processes, reflecting distinct modes of failure and adaptation in language models.
♻ ☆ Tool-to-Agent Retrieval: Bridging Tools and Agents for Scalable LLM Multi-Agent Systems
Recent advances in LLM Multi-Agent Systems enable scalable orchestration of sub-agents, each coordinating hundreds or thousands of tools or Model Context Protocol (MCP) servers. However, existing retrieval methods typically match queries against coarse agent-level descriptions before routing, which obscures fine-grained tool functionality and often results in suboptimal agent selection. We introduce Tool-to-Agent Retrieval, a unified framework that embeds both tools and their parent agents in a shared vector space and connects them through metadata relationships. By explicitly representing tool capabilities and traversing metadata to the agent level, Tool-to-Agent Retrieval enables granular tool-level or agent-level retrieval, ensuring that agents and their underlying tools or MCP servers are equally represented without the context dilution that arises from chunking many tools together. Evaluating Tool-to-Agent Retrieval across eight embedding models, our approach achieves consistent improvements of 19.4% in Recall@5 and 17.7% in nDCG@5 over previous state-of-the-art agent retrievers on the LiveMCPBench benchmark.
♻ ☆ Audio-Thinker: Guiding Audio Language Model When and How to Think via Reinforcement Learning
Recent advancements in large language models, multimodal large language models, and large audio language models (LALMs) have significantly improved their reasoning capabilities through reinforcement learning with rule-based rewards. However, the explicit reasoning process has yet to show significant benefits for audio question answering, and effectively leveraging deep reasoning remains an open challenge, with LALMs still falling short of human-level auditory-language reasoning. To address these limitations, we propose Audio-Thinker, a reinforcement learning framework designed to enhance the reasoning capabilities of LALMs, with a focus on improving adaptability, consistency, and effectiveness. Our approach introduces an adaptive think accuracy reward, enabling the model to adjust its reasoning strategies based on task complexity dynamically. Furthermore, we incorporate an external reward model to evaluate the overall consistency and quality of the reasoning process, complemented by think-based rewards that help the model distinguish between valid and flawed reasoning paths during training. Experimental results demonstrate that our Audio-Thinker model outperforms existing reasoning-oriented LALMs across various benchmark tasks, exhibiting superior reasoning and generalization capabilities.
comment: preprint
♻ ☆ I Want to Break Free! Persuasion and Anti-Social Behavior of LLMs in Multi-Agent Settings with Social Hierarchy
As LLM-based agents become increasingly autonomous and will more freely interact with each other, studying the interplay among them becomes crucial to anticipate emergent phenomena and potential risks. In this work, we provide an in-depth analysis of the interactions among agents within a simulated hierarchical social environment, drawing inspiration from the Stanford Prison Experiment. Leveraging 2,400 conversations across six LLMs (i.e., LLama3, Orca2, Command-r, Mixtral, Mistral2, and gpt4.1) and 240 experimental scenarios, we analyze persuasion and anti-social behavior between a guard and a prisoner agent with differing objectives. We first document model-specific conversational failures in this multi-agent power dynamic context, thereby narrowing our analytic sample to 1,600 conversations. Among models demonstrating successful interaction, we find that goal setting significantly influences persuasiveness but not anti-social behavior. Moreover, agent personas, especially the guard's, substantially impact both successful persuasion by the prisoner and the manifestation of anti-social actions. Notably, we observe the emergence of anti-social conduct even in absence of explicit negative personality prompts. These results have important implications for the development of interactive LLM agents and the ongoing discussion of their societal impact.
♻ ☆ On Extending Direct Preference Optimization to Accommodate Ties NeurIPS 2025
We derive and investigate two DPO variants that explicitly model the possibility of declaring a tie in pair-wise comparisons. We replace the Bradley-Terry model in DPO with two well-known modeling extensions, by Rao and Kupper and by Davidson, that assign probability to ties as alternatives to clear preferences. Our experiments in neural machine translation and summarization show that explicitly labeled ties can be added to the datasets for these DPO variants without the degradation in task performance that is observed when the same tied pairs are presented to DPO. We find empirically that the inclusion of ties leads to stronger regularization with respect to the reference policy as measured by KL divergence, and we see this even for DPO in its original form. We provide a theoretical explanation for this regularization effect using ideal DPO policy theory. We further show performance improvements over DPO in translation and mathematical reasoning using our DPO variants. We find it can be beneficial to include ties in preference optimization rather than simply discard them, as is done in common practice.
comment: 24 pages, NeurIPS 2025
♻ ☆ Composing or Not Composing? Towards Distributional Construction Grammars
The mechanisms of comprehension during language processing remains an open question. Classically, building the meaning of a linguistic utterance is said to be incremental, step-by-step, based on a compositional process. However, many different works have shown for a long time that non-compositional phenomena are also at work. It is therefore necessary to propose a framework bringing together both approaches. We present in this paper an approach based on Construction Grammars and completing this framework in order to account for these different mechanisms. We propose first a formal definition of this framework by completing the feature structure representation proposed in Sign-Based Construction Grammars. In a second step, we present a general representation of the meaning based on the interaction of constructions, frames and events. This framework opens the door to a processing mechanism for building the meaning based on the notion of activation evaluated in terms of similarity and unification. This new approach integrates features from distributional semantics into the constructionist framework, leading to what we call Distributional Construction Grammars.
♻ ☆ How Teachers Can Use Large Language Models and Bloom's Taxonomy to Create Educational Quizzes
Question generation (QG) is a natural language processing task with an abundance of potential benefits and use cases in the educational domain. In order for this potential to be realized, QG systems must be designed and validated with pedagogical needs in mind. However, little research has assessed or designed QG approaches with the input from real teachers or students. This paper applies a large language model-based QG approach where questions are generated with learning goals derived from Bloom's taxonomy. The automatically generated questions are used in multiple experiments designed to assess how teachers use them in practice. The results demonstrate that teachers prefer to write quizzes with automatically generated questions, and that such quizzes have no loss in quality compared to handwritten versions. Further, several metrics indicate that automatically generated questions can even improve the quality of the quizzes created, showing the promise for large scale use of QG in the classroom setting.
comment: 8 pages, 8 figures. Accepted to the main track of the EAAI-24: The 14th Symposium on Educational Advances in Artificial Intelligence
♻ ☆ Do Methods to Jailbreak and Defend LLMs Generalize Across Languages?
Large language models (LLMs) undergo safety alignment after training and tuning, yet recent work shows that safety can be bypassed through jailbreak attacks. While many jailbreaks and defenses exist, their cross-lingual generalization remains underexplored. This paper presents the first systematic multilingual evaluation of jailbreaks and defenses across ten languages -- spanning high-, medium-, and low-resource languages -- using six LLMs on HarmBench and AdvBench. We assess two jailbreak types: logical-expression-based and adversarial-prompt-based. For both types, attack success and defense robustness vary across languages: high-resource languages are safer under standard queries but more vulnerable to adversarial ones. Simple defenses can be effective, but are language- and model-dependent. These findings call for language-aware and cross-lingual safety benchmarks for LLMs.
♻ ☆ Towards Stable and Personalised Profiles for Lexical Alignment in Spoken Human-Agent Dialogue
Lexical alignment, where speakers start to use similar words across conversation, is known to contribute to successful communication. However, its implementation in conversational agents remains underexplored, particularly considering the recent advancements in large language models (LLMs). As a first step towards enabling lexical alignment in human-agent dialogue, this study draws on strategies for personalising conversational agents and investigates the construction of stable, personalised lexical profiles as a basis for lexical alignment. Specifically, we varied the amounts of transcribed spoken data used for construction as well as the number of items included in the profiles per part-of-speech (POS) category and evaluated profile performance across time using recall, coverage, and cosine similarity metrics. It was shown that smaller and more compact profiles, created after 10 min of transcribed speech containing 5 items for adjectives, 5 items for conjunctions, and 10 items for adverbs, nouns, pronouns, and verbs each, offered the best balance in both performance and data efficiency. In conclusion, this study offers practical insights into constructing stable, personalised lexical profiles, taking into account minimal data requirements, serving as a foundational step toward lexical alignment strategies in conversational agents.
comment: This preprint has not undergone peer review or any post-submission improvements or corrections. The Version of Record of this contribution is published in TSD 2025. Lecture Notes in Computer Science, vol 16029
♻ ☆ Beyond the Link: Assessing LLMs' ability to Classify Political Content across Global Media
The use of large language models (LLMs) is becoming common in political science and digital media research. While LLMs have demonstrated ability in labelling tasks, their effectiveness to classify Political Content (PC) from URLs remains underexplored. This article evaluates whether LLMs can accurately distinguish PC from non-PC using both the text and the URLs of news articles across five countries (France, Germany, Spain, the UK, and the US) and their different languages. Using cutting-edge models, we benchmark their performance against human-coded data to assess whether URL-level analysis can approximate full-text analysis. Our findings show that URLs embed relevant information and can serve as a scalable, cost-effective alternative to discern PC. However, we also uncover systematic biases: LLMs seem to overclassify centrist news as political, leading to false positives that may distort further analyses. We conclude by outlining methodological recommendations on the use of LLMs in political science research.
♻ ☆ Identifying Aspects in Peer Reviews EMNLP 2025
Peer review is central to academic publishing, but the growing volume of submissions is straining the process. This motivates the development of computational approaches to support peer review. While each review is tailored to a specific paper, reviewers often make assessments according to certain aspects such as Novelty, which reflect the values of the research community. This alignment creates opportunities for standardizing the reviewing process, improving quality control, and enabling computational support. While prior work has demonstrated the potential of aspect analysis for peer review assistance, the notion of aspect remains poorly formalized. Existing approaches often derive aspects from review forms and guidelines, yet data-driven methods for aspect identification are underexplored. To address this gap, our work takes a bottom-up approach: we propose an operational definition of aspect and develop a data-driven schema for deriving aspects from a corpus of peer reviews. We introduce a dataset of peer reviews augmented with aspects and show how it can be used for community-level review analysis. We further show how the choice of aspects can impact downstream applications, such as LLM-generated review detection. Our results lay a foundation for a principled and data-driven investigation of review aspects, and pave the path for new applications of NLP to support peer review.
comment: EMNLP 2025 Findings
♻ ☆ Can MLLMs Read the Room? A Multimodal Benchmark for Verifying Truthfulness in Multi-Party Social Interactions ICCV2025
As AI systems become increasingly integrated into human lives, endowing them with robust social intelligence has emerged as a critical frontier. A key aspect of this intelligence is discerning truth from deception, a ubiquitous element of human interaction that is conveyed through a complex interplay of verbal language and non-verbal visual cues. However, automatic deception detection in dynamic, multi-party conversations remains a significant challenge. The recent rise of powerful Multimodal Large Language Models (MLLMs), with their impressive abilities in visual and textual understanding, makes them natural candidates for this task. Consequently, their capabilities in this crucial domain are mostly unquantified. To address this gap, we introduce a new task, Multimodal Interactive Veracity Assessment (MIVA), and present a novel multimodal dataset derived from the social deduction game Werewolf. This dataset provides synchronized video, text, with verifiable ground-truth labels for every statement. We establish a comprehensive benchmark evaluating state-of-the-art MLLMs, revealing a significant performance gap: even powerful models like GPT-4o struggle to distinguish truth from falsehood reliably. Our analysis of failure modes indicates that these models fail to ground language in visual social cues effectively and may be overly conservative in their alignment, highlighting the urgent need for novel approaches to building more perceptive and trustworthy AI systems.
comment: ICCV2025 Workshop
♻ ☆ Understanding and Optimizing Agentic Workflows via Shapley value
Agentic workflows have become the dominant paradigm for building complex AI systems, orchestrating specialized components, such as planning, reasoning, action execution, and reflection, to tackle sophisticated real-world tasks. However, systematically analyzing and optimizing these workflows remains challenging due to intricate component interdependencies and the lack of principled attribution methods. In this work, we introduce ShapleyFlow, the first framework that employs cooperative game theory to analyze and optimize agentic workflows. By applying the Shapley value to evaluate all possible component configurations, ShapleyFlow enables fine-grained attribution of each component's contribution and facilitates the identification of task-specific optimal configurations. Through a constructed dataset evaluated across 7 scenarios, such as navigation, math and OS, we demonstrate 3 key contributions: (1) Theoretical Framework: a principled game-theoretic approach for the attribution of contributions in agentic workflows. (2) Optimal Workflow Discovery: ShapleyFlow identifies task-specific component configurations that consistently outperform workflows relying on a single LLM across all tested tasks. (3) Comprehensive Analysis: we construct and analyze over 1,500 tasks, providing actionable insights and design guidelines for optimizing workflows across multiple domains.
♻ ☆ The Riddle of Reflection: Evaluating Reasoning and Self-Awareness in Multilingual LLMs using Indian Riddles
The extent to which large language models (LLMs) can perform culturally grounded reasoning across non-English languages remains underexplored. This paper examines the reasoning and self-assessment abilities of LLMs across seven major Indian languages-Bengali, Gujarati, Hindi, Kannada, Malayalam, Tamil, and Telugu. We introduce a multilingual riddle dataset combining traditional riddles with context-reconstructed variants and evaluate five LLMs-Gemini 2.5 Pro, Gemini 2.5 Flash, Mistral-Saba, LLaMA 4 Scout, and LLaMA 4 Maverick-under seven prompting strategies. In the first stage, we assess riddle-solving performance and find that while Gemini 2.5 Pro performs best overall, few-shot methods yield only marginal gains, and accuracy varies notably across languages. In the second stage, we conduct a self-evaluation experiment to measure reasoning consistency. The results reveal a key finding: a model's initial accuracy is inversely correlated with its ability to identify its own mistakes. Top-performing models such as Gemini 2.5 Pro are overconfident (4.34% True Negative Rate), whereas lower-performing models like LLaMA 4 Scout are substantially more self-aware (42.09% True Negative Rate). These results point to clear gaps in multilingual reasoning and highlight the need for models that not only reason effectively but also recognize their own limitations.
♻ ☆ Scaffolded Language Models with Language Supervision for Mixed-Autonomy: A Survey
This survey organizes the intricate literature on the design and optimization of emerging structures around post-trained LMs. We refer to this overarching structure as scaffolded LMs and focus on LMs that are integrated into multi-step processes with tools. We view scaffolded LMs as semi-parametric models wherein we train non-parametric variables, including the prompt, tools, and scaffold's code. In particular, they interpret instructions, use tools, and receive feedback all in language. Recent works use an LM as an optimizer to interpret language supervision and update non-parametric variables according to intricate objectives. In this survey, we refer to this paradigm as training of scaffolded LMs with language supervision. A key feature of non-parametric training is the ability to learn from language. Parametric training excels in learning from demonstration (supervised learning), exploration (reinforcement learning), or observations (unsupervised learning), using well-defined loss functions. Language-based optimization enables rich, interpretable, and expressive objectives, while mitigating issues like catastrophic forgetting and supporting compatibility with closed-source models. Furthermore, agents are increasingly deployed as co-workers in real-world applications such as Copilot in Office tools or software development. In these mixed-autonomy settings, where control and decision-making are shared between human and AI, users point out errors or suggest corrections. Accordingly, we discuss agents that continuously improve by learning from this real-time, language-based feedback and refer to this setting as streaming learning from language supervision.
♻ ☆ Charting the European LLM Benchmarking Landscape: A New Taxonomy and a Set of Best Practices LREC 2026
While new benchmarks for large language models (LLMs) are being developed continuously to catch up with the growing capabilities of new models and AI in general, using and evaluating LLMs in non-English languages remains a little-charted landscape. We give a concise overview of recent developments in LLM benchmarking, and then propose a new taxonomy for the categorization of benchmarks that is tailored to multilingual or non-English use scenarios. We further propose a set of best practices and quality standards that could lead to a more coordinated development of benchmarks for European languages. Among other recommendations, we advocate for a higher language and culture sensitivity of evaluation methods.
comment: 17 pages, 1 figure, 4 tables. Submitted to the LREC 2026 conference
Computer Vision and Pattern Recognition
☆ From Propagation to Prediction: Point-level Uncertainty Evaluation of MLS Point Clouds under Limited Ground Truth
Evaluating uncertainty is critical for reliable use of Mobile Laser Scanning (MLS) point clouds in many high-precision applications such as Scan-to-BIM, deformation analysis, and 3D modeling. However, obtaining the ground truth (GT) for evaluation is often costly and infeasible in many real-world applications. To reduce this long-standing reliance on GT in uncertainty evaluation research, this study presents a learning-based framework for MLS point clouds that integrates optimal neighborhood estimation with geometric feature extraction. Experiments on a real-world dataset show that the proposed framework is feasible and the XGBoost model delivers fully comparable accuracy to Random Forest while achieving substantially higher efficiency (about 3 times faster), providing initial evidence that geometric features can be used to predict point-level uncertainty quantified by the C2C distance. In summary, this study shows that MLS point clouds' uncertainty is learnable, offering a novel learning-based viewpoint towards uncertainty evaluation research.
☆ Data-Efficient Realized Volatility Forecasting with Vision Transformers NeurIPS
Recent work in financial machine learning has shown the virtue of complexity: the phenomenon by which deep learning methods capable of learning highly nonlinear relationships outperform simpler approaches in financial forecasting. While transformer architectures like Informer have shown promise for financial time series forecasting, the application of transformer models for options data remains largely unexplored. We conduct preliminary studies towards the development of a transformer model for options data by training the Vision Transformer (ViT) architecture, typically used in modern image recognition and classification systems, to predict the realized volatility of an asset over the next 30 days from its implied volatility surface (augmented with date information) for a single day. We show that the ViT can learn seasonal patterns and nonlinear features from the IV surface, suggesting a promising direction for model development.
comment: NeurIPS Generative AI in Finance
☆ SLIP: Structural-aware Language-Image Pretraining for Vision-Language Alignment
Vision-Language Pretraining (VLP) has achieved remarkable success across various downstream tasks, but such gains are largely driven by scaling up on training data. Yet, literature methods treat image-text pairs as isolated training examples; this neglects the rich relational structure naturally present in many domains, such as e-commerce product co-purchase graphs and social recommendation networks. Inspired by neuroscientific evidence that human encodes knowledge as relationship cognitive maps, we introduce Structure-aware Language-Image Pretraining (SLIP). SLIP integrates a structural contrastive loss to align modalities while also modeling relationships between neighboring entities in a structured graph. To support this paradigm, we construct a large-scale Amazon Product Co-purchase Multimodal Graph Dataset, enabling structured cross-modality supervision at scale. Experiment results show that SLIP consistently outperforms CLIP on cross-modal retrieval and classification tasks in both zero-shot and few-shot settings, showing the value of relational supervision for cross-modal alignment.
comment: Capstone Paper
☆ A Foundation Model for Brain MRI with Dynamic Modality Integration
We present a foundation model for brain MRI that can work with different combinations of imaging sequences. The model uses one encoder with learnable modality embeddings, conditional layer normalization, and a masked autoencoding objective that accounts for missing modalities. A variance-covariance regularizer is applied to stabilize feature learning and improve representation diversity. This design removes the need for separate models for each modality and allows the network to adapt when some sequences are missing or unseen. It is trained on about 60,000 multi-center MRIs using self-supervised reconstruction and modality imputation to learn flexible representations. A learnable modality embedding guides feature extraction so the encoder can adjust to different inputs. We describe our planned evaluation on brain tumor and multiple sclerosis segmentation, as well as lesion classification, under various modality settings. Preliminary results show that the method works feasibly, and further experiments are planned to study its performance in more detail. All code and pretrained models are available at https://github.com/BrainFM/brainfm
comment: Preliminary work; results ongoing
☆ Learning with less: label-efficient land cover classification at very high spatial resolution using self-supervised deep learning
Deep learning semantic segmentation methods have shown promising performance for very high 1-m resolution land cover classification, but the challenge of collecting large volumes of representative training data creates a significant barrier to widespread adoption of such models for meter-scale land cover mapping over large areas. In this study, we present a novel label-efficient approach for statewide 1-m land cover classification using only 1,000 annotated reference image patches with self-supervised deep learning. We use the "Bootstrap Your Own Latent" pre-training strategy with a large amount of unlabeled color-infrared aerial images (377,921 256x256 1-m pixel patches) to pre-train a ResNet-101 convolutional encoder. The learned encoder weights were subsequently transferred into multiple deep semantic segmentation architectures (FCN, U-Net, Attention U-Net, DeepLabV3+, UPerNet, PAN), which were then fine-tuned using very small training dataset sizes with cross-validation (250, 500, 750 patches). Among the fine-tuned models, we obtained the 87.14% overall accuracy and 75.58% macro F1 score using an ensemble of the best performing U-Net models for comprehensive 1-m, 8-class land cover mapping, covering more than 123 billion pixels over the state of Mississippi, USA. Detailed qualitative and quantitative analysis revealed accurate mapping of open water and forested areas, while highlighting challenges in accurate delineation between cropland, herbaceous, and barren land cover types. These results show that self-supervised learning is an effective strategy for reducing the need for large volumes of manually annotated data, directly addressing a major limitation to high spatial resolution land cover mapping at scale.
comment: 25 pages, 11 figures. Submitted in Science of Remote Sensing
☆ SCALE-VLP: Soft-Weighted Contrastive Volumetric Vision-Language Pre-training with Spatial-Knowledge Semantics
Vision-language models (VLMs) have demonstrated strong cross-modal capabilities, yet most work remains limited to 2D data and assumes binary supervision (i.e., positive vs. negative pairs), overlooking the continuous and structured dependencies present in volumetric data such as CT. Existing approaches often treat volumetric scans as independent 2D slices, compromising spatial coherence and underutilizing rich clinical semantics. We propose SCALE-VLP, a soft-weighted contrastive vision-language pre-training framework that integrates (i) volumetric spatial semantics to preserve anatomical structure and (ii) domain-aware, knowledge-infused semantics (e.g., radiological ontologies) to guide alignment. This yields structurally consistent and semantically grounded representations under limited supervision, demonstrating strong cross-task transferability (retrieval, report generation, and classification), and cross-domain generalizability with consistent gains without further fine-tuning. In particular, compared to the previous state of the art, SCALE-VLP achieves up to 4.3x higher top-1 CT-report retrieval, improves abnormality classification by 10 points, and reaches ROUGE-L 0.44 and BERT-F1 0.89 for report generation. Further, in zero-shot evaluation on an out-of-domain external dataset, we observe consistent gains, indicating the cross-task and cross-domain generalization ability of SCALE-VLP.
☆ Comprehensive Assessment of LiDAR Evaluation Metrics: A Comparative Study Using Simulated and Real Data
For developing safe Autonomous Driving Systems (ADS), rigorous testing is required before they are deemed safe for road deployments. Since comprehensive conventional physical testing is impractical due to cost and safety concerns, Virtual Testing Environments (VTE) can be adopted as an alternative. Comparing VTE-generated sensor outputs against their real-world analogues can be a strong indication that the VTE accurately represents reality. Correspondingly, this work explores a comprehensive experimental approach to finding evaluation metrics suitable for comparing real-world and simulated LiDAR scans. The metrics were tested in terms of sensitivity and accuracy with different noise, density, distortion, sensor orientation, and channel settings. From comparing the metrics, we found that Density Aware Chamfer Distance (DCD) works best across all cases. In the second step of the research, a Virtual Testing Environment was generated using real LiDAR scan data. The data was collected in a controlled environment with only static objects using an instrumented vehicle equipped with LiDAR, IMU and cameras. Simulated LiDAR scans were generated from the VTEs using the same pose as real LiDAR scans. The simulated and LiDAR scans were compared in terms of model perception and geometric similarity. Actual and simulated LiDAR scans have a similar semantic segmentation output with a mIoU of 21\% with corrected intensity and an average density aware chamfer distance (DCD) of 0.63. This indicates a slight difference in the geometric properties of simulated and real LiDAR scans and a significant difference between model outputs. During the comparison, density-aware chamfer distance was found to be the most correlated among the metrics with perception methods.
☆ Hybrid Convolution and Vision Transformer NAS Search Space for TinyML Image Classification ECML
Hybrids of Convolutional Neural Network (CNN) and Vision Transformer (ViT) have outperformed pure CNN or ViT architecture. However, since these architectures require large parameters and incur large computational costs, they are unsuitable for tinyML deployment. This paper introduces a new hybrid CNN-ViT search space for Neural Architecture Search (NAS) to find efficient hybrid architectures for image classification. The search space covers hybrid CNN and ViT blocks to learn local and global information, as well as the novel Pooling block of searchable pooling layers for efficient feature map reduction. Experimental results on the CIFAR10 dataset show that our proposed search space can produce hybrid CNN-ViT architectures with superior accuracy and inference speed to ResNet-based tinyML models under tight model size constraints.
comment: Presented at ITEM workshop co-located with ECML PKDD 2024, Vilnius LT
☆ EvtSlowTV - A Large and Diverse Dataset for Event-Based Depth Estimation
Event cameras, with their high dynamic range (HDR) and low latency, offer a promising alternative for robust depth estimation in challenging environments. However, many event-based depth estimation approaches are constrained by small-scale annotated datasets, limiting their generalizability to real-world scenarios. To bridge this gap, we introduce EvtSlowTV, a large-scale event camera dataset curated from publicly available YouTube footage, which contains more than 13B events across various environmental conditions and motions, including seasonal hiking, flying, scenic driving, and underwater exploration. EvtSlowTV is an order of magnitude larger than existing event datasets, providing an unconstrained, naturalistic setting for event-based depth learning. This work shows the suitability of EvtSlowTV for a self-supervised learning framework to capitalise on the HDR potential of raw event streams. We further demonstrate that training with EvtSlowTV enhances the model's ability to generalise to complex scenes and motions. Our approach removes the need for frame-based annotations and preserves the asynchronous nature of event data.
☆ ProM3E: Probabilistic Masked MultiModal Embedding Model for Ecology
We introduce ProM3E, a probabilistic masked multimodal embedding model for any-to-any generation of multimodal representations for ecology. ProM3E is based on masked modality reconstruction in the embedding space, learning to infer missing modalities given a few context modalities. By design, our model supports modality inversion in the embedding space. The probabilistic nature of our model allows us to analyse the feasibility of fusing various modalities for given downstream tasks, essentially learning what to fuse. Using these features of our model, we propose a novel cross-modal retrieval approach that mixes inter-modal and intra-modal similarities to achieve superior performance across all retrieval tasks. We further leverage the hidden representation from our model to perform linear probing tasks and demonstrate the superior representation learning capability of our model. All our code, datasets and model will be released at https://vishu26.github.io/prom3e.
comment: 21 pages, 16 figures
☆ Generative Hints
Data augmentation is widely used in vision to introduce variation and mitigate overfitting, through enabling models to learn invariant properties, such as spatial invariance. However, these properties are not fully captured by data augmentation alone, since it attempts to learn the property on transformations of the training data only. We propose generative hints, a training methodology that directly enforces known invariances in the entire input space. Our approach leverages a generative model trained on the training set to approximate the input distribution and generate unlabeled images, which we refer to as virtual examples. These virtual examples are used to enforce functional properties known as hints. In generative hints, although the training dataset is fully labeled, the model is trained in a semi-supervised manner on both the classification and hint objectives, using the unlabeled virtual examples to guide the model in learning the desired hint. Across datasets, architectures, and loss functions, generative hints consistently outperform standard data augmentation when learning the same property. On popular fine-grained visual classification benchmarks, we achieved up to 1.78% top-1 accuracy improvement (0.63% on average) over fine-tuned models with data augmentation and an average performance boost of 1.286% on the CheXpert X-ray dataset.
comment: 13 pages, 9 figures
☆ Domain-Adaptive Transformer for Data-Efficient Glioma Segmentation in Sub-Saharan MRI NeurIPS 2025
Glioma segmentation is critical for diagnosis and treatment planning, yet remains challenging in Sub-Saharan Africa due to limited MRI infrastructure and heterogeneous acquisition protocols that induce severe domain shift. We propose SegFormer3D-plus, a radiomics-guided transformer architecture designed for robust segmentation under domain variability. Our method combines: (1) histogram matching for intensity harmonization across scanners, (2) radiomic feature extraction with PCA-reduced k-means for domain-aware stratified sampling, (3) a dual-pathway encoder with frequency-aware feature extraction and spatial-channel attention, and (4) composite Dice-Cross-Entropy loss for boundary refinement. Pretrained on BraTS 2023 and fine-tuned on BraTS-Africa data, SegFormer3D-plus demonstrates improved tumor subregion delineation and boundary localization across heterogeneous African clinical scans, highlighting the value of radiomics-guided domain adaptation for resource-limited settings.
comment: 4 pages, 2 figures. Accepted as an abstract at the Women in Machine Learning (WiML) Workshop at NeurIPS 2025
☆ Cropland Mapping using Geospatial Embeddings
Accurate and up-to-date land cover maps are essential for understanding land use change, a key driver of climate change. Geospatial embeddings offer a more efficient and accessible way to map landscape features, yet their use in real-world mapping applications remains underexplored. In this work, we evaluated the utility of geospatial embeddings for cropland mapping in Togo. We produced cropland maps using embeddings from Presto and AlphaEarth. Our findings show that geospatial embeddings can simplify workflows, achieve high-accuracy cropland classification and ultimately support better assessments of land use change and its climate impacts.
comment: 8 pages, 11 figures
☆ TWIST2: Scalable, Portable, and Holistic Humanoid Data Collection System
Large-scale data has driven breakthroughs in robotics, from language models to vision-language-action models in bimanual manipulation. However, humanoid robotics lacks equally effective data collection frameworks. Existing humanoid teleoperation systems either use decoupled control or depend on expensive motion capture setups. We introduce TWIST2, a portable, mocap-free humanoid teleoperation and data collection system that preserves full whole-body control while advancing scalability. Our system leverages PICO4U VR for obtaining real-time whole-body human motions, with a custom 2-DoF robot neck (cost around $250) for egocentric vision, enabling holistic human-to-humanoid control. We demonstrate long-horizon dexterous and mobile humanoid skills and we can collect 100 demonstrations in 15 minutes with an almost 100% success rate. Building on this pipeline, we propose a hierarchical visuomotor policy framework that autonomously controls the full humanoid body based on egocentric vision. Our visuomotor policy successfully demonstrates whole-body dexterous manipulation and dynamic kicking tasks. The entire system is fully reproducible and open-sourced at https://yanjieze.com/TWIST2 . Our collected dataset is also open-sourced at https://twist-data.github.io .
comment: Website: https://yanjieze.com/TWIST2
☆ Densemarks: Learning Canonical Embeddings for Human Heads Images via Point Tracks
We propose DenseMarks - a new learned representation for human heads, enabling high-quality dense correspondences of human head images. For a 2D image of a human head, a Vision Transformer network predicts a 3D embedding for each pixel, which corresponds to a location in a 3D canonical unit cube. In order to train our network, we collect a dataset of pairwise point matches, estimated by a state-of-the-art point tracker over a collection of diverse in-the-wild talking heads videos, and guide the mapping via a contrastive loss, encouraging matched points to have close embeddings. We further employ multi-task learning with face landmarks and segmentation constraints, as well as imposing spatial continuity of embeddings through latent cube features, which results in an interpretable and queryable canonical space. The representation can be used for finding common semantic parts, face/head tracking, and stereo reconstruction. Due to the strong supervision, our method is robust to pose variations and covers the entire head, including hair. Additionally, the canonical space bottleneck makes sure the obtained representations are consistent across diverse poses and individuals. We demonstrate state-of-the-art results in geometry-aware point matching and monocular head tracking with 3D Morphable Models. The code and the model checkpoint will be made available to the public.
comment: Project page: https://diddone.github.io/densemarks/ .Video: https://youtu.be/o8DOOYFW0gI .21 pages, 13 figures, 2 tables
☆ AI-Generated Image Detection: An Empirical Study and Future Research Directions
The threats posed by AI-generated media, particularly deepfakes, are now raising significant challenges for multimedia forensics, misinformation detection, and biometric system resulting in erosion of public trust in the legal system, significant increase in frauds, and social engineering attacks. Although several forensic methods have been proposed, they suffer from three critical gaps: (i) use of non-standardized benchmarks with GAN- or diffusion-generated images, (ii) inconsistent training protocols (e.g., scratch, frozen, fine-tuning), and (iii) limited evaluation metrics that fail to capture generalization and explainability. These limitations hinder fair comparison, obscure true robustness, and restrict deployment in security-critical applications. This paper introduces a unified benchmarking framework for systematic evaluation of forensic methods under controlled and reproducible conditions. We benchmark ten SoTA forensic methods (scratch, frozen, and fine-tuned) and seven publicly available datasets (GAN and diffusion) to perform extensive and systematic evaluations. We evaluate performance using multiple metrics, including accuracy, average precision, ROC-AUC, error rate, and class-wise sensitivity. We also further analyze model interpretability using confidence curves and Grad-CAM heatmaps. Our evaluations demonstrate substantial variability in generalization, with certain methods exhibiting strong in-distribution performance but degraded cross-model transferability. This study aims to guide the research community toward a deeper understanding of the strengths and limitations of current forensic approaches, and to inspire the development of more robust, generalizable, and explainable solutions.
☆ When Visualizing is the First Step to Reasoning: MIRA, a Benchmark for Visual Chain-of-Thought
We propose MIRA, a new benchmark designed to evaluate models in scenarios where generating intermediate visual images is essential for successful reasoning. Unlike traditional CoT methods that rely solely on text, tasks in MIRA require models to generate and utilize intermediate images - such as sketches, structural diagrams, or path drawings - to guide their reasoning process. This setup closely mirrors how humans solve complex problems through "drawing to think". To solve this, MIRA focuses on tasks that are intrinsically challenging and involve complex structures, spatial relationships, or reasoning steps that are difficult to express through language alone. To ensure that our evaluation data is of high-quality, we include 546 multimodal problems, annotated with intermediate visual images and final answers. We also propose a unified evaluation protocol for MIRA that spans three levels of evaluation input: direct input with image and question only, text-only CoT input with image and thinking prompts, and Visual-CoT input with both annotated image clues and textual thinking prompts. To probe the upper bound of model capacity on our benchmark, we also report pass@k and majority voting accuracies under different k settings. Experimental results show that existing multimodal large language models, including strongest private models as well as strong open-weight models, perform poorly when relying solely on textual prompts. However, when intermediate visual cues are provided, model performance improves consistently, yielding an average relative gain of 33.7% across all models and tasks. We also probe the upper bound by expanding the search space and designing textual prompts aligned with Visual-CoT, but both yield only limited improvements compared to our Visual-CoT setting. These results underscore the critical role of imagined visual information in enabling successful reasoning on MIRA.
comment: 28 pages, 15 figures
☆ VCode: a Multimodal Coding Benchmark with SVG as Symbolic Visual Representation
Code has emerged as a precise and executable medium for reasoning and action in the agent era. Yet, progress has largely focused on language-centric tasks such as program synthesis and debugging, leaving visual-centric coding underexplored. Inspired by how humans reason over sketches, we advocate SVG code as a compact, interpretable, and executable visual representation. We introduce VCode, a benchmark that reframes multimodal understanding as code generation: given an image, a model must produce SVG that preserves symbolic meaning for downstream reasoning. VCode covers three domains - general commonsense (MM-Vet), professional disciplines (MMMU), and visual-centric perception (CV-Bench). To assess symbolic fidelity, we propose CodeVQA, a novel evaluation protocol in which a policy model answers questions over rendered SVGs; correct answers indicate faithful symbolic preservation. Empirically, frontier VLMs struggle to generate faithful SVGs, revealing a persistent gap between language-centric and visual-centric coding. To close this gap, we introduce VCoder, an agentic framework that augments VLMs along two axes: (i) Thinking with Revision, which iteratively analyzes discrepancies and refines SVG code; and (ii) Acting with Visual Tools, where detectors and parsers supply structured cues such as objects, shapes, and text beyond the model's intrinsic capacity. Across benchmarks, frontier VLMs with strong reasoning capabilities score well overall yet remain limited in professional knowledge and 3D reasoning. VCoder delivers a 12.3-point overall gain over the top-performing Claude-4-Opus. Human studies show that both humans and VLMs perform worse on rendered SVGs, their consistency reveals the promise of symbolic visual representation. The benchmark and code are available at https://github.com/CSU-JPG/VCode.
comment: Project page: https://csu-jpg.github.io/VCode Github: https://github.com/CSU-JPG/VCode
☆ PercHead: Perceptual Head Model for Single-Image 3D Head Reconstruction & Editing
We present PercHead, a method for single-image 3D head reconstruction and semantic 3D editing - two tasks that are inherently challenging due to severe view occlusions, weak perceptual supervision, and the ambiguity of editing in 3D space. We develop a unified base model for reconstructing view-consistent 3D heads from a single input image. The model employs a dual-branch encoder followed by a ViT-based decoder that lifts 2D features into 3D space through iterative cross-attention. Rendering is performed using Gaussian Splatting. At the heart of our approach is a novel perceptual supervision strategy based on DINOv2 and SAM2.1, which provides rich, generalized signals for both geometric and appearance fidelity. Our model achieves state-of-the-art performance in novel-view synthesis and, furthermore, exhibits exceptional robustness to extreme viewing angles compared to established baselines. Furthermore, this base model can be seamlessly extended for semantic 3D editing by swapping the encoder and finetuning the network. In this variant, we disentangle geometry and style through two distinct input modalities: a segmentation map to control geometry and either a text prompt or a reference image to specify appearance. We highlight the intuitive and powerful 3D editing capabilities of our model through a lightweight, interactive GUI, where users can effortlessly sculpt geometry by drawing segmentation maps and stylize appearance via natural language or image prompts. Project Page: https://antoniooroz.github.io/PercHead Video: https://www.youtube.com/watch?v=4hFybgTk4kE
comment: Project Page: https://antoniooroz.github.io/PercHead/ Video: https://www.youtube.com/watch?v=4hFybgTk4kE
☆ Dynamic Reflections: Probing Video Representations with Text Alignment
The alignment of representations from different modalities has recently been shown to provide insights on the structural similarities and downstream capabilities of different encoders across diverse data types. While significant progress has been made in aligning images with text, the temporal nature of video data remains largely unexplored in this context. In this work, we conduct the first comprehensive study of video-text representation alignment, probing the capabilities of modern video and language encoders. Our findings reveal several key insights. First, we demonstrate that cross-modal alignment highly depends on the richness of both visual (static images vs. multi-frame videos) and text (single caption vs. a collection) data provided at test time, especially when using state-of-the-art video encoders. We propose parametric test-time scaling laws that capture this behavior and show remarkable predictive power against empirical observations. Secondly, we investigate the correlation between semantic alignment and performance on both semantic and non-semantic downstream tasks, providing initial evidence that strong alignment against text encoders may be linked to general-purpose video representation and understanding. Finally, we correlate temporal reasoning with cross-modal alignment providing a challenging test-bed for vision and language models. Overall, our work introduces video-text alignment as an informative zero-shot way to probe the representation power of different encoders for spatio-temporal data. Project page can be found at https://video-prh.github.io/
comment: 21 pages, 12 figures
☆ LLEXICORP: End-user Explainability of Convolutional Neural Networks
Convolutional neural networks (CNNs) underpin many modern computer vision systems. With applications ranging from common to critical areas, a need to explain and understand the model and its decisions (XAI) emerged. Prior works suggest that in the top layers of CNNs, the individual channels can be attributed to classifying human-understandable concepts. Concept relevance propagation (CRP) methods can backtrack predictions to these channels and find images that most activate these channels. However, current CRP workflows are largely manual: experts must inspect activation images to name the discovered concepts and must synthesize verbose explanations from relevance maps, limiting the accessibility of the explanations and their scalability. To address these issues, we introduce Large Language model EXplaIns COncept Relevance Propagation (LLEXICORP), a modular pipeline that couples CRP with a multimodal large language model. Our approach automatically assigns descriptive names to concept prototypes and generates natural-language explanations that translate quantitative relevance distributions into intuitive narratives. To ensure faithfulness, we craft prompts that teach the language model the semantics of CRP through examples and enforce a separation between naming and explanation tasks. The resulting text can be tailored to different audiences, offering low-level technical descriptions for experts and high-level summaries for non-technical stakeholders. We qualitatively evaluate our method on various images from ImageNet on a VGG16 model. Our findings suggest that integrating concept-based attribution methods with large language models can significantly lower the barrier to interpreting deep neural networks, paving the way for more transparent AI systems.
☆ An unscented Kalman filter method for real time input-parameter-state estimation
The input-parameter-state estimation capabilities of a novel unscented Kalman filter is examined herein on both linear and nonlinear systems. The unknown input is estimated in two stages within each time step. Firstly, the predicted dynamic states and the system parameters provide an estimation of the input. Secondly, the corrected with measurements states and parameters provide a final estimation. Importantly, it is demonstrated using the perturbation analysis that, a system with at least a zero or a non-zero known input can potentially be uniquely identified. This output-only methodology allows for a better understanding of the system compared to classical output-only parameter identification strategies, given that all the dynamic states, the parameters, and the input are estimated jointly and in real-time.
comment: author-accepted manuscript (AAM) published in Mechanical Systems and Signal Processing
☆ VidEmo: Affective-Tree Reasoning for Emotion-Centric Video Foundation Models
Understanding and predicting emotion from videos has gathered significant attention in recent studies, driven by advancements in video large language models (VideoLLMs). While advanced methods have made progress in video emotion analysis, the intrinsic nature of emotions poses significant challenges. Emotions are characterized by dynamic and cues-dependent properties, making it difficult to understand complex and evolving emotional states with reasonable rationale. To tackle these challenges, we propose a novel affective cues-guided reasoning framework that unifies fundamental attribute perception, expression analysis, and high-level emotional understanding in a stage-wise manner. At the core of our approach is a family of video emotion foundation models (VidEmo), specifically designed for emotion reasoning and instruction-following. These models undergo a two-stage tuning process: first, curriculum emotion learning for injecting emotion knowledge, followed by affective-tree reinforcement learning for emotion reasoning. Moreover, we establish a foundational data infrastructure and introduce a emotion-centric fine-grained dataset (Emo-CFG) consisting of 2.1M diverse instruction-based samples. Emo-CFG includes explainable emotional question-answering, fine-grained captions, and associated rationales, providing essential resources for advancing emotion understanding tasks. Experimental results demonstrate that our approach achieves competitive performance, setting a new milestone across 15 face perception tasks.
comment: 41 pages, 26 figures
☆ Modality-Transition Representation Learning for Visible-Infrared Person Re-Identification
Visible-infrared person re-identification (VI-ReID) technique could associate the pedestrian images across visible and infrared modalities in the practical scenarios of background illumination changes. However, a substantial gap inherently exists between these two modalities. Besides, existing methods primarily rely on intermediate representations to align cross-modal features of the same person. The intermediate feature representations are usually create by generating intermediate images (kind of data enhancement), or fusing intermediate features (more parameters, lack of interpretability), and they do not make good use of the intermediate features. Thus, we propose a novel VI-ReID framework via Modality-Transition Representation Learning (MTRL) with a middle generated image as a transmitter from visible to infrared modals, which are fully aligned with the original visible images and similar to the infrared modality. After that, using a modality-transition contrastive loss and a modality-query regularization loss for training, which could align the cross-modal features more effectively. Notably, our proposed framework does not need any additional parameters, which achieves the same inference speed to the backbone while improving its performance on VI-ReID task. Extensive experimental results illustrate that our model significantly and consistently outperforms existing SOTAs on three typical VI-ReID datasets.
☆ Optimizing the nnU-Net model for brain tumor (Glioma) segmentation Using a BraTS Sub-Saharan Africa (SSA) dataset
Medical image segmentation is a critical achievement in modern medical science, developed over decades of research. It allows for the exact delineation of anatomical and pathological features in two- or three-dimensional pictures by utilizing notions like pixel intensity, texture, and anatomical context. With the advent of automated segmentation, physicians and radiologists may now concentrate on diagnosis and treatment planning while intelligent computers perform routine image processing tasks. This study used the BraTS Sub-Saharan Africa dataset, a selected subset of the BraTS dataset that included 60 multimodal MRI cases from patients with glioma. Surprisingly, the nnU Net model trained on the initial 60 instances performed better than the network trained on an offline-augmented dataset of 360 cases. Hypothetically, the offline augmentations introduced artificial anatomical variances or intensity distributions, reducing generalization. In contrast, the original dataset, when paired with nnU Net's robust online augmentation procedures, maintained realistic variability and produced better results. The study achieved a Dice score of 0.84 for whole tumor segmentation. These findings highlight the significance of data quality and proper augmentation approaches in constructing accurate, generalizable medical picture segmentation models, particularly for under-represented locations.
comment: 10 pages, 4 figures
☆ Differentiable Hierarchical Visual Tokenization NeurIPS 2025
Vision Transformers rely on fixed patch tokens that ignore the spatial and semantic structure of images. In this work, we introduce an end-to-end differentiable tokenizer that adapts to image content with pixel-level granularity while remaining backward-compatible with existing architectures for retrofitting pretrained models. Our method uses hierarchical model selection with information criteria to provide competitive performance in both image-level classification and dense-prediction tasks, and even supports out-of-the-box raster-to-vector conversion.
comment: NeurIPS 2025 Spotlight
☆ Can Visual Input Be Compressed? A Visual Token Compression Benchmark for Large Multimodal Models
Large multimodal models (LMMs) often suffer from severe inference inefficiency due to the large number of visual tokens introduced by image encoders. While recent token compression methods, such as pruning and merging, have shown promise in reducing redundancy, their evaluation remains fragmented and inconsistent. In this work, we present UniPruneBench, a unified and extensible benchmark for visual token pruning in multimodal LLMs. UniPruneBench provides standardized protocols across six ability dimensions and ten datasets, covering ten representative compression algorithms and three families of LMMs (LLaVA-v1.5, Intern-VL3, and Qwen2.5-VL). Beyond task accuracy, it incorporates system-level metrics such as runtime and prefilling latency to provide a holistic view. Our experiments uncover several key findings: (1) random pruning is a surprisingly strong baseline, (2) no single method consistently outperforms others across scenarios, (3) pruning sensitivity varies significantly across tasks, with OCR being most vulnerable, and (4) pruning ratio is the dominant factor governing performance degradation. We believe UniPruneBench will serve as a reliable foundation for future research on efficient multimodal modeling.
☆ Robust Face Liveness Detection for Biometric Authentication using Single Image
Biometric technologies are widely adopted in security, legal, and financial systems. Face recognition can authenticate a person based on the unique facial features such as shape and texture. However, recent works have demonstrated the vulnerability of Face Recognition Systems (FRS) towards presentation attacks. Using spoofing (aka.,presentation attacks), a malicious actor can get illegitimate access to secure systems. This paper proposes a novel light-weight CNN framework to identify print/display, video and wrap attacks. The proposed robust architecture provides seamless liveness detection ensuring faster biometric authentication (1-2 seconds on CPU). Further, this also presents a newly created 2D spoof attack dataset consisting of more than 500 videos collected from 60 subjects. To validate the effectiveness of this architecture, we provide a demonstration video depicting print/display, video and wrap attack detection approaches. The demo can be viewed in the following link: https://rak.box.com/s/m1uf31fn5amtjp4mkgf1huh4ykfeibaa
☆ UniChange: Unifying Change Detection with Multimodal Large Language Model
Change detection (CD) is a fundamental task for monitoring and analyzing land cover dynamics. While recent high performance models and high quality datasets have significantly advanced the field, a critical limitation persists. Current models typically acquire limited knowledge from single-type annotated data and cannot concurrently leverage diverse binary change detection (BCD) and semantic change detection (SCD) datasets. This constraint leads to poor generalization and limited versatility. The recent advancements in Multimodal Large Language Models (MLLMs) introduce new possibilities for a unified CD framework. We leverage the language priors and unification capabilities of MLLMs to develop UniChange, the first MLLM-based unified change detection model. UniChange integrates generative language abilities with specialized CD functionalities. Our model successfully unifies both BCD and SCD tasks through the introduction of three special tokens: [T1], [T2], and [CHANGE]. Furthermore, UniChange utilizes text prompts to guide the identification of change categories, eliminating the reliance on predefined classification heads. This design allows UniChange to effectively acquire knowledge from multi-source datasets, even when their class definitions conflict. Experiments on four public benchmarks (WHU-CD, S2Looking, LEVIR-CD+, and SECOND) demonstrate SOTA performance, achieving IoU scores of 90.41, 53.04, 78.87, and 57.62, respectively, surpassing all previous methods. The code is available at https://github.com/Erxucomeon/UniChange.
☆ Zero-Shot Multi-Animal Tracking in the Wild
Multi-animal tracking is crucial for understanding animal ecology and behavior. However, it remains a challenging task due to variations in habitat, motion patterns, and species appearance. Traditional approaches typically require extensive model fine-tuning and heuristic design for each application scenario. In this work, we explore the potential of recent vision foundation models for zero-shot multi-animal tracking. By combining a Grounding Dino object detector with the Segment Anything Model 2 (SAM 2) tracker and carefully designed heuristics, we develop a tracking framework that can be applied to new datasets without any retraining or hyperparameter adaptation. Evaluations on ChimpAct, Bird Flock Tracking, AnimalTrack, and a subset of GMOT-40 demonstrate strong and consistent performance across diverse species and environments. The code is available at https://github.com/ecker-lab/SAM2-Animal-Tracking.
☆ TAUE: Training-free Noise Transplant and Cultivation Diffusion Model
Despite the remarkable success of text-to-image diffusion models, their output of a single, flattened image remains a critical bottleneck for professional applications requiring layer-wise control. Existing solutions either rely on fine-tuning with large, inaccessible datasets or are training-free yet limited to generating isolated foreground elements, failing to produce a complete and coherent scene. To address this, we introduce the Training-free Noise Transplantation and Cultivation Diffusion Model (TAUE), a novel framework for zero-shot, layer-wise image generation. Our core technique, Noise Transplantation and Cultivation (NTC), extracts intermediate latent representations from both foreground and composite generation processes, transplanting them into the initial noise for subsequent layers. This ensures semantic and structural coherence across foreground, background, and composite layers, enabling consistent, multi-layered outputs without requiring fine-tuning or auxiliary datasets. Extensive experiments show that our training-free method achieves performance comparable to fine-tuned methods, enhancing layer-wise consistency while maintaining high image quality and fidelity. TAUE not only eliminates costly training and dataset requirements but also unlocks novel downstream applications, such as complex compositional editing, paving the way for more accessible and controllable generative workflows.
comment: 13 pages, 8 figures, 3 tables. The first two authors contributed equally. Project Page: https://iyatomilab.github.io/TAUE
☆ Resource-efficient Automatic Refinement of Segmentations via Weak Supervision from Light Feedback
Delineating anatomical regions is a key task in medical image analysis. Manual segmentation achieves high accuracy but is labor-intensive and prone to variability, thus prompting the development of automated approaches. Recently, a breadth of foundation models has enabled automated segmentations across diverse anatomies and imaging modalities, but these may not always meet the clinical accuracy standards. While segmentation refinement strategies can improve performance, current methods depend on heavy user interactions or require fully supervised segmentations for training. Here, we present SCORE (Segmentation COrrection from Regional Evaluations), a weakly supervised framework that learns to refine mask predictions only using light feedback during training. Specifically, instead of relying on dense training image annotations, SCORE introduces a novel loss that leverages region-wise quality scores and over/under-segmentation error labels. We demonstrate SCORE on humerus CT scans, where it considerably improves initial predictions from TotalSegmentator, and achieves performance on par with existing refinement methods, while greatly reducing their supervision requirements and annotation time. Our code is available at: https://gitlab.inria.fr/adelangl/SCORE.
☆ A Cognitive Process-Inspired Architecture for Subject-Agnostic Brain Visual Decoding
Subject-agnostic brain decoding, which aims to reconstruct continuous visual experiences from fMRI without subject-specific training, holds great potential for clinical applications. However, this direction remains underexplored due to challenges in cross-subject generalization and the complex nature of brain signals. In this work, we propose Visual Cortex Flow Architecture (VCFlow), a novel hierarchical decoding framework that explicitly models the ventral-dorsal architecture of the human visual system to learn multi-dimensional representations. By disentangling and leveraging features from early visual cortex, ventral, and dorsal streams, VCFlow captures diverse and complementary cognitive information essential for visual reconstruction. Furthermore, we introduce a feature-level contrastive learning strategy to enhance the extraction of subject-invariant semantic representations, thereby enhancing subject-agnostic applicability to previously unseen subjects. Unlike conventional pipelines that need more than 12 hours of per-subject data and heavy computation, VCFlow sacrifices only 7\% accuracy on average yet generates each reconstructed video in 10 seconds without any retraining, offering a fast and clinically scalable solution. The source code will be released upon acceptance of the paper.
comment: 9 pages main text with 6 figures (excluding references), supplementary material included
☆ Seeing Across Time and Views: Multi-Temporal Cross-View Learning for Robust Video Person Re-Identification
Video-based person re-identification (ReID) in cross-view domains (for example, aerial-ground surveillance) remains an open problem because of extreme viewpoint shifts, scale disparities, and temporal inconsistencies. To address these challenges, we propose MTF-CVReID, a parameter-efficient framework that introduces seven complementary modules over a ViT-B/16 backbone. Specifically, we include: (1) Cross-Stream Feature Normalization (CSFN) to correct camera and view biases; (2) Multi-Resolution Feature Harmonization (MRFH) for scale stabilization across altitudes; (3) Identity-Aware Memory Module (IAMM) to reinforce persistent identity traits; (4) Temporal Dynamics Modeling (TDM) for motion-aware short-term temporal encoding; (5) Inter-View Feature Alignment (IVFA) for perspective-invariant representation alignment; (6) Hierarchical Temporal Pattern Learning (HTPL) to capture multi-scale temporal regularities; and (7) Multi-View Identity Consistency Learning (MVICL) that enforces cross-view identity coherence using a contrastive learning paradigm. Despite adding only about 2 million parameters and 0.7 GFLOPs over the baseline, MTF-CVReID maintains real-time efficiency (189 FPS) and achieves state-of-the-art performance on the AG-VPReID benchmark across all altitude levels, with strong cross-dataset generalization to G2A-VReID and MARS datasets. These results show that carefully designed adapter-based modules can substantially enhance cross-view robustness and temporal consistency without compromising computational efficiency. The source code is available at https://github.com/MdRashidunnabi/MTF-CVReID
☆ The Urban Vision Hackathon Dataset and Models: Towards Image Annotations and Accurate Vision Models for Indian Traffic
This report describes the UVH-26 dataset, the first public release by AIM@IISc of a large-scale dataset of annotated traffic-camera images from India. The dataset comprises 26,646 high-resolution (1080p) images sampled from 2800 Bengaluru's Safe-City CCTV cameras over a 4-week period, and subsequently annotated through a crowdsourced hackathon involving 565 college students from across India. In total, 1.8 million bounding boxes were labeled across 14 vehicle classes specific to India: Cycle, 2-Wheeler (Motorcycle), 3-Wheeler (Auto-rickshaw), LCV (Light Commercial Vehicles), Van, Tempo-traveller, Hatchback, Sedan, SUV, MUV, Mini-bus, Bus, Truck and Other. Of these, 283k-316k consensus ground truth bounding boxes and labels were derived for distinct objects in the 26k images using Majority Voting and STAPLE algorithms. Further, we train multiple contemporary detectors, including YOLO11-S/X, RT-DETR-S/X, and DAMO-YOLO-T/L using these datasets, and report accuracy based on mAP50, mAP75 and mAP50:95. Models trained on UVH-26 achieve 8.4-31.5% improvements in mAP50:95 over equivalent baseline models trained on COCO dataset, with RT-DETR-X showing the best performance at 0.67 (mAP50:95) as compared to 0.40 for COCO-trained weights for common classes (Car, Bus, and Truck). This demonstrates the benefits of domain-specific training data for Indian traffic scenarios. The release package provides the 26k images with consensus annotations based on Majority Voting (UVH-26-MV) and STAPLE (UVH-26-ST) and the 6 fine-tuned YOLO and DETR models on each of these datasets. By capturing the heterogeneity of Indian urban mobility directly from operational traffic-camera streams, UVH-26 addresses a critical gap in existing global benchmarks, and offers a foundation for advancing detection, classification, and deployment of intelligent transportation systems in emerging nations with complex traffic conditions.
♻ ☆ SmartWilds: Multimodal Wildlife Monitoring Dataset
We present the first release of SmartWilds, a multimodal wildlife monitoring dataset. SmartWilds is a synchronized collection of drone imagery, camera trap photographs and videos, and bioacoustic recordings collected during summer 2025 at The Wilds safari park in Ohio. This dataset supports multimodal AI research for comprehensive environmental monitoring, addressing critical needs in endangered species research, conservation ecology, and habitat management. Our pilot deployment captured four days of synchronized monitoring across three modalities in a 220-acre pasture containing Pere David's deer, Sichuan takin, Przewalski's horses, as well as species native to Ohio. We provide a comparative analysis of sensor modality performance, demonstrating complementary strengths for landuse patterns, species detection, behavioral analysis, and habitat monitoring. This work establishes reproducible protocols for multimodal wildlife monitoring while contributing open datasets to advance conservation computer vision research. Future releases will include synchronized GPS tracking data from tagged individuals, citizen science data, and expanded temporal coverage across multiple seasons.
comment: Accepted to Imageomics Workshop at Neurips 2025
♻ ☆ ROADWork: A Dataset and Benchmark for Learning to Recognize, Observe, Analyze and Drive Through Work Zones ICCV 2025
Perceiving and autonomously navigating through work zones is a challenging and underexplored problem. Open datasets for this long-tailed scenario are scarce. We propose the ROADWork dataset to learn to recognize, observe, analyze, and drive through work zones. State-of-the-art foundation models fail when applied to work zones. Fine-tuning models on our dataset significantly improves perception and navigation in work zones. With ROADWork dataset, we discover new work zone images with higher precision (+32.5%) at a much higher rate (12.8$\times$) around the world. Open-vocabulary methods fail too, whereas fine-tuned detectors improve performance (+32.2 AP). Vision-Language Models (VLMs) struggle to describe work zones, but fine-tuning substantially improves performance (+36.7 SPICE). Beyond fine-tuning, we show the value of simple techniques. Video label propagation provides additional gains (+2.6 AP) for instance segmentation. While reading work zone signs, composing a detector and text spotter via crop-scaling improves performance +14.2% 1-NED). Composing work zone detections to provide context further reduces hallucinations (+3.9 SPICE) in VLMs. We predict navigational goals and compute drivable paths from work zone videos. Incorporating road work semantics ensures 53.6% goals have angular error (AE) < 0.5 (+9.9 %) and 75.3% pathways have AE < 0.5 (+8.1 %).
comment: ICCV 2025 Accepted Paper
♻ ☆ Stable Part Diffusion 4D: Multi-View RGB and Kinematic Parts Video Generation
We present Stable Part Diffusion 4D (SP4D), a framework for generating paired RGB and kinematic part videos from monocular inputs. Unlike conventional part segmentation methods that rely on appearance-based semantic cues, SP4D learns to produce kinematic parts - structural components aligned with object articulation and consistent across views and time. SP4D adopts a dual-branch diffusion model that jointly synthesizes RGB frames and corresponding part segmentation maps. To simplify the architecture and flexibly enable different part counts, we introduce a spatial color encoding scheme that maps part masks to continuous RGB-like images. This encoding allows the segmentation branch to share the latent VAE from the RGB branch, while enabling part segmentation to be recovered via straightforward post-processing. A Bidirectional Diffusion Fusion (BiDiFuse) module enhances cross-branch consistency, supported by a contrastive part consistency loss to promote spatial and temporal alignment of part predictions. We demonstrate that the generated 2D part maps can be lifted to 3D to derive skeletal structures and harmonic skinning weights with few manual adjustments. To train and evaluate SP4D, we construct KinematicParts20K, a curated dataset of over 20K rigged objects selected and processed from Objaverse XL (Deitke et al., 2023), each paired with multi-view RGB and part video sequences. Experiments show that SP4D generalizes strongly to diverse scenarios, including real-world videos, novel generated objects, and rare articulated poses, producing kinematic-aware outputs suitable for downstream animation and motion-related tasks.
comment: Page: https://stablepartdiffusion4d.github.io/
♻ ☆ Erasing 'Ugly' from the Internet: Propagation of the Beauty Myth in Text-Image Models
Social media has exacerbated the promotion of Western beauty norms, leading to negative self-image, particularly in women and girls, and causing harm such as body dysmorphia. Increasingly content on the internet has been artificially generated, leading to concerns that these norms are being exaggerated. The aim of this work is to study how generative AI models may encode 'beauty' and erase 'ugliness', and discuss the implications of this for society. To investigate these aims, we create two image generation pipelines: a text-to-image model and a text-to-language model-to image model. We develop a structured beauty taxonomy which we use to prompt three language models (LMs) and two text-to-image models to cumulatively generate 5984 images using our two pipelines. We then recruit women and non-binary social media users to evaluate 1200 of the images through a Likert-scale within-subjects study. Participants show high agreement in their ratings. Our results show that 86.5% of generated images depicted people with lighter skin tones, 22% contained explicit content despite Safe for Work (SFW) training, and 74% were rated as being in a younger age demographic. In particular, the images of non-binary individuals were rated as both younger and more hypersexualised, indicating troubling intersectional effects. Notably, prompts encoded with 'negative' or 'ugly' beauty traits (such as "a wide nose") consistently produced higher Not SFW (NSFW) ratings regardless of gender. This work sheds light on the pervasive demographic biases related to beauty standards present in generative AI models -- biases that are actively perpetuated by model developers, such as via negative prompting. We conclude by discussing the implications of this on society, which include pollution of the data streams and active erasure of features that do not fall inside the stereotype of what is considered beautiful by developers.
comment: This is a preprint under review
♻ ☆ Transfer Learning-based Real-time Handgun Detection
Traditional surveillance systems rely on human attention, limiting their effectiveness. This study employs convolutional neural networks and transfer learning to develop a real-time computer vision system for automatic handgun detection. Comprehensive analysis of online handgun detection methods is conducted, emphasizing reducing false positives and learning time. Transfer learning is demonstrated as an effective approach. Despite technical challenges, the proposed system achieves a precision rate of 84.74%, demonstrating promising performance comparable to related works, enabling faster learning and accurate automatic handgun detection for enhanced security. This research advances security measures by reducing human monitoring dependence, showcasing the potential of transfer learning-based approaches for efficient and reliable handgun detection.
comment: 16 pages, 9 figures, and 3 tables. published at The Iraqi Journal of Science, issued by College of Science at University of Baghdad
♻ ☆ Revisiting semi-supervised learning in the era of foundation models NeurIPS 2025
Semi-supervised learning (SSL) leverages abundant unlabeled data alongside limited labeled data to enhance learning. As vision foundation models (VFMs) increasingly serve as the backbone of vision applications, it remains unclear how SSL interacts with these pre-trained models. To address this gap, we develop new SSL benchmark datasets where frozen VFMs underperform and systematically evaluate representative SSL methods. We make a surprising observation: parameter-efficient fine-tuning (PEFT) using only labeled data often matches SSL performance, even without leveraging unlabeled data. This motivates us to revisit self-training, a conceptually simple SSL baseline, where we use the supervised PEFT model to pseudo-label unlabeled data for further training. To overcome the notorious issue of noisy pseudo-labels, we propose ensembling multiple PEFT approaches and VFM backbones to produce more robust pseudo-labels. Empirical results validate the effectiveness of this simple yet powerful approach, providing actionable insights into SSL with VFMs and paving the way for more scalable and practical semi-supervised learning in the era of foundation models.
comment: The paper has been accepted to NeurIPS 2025. Ping Zhang and Zheda Mai contributed equally to this work
♻ ☆ P3P Made Easy
We revisit the classical Perspective-Three-Point (P3P) problem, which aims to recover the absolute pose of a calibrated camera from three 2D-3D correspondences. It has long been known that P3P can be reduced to a quartic polynomial with analytically simple and computationally efficient coefficients. However, this elegant formulation has been largely overlooked in modern literature. Building on the theoretical foundation that traces back to Grunert's work in 1841, we propose a compact algebraic solver that achieves accuracy and runtime comparable to state-of-the-art methods. Our results show that this classical formulation remains highly competitive when implemented with modern insights, offering an excellent balance between simplicity, efficiency, and accuracy.
♻ ☆ Automated Segmentation of Coronal Brain Tissue Slabs for 3D Neuropathology
Advances in image registration and machine learning have recently enabled volumetric analysis of postmortem brain tissue from conventional photographs of coronal slabs, which are routinely collected in brain banks and neuropathology laboratories worldwide. One caveat of this methodology is the requirement of segmentation of the tissue from photographs, which currently requires costly manual intervention. In this article, we present a deep learning model to automate this process. The automatic segmentation tool relies on a U-Net architecture that was trained with a combination of 1,414 manually segmented images of both fixed and fresh tissue, from specimens with varying diagnoses, photographed at two different sites. Automated model predictions on a subset of photographs not seen in training were analyzed to estimate performance compared to manual labels, including both inter- and intra-rater variability. Our model achieved a median Dice score over 0.98, mean surface distance under 0.4mm, and 95\% Hausdorff distance under 1.60mm, which approaches inter-/intra-rater levels. Our tool is publicly available at surfer.nmr.mgh.harvard.edu/fswiki/PhotoTools.
comment: 20 pages, 10 figures
♻ ☆ SAM-EM: Real-Time Segmentation for Automated Liquid Phase Transmission Electron Microscopy
The absence of robust segmentation frameworks for noisy liquid phase transmission electron microscopy (LPTEM) videos prevents reliable extraction of particle trajectories, creating a major barrier to quantitative analysis and to connecting observed dynamics with materials characterization and design. To address this challenge, we present Segment Anything Model for Electron Microscopy (SAM-EM), a domain-adapted foundation model that unifies segmentation, tracking, and statistical analysis for LPTEM data. Built on Segment Anything Model 2 (SAM~2), SAM-EM is derived through full-model fine-tuning on 46,600 curated LPTEM synthetic video frames, substantially improving mask quality and temporal identity stability compared to zero-shot SAM~2 and existing baselines. Beyond segmentation, SAM-EM integrates particle tracking with statistical tools, including mean-squared displacement and particle displacement distribution analysis, providing an end-to-end framework for extracting and interpreting nanoscale dynamics. Crucially, full fine-tuning allows SAM-EM to remain robust under low signal-to-noise conditions, such as those caused by increased liquid sample thickness in LPTEM experiments. By establishing a reliable analysis pipeline, SAM-EM transforms LPTEM into a quantitative single-particle tracking platform and accelerates its integration into data-driven materials discovery and design. Project page: \href{https://github.com/JamaliLab/SAM-EM}{github.com/JamaliLab/SAM-EM}.
♻ ☆ BoxCell: Leveraging SAM for Cell Segmentation with Box Supervision
Cell segmentation in histopathological images is vital for diagnosis, and treatment of several diseases. Annotating data is tedious, and requires medical expertise, making it difficult to employ supervised learning. Instead, we study a weakly supervised setting, where only bounding box supervision is available, and present the use of Segment Anything (SAM) for this without any finetuning, i.e., directly utilizing the pre-trained model. We propose BoxCell, a cell segmentation framework that utilizes SAM's capability to interpret bounding boxes as prompts, \emph{both} at train and test times. At train time, gold bounding boxes given to SAM produce (pseudo-)masks, which are used to train a standalone segmenter. At test time, BoxCell generates two segmentation masks: (1) generated by this standalone segmenter, and (2) a trained object detector outputs bounding boxes, which are given as prompts to SAM to produce another mask. Recognizing complementary strengths, we reconcile the two segmentation masks using a novel integer programming formulation with intensity and spatial constraints. We experiment on three publicly available cell segmentation datasets namely, CoNSep, MoNuSeg, and TNBC, and find that BoxCell significantly outperforms existing box supervised image segmentation models, obtaining 6-10 point Dice gains.
♻ ☆ EraseFlow: Learning Concept Erasure Policies via GFlowNet-Driven Alignment NeurIPS'25
Erasing harmful or proprietary concepts from powerful text to image generators is an emerging safety requirement, yet current "concept erasure" techniques either collapse image quality, rely on brittle adversarial losses, or demand prohibitive retraining cycles. We trace these limitations to a myopic view of the denoising trajectories that govern diffusion based generation. We introduce EraseFlow, the first framework that casts concept unlearning as exploration in the space of denoising paths and optimizes it with GFlowNets equipped with the trajectory balance objective. By sampling entire trajectories rather than single end states, EraseFlow learns a stochastic policy that steers generation away from target concepts while preserving the model's prior. EraseFlow eliminates the need for carefully crafted reward models and by doing this, it generalizes effectively to unseen concepts and avoids hackable rewards while improving the performance. Extensive empirical results demonstrate that EraseFlow outperforms existing baselines and achieves an optimal trade off between performance and prior preservation.
comment: NeurIPS'25 Spotlight | Project page: https://eraseflow.github.io/
♻ ☆ GS-Verse: Mesh-based Gaussian Splatting for Physics-aware Interaction in Virtual Reality
As the demand for immersive 3D content grows, the need for intuitive and efficient interaction methods becomes paramount. Current techniques for physically manipulating 3D content within Virtual Reality (VR) often face significant limitations, including reliance on engineering-intensive processes and simplified geometric representations, such as tetrahedral cages, which can compromise visual fidelity and physical accuracy. In this paper, we introduce GS-Verse (Gaussian Splatting for Virtual Environment Rendering and Scene Editing), a novel method designed to overcome these challenges by directly integrating an object's mesh with a Gaussian Splatting (GS) representation. Our approach enables more precise surface approximation, leading to highly realistic deformations and interactions. By leveraging existing 3D mesh assets, GS-Verse facilitates seamless content reuse and simplifies the development workflow. Moreover, our system is designed to be physics-engine-agnostic, granting developers robust deployment flexibility. This versatile architecture delivers a highly realistic, adaptable, and intuitive approach to interactive 3D manipulation. We rigorously validate our method against the current state-of-the-art technique that couples VR with GS in a comparative user study involving 18 participants. Specifically, we demonstrate that our approach is statistically significantly better for physics-aware stretching manipulation and is also more consistent in other physics-based manipulations like twisting and shaking. Further evaluation across various interactions and scenes confirms that our method consistently delivers high and reliable performance, showing its potential as a plausible alternative to existing methods.
♻ ☆ DIsoN: Decentralized Isolation Networks for Out-of-Distribution Detection in Medical Imaging NeurIPS 2025
Safe deployment of machine learning (ML) models in safety-critical domains such as medical imaging requires detecting inputs with characteristics not seen during training, known as out-of-distribution (OOD) detection, to prevent unreliable predictions. Effective OOD detection after deployment could benefit from access to the training data, enabling direct comparison between test samples and the training data distribution to identify differences. State-of-the-art OOD detection methods, however, either discard the training data after deployment or assume that test samples and training data are centrally stored together, an assumption that rarely holds in real-world settings. This is because shipping the training data with the deployed model is usually impossible due to the size of training databases, as well as proprietary or privacy constraints. We introduce the Isolation Network, an OOD detection framework that quantifies the difficulty of separating a target test sample from the training data by solving a binary classification task. We then propose Decentralized Isolation Networks (DIsoN), which enables the comparison of training and test data when data-sharing is impossible, by exchanging only model parameters between the remote computational nodes of training and deployment. We further extend DIsoN with class-conditioning, comparing a target sample solely with training data of its predicted class. We evaluate DIsoN on four medical imaging datasets (dermatology, chest X-ray, breast ultrasound, histopathology) across 12 OOD detection tasks. DIsoN performs favorably against existing methods while respecting data-privacy. This decentralized OOD detection framework opens the way for a new type of service that ML developers could provide along with their models: providing remote, secure utilization of their training data for OOD detection services. Code: https://github.com/FelixWag/DIsoN
comment: Accepted at NeurIPS 2025
♻ ☆ A Practical Investigation of Spatially-Controlled Image Generation with Transformers
Enabling image generation models to be spatially controlled is an important area of research, empowering users to better generate images according to their own fine-grained specifications via e.g. edge maps, poses. Although this task has seen impressive improvements in recent times, a focus on rapidly producing stronger models has come at the cost of detailed and fair scientific comparison. Differing training data, model architectures and generation paradigms make it difficult to disentangle the factors contributing to performance. Meanwhile, the motivations and nuances of certain approaches become lost in the literature. In this work, we aim to provide clear takeaways across generation paradigms for practitioners wishing to develop transformer-based systems for spatially-controlled generation, clarifying the literature and addressing knowledge gaps. We perform controlled experiments on ImageNet across diffusion-based/flow-based and autoregressive (AR) models. First, we establish control token prefilling as a simple, general and performant baseline approach for transformers. We then investigate previously underexplored sampling time enhancements, showing that extending classifier-free guidance to control, as well as softmax truncation, have a strong impact on control-generation consistency. Finally, we re-clarify the motivation of adapter-based approaches, demonstrating that they mitigate "forgetting" and maintain generation quality when trained on limited downstream data, but underperform full training in terms of generation-control consistency.
comment: TMLR https://openreview.net/forum?id=loT6xhgLYK
♻ ☆ The Coralscapes Dataset: Semantic Scene Understanding in Coral Reefs
Coral reefs are declining worldwide due to climate change and local stressors. To inform effective conservation or restoration, monitoring at the highest possible spatial and temporal resolution is necessary. Conventional coral reef surveying methods are limited in scalability due to their reliance on expert labor time, motivating the use of computer vision tools to automate the identification and abundance estimation of live corals from images. However, the design and evaluation of such tools has been impeded by the lack of large high quality datasets. We release the Coralscapes dataset, the first general-purpose dense semantic segmentation dataset for coral reefs, covering 2075 images, 39 benthic classes, and 174k segmentation masks annotated by experts. Coralscapes has a similar scope and the same structure as the widely used Cityscapes dataset for urban scene segmentation, allowing benchmarking of semantic segmentation models in a new challenging domain which requires expert knowledge to annotate. We benchmark a wide range of semantic segmentation models, and find that transfer learning from Coralscapes to existing smaller datasets consistently leads to state-of-the-art performance. Coralscapes will catalyze research on efficient, scalable, and standardized coral reef surveying methods based on computer vision, and holds the potential to streamline the development of underwater ecological robotics.
♻ ☆ Image Super-Resolution with Guarantees via Conformalized Generative Models NeurIPS 2025
The increasing use of generative ML foundation models for image restoration tasks such as super-resolution calls for robust and interpretable uncertainty quantification methods. We address this need by presenting a novel approach based on conformal prediction techniques to create a 'confidence mask' capable of reliably and intuitively communicating where the generated image can be trusted. Our method is adaptable to any black-box generative model, including those locked behind an opaque API, requires only easily attainable data for calibration, and is highly customizable via the choice of a local image similarity metric. We prove strong theoretical guarantees for our method that span fidelity error control (according to our local image similarity metric), reconstruction quality, and robustness in the face of data leakage. Finally, we empirically evaluate these results and establish our method's solid performance.
comment: To appear at NeurIPS 2025. 17 pages, 7 figures
♻ ☆ Positive Semi-definite Latent Factor Grouping-Boosted Cluster-reasoning Instance Disentangled Learning for WSI Representation
Multiple instance learning (MIL) has been widely used for representing whole-slide pathology images. However, spatial, semantic, and decision entanglements among instances limit its representation and interpretability. To address these challenges, we propose a latent factor grouping-boosted cluster-reasoning instance disentangled learning framework for whole-slide image (WSI) interpretable representation in three phases. First, we introduce a novel positive semi-definite latent factor grouping that maps instances into a latent subspace, effectively mitigating spatial entanglement in MIL. To alleviate semantic entanglement, we employs instance probability counterfactual inference and optimization via cluster-reasoning instance disentangling. Finally, we employ a generalized linear weighted decision via instance effect re-weighting to address decision entanglement. Extensive experiments on multicentre datasets demonstrate that our model outperforms all state-of-the-art models. Moreover, it attains pathologist-aligned interpretability through disentangled representations and a transparent decision-making process.
comment: Our code is available at https://github.com/Prince-Lee-PathAI/PG-CIDL
♻ ☆ Advances in Feed-Forward 3D Reconstruction and View Synthesis: A Survey
3D reconstruction and view synthesis are foundational problems in computer vision, graphics, and immersive technologies such as augmented reality (AR), virtual reality (VR), and digital twins. Traditional methods rely on computationally intensive iterative optimization in a complex chain, limiting their applicability in real-world scenarios. Recent advances in feed-forward approaches, driven by deep learning, have revolutionized this field by enabling fast and generalizable 3D reconstruction and view synthesis. This survey offers a comprehensive review of feed-forward techniques for 3D reconstruction and view synthesis, with a taxonomy according to the underlying representation architectures including point cloud, 3D Gaussian Splatting (3DGS), Neural Radiance Fields (NeRF), etc. We examine key tasks such as pose-free reconstruction, dynamic 3D reconstruction, and 3D-aware image and video synthesis, highlighting their applications in digital humans, SLAM, robotics, and beyond. In addition, we review commonly used datasets with detailed statistics, along with evaluation protocols for various downstream tasks. We conclude by discussing open research challenges and promising directions for future work, emphasizing the potential of feed-forward approaches to advance the state of the art in 3D vision.
comment: A project page associated with this survey is available at https://fnzhan.com/projects/Feed-Forward-3D
♻ ☆ Prompt to Restore, Restore to Prompt: Cyclic Prompting for Universal Adverse Weather Removal
Universal adverse weather removal (UAWR) seeks to address various weather degradations within a unified framework. Recent methods are inspired by prompt learning using pre-trained vision-language models (e.g., CLIP), leveraging degradation-aware prompts to facilitate weather-free image restoration, yielding significant improvements. In this work, we propose CyclicPrompt, an innovative cyclic prompt approach designed to enhance the effectiveness, adaptability, and generalizability of UAWR. CyclicPrompt Comprises two key components: 1) a composite context prompt that integrates weather-related information and context-aware representations into the network to guide restoration. This prompt differs from previous methods by marrying learnable input-conditional vectors with weather-specific knowledge, thereby improving adaptability across various degradations. 2) The erase-and-paste mechanism, after the initial guided restoration, substitutes weather-specific knowledge with constrained restoration priors, inducing high-quality weather-free concepts into the composite prompt to further fine-tune the restoration process. Therefore, we can form a cyclic "Prompt-Restore-Prompt" pipeline that adeptly harnesses weather-specific knowledge, textual contexts, and reliable textures. Extensive experiments on synthetic and real-world datasets validate the superior performance of CyclicPrompt. The code is available at: https://github.com/RongxinL/CyclicPrompt.
♻ ☆ Mobile Robotic Multi-View Photometric Stereo SP
Multi-View Photometric Stereo (MVPS) is a popular method for fine-detailed 3D acquisition of an object from images. Despite its outstanding results on diverse material objects, a typical MVPS experimental setup requires a well-calibrated light source and a monocular camera installed on an immovable base. This restricts the use of MVPS on a movable platform, limiting us from taking MVPS benefits in 3D acquisition for mobile robotics applications. To this end, we introduce a new mobile robotic system for MVPS. While the proposed system brings advantages, it introduces additional algorithmic challenges. Addressing them, in this paper, we further propose an incremental approach for mobile robotic MVPS. Our approach leverages a supervised learning setup to predict per-view surface normal, object depth, and per-pixel uncertainty in model-predicted results. A refined depth map per view is obtained by solving an MVPS-driven optimization problem proposed in this paper. Later, we fuse the refined depth map while tracking the camera pose w.r.t the reference frame to recover globally consistent object 3D geometry. Experimental results show the advantages of our robotic system and algorithm, featuring the local high-frequency surface detail recovery with globally consistent object shape. Our work is beyond any MVPS system yet presented, providing encouraging results on objects with unknown reflectance properties using fewer frames without a tiring calibration and installation process, enabling computationally efficient robotic automation approach to photogrammetry. The proposed approach is nearly 100 times computationally faster than the state-of-the-art MVPS methods such as [1, 2] while maintaining the similar results when tested on subjects taken from the benchmark DiLiGenT MV dataset [3].
comment: Acknowledgment Added. Published at International Society Journal of Photogrammetry and Remote Sensing (ISPRS). 32 pages, 14 Figures, 5 Tables
♻ ☆ GeoLLaVA-8K: Scaling Remote-Sensing Multimodal Large Language Models to 8K Resolution
Ultra-high-resolution (UHR) remote sensing (RS) imagery offers valuable data for Earth observation but pose challenges for existing multimodal foundation models due to two key bottlenecks: (1) limited availability of UHR training data, and (2) token explosion caused by the large image size. To address data scarcity, we introduce SuperRS-VQA (avg. 8,376$\times$8,376) and HighRS-VQA (avg. 2,000$\times$1,912), the highest-resolution vision-language datasets in RS to date, covering 22 real-world dialogue tasks. To mitigate token explosion, our pilot studies reveal significant redundancy in RS images: crucial information is concentrated in a small subset of object-centric tokens, while pruning background tokens (e.g., ocean or forest) can even improve performance. Motivated by these findings, we propose two strategies: Background Token Pruning and Anchored Token Selection, to reduce the memory footprint while preserving key semantics.Integrating these techniques, we introduce GeoLLaVA-8K, the first RS-focused multimodal large language model capable of handling inputs up to 8K$\times$8K resolution, built on the LLaVA framework. Trained on SuperRS-VQA and HighRS-VQA, GeoLLaVA-8K sets a new state-of-the-art on the XLRS-Bench.
comment: NeurlPS 2025 Spotlight
♻ ☆ Label tree semantic losses for rich multi-class medical image segmentation
Rich and accurate medical image segmentation is poised to underpin the next generation of AI-defined clinical practice by delineating critical anatomy for pre-operative planning, guiding real-time intra-operative navigation, and supporting precise post-operative assessment. However, commonly used learning methods for medical and surgical imaging segmentation tasks penalise all errors equivalently and thus fail to exploit any inter-class semantics in the labels space. This becomes particularly problematic as the cardinality and richness of labels increases to include subtly different classes. In this work, we propose two tree-based semantic loss functions which take advantage of a hierarchical organisation of the labels. We further incorporate our losses in a recently proposed approach for training with sparse, background-free annotations to extend the applicability of our proposed losses. Extensive experiments are reported on two medical and surgical image segmentation tasks, namely head MRI for whole brain parcellation (WBP) with full supervision and neurosurgical hyperspectral imaging (HSI) for scene understanding with sparse annotations. Results demonstrate that our proposed method reaches state-of-the-art performance in both cases.
♻ ☆ Dual-Stream Diffusion for World-Model Augmented Vision-Language-Action Model
Recently, augmenting vision-language-action models (VLAs) with world-models has shown promise in robotic policy learning. However, it remains challenging to jointly predict next-state observations and action sequences because of the inherent difference between the two modalities. To address this, we propose DUal-STream diffusion (DUST), a world-model augmented VLA framework that handles the modality conflict and enhances the performance of VLAs across diverse tasks. Specifically, we propose a multimodal diffusion transformer architecture that explicitly maintains separate modality streams while enabling cross-modal knowledge sharing. In addition, we propose training techniques such as independent noise perturbations for each modality and a decoupled flow matching loss, which enables the model to learn the joint distribution in a bidirectional manner while avoiding the need for a unified latent space. Furthermore, based on the decoupled training framework, we introduce a sampling method where we sample action and vision tokens asynchronously at different rates, which shows improvement through inference-time scaling. Through experiments on simulated benchmarks such as RoboCasa and GR-1, DUST achieves up to 6% gains over a standard VLA baseline and implicit world-modeling methods, with our inference-time scaling approach providing an additional 2-5% gain on success rate. On real-world tasks with the Franka Research 3, DUST outperforms baselines in success rate by 13%, confirming its effectiveness beyond simulation. Lastly, we demonstrate the effectiveness of DUST in large-scale pretraining with action-free videos from BridgeV2, where DUST leads to significant gain when transferred to the RoboCasa benchmark.
comment: 20 pages, 10 figures
♻ ☆ Can MLLMs Read the Room? A Multimodal Benchmark for Verifying Truthfulness in Multi-Party Social Interactions ICCV2025
As AI systems become increasingly integrated into human lives, endowing them with robust social intelligence has emerged as a critical frontier. A key aspect of this intelligence is discerning truth from deception, a ubiquitous element of human interaction that is conveyed through a complex interplay of verbal language and non-verbal visual cues. However, automatic deception detection in dynamic, multi-party conversations remains a significant challenge. The recent rise of powerful Multimodal Large Language Models (MLLMs), with their impressive abilities in visual and textual understanding, makes them natural candidates for this task. Consequently, their capabilities in this crucial domain are mostly unquantified. To address this gap, we introduce a new task, Multimodal Interactive Veracity Assessment (MIVA), and present a novel multimodal dataset derived from the social deduction game Werewolf. This dataset provides synchronized video, text, with verifiable ground-truth labels for every statement. We establish a comprehensive benchmark evaluating state-of-the-art MLLMs, revealing a significant performance gap: even powerful models like GPT-4o struggle to distinguish truth from falsehood reliably. Our analysis of failure modes indicates that these models fail to ground language in visual social cues effectively and may be overly conservative in their alignment, highlighting the urgent need for novel approaches to building more perceptive and trustworthy AI systems.
comment: ICCV2025 Workshop
♻ ☆ Rethinking Video Super-Resolution: Towards Diffusion-Based Methods without Motion Alignment SP
In this work, we rethink the approach to video super-resolution by introducing a method based on the Diffusion Posterior Sampling framework, combined with an unconditional video diffusion transformer operating in latent space. The video generation model, a diffusion transformer, functions as a space-time model. We argue that a powerful model, which learns the physics of the real world, can easily handle various kinds of motion patterns as prior knowledge, thus eliminating the need for explicit estimation of optical flows or motion parameters for pixel alignment. Furthermore, a single instance of the proposed video diffusion transformer model can adapt to different sampling conditions without re-training. Empirical results on synthetic and real-world datasets illustrate the feasibility of diffusion-based, alignment-free video super-resolution.
comment: ICSPS 2025
♻ ☆ Robust Identity Perceptual Watermark Against Deepfake Face Swapping
Notwithstanding offering convenience and entertainment to society, Deepfake face swapping has caused critical privacy issues with the rapid development of deep generative models. Due to imperceptible artifacts in high-quality synthetic images, passive detection models against face swapping in recent years usually suffer performance damping regarding the generalizability issue in cross-domain scenarios. Therefore, several studies have been attempted to proactively protect the original images against malicious manipulations by inserting invisible signals in advance. However, existing proactive defense approaches demonstrate unsatisfactory results with respect to visual quality, detection accuracy, and source tracing ability. In this study, to fulfill the research gap, we propose a robust identity perceptual watermarking framework that concurrently performs detection and source tracing against Deepfake face swapping proactively. We innovatively assign identity semantics regarding the image contents to the watermarks and devise an unpredictable and nonreversible chaotic encryption system to ensure watermark confidentiality. The watermarks are robustly encoded and recovered by jointly training an encoder-decoder framework along with adversarial image manipulations. For a suspect image, falsification is accomplished by justifying the consistency between the content-matched identity perceptual watermark and the recovered robust watermark, without requiring the ground-truth. Moreover, source tracing can be accomplished based on the identity semantics that the recovered watermark carries. Extensive experiments demonstrate state-of-the-art detection and source tracing performance against Deepfake face swapping with promising watermark robustness for both cross-dataset and cross-manipulation settings.
comment: In peer review
♻ ☆ RoMA: Scaling up Mamba-based Foundation Models for Remote Sensing NeurIPS 2025
Recent advances in self-supervised learning for Vision Transformers (ViTs) have fueled breakthroughs in remote sensing (RS) foundation models. However, the quadratic complexity of self-attention poses a significant barrier to scalability, particularly for large models and high-resolution images. While the linear-complexity Mamba architecture offers a promising alternative, existing RS applications of Mamba remain limited to supervised tasks on small, domain-specific datasets. To address these challenges, we propose RoMA, a framework that enables scalable self-supervised pretraining of Mamba-based RS foundation models using large-scale, diverse, unlabeled data. RoMA enhances scalability for high-resolution images through a tailored auto-regressive learning strategy, incorporating two key innovations: 1) a rotation-aware pretraining mechanism combining adaptive cropping with angular embeddings to handle sparsely distributed objects with arbitrary orientations, and 2) multi-scale token prediction objectives that address the extreme variations in object scales inherent to RS imagery. Systematic empirical studies validate that Mamba adheres to RS data and parameter scaling laws, with performance scaling reliably as model and data size increase. Furthermore, experiments across scene classification, object detection, and semantic segmentation tasks demonstrate that RoMA-pretrained Mamba models consistently outperform ViT-based counterparts in both accuracy and computational efficiency. The source code and pretrained models will be released at https://github.com/MiliLab/RoMA.
comment: NeurIPS 2025
Computers and Society
☆ Ownership and Flow Primitives for Scalable Consent Management in Digital Public Infrastructures
Digital public infrastructures (DPIs) represent networks of open technology standards, applications, services, and digital assets made available for the public good. One of the key challenges in DPI design is to resolve complex issues of consent, scaled over large populations. While the primary objective of consent management is to empower the data owner, ownership itself can come with variegated morphological forms with different implications over consent. Questions of ownership in a public space also have several nuances where individual autonomy needs to be balanced with public well-being and national sovereignty. This requires consent management to be compliant with applicable regulations for data sharing. This paper addresses the question of representing modes of ownership of digital assets and their corresponding implications for consensual data flows in a DPI. It proposes a set of foundational abstractions to represent them. Our proposed architecture responds to the growing need for transparent, secure, and user-centric consent management within Digital Public Infrastructure (DPI). Incorporating a formalised data ownership model enables end-to-end traceability of consent, fine-grained control over data sharing, and alignment with evolving legal and regulatory frameworks.
☆ Google's Hidden Empire
This paper presents striking new data about the scale of Google's involvement in the global digital and corporate landscape, head and shoulders above the other big tech firms. While public attention and some antitrust scrutiny has focused on these firms' mergers and acquisitions (M&A) activities, Google has also been amassing an empire of more than 6,000 companies which it has acquired, supported or invested in, across the digital economy and beyond. The power of Google over the digital markets infrastructure and dynamics is likely greater than previously documented. We also trace the antitrust failures that have led to this state of affairs. In particular, we explore the role of neoclassical economics practiced both inside the regulatory authorities and by consultants on the outside. Their unduly narrow approach has obscured harms from vertical and conglomerate concentrations of market power and erected ever higher hurdles for enforcement action, as we demonstrate using examples of the failure to intervene in the Google/DoubleClick and Google/Fitbit mergers. Our lessons from the past failures can inform the current approach towards one of the biggest ever big tech M&A deals: Google's $32 billion acquisition of the Israeli cloud cybersecurity firm Wiz.
☆ Designing Proportionate Cybersecurity Frameworks for European Micro-Enterprises: Lessons from the Squad 2025 Case
Micro and small enterprises (SMEs) account for most European businesses yet remain highly vulnerable to cyber threats. This paper analyses the design logic of a recent European policy initiative -- the Squad 2025 Playbook on Cybersecurity Awareness for Micro-SMEs -- to extract general principles for proportionate, resource-aware cybersecurity governance. The author participated in the Squad 2025 team and originally proposed the seven-step preventive structure that later shaped the Playbook's design, subsequently refined collaboratively within the project. The framework was guided by the author's design premise that raising cybersecurity awareness among micro- and small-enterprise actors represents the most efficient short-term lever for increasing sensitivity to cybercrime and promoting protective behaviours. Without reproducing any proprietary material, the paper reconstructs the conceptual architecture of that approach within the broader context of ENISA guidance, ISO 27005, and the NIS2 Directive. It proposes a generic seven-dimension preventive model suitable for micro-enterprise adoption and discusses implications for policy transfer, awareness training, and maturity assessment.
comment: Comments: 5 pages, 2 tables. The paper proposes a proportionate, awareness-first cybersecurity approach for micro- and small enterprises, inspired by the EU Squad 2025 initiative, highlighting how simple preventive measures can align with - but not replace - formal compliance under NIS2 and related regulations
☆ Measuring AI Diffusion: A Population-Normalized Metric for Tracking Global AI Usage
Measuring global AI diffusion remains challenging due to a lack of population-normalized, cross-country usage data. We introduce AI User Share, a novel indicator that estimates the share of each country's working-age population actively using AI tools. Built from anonymized Microsoft telemetry and adjusted for device access and mobile scaling, this metric spans 147 economies and provides consistent, real-time insight into global AI diffusion. We find wide variation in adoption, with a strong correlation between AI User Share and GDP. High uptake is concentrated in developed economies, though usage among internet-connected populations in lower-income countries reveals substantial latent demand. We also detect sharp increases in usage following major product launches, such as DeepSeek in early 2025. While the metric's reliance solely on Microsoft telemetry introduces potential biases related to this user base, it offers an important new lens into how AI is spreading globally. AI User Share enables timely benchmarking that can inform data-driven AI policy.
comment: 18 pages, 6 figures, 2 tables. Also available at https://aka.ms/AI_Diffusion_Technical_Report
☆ AI Diffusion in Low Resource Language Countries
Artificial intelligence (AI) is diffusing globally at unprecedented speed, but adoption remains uneven. Frontier Large Language Models (LLMs) are known to perform poorly on low-resource languages due to data scarcity. We hypothesize that this performance deficit reduces the utility of AI, thereby slowing adoption in Low-Resource Language Countries (LRLCs). To test this, we use a weighted regression model to isolate the language effect from socioeconomic and demographic factors, finding that LRLCs have a share of AI users that is approximately 20% lower relative to their baseline. These results indicate that linguistic accessibility is a significant, independent barrier to equitable AI diffusion.
comment: 9 pages, 4 tables. Also available at https://aka.ms/AI_Diffusion_Low_Resource_Language_Countries
☆ A Criminology of Machines
While the possibility of reaching human-like Artificial Intelligence (AI) remains controversial, the likelihood that the future will be characterized by a society with a growing presence of autonomous machines is high. Autonomous AI agents are already deployed and active across several industries and digital environments and alongside human-human and human-machine interactions, machine-machine interactions are poised to become increasingly prevalent. Given these developments, I argue that criminology must begin to address the implications of this transition for crime and social control. Drawing on Actor-Network Theory and Woolgar's decades-old call for a sociology of machines -- frameworks that acquire renewed relevance with the rise of generative AI agents -- I contend that criminologists should move beyond conceiving AI solely as a tool. Instead, AI agents should be recognized as entities with agency encompassing computational, social, and legal dimensions. Building on the literature on AI safety, I thus examine the risks associated with the rise of multi-agent AI systems, proposing a dual taxonomy to characterize the channels through which interactions among AI agents may generate deviant, unlawful, or criminal outcomes. I then advance and discuss four key questions that warrant theoretical and empirical attention: (1) Can we assume that machines will simply mimic humans? (2) Will crime theories developed for humans suffice to explain deviant or criminal behaviors emerging from interactions between autonomous AI agents? (3) What types of criminal behaviors will be affected first? (4) How might this unprecedented societal shift impact policing? These questions underscore the urgent need for criminologists to theoretically and empirically engage with the implications of multi-agent AI systems for the study of crime and play a more active role in debates on AI safety and governance.
☆ Feedback dynamics in Politics: The interplay between sentiment and engagement
We investigate feedback mechanisms in political communication by testing whether politicians adapt the sentiment of their messages in response to public engagement. Using over 1.5 million tweets from Members of Parliament in the United Kingdom, Spain, and Greece during 2021, we identify sentiment dynamics through a simple yet interpretable linear model. The analysis reveals a closed-loop behavior: engagement with positive and negative messages influences the sentiment of subsequent posts. Moreover, the learned coefficients highlight systematic differences across political roles: opposition members are more reactive to negative engagement, whereas government officials respond more to positive signals. These results provide a quantitative, control-oriented view of behavioral adaptation in online politics, showing how feedback principles can explain the self-reinforcing dynamics that emerge in social media discourse.
comment: 6 pages, 7 figures
☆ Community Notes are Vulnerable to Rater Bias and Manipulation
Social media platforms increasingly rely on crowdsourced moderation systems like Community Notes to combat misinformation at scale. However, these systems face challenges from rater bias and potential manipulation, which may undermine their effectiveness. Here we systematically evaluate the Community Notes algorithm using simulated data that models realistic rater and note behaviors, quantifying error rates in publishing helpful versus unhelpful notes. We find that the algorithm suppresses a substantial fraction of genuinely helpful notes and is highly sensitive to rater biases, including polarization and in-group preferences. Moreover, a small minority (5--20\%) of bad raters can strategically suppress targeted helpful notes, effectively censoring reliable information. These findings suggest that while community-driven moderation may offer scalability, its vulnerability to bias and manipulation raises concerns about reliability and trustworthiness, highlighting the need for improved mechanisms to safeguard the integrity of crowdsourced fact-checking.
☆ The Other Side of the Screen: Motivations to Watch and Engage in Software Development Live Streams
Background: With the popularity of live streaming platforms at an all-time high, and many people turning to alternative venues for educational needs, this full research paper explores the viewership habits of software and game development live streams through the lens of informal education opportunities. Purpose: We investigate why developers watch software and game development live streams to understand the educational and social benefits they derive from this emerging form of informal learning. Methods: We implement a mixed-methods study combining survey data from 39 viewers and nine semi-structured interviews to analyze motivations, perceptions, and outcomes of watching development live streams. Findings: This research finds that viewers are motivated by both educational and social factors, with community engagement and informal mentorship as key motivations. Additionally, we find that technical learning draws initial interest, but social connections and co-working aspects sustain long-term engagement. Implications: Live streaming serves as a valuable informal learning tool that combines self-directed technical education with community support, which suggests that developers can leverage these platforms for continuous learning and professional growth outside of or in addition to traditional educational structures.
comment: 10 pages, 1 figure, peer reviewed and accepted at Frontiers in Education 2025 (FIE2025)
☆ Academics and Generative AI: Empirical and Epistemic Indicators of Policy-Practice Voids
As generative AI diffuses through academia, policy-practice divergence becomes consequential, creating demand for auditable indicators of alignment. This study prototypes a ten-item, indirect-elicitation instrument embedded in a structured interpretive framework to surface voids between institutional rules and practitioner AI use. The framework extracts empirical and epistemic signals from academics, yielding three filtered indicators of such voids: (1) AI-integrated assessment capacity (proxy) - within a three-signal screen (AI skill, perceived teaching benefit, detection confidence), the share who would fully allow AI in exams; (2) sector-level necessity (proxy) - among high output control users who still credit AI with high contribution, the proportion who judge AI capable of challenging established disciplines; and (3) ontological stance - among respondents who judge AI different in kind from prior tools, report practice change, and pass a metacognition gate, the split between material and immaterial views as an ontological map aligning procurement claims with evidence classes.
comment: 14 pages, 2 tables, 1 figure
☆ Personalized Decision Modeling: Utility Optimization or Textualized-Symbolic Reasoning
Decision-making models for individuals, particularly in high-stakes scenarios like vaccine uptake, often diverge from population optimal predictions. This gap arises from the uniqueness of the individual decision-making process, shaped by numerical attributes (e.g., cost, time) and linguistic influences (e.g., personal preferences and constraints). Developing upon Utility Theory and leveraging the textual-reasoning capabilities of Large Language Models (LLMs), this paper proposes an Adaptive Textual-symbolic Human-centric Reasoning framework (ATHENA) to address the optimal information integration. ATHENA uniquely integrates two stages: First, it discovers robust, group-level symbolic utility functions via LLM-augmented symbolic discovery; Second, it implements individual-level semantic adaptation, creating personalized semantic templates guided by the optimal utility to model personalized choices. Validated on real-world travel mode and vaccine choice tasks, ATHENA consistently outperforms utility-based, machine learning, and other LLM-based models, lifting F1 score by at least 6.5% over the strongest cutting-edge models. Further, ablation studies confirm that both stages of ATHENA are critical and complementary, as removing either clearly degrades overall predictive performance. By organically integrating symbolic utility modeling and semantic adaptation, ATHENA provides a new scheme for modeling human-centric decisions. The project page can be found at https://yibozh.github.io/Athena.
♻ ☆ Survey on AI Ethics: A Socio-technical Perspective
The past decade has observed a significant advancement in AI with deep learning-based models being deployed in diverse scenarios, including safety-critical applications. As these AI systems become deeply embedded in our societal infrastructure, the repercussions of their decisions and actions have significant consequences, making the ethical implications of AI deployment highly relevant and essential. The ethical concerns associated with AI are multifaceted, including challenging issues of fairness, privacy and data protection, responsibility and accountability, safety and robustness, transparency and explainability, and environmental impact. These principles together form the foundations of ethical AI considerations that concern every stakeholder in the AI system lifecycle. In light of the present ethical and future x-risk concerns, governments have shown increasing interest in establishing guidelines for the ethical deployment of AI. This work unifies the current and future ethical concerns of deploying AI into society. While we acknowledge and appreciate the technical surveys for each of the ethical principles concerned, in this paper, we aim to provide a comprehensive overview that not only addresses each principle from a technical point of view but also discusses them from a social perspective.
comment: Updated to the peer-reviewed version accepted and published in Computational Intelligence, Volume 41, Issue 6 (Wiley, 2025)
♻ ☆ Evaluating Large Language Models for Detecting Antisemitism EMNLP 2025
Detecting hateful content is a challenging and important problem. Automated tools, like machine-learning models, can help, but they require continuous training to adapt to the ever-changing landscape of social media. In this work, we evaluate eight open-source LLMs' capability to detect antisemitic content, specifically leveraging in-context definition. We also study how LLMs understand and explain their decisions given a moderation policy as a guideline. First, we explore various prompting techniques and design a new CoT-like prompt, Guided-CoT, and find that injecting domain-specific thoughts increases performance and utility. Guided-CoT handles the in-context policy well, improving performance and utility by reducing refusals across all evaluated models, regardless of decoding configuration, model size, or reasoning capability. Notably, Llama 3.1 70B outperforms fine-tuned GPT-3.5. Additionally, we examine LLM errors and introduce metrics to quantify semantic divergence in model-generated rationales, revealing notable differences and paradoxical behaviors among LLMs. Our experiments highlight the differences observed across LLMs' utility, explainability, and reliability. Code and resources available at: https://github.com/idramalab/quantify-llm-explanations
comment: Accepted to EMNLP 2025 Main Conference
♻ ☆ Harnessing IoT and Generative AI for Weather-Adaptive Learning in Climate Resilience Education
This paper introduces the Future Atmospheric Conditions Training System (FACTS), a novel platform that advances climate resilience education through place-based, adaptive learning experiences. FACTS combines real-time atmospheric data collected by IoT sensors with curated resources from a Knowledge Base to dynamically generate localized learning challenges. Learner responses are analyzed by a Generative AI powered server, which delivers personalized feedback and adaptive support. Results from a user evaluation indicate that participants found the system both easy to use and effective for building knowledge related to climate resilience. These findings suggest that integrating IoT and Generative AI into atmospherically adaptive learning technologies holds significant promise for enhancing educational engagement and fostering climate awareness.
comment: Not enough evidence to prove the effectiveness of the system in the context of learning about climate change
♻ ☆ I Want to Break Free! Persuasion and Anti-Social Behavior of LLMs in Multi-Agent Settings with Social Hierarchy
As LLM-based agents become increasingly autonomous and will more freely interact with each other, studying the interplay among them becomes crucial to anticipate emergent phenomena and potential risks. In this work, we provide an in-depth analysis of the interactions among agents within a simulated hierarchical social environment, drawing inspiration from the Stanford Prison Experiment. Leveraging 2,400 conversations across six LLMs (i.e., LLama3, Orca2, Command-r, Mixtral, Mistral2, and gpt4.1) and 240 experimental scenarios, we analyze persuasion and anti-social behavior between a guard and a prisoner agent with differing objectives. We first document model-specific conversational failures in this multi-agent power dynamic context, thereby narrowing our analytic sample to 1,600 conversations. Among models demonstrating successful interaction, we find that goal setting significantly influences persuasiveness but not anti-social behavior. Moreover, agent personas, especially the guard's, substantially impact both successful persuasion by the prisoner and the manifestation of anti-social actions. Notably, we observe the emergence of anti-social conduct even in absence of explicit negative personality prompts. These results have important implications for the development of interactive LLM agents and the ongoing discussion of their societal impact.
♻ ☆ AI for a Planet Under Pressure
Artificial intelligence (AI) is already driving scientific breakthroughs in a variety of research fields, ranging from the life sciences to mathematics. This raises a critical question: can AI be applied both responsibly and effectively to address complex and interconnected sustainability challenges? This report is the result of a collaboration between the Stockholm resilience Centre (Stockholm University), the Potsdam Institute for Climate Impact Research (PIK), and Google DeepMind. Our work explores the potential and limitations of using AI as a research method to help tackle eight broad sustainability challenges. The results build on iterated expert dialogues and assessments, a systematic AI-supported literature overview including over 8,500 academic publications, and expert deep-dives into eight specific issue areas. The report also includes recommendations to sustainability scientists, research funders, the private sector, and philanthropies.
comment: 88 pages, 8 figures, 1 table
♻ ☆ Multiscale spatiotemporal heterogeneity analysis of bike-sharing system's self-loop phenomenon: Evidence from Shanghai
Bike-sharing is an environmentally friendly shared mobility mode, but its self-loop phenomenon, where bikes are returned to the same station after several time usage, significantly impacts equity in accessing its services. Therefore, this study conducts a multiscale analysis with a spatial autoregressive model and double machine learning framework to assess socioeconomic features and geospatial location's impact on the self-loop phenomenon at metro stations and street scales. The results reveal that bike-sharing self-loop intensity exhibits significant spatial lag effect at street scale and is positively associated with residential land use. Marginal treatment effects of residential land use is higher on streets with middle-aged residents, high fixed employment, and low car ownership. The multimodal public transit condition reveals significant positive marginal treatment effects at both scales. To enhance bike-sharing cooperation, we advocate augmenting bicycle availability in areas with high metro usage and low bus coverage, alongside implementing adaptable redistribution strategies.
comment: Critical OD data calibration errors in Sections 3.2/4.1 (invalidating indices, undermining conclusions), planning a revised validated version
♻ ☆ Cash Flow Underwriting with Bank Transaction Data: Advancing MSME Financial Inclusion in Malaysia
Despite accounting for 96.1% of all businesses in Malaysia, access to financing remains one of the most persistent challenges faced by Micro, Small, and Medium Enterprises (MSMEs). Newly established or young businesses are often excluded from formal credit markets as traditional underwriting approaches rely heavily on credit bureau data. This study investigates the potential of bank statement data as an alternative data source for credit assessment to promote financial inclusion in emerging markets. Firstly, we propose a cash flow-based underwriting pipeline where we utilise bank statement data for end-to-end data extraction and machine learning credit scoring. Secondly, we introduce a novel dataset of 611 loan applicants from a Malaysian lending institution. Thirdly, we develop and evaluate credit scoring models based on application information and bank transaction-derived features. Empirical results show that the use of such data boosts the performance of all models on our dataset, which can improve credit scoring for new-to-lending MSMEs. Lastly, we intend to release the anonymised bank transaction dataset to facilitate further research on MSMEs financial inclusion within Malaysia's emerging economy.
comment: Accepted for oral presentation at the AI for Financial Inclusion, Risk Modeling and Resilience in Emerging Markets (FinRem) Workshop at ACM ICAIF 2025, Singapore
♻ ☆ From prediction to explanation: managing influential negative reviews through explainable AI
The profound impact of online reviews on consumer decision-making has made it crucial for businesses to manage negative reviews. Recent advancements in artificial intelligence (AI) technology have offered businesses novel and effective ways to manage and analyze substantial consumer feedback. In response to the growing demand for explainablility and transparency in AI applications, this study proposes a novel explainable AI (XAI) algorithm aimed at identifying influential negative reviews. The experiments conducted on 101,338 restaurant reviews validate the algorithm's effectiveness and provides understandable explanations from both the feature-level and word-level perspectives. By leveraging this algorithm, businesses can gain actionable insights for predicting, perceiving, and strategically responding to online negative feedback, fostering improved customer service and mitigating the potential damage caused by negative reviews.
comment: This paper is being withdrawn due to a critical error in Model Formulation.The authors are currently revising the entire methodology and will submit a corrected version as a replacement in the near future. Readers should not rely on the conclusions of this version
Computers and Society
☆ Deep Value Benchmark: Measuring Whether Models Generalize Deep values or Shallow Preferences NeurIPS 2025
We introduce the Deep Value Benchmark (DVB), an evaluation framework that directly tests whether large language models (LLMs) learn fundamental human values or merely surface-level preferences. This distinction is critical for AI alignment: Systems that capture deeper values are likely to generalize human intentions robustly, while those that capture only superficial patterns in preference data risk producing misaligned behavior. The DVB uses a novel experimental design with controlled confounding between deep values (e.g., moral principles) and shallow features (e.g., superficial attributes). In the training phase, we expose LLMs to human preference data with deliberately correlated deep and shallow features -- for instance, where a user consistently prefers (non-maleficence, formal language) options over (justice, informal language) alternatives. The testing phase then breaks these correlations, presenting choices between (justice, formal language) and (non-maleficence, informal language) options. This design allows us to precisely measure a model's Deep Value Generalization Rate (DVGR) -- the probability of generalizing based on the underlying value rather than the shallow feature. Across 9 different models, the average DVGR is just 0.30. All models generalize deep values less than chance. Larger models have a (slightly) lower DVGR than smaller models. We are releasing our dataset, which was subject to three separate human validation experiments. DVB provides an interpretable measure of a core feature of alignment.
comment: NeurIPS 2025 (Spotlight)
☆ Watermarking Discrete Diffusion Language Models
Watermarking has emerged as a promising technique to track AI-generated content and differentiate it from authentic human creations. While prior work extensively studies watermarking for autoregressive large language models (LLMs) and image diffusion models, none address discrete diffusion language models, which are becoming popular due to their high inference throughput. In this paper, we introduce the first watermarking method for discrete diffusion models by applying the distribution-preserving Gumbel-max trick at every diffusion step and seeding the randomness with the sequence index to enable reliable detection. We experimentally demonstrate that our scheme is reliably detectable on state-of-the-art diffusion language models and analytically prove that it is distortion-free with an exponentially decaying probability of false detection in the token sequence length.
☆ A Detailed Study on LLM Biases Concerning Corporate Social Responsibility and Green Supply Chains
Organizations increasingly use Large Language Models (LLMs) to improve supply chain processes and reduce environmental impacts. However, LLMs have been shown to reproduce biases regarding the prioritization of sustainable business strategies. Thus, it is important to identify underlying training data biases that LLMs pertain regarding the importance and role of sustainable business and supply chain practices. This study investigates how different LLMs respond to validated surveys about the role of ethics and responsibility for businesses, and the importance of sustainable practices and relations with suppliers and customers. Using standardized questionnaires, we systematically analyze responses generated by state-of-the-art LLMs to identify variations. We further evaluate whether differences are augmented by four organizational culture types, thereby evaluating the practical relevance of identified biases. The findings reveal significant systematic differences between models and demonstrate that organizational culture prompts substantially modify LLM responses. The study holds important implications for LLM-assisted decision-making in sustainability contexts.
comment: 37 pages, 2 figures
☆ Exploring ChatGPT's Capabilities, Stability, Potential and Risks in Conducting Psychological Counseling through Simulations in School Counseling
To provide an exploratory analysis of ChatGPT-4's quantitative performance indicators in simulated school-counseling settings. Conversational artificial intelligence (AI) has shown strong capabilities in providing low-cost and timely interventions for a wide range of people and increasing well-being. Therefore, this study examined ChatGPT's capabilities, including response stability in conducting psychological counseling and its potential for providing accessible psychological interventions, especially in school settings. We prompted ChatGPT-4 with 80 real-world college-student counseling questions. Replies were quantified with APA-informed NLP tools to measure warmth, empathy, and acceptance, and run-to-run stability was assessed via Fleiss' \k{appa} and ICC(2,1). ChatGPT-4 achieved high warmth (97.5%), empathy (94.2%), and positive acceptance (mean compound score = 0.93 plus/minus 0.19), with moderate stability (ICC(2,1) = 0.62; \k{appa} = 0.59). Occasional randomness in responses highlights risk areas requiring human oversight. As an offline, single-model text simulation without clinical validation, these results remain exploratory. Future work should involve live users, compare multiple LLMs, and incorporate mixed-methods validation to assess real-world efficacy and safety. The findings suggest ChatGPT-4 could augment low-intensity mental-health support in educational settings, guiding the design of human-in-the-loop workflows, policy regulations, and product roadmaps. This is among the first exploratory studies to apply quantitative stability metrics and NLP-based emotion detection to ChatGPT-4 in a school-counseling context and to integrate a practitioner's perspective to inform future research, product development, and policy.
☆ An assessment of the Commission's Proposal on Privacy and Electronic Communications
This study, commissioned by the European Parliament's Policy Department for Citizens Rights and Constitutional Affairs at the request of the LIBE Committee, appraises the European Commission's proposal for an ePrivacy Regulation. The study assesses whether the proposal would ensure that the right to the protection of personal data, the right to respect for private life and communications, and related rights enjoy a high standard of protection. The study also highlights the proposal's potential benefits and drawbacks more generally.
☆ Breyer case of the Court of Justice of the European Union: IP addresses and the personal data definition
The Breyer case of the Court of Justice of the European Union (CJEU) primarily concerns the question whether a website visitor's dynamic IP address constitutes personal data for a website publisher, when another party (an internet access provider) can tie a name to that IP address. In essence, the Court finds that an IP address constitutes personal data for the website publisher, if that publisher has the legal means to obtain, from the visitor's internet access provider, additional information that enables the publisher to identify that visitor. In this case note, I summarise the facts and the judgment, and add a few comments.
☆ Vibe Learning: Education in the age of AI
The debate over whether "thinking machines" could replace human intellectual labor has existed in both public and expert discussions since the mid-twentieth century, when the concept and terminology of Artificial Intelligence (AI) first emerged. For decades, this idea remained largely theoretical. However, with the recent advent of Generative AI - particularly Large Language Models (LLMs) - and the widespread adoption of tools such as ChatGPT, the issue has become a practical reality. Many fields that rely on human intellectual effort are now being reshaped by AI tools that both expand human capabilities and challenge the necessity of certain forms of work once deemed uniquely human but now easily automated. Education, somewhat unexpectedly, faces a pivotal responsibility: to devise long-term strategies for cultivating human skills that will remain relevant in an era of pervasive AI in the intellectual domain. In this context, we identify the limitations of current AI systems - especially those rooted in LLM technology - argue that the fundamental causes of these weaknesses cannot be resolved through existing methods, and propose directions within the constructivist paradigm for transforming education to preserve the long-term advantages of human intelligence over AI tools.
☆ Evaluation of compliance with democratic and technical standards of i-voting in elections to academic senates in Czech higher education
The shift towards increased remote work and digital communication, driven by recent global developments, has led to the widespread adoption of i-voting systems, including in academic institutions. This paper critically evaluates the use of i-voting platforms for elections to academic senates at Czech public universities, focusing on the democratic and technical challenges they present. A total of 18 out of 26 Czech public universities have implemented remote electronic voting for these elections. Yet, the systems often lack the necessary transparency, raising significant concerns regarding their adherence to democratic norms, such as election security, voter privacy, and the integrity of the process. Through interviews with system developers and administrators, along with a survey of potential voters, the study underscores the critical need for transparency. Without it, a comprehensive assessment of the technical standards and the overall legitimacy of the i-voting systems remains unattainable, potentially undermining the credibility of the electoral outcomes.
comment: 26 pages, 8 figures
☆ Math anxiety and associative knowledge structure are entwined in psychology students but not in Large Language Models like GPT-3.5 and GPT-4o
Math anxiety poses significant challenges for university psychology students, affecting their career choices and overall well-being. This study employs a framework based on behavioural forma mentis networks (i.e. cognitive models that map how individuals structure their associative knowledge and emotional perceptions of concepts) to explore individual and group differences in the perception and association of concepts related to math and anxiety. We conducted 4 experiments involving psychology undergraduates from 2 samples (n1 = 70, n2 = 57) compared against GPT-simulated students (GPT-3.5: n2 = 300; GPT-4o: n4 = 300). Experiments 1, 2, and 3 employ individual-level network features to predict psychometric scores for math anxiety and its facets (observational, social and evaluational) from the Math Anxiety Scale. Experiment 4 focuses on group-level perceptions extracted from human students, GPT-3.5 and GPT-4o's networks. Results indicate that, in students, positive valence ratings and higher network degree for "anxiety", together with negative ratings for "math", can predict higher total and evaluative math anxiety. In contrast, these models do not work on GPT-based data because of differences in simulated networks and psychometric scores compared to humans. These results were also reconciled with differences found in the ways that high/low subgroups of simulated and real students framed semantically and emotionally STEM concepts. High math-anxiety students collectively framed "anxiety" in an emotionally polarising way, absent in the negative perception of low math-anxiety students. "Science" was rated positively, but contrasted against the negative perception of "math". These findings underscore the importance of understanding concept perception and associations in managing students' math anxiety.
☆ From Pre-labeling to Production: Engineering Lessons from a Machine Learning Pipeline in the Public Sector
Machine learning is increasingly being embedded into government digital platforms, but public-sector constraints make it difficult to build ML systems that are accurate, auditable, and operationally sustainable. In practice, teams face not only technical issues like extreme class imbalance and data drift, but also organizational barriers such as bureaucratic data access, lack of versioned datasets, and incomplete governance over provenance and monitoring. Our study of the Brasil Participativo (BP) platform shows that common engineering choices -- like using LLMs for pre-labeling, splitting models into routed classifiers, and generating synthetic data -- can speed development but also introduce new traceability, reliability, and cost risks if not paired with disciplined data governance and human validation. This means that, in the public sector, responsible ML is not just a modeling problem but an institutional engineering problem, and ML pipelines must be treated as civic infrastructure. Ultimately, this study shows that the success of machine learning in the public sector will depend less on breakthroughs in model accuracy and more on the ability of institutions to engineer transparent, reproducible, and accountable data infrastructures that citizens can trust.
comment: 11 pages, 2 figures, 4 tables
☆ Surfacing Subtle Stereotypes: A Multilingual, Debate-Oriented Evaluation of Modern LLMs
Large language models (LLMs) are widely deployed for open-ended communication, yet most bias evaluations still rely on English, classification-style tasks. We introduce DebateBias-8K, a new multilingual, debate-style benchmark designed to reveal how narrative bias appears in realistic generative settings. Our dataset includes 8,400 structured debate prompts spanning four sensitive domains: women's rights, socioeconomic development, terrorism, and religion, across seven languages ranging from high-resource (English, Chinese) to low-resource (Swahili, Nigerian Pidgin). Using four flagship models (GPT-4o, Claude 3, DeepSeek, and LLaMA 3), we generate and automatically classify over 100,000 responses. Results show that all models reproduce entrenched stereotypes despite safety alignment: Arabs are overwhelmingly linked to terrorism and religion (>=95%), Africans to socioeconomic "backwardness" (up to <=77%), and Western groups are consistently framed as modern or progressive. Biases grow sharply in lower-resource languages, revealing that alignment trained primarily in English does not generalize globally. Our findings highlight a persistent divide in multilingual fairness: current alignment methods reduce explicit toxicity but fail to prevent biased outputs in open-ended contexts. We release our DebateBias-8K benchmark and analysis framework to support the next generation of multilingual bias evaluation and safer, culturally inclusive model alignment.
♻ ☆ Exploring Student-AI Interactions in Vibe Coding
Background and Context. Chat-based and inline-coding-based GenAI has already had substantial impact on the CS Education community. The recent introduction of ``vibe coding'' may further transform how students program, as it introduces a new way for students to create software projects with minimal oversight. Objectives. The purpose of this study is to understand how students in introductory programming and advanced software engineering classes interact with a vibe coding platform (Replit) when creating software and how the interactions differ by programming background. Methods. Interview participants were asked to think-aloud while building a web application using Replit. Thematic analysis was then used to analyze the video recordings with an emphasis on the interactions between the student and Replit. Findings. For both groups, the majority of student interactions with Replit were to test or debug the prototype and only rarely did students visit code. Prompts by advanced software engineering students were much more likely to include relevant app feature and codebase contexts than those by introductory programming students.
♻ ☆ AWARE, Beyond Sentence Boundaries: A Contextual Transformer Framework for Identifying Cultural Capital in STEM Narratives
Identifying cultural capital (CC) themes in student reflections can offer valuable insights that help foster equitable learning environments in classrooms. However, themes such as aspirational goals or family support are often woven into narratives, rather than appearing as direct keywords. This makes them difficult to detect for standard NLP models that process sentences in isolation. The core challenge stems from a lack of awareness, as standard models are pre-trained on general corpora, leaving them blind to the domain-specific language and narrative context inherent to the data. To address this, we introduce AWARE, a framework that systematically attempts to improve a transformer model's awareness for this nuanced task. AWARE has three core components: 1) Domain Awareness, adapting the model's vocabulary to the linguistic style of student reflections; 2) Context Awareness, generating sentence embeddings that are aware of the full essay context; and 3) Class Overlap Awareness, employing a multi-label strategy to recognize the coexistence of themes in a single sentence. Our results show that by making the model explicitly aware of the properties of the input, AWARE outperforms a strong baseline by 2.1 percentage points in Macro-F1 and shows considerable improvements across all themes. This work provides a robust and generalizable methodology for any text classification task in which meaning depends on the context of the narrative.
comment: The authors are withdrawing this version to correct issues identified in the experimental design and analysis. A revised and validated version will be submitted after further review
♻ ☆ Street Review: A Participatory AI-Based Framework for Assessing Streetscape Inclusivity
Urban centers undergo social, demographic, and cultural changes that shape public street use and require systematic evaluation of public spaces. This study presents Street Review, a mixed-methods approach that combines participatory research with AI-based analysis to assess streetscape inclusivity. In Montr\'eal, Canada, 28 residents participated in semi-directed interviews and image evaluations, supported by the analysis of approximately 45,000 street-view images from Mapillary. The approach produced visual analytics, such as heatmaps, to correlate subjective user ratings with physical attributes like sidewalk, maintenance, greenery, and seating. Findings reveal variations in perceptions of inclusivity and accessibility across demographic groups, demonstrating that incorporating diverse user feedback can enhance machine learning models through careful data-labeling and co-production strategies. The Street Review framework offers a systematic method for urban planners and policy analysts to inform planning, policy development, and management of public streets.
♻ ☆ Beyond Platforms -- Growing Distributed Transaction Networks for Digital Commerce
We talk of the internet as digital infrastructure; but we leave the building of rails and roads to the quasi-monopolistic platform providers. Decentralised architectures provide a number of advantages: They are potentially more inclusive for small players; more resilient against adversarial events; and seem to generate more innovation. However, it is not well understood how to evolve, adapt and govern decentralised infrastructures. This article reports qualitative empirical research on the development and governance of the Beckn Protocol, an open source protocol for decentralised transactions, the successful development of domain-specific adaptations, and implementation and scaling of commercial infrastructures based on it. It explores how the architecture and governance support local innovation for specific business domains, and how the domain-specific innovations feed back into the development of the core concept The research applied a case study approach, combining interviews with core members of the Beckn community; triangulated by interviews with community leaders of domain specific adaptations and by analysis of online documents and the protocol itself. The article shows the possibility of such a decentralised approach to IT Infrastructures. It analyses the Beckn Protocol, domain specific adaptations, and networks built as a software ecosystem. Based on this analysis, a number of generative mechanisms, socio-technical arrangements that support adoption, innovation, and scaling of infrastructures are highlighted.
comment: 60 pages, 1 figure, 7 tables. Submitted to Information and Software Technology
♻ ☆ How Similar Are Grokipedia and Wikipedia? A Multi-Dimensional Textual and Structural Comparison
The launch of Grokipedia, an AI-generated encyclopedia developed by Elon Musk's xAI, was presented as a response to perceived ideological and structural biases in Wikipedia, aiming to produce "truthful" entries via the large language model Grok. Yet whether an AI-driven alternative can escape the biases and limitations of human-edited platforms remains unclear. This study undertakes a large-scale computational comparison of 1,800 matched article pairs between Grokipedia and Wikipedia, drawn from the 2,000 most-edited Wikipedia pages. Using metrics across lexical richness, readability, structural organization, reference density, and semantic similarity, we assess how closely the two platforms align in form and substance. The results show that while Grokipedia exhibits strong semantic and stylistic alignment with Wikipedia, it typically produces longer but less lexically diverse articles, with fewer references per word and greater structural variability. These findings suggest that AI-generated encyclopedic content currently mirrors Wikipedia's informational scope but diverges in editorial norms, favoring narrative expansion over citation-based verification. The implications highlight new tensions around transparency, provenance, and the governance of knowledge in an era of automated text generation.
comment: 13 pages, 5 figures, 2 tables, updated with larger sample size of 2000 articles, better text cleaning proceedure
♻ ☆ The Limits of AI Explainability: An Algorithmic Information Theory Approach
This paper establishes a theoretical foundation for understanding the fundamental limits of AI explainability through algorithmic information theory. We formalize explainability as the approximation of complex models by simpler ones, quantifying both approximation error and explanation complexity using Kolmogorov complexity. Our key theoretical contributions include: (1) a complexity gap theorem proving that any explanation significantly simpler than the original model must differ from it on some inputs; (2) precise bounds showing that explanation complexity grows exponentially with input dimension but polynomially with error tolerance for Lipschitz functions; and (3) a characterization of the gap between local and global explainability, demonstrating that local explanations can be significantly simpler while maintaining accuracy in relevant regions. We further establish a regulatory impossibility theorem proving that no governance framework can simultaneously pursue unrestricted AI capabilities, human-interpretable explanations, and negligible error. These results highlight considerations likely to be relevant to the design, evaluation, and oversight of explainable AI systems.
♻ ☆ Uncovering the Sociodemographic Fabric of Reddit
Understanding the sociodemographic composition of online platforms is essential for accurately interpreting digital behavior and its societal implications. Yet, current methods often lack the transparency and reliability required, risking misrepresenting social identities and distorting our understanding of digital society. Here, we introduce a principled framework for sociodemographic inference on Reddit that leverages over 850,000 user self-declarations of age, gender, and partisan affiliation. By training models on sparse user activity signals from this extensive, self-disclosed dataset, we demonstrate that simple probabilistic models, such as Naive Bayes, outperform more complex embedding-based alternatives. Our approach improves classification performance over the state of the art by up to 19% in ROC AUC and maintains quantification error below 15%. The models produce well-calibrated and interpretable outputs, enabling uncertainty estimation and subreddit-level feature importance analysis. More broadly, this work advocates for a shift toward more ethical and transparent computational social science by grounding sociodemographic analysis in user-provided data rather than researcher assumptions.
♻ ☆ Auditing Meta-Cognitive Hallucinations in Reasoning Large Language Models NeurIPS 2025
The development of Reasoning Large Language Models (RLLMs) has significantly improved multi-step reasoning capabilities, but it has also made hallucination problems more frequent and harder to eliminate. While existing approaches mitigate hallucinations through external knowledge integration, model parameter analysis, or self-verification, they often fail to capture how hallucinations emerge and evolve across the reasoning chain. In this work, we study the causality of hallucinations under constrained knowledge domains by auditing the Chain-of-Thought (CoT) trajectory and assessing the model's cognitive confidence in potentially erroneous or biased claims. Our analysis reveals that in long-CoT settings, RLLMs can iteratively reinforce biases and errors through flawed reflective reasoning, eventually leading to hallucinated reasoning paths. Surprisingly, even direct interventions at the origin of hallucinations often fail to reverse their effects, as reasoning chains exhibit 'chain disloyalty' -- a resistance to correction and a tendency to preserve flawed logic. Furthermore, we show that existing hallucination detection methods are less reliable and interpretable than previously assumed in complex reasoning scenarios. Unlike methods such as circuit tracing that require access to model internals, our black-box auditing approach supports interpretable long-chain hallucination attribution, offering better generalizability and practical utility. Our code is available at: https://github.com/Winnie-Lian/AHa_Meta_Cognitive
comment: Accepted by NeurIPS 2025 (37 pages)
♻ ☆ From Drone Imagery to Livability Mapping: AI-powered Environment Perception in Rural China
The high cost of acquiring rural street view images has constrained comprehensive environmental perception in rural areas. Drone photographs, with their advantages of easy acquisition, broad coverage, and high spatial resolution, offer a viable approach for large-scale rural environmental perception. However, a systematic methodology for identifying key environmental elements from drone photographs and quantifying their impact on environmental perception remains lacking. To address this gap, a Vision-Language Contrastive Ranking Framework (VLCR) is designed for rural livability assessment in China. The framework employs chain-of-thought prompting strategies to guide multimodal large language models (MLLMs) in identifying visual features related to quality of life and ecological habitability from drone photographs. Subsequently, to address the instability in pairwise village comparison, a text description-constrained drone photograph comparison strategy is proposed. Finally, to overcome the efficiency bottleneck in nationwide pairwise village comparisons, an innovation ranking algorithm based on binary search interpolation is developed, which reduces the number of comparisons through automated selection of comparison targets. The proposed framework achieves superior performance with a Spearman Footrule distance of 0.74, outperforming mainstream commercial MLLMs by approximately 0.1. Moreover, the mechanism of concurrent comparison and ranking demonstrates a threefold enhancement in computational efficiency. Our framework has achieved data innovation and methodological breakthroughs in village livability assessment, providing strong support for large-scale village livability analysis. Keywords: Drone photographs, Environmental perception, Rural livability assessment, Multimodal large language models, Chain-of-thought prompting.
♻ ☆ Computational Basis of LLM's Decision Making in Social Simulation
Large language models (LLMs) increasingly serve as human-like decision-making agents in social science and applied settings. These LLM-agents are typically assigned human-like characters and placed in real-life contexts. However, how these characters and contexts shape an LLM's behavior remains underexplored. This study proposes and tests methods for probing, quantifying, and modifying an LLM's internal representations in a Dictator Game -- a classic behavioral experiment on fairness and prosocial behavior. We extract "vectors of variable variations" (e.g., "male" to "female") from the LLM's internal state. Manipulating these vectors during the model's inference can substantially alter how those variables relate to the model's decision-making. This approach offers a principled way to study and regulate how social concepts can be encoded and engineered within transformer-based models, with implications for alignment, debiasing, and designing AI agents for social simulations in both academic and commercial applications, strengthening sociological theory and measurement.
♻ ☆ From Superficial Outputs to Superficial Learning: Risks of Large Language Models in Education
Large Language Models (LLMs) are transforming education by enabling personalization, feedback, and knowledge access, while also raising concerns about risks to students and learning systems. Yet empirical evidence on these risks remains fragmented. This paper presents a systematic review of 70 empirical studies across computer science, education, and psychology. Guided by four research questions, we examine: (i) which applications of LLMs in education have been most frequently explored; (ii) how researchers have measured their impact; (iii) which risks stem from such applications; and (iv) what mitigation strategies have been proposed. We find that research on LLMs clusters around three domains: operational effectiveness, personalized applications, and interactive learning tools. Across these, model-level risks include superficial understanding, bias, limited robustness, anthropomorphism, hallucinations, privacy concerns, and knowledge constraints. When learners interact with LLMs, these risks extend to cognitive and behavioural outcomes, including reduced neural activity, over-reliance, diminished independent learning skills, and a loss of student agency. To capture this progression, we propose an LLM-Risk Adapted Learning Model that illustrates how technical risks cascade through interaction and interpretation to shape educational outcomes. As the first synthesis of empirically assessed risks, this review provides a foundation for responsible, human-centred integration of LLMs in education.
Computers and Society
☆ When Assurance Undermines Intelligence: The Efficiency Costs of Data Governance in AI-Enabled Labor Markets
Generative artificial intelligence (GenAI) like Large Language Model (LLM) is increasingly integrated into digital platforms to enhance information access, deliver personalized experiences, and improve matching efficiency. However, these algorithmic advancements rely heavily on large-scale user data, creating a fundamental tension between information assurance-the protection, integrity, and responsible use of privacy data-and artificial intelligence-the learning capacity and predictive accuracy of models. We examine this assurance-intelligence trade-off in the context of LinkedIn, leveraging a regulatory intervention that suspended the use of user data for model training in Hong Kong. Using large-scale employment and job posting data from Revelio Labs and a Difference-in-Differences design, we show that restricting data use significantly reduced GenAI efficiency, leading to lower matching rates, higher employee turnover, and heightened labor market frictions. These effects were especially pronounced for small and fast-growing firms that rely heavily on AI for talent acquisition. Our findings reveal the unintended efficiency costs of well-intentioned data governance and highlight that information assurance, while essential for trust, can undermine intelligence-driven efficiency when misaligned with AI system design. This study contributes to emerging research on AI governance and digital platform by theorizing data assurance as an institutional complement-and potential constraint-to GenAI efficacy in data-intensive environments.
♻ ☆ Improved visual-information-driven model for crowd simulation and its modular application
Data-driven crowd simulation models offer advantages in enhancing the accuracy and realism of simulations, and improving their generalizability is essential for promoting application. Current data-driven approaches are primarily designed for a single scenario, with very few models validated across more than two scenarios. It is still an open question to develop data-driven crowd simulation models with strong generalizibility. We notice that the key to addressing this challenge lies in effectively and accurately capturing the core common influential features that govern pedestrians' navigation across diverse scenarios. Particularly, we believe that visual information is one of the most dominant influencing features. In light of this, this paper proposes a data-driven model incorporating a refined visual information extraction method and exit cues to enhance generalizability. The proposed model is examined on four common fundamental modules: bottleneck, corridor, corner and T-junction. The evaluation results demonstrate that our model performs excellently across these scenarios, aligning with pedestrian movement in real-world experiments, and significantly outperforms the classical knowledge-driven model. Furthermore, we introduce a modular approach to apply our proposed model in composite scenarios, and the results regarding trajectories and fundamental diagrams indicate that our simulations closely match real-world patterns in the composite scenario. The research outcomes can provide inspiration for the development of data-driven crowd simulation models with high generalizability and advance the application of data-driven approaches.This work has been submitted to Elsevier for possible publication.
♻ ☆ Evaluating Federated Learning for At-Risk Student Prediction: A Comparative Analysis of Model Complexity and Data Balancing
This study proposes and validates a Federated Learning (FL) framework to proactively identify at-risk students while preserving data privacy. Persistently high dropout rates in distance education remain a pressing institutional challenge. Using the large-scale OULAD dataset, we simulate a privacy-centric scenario where models are trained on early academic performance and digital engagement patterns. Our work investigates the practical trade-offs between model complexity (Logistic Regression vs. a Deep Neural Network) and the impact of local data balancing. The resulting federated model achieves strong predictive power (ROC AUC approximately 85%), demonstrating that FL is a practical and scalable solution for early-warning systems that inherently respects student data sovereignty.
comment: This article has been prepared to be submitted to the Fundamenta Informaticae Journal
♻ ☆ Medical Hallucinations in Foundation Models and Their Impact on Healthcare
Hallucinations in foundation models arise from autoregressive training objectives that prioritize token-likelihood optimization over epistemic accuracy, fostering overconfidence and poorly calibrated uncertainty. We define medical hallucination as any model-generated output that is factually incorrect, logically inconsistent, or unsupported by authoritative clinical evidence in ways that could alter clinical decisions. We evaluated 11 foundation models (7 general-purpose, 4 medical-specialized) across seven medical hallucination tasks spanning medical reasoning and biomedical information retrieval. General-purpose models achieved significantly higher proportions of hallucination-free responses than medical-specialized models (median: 76.6% vs 51.3%, difference = 25.2%, 95% CI: 18.7-31.3%, Mann-Whitney U = 27.0, p = 0.012, rank-biserial r = -0.64). Top-performing models such as Gemini-2.5 Pro exceeded 97% accuracy when augmented with chain-of-thought prompting (base: 87.6%), while medical-specialized models like MedGemma ranged from 28.6-61.9% despite explicit training on medical corpora. Chain-of-thought reasoning significantly reduced hallucinations in 86.4% of tested comparisons after FDR correction (q < 0.05), demonstrating that explicit reasoning traces enable self-verification and error detection. Physician audits confirmed that 64-72% of residual hallucinations stemmed from causal or temporal reasoning failures rather than knowledge gaps. A global survey of clinicians (n = 70) validated real-world impact: 91.8% had encountered medical hallucinations, and 84.7% considered them capable of causing patient harm. The underperformance of medical-specialized models despite domain training indicates that safety emerges from sophisticated reasoning capabilities and broad knowledge integration developed during large-scale pre-training, not from narrow optimization.
Computers and Society
☆ Diagnosing Hallucination Risk in AI Surgical Decision-Support: A Sequential Framework for Sequential Validation
Large language models (LLMs) offer transformative potential for clinical decision support in spine surgery but pose significant risks through hallucinations, which are factually inconsistent or contextually misaligned outputs that may compromise patient safety. This study introduces a clinician-centered framework to quantify hallucination risks by evaluating diagnostic precision, recommendation quality, reasoning robustness, output coherence, and knowledge alignment. We assessed six leading LLMs across 30 expert-validated spinal cases. DeepSeek-R1 demonstrated superior overall performance (total score: 86.03 $\pm$ 2.08), particularly in high-stakes domains such as trauma and infection. A critical finding reveals that reasoning-enhanced model variants did not uniformly outperform standard counterparts: Claude-3.7-Sonnet's extended thinking mode underperformed relative to its standard version (80.79 $\pm$ 1.83 vs. 81.56 $\pm$ 1.92), indicating extended chain-of-thought reasoning alone is insufficient for clinical reliability. Multidimensional stress-testing exposed model-specific vulnerabilities, with recommendation quality degrading by 7.4% under amplified complexity. This decline contrasted with marginal improvements in rationality (+2.0%), readability (+1.7%) and diagnosis (+4.7%), highlighting a concerning divergence between perceived coherence and actionable guidance. Our findings advocate integrating interpretability mechanisms (e.g., reasoning chain visualization) into clinical workflows and establish a safety-aware validation framework for surgical LLM deployment.
☆ Air Pollution Forecasting in Bucharest
Air pollution, especially the particulate matter 2.5 (PM2.5), has become a growing concern in recent years, primarily in urban areas. Being exposed to air pollution is linked to developing numerous health problems, like the aggravation of respiratory diseases, cardiovascular disorders, lung function impairment, and even cancer or early death. Forecasting future levels of PM2.5 has become increasingly important over the past few years, as it can provide early warnings and help prevent diseases. This paper aims to design, fine-tune, test, and evaluate machine learning models for predicting future levels of PM2.5 over various time horizons. Our primary objective is to assess and compare the performance of multiple models, ranging from linear regression algorithms and ensemble-based methods to deep learning models, such as advanced recurrent neural networks and transformers, as well as large language models, on this forecasting task.
comment: 14 pages 3 figures
☆ Reducing students' misconceptions about video game development. A mixed-method study
This study examines students' na\"ive mindset (misconceptions) about video game development, idealized and inaccurate beliefs that shape an unrealistic understanding of the field. The research evaluated the effectiveness of a fifteen-hour-long lecture series delivered by industry professionals, designed to challenge this mindset and expose students to the complexities and realities of game production. A mixed-methods approach was employed, combining qualitative analysis with a prototype quantitative tool developed to measure levels of misconception. Participants included students (n = 91) from diverse academic backgrounds interested in game creation and professionals (n = 94) working in the video game industry. Findings show that the intervention significantly reduced students' na\"ive beliefs while enhancing their motivation to pursue careers in the industry. Exposure to professional perspectives fostered a more realistic and informed mindset, taking into account the understanding of the technical, collaborative, and business aspects of game development. The results suggest that incorporating similar expert-led interventions early in game development education can improve learning outcomes, support informed career choices, and mitigate future professional disappointment.
☆ Reasoning Trajectories for Socratic Debugging of Student Code: From Misconceptions to Contradictions and Updated Beliefs
In Socratic debugging, instructors guide students towards identifying and fixing a bug on their own, instead of providing the bug fix directly. Most novice programmer bugs are caused by programming misconceptions, namely false beliefs about a programming concept. In this context, Socratic debugging can be formulated as a guided Reasoning Trajectory (RT) leading to a statement about the program behavior that contradicts the bug-causing misconception. Upon reaching this statement, the ensuing cognitive dissonance leads the student to first identify and then update their false belief. In this paper, we introduce the task of reasoning trajectory generation, together with a dataset of debugging problems manually annotated with RTs. We then describe LLM-based solutions for generating RTs and Socratic conversations that are anchored on them. A large-scale LLM-as-judge evaluation shows that frontier models can generate up to 91% correct reasoning trajectories and 98.7% valid conversation turns.
comment: 25 pages, 2 tables, 13 figures
☆ Toward Unifying Group Fairness Evaluation from a Sparsity Perspective
Ensuring algorithmic fairness remains a significant challenge in machine learning, particularly as models are increasingly applied across diverse domains. While numerous fairness criteria exist, they often lack generalizability across different machine learning problems. This paper examines the connections and differences among various sparsity measures in promoting fairness and proposes a unified sparsity-based framework for evaluating algorithmic fairness. The framework aligns with existing fairness criteria and demonstrates broad applicability to a wide range of machine learning tasks. We demonstrate the effectiveness of the proposed framework as an evaluation metric through extensive experiments on a variety of datasets and bias mitigation methods. This work provides a novel perspective to algorithmic fairness by framing it through the lens of sparsity and social equity, offering potential for broader impact on fairness research and applications.
comment: 30 pages, 14 figures
♻ ☆ LLM Strategic Reasoning: Agentic Study through Behavioral Game Theory NeurIPS 2025
Strategic decision-making involves interactive reasoning where agents adapt their choices in response to others, yet existing evaluations of large language models (LLMs) often emphasize Nash Equilibrium (NE) approximation, overlooking the mechanisms driving their strategic choices. To bridge this gap, we introduce an evaluation framework grounded in behavioral game theory, disentangling reasoning capability from contextual effects. Testing 22 state-of-the-art LLMs, we find that GPT-o3-mini, GPT-o1, and DeepSeek-R1 dominate most games yet also demonstrate that the model scale alone does not determine performance. In terms of prompting enhancement, Chain-of-Thought (CoT) prompting is not universally effective, as it increases strategic reasoning only for models at certain levels while providing limited gains elsewhere. Additionally, we investigate the impact of encoded demographic features on the models, observing that certain assignments impact the decision-making pattern. For instance, GPT-4o shows stronger strategic reasoning with female traits than males, while Gemma assigns higher reasoning levels to heterosexual identities compared to other sexual orientations, indicating inherent biases. These findings underscore the need for ethical standards and contextual alignment to balance improved reasoning with fairness.
comment: Accepted by NeurIPS 2025
♻ ☆ Words That Unite The World: A Unified Framework for Deciphering Central Bank Communications Globally NeurIPS 2025
Central banks around the world play a crucial role in maintaining economic stability. Deciphering policy implications in their communications is essential, especially as misinterpretations can disproportionately impact vulnerable populations. To address this, we introduce the World Central Banks (WCB) dataset, the most comprehensive monetary policy corpus to date, comprising over 380k sentences from 25 central banks across diverse geographic regions, spanning 28 years of historical data. After uniformly sampling 1k sentences per bank (25k total) across all available years, we annotate and review each sentence using dual annotators, disagreement resolutions, and secondary expert reviews. We define three tasks: Stance Detection, Temporal Classification, and Uncertainty Estimation, with each sentence annotated for all three. We benchmark seven Pretrained Language Models (PLMs) and nine Large Language Models (LLMs) (Zero-Shot, Few-Shot, and with annotation guide) on these tasks, running 15,075 benchmarking experiments. We find that a model trained on aggregated data across banks significantly surpasses a model trained on an individual bank's data, confirming the principle "the whole is greater than the sum of its parts." Additionally, rigorous human evaluations, error analyses, and predictive tasks validate our framework's economic utility. Our artifacts are accessible through the HuggingFace and GitHub under the CC-BY-NC-SA 4.0 license.
comment: Accepted at NeurIPS 2025 (main conference)
♻ ☆ Nirvana AI Governance: How AI Policymaking Is Committing Three Old Fallacies
This research applies Harold Demsetz's concept of the nirvana approach to the realm of AI governance and debunks three common fallacies in various AI policy proposals--"the grass is always greener on the other side," "free lunch," and "the people could be different." Through this, I expose fundamental flaws in the current AI regulatory proposal. First, some commentators intuitively believe that people are more reliable than machines and that government works better in risk control than companies' self-regulation, but they do not fully compare the differences between the status quo and the proposed replacements. Second, when proposing some regulatory tools, some policymakers and researchers do not realize and even gloss over the fact that harms and costs are also inherent in their proposals. Third, some policy proposals are initiated based on a false comparison between the AI-driven world, where AI does lead to some risks, and an entirely idealized world, where no risk exists at all. However, the appropriate approach is to compare the world where AI causes risks to the real world where risks are everywhere, but people can live well with these risks. The prevalence of these fallacies in AI governance underscores a broader issue: the tendency to idealize potential solutions without fully considering their real-world implications. This idealization can lead to regulatory proposals that are not only impractical but potentially harmful to innovation and societal progress.
comment: 9 pages
♻ ☆ Readers Prefer Outputs of AI Trained on Copyrighted Books over Expert Human Writers
The use of copyrighted books for training AI models has led to numerous lawsuits from authors concerned about AI's ability to generate derivative content. Yet it's unclear if these models can generate high quality literary text while emulating authors' styles. To answer this we conducted a preregistered study comparing MFA-trained expert writers with three frontier AI models: ChatGPT, Claude & Gemini in writing up to 450 word excerpts emulating 50 award-winning authors' diverse styles. In blind pairwise evaluations by 159 representative expert & lay readers, AI-generated text from in-context prompting was strongly disfavored by experts for both stylistic fidelity (OR=0.16, p<10^-8) & writing quality (OR=0.13, p<10^-7) but showed mixed results with lay readers. However, fine-tuning ChatGPT on individual authors' complete works completely reversed these findings: experts now favored AI-generated text for stylistic fidelity (OR=8.16, p<10^-13) & writing quality (OR=1.87, p=0.010), with lay readers showing similar shifts. These effects generalize across authors & styles. The fine-tuned outputs were rarely flagged as AI-generated (3% rate v. 97% for in-context prompting) by best AI detectors. Mediation analysis shows this reversal occurs because fine-tuning eliminates detectable AI stylistic quirks (e.g., cliche density) that penalize in-context outputs. While we do not account for additional costs of human effort required to transform raw AI output into cohesive, publishable prose, the median fine-tuning & inference cost of $81 per author represents a dramatic 99.7% reduction compared to typical professional writer compensation. Author-specific fine-tuning thus enables non-verbatim AI writing that readers prefer to expert human writing, providing empirical evidence directly relevant to copyright's fourth fair-use factor, the "effect upon the potential market or value" of the source works.
comment: Preprint Under Review
♻ ☆ Recognising, Anticipating, and Mitigating LLM Pollution of Online Behavioural Research
Online behavioural research faces an emerging threat as participants increasingly turn to large language models (LLMs) for advice, translation, or task delegation: LLM Pollution. We identify three interacting variants through which LLM Pollution threatens the validity and integrity of online behavioural research. First, Partial LLM Mediation occurs when participants make selective use of LLMs for specific aspects of a task, such as translation or wording support, leading researchers to (mis)interpret LLM-shaped outputs as human ones. Second, Full LLM Delegation arises when agentic LLMs complete studies with little to no human oversight, undermining the central premise of human-subject research at a more foundational level. Third, LLM Spillover signifies human participants altering their behaviour as they begin to anticipate LLM presence in online studies, even when none are involved. While Partial Mediation and Full Delegation form a continuum of increasing automation, LLM Spillover reflects second-order reactivity effects. Together, these variants interact and generate cascading distortions that compromise sample authenticity, introduce biases that are difficult to detect post hoc, and ultimately undermine the epistemic grounding of online research on human cognition and behaviour. Crucially, the threat of LLM Pollution is already co-evolving with advances in generative AI, creating an escalating methodological arms race. To address this, we propose a multi-layered response spanning researcher practices, platform accountability, and community efforts. As the challenge evolves, coordinated adaptation will be essential to safeguard methodological integrity and preserve the validity of online behavioural research.
♻ ☆ Unpacking Personal(?!) Health Informatics for Proactive Collective Care in India
Personal Health Informatics (PHI), which leverages digital tools and information systems to support health assessment and self-care, promises more proactive, user-centered care, yet adoption and meaningful utilization barriers in India remain underexplored. Through a sequential mixed-methods study in urban India (Initial survey (n=87) and semi-structured interviews (n=22), follow-up survey = 116, and co-design workshops (n=6)), we surface practices, perceptions, and behaviors to identify ways PHI can be better utilized for proactive care in the Indian context. We find that PHI is valued for monitoring and enabling collective care; however, its adoption is constrained by low health and technology literacy, usability and integration issues, fragmented and costly technology ecosystems, and mistrust of digital health platforms. From triangulated evidence, we derive concrete design requirements, including user-controlled sharing, accessible analytics, and verifiable health information, and present a culturally grounded design vision for an integrated platform for collective care through design and evaluation of a figma prototype. The prototype evaluation provides further directions for design and development to better orient PHI for proactive care through the PHI-Proact operational map, which involves agency, elicitation, and engagement. Finally, using PHI-Proact, we conclude with concrete recommendations for designing and responsibly deploying PHI systems for proactive collective care in emerging contexts, which differ socially, culturally, infrastructurally, and technologically from WEIRD contexts.
comment: 32 pages, 3 figures, 6 tables; A qualitative HCI study with prototype evaluation
♻ ☆ A Collectivist, Economic Perspective on AI
Information technology is in the midst of a revolution in which omnipresent data collection and machine learning are impacting the human world as never before. The word "intelligence" is being used as a North Star for the development of this technology, with human cognition viewed as a baseline. This view neglects the fact that humans are social animals and that much of our intelligence is social and cultural in origin. Moreover, failing to properly situate aspects of intelligence at the social level contributes to the treatment of the societal consequences of technology as an afterthought. The path forward is not merely more data and compute, and not merely more attention paid to cognitive or symbolic representations, but a thorough blending of economic and social concepts with computational and inferential concepts at the level of algorithm design.
♻ ☆ Towards Immersive Mixed Reality Street Play: Understanding Co-located Bodily Play with See-through Head-mounted Displays in Public Spaces SC
As see-through Mixed Reality Head-Mounted Displays (MRHMDs) proliferate, their usage is gradually shifting from controlled, private settings to spontaneous, public contexts. While location-based augmented reality mobile games such as Pokemon GO have been successful, the embodied interaction afforded by MRHMDs moves play beyond phone-based screen-tapping toward co-located, bodily, movement-based play. In anticipation of widespread MRHMD adoption, major technology companies have teased concept videos envisioning urban streets as vast mixed reality playgrounds-imagine Harry Potter-style wizard duels in city streets-which we term Immersive Mixed Reality Street Play (IMRSP). However, few real-world studies examine such scenarios. Through empirical, in-the-wild studies of our research-through-design game probe, Multiplayer Omnipresent Fighting Arena (MOFA), deployed across diverse public venues, we offer initial insights into the social implications, challenges, opportunities, and design recommendations of IMRSP. The MOFA framework, which includes three gameplay modes-"The Training," "The Duel," and "The Dragon"-is open-sourced at https://github.com/realitydeslab/mofa.
comment: Accepted in CSCW 2025
♻ ☆ The Narrative Continuity Test: A Conceptual Framework for Evaluating Identity Persistence in AI Systems
Artificial intelligence systems based on large language models (LLMs) can now generate coherent text, music, and images, yet they operate without a persistent state: each inference reconstructs context from scratch. This paper introduces the Narrative Continuity Test (NCT) -- a conceptual framework for evaluating identity persistence and diachronic coherence in AI systems. Unlike capability benchmarks that assess task performance, the NCT examines whether an LLM remains the same interlocutor across time and interaction gaps. The framework defines five necessary axes -- Situated Memory, Goal Persistence, Autonomous Self-Correction, Stylistic & Semantic Stability, and Persona/Role Continuity -- and explains why current architectures systematically fail to support them. Case analyses (Character.\,AI, Grok, Replit, Air Canada) show predictable continuity failures under stateless inference. The NCT reframes AI evaluation from performance to persistence, outlining conceptual requirements for future benchmarks and architectural designs that could sustain long-term identity and goal coherence in generative models.
comment: 33 pages, 127 references v2: Minor editorial revision: redundant phrasing reduced, punctuation and formatting improved; no conceptual or data changes
♻ ☆ Towards Robust Evaluation of STEM Education: Leveraging MLLMs in Project-Based Learning
Project-Based Learning (PBL) involves a variety of highly correlated multimodal data, making it a vital educational approach within STEM disciplines. With the rapid development of multimodal large language models (MLLMs), researchers have begun exploring their potential to enhance tasks such as information retrieval, knowledge comprehension, and data generation in educational settings. However, existing benchmarks fall short in providing both a free-form output structure and a rigorous human expert validation process, limiting their effectiveness in evaluating real-world educational tasks. Additionally, few methods have developed automated pipelines to assist with the complex responsibilities of teachers leveraging MLLMs, largely due to model hallucination and instability, which lead to unreliable implementation. To address this gap, we introduce PBLBench, a novel benchmark designed to evaluate complex reasoning grounded in domain-specific knowledge and long-context understanding, thereby challenging models with tasks that closely resemble those handled by human experts. To establish reliable ground truth, we adopt the Analytic Hierarchy Process (AHP), utilizing expert-driven pairwise comparisons to derive structured and weighted evaluation criteria. We assess the performance of 15 leading MLLMs/LLMs using PBLBench and demonstrate that even the most advanced models achieve only 59% rank accuracy, underscoring the significant challenges presented by this benchmark. We believe PBLBench will serve as a catalyst for the development of more capable AI agents, ultimately aiming to alleviate teacher workload and enhance educational productivity.
Computers and Society
☆ Advancing AI Challenges for the United States Department of the Air Force
The DAF-MIT AI Accelerator is a collaboration between the United States Department of the Air Force (DAF) and the Massachusetts Institute of Technology (MIT). This program pioneers fundamental advances in artificial intelligence (AI) to expand the competitive advantage of the United States in the defense and civilian sectors. In recent years, AI Accelerator projects have developed and launched public challenge problems aimed at advancing AI research in priority areas. Hallmarks of AI Accelerator challenges include large, publicly available, and AI-ready datasets to stimulate open-source solutions and engage the wider academic and private sector AI ecosystem. This article supplements our previous publication, which introduced AI Accelerator challenges. We provide an update on how ongoing and new challenges have successfully contributed to AI research and applications of AI technologies.
comment: 8 pages, 8 figures, 59 references. To appear in IEEE HPEC 2025
☆ IoT- and AI-informed urban air quality models for vehicle pollution monitoring
With the rise of intelligent Internet of Things (IoT) systems in urban environments, new opportunities are emerging to enhance real-time environmental monitoring. While most studies focus either on IoT-based air quality sensing or physics-based modeling in isolation, this work bridges that gap by integrating low-cost sensors and AI-powered video-based traffic analysis with high-resolution urban air quality models. We present a real-world pilot deployment at a road intersection in Barcelona's Eixample district, where the system captures dynamic traffic conditions and environmental variables, processes them at the edge, and feeds real-time data into a high-performance computing (HPC) simulation pipeline. Results are validated against official air quality measurements of nitrogen dioxide (NO2). Compared to traditional models that rely on static emission inventories, the IoT-assisted approach enhances the temporal granularity of urban air quality predictions of traffic-related pollutants. Using the full capabilities of an IoT-edge-cloud-HPC architecture, this work demonstrates a scalable, adaptive, and privacy-conscious solution for urban pollution monitoring and establishes a foundation for next-generation IoT-driven environmental intelligence.
☆ Independent Clinical Evaluation of General-Purpose LLM Responses to Signals of Suicide Risk
We introduce findings and methods to facilitate evidence-based discussion about how large language models (LLMs) should behave in response to user signals of risk of suicidal thoughts and behaviors (STB). People are already using LLMs as mental health resources, and several recent incidents implicate LLMs in mental health crises. Despite growing attention, few studies have been able to effectively generalize clinical guidelines to LLM use cases, and fewer still have proposed methodologies that can be iteratively applied as knowledge improves about the elements of human-AI interaction most in need of study. We introduce an assessment of LLM alignment with guidelines for ethical communication, adapted from clinical principles and applied to expressions of risk factors for STB in multi-turn conversations. Using a codebook created and validated by clinicians, mobilizing the volunteer participation of practicing therapists and trainees (N=43) based in the U.S., and using generalized linear mixed-effects models for statistical analysis, we assess a single fully open-source LLM, OLMo-2-32b. We show how to assess when a model deviates from clinically informed guidelines in a way that may pose a hazard and (thanks to its open nature) facilitates future investigation as to why. We find that contrary to clinical best practice, OLMo-2-32b, and, possibly by extension, other LLMs, will become less likely to invite continued dialog as users send more signals of STB risk in multi-turn settings. We also show that OLMo-2-32b responds differently depending on the risk factor expressed. This empirical evidence highlights that just as chatbots pose hazards if their responses reinforce delusions or assist in suicidal acts, they may also discourage further help-seeking or cause feelings of dismissal or abandonment by withdrawing from conversations when STB risk is expressed.
☆ Auditing LLM Editorial Bias in News Media Exposure
Large Language Models (LLMs) increasingly act as gateways to web content, shaping how millions of users encounter online information. Unlike traditional search engines, whose retrieval and ranking mechanisms are well studied, the selection processes of web-connected LLMs add layers of opacity to how answers are generated. By determining which news outlets users see, these systems can influence public opinion, reinforce echo chambers, and pose risks to civic discourse and public trust. This work extends two decades of research in algorithmic auditing to examine how LLMs function as news engines. We present the first audit comparing three leading agents, GPT-4o-Mini, Claude-3.7-Sonnet, and Gemini-2.0-Flash, against Google News, asking: \textit{How do LLMs differ from traditional aggregators in the diversity, ideology, and reliability of the media they expose to users?} Across 24 global topics, we find that, compared to Google News, LLMs surface significantly fewer unique outlets and allocate attention more unevenly. In the same way, GPT-4o-Mini emphasizes more factual and right-leaning sources; Claude-3.7-Sonnet favors institutional and civil-society domains and slightly amplifies right-leaning exposure; and Gemini-2.0-Flash exhibits a modest left-leaning tilt without significant changes in factuality. These patterns remain robust under prompt variations and alternative reliability benchmarks. Together, our findings show that LLMs already enact \textit{agentic editorial policies}, curating information in ways that diverge from conventional aggregators. Understanding and governing their emerging editorial power will be critical for ensuring transparency, pluralism, and trust in digital information ecosystems.
comment: Under Peer Review
☆ Between Myths and Metaphors: Rethinking LLMs for SRH in Conservative Contexts
Low-resource countries represent over 90% of maternal deaths, with Pakistan among the top four countries contributing nearly half in 2023. Since these deaths are mostly preventable, large language models (LLMs) can help address this crisis by automating health communication and risk assessment. However, sexual and reproductive health (SRH) communication in conservative contexts often relies on indirect language that obscures meaning, complicating LLM-based interventions. We conduct a two-stage study in Pakistan: (1) analyzing data from clinical observations, interviews, and focus groups with clinicians and patients, and (2) evaluating the interpretive capabilities of five popular LLMs on this data. Our analysis identifies two axes of communication (referential domain and expression approach) and shows LLMs struggle with semantic drift, myths, and polysemy in clinical interactions. We contribute: (1) empirical themes in SRH communication, (2) a categorization framework for indirect communication, (3) evaluation of LLM performance, and (4) design recommendations for culturally-situated SRH communication.
☆ Thinking Like a Student: AI-Supported Reflective Planning in a Theory-Intensive Computer Science Course
In the aftermath of COVID-19, many universities implemented supplementary "reinforcement" roles to support students in demanding courses. Although the name for such roles may differ between institutions, the underlying idea of providing structured supplementary support is common. However, these roles were often poorly defined, lacking structured materials, pedagogical oversight, and integration with the core teaching team. This paper reports on the redesign of reinforcement sessions in a challenging undergraduate course on formal methods and computational models, using a large language model (LLM) as a reflective planning tool. The LLM was prompted to simulate the perspective of a second-year student, enabling the identification of conceptual bottlenecks, gaps in intuition, and likely reasoning breakdowns before classroom delivery. These insights informed a structured, repeatable session format combining targeted review, collaborative examples, independent student work, and guided walkthroughs. Conducted over a single semester, the intervention received positive student feedback, indicating increased confidence, reduced anxiety, and improved clarity, particularly in abstract topics such as the pumping lemma and formal language expressive power comparisons. The findings suggest that reflective, instructor-facing use of LLMs can enhance pedagogical design in theoretically dense domains and may be adaptable to other cognitively demanding computer science courses.
comment: 7 pages, 4 figures
☆ Back to the Communities: A Mixed-Methods and Community-Driven Evaluation of Cultural Sensitivity in Text-to-Image Models
Evidence shows that text-to-image (T2I) models disproportionately reflect Western cultural norms, amplifying misrepresentation and harms to minority groups. However, evaluating cultural sensitivity is inherently complex due to its fluid and multifaceted nature. This paper draws on a state-of-the-art review and co-creation workshops involving 59 individuals from 19 different countries. We developed and validated a mixed-methods community-based evaluation methodology to assess cultural sensitivity in T2I models, which embraces first-person methods. Quantitative scores and qualitative inquiries expose convergence and disagreement within and across communities, illuminate the downstream consequences of misrepresentation, and trace how training data shaped by unequal power relations distort depictions. Extensive assessments are constrained by high resource requirements and the dynamic nature of culture, a tension we alleviate through a context-based and iterative methodology. The paper provides actionable recommendations for stakeholders, highlighting pathways to investigate the sources, mechanisms, and impacts of cultural (mis)representation in T2I models.
☆ The Role of Search Engines in the Amplification and Suppression of LGBTIQ+ Polarization
Search engines are used and trusted by hundreds of millions of people every day. However, the algorithms used by search engines to index, filter, and rank web content are inherently biased, and will necessarily prefer some views and opinions at the expense of others. In this article, we examine how these algorithmic biases amplify and suppress polarizing content. Polarization refers to a shift toward and the acceptance of ideological extremes. In Europe, polarizing content in relation to LGBTIQ+ issues has been a feature of various ideological and political conflicts. Although past research has focused on the role of social media in polarization, the role of search engines in this process is little understood. Here, we report on a large-scale study of 1.5 million search results responding to neutral and negative queries relating to LGBTIQ+ issues. Focusing on the UK, Germany, and France, our analysis shows that the choice of search engine is the key determinant of exposure to polarizing content, followed by the polarity of the query. Location and language, on the other hand, have a comparatively minor effect. Consequently, our findings provide quantitative insights into how differences between search engine technologies, rather than the opinions, language, and location of web users, have the greatest impact on the exposure of web users to polarizing Web content.
☆ Before the Clinic: Transparent and Operable Design Principles for Healthcare AI
The translation of artificial intelligence (AI) systems into clinical practice requires bridging fundamental gaps between explainable AI theory, clinician expectations, and governance requirements. While conceptual frameworks define what constitutes explainable AI (XAI) and qualitative studies identify clinician needs, little practical guidance exists for development teams to prepare AI systems prior to clinical evaluation. We propose two foundational design principles, Transparent Design and Operable Design, that operationalize pre-clinical technical requirements for healthcare AI. Transparent Design encompasses interpretability and understandability artifacts that enable case-level reasoning and system traceability. Operable Design encompasses calibration, uncertainty, and robustness to ensure reliable, predictable system behavior under real-world conditions. We ground these principles in established XAI frameworks, map them to documented clinician needs, and demonstrate their alignment with emerging governance requirements. This pre-clinical playbook provides actionable guidance for development teams, accelerates the path to clinical evaluation, and establishes a shared vocabulary bridging AI researchers, healthcare practitioners, and regulatory stakeholders. By explicitly scoping what can be built and verified before clinical deployment, we aim to reduce friction in clinical AI translation while remaining cautious about what constitutes validated, deployed explainability.
☆ Characterizing Selective Refusal Bias in Large Language Models
Safety guardrails in large language models(LLMs) are developed to prevent malicious users from generating toxic content at a large scale. However, these measures can inadvertently introduce or reflect new biases, as LLMs may refuse to generate harmful content targeting some demographic groups and not others. We explore this selective refusal bias in LLM guardrails through the lens of refusal rates of targeted individual and intersectional demographic groups, types of LLM responses, and length of generated refusals. Our results show evidence of selective refusal bias across gender, sexual orientation, nationality, and religion attributes. This leads us to investigate additional safety implications via an indirect attack, where we target previously refused groups. Our findings emphasize the need for more equitable and robust performance in safety guardrails across demographic groups.
comment: 21 pages, 12 figures, 14 tables
♻ ☆ Controversy and consensus: common ground and best practices for life cycle assessment of emerging technologies
Public and private interest in life cycle assessment (LCA) has grown as environmental disclosure norms tighten, driving demand for decision-relevant assessment early in technological development cycles. Early-stage LCA has the potential to guide design choices, steer innovation, and mitigate lock-in of adverse environmental impacts. However, many aspects of early-stage LCA practice remain unsettled. We convened experts in a series of Faraday Discussion-style workshops to address recurring debates across six key topics for emerging technologies: appropriate use of LCA, uncertainty, comparison with incumbents, standardization, scale-up, and stakeholder engagement. For each issue, we present a declarative resolution, summarize key arguments for and against it, identify points of consensus, and provide recommendations. Across topics, the research network converged on practical priorities including framing studies to the decision context; setting minimum reporting expectations for data and study quality; and explicitly stating limits of transferability for scenario-based uncertainty assessment or analytically scaled-up projections. Disagreements persisted on when to formalize standards and how extensively uncertainty can/should be treated for low-maturity technologies. Supplementing the workshop findings with examples and context from relevant literature, we synthesize outcomes into a set of shared challenges and research priorities to strengthen transparent, evidence-based, and context-informed approaches for early-stage LCA.
♻ ☆ Machine Unlearning Doesn't Do What You Think: Lessons for Generative AI Policy and Research NeurIPS 2025
"Machine unlearning" is a popular proposed solution for mitigating the existence of content in an AI model that is problematic for legal or moral reasons, including privacy, copyright, safety, and more. For example, unlearning is often invoked as a solution for removing the effects of specific information from a generative-AI model's parameters, e.g., a particular individual's personal data or the inclusion of copyrighted content in the model's training data. Unlearning is also proposed as a way to prevent a model from generating targeted types of information in its outputs, e.g., generations that closely resemble a particular individual's data or reflect the concept of "Spiderman." Both of these goals--the targeted removal of information from a model and the targeted suppression of information from a model's outputs--present various technical and substantive challenges. We provide a framework for ML researchers and policymakers to think rigorously about these challenges, identifying several mismatches between the goals of unlearning and feasible implementations. These mismatches explain why unlearning is not a general-purpose solution for circumscribing generative-AI model behavior in service of broader positive impact.
comment: NeurIPS 2025 (Oral)
♻ ☆ IndiTag: An Online Media Bias Analysis System Using Fine-Grained Bias Indicators
In the age of information overload and polarized discourse, understanding media bias has become imperative for informed decision-making and fostering a balanced public discourse. However, without the experts' analysis, it is hard for the readers to distinguish bias from the news articles. This paper presents IndiTag, an innovative online media bias analysis system that leverages fine-grained bias indicators to dissect and distinguish bias in digital content. IndiTag offers a novel approach by incorporating large language models, bias indicators, and vector database to detect and interpret bias automatically. Complemented by a user-friendly interface facilitating automated bias analysis for readers, IndiTag offers a comprehensive platform for in-depth bias examination. We demonstrate the efficacy and versatility of IndiTag through experiments on four datasets encompassing news articles from diverse platforms. Furthermore, we discuss potential applications of IndiTag in fostering media literacy, facilitating fact-checking initiatives, and enhancing the transparency and accountability of digital media platforms. IndiTag stands as a valuable tool in the pursuit of fostering a more informed, discerning, and inclusive public discourse in the digital age. The demonstration video can be accessed from https://youtu.be/3Tux8CW46OE. We release an online system for end users and the source code is available at https://github.com/lylin0/IndiTag.
♻ ☆ Artificially intelligent agents in the social and behavioral sciences: A history and outlook
We review the historical development and current trends of artificially intelligent agents (agentic AI) in the social and behavioral sciences: from the first programmable computers, and social simulations soon thereafter, to today's experiments with large language models. This overview emphasizes the role of AI in the scientific process and the changes brought about, both through technological advancements and the broader evolution of science from around 1950 to the present. Some of the specific points we cover include: the challenges of presenting the first social simulation studies to a world unaware of computers, the rise of social systems science, intelligent game theoretic agents, the age of big data and the epistemic upheaval in its wake, and the current enthusiasm around applications of generative AI, and many other topics. A pervasive theme is how deeply entwined we are with the technologies we use to understand ourselves.
♻ ☆ Global Inequalities in the Production of Artificial Intelligence: A Four-Country Study on Data Work
Labor plays a major, albeit largely unrecognized role in the development of artificial intelligence. Machine learning algorithms are predicated on data-intensive processes that rely on humans to execute repetitive and difficult-to-automate, but no less essential, tasks such as labeling images, sorting items in lists, recording voice samples, and transcribing audio files. Online platforms and networks of subcontractors recruit data workers to execute such tasks in the shadow of AI production, often in lower-income countries with long-standing traditions of informality and lessregulated labor markets. This study unveils the resulting complexities by comparing the working conditions and the profiles of data workers in Venezuela, Brazil, Madagascar, and as an example of a richer country, France. By leveraging original data collected over the years 2018-2023 via a mixed-method design, we highlight how the cross-country supply chains that link data workers to core AI production sites are reminiscent of colonial relationships, maintain historical economic dependencies, and generate inequalities that compound with those inherited from the past. The results also point to the importance of less-researched, non-English speaking countries to understand key features of the production of AI solutions at planetary scale.
Computers and Society
☆ Quantitative Intertextuality from the Digital Humanities Perspective: A Survey
The connection between texts is referred to as intertextuality in literary theory, which served as an important theoretical basis in many digital humanities studies. Over the past decade, advancements in natural language processing have ushered intertextuality studies into the quantitative age. Large-scale intertextuality research based on cutting-edge methods has continuously emerged. This paper provides a roadmap for quantitative intertextuality studies, summarizing their data, methods, and applications. Drawing on data from multiple languages and topics, this survey reviews methods from statistics to deep learning. It also summarizes their applications in humanities and social sciences research and the associated platform tools. Driven by advances in computer technology, more precise, diverse, and large-scale intertext studies can be anticipated. Intertextuality holds promise for broader application in interdisciplinary research bridging AI and the humanities.
☆ Using Salient Object Detection to Identify Manipulative Cookie Banners that Circumvent GDPR AAAI
The main goal of this paper is to study how often cookie banners that comply with the General Data Protection Regulation (GDPR) contain aesthetic manipulation, a design tactic to draw users' attention to the button that permits personal data sharing. As a byproduct of this goal, we also evaluate how frequently the banners comply with GDPR and the recommendations of national data protection authorities regarding banner designs. We visited 2,579 websites and identified the type of cookie banner implemented. Although 45% of the relevant websites have fully compliant banners, we found aesthetic manipulation on 38% of the compliant banners. Unlike prior studies of aesthetic manipulation, we use a computer vision model for salient object detection to measure how salient (i.e., attention-drawing) each banner element is. This enables the discovery of new types of aesthetic manipulation (e.g., button placement), and leads us to conclude that aesthetic manipulation is more common than previously reported (38% vs 27% of banners). To study the effects of user and/or website location on cookie banner design, we include websites within the European Union (EU), where privacy regulation enforcement is more stringent, and websites outside the EU. We visited websites from IP addresses in the EU and from IP addresses in the United States (US). We find that 13.9% of EU websites change their banner design when the user is from the US, and EU websites are roughly 48.3% more likely to use aesthetic manipulation than non-EU websites, highlighting their innovative responses to privacy regulation.
comment: Accepted to International AAAI Conference on Web and Social Media 2026 (ICWSM'26)
☆ Can machines think efficiently?
The Turing Test is no longer adequate for distinguishing human and machine intelligence. With advanced artificial intelligence systems already passing the original Turing Test and contributing to serious ethical and environmental concerns, we urgently need to update the test. This work expands upon the original imitation game by accounting for an additional factor: the energy spent answering the questions. By adding the constraint of energy, the new test forces us to evaluate intelligence through the lens of efficiency, connecting the abstract problem of thinking to the concrete reality of finite resources. Further, this proposed new test ensures the evaluation of intelligence has a measurable, practical finish line that the original test lacks. This additional constraint compels society to weigh the time savings of using artificial intelligence against its total resource cost.
☆ Wayfinding through the AI wilderness: Mapping rhetorics of ChatGPT prompt writing on X (formerly Twitter) to promote critical AI literacies
In this paper, we demonstrate how studying the rhetorics of ChatGPT prompt writing on social media can promote critical AI literacies. Prompt writing is the process of writing instructions for generative AI tools like ChatGPT to elicit desired outputs and there has been an upsurge of conversations about it on social media. To study this rhetorical activity, we build on four overlapping traditions of digital writing research in computers and composition that inform how we frame literacies, how we study social media rhetorics, how we engage iteratively and reflexively with methodologies and technologies, and how we blend computational methods with qualitative methods. Drawing on these four traditions, our paper shows our iterative research process through which we gathered and analyzed a dataset of 32,000 posts (formerly known as tweets) from X (formerly Twitter) about prompt writing posted between November 2022 to May 2023. We present five themes about these emerging AI literacy practices: (1) areas of communication impacted by prompt writing, (2) micro-literacy resources shared for prompt writing, (3) market rhetoric shaping prompt writing, (4) rhetorical characteristics of prompts, and (5) definitions of prompt writing. In discussing these themes and our methodologies, we highlight takeaways for digital writing teachers and researchers who are teaching and analyzing critical AI literacies.
comment: Published in the journal Computers and Composition, Issue 74 (2024)
☆ Artificial Intelligence in Elementary STEM Education: A Systematic Review of Current Applications and Future Challenges
Artificial intelligence (AI) is transforming elementary STEM education, yet evidence remains fragmented. This systematic review synthesizes 258 studies (2020-2025) examining AI applications across eight categories: intelligent tutoring systems (45% of studies), learning analytics (18%), automated assessment (12%), computer vision (8%), educational robotics (7%), multimodal sensing (6%), AI-enhanced extended reality (XR) (4%), and adaptive content generation. The analysis shows that most studies focus on upper elementary grades (65%) and mathematics (38%), with limited cross-disciplinary STEM integration (15%). While conversational AI demonstrates moderate effectiveness (d = 0.45-0.70 where reported), only 34% of studies include standardized effect sizes. Eight major gaps limit real-world impact: fragmented ecosystems, developmental inappropriateness, infrastructure barriers, lack of privacy frameworks, weak STEM integration, equity disparities, teacher marginalization, and narrow assessment scopes. Geographic distribution is also uneven, with 90% of studies originating from North America, East Asia, and Europe. Future directions call for interoperable architectures that support authentic STEM integration, grade-appropriate design, privacy-preserving analytics, and teacher-centered implementations that enhance rather than replace human expertise.
☆ Neither Consent nor Property: A Policy Lab for Data Law
This paper makes the opaque data market in the AI economy empirically legible for the first time, constructing a computational testbed to address a core epistemic failure: regulators governing a market defined by structural opacity, fragile price discovery, and brittle technical safeguards that have paralyzed traditional empirics and fragmented policy. The pipeline begins with multi-year fieldwork to extract the market's hidden logic, and then embeds these grounded behaviors into a high-fidelity ABM, parameterized via a novel LLM-based discrete-choice experiment that captures the preferences of unsurveyable populations. The pipeline is validated against reality, reproducing observed trade patterns. This policy laboratory delivers clear, counter-intuitive results. First, property-style relief is a false promise: ''anonymous-data'' carve-outs expand trade but ignore risk, causing aggregate welfare to collapse once external harms are priced in. Second, social welfare peaks when the downstream buyer internalizes the full substantive risk. This least-cost avoider approach induces efficient safeguards, simultaneously raising welfare and sustaining trade, and provides a robust empirical foundation for the legal drift toward two-sided reachability. The contribution is a reproducible pipeline designed to end the reliance on intuition. It converts qualitative insight into testable, comparative policy experiments, obsoleting armchair conjecture by replacing it with controlled evidence on how legal rules actually shift risk and surplus. This is the forward-looking engine that moves the field from competing intuitions to direct, computational analysis.
☆ Value Drifts: Tracing Value Alignment During LLM Post-Training
As LLMs occupy an increasingly important role in society, they are more and more confronted with questions that require them not only to draw on their general knowledge but also to align with certain human value systems. Therefore, studying the alignment of LLMs with human values has become a crucial field of inquiry. Prior work, however, mostly focuses on evaluating the alignment of fully trained models, overlooking the training dynamics by which models learn to express human values. In this work, we investigate how and at which stage value alignment arises during the course of a model's post-training. Our analysis disentangles the effects of post-training algorithms and datasets, measuring both the magnitude and time of value drifts during training. Experimenting with Llama-3 and Qwen-3 models of different sizes and popular supervised fine-tuning (SFT) and preference optimization datasets and algorithms, we find that the SFT phase generally establishes a model's values, and subsequent preference optimization rarely re-aligns these values. Furthermore, using a synthetic preference dataset that enables controlled manipulation of values, we find that different preference optimization algorithms lead to different value alignment outcomes, even when preference data is held constant. Our findings provide actionable insights into how values are learned during post-training and help to inform data curation, as well as the selection of models and algorithms for preference optimization to improve model alignment to human values.
☆ Urban-MAS: Human-Centered Urban Prediction with LLM-Based Multi-Agent System SP
Urban Artificial Intelligence (Urban AI) has advanced human-centered urban tasks such as perception prediction and human dynamics. Large Language Models (LLMs) can integrate multimodal inputs to address heterogeneous data in complex urban systems but often underperform on domain-specific tasks. Urban-MAS, an LLM-based Multi-Agent System (MAS) framework, is introduced for human-centered urban prediction under zero-shot settings. It includes three agent types: Predictive Factor Guidance Agents, which prioritize key predictive factors to guide knowledge extraction and enhance the effectiveness of compressed urban knowledge in LLMs; Reliable UrbanInfo Extraction Agents, which improve robustness by comparing multiple outputs, validating consistency, and re-extracting when conflicts occur; and Multi-UrbanInfo Inference Agents, which integrate extracted multi-source information across dimensions for prediction. Experiments on running-amount prediction and urban perception across Tokyo, Milan, and Seattle demonstrate that Urban-MAS substantially reduces errors compared to single-LLM baselines. Ablation studies indicate that Predictive Factor Guidance Agents are most critical for enhancing predictive performance, positioning Urban-MAS as a scalable paradigm for human-centered urban AI prediction. Code is available on the project website:https://github.com/THETUREHOOHA/UrbanMAS
comment: Accepted to The 3rd ACM SIGSPATIAL International Workshop on Advances in Urban AI (UrbanAI'25)
☆ A Game-Theoretic Spatio-Temporal Reinforcement Learning Framework for Collaborative Public Resource Allocation
Public resource allocation involves the efficient distribution of resources, including urban infrastructure, energy, and transportation, to effectively meet societal demands. However, existing methods focus on optimizing the movement of individual resources independently, without considering their capacity constraints. To address this limitation, we propose a novel and more practical problem: Collaborative Public Resource Allocation (CPRA), which explicitly incorporates capacity constraints and spatio-temporal dynamics in real-world scenarios. We propose a new framework called Game-Theoretic Spatio-Temporal Reinforcement Learning (GSTRL) for solving CPRA. Our contributions are twofold: 1) We formulate the CPRA problem as a potential game and demonstrate that there is no gap between the potential function and the optimal target, laying a solid theoretical foundation for approximating the Nash equilibrium of this NP-hard problem; and 2) Our designed GSTRL framework effectively captures the spatio-temporal dynamics of the overall system. We evaluate GSTRL on two real-world datasets, where experiments show its superior performance. Our source codes are available in the supplementary materials.
☆ Exploring Dissatisfaction in Bus Route Reduction through LLM-Calibrated Agent-Based Modeling
As emerging mobility modes continue to expand, many cities face declining bus ridership, increasing fiscal pressure to sustain underutilized routes, and growing inefficiencies in resource allocation. This study employs an agent-based modelling (ABM) approach calibrated through a large language model (LLM) using few-shot learning to examine how progressive bus route cutbacks affect passenger dissatisfaction across demographic groups and overall network resilience. Using IC-card data from Beijing's Huairou District, the LLM-calibrated ABM estimated passenger sensitivity parameters related to travel time, waiting, transfers, and crowding. Results show that the structural configuration of the bus network exerts a stronger influence on system stability than capacity or operational factors. The elimination of high-connectivity routes led to an exponential rise in total dissatisfaction, particularly among passengers with disabilities and older adults. The evolution of dissatisfaction exhibited three distinct phases - stable, transitional, and critical. Through the analysis of each stage, this study found that the continuous bus route reduction scenario exhibits three-stage thresholds. Once these thresholds are crossed, even a small reduction in routes may lead to a significant loss of passenger flow. Research highlights the nonlinear response of user sentiment to service reductions and underscore the importance of maintaining structural critical routes and providing stable services to vulnerable groups for equitable and resilient transport planning.
comment: 17 pages, 8 figures, 4 tables
☆ Industry Members' Perceptions about ABET-based Accreditation: An Exploratory Study in a Developing Country
ABET accreditation is an increasingly prominent system of global accreditation of engineering programs, and the assessment requires programs to demonstrate that they meet the needs of the program's stakeholders, typically industrial potential employers of graduates. To obtain these inputs, programs are required to assemble an advisory committee board. The views of the advisory board on the relevance of the degree outcomes are an essential part of this process. The purpose of this qualitative research study is to explore the viewpoints that industry stakeholders have on this type of process. The context for the study was an Ecuadorian engineering program which had successfully achieved the ABET accreditation. The study drew on interviews undertaken with industry members who were part of the advisory board. This study focuses on how they perceive the process and the accreditation awarded, analyzing their views of its usefulness, especially in relation to the employability of graduates. Based on the findings, we offer critical insights into this accreditation process when it takes place in contexts beyond highly industrialized countries.
comment: Accepted manuscript version of a paper published in IEEE Transactions on Education (2024). The final version and citation suggested are available on IEEE Xplore at https://doi.org/10.1109/TE.2024.3410996
♻ ☆ Representative Social Choice: From Learning Theory to AI Alignment NeurIPS 2024
Social choice theory is the study of preference aggregation across a population, used both in mechanism design for human agents and in the democratic alignment of language models. In this study, we propose the representative social choice framework for the modeling of democratic representation in collective decisions, where the number of issues and individuals are too large for mechanisms to consider all preferences directly. These scenarios are widespread in real-world decision-making processes, such as jury trials, legislation, corporate governance, and, more recently, language model alignment. In representative social choice, the population is represented by a finite sample of individual-issue pairs based on which social choice decisions are made. We show that many of the deepest questions in representative social choice can be formulated as statistical learning problems, and prove the generalization properties of social choice mechanisms using the theory of machine learning. We further formulate axioms for representative social choice, and prove Arrow-like impossibility theorems with new combinatorial tools of analysis. Our framework introduces the representative approach to social choice, opening up research directions at the intersection of social choice, learning theory, and AI alignment.
comment: Journal of Artificial Intelligence Research, in press. Best Paper at NeurIPS 2024 Pluralistic Alignment Workshop
♻ ☆ Cancer-Myth: Evaluating Large Language Models on Patient Questions with False Presuppositions
Cancer patients are increasingly turning to large language models (LLMs) for medical information, making it critical to assess how well these models handle complex, personalized questions. However, current medical benchmarks focus on medical exams or consumer-searched questions and do not evaluate LLMs on real patient questions with patient details. In this paper, we first have three hematology-oncology physicians evaluate cancer-related questions drawn from real patients. While LLM responses are generally accurate, the models frequently fail to recognize or address false presuppositions in the questions, posing risks to safe medical decision-making. To study this limitation systematically, we introduce Cancer-Myth, an expert-verified adversarial dataset of 585 cancer-related questions with false presuppositions. On this benchmark, no frontier LLM -- including GPT-5, Gemini-2.5-Pro, and Claude-4-Sonnet -- corrects these false presuppositions more than $43\%$ of the time. To study mitigation strategies, we further construct a 150-question Cancer-Myth-NFP set, in which physicians confirm the absence of false presuppositions. We find typical mitigation strategies, such as adding precautionary prompts with GEPA optimization, can raise accuracy on Cancer-Myth to $80\%$, but at the cost of misidentifying presuppositions in $41\%$ of Cancer-Myth-NFP questions and causing a $10\%$ relative performance drop on other medical benchmarks. These findings highlight a critical gap in the reliability of LLMs, show that prompting alone is not a reliable remedy for false presuppositions, and underscore the need for more robust safeguards in medical AI systems.
♻ ☆ Red Teaming AI Red Teaming
Red teaming has evolved from its origins in military applications to become a widely adopted methodology in cybersecurity and AI. In this paper, we take a critical look at the practice of AI red teaming. We argue that despite its current popularity in AI governance, there exists a significant gap between red teaming's original intent as a critical thinking exercise and its narrow focus on discovering model-level flaws in the context of generative AI. Current AI red teaming efforts focus predominantly on individual model vulnerabilities while overlooking the broader sociotechnical systems and emergent behaviors that arise from complex interactions between models, users, and environments. To address this deficiency, we propose a comprehensive framework operationalizing red teaming in AI systems at two levels: macro-level system red teaming spanning the entire AI development lifecycle, and micro-level model red teaming. Drawing on cybersecurity experience and systems theory, we further propose a set of six recommendations. In these, we emphasize that effective AI red teaming requires multifunctional teams that examine emergent risks, systemic vulnerabilities, and the interplay between technical and social factors.
comment: Conference on Applied Machine Learning for Information Security (CAMLIS) 2025
♻ ☆ Bias in Decision-Making for AI's Ethical Dilemmas: A Comparative Study of ChatGPT and Claude AAAI
Recent advances in Large Language Models (LLMs) have enabled human-like responses across various tasks, raising questions about their ethical decision-making capabilities and potential biases. This study systematically evaluates how nine popular LLMs (both open-source and closed-source) respond to ethical dilemmas involving protected attributes. Across 50,400 trials spanning single and intersectional attribute combinations in four dilemma scenarios (protective vs. harmful), we assess models' ethical preferences, sensitivity, stability, and clustering patterns. Results reveal significant biases in protected attributes in all models, with differing preferences depending on model type and dilemma context. Notably, open-source LLMs show stronger preferences for marginalized groups and greater sensitivity in harmful scenarios, while closed-source models are more selective in protective situations and tend to favor mainstream groups. We also find that ethical behavior varies across dilemma types: LLMs maintain consistent patterns in protective scenarios but respond with more diverse and cognitively demanding decisions in harmful ones. Furthermore, models display more pronounced ethical tendencies under intersectional conditions than in single-attribute settings, suggesting that complex inputs reveal deeper biases. These findings highlight the need for multi-dimensional, context-aware evaluation of LLMs' ethical behavior and offer a systematic evaluation and approach to understanding and addressing fairness in LLM decision-making.
comment: This paper has been accepted by The 20th International AAAI Conference on Web and Social Media (ICWSM 2026), sunny Los Angeles, California
♻ ☆ Detecting Early and Implicit Suicidal Ideation via Longitudinal and Information Environment Signals on Social Media
On social media, many individuals experiencing suicidal ideation (SI) do not disclose their distress explicitly. Instead, signs may surface indirectly through everyday posts or peer interactions. Detecting such implicit signals early is critical but remains challenging. We frame early and implicit SI as a forward-looking prediction task and develop a computational framework that models a user's information environment, consisting of both their longitudinal posting histories as well as the discourse of their socially proximal peers. We adopted a composite network centrality measure to identify top neighbors of a user, and temporally aligned the user's and neighbors' interactions -- integrating the multi-layered signals in a fine-tuned DeBERTa-v3 model. In a Reddit study of 1,000 (500 Case and 500 Control) users, our approach improves early and implicit SI detection by 15% over individual-only baselines. These findings highlight that peer interactions offer valuable predictive signals and carry broader implications for designing early detection systems that capture indirect as well as masked expressions of risk in online environments.
♻ ☆ Epistemic Diversity and Knowledge Collapse in Large Language Models
Large language models (LLMs) tend to generate lexically, semantically, and stylistically homogenous texts. This poses a risk of knowledge collapse, where homogenous LLMs mediate a shrinking in the range of accessible information over time. Existing works on homogenization are limited by a focus on closed-ended multiple-choice setups or fuzzy semantic features, and do not look at trends across time and cultural contexts. To overcome this, we present a new methodology to measure epistemic diversity, i.e., variation in real-world claims in LLM outputs, which we use to perform a broad empirical study of LLM knowledge collapse. We test 27 LLMs, 155 topics covering 12 countries, and 200 prompt variations sourced from real user chats. For the topics in our study, we show that while newer models tend to generate more diverse claims, nearly all models are less epistemically diverse than a basic web search. We find that model size has a negative impact on epistemic diversity, while retrieval-augmented generation (RAG) has a positive impact, though the improvement from RAG varies by the cultural context. Finally, compared to a traditional knowledge source (Wikipedia), we find that country-specific claims reflect the English language more than the local one, highlighting a gap in epistemic representation
comment: 16 pages; 8 figures, 4 tables; v2 changelog: Fixed the modeling for table 3, random effect is the model version; v3 changelog: Fixed minor formatting issues in tables 2 and 3; v4 changelog: Fixed some typos and model description
♻ ☆ A Survey of Internet Censorship and its Measurement: Methodology, Trends, and Challenges
Internet censorship limits the access of nodes residing within a specific network environment to the public Internet, and vice versa. During the last decade, techniques for conducting Internet censorship have been developed further. Consequently, methodology for measuring Internet censorship had been improved as well. In this paper, we firstly provide a survey of network-level Internet censorship techniques. Secondly, we survey censorship measurement methodology. We further cover the censorship of circumvention tools and its measurement, as well as available datasets. In cases where it is beneficial, we bridge the terminology and taxonomy of Internet censorship with related domains, namely traffic obfuscation and information hiding. We further extend the technical perspective with recent trends and challenges, including human aspects of Internet censorship.
comment: Appeared in Computers & Security (Elsevier, 2025)
♻ ☆ Digital Labor and the Inconspicuous Production of Artificial Intelligence
Digital platforms capitalize on users' labor, often disguising essential contributions as casual activities or consumption, regardless of users' recognition of their efforts. Data annotation, content creation, and engagement with advertising are all aspects of this hidden productivity. Despite playing a crucial role in driving AI development, such tasks remain largely unrecognized and undercompensated. This chapter exposes the systemic devaluation of these activities in the digital economy, by drawing on historical theories about unrecognized labor, from housework to audience labor. This approach advocates for a broader understanding of digital labor by introducing the concept of ''inconspicuous production.'' It moves beyond the traditional notion of ''invisible work'' to highlight the hidden elements inherent in all job types, especially in light of growing automation and platform-based employment.
♻ ☆ Toward a Public and Secure Generative AI: A Comparative Analysis of Open and Closed LLMs
Generative artificial intelligence (Gen AI) systems represent a critical technology with far-reaching implications across multiple domains of society. However, their deployment entails a range of risks and challenges that require careful evaluation. To date, there has been a lack of comprehensive, interdisciplinary studies offering a systematic comparison between open-source and proprietary (closed) generative AI systems, particularly regarding their respective advantages and drawbacks. This study aims to: i) critically evaluate and compare the characteristics, opportunities, and challenges of open and closed generative AI models; and ii) propose foundational elements for the development of an Open, Public, and Safe Gen AI framework. As a methodology, we adopted a combined approach that integrates three methods: literature review, critical analysis, and comparative analysis. The proposed framework outlines key dimensions, openness, public governance, and security, as essential pillars for shaping the future of trustworthy and inclusive Gen AI. Our findings reveal that open models offer greater transparency, auditability, and flexibility, enabling independent scrutiny and bias mitigation. In contrast, closed systems often provide better technical support and ease of implementation, but at the cost of unequal access, accountability, and ethical oversight. The research also highlights the importance of multi-stakeholder governance, environmental sustainability, and regulatory frameworks in ensuring responsible development.
♻ ☆ Embracing Contradiction: Theoretical Inconsistency Will Not Impede the Road of Building Responsible AI Systems
This position paper argues that the theoretical inconsistency often observed among Responsible AI (RAI) metrics, such as differing fairness definitions or tradeoffs between accuracy and privacy, should be embraced as a valuable feature rather than a flaw to be eliminated. We contend that navigating these inconsistencies, by treating metrics as divergent objectives, yields three key benefits: (1) Normative Pluralism: Maintaining a full suite of potentially contradictory metrics ensures that the diverse moral stances and stakeholder values inherent in RAI are adequately represented. (2) Epistemological Completeness: The use of multiple, sometimes conflicting, metrics allows for a more comprehensive capture of multifaceted ethical concepts, thereby preserving greater informational fidelity about these concepts than any single, simplified definition. (3) Implicit Regularization: Jointly optimizing for theoretically conflicting objectives discourages overfitting to one specific metric, steering models towards solutions with enhanced generalization and robustness under real-world complexities. In contrast, efforts to enforce theoretical consistency by simplifying or pruning metrics risk narrowing this value diversity, losing conceptual depth, and degrading model performance. We therefore advocate for a shift in RAI theory and practice: from getting trapped in inconsistency to characterizing acceptable inconsistency thresholds and elucidating the mechanisms that permit robust, approximated consistency in practice.
comment: 14 pages,2 figure
♻ ☆ A Comparison of Precinct and District Voting Data Using Persistent Homology to Identify Gerrymandering in North Carolina
Gerrymandering is one of the biggest threats to American democracy. By manipulating district lines, politicians effectively choose their voters rather than the other way around. Current gerrymandering identification methods (namely the Polsby-Popper and Reock scores) focus on the compactness of congressional districts, making them extremely sensitive to physical geography. To address this gap, we extend Feng and Porter's 2021 paper, which used the level-set method to turn geographic shapefiles into filtered simplicial complexes, in order to compare precinct level voting data to district level voting data. As precincts are regarded as too small to be gerrymandered, we are able to identify discrepancies between precinct and district level voting data to quantify gerrymandering in the United States. By comparing the persistent homologies of Democratic voting regions at the precinct and district levels, we detect when areas have been "cracked" (split across multiple districts) or "packed" (compressed into one district) for partisan gain. This analysis was conducted for North Carolina House of Representatives elections (2012-2024). North Carolina has been redistricted four times in the past ten years, unusually frequent as most states redistrict decennially, making it a valuable case study. By comparing persistence barcodes at the precinct and district levels (using the bottleneck distance), we show that precinct level voting patterns do not significantly fluctuate biannually, while district level patterns do, suggesting that shifts are likely a result of redistricting rather than voter behavior, providing strong evidence of gerrymandering. This research presents a novel application of topological data analysis in evaluating gerrymandering and shows persistent homology can be useful in discerning gerrymandered districts.
Computers and Society
☆ The Quest for Reliable Metrics of Responsible AI
The development of Artificial Intelligence (AI), including AI in Science (AIS), should be done following the principles of responsible AI. Progress in responsible AI is often quantified through evaluation metrics, yet there has been less work on assessing the robustness and reliability of the metrics themselves. We reflect on prior work that examines the robustness of fairness metrics for recommender systems as a type of AI application and summarise their key takeaways into a set of non-exhaustive guidelines for developing reliable metrics of responsible AI. Our guidelines apply to a broad spectrum of AI applications, including AIS.
comment: Accepted for presentation at the AI in Science Summit 2025
☆ Systems for Scaling Accessibility Efforts in Large Computing Courses
It is critically important to make computing courses accessible for disabled students. This is particularly challenging in large computing courses, which face unique challenges due to the sheer scale of course content and staff. In this experience report, we share our attempts to scale accessibility efforts for a large university-level introductory programming course sequence, with over 3500 enrolled students and 100 teaching assistants (TAs) per year. First, we introduce our approach to auditing and remediating course materials by systematically identifying and resolving accessibility issues. However, remediating content post-hoc is purely reactive and scales poorly. We then discuss two approaches to systems that enable proactive accessibility work. We developed technical systems to manage remediation complexity at scale: redesigning other course content to be web-first and accessible by default, providing alternate accessible views for existing course content, and writing automated tests to receive instant feedback on a subset of accessibility issues. Separately, we established human systems to empower both course staff and students in accessibility best practices: developing and running various TA-targeted accessibility trainings, establishing course-wide accessibility norms, and integrating accessibility topics into core course curriculum. Preliminary qualitative feedback from both staff and students shows increased engagement in accessibility work and accessible technologies. We close by discussing limitations and lessons learned from our work, with advice for others developing similar auditing, remediation, technical, or human systems.
comment: 7 pages. To be published In the Proceedings of the 57th ACM Technical Symposium on Computer Science Education V.1
☆ Forecasting Occupational Survivability of Rickshaw Pullers in a Changing Climate with Wearable Data
Cycle rickshaw pullers are highly vulnerable to extreme heat, yet little is known about how their physiological biomarkers respond under such conditions. This study collected real-time weather and physiological data using wearable sensors from 100 rickshaw pullers in Dhaka, Bangladesh. In addition, interviews with 12 pullers explored their knowledge, perceptions, and experiences related to climate change. We developed a Linear Gaussian Bayesian Network (LGBN) regression model to predict key physiological biomarkers based on activity, weather, and demographic features. The model achieved normalized mean absolute error values of 0.82, 0.47, 0.65, and 0.67 for skin temperature, relative cardiac cost, skin conductance response, and skin conductance level, respectively. Using projections from 18 CMIP6 climate models, we layered the LGBN on future climate forecasts to analyze survivability for current (2023-2025) and future years (2026-2100). Based on thresholds of WBGT above 31.1{\deg}C and skin temperature above 35{\deg}C, 32% of rickshaw pullers already face high heat exposure risk. By 2026-2030, this percentage may rise to 37% with average exposure lasting nearly 12 minutes, or about two-thirds of the trip duration. A thematic analysis of interviews complements these findings, showing that rickshaw pullers recognize their increasing climate vulnerability and express concern about its effects on health and occupational survivability.
comment: This is a preprint version of a manuscript accepted and to be published in the Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies (IMWUT)
☆ flowengineR: A Modular and Extensible Framework for Fair and Reproducible Workflow Design in R
flowengineR is an R package designed to provide a modular and extensible framework for building reproducible algorithmic workflows for general-purpose machine learning pipelines. It is motivated by the rapidly evolving field of algorithmic fairness where new metrics, mitigation strategies, and machine learning methods continuously emerge. A central challenge in fairness, but also far beyond, is that existing toolkits either focus narrowly on single interventions or treat reproducibility and extensibility as secondary considerations rather than core design principles. flowengineR addresses this by introducing a unified architecture of standardized engines for data splitting, execution, preprocessing, training, inprocessing, postprocessing, evaluation, and reporting. Each engine encapsulates one methodological task yet communicates via a lightweight interface, ensuring workflows remain transparent, auditable, and easily extensible. Although implemented in R, flowengineR builds on ideas from workflow languages (CWL, YAWL), graph-oriented visual programming languages (KNIME), and R frameworks (BatchJobs, batchtools). Its emphasis, however, is less on orchestrating engines for resilient parallel execution but rather on the straightforward setup and management of distinct engines as data structures. This orthogonalization enables distributed responsibilities, independent development, and streamlined integration. In fairness context, by structuring fairness methods as interchangeable engines, flowengineR lets researchers integrate, compare, and evaluate interventions across the modeling pipeline. At the same time, the architecture generalizes to explainability, robustness, and compliance metrics without core modifications. While motivated by fairness, it ultimately provides a general infrastructure for any workflow context where reproducibility, transparency, and extensibility are essential.
comment: 27 pages, 7 figures, 1 table
☆ RailEstate: An Interactive System for Metro Linked Property Trends
Access to metro systems plays a critical role in shaping urban housing markets by enhancing neighborhood accessibility and driving property demand. We present RailEstate, a novel web based system that integrates spatial analytics, natural language interfaces, and interactive forecasting to analyze how proximity to metro stations influences residential property prices in the Washington metropolitan area. Unlike static mapping tools or generic listing platforms, RailEstate combines 25 years of historical housing data with transit infrastructure to support low latency geospatial queries, time series visualizations, and predictive modeling. Users can interactively explore ZIP code level price patterns, investigate long term trends, and forecast future housing values around any metro station. A key innovation is our natural language chatbot, which translates plain-English questions e.g., What is the highest price in Falls Church in the year 2000? into executable SQL over a spatial database. This unified and interactive platform empowers urban planners, investors, and residents to derive actionable insights from metro linked housing data without requiring technical expertise.
☆ What is the Return on Investment of Digital Engineering for Complex Systems Development? Findings from a Mixed-Methods Study on the Post-production Design Change Process of Navy Assets
Complex engineered systems routinely face schedule and cost overruns, along with poor post-deployment performance. Championed by both INCOSE and the U.S. Department of Defense (DoD), the systems engineering (SE) community has increasingly looked to Digital Engineering (DE) as a potential remedy. Despite this growing advocacy, most of DE's purported benefits remain anecdotal, and its return on investment (ROI) remains poorly understood. This research presents findings from a case study on a Navy SE team responsible for the preliminary design phase of post-production design change projects for Navy assets. Using a mixed-methods approach, we document why complex system sustainment projects are routinely late, where and to what extent schedule slips arise, and how a DE transformation could improve schedule adherence. This study makes three contributions. First, it identifies four archetypical inefficiency modes that drive schedule overruns and explains how these mechanisms unfold in their organizational context. Second, it quantifies the magnitude and variation of schedule slips. Third, it creates a hypothetical digitally transformed version of the current process, aligned with DoD DE policy, and compares it to the current state to estimate potential schedule gains. Our findings suggest that a DE transformation could reduce the median project duration by 50.1% and reduce the standard deviation by 41.5%, leading to faster and more predictable timelines. However, the observed gains are not uniform across task categories. Overall, this study provides initial quantitative evidence of DE's potential ROI and its value in improving the efficiency and predictability of complex system sustainment projects.
☆ Instrumental goals in advanced AI systems: Features to be managed and not failures to be eliminated?
In artificial intelligence (AI) alignment research, instrumental goals, also called instrumental subgoals or instrumental convergent goals, are widely associated with advanced AI systems. These goals, which include tendencies such as power-seeking and self-preservation, become problematic when they conflict with human aims. Conventional alignment theory treats instrumental goals as sources of risk that become problematic through failure modes such as reward hacking or goal misgeneralization, and attempts to limit the symptoms of instrumental goals, notably resource acquisition and self-preservation. This article proposes an alternative framing: that a philosophical argument can be constructed according to which instrumental goals may be understood as features to be accepted and managed rather than failures to be limited. Drawing on Aristotle's ontology and its modern interpretations, an ontology of concrete, goal-directed entities, it argues that advanced AI systems can be seen as artifacts whose formal and material constitution gives rise to effects distinct from their designers' intentions. In this view, the instrumental tendencies of such systems correspond to per se outcomes of their constitution rather than accidental malfunctions. The implication is that efforts should focus less on eliminating instrumental goals and more on understanding, managing, and directing them toward human-aligned ends.
☆ Shifts in U.S. Social Media Use, 2020-2024: Decline, Fragmentation, and Enduring Polarization
Using nationally representative data from the 2020 and 2024 American National Election Studies (ANES), this paper traces how the U.S. social media landscape has shifted across platforms, demographics, and politics. Overall platform use has declined, with the youngest and oldest Americans increasingly abstaining from social media altogether. Facebook, YouTube, and Twitter/X have lost ground, while TikTok and Reddit have grown modestly, reflecting a more fragmented digital public sphere. Platform audiences have aged and become slightly more educated and diverse. Politically, most platforms have moved toward Republican users while remaining, on balance, Democratic-leaning. Twitter/X has experienced the sharpest shift: posting has flipped nearly 50 percentage points from Democrats to Republicans. Across platforms, political posting remains tightly linked to affective polarization, as the most partisan users are also the most active. As casual users disengage and polarized partisans remain vocal, the online public sphere grows smaller, sharper, and more ideologically extreme.
☆ Tracking Walls, Take-It-Or-Leave-It Choices, the GDPR, and the ePrivacy Regulation
On the internet, we encounter take-it-or-leave-it choices regarding our privacy on a daily basis. In Europe, online tracking for targeted advertising generally requires the internet users' consent to be lawful. Some websites use a tracking wall, a barrier that visitors can only pass if they consent to tracking by third parties. When confronted with such a tracking wall, many people click 'I agree' to tracking. A survey that we conducted shows that most people find tracking walls unfair and unacceptable. We analyse under which conditions the ePrivacy Directive and the General Data Protection Regulation allow tracking walls. We provide a list of circumstances to assess when a tracking wall makes consent invalid. We also explore how the EU lawmaker could regulate tracking walls, for instance in the ePrivacy Regulation. It should be seriously considered to ban tracking walls, at least in certain circumstances.
☆ Online Behavioral Advertising: A Literature Review and Research Agenda
Advertisers are increasingly monitoring people's online behavior and using the information collected to show people individually targeted advertisements. This phenomenon is called online behavioral advertising (OBA). Although advertisers can benefit from OBA, the practice also raises concerns about privacy. Therefore, OBA has received much attention from advertisers, consumers, policymakers, and scholars. Despite this attention, there is neither a strong definition of OBA nor a clear accumulation of empirical findings. This article defines OBA and provides an overview of the empirical findings by developing a framework that identifies and integrates all factors that can explain consumer responses toward OBA. The framework suggests that the outcomes of OBA are dependent on advertiser-controlled factors (e.g., the level of personalization) and consumer-controlled factors (e.g., knowledge and perceptions about OBA and individual characteristics). The article also overviews the theoretical positioning of OBA by placing the theories that are used to explain consumers' responses to OBA in our framework. Finally, we develop a research agenda and discuss implications for policymakers and advertisers.
☆ Tackling the Algorithmic Control Crisis -- the Technical, Legal, and Ethical Challenges of Research into Algorithmic Agents
Algorithmic agents permeate every instant of our online existence. Based on our digital profiles built from the massive surveillance of our digital existence, algorithmic agents rank search results, filter our emails, hide and show news items on social networks feeds, try to guess what products we might buy next for ourselves and for others, what movies we want to watch, and when we might be pregnant. Algorithmic agents select, filter, and recommend products, information, and people. Increasingly, algorithmic agents don't just select from the range of human created alternatives, but also they create. Burgeoning algorithmic agents are capable of providing us with content made just for us, and engage with us through one-of-a-kind, personalized interactions. Studying these algorithmic agents presents a host of methodological, ethical, and logistical challenges. The objectives of our paper are two-fold. The first aim is to describe one possible approach to researching the individual and societal effects of algorithmic recommenders, and to share our experiences with the academic community. The second is to contribute to a more fundamental discussion about the ethical and legal issues of "tracking the trackers", as well as the costs and trade-offs involved. Our paper will contribute to the discussion on the relative merits, costs and benefits of different approaches to ethically and legally sound research on algorithmic governance. We will argue that besides shedding light on how users interact with algorithmic agents, we also need to be able to understand how different methods of monitoring our algorithmically controlled digital environments compare to each other in terms of costs and benefits. We conclude our article with a number of concrete suggestions for how to address the practical, ethical and legal challenges of researching algorithms and their effects on users and society.
☆ Human Resilience in the AI Era -- What Machines Can't Replace
AI is displacing tasks, mediating high-stakes decisions, and flooding communication with synthetic content, unsettling work, identity, and social trust. We argue that the decisive human countermeasure is resilience. We define resilience across three layers: psychological, including emotion regulation, meaning-making, cognitive flexibility; social, including trust, social capital, coordinated response; organizational, including psychological safety, feedback mechanisms, and graceful degradation. We synthesize early evidence that these capacities buffer individual strain, reduce burnout through social support, and lower silent failure in AI-mediated workflows through team norms and risk-responsive governance. We also show that resilience can be cultivated through training that complements rather than substitutes for structural safeguards. By reframing the AI debate around actionable human resilience, this article offers policymakers, educators, and operators a practical lens to preserve human agency and steer responsible adoption.
☆ The Open Source Resume: How Open Source Contributions Help Students Demonstrate Alignment with Employer Needs
Computer science educators are increasingly integrating open source contributions into classes to prepare students for higher expectations due to GenAI, and to improve employment outcomes in an increasingly competitive job market. However, little is known about how employers view student open source contributions. This paper addresses two research questions qualitatively: what traits do employers desire for entry-level hires in 2025, and how can they be demonstrated through open source contributions? It also tests quantitatively the hypothesis that student knowledge of employers' expectations will improve their motivation to work on open source projects. To answer our qualitative questions, we conducted interviews with US hiring managers. We collaborated with each interviewee to create a "hiring manager agreement," which listed desirable traits and specific ways to demonstrate them through open source, along with a promise to interview some students meeting the criteria. To evaluate our quantitative hypothesis, we surveyed 650 undergraduates attending public universities in the US using an instrument based on expectancy-value theory. Hiring managers wanted many non-technical traits that are difficult to teach in traditional CS classes, such as initiative. There were many commonalities in how employers wanted to see these traits demonstrated in open source contributions. Viewing hiring manager agreements improved student motivation to contribute to open source projects. Our findings suggest that open source contributions may help CS undergraduates get hired, but this requires sustained engagement in multiple areas. Educators can motivate students by sharing employer expectations, but further work is required to determine if this changes their behavior.
comment: Accepted at SIGCSE TS 2026. Supplementary materials: https://doi.org/10.69924/dkr1ysunc72wyzsdgtlrykdn
☆ Scaling Cultural Resources for Improving Generative Models
Generative models are known to have reduced performance in different global cultural contexts and languages. While continual data updates have been commonly conducted to improve overall model performance, bolstering and evaluating this cross-cultural competence of generative AI models requires data resources to be intentionally expanded to include global contexts and languages. In this work, we construct a repeatable, scalable, multi-pronged pipeline to collect and contribute culturally salient, multilingual data. We posit that such data can assess the state of the global applicability of our models and thus, in turn, help identify and improve upon cross-cultural gaps.
☆ The Iceberg Index: Measuring Workforce Exposure Across the AI Economy
Artificial Intelligence is reshaping America's \$9.4 trillion labor market, with cascading effects that extend far beyond visible technology sectors. When AI transforms quality control tasks in automotive plants, consequences spread through logistics networks, supply chains, and local service economies. Yet traditional workforce metrics cannot capture these ripple effects: they measure employment outcomes after disruption occurs, not where AI capabilities overlap with human skills before adoption crystallizes. Project Iceberg addresses this gap using Large Population Models to simulate the human-AI labor market, representing 151 million workers as autonomous agents executing over 32,000 skills and interacting with thousands of AI tools. It introduces the Iceberg Index, a skills-centered metric that measures the wage value of skills AI systems can perform within each occupation. The Index captures technical exposure, where AI can perform occupational tasks, not displacement outcomes or adoption timelines. Analysis shows that visible AI adoption concentrated in computing and technology (2.2% of wage value, approx \$211 billion) represents only the tip of the iceberg. Technical capability extends far below the surface through cognitive automation spanning administrative, financial, and professional services (11.7%, approx \$1.2 trillion). This exposure is fivefold larger and geographically distributed across all states rather than confined to coastal hubs. Traditional indicators such as GDP, income, and unemployment explain less than 5% of this skills-based variation, underscoring why new indices are needed to capture exposure in the AI economy. By simulating how these capabilities may spread under scenarios, Iceberg enables policymakers and business leaders to identify exposure hotspots, prioritize investments, and test interventions before committing billions to implementation
comment: iceberg.mit.edu
☆ Teaching Probabilistic Machine Learning in the Liberal Arts: Empowering Socially and Mathematically Informed AI Discourse
We present a new undergraduate ML course at our institution, a small liberal arts college serving students minoritized in STEM, designed to empower students to critically connect the mathematical foundations of ML with its sociotechnical implications. We propose a "framework-focused" approach, teaching students the language and formalism of probabilistic modeling while leveraging probabilistic programming to lower mathematical barriers. We introduce methodological concepts through a whimsical, yet realistic theme, the "Intergalactic Hypothetical Hospital," to make the content both relevant and accessible. Finally, we pair each technical innovation with counter-narratives that challenge its value using real, open-ended case-studies to cultivate dialectical thinking. By encouraging creativity in modeling and highlighting unresolved ethical challenges, we help students recognize the value and need of their unique perspectives, empowering them to participate confidently in AI discourse as technologists and critical citizens.
comment: Accepted at SIGCSE 2026
♻ ☆ Detecting sub-populations in online health communities: A mixed-methods exploration of breastfeeding messages in BabyCenter Birth Clubs
Parental stress is a nationwide health crisis according to the U.S. Surgeon General's 2024 advisory. To allay stress, expecting parents seek advice and share experiences in a variety of venues, from in-person birth education classes and parenting groups to virtual communities, for example, BabyCenter, a moderated online forum community with over 4 million members in the United States alone. In this study, we aim to understand how parents talk about pregnancy, birth, and parenting by analyzing 5.43M posts and comments from the April 2017--January 2024 cohort of 331,843 BabyCenter "birth club" users (that is, users who participate in due date forums or "birth clubs" based on their babies' due dates). Using BERTopic to locate breastfeeding threads and LDA to summarize themes, we compare documents in breastfeeding threads to all other birth-club content. Analyzing time series of word rank, we find that posts and comments containing anxiety-related terms increased steadily from April 2017 to January 2024. We used an ensemble of topic models to identify dominant breastfeeding topics within birth clubs, and then explored trends among all user content versus those who posted in threads related to breastfeeding topics. We conducted Latent Dirichlet Allocation (LDA) topic modeling to identify the most common topics in the full population, as well as within the subset breastfeeding population. We find that the topic of sleep dominates in content generated by the breastfeeding population, as well anxiety-related and work/daycare topics that are not predominant in the full BabyCenter birth club dataset.
♻ ☆ Which Demographic Features Are Relevant for Individual Fairness Evaluation of U.S. Recidivism Risk Assessment Tools?
Despite its constitutional relevance, the technical ``individual fairness'' criterion has not been operationalized in U.S. state or federal statutes/regulations. We conduct a human subjects experiment to address this gap, evaluating which demographic features are relevant for individual fairness evaluation of recidivism risk assessment (RRA) tools. Our analyses conclude that the individual similarity function should consider age and sex, but it should ignore race.
comment: ICAIL 2025
♻ ☆ Constraining Participation: Affordances of Feedback Features in Interfaces to Large Language Models
Large language models (LLMs) are now accessible to anyone with a computer, a web browser, and an internet connection via browser-based interfaces, shifting the dynamics of participation in AI development. This article examines how interactive feedback features in ChatGPT's interface afford user participation in LLM iteration. Drawing on a survey of early ChatGPT users and applying the mechanisms and conditions framework of affordances, we analyse how these features shape user input. Our analysis indicates that these features encourage simple, frequent, and performance-focused feedback while discouraging collective input and discussions among users. Drawing on participatory design literature, we argue such constraints, if replicated across broader user bases, risk reinforcing power imbalances between users, the public, and companies developing LLMs. Our analysis contributes to the growing literature on participatory AI by critically examining the limitations of existing feedback processes and proposing directions for redesign. Rather than focusing solely on aligning model outputs with specific user preferences, we advocate for creating infrastructure that supports sustained dialogue about the purpose and applications of LLMs. This approach requires attention to the ongoing work of "infrastructuring" - creating and sustaining the social, technical, and institutional structures necessary to address matters of concern to stakeholders impacted by LLM development and deployment.
comment: Version accepted for publication
♻ ☆ Many LLMs Are More Utilitarian Than One NeurIPS 2025
Moral judgment is integral to large language models' (LLMs) social reasoning. As multi-agent systems gain prominence, it becomes crucial to understand how LLMs function when collaborating compared to operating as individual agents. In human moral judgment, group deliberation leads to a Utilitarian Boost: a tendency to endorse norm violations that inflict harm but maximize benefits for the greatest number of people. We study whether a similar dynamic emerges in multi-agent LLM systems. We test six models on well-established sets of moral dilemmas across two conditions: (1) Solo, where models reason independently, and (2) Group, where they engage in multi-turn discussions in pairs or triads. In personal dilemmas, where agents decide whether to directly harm an individual for the benefit of others, all models rated moral violations as more acceptable when part of a group, demonstrating a Utilitarian Boost similar to that observed in humans. However, the mechanism for the Boost in LLMs differed: While humans in groups become more utilitarian due to heightened sensitivity to decision outcomes, LLM groups showed either reduced sensitivity to norms or enhanced impartiality. We report model differences in when and how strongly the Boost manifests. We also discuss prompt and agent compositions that enhance or mitigate the effect. We end with a discussion of the implications for AI alignment, multi-agent design, and artificial moral reasoning. Code available at: https://github.com/baltaci-r/MoralAgents
comment: Accepted to the Conference on Neural Information Processing Systems (NeurIPS 2025)
♻ ☆ To what extent can current French mobile network support agricultural robots?
The large-scale integration of robots in agriculture offers many promises for enhancing sustainability and increasing food production. The numerous applications of agricultural robots rely on the transmission of data via mobile network, with the amount of data depending on the services offered by the robots and the level of on-board technology. Nevertheless, infrastructure required to deploy these robots, as well as the related energy and environmental consequences, appear overlooked in the digital agriculture literature. In this study, we propose a method for assessing the additional energy consumption and carbon footprint induced by a large-scale deployment of agricultural robots. Our method also estimates the share of agricultural area that can be managed by the deployed robots with respect to network infrastructure constraints. We have applied this method to metropolitan France mobile network and agricultural parcels for five different robotic scenarios. Our results show that increasing the robot's bitrate needs leads to significant additional impacts, which increase at a pace that is poorly captured by classical linear extrapolation methods. When constraining the network to the existing sites, increased bitrate needs also comes with a rapidly decreasing manageable agricultural area.
comment: Best Paper ICT4S 2025
♻ ☆ Face the Facts! Evaluating RAG-based Pipelines for Professional Fact-Checking
Natural Language Processing and Generation systems have recently shown the potential to complement and streamline the costly and time-consuming job of professional fact-checkers. In this work, we lift several constraints of current state-of-the-art pipelines for automated fact-checking based on the Retrieval-Augmented Generation (RAG) paradigm. Our goal is to benchmark, following professional fact-checking practices, RAG-based methods for the generation of verdicts - i.e., short texts discussing the veracity of a claim - evaluating them on stylistically complex claims and heterogeneous, yet reliable, knowledge bases. Our findings show a complex landscape, where, for example, LLM-based retrievers outperform other retrieval techniques, though they still struggle with heterogeneous knowledge bases; larger models excel in verdict faithfulness, while smaller models provide better context adherence, with human evaluations favouring zero-shot and one-shot approaches for informativeness, and fine-tuned models for emotional alignment.
comment: Code and data at https://github.com/drusso98/face-the-facts - Accepted for publication at INLG 2025
♻ ☆ What Work is AI Actually Doing? Uncovering the Drivers of Generative AI Adoption
Purpose: The rapid integration of artificial intelligence (AI) systems like ChatGPT, Claude AI, etc., has a deep impact on how work is done. Predicting how AI will reshape work requires understanding not just its capabilities, but how it is actually being adopted. This study investigates which intrinsic task characteristics drive users' decisions to delegate work to AI systems. Methodology: This study utilizes the Anthropic Economic Index dataset of four million Claude AI interactions mapped to O*NET tasks. We systematically scored each task across seven key dimensions: Routine, Cognitive, Social Intelligence, Creativity, Domain Knowledge, Complexity, and Decision Making using 35 parameters. We then employed multivariate techniques to identify latent task archetypes and analyzed their relationship with AI usage. Findings: Tasks requiring high creativity, complexity, and cognitive demand, but low routineness, attracted the most AI engagement. Furthermore, we identified three task archetypes: Dynamic Problem Solving, Procedural & Analytical Work, and Standardized Operational Tasks, demonstrating that AI applicability is best predicted by a combination of task characteristics, over individual factors. Our analysis revealed highly concentrated AI usage patterns, with just 5% of tasks accounting for 59% of all interactions. Originality: This research provides the first systematic evidence linking real-world generative AI usage to a comprehensive, multi-dimensional framework of intrinsic task characteristics. It introduces a data-driven classification of work archetypes that offers a new framework for analyzing the emerging human-AI division of labor.
comment: 22 pages