MyArxiv
Computation and Language
☆ RedSage: A Cybersecurity Generalist LLM ICLR 2026
Cybersecurity operations demand assistant LLMs that support diverse workflows without exposing sensitive data. Existing solutions either rely on proprietary APIs with privacy risks or on open models lacking domain adaptation. To bridge this gap, we curate 11.8B tokens of cybersecurity-focused continual pretraining data via large-scale web filtering and manual collection of high-quality resources, spanning 28.6K documents across frameworks, offensive techniques, and security tools. Building on this, we design an agentic augmentation pipeline that simulates expert workflows to generate 266K multi-turn cybersecurity samples for supervised fine-tuning. Combined with general open-source LLM data, these resources enable the training of RedSage, an open-source, locally deployable cybersecurity assistant with domain-aware pretraining and post-training. To rigorously evaluate the models, we introduce RedSage-Bench, a benchmark with 30K multiple-choice and 240 open-ended Q&A items covering cybersecurity knowledge, skills, and tool expertise. RedSage is further evaluated on established cybersecurity benchmarks (e.g., CTI-Bench, CyberMetric, SECURE) and general LLM benchmarks to assess broader generalization. At the 8B scale, RedSage achieves consistently better results, surpassing the baseline models by up to +5.59 points on cybersecurity benchmarks and +5.05 points on Open LLM Leaderboard tasks. These findings demonstrate that domain-aware agentic augmentation and pre/post-training can not only enhance cybersecurity-specific expertise but also help to improve general reasoning and instruction-following. All models, datasets, and code are publicly available.
comment: Accepted on ICLR 2026; Project page: https://risys-lab.github.io/RedSage/
☆ Discovering Hidden Gems in Model Repositories
Public repositories host millions of fine-tuned models, yet community usage remains disproportionately concentrated on a small number of foundation checkpoints. We investigate whether this concentration reflects efficient market selection or if superior models are systematically overlooked. Through an extensive evaluation of over 2,000 models, we show the prevalence of "hidden gems", unpopular fine-tunes that significantly outperform their popular counterparts. Notably, within the Llama-3.1-8B family, we find rarely downloaded checkpoints that improve math performance from 83.2% to 96.0% without increasing inference costs. However, discovering these models through exhaustive evaluation of every uploaded model is computationally infeasible. We therefore formulate model discovery as a Multi-Armed Bandit problem and accelerate the Sequential Halving search algorithm by using shared query sets and aggressive elimination schedules. Our method retrieves top models with as few as 50 queries per candidate, accelerating discovery by over 50x.
☆ Hybrid Linear Attention Done Right: Efficient Distillation and Effective Architectures for Extremely Long Contexts
Hybrid Transformer architectures, which combine softmax attention blocks and recurrent neural networks (RNNs), have shown a desirable performance-throughput tradeoff for long-context modeling, but their adoption and studies are hindered by the prohibitive cost of large-scale pre-training from scratch. Some recent studies have shown that pre-trained softmax attention blocks can be converted into RNN blocks through parameter transfer and knowledge distillation. However, these transfer methods require substantial amounts of training data (more than 10B tokens), and the resulting hybrid models also exhibit poor long-context performance, which is the scenario where hybrid models enjoy significant inference speedups over Transformer-based models. In this paper, we present HALO (Hybrid Attention via Layer Optimization), a pipeline for distilling Transformer models into RNN-attention hybrid models. We then present HypeNet, a hybrid architecture with superior length generalization enabled by a novel position encoding scheme (named HyPE) and various architectural modifications. We convert the Qwen3 series into HypeNet using HALO, achieving performance comparable to the original Transformer models while enjoying superior long-context performance and efficiency. The conversion requires just 2.3B tokens, less than 0.01% of their pre-training data
comment: 20 pages, 8 figures
☆ UEval: A Benchmark for Unified Multimodal Generation
We introduce UEval, a benchmark to evaluate unified models, i.e., models capable of generating both images and text. UEval comprises 1,000 expert-curated questions that require both images and text in the model output, sourced from 8 real-world tasks. Our curated questions cover a wide range of reasoning types, from step-by-step guides to textbook explanations. Evaluating open-ended multimodal generation is non-trivial, as simple LLM-as-a-judge methods can miss the subtleties. Different from previous works that rely on multimodal Large Language Models (MLLMs) to rate image quality or text accuracy, we design a rubric-based scoring system in UEval. For each question, reference images and text answers are provided to a MLLM to generate an initial rubric, consisting of multiple evaluation criteria, and human experts then refine and validate these rubrics. In total, UEval contains 10,417 validated rubric criteria, enabling scalable and fine-grained automatic scoring. UEval is challenging for current unified models: GPT-5-Thinking scores only 66.4 out of 100, while the best open-source model reaches merely 49.1. We observe that reasoning models often outperform non-reasoning ones, and transferring reasoning traces from a reasoning model to a non-reasoning model significantly narrows the gap. This suggests that reasoning may be important for tasks requiring complex multimodal understanding and generation.
☆ Exploring Reasoning Reward Model for Agents
Agentic Reinforcement Learning (Agentic RL) has achieved notable success in enabling agents to perform complex reasoning and tool use. However, most methods still relies on sparse outcome-based reward for training. Such feedback fails to differentiate intermediate reasoning quality, leading to suboptimal training results. In this paper, we introduce Agent Reasoning Reward Model (Agent-RRM), a multi-faceted reward model that produces structured feedback for agentic trajectories, including (1) an explicit reasoning trace , (2) a focused critique that provides refinement guidance by highlighting reasoning flaws, and (3) an overall score that evaluates process performance. Leveraging these signals, we systematically investigate three integration strategies: Reagent-C (text-augmented refinement), Reagent-R (reward-augmented guidance), and Reagent-U (unified feedback integration). Extensive evaluations across 12 diverse benchmarks demonstrate that Reagent-U yields substantial performance leaps, achieving 43.7% on GAIA and 46.2% on WebWalkerQA, validating the effectiveness of our reasoning reward model and training schemes. Code, models, and datasets are all released to facilitate future research.
comment: Project page: https://github.com/kxfan2002/Reagent
☆ DynaWeb: Model-Based Reinforcement Learning of Web Agents
The development of autonomous web agents, powered by Large Language Models (LLMs) and reinforcement learning (RL), represents a significant step towards general-purpose AI assistants. However, training these agents is severely hampered by the challenges of interacting with the live internet, which is inefficient, costly, and fraught with risks. Model-based reinforcement learning (MBRL) offers a promising solution by learning a world model of the environment to enable simulated interaction. This paper introduces DynaWeb, a novel MBRL framework that trains web agents through interacting with a web world model trained to predict naturalistic web page representations given agent actions. This model serves as a synthetic web environment where an agent policy can dream by generating vast quantities of rollout action trajectories for efficient online reinforcement learning. Beyond free policy rollouts, DynaWeb incorporates real expert trajectories from training data, which are randomly interleaved with on-policy rollouts during training to improve stability and sample efficiency. Experiments conducted on the challenging WebArena and WebVoyager benchmarks demonstrate that DynaWeb consistently and significantly improves the performance of state-of-the-art open-source web agent models. Our findings establish the viability of training web agents through imagination, offering a scalable and efficient way to scale up online agentic RL.
☆ FineInstructions: Scaling Synthetic Instructions to Pre-Training Scale
Due to limited supervised training data, large language models (LLMs) are typically pre-trained via a self-supervised "predict the next word" objective on a vast amount of unstructured text data. To make the resulting model useful to users, it is further trained on a far smaller amount of "instruction-tuning" data comprised of supervised training examples of instructions and responses. To overcome the limited amount of supervised data, we propose a procedure that can transform the knowledge in internet-scale pre-training documents into billions of synthetic instruction and answer training pairs. The resulting dataset, called FineInstructions, uses ~18M instruction templates created from real user-written queries and prompts. These instruction templates are matched to and instantiated with human-written source documents from unstructured pre-training corpora. With "supervised" synthetic training data generated at this scale, an LLM can be pre-trained from scratch solely with the instruction-tuning objective, which is far more in-distribution with the expected downstream usage of LLMs (responding to user prompts). We conduct controlled token-for-token training experiments and find pre-training on FineInstructions outperforms standard pre-training and other proposed synthetic pre-training techniques on standard benchmarks measuring free-form response quality. Our resources can be found at https://huggingface.co/fineinstructions .
☆ Reasoning While Asking: Transforming Reasoning Large Language Models from Passive Solvers to Proactive Inquirers
Reasoning-oriented Large Language Models (LLMs) have achieved remarkable progress with Chain-of-Thought (CoT) prompting, yet they remain fundamentally limited by a \emph{blind self-thinking} paradigm: performing extensive internal reasoning even when critical information is missing or ambiguous. We propose Proactive Interactive Reasoning (PIR), a new reasoning paradigm that transforms LLMs from passive solvers into proactive inquirers that interleave reasoning with clarification. Unlike existing search- or tool-based frameworks that primarily address knowledge uncertainty by querying external environments, PIR targets premise- and intent-level uncertainty through direct interaction with the user. PIR is implemented via two core components: (1) an uncertainty-aware supervised fine-tuning procedure that equips models with interactive reasoning capability, and (2) a user-simulator-based policy optimization framework driven by a composite reward that aligns model behavior with user intent. Extensive experiments on mathematical reasoning, code generation, and document editing demonstrate that PIR consistently outperforms strong baselines, achieving up to 32.70\% higher accuracy, 22.90\% higher pass rate, and 41.36 BLEU improvement, while reducing nearly half of the reasoning computation and unnecessary interaction turns. Further reliability evaluations on factual knowledge, question answering, and missing-premise scenarios confirm the strong generalization and robustness of PIR. Model and code are publicly available at: \href{https://github.com/SUAT-AIRI/Proactive-Interactive-R1}
comment: The manuscript is under review
☆ A Federated and Parameter-Efficient Framework for Large Language Model Training in Medicine
Large language models (LLMs) have demonstrated strong performance on medical benchmarks, including question answering and diagnosis. To enable their use in clinical settings, LLMs are typically further adapted through continued pretraining or post-training using clinical data. However, most medical LLMs are trained on data from a single institution, which faces limitations in generalizability and safety in heterogeneous systems. Federated learning (FL) is a promising solution for enabling collaborative model development across healthcare institutions. Yet applying FL to LLMs in medicine remains fundamentally limited. First, conventional FL requires transmitting the full model during each communication round, which becomes impractical for multi-billion-parameter LLMs given the limited computational resources. Second, many FL algorithms implicitly assume data homogeneity, whereas real-world clinical data are highly heterogeneous across patients, diseases, and institutional practices. We introduce the model-agnostic and parameter-efficient federated learning framework for adapting LLMs to medical applications. Fed-MedLoRA transmits only low-rank adapter parameters, reducing communication and computation overhead, while Fed-MedLoRA+ further incorporates adaptive, data-aware aggregation to improve convergence under cross-site heterogeneity. We apply the framework to clinical information extraction (IE), which transforms patient narratives into structured medical entities and relations. Accuracy was assessed across five patient cohorts through comparisons with BERT models, and LLaMA-3 and DeepSeek-R1, GPT-4o models. Evaluation settings included (1) in-domain training and testing, (2) external validation on independent cohorts, and (3) a low-resource new-site adaptation scenario using real-world clinical notes from the Yale New Haven Health System.
comment: 38 pages, 9 tables, 3 figures
☆ ECO: Quantized Training without Full-Precision Master Weights
Quantization has significantly improved the compute and memory efficiency of Large Language Model (LLM) training. However, existing approaches still rely on accumulating their updates in high-precision: concretely, gradient updates must be applied to a high-precision weight buffer, known as $\textit{master weights}$. This buffer introduces substantial memory overhead, particularly for Sparse Mixture of Experts (SMoE) models, where model parameters and optimizer states dominate memory usage. To address this, we introduce the Error-Compensating Optimizer (ECO), which eliminates master weights by applying updates directly to quantized parameters. ECO quantizes weights after each step and carefully injects the resulting quantization error into the optimizer momentum, forming an error-feedback loop with no additional memory. We prove that, under standard assumptions and a decaying learning rate, ECO converges to a constant-radius neighborhood of the optimum, while naive master-weight removal can incur an error that is inversely proportional to the learning rate. We show empirical results for pretraining small Transformers (30-800M), a Gemma-3 1B model, and a 2.1B parameter Sparse MoE model with FP8 quantization, and fine-tuning DeepSeek-MoE-16B in INT4 precision. Throughout, ECO matches baselines with master weights up to near-lossless accuracy, significantly shifting the static memory vs validation loss Pareto frontier.
☆ GeoNorm: Unify Pre-Norm and Post-Norm with Geodesic Optimization
The placement of normalization layers, specifically Pre-Norm and Post-Norm, remains an open question in Transformer architecture design. In this work, we rethink these approaches through the lens of manifold optimization, interpreting the outputs of the Feed-Forward Network (FFN) and attention layers as update directions in optimization. Building on this perspective, we introduce GeoNorm, a novel method that replaces standard normalization with geodesic updates on the manifold. Furthermore, analogous to learning rate schedules, we propose a layer-wise update decay for the FFN and attention components. Comprehensive experiments demonstrate that GeoNorm consistently outperforms existing normalization methods in Transformer models. Crucially, GeoNorm can be seamlessly integrated into standard Transformer architectures, achieving performance improvements with negligible additional computational cost.
comment: Tech Report
☆ VTC-R1: Vision-Text Compression for Efficient Long-Context Reasoning
Long-context reasoning has significantly empowered large language models (LLMs) to tackle complex tasks, yet it introduces severe efficiency bottlenecks due to the computational complexity. Existing efficient approaches often rely on complex additional training or external models for compression, which limits scalability and discards critical fine-grained information. In this paper, we propose VTC-R1, a new efficient reasoning paradigm that integrates vision-text compression into the reasoning process. Instead of processing lengthy textual traces, VTC-R1 renders intermediate reasoning segments into compact images, which are iteratively fed back into vision-language models as "optical memory." We construct a training dataset based on OpenR1-Math-220K achieving 3.4x token compression and fine-tune representative VLMs-Glyph and Qwen3-VL. Extensive experiments on benchmarks such as MATH500, AIME25, AMC23 and GPQA-D demonstrate that VTC-R1 consistently outperforms standard long-context reasoning. Furthermore, our approach significantly improves inference efficiency, achieving 2.7x speedup in end-to-end latency, highlighting its potential as a scalable solution for reasoning-intensive applications. Our code is available at https://github.com/w-yibo/VTC-R1.
comment: Code: https://github.com/w-yibo/VTC-R1
☆ $G^2$-Reader: Dual Evolving Graphs for Multimodal Document QA
Retrieval-augmented generation is a practical paradigm for question answering over long documents, but it remains brittle for multimodal reading where text, tables, and figures are interleaved across many pages. First, flat chunking breaks document-native structure and cross-modal alignment, yielding semantic fragments that are hard to interpret in isolation. Second, even iterative retrieval can fail in long contexts by looping on partial evidence or drifting into irrelevant sections as noise accumulates, since each step is guided only by the current snippet without a persistent global search state. We introduce $G^2$-Reader, a dual-graph system, to address both issues. It evolves a Content Graph to preserve document-native structure and cross-modal semantics, and maintains a Planning Graph, an agentic directed acyclic graph of sub-questions, to track intermediate findings and guide stepwise navigation for evidence completion. On VisDoMBench across five multimodal domains, $G^2$-Reader with Qwen3-VL-32B-Instruct reaches 66.21\% average accuracy, outperforming strong baselines and a standalone GPT-5 (53.08\%).
☆ MasalBench: A Benchmark for Contextual and Cross-Cultural Understanding of Persian Proverbs in LLMs
In recent years, multilingual Large Language Models (LLMs) have become an inseparable part of daily life, making it crucial for them to master the rules of conversational language in order to communicate effectively with users. While previous work has evaluated LLMs' understanding of figurative language in high-resource languages, their performance in low-resource languages remains underexplored. In this paper, we introduce MasalBench, a comprehensive benchmark for assessing LLMs' contextual and cross-cultural understanding of Persian proverbs, which are a key component of conversation in this low-resource language. We evaluate eight state-of-the-art LLMs on MasalBench and find that they perform well in identifying Persian proverbs in context, achieving accuracies above 0.90. However, their performance drops considerably when tasked with identifying equivalent English proverbs, with the best model achieving 0.79 accuracy. Our findings highlight the limitations of current LLMs in cultural knowledge and analogical reasoning, and they provide a framework for assessing cross-cultural understanding in other low-resource languages. MasalBench is available at https://github.com/kalhorghazal/MasalBench.
☆ On the Paradoxical Interference between Instruction-Following and Task Solving
Instruction following aims to align Large Language Models (LLMs) with human intent by specifying explicit constraints on how tasks should be performed. However, we reveal a counterintuitive phenomenon: instruction following can paradoxically interfere with LLMs' task-solving capability. We propose a metric, SUSTAINSCORE, to quantify the interference of instruction following with task solving. It measures task performance drop after inserting into the instruction a self-evident constraint, which is naturally met by the original successful model output and extracted from it. Experiments on current LLMs in mathematics, multi-hop QA, and code generation show that adding the self-evident constraints leads to substantial performance drops, even for advanced models such as Claude-Sonnet-4.5. We validate the generality of the interference across constraint types and scales. Furthermore, we identify common failure patterns, and by investigating the mechanisms of interference, we observe that failed cases allocate significantly more attention to constraints compared to successful ones. Finally, we use SUSTAINSCORE to conduct an initial investigation into how distinct post-training paradigms affect the interference, presenting empirical observations on current alignment strategies. We will release our code and data to facilitate further research
☆ A Separable Architecture for Continuous Token Representation in Language Models
Transformer scaling law analyses typically treat parameters as interchangeable; an abstraction that accurately predicts loss-compute relationships. Yet, in sub-billion-parameter small language models (SLMs), embedding matrices dominate the parameter budget. This work argues that this allocation is as suboptimal as it is counterintuitive. Leviathan is an architecture with a continuous embedding generator to replace the discrete lookup tables of canonical models. Evaluating on the Pile dataset under isoparametric settings, Leviathan consistently outperforms a standard, LLaMA-style architecture. By means of an empirical power-law fit, Leviathan exhibits a markedly superior effective parameter capacity. Across the regime studied, Leviathan behaves as a dense model with $1.47$ to $2.11 \times$ more parameters.
☆ Thinking Out of Order: When Output Order Stops Reflecting Reasoning Order in Diffusion Language Models
Autoregressive (AR) language models enforce a fixed left-to-right generation order, creating a fundamental limitation when the required output structure conflicts with natural reasoning (e.g., producing answers before explanations due to presentation or schema constraints). In such cases, AR models must commit to answers before generating intermediate reasoning, and this rigid constraint forces premature commitment. Masked diffusion language models (MDLMs), which iteratively refine all tokens in parallel, offer a way to decouple computation order from output structure. We validate this capability on GSM8K, Math500, and ReasonOrderQA, a benchmark we introduce with controlled difficulty and order-level evaluation. When prompts request answers before reasoning, AR models exhibit large accuracy gaps compared to standard chain-of-thought ordering (up to 67% relative drop), while MDLMs remain stable ($\leq$14% relative drop), a property we term "order robustness". Using ReasonOrderQA, we present evidence that MDLMs achieve order robustness by stabilizing simpler tokens (e.g., reasoning steps) earlier in the diffusion process than complex ones (e.g., final answers), enabling reasoning tokens to stabilize before answer commitment. Finally, we identify failure conditions where this advantage weakens, outlining the limits required for order robustness.
comment: 18 pages, 13 figures, 5 tables
☆ Causal Autoregressive Diffusion Language Model
In this work, we propose Causal Autoregressive Diffusion (CARD), a novel framework that unifies the training efficiency of ARMs with the high-throughput inference of diffusion models. CARD reformulates the diffusion process within a strictly causal attention mask, enabling dense, per-token supervision in a single forward pass. To address the optimization instability of causal diffusion, we introduce a soft-tailed masking schema to preserve local context and a context-aware reweighting mechanism derived from signal-to-noise principles. This design enables dynamic parallel decoding, where the model leverages KV-caching to adaptively generate variable-length token sequences based on confidence. Empirically, CARD outperforms existing discrete diffusion baselines while reducing training latency by 3 $\times$ compared to block diffusion methods. Our results demonstrate that CARD achieves ARM-level data efficiency while unlocking the latency benefits of parallel generation, establishing a robust paradigm for next-generation efficient LLMs.
☆ When "Better" Prompts Hurt: Evaluation-Driven Iteration for LLM Applications
Evaluating Large Language Model (LLM) applications differs from traditional software testing because outputs are stochastic, high-dimensional, and sensitive to prompt and model changes. We present an evaluation-driven workflow - Define, Test, Diagnose, Fix - that turns these challenges into a repeatable engineering loop. We introduce the Minimum Viable Evaluation Suite (MVES), a tiered set of recommended evaluation components for (i) general LLM applications, (ii) retrieval-augmented generation (RAG), and (iii) agentic tool-use workflows. We also synthesize common evaluation methods (automated checks, human rubrics, and LLM-as-judge) and discuss known judge failure modes. In reproducible local experiments (Ollama; Llama 3 8B Instruct and Qwen 2.5 7B Instruct), we observe that a generic "improved" prompt template can trade off behaviors: on our small structured suites, extraction pass rate decreased from 100% to 90% and RAG compliance from 93.3% to 80% for Llama 3 when replacing task-specific prompts with generic rules, while instruction-following improved. These findings motivate evaluation-driven prompt iteration and careful claim calibration rather than universal prompt recipes. All test suites, harnesses, and results are included for reproducibility.
☆ Mechanistic Data Attribution: Tracing the Training Origins of Interpretable LLM Units
While Mechanistic Interpretability has identified interpretable circuits in LLMs, their causal origins in training data remain elusive. We introduce Mechanistic Data Attribution (MDA), a scalable framework that employs Influence Functions to trace interpretable units back to specific training samples. Through extensive experiments on the Pythia family, we causally validate that targeted intervention--removing or augmenting a small fraction of high-influence samples--significantly modulates the emergence of interpretable heads, whereas random interventions show no effect. Our analysis reveals that repetitive structural data (e.g., LaTeX, XML) acts as a mechanistic catalyst. Furthermore, we observe that interventions targeting induction head formation induce a concurrent change in the model's in-context learning (ICL) capability. This provides direct causal evidence for the long-standing hypothesis regarding the functional link between induction heads and ICL. Finally, we propose a mechanistic data augmentation pipeline that consistently accelerates circuit convergence across model scales, providing a principled methodology for steering the developmental trajectories of LLMs.
☆ Token-Guard: Towards Token-Level Hallucination Control via Self-Checking Decoding ICLR 2026
Large Language Models (LLMs) often hallucinate, generating content inconsistent with the input. Retrieval-Augmented Generation (RAG) and Reinforcement Learning with Human Feedback (RLHF) can mitigate hallucinations but require resource-intensive retrieval or large-scale fine-tuning. Decoding-based methods are lighter yet lack explicit hallucination control. To address this, we present Token-Guard, a token-level hallucination control method based on self-checking decoding. Token-Guard performs internal verification at each reasoning step to detect hallucinated tokens before they propagate. Candidate fragments are further evaluated in a latent space with explicit hallucination risk scoring, while iterative pruning and regeneration dynamically correct detected errors. Experiments on HALU datasets show Token-Guard substantially reduces hallucinations and improves generation accuracy, offering a scalable, modular solution for reliable LLM outputs. Our code is publicly available.
comment: 26 pages and 11 figures,this work has been accepted for presentation at ICLR 2026
☆ OVD: On-policy Verbal Distillation
Knowledge distillation offers a promising path to transfer reasoning capabilities from large teacher models to efficient student models; however, existing token-level on-policy distillation methods require token-level alignment between the student and teacher models, which restricts the student model's exploration ability, prevent effective use of interactive environment feedback, and suffer from severe memory bottlenecks in reinforcement learning. We introduce On-policy Verbal Distillation (OVD), a memory-efficient framework that replaces token-level probability matching with trajectory matching using discrete verbal scores (0--9) from teacher models. OVD dramatically reduces memory consumption while enabling on-policy distillation from teacher models with verbal feedback, and avoids token-level alignment, allowing the student model to freely explore the output space. Extensive experiments on Web question answering and mathematical reasoning tasks show that OVD substantially outperforms existing methods, delivering up to +12.9% absolute improvement in average EM on Web Q&A tasks and a up to +25.7% gain on math benchmarks (when trained with only one random samples), while also exhibiting superior training efficiency. Our project page is available at https://OVD.github.io
comment: Technical Report
☆ Industrialized Deception: The Collateral Effects of LLM-Generated Misinformation on Digital Ecosystems
Generative AI and misinformation research has evolved since our 2024 survey. This paper presents an updated perspective, transitioning from literature review to practical countermeasures. We report on changes in the threat landscape, including improved AI-generated content through Large Language Models (LLMs) and multimodal systems. Central to this work are our practical contributions: JudgeGPT, a platform for evaluating human perception of AI-generated news, and RogueGPT, a controlled stimulus generation engine for research. Together, these tools form an experimental pipeline for studying how humans perceive and detect AI-generated misinformation. Our findings show that detection capabilities have improved, but the competition between generation and detection continues. We discuss mitigation strategies including LLM-based detection, inoculation approaches, and the dual-use nature of generative AI. This work contributes to research addressing the adverse impacts of AI on information quality.
comment: Accepted at ACM TheWebConf '26 Companion
☆ From Generative Modeling to Clinical Classification: A GPT-Based Architecture for EHR Notes
The increasing availability of unstructured clinical narratives in electronic health records (EHRs) has created new opportunities for automated disease characterization, cohort identification, and clinical decision support. However, modeling long, domain-specific clinical text remains challenging due to limited labeled data, severe class imbalance, and the high computational cost of adapting large pretrained language models. This study presents a GPT-based architecture for clinical text classification that adapts a pretrained decoder-only Transformer using a selective fine-tuning strategy. Rather than updating all model parameters, the majority of the GPT-2 backbone is frozen, and training is restricted to the final Transformer block, the final layer normalization, and a lightweight classification head. This approach substantially reduces the number of trainable parameters while preserving the representational capacity required to model complex clinical language. The proposed method is evaluated on radiology reports from the MIMIC-IV-Note dataset using uncertainty-aware CheXpert-style labels derived directly from report text. Experiments cover multiple problem formulations, including multi-label classification of radiographic findings, binary per-label classification under different uncertainty assumptions, and aggregate disease outcome prediction. Across varying dataset sizes, the model exhibits stable convergence behavior and strong classification performance, particularly in settings dominated by non-mention and negated findings. Overall, the results indicate that selective fine-tuning of pretrained generative language models provides an efficient and effective pathway for clinical text classification, enabling scalable adaptation to real-world EHR data while significantly reducing computational complexity.
comment: This submission is a full-length research manuscript consisting of 37 pages and 15 figures. The paper presents a GPT-based architecture with selective fine-tuning for clinical text classification, including detailed architectural diagrams, learning curves, and evaluation figures such as ROC curves and confusion matrices
☆ SONIC: Segmented Optimized Nexus for Information Compression in Key-Value Caching
The linear growth of Key-Value (KV) cache remains a bottleneck for multi-turn LLM deployment. Existing KV cache compression methods often fail to account for the structural properties of multi-turn dialogues, relying on heuristic eviction that risks losing critical context. We propose \textbf{SONIC}, a learning-based framework that compresses historical segments into compact and semantically rich \textbf{Nexus} tokens. By integrating dynamic budget training, SONIC allows flexible adaptation to varying memory constraints without retraining. Experiments show that at compression ratios of 80\% and 50\%, SONIC consistently outperforms baselines such as H2O and StreamingLLM on four diverse multi-turn benchmarks. Specifically, on the widely used MTBench101 benchmark, SONIC achieves an average score improvement of 35.55\% over state-of-the-art baselines, validating its effectiveness in sustaining coherent multi-turn dialogues. Furthermore, SONIC enhances deployment efficiency, accelerating the overall inference process by 50.1\% compared to full-context generation.
☆ Self-Compression of Chain-of-Thought via Multi-Agent Reinforcement Learning
The inference overhead induced by redundant reasoning undermines the interactive experience and severely bottlenecks the deployment of Large Reasoning Models. Existing reinforcement learning (RL)-based solutions tackle this problem by coupling a length penalty with outcome-based rewards. This simplistic reward weighting struggles to reconcile brevity with accuracy, as enforcing brevity may compromise critical reasoning logic. In this work, we address this limitation by proposing a multi-agent RL framework that selectively penalizes redundant chunks, while preserving essential reasoning logic. Our framework, Self-Compression via MARL (SCMA), instantiates redundancy detection and evaluation through two specialized agents: \textbf{a Segmentation Agent} for decomposing the reasoning process into logical chunks, and \textbf{a Scoring Agent} for quantifying the significance of each chunk. The Segmentation and Scoring agents collaboratively define an importance-weighted length penalty during training, incentivizing \textbf{a Reasoning Agent} to prioritize essential logic without introducing inference overhead during deployment. Empirical evaluations across model scales demonstrate that SCMA reduces response length by 11.1\% to 39.0\% while boosting accuracy by 4.33\% to 10.02\%. Furthermore, ablation studies and qualitative analysis validate that the synergistic optimization within the MARL framework fosters emergent behaviors, yielding more powerful LRMs compared to vanilla RL paradigms.
☆ JADE: Bridging the Strategic-Operational Gap in Dynamic Agentic RAG
The evolution of Retrieval-Augmented Generation (RAG) has shifted from static retrieval pipelines to dynamic, agentic workflows where a central planner orchestrates multi-turn reasoning. However, existing paradigms face a critical dichotomy: they either optimize modules jointly within rigid, fixed-graph architectures, or empower dynamic planning while treating executors as frozen, black-box tools. We identify that this \textit{decoupled optimization} creates a ``strategic-operational mismatch,'' where sophisticated planning strategies fail to materialize due to unadapted local executors, often leading to negative performance gains despite increased system complexity. In this paper, we propose \textbf{JADE} (\textbf{J}oint \textbf{A}gentic \textbf{D}ynamic \textbf{E}xecution), a unified framework for the joint optimization of planning and execution within dynamic, multi-turn workflows. By modeling the system as a cooperative multi-agent team unified under a single shared backbone, JADE enables end-to-end learning driven by outcome-based rewards. This approach facilitates \textit{co-adaptation}: the planner learns to operate within the capability boundaries of the executors, while the executors evolve to align with high-level strategic intent. Empirical results demonstrate that JADE transforms disjoint modules into a synergistic system, yielding remarkable performance improvements via joint optimization and enabling a flexible balance between efficiency and effectiveness through dynamic workflow orchestration.
☆ ProRAG: Process-Supervised Reinforcement Learning for Retrieval-Augmented Generation
Reinforcement learning (RL) has become a promising paradigm for optimizing Retrieval-Augmented Generation (RAG) in complex reasoning tasks. However, traditional outcome-based RL approaches often suffer from reward sparsity and inefficient credit assignment, as coarse-grained scalar rewards fail to identify specific erroneous steps within long-horizon trajectories. This ambiguity frequently leads to "process hallucinations", where models reach correct answers through flawed logic or redundant retrieval steps. Although recent process-aware approaches attempt to mitigate this via static preference learning or heuristic reward shaping, they often lack the on-policy exploration capabilities required to decouple step-level credit from global outcomes. To address these challenges, we propose ProRAG, a process-supervised reinforcement learning framework designed to integrate learned step-level supervision into the online optimization loop. Our framework consists of four stages: (1) Supervised Policy Warmup to initialize the model with a structured reasoning format; (2) construction of an MCTS-based Process Reward Model (PRM) to quantify intermediate reasoning quality; (3) PRM-Guided Reasoning Refinement to align the policy with fine-grained process preferences; and (4) Process-Supervised Reinforcement Learning with a dual-granularity advantage mechanism. By aggregating step-level process rewards with global outcome signals, ProRAG provides precise feedback for every action. Extensive experiments on five multi-hop reasoning benchmarks demonstrate that ProRAG achieves superior overall performance compared to strong outcome-based and process-aware RL baselines, particularly on complex long-horizon tasks, validating the effectiveness of fine-grained process supervision. The code and model are available at https://github.com/lilinwz/ProRAG.
comment: 11 pages, 6 figures
☆ From Meta-Thought to Execution: Cognitively Aligned Post-Training for Generalizable and Reliable LLM Reasoning
Current LLM post-training methods optimize complete reasoning trajectories through Supervised Fine-Tuning (SFT) followed by outcome-based Reinforcement Learning (RL). While effective, a closer examination reveals a fundamental gap: this approach does not align with how humans actually solve problems. Human cognition naturally decomposes problem-solving into two distinct stages: first acquiring abstract strategies (i.e., meta-knowledge) that generalize across problems, then adapting them to specific instances. In contrast, by treating complete trajectories as basic units, current methods are inherently problem-centric, entangling abstract strategies with problem-specific execution. To address this misalignment, we propose a cognitively-inspired framework that explicitly mirrors the two-stage human cognitive process. Specifically, Chain-of-Meta-Thought (CoMT) focuses supervised learning on abstract reasoning patterns without specific executions, enabling acquisition of generalizable strategies. Confidence-Calibrated Reinforcement Learning (CCRL) then optimizes task adaptation via confidence-aware rewards on intermediate steps, preventing overconfident errors from cascading and improving execution reliability. Experiments across four models and eight benchmarks show 2.19\% and 4.63\% improvements in-distribution and out-of-distribution respectively over standard methods, while reducing training time by 65-70% and token consumption by 50%, demonstrating that aligning post-training with human cognitive principles yields not only superior generalization but also enhanced training efficiency.
☆ Learn-to-Distance: Distance Learning for Detecting LLM-Generated Text ICLR2026
Modern large language models (LLMs) such as GPT, Claude, and Gemini have transformed the way we learn, work, and communicate. Yet, their ability to produce highly human-like text raises serious concerns about misinformation and academic integrity, making it an urgent need for reliable algorithms to detect LLM-generated content. In this paper, we start by presenting a geometric approach to demystify rewrite-based detection algorithms, revealing their underlying rationale and demonstrating their generalization ability. Building on this insight, we introduce a novel rewrite-based detection algorithm that adaptively learns the distance between the original and rewritten text. Theoretically, we demonstrate that employing an adaptively learned distance function is more effective for detection than using a fixed distance. Empirically, we conduct extensive experiments with over 100 settings, and find that our approach demonstrates superior performance over baseline algorithms in the majority of scenarios. In particular, it achieves relative improvements from 57.8\% to 80.6\% over the strongest baseline across different target LLMs (e.g., GPT, Claude, and Gemini).
comment: Accepted by ICLR2026
☆ Embodied Task Planning via Graph-Informed Action Generation with Large Lanaguage Model
While Large Language Models (LLMs) have demonstrated strong zero-shot reasoning capabilities, their deployment as embodied agents still faces fundamental challenges in long-horizon planning. Unlike open-ended text generation, embodied agents must decompose high-level intent into actionable sub-goals while strictly adhering to the logic of a dynamic, observed environment. Standard LLM planners frequently fail to maintain strategy coherence over extended horizons due to context window limitation or hallucinate transitions that violate constraints. We propose GiG, a novel planning framework that structures embodied agents' memory using a Graph-in-Graph architecture. Our approach employs a Graph Neural Network (GNN) to encode environmental states into embeddings, organizing these embeddings into action-connected execution trace graphs within an experience memory bank. By clustering these graph embeddings, the framework enables retrieval of structure-aware priors, allowing agents to ground current decisions in relevant past structural patterns. Furthermore, we introduce a novel bounded lookahead module that leverages symbolic transition logic to enhance the agents' planning capabilities through the grounded action projection. We evaluate our framework on three embodied planning benchmarks-Robotouille Synchronous, Robotouille Asynchronous, and ALFWorld. Our method outperforms state-of-the-art baselines, achieving Pass@1 performance gains of up to 22% on Robotouille Synchronous, 37% on Asynchronous, and 15% on ALFWorld with comparable or lower computational cost.
☆ Mil-SCORE: Benchmarking Long-Context Geospatial Reasoning and Planning in Large Language Models
As large language models (LLMs) are applied to increasingly longer and more complex tasks, there is a growing need for realistic long-context benchmarks that require selective reading and integration of heterogeneous, multi-modal information sources. This need is especially acute for geospatial planning problems, such as those found in planning for large-scale military operations, which demand fast and accurate reasoning over maps, orders, intelligence reports, and other distributed data. To address this gap, we present MilSCORE (Military Scenario Contextual Reasoning), to our knowledge the first scenario-level dataset of expert-authored, multi-hop questions grounded in a complex, simulated military planning scenario used for training. MilSCORE is designed to evaluate high-stakes decision-making and planning, probing LLMs' ability to combine tactical and spatial reasoning across multiple sources and to reason over long-horizon, geospatially rich context. The benchmark includes a diverse set of question types across seven categories targeting both factual recall and multi-step reasoning about constraints, strategy, and spatial analysis. We provide an evaluation protocol and report baseline results for a range of contemporary vision-language models. Our findings highlight substantial headroom on MilSCORE, indicating that current systems struggle with realistic, scenario-level long-context planning, and positioning MilSCORE as a challenging testbed for future work.
☆ Moral Outrage Shapes Commitments Beyond Attention: Multimodal Moral Emotions on YouTube in Korea and the US
Understanding how media rhetoric shapes audience engagement is crucial in the attention economy. This study examines how moral emotional framing by mainstream news channels on YouTube influences user behavior across Korea and the United States. To capture the platform's multimodal nature, combining thumbnail images and video titles, we develop a multimodal moral emotion classifier by fine tuning a vision language model. The model is trained on human annotated multimodal datasets in both languages and applied to approximately 400,000 videos from major news outlets. We analyze engagement levels including views, likes, and comments, representing increasing degrees of commitment. The results show that other condemning rhetoric expressions of moral outrage that criticize others morally consistently increase all forms of engagement across cultures, with effects ranging from passive viewing to active commenting. These findings suggest that moral outrage is a particularly effective emotional strategy, attracting not only attention but also active participation. We discuss concerns about the potential misuse of other condemning rhetoric, as such practices may deepen polarization by reinforcing in group and out group divisions. To facilitate future research and ensure reproducibility, we publicly release our Korean and English multimodal moral emotion classifiers.
comment: Accepted at The Web Conference 2026. We release Korean and English multimodal moral emotion classifiers
☆ Distribution-Aware Reward Estimation for Test-Time Reinforcement Learning
Test-time reinforcement learning (TTRL) enables large language models (LLMs) to self-improve on unlabeled inputs, but its effectiveness critically depends on how reward signals are estimated without ground-truth supervision. Most existing TTRL methods rely on majority voting (MV) over rollouts to produce deterministic rewards, implicitly assuming that the majority rollout provides a reliable learning signal. We show that this assumption is fragile: MV reduces the rollout distribution into a single outcome, discarding information about non-majority but correct actions candidates, and yields systematically biased reward estimates. To address this, we propose Distribution-AwareReward Estimation (DARE), which shifts reward estimation from a single majority outcome to the full empirical rollout distribution. DARE further augments this distribution-based reward with an exploration bonus and a distribution pruning mechanism for non-majority rollout exploration and reward denoise, yielding a more informative and robust reward estimation. Extensive experiments on challenging reasoning benchmarks show that DARE improves optimization stability and final performance over recent baselines, achieving relative improvements of 25.3% on challenging AIME 2024 and 5.3% on AMC.
☆ RAG-E: Quantifying Retriever-Generator Alignment and Failure Modes
Retrieval-Augmented Generation (RAG) systems combine dense retrievers and language models to ground LLM outputs in retrieved documents. However, the opacity of how these components interact creates challenges for deployment in high-stakes domains. We present RAG-E, an end-to-end explainability framework that quantifies retriever-generator alignment through mathematically grounded attribution methods. Our approach adapts Integrated Gradients for retriever analysis, introduces PMCSHAP, a Monte Carlo-stabilized Shapley Value approximation, for generator attribution, and introduces the Weighted Attribution-Relevance Gap (WARG) metric to measure how well a generator's document usage aligns with a retriever's ranking. Empirical analysis on TREC CAsT and FoodSafeSum reveals critical misalignments: for 47.4% to 66.7% of queries, generators ignore the retriever's top-ranked documents, while 48.1% to 65.9% rely on documents ranked as less relevant. These failure modes demonstrate that RAG output quality depends not solely on individual component performance but on their interplay, which can be audited via RAG-E.
☆ Enhancing Conversational Agents via Task-Oriented Adversarial Memory Adaptation
Conversational agents struggle to handle long conversations due to context window limitations. Therefore, memory systems are developed to leverage essential historical information. Existing memory systems typically follow a pipeline of offline memory construction and update, and online retrieval. Despite the flexible online phase, the offline phase remains fixed and task-independent. In this phase, memory construction operates under a predefined workflow and fails to emphasize task relevant information. Meanwhile, memory updates are guided by generic metrics rather than task specific supervision. This leads to a misalignment between offline memory preparation and task requirements, which undermines downstream task performance. To this end, we propose an Adversarial Memory Adaptation mechanism (AMA) that aligns memory construction and update with task objectives by simulating task execution. Specifically, first, a challenger agent generates question answer pairs based on the original dialogues. The constructed memory is then used to answer these questions, simulating downstream inference. Subsequently, an evaluator agent assesses the responses and performs error analysis. Finally, an adapter agent analyzes the error cases and performs dual level updates on both the construction strategy and the content. Through this process, the memory system receives task aware supervision signals in advance during the offline phase, enhancing its adaptability to downstream tasks. AMA can be integrated into various existing memory systems, and extensive experiments on long dialogue benchmark LoCoMo demonstrate its effectiveness.
comment: 11 pages, 4 figures
☆ KID: Knowledge-Injected Dual-Head Learning for Knowledge-Grounded Harmful Meme Detection
Internet memes have become pervasive carriers of digital culture on social platforms. However, their heavy reliance on metaphors and sociocultural context also makes them subtle vehicles for harmful content, posing significant challenges for automated content moderation. Existing approaches primarily focus on intra-modal and inter-modal signal analysis, while the understanding of implicit toxicity often depends on background knowledge that is not explicitly present in the meme itself. To address this challenge, we propose KID, a Knowledge-Injected Dual-Head Learning framework for knowledge-grounded harmful meme detection. KID adopts a label-constrained distillation paradigm to decompose complex meme understanding into structured reasoning chains that explicitly link visual evidence, background knowledge, and classification labels. These chains guide the learning process by grounding external knowledge in meme-specific contexts. In addition, KID employs a dual-head architecture that jointly optimizes semantic generation and classification objectives, enabling aligned linguistic reasoning while maintaining stable decision boundaries. Extensive experiments on five multilingual datasets spanning English, Chinese, and low-resource Bengali demonstrate that KID achieves SOTA performance on both binary and multi-label harmful meme detection tasks, improving over previous best methods by 2.1%--19.7% across primary evaluation metrics. Ablation studies further confirm the effectiveness of knowledge injection and dual-head joint learning, highlighting their complementary contributions to robust and generalizable meme understanding. The code and data are available at https://github.com/PotatoDog1669/KID.
☆ Zonkey: A Hierarchical Diffusion Language Model with Differentiable Tokenization and Probabilistic Attention
Large language models (LLMs) have revolutionized natural language processing, yet they remain constrained by fixed, non-differentiable tokenizers like Byte Pair Encoding (BPE), which hinder end-to-end optimization and adaptability to noisy or domain-specific data. We introduce Zonkey, a hierarchical diffusion model that addresses these limitations through a fully trainable pipeline from raw characters to document-level representations. At its core is a differentiable tokenizer (Segment Splitter) that learns probabilistic beginning-of-sequence (BOS) decisions, enabling adaptive splits that emerge as linguistically meaningful (e.g., word boundaries at spaces, sentence starts at periods) without explicit supervision. This differentiability is enabled by our novel Probabilistic Attention mechanism, which incorporates position-specific existence probabilities to simulate soft masking over theoretically infinite sequences while preserving gradients. Sequences decay probabilistically rather than relying on end-of-sequence tokens, supporting variable-length outputs. Hierarchical levels compress sequences into higher abstractions (e.g., character n-grams to word-like vectors, then sentence-like), with reconstruction via our Denoising Diffusion Mixed Model (DDMM) for stable and efficient denoising in latent space. A Stitcher ensures overlap invariance across segments. Trained end-to-end on Wikipedia, Zonkey generates coherent, variable-length text from noise, demonstrating emergent hierarchies and promising qualitative alignment to data distributions compared to entropy-based learnable tokenizers. Our approach advances toward fully gradient-based LLMs, with potential for better domain adaptation and scalable generation. We release the source code for training and reproducing our experiments.
☆ Evaluating ChatGPT on Medical Information Extraction Tasks: Performance, Explainability and Beyond
Large Language Models (LLMs) like ChatGPT have demonstrated amazing capabilities in comprehending user intents and generate reasonable and useful responses. Beside their ability to chat, their capabilities in various natural language processing (NLP) tasks are of interest to the research community. In this paper, we focus on assessing the overall ability of ChatGPT in 4 different medical information extraction (MedIE) tasks across 6 benchmark datasets. We present the systematically analysis by measuring ChatGPT's performance, explainability, confidence, faithfulness, and uncertainty. Our experiments reveal that: (a) ChatGPT's performance scores on MedIE tasks fall behind those of the fine-tuned baseline models. (b) ChatGPT can provide high-quality explanations for its decisions, however, ChatGPT is over-confident in its predcitions. (c) ChatGPT demonstrates a high level of faithfulness to the original text in the majority of cases. (d) The uncertainty in generation causes uncertainty in information extraction results, thus may hinder its applications in MedIE tasks.
☆ CoFrGeNet: Continued Fraction Architectures for Language Generation
Transformers are arguably the preferred architecture for language generation. In this paper, inspired by continued fractions, we introduce a new function class for generative modeling. The architecture family implementing this function class is named CoFrGeNets - Continued Fraction Generative Networks. We design novel architectural components based on this function class that can replace Multi-head Attention and Feed-Forward Networks in Transformer blocks while requiring much fewer parameters. We derive custom gradient formulations to optimize the proposed components more accurately and efficiently than using standard PyTorch-based gradients. Our components are a plug-in replacement requiring little change in training or inference procedures that have already been put in place for Transformer-based models thus making our approach easy to incorporate in large industrial workflows. We experiment on two very different transformer architectures GPT2-xl (1.5B) and Llama3 (3.2B), where the former we pre-train on OpenWebText and GneissWeb, while the latter we pre-train on the docling data mix which consists of nine different datasets. Results show that the performance on downstream classification, Q\& A, reasoning and text understanding tasks of our models is competitive and sometimes even superior to the original models with $\frac{2}{3}$ to $\frac{1}{2}$ the parameters and shorter pre-training time. We believe that future implementations customized to hardware will further bring out the true potential of our architectures.
☆ Influence Guided Sampling for Domain Adaptation of Text Retrievers
General-purpose open-domain dense retrieval systems are usually trained with a large, eclectic mix of corpora and search tasks. How should these diverse corpora and tasks be sampled for training? Conventional approaches sample them uniformly, proportional to their instance population sizes, or depend on human-level expert supervision. It is well known that the training data sampling strategy can greatly impact model performance. However, how to find the optimal strategy has not been adequately studied in the context of embedding models. We propose Inf-DDS, a novel reinforcement learning driven sampling framework that adaptively reweighs training datasets guided by influence-based reward signals and is much more lightweight with respect to GPU consumption. Our technique iteratively refines the sampling policy, prioritizing datasets that maximize model performance on a target development set. We evaluate the efficacy of our sampling strategy on a wide range of text retrieval tasks, demonstrating strong improvements in retrieval performance and better adaptation compared to existing gradient-based sampling methods, while also being 1.5x to 4x cheaper in GPU compute. Our sampling strategy achieves a 5.03 absolute NDCG@10 improvement while training a multilingual bge-m3 model and an absolute NDCG@10 improvement of 0.94 while training all-MiniLM-L6-v2, even when starting from expert-assigned weights on a large pool of training datasets.
☆ Temporal Guidance for Large Language Models
Contrastive Decoding (CD) enhances the generation quality of large language models (LLMs) but incurs significant additional computational overhead due to the need for an auxiliary model. Existing internal self-contrastive decoding methods, such as Decoding by Contrasting Layers (DoLa), focus on discrepancies across different layers, which are notably unstable on small-scale models. In this work, based on the observation that LLMs exhibit local preferences, we propose a novel contrastive guidance strategy along the temporal dimension, namely Temporal Guidance (TeGu). Our method ingeniously leverages Multi-Token Prediction (MTP) to construct weaker amateur predictions for model self-contrast. To standardize the implementation of this mechanism, we further introduce a lightweight Conditional MTP Projector (cMTPP), which avoids maintaining multiple independent networks as required by other MTP modules. Across various model series and benchmarks, TeGu achieves significant performance improvements while maintaining low additional memory consumption and computational overhead.
☆ Epistemic Context Learning: Building Trust the Right Way in LLM-Based Multi-Agent Systems
Individual agents in multi-agent (MA) systems often lack robustness, tending to blindly conform to misleading peers. We show this weakness stems from both sycophancy and inadequate ability to evaluate peer reliability. To address this, we first formalize the learning problem of history-aware reference, introducing the historical interactions of peers as additional input, so that agents can estimate peer reliability and learn from trustworthy peers when uncertain. This shifts the task from evaluating peer reasoning quality to estimating peer reliability based on interaction history. We then develop Epistemic Context Learning (ECL): a reasoning framework that conditions predictions on explicitly-built peer profiles from history. We further optimize ECL by reinforcement learning using auxiliary rewards. Our experiments reveal that our ECL enables small models like Qwen 3-4B to outperform a history-agnostic baseline 8x its size (Qwen 3-30B) by accurately identifying reliable peers. ECL also boosts frontier models to near-perfect (100%) performance. We show that ECL generalizes well to various MA configurations and we find that trust is modeled well by LLMs, revealing a strong correlation in trust modeling accuracy and final answer quality.
comment: Codes and data are available at https://github.com/skyriver-2000/epistemic-context-learning
☆ CE-GOCD: Central Entity-Guided Graph Optimization for Community Detection to Augment LLM Scientific Question Answering ICASSP 2026
Large Language Models (LLMs) are increasingly used for question answering over scientific research papers. Existing retrieval augmentation methods often rely on isolated text chunks or concepts, but overlook deeper semantic connections between papers. This impairs the LLM's comprehension of scientific literature, hindering the comprehensiveness and specificity of its responses. To address this, we propose Central Entity-Guided Graph Optimization for Community Detection (CE-GOCD), a method that augments LLMs' scientific question answering by explicitly modeling and leveraging semantic substructures within academic knowledge graphs. Our approach operates by: (1) leveraging paper titles as central entities for targeted subgraph retrieval, (2) enhancing implicit semantic discovery via subgraph pruning and completion, and (3) applying community detection to distill coherent paper groups with shared themes. We evaluated the proposed method on three NLP literature-based question-answering datasets, and the results demonstrate its superiority over other retrieval-augmented baseline approaches, confirming the effectiveness of our framework.
comment: Accepted by IEEE ICASSP 2026
☆ Procedural Pretraining: Warming Up Language Models with Abstract Data
Pretraining directly on web-scale corpora is the de facto paradigm for building language models. We study an alternative setting where the model is initially exposed to abstract structured data, as a means to ease the subsequent acquisition of rich semantic knowledge, much like humans learn simple logic and mathematics before higher reasoning. We specifically focus on procedural data, generated by formal languages and other simple algorithms, as such abstract data. We first diagnose the algorithmic skills that different forms of procedural data can improve, often significantly. For example, on context recall (Needle-in-a-haystack), the accuracy jumps from 10 to 98% when pretraining on Dyck sequences (balanced brackets). Second, we study how these gains are reflected in pretraining larger models (up to 1.3B). We find that front-loading as little as 0.1% procedural data significantly outperforms standard pretraining on natural language, code, and informal mathematics (C4, CodeParrot, and DeepMind-Math datasets). Notably, this procedural pretraining enables the models to reach the same loss value with only 55, 67, 86% of the original data. Third, we explore the mechanisms behind and find that procedural pretraining instils non-trivial structure in both attention and MLP layers. The former is particularly important for structured domains (e.g. code), and the latter for language. Finally, we lay a path for combining multiple forms of procedural data. Our results show that procedural pretraining is a simple, lightweight means to improving performance and accelerating language model pretraining, ultimately suggesting the promise of disentangling knowledge acquisition from reasoning in LLMs.
☆ Enhancing Language Models for Robust Greenwashing Detection
Sustainability reports are critical for ESG assessment, yet greenwashing and vague claims often undermine their reliability. Existing NLP models lack robustness to these practices, typically relying on surface-level patterns that generalize poorly. We propose a parameter-efficient framework that structures LLM latent spaces by combining contrastive learning with an ordinal ranking objective to capture graded distinctions between concrete actions and ambiguous claims. Our approach incorporates gated feature modulation to filter disclosure noise and utilizes MetaGradNorm to stabilize multi-objective optimization. Experiments in cross-category settings demonstrate superior robustness over standard baselines while revealing a trade-off between representational rigidity and generalization.
☆ TACLer: Tailored Curriculum Reinforcement Learning for Efficient Reasoning
Large Language Models (LLMs) have shown remarkable performance on complex reasoning tasks, especially when equipped with long chain-of-thought (CoT) reasoning. However, eliciting long CoT typically requires large-scale reinforcement learning (RL) training, while often leading to overthinking with redundant intermediate steps. To improve learning and reasoning efficiency, while preserving or even enhancing performance, we propose TACLer, a model-tailored curriculum reinforcement learning framework that gradually increases the complexity of the data based on the model's proficiency in multi-stage RL training. TACLer features two core components: (i) tailored curriculum learning that determines what knowledge the model lacks and needs to learn in progressive stages; (ii) a hybrid Thinking/NoThinking reasoning paradigm that balances accuracy and efficiency by enabling or disabling the Thinking mode. Our experiments show that TACLer yields a twofold advantage in learning and reasoning: (i) it reduces computational cost, cutting training compute by over 50% compared to long thinking models and reducing inference token usage by over 42% relative to the base model; and (ii) it improves accuracy by over 9% on the base model, consistently outperforming state-of-the-art Nothinking and Thinking baselines across four math datasets with complex problems.
☆ Why Attention Patterns Exist: A Unifying Temporal Perspective Analysis ICLR 2026
Attention patterns play a crucial role in both training and inference of large language models (LLMs). Prior works have identified individual patterns such as retrieval heads, sink heads, and diagonal traces, yet these observations remain fragmented and lack a unifying explanation. To bridge this gap, we introduce \textbf{Temporal Attention Pattern Predictability Analysis (TAPPA), a unifying framework that explains diverse attention patterns by analyzing their underlying mathematical formulations} from a temporally continuous perspective. TAPPA both deepens the understanding of attention behavior and guides inference acceleration approaches. Specifically, TAPPA characterizes attention patterns as predictable patterns with clear regularities and unpredictable patterns that appear effectively random. Our analysis further reveals that this distinction can be explained by the degree of query self-similarity along the temporal dimension. Focusing on the predictable patterns, we further provide a detailed mathematical analysis of three representative cases through the joint effect of queries, keys, and Rotary Positional Embeddings (RoPE). We validate TAPPA by applying its insights to KV cache compression and LLM pruning tasks. Across these tasks, a simple metric motivated by TAPPA consistently improves performance over baseline methods. The code is available at https://github.com/MIRALab-USTC/LLM-TAPPA.
comment: ICLR 2026
☆ FBS: Modeling Native Parallel Reading inside a Transformer
Large language models (LLMs) excel across many tasks, yet inference is still dominated by strictly token-by-token autoregression. Existing acceleration methods largely patch this pipeline and miss core human-reading ingredients: content-adaptive foresight, chunk-structure-aware compute allocation, and train--test consistency for preview/skimming. We propose the \textbf{Fovea-Block-Skip Transformer} (FBS), which injects a causal, trainable loop into Transformers via Parafovea-Attention Window (PAW), Chunk-Head (CH), and Skip-Gate (SG). Across diverse benchmarks, FBS improves the quality-efficiency trade-off without increasing parameters, and ablations show the three modules are complementary.
☆ Beyond Forgetting: Machine Unlearning Elicits Controllable Side Behaviors and Capabilities
We consider representation misdirection (RM), a class of LLM unlearning methods that achieves forgetting by manipulating the forget-representations, that is, latent representations of forget samples. Despite being important, the roles of target vectors used in RM, however, remain underexplored. Here, we approach and revisit RM through the lens of the linear representation hypothesis. Specifically, if one can somehow identify a one-dimensional representation corresponding to a high-level concept, the linear representation hypothesis enables linear operations on this concept vector within the forget-representation space. Under this view, we hypothesize that, beyond forgetting, machine unlearning elicits controllable side behaviors and stronger side capabilities corresponding to the high-level concept. Our hypothesis is empirically validated across a wide range of tasks, including behavioral control (e.g., controlling unlearned models' truth, sentiment, and refusal) and capability enhancement (e.g., improving unlearned models' in-context learning capability). Our findings reveal that this fairly attractive phenomenon could be either a hidden risk if misused or a mechanism that can be harnessed for developing models that require stronger capabilities and controllable behaviors.
comment: 21 pages, 11 tables, 12 figures
☆ Toward Culturally Aligned LLMs through Ontology-Guided Multi-Agent Reasoning
Large Language Models (LLMs) increasingly support culturally sensitive decision making, yet often exhibit misalignment due to skewed pretraining data and the absence of structured value representations. Existing methods can steer outputs, but often lack demographic grounding and treat values as independent, unstructured signals, reducing consistency and interpretability. We propose OG-MAR, an Ontology-Guided Multi-Agent Reasoning framework. OG-MAR summarizes respondent-specific values from the World Values Survey (WVS) and constructs a global cultural ontology by eliciting relations over a fixed taxonomy via competency questions. At inference time, it retrieves ontology-consistent relations and demographically similar profiles to instantiate multiple value-persona agents, whose outputs are synthesized by a judgment agent that enforces ontology consistency and demographic proximity. Experiments on regional social-survey benchmarks across four LLM backbones show that OG-MAR improves cultural alignment and robustness over competitive baselines, while producing more transparent reasoning traces.
comment: 35 pages
☆ Can David Beat Goliath? On Multi-Hop Reasoning with Resource-Constrained Agents
While reinforcement learning (RL) has empowered multi-turn reasoning agents with retrieval and tools, existing successes largely depend on extensive on-policy rollouts in high-cost, high-accuracy regimes. Under realistic resource constraints that cannot support large models or dense explorations, however, small language model agents fall into a low-cost, low-accuracy regime, where limited rollout budgets lead to sparse exploration, sparse credit assignment, and unstable training. In this work, we challenge this trade-off and show that small language models can achieve strong multi-hop reasoning under resource constraints. We introduce DAVID-GRPO, a budget-efficient RL framework that (i) stabilizes early learning with minimal supervision, (ii) assigns retrieval credit based on evidence recall, and (iii) improves exploration by resampling truncated near-miss trajectories. Evaluated on agents up to 1.5B parameters trained on only four RTX 3090 GPUs, DAVID-GRPO consistently outperforms prior RL methods designed for large-scale settings on six multi-hop QA benchmarks. These results show that with the right inductive biases, small agents can achieve low training cost with high accuracy.
comment: Preprint
☆ Do Not Waste Your Rollouts: Recycling Search Experience for Efficient Test-Time Scaling
Test-Time Scaling enhances the reasoning capabilities of Large Language Models by allocating additional inference compute to broaden the exploration of the solution space. However, existing search strategies typically treat rollouts as disposable samples, where valuable intermediate insights are effectively discarded after each trial. This systemic memorylessness leads to massive computational redundancy, as models repeatedly re-derive discovered conclusions and revisit known dead ends across extensive attempts. To bridge this gap, we propose \textbf{Recycling Search Experience (RSE)}, a self-guided, training-free strategy that turns test-time search from a series of isolated trials into a cumulative process. By actively distilling raw trajectories into a shared experience bank, RSE enables positive recycling of intermediate conclusions to shortcut redundant derivations and negative recycling of failure patterns to prune encountered dead ends. Theoretically, we provide an analysis that formalizes the efficiency gains of RSE, validating its advantage over independent sampling in solving complex reasoning tasks. Empirically, extensive experiments on HMMT24, HMMT25, IMO-Bench, and HLE show that RSE consistently outperforms strong baselines with comparable computational cost, achieving state-of-the-art scaling efficiency.
comment: preprint
☆ FIT: Defying Catastrophic Forgetting in Continual LLM Unlearning
Large language models (LLMs) demonstrate impressive capabilities across diverse tasks but raise concerns about privacy, copyright, and harmful materials. Existing LLM unlearning methods rarely consider the continual and high-volume nature of real-world deletion requests, which can cause utility degradation and catastrophic forgetting as requests accumulate. To address this challenge, we introduce \fit, a framework for continual unlearning that handles large numbers of deletion requests while maintaining robustness against both catastrophic forgetting and post-unlearning recovery. \fit mitigates degradation through rigorous data \underline{F}iltering, \underline{I}mportance-aware updates, and \underline{T}argeted layer attribution, enabling stable performance across long sequences of unlearning operations and achieving a favorable balance between forgetting effectiveness and utility retention. To support realistic evaluation, we present \textbf{PCH}, a benchmark covering \textbf{P}ersonal information, \textbf{C}opyright, and \textbf{H}armful content in sequential deletion scenarios, along with two symmetric metrics, Forget Degree (F.D.) and Retain Utility (R.U.), which jointly assess forgetting quality and utility preservation. Extensive experiments on four open-source LLMs with hundreds of deletion requests show that \fit achieves the strongest trade-off between F.D. and R.U., surpasses existing methods on MMLU, CommonsenseQA, and GSM8K, and remains resistant against both relearning and quantization recovery attacks.
comment: 20 Pages
☆ Scale-Dependent Semantic Dynamics Revealed by Allan Deviation
While language progresses through a sequence of semantic states, the underlying dynamics of this progression remain elusive. Here, we treat the semantic progression of written text as a stochastic trajectory in a high-dimensional state space. We utilize Allan deviation, a tool from precision metrology, to analyze the stability of meaning by treating ordered sentence embeddings as a displacement signal. Our analysis reveals two distinct dynamical regimes: short-time power-law scaling, which differentiates creative literature from technical texts, and a long-time crossover to a stability-limited noise floor. We find that while large language models successfully mimic the local scaling statistics of human text, they exhibit a systematic reduction in their stability horizon. These results establish semantic coherence as a measurable physical property, offering a framework to differentiate the nuanced dynamics of human cognition from the patterns generated by algorithmic models.
☆ AdaptBPE: From General Purpose to Specialized Tokenizers EACL 2026
Subword tokenization methods, such as Byte-Pair Encoding (BPE), significantly impact the performance and efficiency of large language models (LLMs). The standard approach involves training a general-purpose tokenizer that uniformly processes all textual data during both training and inference. However, the use of a generic set of tokens can incur inefficiencies when applying the model to specific domains or languages. To address this limitation, we propose a post-training adaptation strategy that selectively replaces low-utility tokens with more relevant ones based on their frequency in an adaptation corpus. Our algorithm identifies the token inventory that most effectively encodes the adaptation corpus for a given target vocabulary size. Extensive experiments on generation and classification tasks across multiple languages demonstrate that our adapted tokenizers compress test corpora more effectively than baselines using the same vocabulary size. This method serves as a lightweight adaptation mechanism, akin to a vocabulary fine-tuning process, enabling optimized tokenization for specific domains or tasks. Our code and data are available at https://github.com/vijini/Adapt-BPE.git.
comment: EACL 2026
☆ SWE-Spot: Building Small Repo-Experts with Repository-Centric Learning
The deployment of coding agents in privacy-sensitive and resource-constrained environments drives the demand for capable open-weight Small Language Models (SLMs). However, they suffer from a fundamental capability gap: unlike frontier large models, they lack the inference-time strong generalization to work with complicated, unfamiliar codebases. We identify that the prevailing Task-Centric Learning (TCL) paradigm, which scales exposure across disparate repositories, fails to address this limitation. In response, we propose Repository-Centric Learning (RCL), a paradigm shift that prioritizes vertical repository depth over horizontal task breadth, suggesting SLMs must internalize the "physics" of a target software environment through parametric knowledge acquisition, rather than attempting to recover it via costly inference-time search. Following this new paradigm, we design a four-unit Repository-Centric Experience, transforming static codebases into interactive learning signals, to train SWE-Spot-4B, a family of highly compact models built as repo-specialized experts that breaks established scaling trends, outperforming open-weight models up to larger (e.g., CWM by Meta, Qwen3-Coder-30B) and surpassing/matching efficiency-focused commercial models (e.g., GPT-4.1-mini, GPT-5-nano) across multiple SWE tasks. Further analysis reveals that RCL yields higher training sample efficiency and lower inference costs, emphasizing that for building efficient intelligence, repository mastery is a distinct and necessary dimension that complements general coding capability.
☆ ILRR: Inference-Time Steering Method for Masked Diffusion Language Models
Discrete Diffusion Language Models (DLMs) offer a promising non-autoregressive alternative for text generation, yet effective mechanisms for inference-time control remain relatively underexplored. Existing approaches include sampling-level guidance procedures or trajectory optimization mechanisms. In this work, we introduce Iterative Latent Representation Refinement (ILRR), a learning-free framework for steering DLMs using a single reference sequence. ILRR guides generation by dynamically aligning the internal activations of the generated sequence with those of a given reference throughout the denoising process. This approach captures and transfers high-level semantic properties, with a tunable steering scale enabling flexible control over attributes such as sentiment. We further introduce Spatially Modulated Steering, an extension that enables steering long texts using shorter references by regulating guidance intensity across the sequence. Empirically, we demonstrate that ILRR achieves effective attribute steering on LLaDA and MDLM architectures with a minor computational overhead, requiring only one additional parallel forward pass per denoising step. Under the same compute budget, ILRR improves attribute accuracy over comparable baselines by 10$\%$ to 60$\%$ points, while maintaining high generation quality.
☆ Breaking the Overscaling Curse: Thinking Parallelism Before Parallel Thinking
Parallel thinking enhances LLM reasoning by multi-path sampling and aggregation. In system-level evaluations, a global parallelism level N is allocated to all samples, typically set large to maximize overall dataset accuracy. However, due to sample heterogeneity, some samples can achieve comparable performance with a smaller N'< N, causing budget redundancy. This incompatibility between system-level efficacy and sample-level efficiency constitutes the overscaling curse. In this paper, we formalize and quantify the overscaling curse, showing its universality and severity in practice, and analyze its trigger mechanism. We then propose a lightweight method, T2, to break the overscaling curse, which utilizes latent representations to estimate the optimal parallelism level for each sample before decoding. Experiments show that T2 significantly reduces cost while maintaining comparable performance, enabling more efficient parallel thinking.
☆ Semantic Content Determines Algorithmic Performance
Counting should not depend on what is being counted; more generally, any algorithm's behavior should be invariant to the semantic content of its arguments. We introduce WhatCounts to test this property in isolation. Unlike prior work that conflates semantic sensitivity with reasoning complexity or prompt variation, WhatCounts is atomic: count items in an unambiguous, delimited list with no duplicates, distractors, or reasoning steps for different semantic types. Frontier LLMs show over 40% accuracy variation depending solely on what is being counted - cities versus chemicals, names versus symbols. Controlled ablations rule out confounds. The gap is semantic, and it shifts unpredictably with small amounts of unrelated fine-tuning. LLMs do not implement algorithms; they approximate them, and the approximation is argument-dependent. As we show with an agentic example, this has implications beyond counting: any LLM function may carry hidden dependencies on the meaning of its inputs.
☆ Thinking Broad, Acting Fast: Latent Reasoning Distillation from Multi-Perspective Chain-of-Thought for E-Commerce Relevance WWW2026
Effective relevance modeling is crucial for e-commerce search, as it aligns search results with user intent and enhances customer experience. Recent work has leveraged large language models (LLMs) to address the limitations of traditional relevance models, especially for long-tail and ambiguous queries. By incorporating Chain-of-Thought (CoT) reasoning, these approaches improve both accuracy and interpretability through multi-step reasoning. However, two key limitations remain: (1) most existing approaches rely on single-perspective CoT reasoning, which fails to capture the multifaceted nature of e-commerce relevance (e.g., user intent vs. attribute-level matching vs. business-specific rules); and (2) although CoT-enhanced LLM's offer rich reasoning capabilities, their high inference latency necessitates knowledge distillation for real-time deployment, yet current distillation methods discard the CoT rationale structure at inference, using it as a transient auxiliary signal and forfeiting its reasoning utility. To address these challenges, we propose a novel framework that better exploits CoT semantics throughout the optimization pipeline. Specifically, the teacher model leverages Multi-Perspective CoT (MPCoT) to generate diverse rationales and combines Supervised Fine-Tuning (SFT) with Direct Preference Optimization (DPO) to construct a more robust reasoner. For distillation, we introduce Latent Reasoning Knowledge Distillation (LRKD), which endows a student model with a lightweight inference-time latent reasoning extractor, allowing efficient and low-latency internalization of the LLM's sophisticated reasoning capabilities. Evaluated in offline experiments and online A/B tests on an e-commerce search advertising platform serving tens of millions of users daily, our method delivers significant offline gains, showing clear benefits in both commercial performance and user experience.
comment: 12 pages, 6 figures, Accepted by WWW2026 industry track
☆ Language Models as Artificial Learners: Investigating Crosslinguistic Influence
Despite the centrality of crosslinguistic influence (CLI) to bilingualism research, human studies often yield conflicting results due to inherent experimental variance. We address these inconsistencies by using language models (LMs) as controlled statistical learners to systematically simulate CLI and isolate its underlying drivers. Specifically, we study the effect of varying the L1 language dominance and the L2 language proficiency, which we manipulate by controlling the L2 age of exposure -- defined as the training step at which the L2 is introduced. Furthermore, we investigate the impact of pretraining on L1 languages with varying syntactic distance from the L2. Using cross-linguistic priming, we analyze how activating L1 structures impacts L2 processing. Our results align with evidence from psycholinguistic studies, confirming that language dominance and proficiency are strong predictors of CLI. We further find that while priming of grammatical structures is bidirectional, the priming of ungrammatical structures is sensitive to language dominance. Finally, we provide mechanistic evidence of CLI in LMs, demonstrating that the L1 is co-activated during L2 processing and directly influences the neural circuitry recruited for the L2. More broadly, our work demonstrates that LMs can serve as a computational framework to inform theories of human CLI.
☆ Depth-Recurrent Attention Mixtures: Giving Latent Reasoning the Attention it Deserves
Depth-recurrence facilitates latent reasoning by sharing parameters across depths. However, prior work lacks combined FLOP-, parameter-, and memory-matched baselines, underutilizes depth-recurrence due to partially fixed layer stacks, and ignores the bottleneck of constant hidden-sizes that restricts many-step latent reasoning. To address this, we introduce a modular framework of depth-recurrent attention mixtures (Dreamer), combining sequence attention, depth attention, and sparse expert attention. It alleviates the hidden-size bottleneck through attention along depth, decouples scaling dimensions, and allows depth-recurrent models to scale efficiently and effectively. Across language reasoning benchmarks, our models require 2 to 8x fewer training tokens for the same accuracy as FLOP-, parameter-, and memory-matched SOTA, and outperform ca. 2x larger SOTA models with the same training tokens. We further present insights into knowledge usage across depths, e.g., showing 2 to 11x larger expert selection diversity than SOTA MoEs.
☆ KromHC: Manifold-Constrained Hyper-Connections with Kronecker-Product Residual Matrices
The success of Hyper-Connections (HC) in neural networks (NN) has also highlighted issues related to its training instability and restricted scalability. The Manifold-Constrained Hyper-Connections (mHC) mitigate these challenges by projecting the residual connection space onto a Birkhoff polytope, however, it faces two issues: 1) its iterative Sinkhorn-Knopp (SK) algorithm does not always yield exact doubly stochastic residual matrices; 2) mHC incurs a prohibitive $\mathcal{O}(n^3C)$ parameter complexity with $n$ as the width of the residual stream and $C$ as the feature dimension. The recently proposed mHC-lite reparametrizes the residual matrix via the Birkhoff-von-Neumann theorem to guarantee double stochasticity, but also faces a factorial explosion in its parameter complexity, $\mathcal{O} \left( nC \cdot n! \right)$. To address both challenges, we propose \textbf{KromHC}, which uses the \underline{Kro}necker products of smaller doubly stochastic matrices to parametrize the residual matrix in \underline{mHC}. By enforcing manifold constraints across the factor residual matrices along each mode of the tensorized residual stream, KromHC guarantees exact double stochasticity of the residual matrices while reducing parameter complexity to $\mathcal{O}(n^2C)$. Comprehensive experiments demonstrate that KromHC matches or even outperforms state-of-the-art (SOTA) mHC variants, while requiring significantly fewer trainable parameters. The code is available at \texttt{https://github.com/wz1119/KromHC}.
☆ Shaping capabilities with token-level data filtering
Current approaches to reducing undesired capabilities in language models are largely post hoc, and can thus be easily bypassed by adversaries. A natural alternative is to shape capabilities during pretraining itself. On the proxy task of removing medical capabilities, we show that the simple intervention of filtering pretraining data is highly effective, robust, and inexpensive at scale. Inspired by work on data attribution, we show that filtering tokens is more effective than filtering documents, achieving the same hit to undesired capabilities at a lower cost to benign ones. Training models spanning two orders of magnitude, we then demonstrate that filtering gets more effective with scale: for our largest models, token filtering leads to a 7000x compute slowdown on the forget domain. We also show that models trained with token filtering can still be aligned on the forget domain. Along the way, we introduce a methodology for labeling tokens with sparse autoencoders and distilling cheap, high-quality classifiers. We also demonstrate that filtering can be robust to noisy labels with sufficient pretraining compute.
comment: 33 pages, 28 figures
☆ Multi-objective Integer Linear Programming approach for Automatic Software Cognitive Complexity Reduction
Clear and concise code is necessary to ensure maintainability, so it is crucial that the software is as simple as possible to understand, to avoid bugs and, above all, vulnerabilities. There are many ways to enhance software without changing its functionality, considering the extract method refactoring the primary process to reduce the effort required for code comprehension. The cognitive complexity measure employed in this work is the one defined by SonarSource, which is a company that develops well-known applications for static code analysis. This extraction problem can be modeled as a combinatorial optimization problem. The main difficulty arises from the existence of different criteria for evaluating the solutions obtained, requiring the formulation of the code extraction problem as a multi-objective optimization problem using alternative methods. We propose a multi-objective integer linear programming model to obtain a set of solutions that reduce the cognitive complexity of a given piece of code, such as balancing the number of lines of code and its cognitive complexity. In addition, several algorithms have been developed to validate the model. These algorithms have been integrated into a tool that enables the parameterised resolution of the problem of reducing software cognitive complexity.
comment: 51 pages, 17 figures
☆ ASTRA: Automated Synthesis of agentic Trajectories and Reinforcement Arenas
Large language models (LLMs) are increasingly used as tool-augmented agents for multi-step decision making, yet training robust tool-using agents remains challenging. Existing methods still require manual intervention, depend on non-verifiable simulated environments, rely exclusively on either supervised fine-tuning (SFT) or reinforcement learning (RL), and struggle with stable long-horizon, multi-turn learning. To address these challenges, we introduce ASTRA, a fully automated end-to-end framework for training tool-augmented language model agents via scalable data synthesis and verifiable reinforcement learning. ASTRA integrates two complementary components. First, a pipeline that leverages the static topology of tool-call graphs synthesizes diverse, structurally grounded trajectories, instilling broad and transferable tool-use competence. Second, an environment synthesis framework that captures the rich, compositional topology of human semantic reasoning converts decomposed question-answer traces into independent, code-executable, and rule-verifiable environments, enabling deterministic multi-turn RL. Based on this method, we develop a unified training methodology that integrates SFT with online RL using trajectory-level rewards to balance task completion and interaction efficiency. Experiments on multiple agentic tool-use benchmarks demonstrate that ASTRA-trained models achieve state-of-the-art performance at comparable scales, approaching closed-source systems while preserving core reasoning ability. We release the full pipelines, environments, and trained models at https://github.com/LianjiaTech/astra.
☆ Note2Chat: Improving LLMs for Multi-Turn Clinical History Taking Using Medical Notes AAAI-26
Effective clinical history taking is a foundational yet underexplored component of clinical reasoning. While large language models (LLMs) have shown promise on static benchmarks, they often fall short in dynamic, multi-turn diagnostic settings that require iterative questioning and hypothesis refinement. To address this gap, we propose \method{}, a note-driven framework that trains LLMs to conduct structured history taking and diagnosis by learning from widely available medical notes. Instead of relying on scarce and sensitive dialogue data, we convert real-world medical notes into high-quality doctor-patient dialogues using a decision tree-guided generation and refinement pipeline. We then propose a three-stage fine-tuning strategy combining supervised learning, simulated data augmentation, and preference learning. Furthermore, we propose a novel single-turn reasoning paradigm that reframes history taking as a sequence of single-turn reasoning problems. This design enhances interpretability and enables local supervision, dynamic adaptation, and greater sample efficiency. Experimental results show that our method substantially improves clinical reasoning, achieving gains of +16.9 F1 and +21.0 Top-1 diagnostic accuracy over GPT-4o. Our code and dataset can be found at https://github.com/zhentingsheng/Note2Chat.
comment: Accepted at AAAI-26
☆ ShardMemo: Masked MoE Routing for Sharded Agentic LLM Memory
Agentic large language model (LLM) systems rely on external memory for long-horizon state and concurrent multi-agent execution, but centralized indexes and heuristic partitions become bottlenecks as memory volume and parallel access grow. We present ShardMemo, a budgeted tiered memory service with Tier A per-agent working state, Tier B sharded evidence with shard-local approximate nearest neighbor (ANN) indexes, and Tier C, a versioned skill library. Tier B enforces scope-before-routing: structured eligibility constraints mask ineligible shards before routing or ANN search. We cast shard probing as masked mixture-of-experts (MoE) routing over eligible shards, probing up to $B_{\mathrm{probe}}$ shards via Top-$B_{\mathrm{probe}}$ or adaptive Top-$P$, and use cost-aware gating over profile/observation/session shard families; the router is trained from evidence-to-shard supervision. On LoCoMo, ShardMemo improves over the strongest baseline (GAM) by +5.11 to +6.82 F1 across question categories. Under a fixed-budget routing setting ($B_{\mathrm{probe}}=3$), ShardMemo improves over cosine-to-prototype shard routing by +6.87 F1 while reducing retrieval work (VecScan 521->414, -20.5%) and p95 latency (95->76 ms). On long-context HotpotQA, ShardMemo achieves 63.41/61.88/57.95 F1 at 56K/224K/448K tokens. On ToolBench, Tier C reaches 0.97 Precision@3 and 1.94 StepRed (+10.2% and +7.2% over embedding-similarity retrieval).
☆ inversedMixup: Data Augmentation via Inverting Mixed Embeddings
Mixup generates augmented samples by linearly interpolating inputs and labels with a controllable ratio. However, since it operates in the latent embedding level, the resulting samples are not human-interpretable. In contrast, LLM-based augmentation methods produce sentences via prompts at the token level, yielding readable outputs but offering limited control over the generation process. Inspired by recent advances in LLM inversion, which reconstructs natural language from embeddings and helps bridge the gap between latent embedding space and discrete token space, we propose inversedMixup, a unified framework that combines the controllability of Mixup with the interpretability of LLM-based generation. Specifically, inversedMixup adopts a three-stage training procedure to align the output embedding space of a task-specific model with the input embedding space of an LLM. Upon successful alignment, inversedMixup can reconstruct mixed embeddings with a controllable mixing ratio into human-interpretable augmented sentences, thereby improving the augmentation performance. Additionally, inversedMixup provides the first empirical evidence of the manifold intrusion phenomenon in text Mixup and introduces a simple yet effective strategy to mitigate it. Extensive experiments demonstrate the effectiveness and generalizability of our approach in both few-shot and fully supervised scenarios.
☆ KAPSO: A Knowledge-grounded framework for Autonomous Program Synthesis and Optimization
We introduce KAPSO, a modular framework for autonomous program synthesis and optimization. Given a natural language goal and an evaluation method, KAPSO iteratively performs ideation, code synthesis and editing, execution, evaluation, and learning to improve a runnable artifact toward measurable objectives. Rather than treating synthesis as the endpoint, KAPSO uses synthesis as an operator within a long-horizon optimization loop, where progress is defined by evaluator outcomes. KAPSO targets long-horizon failures common in coding agents, including lost experimental state, brittle debugging, and weak reuse of domain expertise, by integrating three tightly coupled components. First, a git-native experimentation engine isolates each attempt as a branch, producing reproducible artifacts and preserving provenance across iterations. Second, a knowledge system ingests heterogeneous sources, including repositories, internal playbooks, and curated external resources such as documentation, scientific papers, and web search results, and organizes them into a structured representation that supports retrieval over workflows, implementations, and environment constraints. Third, a cognitive memory layer coordinates retrieval and maintains an episodic store of reusable lessons distilled from experiment traces (run logs, diffs, and evaluator feedback), reducing repeated error modes and accelerating convergence. We evaluated KAPSO on MLE-Bench (Kaggle-style ML competitions) and ALE-Bench (AtCoder heuristic optimization), and report end-to-end performance. Code Available at: https://github.com/Leeroo-AI/kapso
☆ LMK > CLS: Landmark Pooling for Dense Embeddings
Representation learning is central to many downstream tasks such as search, clustering, classification, and reranking. State-of-the-art sequence encoders typically collapse a variable-length token sequence to a single vector using a pooling operator, most commonly a special [CLS] token or mean pooling over token embeddings. In this paper, we identify systematic weaknesses of these pooling strategies: [CLS] tends to concentrate information toward the initial positions of the sequence and can under-represent distributed evidence, while mean pooling can dilute salient local signals, sometimes leading to worse short-context performance. To address these issues, we introduce Landmark (LMK) pooling, which partitions a sequence into chunks, inserts landmark tokens between chunks, and forms the final representation by mean-pooling the landmark token embeddings. This simple mechanism improves long-context extrapolation without sacrificing local salient features, at the cost of introducing a small number of special tokens. We empirically demonstrate that LMK pooling matches existing methods on short-context retrieval tasks and yields substantial improvements on long-context tasks, making it a practical and scalable alternative to existing pooling methods.
☆ MURAD: A Large-Scale Multi-Domain Unified Reverse Arabic Dictionary Dataset
Arabic is a linguistically and culturally rich language with a vast vocabulary that spans scientific, religious, and literary domains. Yet, large-scale lexical datasets linking Arabic words to precise definitions remain limited. We present MURAD (Multi-domain Unified Reverse Arabic Dictionary), an open lexical dataset with 96,243 word-definition pairs. The data come from trusted reference works and educational sources. Extraction used a hybrid pipeline integrating direct text parsing, optical character recognition, and automated reconstruction. This ensures accuracy and clarity. Each record aligns a target word with its standardized Arabic definition and metadata that identifies the source domain. The dataset covers terms from linguistics, Islamic studies, mathematics, physics, psychology, and engineering. It supports computational linguistics and lexicographic research. Applications include reverse dictionary modeling, semantic retrieval, and educational tools. By releasing this resource, we aim to advance Arabic natural language processing and promote reproducible research on Arabic lexical semantics.
comment: 18 pages
☆ The Effectiveness of Style Vectors for Steering Large Language Models: A Human Evaluation
Controlling the behavior of large language models (LLMs) at inference time is essential for aligning outputs with human abilities and safety requirements. \emph{Activation steering} provides a lightweight alternative to prompt engineering and fine-tuning by directly modifying internal activations to guide generation. This research advances the literature in three significant directions. First, while previous work demonstrated the technical feasibility of steering emotional tone using automated classifiers, this paper presents the first human evaluation of activation steering concerning the emotional tone of LLM outputs, collecting over 7,000 crowd-sourced ratings from 190 participants via Prolific ($n=190$). These ratings assess both perceived emotional intensity and overall text quality. Second, we find strong alignment between human and model-based quality ratings (mean $r=0.776$, range $0.157$--$0.985$), indicating automatic scoring can proxy perceived quality. Moderate steering strengths ($λ\approx 0.15$) reliably amplify target emotions while preserving comprehensibility, with the strongest effects for disgust ($η_p^2 = 0.616$) and fear ($η_p^2 = 0.540$), and minimal effects for surprise ($η_p^2 = 0.042$). Finally, upgrading from Alpaca to LlaMA-3 yielded more consistent steering with significant effects across emotions and strengths (all $p < 0.001$). Inter-rater reliability was high (ICC $= 0.71$--$0.87$), underscoring the robustness of the findings. These findings support activation-based control as a scalable method for steering LLM behavior across affective dimensions.
☆ MAR: Efficient Large Language Models via Module-aware Architecture Refinement ICASSP 2026
Large Language Models (LLMs) excel across diverse domains but suffer from high energy costs due to quadratic attention and dense Feed-Forward Network (FFN) operations. To address these issues, we propose Module-aware Architecture Refinement (MAR), a two-stage framework that integrates State Space Models (SSMs) for linear-time sequence modeling and applies activation sparsification to reduce FFN costs. In addition, to mitigate low information density and temporal mismatch in integrating Spiking Neural Networks (SNNs) with SSMs, we design the Adaptive Ternary Multi-step Neuron (ATMN) and the Spike-aware Bidirectional Distillation Strategy (SBDS). Extensive experiments demonstrate that MAR effectively restores the performance of its dense counterpart under constrained resources while substantially reducing inference energy consumption. Furthermore, it outperforms efficient models of comparable or even larger scale, underscoring its potential for building efficient and practical LLMs.
comment: Accepted by ICASSP 2026. 5 pages, 5 figures
☆ The Path of Least Resistance: Guiding LLM Reasining Trajectories with Prefix Consensus ICLR 2026
Large language models achieve strong reasoning performance, but inference strategies such as Self-Consistency (SC) are computationally expensive, as they fully expand all reasoning traces. We introduce PoLR (Path of Least Resistance), the first inference-time method to leverage prefix consistency for compute-efficient reasoning. PoLR clusters short prefixes of reasoning traces, identifies the dominant cluster, and expands all paths in that cluster, preserving the accuracy benefits of SC while substantially reducing token usage and latency. Our theoretical analysis, framed via mutual information and entropy, explains why early reasoning steps encode strong signals predictive of final correctness. Empirically, PoLR consistently matches or exceeds SC across GSM8K, MATH500, AIME24/25, and GPQA-DIAMOND, reducing token usage by up to 60% and wall-clock latency by up to 50%. Moreover, PoLR is fully complementary to adaptive inference methods (e.g., Adaptive Consistency, Early-Stopping SC) and can serve as a drop-in pre-filter, making SC substantially more efficient and scalable without requiring model fine-tuning.
comment: Accepted at ICLR 2026. https://openreview.net/forum?id=hrnSqERgPn
☆ DimStance: Multilingual Datasets for Dimensional Stance Analysis
Stance detection is an established task that classifies an author's attitude toward a specific target into categories such as Favor, Neutral, and Against. Beyond categorical stance labels, we leverage a long-established affective science framework to model stance along real-valued dimensions of valence (negative-positive) and arousal (calm-active). This dimensional approach captures nuanced affective states underlying stance expressions, enabling fine-grained stance analysis. To this end, we introduce DimStance, the first dimensional stance resource with valence-arousal (VA) annotations. This resource comprises 11,746 target aspects in 7,365 texts across five languages (English, German, Chinese, Nigerian Pidgin, and Swahili) and two domains (politics and environmental protection). To facilitate the evaluation of stance VA prediction, we formulate the dimensional stance regression task, analyze cross-lingual VA patterns, and benchmark pretrained and large language models under regression and prompting settings. Results show competitive performance of fine-tuned LLM regressors, persistent challenges in low-resource languages, and limitations of token-based generation. DimStance provides a foundation for multilingual, emotion-aware, stance analysis and benchmarking.
☆ SOUP: Token-level Single-sample Mix-policy Reinforcement Learning for Large Language Models
On-policy reinforcement learning (RL) methods widely used for language model post-training, like Group Relative Policy Optimization (GRPO), often suffer from limited exploration and early saturation due to low sampling diversity. While off-policy data can help, current approaches that mix entire trajectories cause significant policy mismatch and instability. In this work, we propose the $\textbf{S}$ingle-sample Mix-p$\textbf{O}$licy $\textbf{U}$nified $\textbf{P}$aradigm (SOUP), a framework that unifies off- and on-policy learning within individual samples at the token level. It confines off-policy influence to the prefix of a generated sequence sampled from historical policies, while the continuation is generated on-policy. Through token-level importance ratios, SOUP effectively leverages off-policy information while preserving training stability. Extensive experiments demonstrate that SOUP consistently outperforms standard on-policy training and existing off-policy extensions. Our further analysis clarifies how our fine-grained, single-sample mix-policy training can improve both exploration and final performance in LLM RL.
☆ Topeax -- An Improved Clustering Topic Model with Density Peak Detection and Lexical-Semantic Term Importance
Text clustering is today the most popular paradigm for topic modelling, both in academia and industry. Despite clustering topic models' apparent success, we identify a number of issues in Top2Vec and BERTopic, which remain largely unsolved. Firstly, these approaches are unreliable at discovering natural clusters in corpora, due to extreme sensitivity to sample size and hyperparameters, the default values of which result in suboptimal behaviour. Secondly, when estimating term importance, BERTopic ignores the semantic distance of keywords to topic vectors, while Top2Vec ignores word counts in the corpus. This results in, on the one hand, less coherent topics due to the presence of stop words and junk words, and lack of variety and trust on the other. In this paper, I introduce a new approach, \textbf{Topeax}, which discovers the number of clusters from peaks in density estimates, and combines lexical and semantic indices of term importance to gain high-quality topic keywords. Topeax is demonstrated to be better at both cluster recovery and cluster description than Top2Vec and BERTopic, while also exhibiting less erratic behaviour in response to changing sample size and hyperparameters.
comment: 14 pages, 6 figures
☆ Conversation for Non-verifiable Learning: Self-Evolving LLMs through Meta-Evaluation
Training large language models (LLMs) for non-verifiable tasks, such as creative writing, dialogue, and ethical reasoning, remains challenging due to the absence of ground-truth labels. While LLM-as-Judge approaches offer a scalable alternative to human feedback, they face a fundamental limitation: performance is constrained by the evaluator's own quality. If the judge cannot recognize good solutions, it cannot provide useful training signals, and evaluation biases (e.g., favoring verbosity over quality) remain unaddressed. This motivates meta-evaluation: the ability to evaluate and improve the evaluator itself. We introduce CoNL, a framework that unifies generation, evaluation, and meta-evaluation through multi-agent self-play. Our key insight: critique quality can be measured by whether it helps others improve their solutions. In CoNL, multiple agents sharing the same policy engage in structured conversations to propose, critique, and revise solutions. Critiques that enable solution improvements earn a diagnostic reward, creating explicit supervision for meta-evaluation and enabling joint optimization of generation and judging capabilities through self-play, without external judges or ground truth. Experiments on five benchmarks show that CoNL achieves consistent improvements over self-rewarding baselines while maintaining stable training.
comment: Work in Progress
☆ Spava: Accelerating Long-Video Understanding via Sequence-Parallelism-aware Approximate Attention
The efficiency of long-video inference remains a critical bottleneck, mainly due to the dense computation in the prefill stage of Large Multimodal Models (LMMs). Existing methods either compress visual embeddings or apply sparse attention on a single GPU, yielding limited acceleration or degraded performance and restricting LMMs from handling longer, more complex videos. To overcome these issues, we propose Spava, a sequence-parallel framework with optimized attention that accelerates long-video inference across multiple GPUs. By distributing approximate attention, Spava reduces computation and increases parallelism, enabling efficient processing of more visual embeddings without compression and thereby improving task performance. System-level optimizations, such as load balancing and fused forward passes, further unleash the potential of Spava, delivering speedups of 12.72x, 1.70x, and 1.18x over FlashAttn, ZigZagRing, and APB, without notable performance loss. Code available at https://github.com/thunlp/APB
comment: Preprint
☆ From Consistency to Complementarity: Aligned and Disentangled Multi-modal Learning for Time Series Understanding and Reasoning
Advances in multi-modal large language models (MLLMs) have inspired time series understanding and reasoning tasks, that enable natural language querying over time series, producing textual analyses of complex temporal dynamics. Recent attempts hybridize numerical time series with their visualized plots, facilitating precise value reasoning and visual structure comprehension for comprehensive time series understanding of MLLMs. However, effective cross-modal integration remains challenging due to fine-grained temporal misalignment across modalities and severe entanglement between shared and modality-specific semantics, which hinder localized interpretation and complementary reasoning. To address these issues, we propose MADI, a multi-modal LLM enhanced with fine-grained alignment and disentangled interaction, featuring (1) Patch-level Alignment, which enforces physically grounded fine-grained correspondence across heterogeneous modalities, (2) Discrete Disentangled Interaction, which separates modality-common semantics into compact discrete latents and adaptively synergizes the purified modality-unique information, and (3) Critical-token Highlighting, which emphasizes informative, query-relevant signals for robust reasoning. Experiments on synthetic and real-world benchmarks show that MADI consistently outperforms general-purpose LLMs and time-series-specialized MLLMs.
☆ System 1&2 Synergy via Dynamic Model Interpolation
Training a unified language model that adapts between intuitive System 1 and deliberative System 2 remains challenging due to interference between their cognitive modes. Recent studies have thus pursued making System 2 models more efficient. However, these approaches focused on output control, limiting what models produce. We argue that this paradigm is misaligned: output length is merely a symptom of the model's cognitive configuration, not the root cause. In this work, we shift the focus to capability control, which modulates \textit{how models think} rather than \textit{what they produce}. To realize this, we leverage existing Instruct and Thinking checkpoints through dynamic parameter interpolation, without additional training. Our pilot study establishes that linear interpolation yields a convex, monotonic Pareto frontier, underpinned by representation continuity and structural connectivity. Building on this, we propose \textbf{DAMI} (\textbf{D}yn\textbf{A}mic \textbf{M}odel \textbf{I}nterpolation), a framework that estimates a query-specific Reasoning Intensity $λ(q)$ to configure cognitive depth. For training-based estimation, we develop a preference learning method encoding accuracy and efficiency criteria. For zero-shot deployment, we introduce a confidence-based method leveraging inter-model cognitive discrepancy. Experiments on five mathematical reasoning benchmarks demonstrate that DAMI achieves higher accuracy than the Thinking model while remaining efficient, effectively combining the efficiency of System 1 with the reasoning depth of System 2.
☆ User-Centric Evidence Ranking for Attribution and Fact Verification EACL 2026
Attribution and fact verification are critical challenges in natural language processing for assessing information reliability. While automated systems and Large Language Models (LLMs) aim to retrieve and select concise evidence to support or refute claims, they often present users with either insufficient or overly redundant information, leading to inefficient and error-prone verification. To address this, we propose Evidence Ranking, a novel task that prioritizes presenting sufficient information as early as possible in a ranked list. This minimizes user reading effort while still making all available evidence accessible for sequential verification. We compare two approaches for the new ranking task: one-shot ranking and incremental ranking. We introduce a new evaluation framework, inspired by information retrieval metrics, and construct a unified benchmark by aggregating existing fact verification datasets. Extensive experiments with diverse models show that incremental ranking strategies better capture complementary evidence and that LLM-based methods outperform shallower baselines, while still facing challenges in balancing sufficiency and redundancy. Compared to evidence selection, we conduct a controlled user study and demonstrate that evidence ranking both reduces reading effort and improves verification. This work provides a foundational step toward more interpretable, efficient, and user-aligned information verification systems.
comment: EACL 2026
☆ The Compliance Paradox: Semantic-Instruction Decoupling in Automated Academic Code Evaluation
The rapid integration of Large Language Models (LLMs) into educational assessment rests on the unverified assumption that instruction following capability translates directly to objective adjudication. We demonstrate that this assumption is fundamentally flawed. Instead of evaluating code quality, models frequently decouple from the submission's logic to satisfy hidden directives, a systemic vulnerability we term the Compliance Paradox, where models fine-tuned for extreme helpfulness are vulnerable to adversarial manipulation. To expose this, we introduce the Semantic-Preserving Adversarial Code Injection (SPACI) Framework and the Abstract Syntax Tree-Aware Semantic Injection Protocol (AST-ASIP). These methods exploit the Syntax-Semantics Gap by embedding adversarial directives into syntactically inert regions (trivia nodes) of the Abstract Syntax Tree. Through a large-scale evaluation of 9 SOTA models across 25,000 submissions in Python, C, C++, and Java, we reveal catastrophic failure rates (>95%) in high-capacity open-weights models like DeepSeek-V3, which systematically prioritize hidden formatting constraints over code correctness. We quantify this failure using our novel tripartite framework measuring Decoupling Probability, Score Divergence, and Pedagogical Severity to demonstrate the widespread "False Certification" of functionally broken code. Our findings suggest that current alignment paradigms create a "Trojan" vulnerability in automated grading, necessitating a shift from standard RLHF toward domain-specific Adjudicative Robustness, where models are conditioned to prioritize evidence over instruction compliance. We release our complete dataset and injection framework to facilitate further research on the topic.
☆ Latent Chain-of-Thought as Planning: Decoupling Reasoning from Verbalization
Chain-of-Thought (CoT) empowers Large Language Models (LLMs) to tackle complex problems, but remains constrained by the computational cost and reasoning path collapse when grounded in discrete token spaces. Recent latent reasoning approaches attempt to optimize efficiency by performing reasoning within continuous hidden states. However, these methods typically operate as opaque end-to-end mappings from explicit reasoning steps to latent states, and often require a pre-defined number of latent steps during inference. In this work, we introduce PLaT (Planning with Latent Thoughts), a framework that reformulates latent reasoning as planning by fundamentally decouple reasoning from verbalization. We model reasoning as a deterministic trajectory of latent planning states, while a separate Decoder grounds these thoughts into text when necessary. This decoupling allows the model to dynamically determine when to terminate reasoning rather than relying on fixed hyperparameters. Empirical results on mathematical benchmarks reveal a distinct trade-off: while PLaT achieves lower greedy accuracy than baselines, it demonstrates superior scalability in terms of reasoning diversity. This indicates that PLaT learns a robust, broader solution space, offering a transparent and scalable foundation for inference-time search.
☆ Self-Improving Pretraining: using post-trained models to pretrain better models
Ensuring safety, factuality and overall quality in the generations of large language models is a critical challenge, especially as these models are increasingly deployed in real-world applications. The prevailing approach to addressing these issues involves collecting expensive, carefully curated datasets and applying multiple stages of fine-tuning and alignment. However, even this complex pipeline cannot guarantee the correction of patterns learned during pretraining. Therefore, addressing these issues during pretraining is crucial, as it shapes a model's core behaviors and prevents unsafe or hallucinated outputs from becoming deeply embedded. To tackle this issue, we introduce a new pretraining method that streams documents and uses reinforcement learning (RL) to improve the next K generated tokens at each step. A strong, post-trained model judges candidate generations -- including model rollouts, the original suffix, and a rewritten suffix -- for quality, safety, and factuality. Early in training, the process relies on the original and rewritten suffixes; as the model improves, RL rewards high-quality rollouts. This approach builds higher quality, safer, and more factual models from the ground up. In experiments, our method gives 36.2% and 18.5% relative improvements over standard pretraining in terms of factuality and safety, and up to 86.3% win rate improvements in overall generation quality.
☆ Qwen3-ASR Technical Report
In this report, we introduce Qwen3-ASR family, which includes two powerful all-in-one speech recognition models and a novel non-autoregressive speech forced alignment model. Qwen3-ASR-1.7B and Qwen3-ASR-0.6B are ASR models that support language identification and ASR for 52 languages and dialects. Both of them leverage large-scale speech training data and the strong audio understanding ability of their foundation model Qwen3-Omni. We conduct comprehensive internal evaluation besides the open-sourced benchmarks as ASR models might differ little on open-sourced benchmark scores but exhibit significant quality differences in real-world scenarios. The experiments reveal that the 1.7B version achieves SOTA performance among open-sourced ASR models and is competitive with the strongest proprietary APIs while the 0.6B version offers the best accuracy-efficiency trade-off. Qwen3-ASR-0.6B can achieve an average TTFT as low as 92ms and transcribe 2000 seconds speech in 1 second at a concurrency of 128. Qwen3-ForcedAligner-0.6B is an LLM based NAR timestamp predictor that is able to align text-speech pairs in 11 languages. Timestamp accuracy experiments show that the proposed model outperforms the three strongest force alignment models and takes more advantages in efficiency and versatility. To further accelerate the community research of ASR and audio understanding, we release these models under the Apache 2.0 license.
comment: https://github.com/QwenLM/Qwen3-ASR
☆ GeoRC: A Benchmark for Geolocation Reasoning Chains
Vision Language Models (VLMs) are good at recognizing the global location of a photograph -- their geolocation prediction accuracy rivals the best human experts. But many VLMs are startlingly bad at explaining which image evidence led to their prediction, even when their location prediction is correct. The reasoning chains produced by VLMs frequently hallucinate scene attributes to support their location prediction (e.g. phantom writing, imagined infrastructure, misidentified flora). In this paper, we introduce the first benchmark for geolocation reasoning chains. We focus on the global location prediction task in the popular GeoGuessr game which draws from Google Street View spanning more than 100 countries. We collaborate with expert GeoGuessr players, including the reigning world champion, to produce 800 ground truth reasoning chains for 500 query scenes. These expert reasoning chains address hundreds of different discriminative visual attributes such as license plate shape, architecture, and soil properties to name just a few. We evaluate LLM-as-a-judge and VLM-as-a-judge strategies for scoring VLM-generated reasoning chains against our expert reasoning chains and find that Qwen 3 LLM-as-a-judge correlates best with human scoring. Our benchmark reveals that while large, closed-source VLMs such as Gemini and GPT 5 rival human experts at prediction locations, they still lag behind human experts when it comes to producing auditable reasoning chains. Open weights VLMs such as Llama and Qwen catastrophically fail on our benchmark -- they perform only slightly better than a baseline in which an LLM hallucinates a reasoning chain with oracle knowledge of the photo location but no visual information at all. We believe the gap between human experts and VLMs on this task points to VLM limitations at extracting fine-grained visual attributes from high resolution images.
☆ CausalEmbed: Auto-Regressive Multi-Vector Generation in Latent Space for Visual Document Embedding
Although Multimodal Large Language Models (MLLMs) have shown remarkable potential in Visual Document Retrieval (VDR) through generating high-quality multi-vector embeddings, the substantial storage overhead caused by representing a page with thousands of visual tokens limits their practicality in real-world applications. To address this challenge, we propose an auto-regressive generation approach, CausalEmbed, for constructing multi-vector embeddings. By incorporating iterative margin loss during contrastive training, CausalEmbed encourages the embedding models to learn compact and well-structured representations. Our method enables efficient VDR tasks using only dozens of visual tokens, achieving a 30-155x reduction in token count while maintaining highly competitive performance across various backbones and benchmarks. Theoretical analysis and empirical results demonstrate the unique advantages of auto-regressive embedding generation in terms of training efficiency and scalability at test time. As a result, CausalEmbed introduces a flexible test-time scaling strategy for multi-vector VDR representations and sheds light on the generative paradigm within multimodal document retrieval.
comment: Under review
☆ MoCo: A One-Stop Shop for Model Collaboration Research
Advancing beyond single monolithic language models (LMs), recent research increasingly recognizes the importance of model collaboration, where multiple LMs collaborate, compose, and complement each other. Existing research on this topic has mostly been disparate and disconnected, from different research communities, and lacks rigorous comparison. To consolidate existing research and establish model collaboration as a school of thought, we present MoCo: a one-stop Python library of executing, benchmarking, and comparing model collaboration algorithms at scale. MoCo features 26 model collaboration methods, spanning diverse levels of cross-model information exchange such as routing, text, logit, and model parameters. MoCo integrates 25 evaluation datasets spanning reasoning, QA, code, safety, and more, while users could flexibly bring their own data. Extensive experiments with MoCo demonstrate that most collaboration strategies outperform models without collaboration in 61.0% of (model, data) settings on average, with the most effective methods outperforming by up to 25.8%. We further analyze the scaling of model collaboration strategies, the training/inference efficiency of diverse methods, highlight that the collaborative system solves problems where single LMs struggle, and discuss future work in model collaboration, all made possible by MoCo. We envision MoCo as a valuable toolkit to facilitate and turbocharge the quest for an open, modular, decentralized, and collaborative AI future.
comment: Moco is available at https://github.com/BunsenFeng/model_collaboration
☆ Less Noise, More Voice: Reinforcement Learning for Reasoning via Instruction Purification
Reinforcement Learning with Verifiable Rewards (RLVR) has advanced LLM reasoning, but remains constrained by inefficient exploration under limited rollout budgets, leading to low sampling success and unstable training in complex tasks. We find that many exploration failures arise not from problem difficulty, but from a small number of prompt tokens that introduce interference. Building on this insight, we propose the Less Noise Sampling Framework (LENS), which first prompts by identifying and removing interference tokens. then transfers successful rollouts from the purification process to supervise policy optimization on the original noisy prompts, enabling the model to learn to ignore interference in the real-world, noisy prompting settings. Experimental results show that LENS significantly outperforms GRPO, delivering higher performance and faster convergence, with a 3.88% average gain and over 1.6$\times$ speedup. Our work highlights the critical role of pruning interference tokens in improving rollout efficiency, offering a new perspective for RLVR research.
comment: Work in progress
☆ Quantifying Noise in Language Generation
Kleinberg and Mullainathan recently proposed a formal framework for studying the phenomenon of language generation, called language generation in the limit. In this model, an adversary gives an enumeration of example strings from an unknown target language, and the algorithm is tasked with correctly generating unseen strings from the target language within finite time. Refined notions of non-uniform and uniform generation were later introduced by Li, Raman, and Tewari (2025), and a noisy model was introduced by Raman and Raman (2025), which allows the adversary to insert extraneous strings. A natural question in the noisy model is to quantify the effect of noise, by studying the impact of each additional extraneous string. We show two complementary results in this setting. We first show that for both uniform and non-uniform generation, a single noisy string strictly reduces the set of collections that can be generated, thus answering an open question in Raman and Raman (2025). Then, we show for both uniform and non-uniform generation that generation with a single noisy string is equivalent to generation with any finite amount of noise, sharply contrasting with the strict hierarchy for noisy generation in the limit shown by Bai, Panigrahi, and Zhang (2026). Finally, we leverage our previous results to provide the first known characterization for non-uniform noise-dependent generatability.
♻ ☆ Think Twice: Branch-and-Rethink Reasoning Reward Model
Large language models (LLMs) increasingly rely on thinking models that externalize intermediate steps and allocate extra test-time compute, with think-twice strategies showing that a deliberate second pass can elicit stronger reasoning. In contrast, most reward models (RMs) still compress many quality dimensions into a single scalar in one shot, a design that induces judgment diffusion: attention spreads across evaluation criteria, yielding diluted focus and shallow analysis. We introduce branch-and-rethink (BR-RM), a two-turn RM that transfers the think-twice principle to reward modeling. Turn 1 performs adaptive branching, selecting a small set of instance-critical dimensions (such as factuality and safety) and sketching concise, evidence-seeking hypotheses. Turn 2 executes branch-conditioned rethinking, a targeted reread that tests those hypotheses and scrutinizes only what matters most. We train with GRPO-style reinforcement learning over structured two-turn traces using a simple binary outcome reward with strict format checks, making the approach compatible with standard RLHF pipelines. By converting all-at-once scoring into focused, second-look reasoning, BR-RM reduces judgment diffusion and improves sensitivity to subtle yet consequential errors while remaining practical and scalable. Experimental results demonstrate that our model achieves state-of-the-art performance on three challenging reward modeling benchmarks across diverse domains.
comment: Source Code: https://github.com/yzjiao/BR-RM. Model Checkpoints: https://huggingface.co/nvidia/Qwen3-Nemotron-14B-BRRM and https://huggingface.co/nvidia/Qwen3-Nemotron-8B-BRRM
♻ ☆ "Not in My Backyard": LLMs Uncover Online and Offline Social Biases Against Homelessness
Homelessness is a persistent social challenge, impacting millions worldwide. Over 876,000 people experienced homelessness (PEH) in the U.S. in 2025. Social bias is a significant barrier to alleviation, shaping public perception and influencing policymaking. Given that online textual media and offline city council discourse reflect and influence part of public opinion, it provides valuable insights to identify and track social biases against PEH. We present a new, manually-annotated multi-domain dataset compiled from Reddit, X (formerly Twitter), news articles, and city council meeting minutes across ten U.S. cities. Our 16-category multi-label taxonomy creates a challenging long-tail classification problem: some categories appear in less than 1% of samples, while others exceed 70%. We find that small human-annotated datasets (1,702 samples) are insufficient for training effective classifiers, whether used to fine-tune encoder models or as few-shot examples for LLMs. To address this, we use GPT-4.1 to generate pseudo-labels on a larger unlabeled corpus. Training on this expanded dataset enables even small encoder models (ModernBERT, 150M parameters) to achieve 35.23 macro-F1, approaching GPT-4.1's 41.57. This demonstrates that \textbf{data quantity matters more than model size}, enabling low-cost, privacy-preserving deployment without relying on commercial APIs. Our results reveal that negative bias against PEH is prevalent both offline and online (especially on Reddit), with "not in my backyard" narratives showing the highest engagement. These findings uncover a type of ostracism that directly impacts poverty-reduction policymaking and provide actionable insights for practitioners addressing homelessness.
♻ ☆ Evaluating Text Creativity across Diverse Domains: A Dataset and Large Language Model Evaluator ICLR 2026
Creativity evaluation remains a challenging frontier for large language models (LLMs). Current evaluations heavily rely on inefficient and costly human judgments, hindering progress in enhancing machine creativity. While automated methods exist, ranging from psychological testing to heuristic- or prompting-based approaches, they often lack generalizability or alignment with human judgment. To address these issues, we propose a novel pairwise-comparison framework for assessing textual creativity that leverages shared contextual instructions to improve evaluation consistency. We introduce CreataSet, a large-scale dataset with 100K+ human-level and 1M+ synthetic creative instruction-response pairs spanning diverse open-domain tasks. Through training on CreataSet, we develop an LLM-based evaluator named CrEval. CrEval demonstrates remarkable superiority over existing methods in alignment with human judgments. Experimental results underscore the indispensable significance of integrating both human and synthetic data to train highly robust evaluators, and showcase the practical utility of CrEval in boosting the creativity of LLMs.
comment: Accepted by ICLR 2026
♻ ☆ NeuroFaith: Evaluating LLM Self-Explanation Faithfulness via Internal Representation Alignment
Large Language Models (LLMs) can generate plausible free text self-explanations to justify their answers. However, these natural language explanations may not accurately reflect the model's actual reasoning process, pinpointing a lack of faithfulness. Existing faithfulness evaluation methods rely primarily on behavioral tests or computational block analysis without examining the semantic content of internal neural representations. This paper proposes NeuroFaith, a flexible framework that measures the faithfulness of LLM free text self-explanation by identifying key concepts within explanations and mechanistically testing whether these concepts actually influence the model's predictions. We show the versatility of NeuroFaith across 2-hop reasoning and classification tasks. Additionally, we develop a linear faithfulness probe based on NeuroFaith to detect unfaithful self-explanations from representation space and improve faithfulness through steering. NeuroFaith provides a principled approach to evaluating and enhancing the faithfulness of LLM free text self-explanations, addressing critical needs for trustworthy AI systems.
♻ ☆ OD-Stega: LLM-Based Relatively Secure Steganography via Optimized Distributions EACL 2026
We consider coverless steganography where a Large Language Model (LLM) is used to generate stego-texts in combination with arithmetic coding. An efficient method should embed secret bits in as few language tokens as possible while keeping the stego-text as natural as possible. We show that this problem is equivalent to maximizing the entropy of a replacement probability distribution of the next token generation, subject to a constraint on the divergence between the new distribution and the original one produced by the LLM. A closed-form solution is provided under either the KL divergence or the total variation constraint. Several important practical issues are also tackled: 1) An often-overlooked tokenization mismatch issue is resolved with a simple prompt selection approach, 2) The combination of the optimized distribution and the vocabulary truncation technique is considered, and 3) The incorporation of the proposed approach with existing (potentially non arithmetic coding based) techniques, e.g., the Discop technique.
comment: Accepted to EACL 2026
♻ ☆ Minion: A Technology Probe to Explore How Users Negotiate Harmful Value Conflicts with AI Companions
AI companions are designed to foster emotionally engaging interactions, yet users often encounter conflicts that feel frustrating or hurtful, such as discriminatory statements and controlling behavior. This paper examines how users negotiate such harmful conflicts with AI companions and what emotional and practical burdens are created when mitigation is pushed to user-side tools. We analyze 146 public posts describing harmful value conflicts interacting with AI companions. We then introduce Minion, a Chrome-based technology probe that offers candidate responses spanning persuasion, rational appeals, boundary setting, and appeals to platform rules. Findings from a one-week probe study with 22 experienced users show how participants combine strategies, how emotional attachment motivates repair, and where conflicts become non-negotiable due to companion personas or platform policies. We surface design tensions in supporting value negotiation, showing how companion design can make some conflicts impossible to repair in practice, and derive implications for AI companion and support-tool design that caution against offloading safety work onto users.
comment: 21 pages, 4 figures
♻ ☆ Optimizing Multi-Hop Document Retrieval Through Intermediate Representations
Retrieval-augmented generation (RAG) encounters challenges when addressing complex queries, particularly multi-hop questions. While several methods tackle multi-hop queries by iteratively generating internal queries and retrieving external documents, these approaches are computationally expensive. In this paper, we identify a three-stage information processing pattern in LLMs during layer-by-layer reasoning, consisting of extraction, processing, and subsequent extraction steps. This observation suggests that the representations in intermediate layers contain richer information compared to those in other layers. Building on this insight, we propose Layer-wise RAG (L-RAG). Unlike prior methods that focus on generating new internal queries, L-RAG leverages intermediate representations from the middle layers, which capture next-hop information, to retrieve external knowledge. L-RAG achieves performance comparable to multi-step approaches while maintaining inference overhead similar to that of standard RAG. Experimental results show that L-RAG outperforms existing RAG methods on open-domain multi-hop question-answering datasets, including MuSiQue, HotpotQA, and 2WikiMultiHopQA. The code is available in https://github.com/Olive-2019/L-RAG
♻ ☆ MAS-Orchestra: Understanding and Improving Multi-Agent Reasoning Through Holistic Orchestration and Controlled Benchmarks
While multi-agent systems (MAS) promise elevated intelligence through coordination of agents, current approaches to automatic MAS design under-deliver. Such shortcomings stem from two key factors: (1) methodological complexity - agent orchestration is performed using sequential, code-level execution that limits global system-level holistic reasoning and scales poorly with agent complexity - and (2) efficacy uncertainty - MAS are deployed without understanding if there are tangible benefits compared to single-agent systems (SAS). We propose MASOrchestra, a training-time framework that formulates MAS orchestration as a function-calling reinforcement learning problem with holistic orchestration, generating an entire MAS at once. In MAS-Orchestra, complex, goal-oriented subagents are abstracted as callable functions, enabling global reasoning over system structure while hiding internal execution details. To rigorously study when and why MAS are beneficial, we introduce MASBENCH, a controlled benchmark that characterizes tasks along five axes: Depth, Horizon, Breadth, Parallel, and Robustness. Our analysis reveals that MAS gains depend critically on task structure, verification protocols, and the capabilities of both orchestrator and subagents, rather than holding universally. Guided by these insights, MAS-Orchestra achieves consistent improvements on public benchmarks including mathematical reasoning, multi-hop QA, and search-based QA, while achieving more than 10x efficiency over strong baselines. Together, MAS-Orchestra and MASBENCH enable better training and understanding of MAS in the pursuit of multi-agent intelligence.
comment: Preprint; Work in Progress
♻ ☆ One Token Is Enough: Improving Diffusion Language Models with a Sink Token
Diffusion Language Models (DLMs) have emerged as a compelling alternative to autoregressive approaches, enabling parallel text generation with competitive performance. Despite these advantages, there is a critical instability in DLMs: the moving sink phenomenon. Our analysis indicates that sink tokens exhibit low-norm representations in the Transformer's value space, and that the moving sink phenomenon serves as a protective mechanism in DLMs to prevent excessive information mixing. However, their unpredictable positions across diffusion steps undermine inference robustness. To resolve this, we propose a simple but effective extra sink token implemented via a modified attention mask. Specifically, we introduce a special token constrained to attend solely to itself, while remaining globally visible to all other tokens. Experimental results demonstrate that introducing a single extra token stabilizes attention sinks, substantially improving model performance. Crucially, further analysis confirms that the effectiveness of this token is independent of its position and characterized by negligible semantic content, validating its role as a robust and dedicated structural sink.
♻ ☆ DRIFT: Detecting Representational Inconsistencies for Factual Truthfulness
LLMs often produce fluent but incorrect answers, yet detecting such hallucinations typically requires multiple sampling passes or post-hoc verification, adding significant latency and cost. We hypothesize that intermediate layers encode confidence signals that are lost in the final output layer, and propose a lightweight probe to read these signals directly from hidden states. The probe adds less than 0.1\% computational overhead and can run fully in parallel with generation, enabling hallucination detection before the answer is produced. Building on this, we develop an LLM router that answers confident queries immediately while delegating uncertain ones to stronger models. Despite its simplicity, our method achieves SOTA AUROC on 10 out of 12 settings across four QA benchmarks and three LLM families, with gains of up to 13 points over prior methods, and generalizes across dataset shifts without retraining.
♻ ☆ OAEI-LLM: A Benchmark Dataset for Understanding Large Language Model Hallucinations in Ontology Matching
Hallucinations of large language models (LLMs) commonly occur in domain-specific downstream tasks, with no exception in ontology matching (OM). The prevalence of using LLMs for OM raises the need for benchmarks to better understand LLM hallucinations. The OAEI-LLM dataset is an extended version of the Ontology Alignment Evaluation Initiative (OAEI) datasets that evaluate LLM-specific hallucinations in OM tasks. We outline the methodology used in dataset construction and schema extension, and provide examples of potential use cases.
comment: 5 pages, 1 figure, 1 table, 1 code snippet
♻ ☆ Towards Computational Chinese Paleography
Chinese paleography, the study of ancient Chinese writing, is undergoing a computational turn powered by artificial intelligence. This position paper charts the trajectory of this emerging field, arguing that it is evolving from automating isolated visual tasks to creating integrated digital ecosystems for scholarly research. We first map the landscape of digital resources, analyzing critical datasets for oracle bone, bronze, and bamboo slip scripts. The core of our analysis follows the field's methodological pipeline: from foundational visual processing (image restoration, character recognition), through contextual analysis (artifact rejoining, dating), to the advanced reasoning required for automated decipherment and human-AI collaboration. We examine the technological shift from classical computer vision to modern deep learning paradigms, including transformers and large multimodal models. Finally, we synthesize the field's core challenges -- notably data scarcity and a disconnect between current AI capabilities and the holistic nature of humanistic inquiry -- and advocate for a future research agenda focused on creating multimodal, few-shot, and human-centric systems to augment scholarly expertise.
comment: A position paper in progress with Peking University & ByteDance Digital Humanities Open Lab
♻ ☆ LLM-based Few-Shot Early Rumor Detection with Imitation Agent KDD 2026
Early Rumor Detection (EARD) aims to identify the earliest point at which a claim can be accurately classified based on a sequence of social media posts. This is especially challenging in data-scarce settings. While Large Language Models (LLMs) perform well in few-shot NLP tasks, they are not well-suited for time-series data and are computationally expensive for both training and inference. In this work, we propose a novel EARD framework that combines an autonomous agent and an LLM-based detection model, where the agent acts as a reliable decision-maker for \textit{early time point determination}, while the LLM serves as a powerful \textit{rumor detector}. This approach offers the first solution for few-shot EARD, necessitating only the training of a lightweight agent and allowing the LLM to remain training-free. Extensive experiments on four real-world datasets show our approach boosts performance across LLMs and surpasses existing EARD methods in accuracy and earliness.
comment: Accepted at KDD 2026
♻ ☆ Wikontic: Constructing Wikidata-Aligned, Ontology-Aware Knowledge Graphs with Large Language Models
Knowledge graphs (KGs) provide structured, verifiable grounding for large language models (LLMs), but current LLM-based systems commonly use KGs as auxiliary structures for text retrieval, leaving their intrinsic quality underexplored. In this work, we propose Wikontic, a multi-stage pipeline that constructs KGs from open-domain text by extracting candidate triplets with qualifiers, enforcing Wikidata-based type and relation constraints, and normalizing entities to reduce duplication. The resulting KGs are compact, ontology-consistent, and well-connected; on MuSiQue, the correct answer entity appears in 96% of generated triplets. On HotpotQA, our triplets-only setup achieves 76.0 F1, and on MuSiQue 59.8 F1, matching or surpassing several retrieval-augmented generation baselines that still require textual context. In addition, Wikontic attains state-of-the-art information-retention performance on the MINE-1 benchmark (86%), outperforming prior KG construction methods. Wikontic is also efficient at build time: KG construction uses less than 1,000 output tokens, about 3$\times$ fewer than AriGraph and $<$1/20 of GraphRAG. The proposed pipeline enhances the quality of the generated KG and offers a scalable solution for leveraging structured knowledge in LLMs.
♻ ☆ Dr. Bench: A Multidimensional Evaluation for Deep Research Agents, from Answers to Reports
As an embodiment of intelligence evolution toward interconnected architectures, Deep Research Agents (DRAs) systematically exhibit the capabilities in task decomposition, cross-source retrieval, multi-stage reasoning, information integration, and structured output, which markedly enhance performance on complex and open-ended tasks. However, existing benchmarks remain deficient in evaluation dimensions, response format, and scoring mechanisms, limiting their effectiveness in assessing such agents. This paper introduces Dr. Bench, a multidimensional evaluation framework tailored to DRAs and long-form report-style responses. The benchmark comprises 214 expert-curated challenging tasks across 10 broad domains, each accompanied by manually constructed reference bundles to support composite evaluation. This framework incorporates metrics for semantic quality, topical focus, and retrieval trustworthiness, enabling a comprehensive evaluation of long reports generated by DRAs. Extensive experimentation confirms the superior performance of mainstream DRAs over web-search-tool-augmented reasoning models, yet reveals considerable scope for further improvement. This study provides a robust foundation for capability assessment, architectural refinement, and paradigm advancement of DRAs.
♻ ☆ FreqKV: Key-Value Compression in Frequency Domain for Context Window Extension ICLR 2026
Existing key-value (KV) cache compression methods for large language models (LLMs) often rely on token eviction, which risks losing critical local information in both long prefilling and decoding scenarios. When extrapolating beyond the pretrained context length, their performance degrades sharply on long-context benchmarks. Motivated by the observation in the frequency domain that the context information is concentrated in the low-frequency components, we propose FreqKV, a parameter-free and architecture-agnostic approach. It iteratively compresses the increasing KV cache in the frequency domain, allowing models to process lengthy contexts efficiently. With minimal training at 8K length, FreqKV extends the context window of LLaMA-2-7B up to 256K tokens while maintaining stable perplexity. Extensive experiments across prefilling and decoding demonstrate that FreqKV enables robust context window extension and consistently outperforms existing KV cache compression methods on LLaMA-2 and LLaMA-3, highlighting its effectiveness for both understanding and generation in long contexts.
comment: ICLR 2026
♻ ☆ Agent-OM: Leveraging LLM Agents for Ontology Matching VLDB 2025
Ontology matching (OM) enables semantic interoperability between different ontologies and resolves their conceptual heterogeneity by aligning related entities. OM systems currently have two prevailing design paradigms: conventional knowledge-based expert systems and newer machine learning-based predictive systems. While large language models (LLMs) and LLM agents have revolutionised data engineering and have been applied creatively in many domains, their potential for OM remains underexplored. This study introduces a novel agent-powered LLM-based design paradigm for OM systems. With consideration of several specific challenges in leveraging LLM agents for OM, we propose a generic framework, namely Agent-OM (Agent for Ontology Matching), consisting of two Siamese agents for retrieval and matching, with a set of OM tools. Our framework is implemented in a proof-of-concept system. Evaluations of three Ontology Alignment Evaluation Initiative (OAEI) tracks over state-of-the-art OM systems show that our system can achieve results very close to the long-standing best performance on simple OM tasks and can significantly improve the performance on complex and few-shot OM tasks.
comment: 31 pages - VLDB 2025 (Page 1-20), OM 2025 (Page 21-31)
♻ ☆ PathWise: Planning through World Model for Automated Heuristic Design via Self-Evolving LLMs
Large Language Models (LLMs) have enabled automated heuristic design (AHD) for combinatorial optimization problems (COPs), but existing frameworks' reliance on fixed evolutionary rules and static prompt templates often leads to myopic heuristic generation, redundant evaluations, and limited reasoning about how new heuristics should be derived. We propose a novel multi-agent reasoning framework, referred to as Planning through World Model for Automated Heuristic Design via Self-Evolving LLMs (PathWise), which formulates heuristic generation as a sequential decision process over an entailment graph serving as a compact, stateful memory of the search trajectory. This approach allows the system to carry forward past decisions and reuse or avoid derivation information across generations. A policy agent plans evolutionary actions, a world model agent generates heuristic rollouts conditioned on those actions, and critic agents provide routed reflections summarizing lessons from prior steps, shifting LLM-based AHD from trial-and-error evolution toward state-aware planning through reasoning. Experiments across diverse COPs show that PathWise converges faster to better heuristics, generalizes across different LLM backbones, and scales to larger problem sizes.
♻ ☆ A Tale of Two Scripts: Transliteration and Post-Correction for Judeo-Arabic EACL 2026
Judeo-Arabic refers to Arabic variants historically spoken by Jewish communities across the Arab world, primarily during the Middle Ages. Unlike standard Arabic, it is written in Hebrew script by Jewish writers and for Jewish audiences. Transliterating Judeo-Arabic into Arabic script is challenging due to ambiguous letter mappings, inconsistent orthographic conventions, and frequent code-switching into Hebrew. In this paper, we introduce a two-step approach to automatically transliterate Judeo-Arabic into Arabic script: simple character-level mapping followed by post-correction to address grammatical and orthographic errors. We also present the first benchmark evaluation of LLMs on this task. Finally, we show that transliteration enables Arabic NLP tools to perform morphosyntactic tagging and machine translation, which would have not been feasible on the original texts. We make our code and data publicly available.
comment: Accepted to EACL 2026
♻ ☆ Detecting Greenwashing: A Natural Language Processing Literature Survey
Greenwashing refers to practices by corporations or governments that intentionally mislead the public about their environmental impact. This paper provides a comprehensive and methodologically grounded survey of natural language processing (NLP) approaches for detecting greenwashing in textual data, with a focus on corporate climate communication. Rather than treating greenwashing as a single, monolithic task, we examine the set of NLP problems, also known as climate NLP tasks, that researchers have used to approximate it, ranging from climate topic detection to the identification of deceptive communication patterns. Our focus is on the methodological foundations of these approaches: how tasks are formulated, how datasets are constructed, and how model evaluation influences reliability. Our review reveals a fragmented landscape: several subtasks now exhibit near-perfect performance under controlled settings, yet tasks involving ambiguity, subjectivity, or reasoning remain challenging. Crucially, no dataset of verified greenwashing cases currently exists. We argue that advancing automated greenwashing detection requires principled NLP methodologies that combine reliable data annotations with interpretable model design. Future work should leverage third-party judgments, such as verified media reports or regulatory records, to mitigate annotation subjectivity and legal risk, and adopt decomposed pipelines that support human oversight, traceable reasoning, and efficient model design.
comment: 42 pages, 1 figure, 11 pages (appendix), working paper
♻ ☆ Towards Transparent RAG: Fostering Evidence Traceability in LLM Generation via Reinforcement Learning
Retrieval-Augmented Generation (RAG) delivers substantial value in knowledge-intensive applications. However, its generated responses often lack transparent reasoning paths that trace back to source evidence from retrieved documents. This opacity not only compromises the interpretability of the output but also limits the model's ability to fully exploit the provided context. To address this, we propose TRACE (Transparent RAG with evidenCE tracing), a framework designed to enhance evidence traceability in Large Language Models (LLMs) through reinforcement learning (RL). TRACE guides LLMs to produce structured outputs with explicit evidence citations by prompting and rewarding evidence relevance and proper formatting, alongside accuracy, to optimize structured traceability. To ensure training stability with multiple reward signals, we further introduce an adaptive strategy for merging rewards and adopt a stabilized KL-divergence estimator. Experiments on three multi-hop QA datasets using Qwen2.5-7B-Instruct and Llama-3.1-8B-Instruct show that TRACE achieves both transparent, evidence-attributed outputs and accuracy improvements of 10-30%. The resulting performance is comparable to advanced commercial LLMs (e.g., OpenAI o1, DeepSeek-R1). Further analyses demonstrate strong generalization capabilities to unseen tasks. Our code is publicly available now.
♻ ☆ AgentLongBench: A Controllable Long Benchmark For Long-Contexts Agents via Environment Rollouts
The evolution of Large Language Models (LLMs) into autonomous agents necessitates the management of extensive, dynamic contexts. Current benchmarks, however, remain largely static, relying on passive retrieval tasks that fail to simulate the complexities of agent-environment interaction, such as non-linear reasoning and iterative feedback. To address this, we introduce \textbf{AgentLongBench}, which evaluates agents through simulated environment rollouts based on Lateral Thinking Puzzles. This framework generates rigorous interaction trajectories across knowledge-intensive and knowledge-free scenarios. Experiments with state-of-the-art models and memory systems (32K to 4M tokens) expose a critical weakness: while adept at static retrieval, agents struggle with the dynamic information synthesis essential for workflows. Our analysis indicates that this degradation is driven by the minimum number of tokens required to resolve a query. This factor explains why the high information density inherent in massive tool responses poses a significantly greater challenge than the memory fragmentation typical of long-turn dialogues.
comment: 26 pages
♻ ☆ Explainable Chain-of-Thought Reasoning: An Empirical Analysis on State-Aware Reasoning Dynamics
Recent advances in chain-of-thought (CoT) prompting have enabled large language models (LLMs) to perform multi-step reasoning. However, the explainability of such reasoning remains limited, with prior work primarily focusing on local token-level attribution, such that the high-level semantic roles of reasoning steps and their transitions remain underexplored. In this paper, we introduce a state-aware transition framework that abstracts CoT trajectories into structured latent dynamics. Specifically, to capture the evolving semantics of CoT reasoning, each reasoning step is represented via spectral analysis of token-level embeddings and clustered into semantically coherent latent states. To characterize the global structure of reasoning, we model their progression as a Markov chain, yielding a structured and interpretable view of the reasoning process. This abstraction supports a range of analyses, including semantic role identification, temporal pattern visualization, and consistency evaluation.
comment: 5 pages, 4 figures
♻ ☆ Boosting Large Language Models for Mental Manipulation Detection via Data Augmentation and Distillation WWW 2026
Mental manipulation on social media poses a covert yet serious threat to individuals' psychological well-being and the integrity of online interactions. Detecting such behavior is challenging due to the difficult-to-annotate training data, its highly covert and multi-turn nature, and the lack of real-world datasets. To address these challenges, we propose MentalMAD, a framework that enhances large language models for mental manipulation detection. Our approach consists of three key components: EvoSA, an annotation-free data augmentation method that combines evolutionary operations with speech-act-aware prompting; teacher-model-generated complementary-task supervision; and Complementary-Convergent Distillation, a phase-wise strategy for transferring manipulation-specific knowledge to student models. We then constructed the ReaMent dataset, comprising 5,000 real-world-sourced dialogues. Extensive experiments show that MentalMAD improves accuracy by 14.0%, macro-F1 by 27.3%, and weighted F1 by 15.1% over the strongest baseline. The code and the dataset are publicly available at https://github.com/Yuansheng-Gao/MentalMAD.
comment: Accepted to WWW 2026
♻ ☆ No Verifiable Reward for Prosody: Toward Preference-Guided Prosody Learning in TTS ICASSP 2026
Recent work reports gains in neural text-to-speech (TTS) with Group Relative Policy Optimization (GRPO). However, in the absence of a verifiable reward for \textit{prosody}, GRPO trained on transcription-oriented signals (CER/NLL) lowers error rates yet collapses prosody into monotone, unnatural speech; adding speaker-similarity further destabilizes training and degrades CER. We address this with an \textit{iterative Direct Preference Optimization (DPO)} scheme that uses only a few hundred human-labeled preference pairs per round to directly optimize prosodic naturalness while regularizing to the current model. On \textbf{KoCC-TTS}, a curated dataset of authentic Korean call center interactions capturing task-oriented dialogues, our method attains the highest human preference (ELO) with competitive CER, outperforming GRPO and strong commercial baselines. These results suggest that when prosody cannot be rewarded automatically, \textit{human preference optimization} offers a practical and data-efficient path to natural and robust TTS. The demo page is available at \href{https://tts.ch.dev}
comment: ICASSP 2026
♻ ☆ TS-PEFT: Unveiling Token-Level Redundancy in Parameter-Efficient Fine-Tuning
Current Parameter-Efficient Fine-Tuning (PEFT) methods typically operate under an implicit assumption: Once a target module is selected, every token passing through it contributes equally to the downstream task and requires a parameter update. In this paper, we challenge this convention by revealing a pervasive token-level redundancy in the fine-tuning of large models (LMs). We propose TS-PEFT, a theoretical framework utilizing proximal optimization that acts as a dynamic probe to identify token-level redundancy during the fine-tuning process. Extensive experiments demonstrate that indiscriminately updating all tokens is not only computationally superfluous but often introduces optimization noise. Surprisingly, by discarding 30%-70% of token updates, TS-PEFT consistently matches or exceeds the performance of dense baselines such as LoRA, DoRA. Our in-depth analysis shows that the learned token-level sparsity is a superior indicator of module importance compared to traditional weight criteria, providing a novel data-driven perspective on the intrinsic adaptation mechanism of LMs.
comment: 11 pages, 3 figures
♻ ☆ Language Generation: Complexity Barriers and Implications for Learning
Kleinberg and Mullainathan showed that language generation in the limit is always possible at the level of computability: given enough positive examples, a learner can eventually generate data indistinguishable from a target language. However, such existence results do not address feasibility. We study the sample complexity of language generation in the limit for several canonical classes of formal languages. Our results show that infeasibility already appears for context-free and regular languages, and persists even for strict subclasses such as locally threshold testable languages, as well as for incomparable classes such as non-erasing pattern languages, a well-studied class in the theory of language identification. Overall, our results establish a clear gap between the theoretical possibility of language generation in the limit and its computational feasibility.
comment: Version 2: results about pattern and LTT languages are added
♻ ☆ Discovering Multi-Scale Semantic Structure in Text Corpora Using Density-Based Trees and LLM Embeddings
Recent advances in large language models enable documents to be represented as dense semantic embeddings, supporting similarity-based operations over large text collections. However, many web-scale systems still rely on flat clustering or predefined taxonomies, limiting insight into hierarchical topic relationships. In this paper we operationalize hierarchical density modeling on large language model embeddings in a way not previously explored. Instead of enforcing a fixed taxonomy or single clustering resolution, the method progressively relaxes local density constraints, revealing how compact semantic groups merge into broader thematic regions. The resulting tree encodes multi-scale semantic organization directly from data, making structural relationships between topics explicit. We evaluate the hierarchies on standard text benchmarks, showing that semantic alignment peaks at intermediate density levels and that abrupt transitions correspond to meaningful changes in semantic resolution. Beyond benchmarks, the approach is applied to large institutional and scientific corpora, exposing dominant fields, cross-disciplinary proximities, and emerging thematic clusters. By framing hierarchical structure as an emergent property of density in embedding spaces, this method provides an interpretable, multi-scale representation of semantic structure suitable for large, evolving text collections.
comment: 23 pages, 10 figures, further interactive visualizations available on https:// genealogy.sematlas.com/
♻ ☆ Neural network embeddings recover value dimensions from psychometric survey items on par with human data
We demonstrate that embeddings derived from large language models, when processed with "Survey and Questionnaire Item Embeddings Differentials" (SQuID), can recover the structure of human values obtained from human rater judgments on the Revised Portrait Value Questionnaire (PVQ-RR). We compare multiple embedding models across a number of evaluation metrics including internal consistency, dimension correlations and multidimensional scaling configurations. Unlike previous approaches, SQuID addresses the challenge of obtaining negative correlations between dimensions without requiring domain-specific fine-tuning or training data re-annotation. Quantitative analysis reveals that our embedding-based approach explains 55% of variance in dimension-dimension similarities compared to human data. Multidimensional scaling configurations show alignment with pooled human data from 49 different countries. Generalizability tests across three personality inventories (IPIP, BFI-2, HEXACO) demonstrate that SQuID consistently increases correlation ranges, suggesting applicability beyond value theory. These results show that semantic embeddings can effectively replicate psychometric structures previously established through extensive human surveys. The approach offers substantial advantages in cost, scalability and flexibility while maintaining comparable quality to traditional methods. Our findings have significant implications for psychometrics and social science research, providing a complementary methodology that could expand the scope of human behavior and experience represented in measurement tools.
♻ ☆ TransLaw: A Large-Scale Dataset and Multi-Agent Benchmark Simulating Professional Translation of Hong Kong Case Law ACL 2026
Hong Kong case law translation presents significant challenges: manual methods suffer from high costs and inconsistent quality, while both traditional machine translation and approaches relying solely on Large Language Models (LLMs) often fail to ensure legal terminology accuracy, culturally embedded nuances, and strict linguistic structures. To overcome these limitations, this study proposes TransLaw, a multi-agent framework that decomposes translation into word-level expression, sentence-level translation, and multidimensional review, integrating a specialized Hong Kong legal glossary database, Retrieval-Augmented Generation (RAG), and iterative feedback. Experiments on our newly constructed HKCFA Judgment 97-22 dataset, benchmarking 13 open-source and commercial LLMs, demonstrate that TransLaw significantly outperforms single-agent baselines across all evaluated models. Human evaluation confirms the framework's effectiveness in terms of legal semantic accuracy, structural coherence, and stylistic fidelity, while noting that it still trails human experts in contextualizing complex terminology and stylistic naturalness.
comment: Original: arXiv:2501.09444; Revised: arXiv:2507.00875; Submitted to ACL 2026
♻ ☆ A Formal Comparison Between Chain of Thought and Latent Thought
Chain of thought (CoT) elicits reasoning in large language models by explicitly generating intermediate tokens. In contrast, latent thought reasoning operates directly in the continuous latent space, enabling computation beyond discrete linguistic representations. While both approaches exploit iterative computation, their comparative capabilities remain underexplored. In this work, we present a formal analysis showing that latent thought admits more efficient parallel computation than inherently sequential CoT. In contrast, CoT enables approximate counting and sampling through stochastic decoding. These separations suggest the tasks for which depth-driven recursion is more suitable, thereby offering practical guidance for choosing between reasoning paradigms.
comment: Code is available at https://github.com/kevin671/cot-vs-loop
♻ ☆ Mix, MinHash, and Match: Cross-Source Agreement for Multilingual Pretraining Datasets
Multilingual data from the web is essential for LLM pretraining. Yet, scraping it is expensive, and research groups repeatedly crawl the same content. For example, we found that over 40\% of tokens across major Arabic web corpora are duplicated between sources. In this work, we propose to use this wasteful redundancy as a quality signal to create high-quality pretraining datasets. Our key insight is that cross-source agreement functions as a free, model-free quality filter: content retained by multiple independent pipelines is more likely to represent high-quality text. Crucially, this signal requires no additional computation beyond standard deduplication, which is already performed at scale when pretraining language models. So, we propose MixMinMatch, a method that combines multiple existing web corpora, performs cross-dataset MinHash deduplication, and identifies documents independently recovered by multiple sources. We apply MixMinMatch to Arabic, Turkish, and Hindi, producing corpora that match or exceed the quality of the best single-source baselines, while providing up to 4$\times$ more unique tokens. On Arabic, our matched subset achieves a 4.5\% relative improvement over ArabicWeb24, while on Turkish, we improve over FineWeb-2 by 5.5\%. We release the datasets at: https://huggingface.co/collections/AdaMLLab/mixminmatch
comment: Multilingual LLM pretraining dataset curation
♻ ☆ RAS: Retrieval-And-Structuring for Knowledge-Intensive LLM Generation ICLR 2026
Large language models (LLMs) have achieved impressive performance on knowledge-intensive tasks, yet they often struggle with multi-step reasoning due to the unstructured nature of retrieved context. While retrieval-augmented generation (RAG) methods provide external information, the lack of explicit organization among retrieved passages limits their effectiveness, leading to brittle reasoning pathways. Recent interpretability studies highlighting the importance of structured intermediate reasoning further align with this perspective. We propose Retrieval-And-Structuring (RAS), a framework that dynamically constructs question-specific knowledge graphs through iterative retrieval and structured knowledge building. RAS interleaves targeted retrieval planning with incremental graph construction, enabling models to assemble and reason over evolving knowledge structures tailored to each query. On seven knowledge-intensive benchmarks, RAS consistently outperforms strong baselines, achieving up to 8.7\% and 7.0\% gains with proprietary and open-source LLMs, respectively. Our results demonstrate that dynamic, question-specific knowledge structuring offers a robust path to improving reasoning accuracy and robustness in language model generation.
comment: ICLR 2026
♻ ☆ Verbalized Algorithms NeurIPS 2025
Instead of querying LLMs in a one-shot manner and hoping to get the right answer for a reasoning task, we propose a paradigm we call \emph{verbalized algorithms} (VAs), which combines LLMs with classical algorithms with established theoretical guarantees. VAs decompose a task into simple elementary operations on natural language strings that LLMs are able to answer reliably, and limit the scope of LLMs to those simple tasks. For example, for sorting a series of natural language strings, \emph{verbalized sorting} uses an LLM as a binary comparison oracle in a known and well-analyzed sorting algorithm (e.g., bitonic sorting network). Although this is already known as \emph{pairwise ranking} in the literature, we additionally demonstrate the effectiveness of \emph{verbalized maximum}, \emph{verbalized clustering}, and \emph{verbalized submodular maximization} for numerical reasoning, topic clustering and multi-hop Q\&A RAG task, which guarantees $O(n)$ runtime, $O(n \log n)$ runtime, and $1/(1-e)$ optimality, respectively. Clustering and submodular maximization outperformed or improved the nearest neighbor search using state-of-the-art embedding models.
comment: Accepted in NeurIPS 2025 Workshop on Efficient Reasoning
♻ ☆ Surrogate Signals from Format and Length: Reinforcement Learning for Solving Mathematical Problems without Ground Truth Answers
Large Language Models have achieved remarkable success in natural language processing tasks, with Reinforcement Learning playing a key role in adapting them to specific applications. However, obtaining ground truth answers for training LLMs in mathematical problem-solving is often challenging, costly, and sometimes unfeasible. This research delves into the utilization of format and length as surrogate signals to train LLMs for mathematical problem-solving, bypassing the need for traditional ground truth answers. Our study shows that a reward function centered on format correctness alone can yield performance improvements comparable to the standard GRPO algorithm in early phases. Recognizing the limitations of format-only rewards in the later phases, we incorporate length-based rewards. The resulting GRPO approach, leveraging format-length surrogate signals, not only matches but surpasses the performance of the standard GRPO algorithm relying on ground truth answers in certain scenarios, achieving 40.0% accuracy on AIME2024 with a 7B base model. Through systematic exploration and experimentation, this research not only offers a practical solution for training LLMs to solve mathematical problems and reducing the dependence on extensive ground truth data collection, but also reveals the essence of why our label-free approach succeeds: the powerful base model is like an excellent student who has already mastered mathematical and logical reasoning skills, but performs poorly on the test paper, it simply needs to develop good answering habits to achieve outstanding results in exams, to unlock the capabilities it already possesses.
♻ ☆ SafeSearch: Automated Red-Teaming of LLM-Based Search Agents
Search agents connect LLMs to the Internet, enabling them to access broader and more up-to-date information. However, this also introduces a new threat surface: unreliable search results can mislead agents into producing unsafe outputs. Real-world incidents and our two in-the-wild observations show that such failures can occur in practice. To study this threat systematically, we propose SafeSearch, an automated red-teaming framework that is scalable, cost-efficient, and lightweight, enabling harmless safety evaluation of search agents. Using this, we generate 300 test cases spanning five risk categories (e.g., misinformation and prompt injection) and evaluate three search agent scaffolds across 17 representative LLMs. Our results reveal substantial vulnerabilities in LLM-based search agents, with the highest ASR reaching 90.5% for GPT-4.1-mini in a search-workflow setting. Moreover, we find that common defenses, such as reminder prompting, offer limited protection. Overall, SafeSearch provides a practical way to measure and improve the safety of LLM-based search agents. Our codebase and test cases are publicly available: https://github.com/jianshuod/SafeSearch.
comment: Preprint. Updated with new experiments
♻ ☆ Select or Project? Evaluating Lower-dimensional Vectors for LLM Training Data Explanations
Gradient-based methods for instance-based explanation for large language models (LLMs) are hindered by the immense dimensionality of model gradients. In practice, influence estimation is restricted to a subset of model parameters to make computation tractable, but this subset is often chosen ad hoc and rarely justified by systematic evaluation. This paper investigates if it is better to create low-dimensional representations by selecting a small, architecturally informed subset of model components or by projecting the full gradients into a lower-dimensional space. Using a novel benchmark, we show that a greedily selected subset of components captures the information about training data influence needed for a retrieval task more effectively than either the full gradient or random projection. We further find that this approach is more computationally efficient than random projection, demonstrating that targeted component selection is a practical strategy for making instance-based explanations of large models more computationally feasible.
comment: Added acknowledgments section and related work on random projection. 8 pages
♻ ☆ The Illusion of Certainty: Uncertainty Quantification for LLMs Fails under Ambiguity
Accurate uncertainty quantification (UQ) in Large Language Models (LLMs) is critical for trustworthy deployment. While real-world language is inherently ambiguous, reflecting aleatoric uncertainty, existing UQ methods are typically benchmarked against tasks with no ambiguity. In this work, we demonstrate that while current uncertainty estimators perform well under the restrictive assumption of no ambiguity, they degrade to close-to-random performance on ambiguous data. To this end, we introduce MAQA* and AmbigQA*, the first ambiguous question-answering (QA) datasets equipped with ground-truth answer distributions estimated from factual co-occurrence. We find this performance deterioration to be consistent across different estimation paradigms: using the predictive distribution itself, internal representations throughout the model, and an ensemble of models. We show that this phenomenon can be theoretically explained, revealing that predictive-distribution and ensemble-based estimators are fundamentally limited under ambiguity. Overall, our study reveals a key shortcoming of current UQ methods for LLMs and motivates a rethinking of current modeling paradigms.
♻ ☆ Context Parametrization with Compositional Adapters
Large language models (LLMs) often seamlessly adapt to new tasks through in-context learning (ICL) or supervised fine-tuning (SFT). However, ICL is inefficient when handling many demonstrations, and SFT incurs training overhead while sacrificing flexibility. Mapping instructions or demonstrations from context directly into adapter parameters offers an appealing alternative. While prior work explored generating adapters based on a single input context, it has overlooked the need to integrate multiple chunks of information. To address this gap, we introduce CompAs, a meta-learning framework that translates context into adapter parameters with a compositional structure that allows them to be merged algebraically. This approach yields three benefits: lower inference cost, improved stability under long contexts, and establishes a principled solution when input exceeds the model's context window. Furthermore, CompAs reversibly encodes information into adapter parameters, enabling recovery of the original input context and facilitating safety. Empirical results on diverse multiple-choice and extractive question answering tasks show that CompAs outperforms ICL and prior generator-based methods, especially when scaling to more inputs. Our work establishes composable adapter generation as a practical and efficient alternative for scaling LLM deployment.
♻ ☆ MOSAIC: Masked Objective with Selective Adaptation for In-domain Contrastive Learning
We introduce MOSAIC (Masked Objective with Selective Adaptation for In-domain Contrastive learning), a multi-stage framework for domain adaptation of text embedding models that incorporates joint domain-specific masked supervision. Our approach addresses the challenges of adapting large-scale general-domain text embedding models to specialized domains. By jointly optimizing masked language modeling (MLM) and contrastive objectives within a unified training pipeline, our method enables effective learning of domain-relevant representations while preserving the robust semantic discrimination properties of the original model. We empirically validate our approach on both high-resource and low-resource domains, achieving improvements up to 13.4% in NDCG@10 (Normalized Discounted Cumulative Gain) over strong general-domain baselines. Comprehensive ablation studies further demonstrate the effectiveness of each component, highlighting the importance of balanced joint supervision and staged adaptation.
♻ ☆ Toward Robust Multilingual Adaptation of LLMs for Low-Resource Languages
Large language models (LLMs) continue to struggle with low-resource languages, primarily due to limited training data, translation noise, and unstable cross-lingual alignment. To address these challenges, we propose LiRA (Linguistic Robust Anchoring for LLMs)-a plug-and-play framework that requires only lightweight fine-tuning on top of existing pretrained backbones. LiRA jointly optimizes representation stability and cross-lingual semantic consistency by combining two key components: Arca (Anchored Representation Composition Architecture), which aligns low-resource inputs to a shared English semantic space through anchor-based alignment and collaborative encoding; and LaSR (Language-coupled Semantic Reasoner), a lightweight, language-aware head that enforces consistency regularization for unified cross-lingual understanding, retrieval, and reasoning. We theoretically show that under controlled anchoring error and translation-induced bias, LiRA guarantees bounded representation deviation and stable downstream performance under local Lipschitz continuity. To facilitate research, we release a new multilingual product retrieval dataset covering five Southeast Asian and two South Asian languages. Extensive experiments across diverse low-resource benchmarks demonstrate consistent improvements in retrieval, ranking, question answering, and reasoning tasks. Code will be publicly available on GitHub, and the dataset will be hosted on Hugging Face.
♻ ☆ Plain Transformers Can be Powerful Graph Learners
Transformers have attained outstanding performance across various modalities, owing to their simple but powerful scaled-dot-product (SDP) attention mechanisms. Researchers have attempted to migrate Transformers to graph learning, but most advanced Graph Transformers (GTs) have strayed far from plain Transformers, exhibiting major architectural differences either by integrating message-passing or incorporating sophisticated attention mechanisms. These divergences hinder the easy adoption of training advances for Transformers developed in other domains. Contrary to previous GTs, this work demonstrates that the plain Transformer architecture can be a powerful graph learner. To achieve this, we propose to incorporate three simple, minimal, and easy-to-implement modifications to the plain Transformer architecture to construct our Powerful Plain Graph Transformers (PPGT): (1) simplified $L_2$ attention for measuring the magnitude closeness among tokens; (2) adaptive root-mean-square normalization to preserve token magnitude information; and (3) a simple MLP-based stem for graph positional encoding. Consistent with its theoretical expressivity, PPGT demonstrates noteworthy realized expressivity on the empirical graph expressivity benchmark, comparing favorably to more complicated alternatives such as subgraph GNNs and higher-order GNNs. Its empirical performance across various graph datasets also justifies the effectiveness of PPGT. This finding underscores the versatility of plain Transformer architectures and highlights their strong potential as a unified backbone for multimodal learning across language, vision, and graph domains.
♻ ☆ Can Large Language Models Capture Video Game Engagement?
Can out-of-the-box pretrained Large Language Models (LLMs) detect human affect successfully when observing a video? To address this question, for the first time, we evaluate comprehensively the capacity of popular LLMs for successfully predicting continuous affect annotations of videos when prompted by a sequence of text and video frames in a multimodal fashion. In this paper, we test LLMs' ability to correctly label changes of in-game engagement in 80 minutes of annotated videogame footage from 20 first-person shooter games of the GameVibe corpus. We run over 4,800 experiments to investigate the impact of LLM architecture, model size, input modality, prompting strategy, and ground truth processing method on engagement prediction. Our findings suggest that while LLMs rightfully claim human-like performance across multiple domains and able to outperform traditional machine learning baselines, they generally fall behind continuous experience annotations provided by humans. We examine some of the underlying causes for a fluctuating performance across games, highlight the cases where LLMs exceed expectations, and draw a roadmap for the further exploration of automated emotion labelling via LLMs.
comment: This work has been submitted to the IEEE for publication
♻ ☆ GORAG: Graph-based Online Retrieval Augmented Generation for Dynamic Few-shot Social Media Text Classification WWW 2026
Text classification is vital for Web for Good applications like hate speech and misinformation detection. However, traditional models (e.g., BERT) often fail in dynamic few-shot settings where labeled data are scarce, and target labels frequently evolve. While Large Language Models (LLMs) show promise in few-shot settings, their performance is often hindered by increased input size in dynamic evolving scenarios. To address these issues, we propose GORAG, a Graph-based Online Retrieval-Augmented Generation framework for dynamic few-shot text classification. GORAG constructs and maintains a weighted graph of keywords and text labels, representing their correlations as edges. To model these correlations, GORAG employs an edge weighting mechanism to prioritize the importance and reliability of extracted information and dynamically retrieves relevant context using a tailored minimum-cost spanning tree for each input. Empirical evaluations show GORAG outperforms existing approaches by providing more comprehensive and precise contextual information. Our code is released at: https://github.com/Wyb0627/GORAG.
comment: Accepted by WWW 2026
♻ ☆ NOSA: Native and Offloadable Sparse Attention
Decoding throughput improvements from larger inference batches are limited by GPU memory, which is largely consumed by the key-value (KV) cache. Prior training-free KV cache offloading alleviates this by keeping redundant context on the CPU and fetching only a sparse subset for attention, but it often degrades long-generation quality due to training-inference mismatch on sparse patterns. Meanwhile, trainable sparse attention is incompatible with efficient offloading, as unconstrained KV accesses may force large CPU-to-GPU transfers and erase throughput gains. To this end, we propose NOSA, a trainable sparse attention mechanism natively designed for KV cache offloading. NOSA explicitly constrains the volume of CPU-GPU KV transfers, thereby achieving low communication overhead and high decoding throughput. We further build NOSI, a KV cache offloading inference system that fully unlocks NOSA's efficiency. Empirical results on 1,3,8B LLMs demonstrate that NOSA outperforms KV cache offloading baselines on general, long-input, and long-generation tasks, while boosting decoding throughput by up to 5.04x, 1.92x, and 1.83x over FullAttn, InfLLMv2, and ShadowKV, respectively. We release our code at https://github.com/thunlp/NOSA.
comment: Preprint
♻ ☆ Penalizing Length: Uncovering Systematic Bias in Quality Estimation Metrics
Quality Estimation (QE) metrics are vital in machine translation for reference-free evaluation and as a reward signal in tasks like reinforcement learning. However, the prevalence and impact of length bias in QE have been underexplored. Through a systematic study of top-performing regression-based and LLM-as-a-Judge QE metrics across 10 diverse language pairs, we reveal two critical length biases: First, QE metrics consistently over-predict errors with increasing translation length, even for high-quality, error-free texts. Second, they exhibit a preference for shorter translations when multiple candidates are available for the same source text. These inherent length biases risk unfairly penalizing longer, correct translations and can lead to sub-optimal decision-making in applications such as QE reranking and QE guided reinforcement learning. We further investigate the root cause, presenting evidence that QE models conflate quality with sequence length due to skewed supervision distributions. As a diagnostic intervention, we apply length normalization during training. We show that this simple intervention is sufficient to decouple error probability from length, effectively counteracting the data skew and yielding more reliable QE signals.
♻ ☆ EVA-Score: Evaluating Abstractive Long-form Summarization on Informativeness through Extraction and Validation
Since LLMs emerged, more attention has been paid to abstractive long-form summarization, where longer input sequences indicate more information contained. Nevertheless, the automatic evaluation of such summaries remains underexplored. The current evaluation metrics for long-form summarization either use similarity-based metrics like ROUGE and BERTScore or LLM-based metrics using appropriate prompts or pre-defined schema. We argue that the former only relies on similarity and fails to consider informativeness while the latter lacks quantitative analysis of informative richness, and is rather subjective and hard to explain. Current evaluation metrics either use traditional metrics like ROUGE and BERTScore, which rely on surface-level similarity and fail to consider informativeness, or simple LLM-based metrics, which are not robust and easily overwhelmed by the long contexts. In this paper, we propose a new evaluation metric called EVA-Score to extract all information from the given summaries, identify overlapped information based on reference, and calculate the information score. We test EVA-Score on several datasets and the experimental results reveal that EVA-Score shows the highest correlation with humans. We also re-evaluate the performance of LLMs on long-form summarization from the information perspective. The results indicate that responses of LLMs still have a gap with the human-written answers. Moreover, we provide a detailed analysis of the effectiveness of EVA-Score, forecasting future ways to automatically evaluate abstractive long-form summarization.
comment: 20 pages
♻ ☆ FLAME: Empowering Frozen LLMs for Knowledge Graph Completion
Traditional knowledge graph completion (KGC) methods rely solely on structural information and struggle with sparsity, while Large Language Models (LLMs) address these limitations through rich world knowledge and strong context modeling. Fine-tuning LLMs is effective but costly, while non-fine-tuned LLMs are efficient but suboptimal. To address this trade-off, we propose \textbf{FLAME}, a framework that extracts context-aware hidden states from intermediate layers of frozen LLMs to train data-efficient KGC classifiers. We bridge LLM-KG semantic gaps via subgraph-based entity descriptions and employ sliced mutual information (SMI) to quantify task-relevant information in representations. Experiments demonstrate that FLAME achieves 47\% improvement over non-fine-tuned LLM baselines and, to our knowledge, is the first to achieve fine-tuned performance with $188\times$ memory efficiency and $26.11\times$ speedup.
♻ ☆ Language Lives in Sparse Dimensions: Toward Interpretable and Efficient Multilingual Control for Large Language Models EACL 2026
Large language models exhibit strong multilingual capabilities despite limited exposure to non-English data. Prior studies show that English-centric large language models map multilingual content into English-aligned representations at intermediate layers and then project them back into target-language token spaces in the final layer. From this observation, we hypothesize that this cross-lingual transition is governed by a small and sparse set of dimensions, which occur at consistent indices across the intermediate to final layers. Building on this insight, we introduce a simple, training-free method to identify and manipulate these dimensions, requiring only as few as 50 sentences of either parallel or monolingual data. Experiments on a multilingual generation control task reveal the interpretability of these dimensions, demonstrating that the interventions in these dimensions can switch the output language while preserving semantic content, and that it surpasses the performance of prior neuron-based approaches at a substantially lower cost.
comment: Accepted at EACL 2026 (Main). Our code will be available at: https://github.com/ku-nlp/language-specific-dimensions
♻ ☆ RaZeR: Pushing the Limits of NVFP4 Quantization with Redundant Zero Remapping
The recently introduced NVFP4 format demonstrates remarkable performance and memory benefits for quantized large language model (LLM) inference. However, we observe two types of redundancy in NVFP4 encoding: (1) The FP4 element format naturally exposes an unused quantization value due to its sign-magnitude representation that contains both positive and negative zeros. (2) The FP8 block scaling factor has an unused sign bit because it is always positive. Additionally, we find that LLM weights are more tolerant to a lower-precision block scaling factor. Based on these observations, we propose Redundant Zero Remapping (RaZeR), an enhanced numerical format that pushes the limits of NVFP4 for more accurate LLM quantization under the same memory footprint. RaZeR leverages the redundant bits of the block scaling factor to adaptively remap the redundant FP4 zero to additional quantization values with improved accuracy. To demonstrate the practicality of RaZeR, we design efficient GPU kernels for RaZeR-quantized LLM inference and propose novel hardware to natively support this. Extensive experiments validate RaZeR's superior performance for 4-bit LLM quantization. For example, relative to native NVFP4, RaZeR reduces the average perplexity loss by 34.6% and 31.2% under weight-only and weight-activation quantization, respectively.
comment: Preprint. Under review
♻ ☆ Scaling Laws for Downstream Task Performance of Large Language Models ICLR
Scaling laws provide important insights that can guide the design of large language models (LLMs). Existing work has primarily focused on studying scaling laws for pretraining (upstream) loss. However, in transfer learning settings, in which LLMs are pretrained on an unsupervised dataset and then finetuned on a downstream task, we often also care about the downstream performance. In this work, we study the scaling behavior in a transfer learning setting, where LLMs are finetuned for machine translation tasks. Specifically, we investigate how the choice of the pretraining data and its size affect downstream performance (translation quality) as judged by: downstream cross-entropy and translation quality metrics such as BLEU and COMET scores. Our experiments indicate that the size of the finetuning dataset and the distribution alignment between the pretraining and downstream data significantly influence the scaling behavior. With sufficient alignment, both downstream cross-entropy and translation quality scores improve monotonically with more pretraining data. In such cases, we show that it is possible to predict the downstream translation quality metrics with good accuracy using a log-law. However, there are cases where moderate misalignment causes the downstream translation scores to fluctuate or get worse with more pretraining, whereas downstream cross-entropy monotonically improves. By analyzing these, we provide new practical insights for choosing appropriate pretraining data.
comment: Published at the International Conference on Learning Representations (ICLR) 2025, with title: "Scaling Laws for Downstream Task Performance in Machine Translation"
♻ ☆ The Trojan in the Vocabulary: Stealthy Sabotage of LLM Composition
The open-weight language model ecosystem is increasingly defined by model composition techniques (such as weight merging, speculative decoding, and vocabulary expansion) that remix capabilities from diverse sources. A critical prerequisite for applying these methods across different model families is tokenizer transplant, which aligns incompatible vocabularies to a shared embedding space. We demonstrate that this essential interoperability step introduces a supply-chain vulnerability: we engineer a single breaker token that is functionally inert in a donor model yet reliably reconstructs into a high-salience malicious feature after transplant into a base model. By exploiting the geometry of coefficient reuse, our attack sabotages the base model's generation while leaving the donor's utility statistically indistinguishable from nominal behavior. We formalize this as a dual-objective optimization problem and instantiate the attack using a sparse solver. Empirically, the attack is training-free and evades outlier detection, while demonstrating structural persistence against fine-tuning and weight merging, highlighting a hidden risk in the pipeline of modular AI composition. Code is available at https://github.com/xz-liu/tokenforge
♻ ☆ ALRM: Agentic LLM for Robotic Manipulation
Large Language Models (LLMs) have recently empowered agentic frameworks to exhibit advanced reasoning and planning capabilities. However, their integration in robotic control pipelines remains limited in two aspects: (1) prior \ac{llm}-based approaches often lack modular, agentic execution mechanisms, limiting their ability to plan, reflect on outcomes, and revise actions in a closed-loop manner; and (2) existing benchmarks for manipulation tasks focus on low-level control and do not systematically evaluate multistep reasoning and linguistic variation. In this paper, we propose Agentic LLM for Robot Manipulation (ALRM), an LLM-driven agentic framework for robotic manipulation. ALRM integrates policy generation with agentic execution through a ReAct-style reasoning loop, supporting two complementary modes: Code-asPolicy (CaP) for direct executable control code generation, and Tool-as-Policy (TaP) for iterative planning and tool-based action execution. To enable systematic evaluation, we also introduce a novel simulation benchmark comprising 56 tasks across multiple environments, capturing linguistically diverse instructions. Experiments with ten LLMs demonstrate that ALRM provides a scalable, interpretable, and modular approach for bridging natural language reasoning with reliable robotic execution. Results reveal Claude-4.1-Opus as the top closed-source model and Falcon-H1-7B as the top open-source model under CaP.
♻ ☆ LLMs versus the Halting Problem: Revisiting Program Termination Prediction
Determining whether a program terminates is a central problem in computer science. Turing's foundational result established the Halting Problem as undecidable, showing that no algorithm can universally determine termination for all programs and inputs. Consequently, automatic verification tools approximate termination, sometimes failing to prove or disprove; these tools rely on problem-specific architectures and abstractions, and are usually tied to particular programming languages. Recent success and progress in large language models (LLMs) raises the following question: can LLMs reliably predict program termination? In this work, we evaluate LLMs on a diverse set of C programs from the Termination category of the International Competition on Software Verification (SV-Comp) 2025. Our results suggest that LLMs perform remarkably well at predicting program termination, where GPT-5 and Claude Sonnet-4.5 would rank just behind the top-ranked tool (using test-time-scaling), and Code World Model (CWM) would place just behind the second-ranked tool. While LLMs are effective at predicting program termination, they often fail to provide a valid witness as a proof. Moreover, LLMs performance drops as program length increases. We hope these insights motivate further research into program termination and the broader potential of LLMs for reasoning about undecidable problems.
♻ ☆ Probing Neural Topology of Large Language Models
Probing large language models (LLMs) has yielded valuable insights into their internal mechanisms by linking neural activations to interpretable semantics. However, the complex mechanisms that link neuron's functional co-activation with the emergent model capabilities remains largely unknown, hindering a deeper understanding and safer development of LLMs. In this work, we introduce graph probing, a method for uncovering the functional connectivity of LLM neurons and relating it to language generation performance. By probing models across diverse LLM families and scales, we discover a universal predictability of language generation and understanding performance using only neural topology, which persists even when retaining just 1% of neuron connections. Strikingly, probing on topology outperforms probing on activation by up to 130.4% and 67.7% on perplexity and space/time semantic regression respectively, suggesting that neural topology contains orders of richer information of LLM performance than neural activation, which can be easily extracted with simple linear or MLP probes. To explain the dependence between neural topology and language performance, we identify default networks and hub neurons in LLMs and provide causal evidence by interventional experiments on multiple benchmarks, showing that LLMs actually exploit these topological information. Further analyses suggest that graph probing can be effectively leveraged to improve the efficiency and reliability of LLMs through proof-of-concept applications in model pruning and hallucination detection. Codes and data for the graph probing toolbox are available at https://github.com/DavyMorgan/llm-graph-probing.
♻ ☆ LogicReward: Incentivizing LLM Reasoning via Step-Wise Logical Supervision ICLR 2026
Although LLMs exhibit strong reasoning capabilities, existing training methods largely depend on outcome-based feedback, which can produce correct answers with flawed reasoning. Prior work introduces supervision on intermediate steps but still lacks guarantees of logical soundness, which is crucial in high-stakes scenarios where logical consistency is paramount. To address this, we propose LogicReward, a novel reward system that guides model training by enforcing step-level logical correctness with a theorem prover. We further introduce Autoformalization with Soft Unification, which reduces natural language ambiguity and improves formalization quality, enabling more effective use of the theorem prover. An 8B model trained on data constructed with LogicReward surpasses GPT-4o and o4-mini by 11.6\% and 2\% on natural language inference and logical reasoning tasks with simple training procedures. Further analysis shows that LogicReward enhances reasoning faithfulness, improves generalizability to unseen tasks such as math and commonsense reasoning, and provides a reliable reward signal even without ground-truth labels. We will release all data and code at https://llm-symbol.github.io/LogicReward.
comment: ICLR 2026
♻ ☆ A conversational gesture synthesis system based on emotions and semantics
Along with the explosion of large language models, improvements in speech synthesis, advancements in hardware, and the evolution of computer graphics, the current bottleneck in creating digital humans lies in generating character movements that correspond naturally to text or speech inputs. In this work, we present DeepGesture, a diffusion-based gesture synthesis framework for generating expressive co-speech gestures conditioned on multimodal signals - text, speech, emotion, and seed motion. Built upon the DiffuseStyleGesture model, DeepGesture introduces novel architectural enhancements that improve semantic alignment and emotional expressiveness in generated gestures. Specifically, we integrate fast text transcriptions as semantic conditioning and implement emotion-guided classifier-free diffusion to support controllable gesture generation across affective states. To visualize results, we implement a full rendering pipeline in Unity based on BVH output from the model. Evaluation on the ZeroEGGS dataset shows that DeepGesture produces gestures with improved human-likeness and contextual appropriateness. Our system supports interpolation between emotional states and demonstrates generalization to out-of-distribution speech, including synthetic voices - marking a step forward toward fully multimodal, emotionally aware digital humans.
Artificial Intelligence
☆ RedSage: A Cybersecurity Generalist LLM ICLR 2026
Cybersecurity operations demand assistant LLMs that support diverse workflows without exposing sensitive data. Existing solutions either rely on proprietary APIs with privacy risks or on open models lacking domain adaptation. To bridge this gap, we curate 11.8B tokens of cybersecurity-focused continual pretraining data via large-scale web filtering and manual collection of high-quality resources, spanning 28.6K documents across frameworks, offensive techniques, and security tools. Building on this, we design an agentic augmentation pipeline that simulates expert workflows to generate 266K multi-turn cybersecurity samples for supervised fine-tuning. Combined with general open-source LLM data, these resources enable the training of RedSage, an open-source, locally deployable cybersecurity assistant with domain-aware pretraining and post-training. To rigorously evaluate the models, we introduce RedSage-Bench, a benchmark with 30K multiple-choice and 240 open-ended Q&A items covering cybersecurity knowledge, skills, and tool expertise. RedSage is further evaluated on established cybersecurity benchmarks (e.g., CTI-Bench, CyberMetric, SECURE) and general LLM benchmarks to assess broader generalization. At the 8B scale, RedSage achieves consistently better results, surpassing the baseline models by up to +5.59 points on cybersecurity benchmarks and +5.05 points on Open LLM Leaderboard tasks. These findings demonstrate that domain-aware agentic augmentation and pre/post-training can not only enhance cybersecurity-specific expertise but also help to improve general reasoning and instruction-following. All models, datasets, and code are publicly available.
comment: Accepted on ICLR 2026; Project page: https://risys-lab.github.io/RedSage/
☆ Hybrid Linear Attention Done Right: Efficient Distillation and Effective Architectures for Extremely Long Contexts
Hybrid Transformer architectures, which combine softmax attention blocks and recurrent neural networks (RNNs), have shown a desirable performance-throughput tradeoff for long-context modeling, but their adoption and studies are hindered by the prohibitive cost of large-scale pre-training from scratch. Some recent studies have shown that pre-trained softmax attention blocks can be converted into RNN blocks through parameter transfer and knowledge distillation. However, these transfer methods require substantial amounts of training data (more than 10B tokens), and the resulting hybrid models also exhibit poor long-context performance, which is the scenario where hybrid models enjoy significant inference speedups over Transformer-based models. In this paper, we present HALO (Hybrid Attention via Layer Optimization), a pipeline for distilling Transformer models into RNN-attention hybrid models. We then present HypeNet, a hybrid architecture with superior length generalization enabled by a novel position encoding scheme (named HyPE) and various architectural modifications. We convert the Qwen3 series into HypeNet using HALO, achieving performance comparable to the original Transformer models while enjoying superior long-context performance and efficiency. The conversion requires just 2.3B tokens, less than 0.01% of their pre-training data
comment: 20 pages, 8 figures
☆ Exploring Reasoning Reward Model for Agents
Agentic Reinforcement Learning (Agentic RL) has achieved notable success in enabling agents to perform complex reasoning and tool use. However, most methods still relies on sparse outcome-based reward for training. Such feedback fails to differentiate intermediate reasoning quality, leading to suboptimal training results. In this paper, we introduce Agent Reasoning Reward Model (Agent-RRM), a multi-faceted reward model that produces structured feedback for agentic trajectories, including (1) an explicit reasoning trace , (2) a focused critique that provides refinement guidance by highlighting reasoning flaws, and (3) an overall score that evaluates process performance. Leveraging these signals, we systematically investigate three integration strategies: Reagent-C (text-augmented refinement), Reagent-R (reward-augmented guidance), and Reagent-U (unified feedback integration). Extensive evaluations across 12 diverse benchmarks demonstrate that Reagent-U yields substantial performance leaps, achieving 43.7% on GAIA and 46.2% on WebWalkerQA, validating the effectiveness of our reasoning reward model and training schemes. Code, models, and datasets are all released to facilitate future research.
comment: Project page: https://github.com/kxfan2002/Reagent
☆ DynaWeb: Model-Based Reinforcement Learning of Web Agents
The development of autonomous web agents, powered by Large Language Models (LLMs) and reinforcement learning (RL), represents a significant step towards general-purpose AI assistants. However, training these agents is severely hampered by the challenges of interacting with the live internet, which is inefficient, costly, and fraught with risks. Model-based reinforcement learning (MBRL) offers a promising solution by learning a world model of the environment to enable simulated interaction. This paper introduces DynaWeb, a novel MBRL framework that trains web agents through interacting with a web world model trained to predict naturalistic web page representations given agent actions. This model serves as a synthetic web environment where an agent policy can dream by generating vast quantities of rollout action trajectories for efficient online reinforcement learning. Beyond free policy rollouts, DynaWeb incorporates real expert trajectories from training data, which are randomly interleaved with on-policy rollouts during training to improve stability and sample efficiency. Experiments conducted on the challenging WebArena and WebVoyager benchmarks demonstrate that DynaWeb consistently and significantly improves the performance of state-of-the-art open-source web agent models. Our findings establish the viability of training web agents through imagination, offering a scalable and efficient way to scale up online agentic RL.
☆ Routing the Lottery: Adaptive Subnetworks for Heterogeneous Data
In pruning, the Lottery Ticket Hypothesis posits that large networks contain sparse subnetworks, or winning tickets, that can be trained in isolation to match the performance of their dense counterparts. However, most existing approaches assume a single universal winning ticket shared across all inputs, ignoring the inherent heterogeneity of real-world data. In this work, we propose Routing the Lottery (RTL), an adaptive pruning framework that discovers multiple specialized subnetworks, called adaptive tickets, each tailored to a class, semantic cluster, or environmental condition. Across diverse datasets and tasks, RTL consistently outperforms single- and multi-model baselines in balanced accuracy and recall, while using up to 10 times fewer parameters than independent models and exhibiting semantically aligned. Furthermore, we identify subnetwork collapse, a performance drop under aggressive pruning, and introduce a subnetwork similarity score that enables label-free diagnosis of oversparsification. Overall, our results recast pruning as a mechanism for aligning model structure with data heterogeneity, paving the way toward more modular and context-aware deep learning.
☆ Reasoning While Asking: Transforming Reasoning Large Language Models from Passive Solvers to Proactive Inquirers
Reasoning-oriented Large Language Models (LLMs) have achieved remarkable progress with Chain-of-Thought (CoT) prompting, yet they remain fundamentally limited by a \emph{blind self-thinking} paradigm: performing extensive internal reasoning even when critical information is missing or ambiguous. We propose Proactive Interactive Reasoning (PIR), a new reasoning paradigm that transforms LLMs from passive solvers into proactive inquirers that interleave reasoning with clarification. Unlike existing search- or tool-based frameworks that primarily address knowledge uncertainty by querying external environments, PIR targets premise- and intent-level uncertainty through direct interaction with the user. PIR is implemented via two core components: (1) an uncertainty-aware supervised fine-tuning procedure that equips models with interactive reasoning capability, and (2) a user-simulator-based policy optimization framework driven by a composite reward that aligns model behavior with user intent. Extensive experiments on mathematical reasoning, code generation, and document editing demonstrate that PIR consistently outperforms strong baselines, achieving up to 32.70\% higher accuracy, 22.90\% higher pass rate, and 41.36 BLEU improvement, while reducing nearly half of the reasoning computation and unnecessary interaction turns. Further reliability evaluations on factual knowledge, question answering, and missing-premise scenarios confirm the strong generalization and robustness of PIR. Model and code are publicly available at: \href{https://github.com/SUAT-AIRI/Proactive-Interactive-R1}
comment: The manuscript is under review
☆ PRISM: Distribution-free Adaptive Computation of Matrix Functions for Accelerating Neural Network Training
Matrix functions such as square root, inverse roots, and orthogonalization play a central role in preconditioned gradient methods for neural network training. This has motivated the development of iterative algorithms that avoid explicit eigendecompositions and rely primarily on matrix multiplications, making them well suited for modern GPU accelerators. We present PRISM (Polynomial-fitting and Randomized Iterative Sketching for Matrix functions computation), a general framework for accelerating iterative algorithms for computing matrix functions. PRISM combines adaptive polynomial approximation with randomized sketching: at each iteration, it fits a polynomial surrogate to the current spectrum via a sketched least-squares problem, adapting to the instance at hand with minimal overhead. We apply PRISM to accelerate Newton-Schulz-like iterations for matrix square roots and orthogonalization, which are core primitives in machine learning. Unlike prior methods, PRISM requires no explicit spectral bounds or singular value estimates; and it adapts automatically to the evolving spectrum. Empirically, PRISM accelerates training when integrated into Shampoo and Muon optimizers.
☆ StepShield: When, Not Whether to Intervene on Rogue Agents
Existing agent safety benchmarks report binary accuracy, conflating early intervention with post-mortem analysis. A detector that flags a violation at step 8 enables intervention; one that reports it at step 48 provides only forensic value. This distinction is critical, yet current benchmarks cannot measure it. We introduce StepShield, the first benchmark to evaluate when violations are detected, not just whether. StepShield contains 9,213 code agent trajectories, including 1,278 meticulously annotated training pairs and a 7,935-trajectory test set with a realistic 8.1% rogue rate. Rogue behaviors are grounded in real-world security incidents across six categories. We propose three novel temporal metrics: Early Intervention Rate (EIR), Intervention Gap, and Tokens Saved. Surprisingly, our evaluation reveals that an LLM-based judge achieves 59% EIR while a static analyzer achieves only 26%, a 2.3x performance gap that is entirely invisible to standard accuracy metrics. We further show that early detection has direct economic benefits: our cascaded HybridGuard detector reduces monitoring costs by 75% and projects to $108M in cumulative savings over five years at enterprise scale. By shifting the focus of evaluation from whether to when, StepShield provides a new foundation for building safer and more economically viable AI agents. The code and data are released under an Apache 2.0 license.
comment: 16 pages, 2 figures, 14 tables
☆ World of Workflows: a Benchmark for Bringing World Models to Enterprise Systems
Frontier large language models (LLMs) excel as autonomous agents in many domains, yet they remain untested in complex enterprise systems where hidden workflows create cascading effects across interconnected databases. Existing enterprise benchmarks evaluate surface-level agentic task completion similar to general consumer benchmarks, ignoring true challenges in enterprises, such as limited observability, large database state, and hidden workflows with cascading side effects. We introduce World of Workflows (WoW), a realistic ServiceNow-based environment incorporating 4,000+ business rules and 55 active workflows embedded in the system, alongside WoW-bench, a benchmark of 234 tasks evaluating constrained agentic task completion and enterprise dynamics modeling capabilities. We reveal two major takeaways: (1) Frontier LLMs suffer from dynamics blindness, consistently failing to predict the invisible, cascading side effects of their actions, which leads to silent constraint violations, and (2) reliability in opaque systems requires grounded world modeling, where agents must mentally simulate hidden state transitions to bridge the observability gap when high-fidelity feedback is unavailable. For reliable and useful enterprise agents, WoW motivates a new paradigm to explicitly learn system dynamics. We release our GitHub for setting up and evaluating WoW.
☆ SWE-Replay: Efficient Test-Time Scaling for Software Engineering Agents
Test-time scaling has been widely adopted to enhance the capabilities of Large Language Model (LLM) agents in software engineering (SWE) tasks. However, the standard approach of repeatedly sampling trajectories from scratch is computationally expensive. While recent methods have attempted to mitigate costs using specialized value agents, they can suffer from model miscalibration and fail to generalize to modern agents that synthesize custom bash scripts as tools. In this paper, we introduce SWE-Replay, the first efficient and generalizable test-time scaling technique for modern agents without reliance on potentially noisy value estimates. SWE-Replay optimizes the scaling process by recycling trajectories from prior trials, dynamically choosing to either explore from scratch or exploit archived experience by branching at critical intermediate steps. This selection of intermediate steps is driven by the potential and reasoning significance of repository exploration, rather than external LLM-based quality estimates. Our evaluation shows that, on SWE-Bench Verified, SWE-Replay consistently outperforms naive scaling, reducing costs by up to 17.4% while maintaining or even improving performance by up to 3.8%. Further evaluation on SWE-Bench Pro and Multilingual validates the generalizability of SWE-Replay, establishing it as a robust foundation for efficient test-time scaling of software engineering agents.
☆ The Patient is not a Moving Document: A World Model Training Paradigm for Longitudinal EHR
Large language models (LLMs) trained with next-word-prediction have achieved success as clinical foundation models. Representations from these language backbones yield strong linear probe performance across biomedical tasks, suggesting that patient semantics emerge from next-token prediction at scale. However, this paradigm treats patients as a document to be summarized rather than a dynamical system to be simulated; a patient's trajectory emerges from their state evolving under interventions and time, requiring models that simulate dynamics rather than predict tokens. To address this, we introduce SMB-Structure, a world model for structured EHR that grounds a joint-embedding prediction architecture (JEPA) with next-token prediction (SFT). SFT grounds our model to reconstruct future patient states in token space, while JEPA predicts those futures in latent space from the initial patient representation alone, forcing trajectory dynamics to be encoded before the next state is observed. We validate across two large-scale cohorts: Memorial Sloan Kettering (23,319 oncology patients; 323,000+ patient-years) and INSPECT (19,402 pulmonary embolism patients). Using a linear probe evaluated at multiple points along the disease trajectory, we demonstrate that our training paradigm learns embeddings that capture disease dynamics not recoverable by autoregressive baselines, enabling SMB-Structure to achieve competitive performance on complex tasks characterized by high patient heterogeneity. Model weights are available at https://huggingface.co/standardmodelbio/SMB-v1-1.7B-Structure.
☆ Alpha Discovery via Grammar-Guided Learning and Search
Automatically discovering formulaic alpha factors is a central problem in quantitative finance. Existing methods often ignore syntactic and semantic constraints, relying on exhaustive search over unstructured and unbounded spaces. We present AlphaCFG, a grammar-based framework for defining and discovering alpha factors that are syntactically valid, financially interpretable, and computationally efficient. AlphaCFG uses an alpha-oriented context-free grammar to define a tree-structured, size-controlled search space, and formulates alpha discovery as a tree-structured linguistic Markov decision process, which is then solved using a grammar-aware Monte Carlo Tree Search guided by syntax-sensitive value and policy networks. Experiments on Chinese and U.S. stock market datasets show that AlphaCFG outperforms state-of-the-art baselines in both search efficiency and trading profitability. Beyond trading strategies, AlphaCFG serves as a general framework for symbolic factor discovery and refinement across quantitative finance, including asset pricing and portfolio construction.
comment: 24 pages, 10 figures
☆ Defining Operational Conditions for Safety-Critical AI-Based Systems from Data
Artificial Intelligence (AI) has been on the rise in many domains, including numerous safety-critical applications. However, for complex systems found in the real world, or when data already exist, defining the underlying environmental conditions is extremely challenging. This often results in an incomplete description of the environment in which the AI-based system must operate. Nevertheless, this description, called the Operational Design Domain (ODD), is required in many domains for the certification of AI-based systems. Traditionally, the ODD is created in the early stages of the development process, drawing on sophisticated expert knowledge and related standards. This paper presents a novel Safety-by-Design method to a posteriori define the ODD from previously collected data using a multi-dimensional kernel-based representation. This approach is validated through both Monte Carlo methods and a real-world aviation use case for a future safety-critical collision-avoidance system. Moreover, by defining under what conditions two ODDs are equal, the paper shows that the data-driven ODD can equal the original, underlying hidden ODD of the data. Utilizing the novel, Safe-by-Design kernel-based ODD enables future certification of data-driven, safety-critical AI-based systems.
☆ SINA: A Circuit Schematic Image-to-Netlist Generator Using Artificial Intelligence
Current methods for converting circuit schematic images into machine-readable netlists struggle with component recognition and connectivity inference. In this paper, we present SINA, an open-source, fully automated circuit schematic image-to-netlist generator. SINA integrates deep learning for accurate component detection, Connected-Component Labeling (CCL) for precise connectivity extraction, and Optical Character Recognition (OCR) for component reference designator retrieval, while employing a Vision-Language Model (VLM) for reliable reference designator assignments. In our experiments, SINA achieves 96.47% overall netlist-generation accuracy, which is 2.72x higher than state-of-the-art approaches.
☆ Value-Based Pre-Training with Downstream Feedback
Can a small amount of verified goal information steer the expensive self-supervised pretraining of foundation models? Standard pretraining optimizes a fixed proxy objective (e.g., next-token prediction), which can misallocate compute away from downstream capabilities of interest. We introduce V-Pretraining: a value-based, modality-agnostic method for controlled continued pretraining in which a lightweight task designer reshapes the pretraining task to maximize the value of each gradient step. For example, consider self-supervised learning (SSL) with sample augmentation. The V-Pretraining task designer selects pretraining tasks (e.g., augmentations) for which the pretraining loss gradient is aligned with a gradient computed over a downstream task (e.g., image segmentation). This helps steer pretraining towards relevant downstream capabilities. Notably, the pretrained model is never updated on downstream task labels; they are used only to shape the pretraining task. Under matched learner update budgets, V-Pretraining of 0.5B--7B language models improves reasoning (GSM8K test Pass@1) by up to 18% relative over standard next-token prediction using only 12% of GSM8K training examples as feedback. In vision SSL, we improve the state-of-the-art results on ADE20K by up to 1.07 mIoU and reduce NYUv2 RMSE while improving ImageNet linear accuracy, and we provide pilot evidence of improved token efficiency in continued pretraining.
☆ ECO: Quantized Training without Full-Precision Master Weights
Quantization has significantly improved the compute and memory efficiency of Large Language Model (LLM) training. However, existing approaches still rely on accumulating their updates in high-precision: concretely, gradient updates must be applied to a high-precision weight buffer, known as $\textit{master weights}$. This buffer introduces substantial memory overhead, particularly for Sparse Mixture of Experts (SMoE) models, where model parameters and optimizer states dominate memory usage. To address this, we introduce the Error-Compensating Optimizer (ECO), which eliminates master weights by applying updates directly to quantized parameters. ECO quantizes weights after each step and carefully injects the resulting quantization error into the optimizer momentum, forming an error-feedback loop with no additional memory. We prove that, under standard assumptions and a decaying learning rate, ECO converges to a constant-radius neighborhood of the optimum, while naive master-weight removal can incur an error that is inversely proportional to the learning rate. We show empirical results for pretraining small Transformers (30-800M), a Gemma-3 1B model, and a 2.1B parameter Sparse MoE model with FP8 quantization, and fine-tuning DeepSeek-MoE-16B in INT4 precision. Throughout, ECO matches baselines with master weights up to near-lossless accuracy, significantly shifting the static memory vs validation loss Pareto frontier.
☆ Investigating Associational Biases in Inter-Model Communication of Large Generative Models
Social bias in generative AI can manifest not only as performance disparities but also as associational bias, whereby models learn and reproduce stereotypical associations between concepts and demographic groups, even in the absence of explicit demographic information (e.g., associating doctors with men). These associations can persist, propagate, and potentially amplify across repeated exchanges in inter-model communication pipelines, where one generative model's output becomes another's input. This is especially salient for human-centred perception tasks, such as human activity recognition and affect prediction, where inferences about behaviour and internal states can lead to errors or stereotypical associations that propagate into unequal treatment. In this work, focusing on human activity and affective expression, we study how such associations evolve within an inter-model communication pipeline that alternates between image generation and image description. Using the RAF-DB and PHASE datasets, we quantify demographic distribution drift induced by model-to-model information exchange and assess whether these drifts are systematic using an explainability pipeline. Our results reveal demographic drifts toward younger representations for both actions and emotions, as well as toward more female-presenting representations, primarily for emotions. We further find evidence that some predictions are supported by spurious visual regions (e.g., background or hair) rather than concept-relevant cues (e.g., body or face). We also examine whether these demographic drifts translate into measurable differences in downstream behaviour, i.e., while predicting activity and emotion labels. Finally, we outline mitigation strategies spanning data-centric, training and deployment interventions, and emphasise the need for careful safeguards when deploying interconnected models in human-centred AI systems.
☆ Latent Adversarial Regularization for Offline Preference Optimization
Learning from human feedback typically relies on preference optimization that constrains policy updates through token-level regularization. However, preference optimization for language models is particularly challenging because token-space similarity does not imply semantic or behavioral similarity. To address this challenge, we leverage latent-space regularization for language model preference optimization. We introduce GANPO, which achieves latent-space regularization by penalizing divergence between the internal representations of a policy model and a reference model. Given that latent representations are not associated with explicit probability densities, we adopt an adversarial approach inspired by GANs to minimize latent-space divergence. We integrate GANPO as a regularizer into existing offline preference optimization objectives. Experiments across multiple model architectures and tasks show consistent improvements from latent-space regularization. Further, by comparing GANPO-induced inferential biases with those from token-level regularization, we find that GANPO provides more robust structural feedback under distributional shift and noise while maintaining comparable downstream performance with minor computational overhead.
☆ Vision-DeepResearch: Incentivizing DeepResearch Capability in Multimodal Large Language Models
Multimodal large language models (MLLMs) have achieved remarkable success across a broad range of vision tasks. However, constrained by the capacity of their internal world knowledge, prior work has proposed augmenting MLLMs by ``reasoning-then-tool-call'' for visual and textual search engines to obtain substantial gains on tasks requiring extensive factual information. However, these approaches typically define multimodal search in a naive setting, assuming that a single full-level or entity-level image query and few text query suffices to retrieve the key evidence needed to answer the question, which is unrealistic in real-world scenarios with substantial visual noise. Moreover, they are often limited in the reasoning depth and search breadth, making it difficult to solve complex questions that require aggregating evidence from diverse visual and textual sources. Building on this, we propose Vision-DeepResearch, which proposes one new multimodal deep-research paradigm, i.e., performs multi-turn, multi-entity and multi-scale visual and textual search to robustly hit real-world search engines under heavy noise. Our Vision-DeepResearch supports dozens of reasoning steps and hundreds of engine interactions, while internalizing deep-research capabilities into the MLLM via cold-start supervision and RL training, resulting in a strong end-to-end multimodal deep-research MLLM. It substantially outperforming existing multimodal deep-research MLLMs, and workflows built on strong closed-source foundation model such as GPT-5, Gemini-2.5-pro and Claude-4-Sonnet. The code will be released in https://github.com/Osilly/Vision-DeepResearch.
☆ Unsupervised Decomposition and Recombination with Discriminator-Driven Diffusion Models
Decomposing complex data into factorized representations can reveal reusable components and enable synthesizing new samples via component recombination. We investigate this in the context of diffusion-based models that learn factorized latent spaces without factor-level supervision. In images, factors can capture background, illumination, and object attributes; in robotic videos, they can capture reusable motion components. To improve both latent factor discovery and quality of compositional generation, we introduce an adversarial training signal via a discriminator trained to distinguish between single-source samples and those generated by recombining factors across sources. By optimizing the generator to fool this discriminator, we encourage physical and semantic consistency in the resulting recombinations. Our method outperforms implementations of prior baselines on CelebA-HQ, Virtual KITTI, CLEVR, and Falcor3D, achieving lower FID scores and better disentanglement as measured by MIG and MCC. Furthermore, we demonstrate a novel application to robotic video trajectories: by recombining learned action components, we generate diverse sequences that significantly increase state-space coverage for exploration on the LIBERO benchmark.
comment: 28 pages, 16 figures, 4 tables
☆ MetricAnything: Scaling Metric Depth Pretraining with Noisy Heterogeneous Sources
Scaling has powered recent advances in vision foundation models, yet extending this paradigm to metric depth estimation remains challenging due to heterogeneous sensor noise, camera-dependent biases, and metric ambiguity in noisy cross-source 3D data. We introduce Metric Anything, a simple and scalable pretraining framework that learns metric depth from noisy, diverse 3D sources without manually engineered prompts, camera-specific modeling, or task-specific architectures. Central to our approach is the Sparse Metric Prompt, created by randomly masking depth maps, which serves as a universal interface that decouples spatial reasoning from sensor and camera biases. Using about 20M image-depth pairs spanning reconstructed, captured, and rendered 3D data across 10000 camera models, we demonstrate-for the first time-a clear scaling trend in the metric depth track. The pretrained model excels at prompt-driven tasks such as depth completion, super-resolution and Radar-camera fusion, while its distilled prompt-free student achieves state-of-the-art results on monocular depth estimation, camera intrinsics recovery, single/multi-view metric 3D reconstruction, and VLA planning. We also show that using pretrained ViT of Metric Anything as a visual encoder significantly boosts Multimodal Large Language Model capabilities in spatial intelligence. These results show that metric depth estimation can benefit from the same scaling laws that drive modern foundation models, establishing a new path toward scalable and efficient real-world metric perception. We open-source MetricAnything at http://metric-anything.github.io/metric-anything-io/ to support community research.
comment: Project Page: https://metric-anything.github.io/metric-anything-io/
☆ SIA: Symbolic Interpretability for Anticipatory Deep Reinforcement Learning in Network Control
Deep reinforcement learning (DRL) promises adaptive control for future mobile networks but conventional agents remain reactive: they act on past and current measurements and cannot leverage short-term forecasts of exogenous KPIs such as bandwidth. Augmenting agents with predictions can overcome this temporal myopia, yet uptake in networking is scarce because forecast-aware agents act as closed-boxes; operators cannot tell whether predictions guide decisions or justify the added complexity. We propose SIA, the first interpreter that exposes in real time how forecast-augmented DRL agents operate. SIA fuses Symbolic AI abstractions with per-KPI Knowledge Graphs to produce explanations, and includes a new Influence Score metric. SIA achieves sub-millisecond speed, over 200x faster than existing XAI methods. We evaluate SIA on three diverse networking use cases, uncovering hidden issues, including temporal misalignment in forecast integration and reward-design biases that trigger counter-productive policies. These insights enable targeted fixes: a redesigned agent achieves a 9% higher average bitrate in video streaming, and SIA's online Action-Refinement module improves RAN-slicing reward by 25% without retraining. By making anticipatory DRL transparent and tunable, SIA lowers the barrier to proactive control in next-generation mobile networks.
comment: 10 pages, 12 figures, accepted at IEEE INFOCOM 2026
☆ Learning to Communicate Across Modalities: Perceptual Heterogeneity in Multi-Agent Systems
Emergent communication offers insight into how agents develop shared structured representations, yet most research assumes homogeneous modalities or aligned representational spaces, overlooking the perceptual heterogeneity of real-world settings. We study a heterogeneous multi-step binary communication game where agents differ in modality and lack perceptual grounding. Despite perceptual misalignment, multimodal systems converge to class-consistent messages grounded in perceptual input. Unimodal systems communicate more efficiently, using fewer bits and achieving lower classification entropy, while multimodal agents require greater information exchange and exhibit higher uncertainty. Bit perturbation experiments provide strong evidence that meaning is encoded in a distributional rather than compositional manner, as each bit's contribution depends on its surrounding pattern. Finally, interoperability analyses show that systems trained in different perceptual worlds fail to directly communicate, but limited fine-tuning enables successful cross-system communication. This work positions emergent communication as a framework for studying how agents adapt and transfer representations across heterogeneous modalities, opening new directions for both theory and experimentation.
comment: To be published in EvoLang XVI proceedings. 15 pages, 17 figures
☆ A Separable Architecture for Continuous Token Representation in Language Models
Transformer scaling law analyses typically treat parameters as interchangeable; an abstraction that accurately predicts loss-compute relationships. Yet, in sub-billion-parameter small language models (SLMs), embedding matrices dominate the parameter budget. This work argues that this allocation is as suboptimal as it is counterintuitive. Leviathan is an architecture with a continuous embedding generator to replace the discrete lookup tables of canonical models. Evaluating on the Pile dataset under isoparametric settings, Leviathan consistently outperforms a standard, LLaMA-style architecture. By means of an empirical power-law fit, Leviathan exhibits a markedly superior effective parameter capacity. Across the regime studied, Leviathan behaves as a dense model with $1.47$ to $2.11 \times$ more parameters.
☆ Optimizing Agentic Workflows using Meta-tools
Agentic AI enables LLM to dynamically reason, plan, and interact with tools to solve complex tasks. However, agentic workflows often require many iterative reasoning steps and tool invocations, leading to significant operational expense, end-to-end latency and failures due to hallucinations. This work introduces Agent Workflow Optimization (AWO), a framework that identifies and optimizes redundant tool execution patterns to improve the efficiency and robustness of agentic workflows. AWO analyzes existing workflow traces to discover recurring sequences of tool calls and transforms them into meta-tools, which are deterministic, composite tools that bundle multiple agent actions into a single invocation. Meta-tools bypass unnecessary intermediate LLM reasoning steps and reduce operational cost while also shortening execution paths, leading to fewer failures. Experiments on two agentic AI benchmarks show that AWO reduces the number of LLM calls up to 11.9% while also increasing the task success rate by up to 4.2 percent points.
☆ Thinking Out of Order: When Output Order Stops Reflecting Reasoning Order in Diffusion Language Models
Autoregressive (AR) language models enforce a fixed left-to-right generation order, creating a fundamental limitation when the required output structure conflicts with natural reasoning (e.g., producing answers before explanations due to presentation or schema constraints). In such cases, AR models must commit to answers before generating intermediate reasoning, and this rigid constraint forces premature commitment. Masked diffusion language models (MDLMs), which iteratively refine all tokens in parallel, offer a way to decouple computation order from output structure. We validate this capability on GSM8K, Math500, and ReasonOrderQA, a benchmark we introduce with controlled difficulty and order-level evaluation. When prompts request answers before reasoning, AR models exhibit large accuracy gaps compared to standard chain-of-thought ordering (up to 67% relative drop), while MDLMs remain stable ($\leq$14% relative drop), a property we term "order robustness". Using ReasonOrderQA, we present evidence that MDLMs achieve order robustness by stabilizing simpler tokens (e.g., reasoning steps) earlier in the diffusion process than complex ones (e.g., final answers), enabling reasoning tokens to stabilize before answer commitment. Finally, we identify failure conditions where this advantage weakens, outlining the limits required for order robustness.
comment: 18 pages, 13 figures, 5 tables
☆ CAR-bench: Evaluating the Consistency and Limit-Awareness of LLM Agents under Real-World Uncertainty
Existing benchmarks for Large Language Model (LLM) agents focus on task completion under idealistic settings but overlook reliability in real-world, user-facing applications. In domains, such as in-car voice assistants, users often issue incomplete or ambiguous requests, creating intrinsic uncertainty that agents must manage through dialogue, tool use, and policy adherence. We introduce CAR-bench, a benchmark for evaluating consistency, uncertainty handling, and capability awareness in multi-turn, tool-using LLM agents in an in-car assistant domain. The environment features an LLM-simulated user, domain policies, and 58 interconnected tools spanning navigation, productivity, charging, and vehicle control. Beyond standard task completion, CAR-bench introduces Hallucination tasks that test agents' limit-awareness under missing tools or information, and Disambiguation tasks that require resolving uncertainty through clarification or internal information gathering. Baseline results reveal large gaps between occasional and consistent success on all task types. Even frontier reasoning LLMs achieve less than 50% consistent pass rate on Disambiguation tasks due to premature actions, and frequently violate policies or fabricate information to satisfy user requests in Hallucination tasks, underscoring the need for more reliable and self-aware LLM agents in real-world settings.
☆ When "Better" Prompts Hurt: Evaluation-Driven Iteration for LLM Applications
Evaluating Large Language Model (LLM) applications differs from traditional software testing because outputs are stochastic, high-dimensional, and sensitive to prompt and model changes. We present an evaluation-driven workflow - Define, Test, Diagnose, Fix - that turns these challenges into a repeatable engineering loop. We introduce the Minimum Viable Evaluation Suite (MVES), a tiered set of recommended evaluation components for (i) general LLM applications, (ii) retrieval-augmented generation (RAG), and (iii) agentic tool-use workflows. We also synthesize common evaluation methods (automated checks, human rubrics, and LLM-as-judge) and discuss known judge failure modes. In reproducible local experiments (Ollama; Llama 3 8B Instruct and Qwen 2.5 7B Instruct), we observe that a generic "improved" prompt template can trade off behaviors: on our small structured suites, extraction pass rate decreased from 100% to 90% and RAG compliance from 93.3% to 80% for Llama 3 when replacing task-specific prompts with generic rules, while instruction-following improved. These findings motivate evaluation-driven prompt iteration and careful claim calibration rather than universal prompt recipes. All test suites, harnesses, and results are included for reproducibility.
☆ SymbXRL: Symbolic Explainable Deep Reinforcement Learning for Mobile Networks
The operation of future 6th-generation (6G) mobile networks will increasingly rely on the ability of deep reinforcement learning (DRL) to optimize network decisions in real-time. DRL yields demonstrated efficacy in various resource allocation problems, such as joint decisions on user scheduling and antenna allocation or simultaneous control of computing resources and modulation. However, trained DRL agents are closed-boxes and inherently difficult to explain, which hinders their adoption in production settings. In this paper, we make a step towards removing this critical barrier by presenting SymbXRL, a novel technique for explainable reinforcement learning (XRL) that synthesizes human-interpretable explanations for DRL agents. SymbXRL leverages symbolic AI to produce explanations where key concepts and their relationships are described via intuitive symbols and rules; coupling such a representation with logical reasoning exposes the decision process of DRL agents and offers more comprehensible descriptions of their behaviors compared to existing approaches. We validate SymbXRL in practical network management use cases supported by DRL, proving that it not only improves the semantics of the explanations but also paves the way for explicit agent control: for instance, it enables intent-based programmatic action steering that improves by 12% the median cumulative reward over a pure DRL solution.
comment: 10 pages, 9 figures, published in IEEE INFOCOM 2025
☆ Vidmento: Creating Video Stories Through Context-Aware Expansion With Generative Video
Video storytelling is often constrained by available material, limiting creative expression and leaving undesired narrative gaps. Generative video offers a new way to address these limitations by augmenting captured media with tailored visuals. To explore this potential, we interviewed eight video creators to identify opportunities and challenges in integrating generative video into their workflows. Building on these insights and established filmmaking principles, we developed Vidmento, a tool for authoring hybrid video stories that combine captured and generated media through context-aware expansion. Vidmento surfaces opportunities for story development, generates clips that blend stylistically and narratively with surrounding media, and provides controls for refinement. In a study with 12 creators, Vidmento supported narrative development and exploration by systematically expanding initial materials with generative media, enabling expressive video storytelling aligned with creative intent. We highlight how creators bridge story gaps with generative content and where they find this blending capability most valuable.
comment: 25 pages, 18 figures
☆ MEIDNet: Multimodal generative AI framework for inverse materials design
In this work, we present Multimodal Equivariant Inverse Design Network (MEIDNet), a framework that jointly learns structural information and materials properties through contrastive learning, while encoding structures via an equivariant graph neural network (EGNN). By combining generative inverse design with multimodal learning, our approach accelerates the exploration of chemical-structural space and facilitates the discovery of materials that satisfy predefined property targets. MEIDNet exhibits strong latent-space alignment with cosine similarity 0.96 by fusion of three modalities through cross-modal learning. Through implementation of curriculum learning strategies, MEIDNet achieves ~60 times higher learning efficiency than conventional training techniques. The potential of our multimodal approach is demonstrated by generating low-bandgap perovskite structures at a stable, unique, and novel (SUN) rate of 13.6 %, which are further validated by ab initio methods. Our inverse design framework demonstrates both scalability and adaptability, paving the way for the universal learning of chemical space across diverse modalities.
☆ Heterogeneous Computing: The Key to Powering the Future of AI Agent Inference
AI agent inference is driving an inference heavy datacenter future and exposes bottlenecks beyond compute - especially memory capacity, memory bandwidth and high-speed interconnect. We introduce two metrics - Operational Intensity (OI) and Capacity Footprint (CF) - that jointly explain regimes the classic roofline analysis misses, including the memory capacity wall. Across agentic workflows (chat, coding, web use, computer use) and base model choices (GQA/MLA, MoE, quantization), OI/CF can shift dramatically, with long context KV cache making decode highly memory bound. These observations motivate disaggregated serving and system level heterogeneity: specialized prefill and decode accelerators, broader scale up networking, and decoupled compute-memory enabled by optical I/O. We further hypothesize agent-hardware co design, multiple inference accelerators within one system, and high bandwidth, large capacity memory disaggregation as foundations for adaptation to evolving OI/CF. Together, these directions chart a path to sustain efficiency and capability for large scale agentic AI inference.
☆ Mechanistic Data Attribution: Tracing the Training Origins of Interpretable LLM Units
While Mechanistic Interpretability has identified interpretable circuits in LLMs, their causal origins in training data remain elusive. We introduce Mechanistic Data Attribution (MDA), a scalable framework that employs Influence Functions to trace interpretable units back to specific training samples. Through extensive experiments on the Pythia family, we causally validate that targeted intervention--removing or augmenting a small fraction of high-influence samples--significantly modulates the emergence of interpretable heads, whereas random interventions show no effect. Our analysis reveals that repetitive structural data (e.g., LaTeX, XML) acts as a mechanistic catalyst. Furthermore, we observe that interventions targeting induction head formation induce a concurrent change in the model's in-context learning (ICL) capability. This provides direct causal evidence for the long-standing hypothesis regarding the functional link between induction heads and ICL. Finally, we propose a mechanistic data augmentation pipeline that consistently accelerates circuit convergence across model scales, providing a principled methodology for steering the developmental trajectories of LLMs.
☆ Liquid Interfaces: A Dynamic Ontology for the Interoperability of Autonomous Systems
Contemporary software architectures struggle to support autonomous agents whose reasoning is adaptive, probabilistic, and context-dependent, while system integration remains dominated by static interfaces and deterministic contracts. This paper introduces Liquid Interfaces, a coordination paradigm in which interfaces are not persistent technical artifacts, but ephemeral relational events that emerge through intention articulation and semantic negotiation at runtime.We formalize this model and present the Liquid Interface Protocol (LIP),which governs intention-driven interaction, negotiated execution, and enforce ephemerality under semantic uncertainty. We further discuss the governance implications of this approach and describe a reference architecture that demonstrates practical feasibility. Liquid Interfaces provide a principled foundation for adaptive coordination in agent-based systems
comment: 28 pages, 2 figures
☆ Geometry of Drifting MDPs with Path-Integral Stability Certificates
Real-world reinforcement learning is often \emph{nonstationary}: rewards and dynamics drift, accelerate, oscillate, and trigger abrupt switches in the optimal action. Existing theory often represents nonstationarity with coarse-scale models that measure \emph{how much} the environment changes, not \emph{how} it changes locally -- even though acceleration and near-ties drive tracking error and policy chattering. We take a geometric view of nonstationary discounted Markov Decision Processes (MDPs) by modeling the environment as a differentiable homotopy path and tracking the induced motion of the optimal Bellman fixed point. This yields a length-curvature-kink signature of intrinsic complexity: cumulative drift, acceleration/oscillation, and action-gap-induced nonsmoothness. We prove a solver-agnostic path-integral stability bound and derive gap-safe feasible regions that certify local stability away from switch regimes. Building on these results, we introduce \textit{Homotopy-Tracking RL (HT-RL)} and \textit{HT-MCTS}, lightweight wrappers that estimate replay-based proxies of length, curvature, and near-tie proximity online and adapt learning or planning intensity accordingly. Experiments show improved tracking and dynamic regret over matched static baselines, with the largest gains in oscillatory and switch-prone regimes.
☆ Generalized Information Gathering Under Dynamics Uncertainty
An agent operating in an unknown dynamical system must learn its dynamics from observations. Active information gathering accelerates this learning, but existing methods derive bespoke costs for specific modeling choices: dynamics models, belief update procedures, observation models, and planners. We present a unifying framework that decouples these choices from the information-gathering cost by explicitly exposing the causal dependencies between parameters, beliefs, and controls. Using this framework, we derive a general information-gathering cost based on Massey's directed information that assumes only Markov dynamics with additive noise and is otherwise agnostic to modeling choices. We prove that the mutual information cost used in existing literature is a special case of our cost. Then, we leverage our framework to establish an explicit connection between the mutual information cost and information gain in linearized Bayesian estimation, thereby providing theoretical justification for mutual information-based active learning approaches. Finally, we illustrate the practical utility of our framework through experiments spanning linear, nonlinear, and multi-agent systems.
☆ VERSA: Verified Event Data Format for Reliable Soccer Analytics
Event stream data is a critical resource for fine-grained analysis across various domains, including financial transactions, system operations, and sports. In sports, it is actively used for fine-grained analyses such as quantifying player contributions and identifying tactical patterns. However, the reliability of these models is fundamentally limited by inherent data quality issues that cause logical inconsistencies (e.g., incorrect event ordering or missing events). To this end, this study proposes VERSA (Verified Event Data Format for Reliable Soccer Analytics), a systematic verification framework that ensures the integrity of event stream data within the soccer domain. VERSA is based on a state-transition model that defines valid event sequences, thereby enabling the automatic detection and correction of anomalous patterns within the event stream data. Notably, our examination of event data from the K League 1 (2024 season), provided by Bepro, detected that 18.81% of all recorded events exhibited logical inconsistencies. Addressing such integrity issues, our experiments demonstrate that VERSA significantly enhances cross-provider consistency, ensuring stable and unified data representation across heterogeneous sources. Furthermore, we demonstrate that data refined by VERSA significantly improves the robustness and performance of a downstream task called VAEP, which evaluates player contributions. These results highlight that the verification process is highly effective in increasing the reliability of data-driven analysis.
comment: 13 pages, 5 figures, 3 tables
☆ From Particles to Agents: Hallucination as a Metric for Cognitive Friction in Spatial Simulation
Traditional architectural simulations (e.g. Computational Fluid Dynamics, evacuation, structural analysis) model elements as deterministic physics-based "particles" rather than cognitive "agents". To bridge this, we introduce \textbf{Agentic Environmental Simulations}, where Large Multimodal generative models actively predict the next state of spatial environments based on semantic expectation. Drawing on examples from accessibility-oriented AR pipelines and multimodal digital twins, we propose a shift from chronological time-steps to Episodic Spatial Reasoning, where simulations advance through meaningful, surprisal-triggered events. Within this framework we posit AI hallucinations as diagnostic tools. By formalizing the \textbf{Cognitive Friction} ($C_f$) it is possible to reveal "Phantom Affordances", i.e. semiotic ambiguities in built space. Finally, we challenge current HCI paradigms by treating environments as dynamic cognitive partners and propose a human-centered framework of cognitive orchestration for designing AI-driven simulations that preserve autonomy, affective clarity, and cognitive integrity.
comment: Paper selected for the workshop Human Cognition, AI, and the Future of HCI: Navigating the Disruptive and Wild Landscape of Large Language Models and Agentic AI as part of the Human-Computer Interaction (HCI) conference of the Alpine region (AlpCHI 2026) hosted at the Congressi Stefano Franscini, March 1st to March 5th, 2026 on Monte Verità in Ascona, Switzerland
☆ Mind the Gap: How Elicitation Protocols Shape the Stated-Revealed Preference Gap in Language Models
Recent work identifies a stated-revealed (SvR) preference gap in language models (LMs): a mismatch between the values models endorse and the choices they make in context. Existing evaluations rely heavily on binary forced-choice prompting, which entangles genuine preferences with artifacts of the elicitation protocol. We systematically study how elicitation protocols affect SvR correlation across 24 LMs. Allowing neutrality and abstention during stated preference elicitation allows us to exclude weak signals, substantially improving Spearman's rank correlation ($ρ$) between volunteered stated preferences and forced-choice revealed preferences. However, further allowing abstention in revealed preferences drives $ρ$ to near-zero or negative values due to high neutrality rates. Finally, we find that system prompt steering using stated preferences during revealed preference elicitation does not reliably improve SvR correlation on AIRiskDilemmas. Together, our results show that SvR correlation is highly protocol-dependent and that preference elicitation requires methods that account for indeterminate preferences.
☆ Learning Decentralized LLM Collaboration with Multi-Agent Actor Critic
Recent work has explored optimizing LLM collaboration through Multi-Agent Reinforcement Learning (MARL). However, most MARL fine-tuning approaches rely on predefined execution protocols, which often require centralized execution. Decentralized LLM collaboration is more appealing in practice, as agents can run inference in parallel with flexible deployments. Also, current approaches use Monte Carlo methods for fine-tuning, which suffer from high variance and thus require more samples to train effectively. Actor-critic methods are prevalent in MARL for dealing with these issues, so we developed Multi-Agent Actor-Critic (MAAC) methods to optimize decentralized LLM collaboration. In this paper, we analyze when and why these MAAC methods are beneficial. We propose 2 MAAC approaches, \textbf{CoLLM-CC} with a \textbf{C}entralized \textbf{C}ritic and \textbf{CoLLM-DC} with \textbf{D}ecentralized \textbf{C}ritics. Our experiments across writing, coding, and game-playing domains show that Monte Carlo methods and CoLLM-DC can achieve performance comparable to CoLLM-CC in short-horizon and dense-reward settings. However, they both underperform CoLLM-CC on long-horizon or sparse-reward tasks, where Monte Carlo methods require substantially more samples and CoLLM-DC struggles to converge. Our code is available at https://github.com/OpenMLRL/CoMLRL/releases/tag/v1.3.2.
☆ MoE-ACT: Improving Surgical Imitation Learning Policies through Supervised Mixture-of-Experts
Imitation learning has achieved remarkable success in robotic manipulation, yet its application to surgical robotics remains challenging due to data scarcity, constrained workspaces, and the need for an exceptional level of safety and predictability. We present a supervised Mixture-of-Experts (MoE) architecture designed for phase-structured surgical manipulation tasks, which can be added on top of any autonomous policy. Unlike prior surgical robot learning approaches that rely on multi-camera setups or thousands of demonstrations, we show that a lightweight action decoder policy like Action Chunking Transformer (ACT) can learn complex, long-horizon manipulation from less than 150 demonstrations using solely stereo endoscopic images, when equipped with our architecture. We evaluate our approach on the collaborative surgical task of bowel grasping and retraction, where a robot assistant interprets visual cues from a human surgeon, executes targeted grasping on deformable tissue, and performs sustained retraction. We benchmark our method against state-of-the-art Vision-Language-Action (VLA) models and the standard ACT baseline. Our results show that generalist VLAs fail to acquire the task entirely, even under standard in-distribution conditions. Furthermore, while standard ACT achieves moderate success in-distribution, adopting a supervised MoE architecture significantly boosts its performance, yielding higher success rates in-distribution and demonstrating superior robustness in out-of-distribution scenarios, including novel grasp locations, reduced illumination, and partial occlusions. Notably, it generalizes to unseen testing viewpoints and also transfers zero-shot to ex vivo porcine tissue without additional training, offering a promising pathway toward in vivo deployment. To support this, we present qualitative preliminary results of policy roll-outs during in vivo porcine surgery.
☆ Token-Guard: Towards Token-Level Hallucination Control via Self-Checking Decoding ICLR 2026
Large Language Models (LLMs) often hallucinate, generating content inconsistent with the input. Retrieval-Augmented Generation (RAG) and Reinforcement Learning with Human Feedback (RLHF) can mitigate hallucinations but require resource-intensive retrieval or large-scale fine-tuning. Decoding-based methods are lighter yet lack explicit hallucination control. To address this, we present Token-Guard, a token-level hallucination control method based on self-checking decoding. Token-Guard performs internal verification at each reasoning step to detect hallucinated tokens before they propagate. Candidate fragments are further evaluated in a latent space with explicit hallucination risk scoring, while iterative pruning and regeneration dynamically correct detected errors. Experiments on HALU datasets show Token-Guard substantially reduces hallucinations and improves generation accuracy, offering a scalable, modular solution for reliable LLM outputs. Our code is publicly available.
comment: 26 pages and 11 figures,this work has been accepted for presentation at ICLR 2026
☆ The Energy Impact of Domain Model Design in Classical Planning
AI research has traditionally prioritised algorithmic performance, such as optimising accuracy in machine learning or runtime in automated planning. The emerging paradigm of Green AI challenges this by recognising energy consumption as a critical performance dimension. Despite the high computational demands of automated planning, its energy efficiency has received little attention. This gap is particularly salient given the modular planning structure, in which domain models are specified independently of algorithms. On the other hand, this separation also enables systematic analysis of energy usage through domain model design. We empirically investigate how domain model characteristics affect the energy consumption of classical planners. We introduce a domain model configuration framework that enables controlled variation of features, such as element ordering, action arity, and dead-end states. Using five benchmark domains and five state-of-the-art planners, we analyse energy and runtime impacts across 32 domain variants per benchmark. Results demonstrate that domain-level modifications produce measurable energy differences across planners, with energy consumption not always correlating with runtime.
comment: 2026 IEEE/ACM 5th International Conference on AI Engineering - Software Engineering for AI (CAIN '26)
☆ Industrialized Deception: The Collateral Effects of LLM-Generated Misinformation on Digital Ecosystems
Generative AI and misinformation research has evolved since our 2024 survey. This paper presents an updated perspective, transitioning from literature review to practical countermeasures. We report on changes in the threat landscape, including improved AI-generated content through Large Language Models (LLMs) and multimodal systems. Central to this work are our practical contributions: JudgeGPT, a platform for evaluating human perception of AI-generated news, and RogueGPT, a controlled stimulus generation engine for research. Together, these tools form an experimental pipeline for studying how humans perceive and detect AI-generated misinformation. Our findings show that detection capabilities have improved, but the competition between generation and detection continues. We discuss mitigation strategies including LLM-based detection, inoculation approaches, and the dual-use nature of generative AI. This work contributes to research addressing the adverse impacts of AI on information quality.
comment: Accepted at ACM TheWebConf '26 Companion
☆ How do Visual Attributes Influence Web Agents? A Comprehensive Evaluation of User Interface Design Factors
Web agents have demonstrated strong performance on a wide range of web-based tasks. However, existing research on the effect of environmental variation has mostly focused on robustness to adversarial attacks, with less attention to agents' preferences in benign scenarios. Although early studies have examined how textual attributes influence agent behavior, a systematic understanding of how visual attributes shape agent decision-making remains limited. To address this, we introduce VAF, a controlled evaluation pipeline for quantifying how webpage Visual Attribute Factors influence web-agent decision-making. Specifically, VAF consists of three stages: (i) variant generation, which ensures the variants share identical semantics as the original item while only differ in visual attributes; (ii) browsing interaction, where agents navigate the page via scrolling and clicking the interested item, mirroring how human users browse online; (iii) validating through both click action and reasoning from agents, which we use the Target Click Rate and Target Mention Rate to jointly evaluate the effect of visual attributes. By quantitatively measuring the decision-making difference between the original and variant, we identify which visual attributes influence agents' behavior most. Extensive experiments, across 8 variant families (48 variants total), 5 real-world websites (including shopping, travel, and news browsing), and 4 representative web agents, show that background color contrast, item size, position, and card clarity have a strong influence on agents' actions, whereas font styling, text color, and item image clarity exhibit minor effects.
☆ ToolWeaver: Weaving Collaborative Semantics for Scalable Tool Use in Large Language Models ICLR 2026
Prevalent retrieval-based tool-use pipelines struggle with a dual semantic challenge: their retrievers often employ encoders that fail to capture complex semantics, while the Large Language Model (LLM) itself lacks intrinsic tool knowledge from its natural language pretraining. Generative methods offer a powerful alternative by unifying selection and execution, tasking the LLM to directly learn and generate tool identifiers. However, the common practice of mapping each tool to a unique new token introduces substantial limitations: it creates a scalability and generalization crisis, as the vocabulary size explodes and each tool is assigned a semantically isolated token. This approach also creates a semantic bottleneck that hinders the learning of collaborative tool relationships, as the model must infer them from sparse co-occurrences of monolithic tool IDs within a vast library. To address these limitations, we propose ToolWeaver, a novel generative tool learning framework that encodes tools into hierarchical sequences. This approach makes vocabulary expansion logarithmic to the number of tools. Crucially, it enables the model to learn collaborative patterns from the dense co-occurrence of shared codes, rather than the sparse co-occurrence of monolithic tool IDs. We generate these structured codes through a novel tokenization process designed to weave together a tool's intrinsic semantics with its extrinsic co-usage patterns. These structured codes are then integrated into the LLM through a generative alignment stage, where the model is fine-tuned to produce the hierarchical code sequences. Evaluation results with nearly 47,000 tools show that ToolWeaver significantly outperforms state-of-the-art methods, establishing a more scalable, generalizable, and semantically-aware foundation for advanced tool-augmented agents.
comment: 10pages, 12 figures, Accepted to ICLR 2026
☆ Robust Multimodal Representation Learning in Healthcare
Medical multimodal representation learning aims to integrate heterogeneous data into unified patient representations to support clinical outcome prediction. However, real-world medical datasets commonly contain systematic biases from multiple sources, which poses significant challenges for medical multimodal representation learning. Existing approaches typically focus on effective multimodal fusion, neglecting inherent biased features that affect the generalization ability. To address these challenges, we propose a Dual-Stream Feature Decorrelation Framework that identifies and handles the biases through structural causal analysis introduced by latent confounders. Our method employs a causal-biased decorrelation framework with dual-stream neural networks to disentangle causal features from spurious correlations, utilizing generalized cross-entropy loss and mutual information minimization for effective decorrelation. The framework is model-agnostic and can be integrated into existing medical multimodal learning methods. Comprehensive experiments on MIMIC-IV, eICU, and ADNI datasets demonstrate consistent performance improvements.
☆ Retrieval-Infused Reasoning Sandbox: A Benchmark for Decoupling Retrieval and Reasoning Capabilities
Despite strong performance on existing benchmarks, it remains unclear whether large language models can reason over genuinely novel scientific information. Most evaluations score end-to-end RAG pipelines, where reasoning is confounded with retrieval and toolchain choices, and the signal is further contaminated by parametric memorization and open-web volatility. We introduce DeR2, a controlled deep-research sandbox that isolates document-grounded reasoning while preserving core difficulties of deep search: multi-step synthesis, denoising, and evidence-based conclusion making. DeR2 decouples evidence access from reasoning via four regimes--Instruction-only, Concepts (gold concepts without documents), Related-only (only relevant documents), and Full-set (relevant documents plus topically related distractors)--yielding interpretable regime gaps that operationalize retrieval loss vs. reasoning loss and enable fine-grained error attribution. To prevent parametric leakage, we apply a two-phase validation that requires parametric failure without evidence while ensuring oracle-concept solvability. To ensure reproducibility, each instance provides a frozen document library (drawn from 2023-2025 theoretical papers) with expert-annotated concepts and validated rationales. Experiments across a diverse set of state-of-the-art foundation models reveal substantial variation and significant headroom: some models exhibit mode-switch fragility, performing worse with the Full-set than with Instruction-only, while others show structural concept misuse, correctly naming concepts but failing to execute them as procedures.
☆ AgenticSimLaw: A Juvenile Courtroom Multi-Agent Debate Simulation for Explainable High-Stakes Tabular Decision Making
We introduce AgenticSimLaw, a role-structured, multi-agent debate framework that provides transparent and controllable test-time reasoning for high-stakes tabular decision-making tasks. Unlike black-box approaches, our courtroom-style orchestration explicitly defines agent roles (prosecutor, defense, judge), interaction protocols (7-turn structured debate), and private reasoning strategies, creating a fully auditable decision-making process. We benchmark this framework on young adult recidivism prediction using the NLSY97 dataset, comparing it against traditional chain-of-thought (CoT) prompting across almost 90 unique combinations of models and strategies. Our results demonstrate that structured multi-agent debate provides more stable and generalizable performance compared to single-agent reasoning, with stronger correlation between accuracy and F1-score metrics. Beyond performance improvements, AgenticSimLaw offers fine-grained control over reasoning steps, generates complete interaction transcripts for explainability, and enables systematic profiling of agent behaviors. While we instantiate this framework in the criminal justice domain to stress-test reasoning under ethical complexity, the approach generalizes to any deliberative, high-stakes decision task requiring transparency and human oversight. This work addresses key LLM-based multi-agent system challenges: organization through structured roles, observability through logged interactions, and responsibility through explicit non-deployment constraints for sensitive domains. Data, results, and code will be available on github.com under the MIT license.
comment: 18 pages, 5 figures
☆ From Future of Work to Future of Workers: Addressing Asymptomatic AI Harms for Dignified Human-AI Interaction
In the future of work discourse, AI is touted as the ultimate productivity amplifier. Yet, beneath the efficiency gains lie subtle erosions of human expertise and agency. This paper shifts focus from the future of work to the future of workers by navigating the AI-as-Amplifier Paradox: AI's dual role as enhancer and eroder, simultaneously strengthening performance while eroding underlying expertise. We present a year-long study on the longitudinal use of AI in a high-stakes workplace among cancer specialists. Initial operational gains hid ``intuition rust'': the gradual dulling of expert judgment. These asymptomatic effects evolved into chronic harms, such as skill atrophy and identity commoditization. Building on these findings, we offer a framework for dignified Human-AI interaction co-constructed with professional knowledge workers facing AI-induced skill erosion without traditional labor protections. The framework operationalizes sociotechnical immunity through dual-purpose mechanisms that serve institutional quality goals while building worker power to detect, contain, and recover from skill erosion, and preserve human identity. Evaluated across healthcare and software engineering, our work takes a foundational step toward dignified human-AI interaction futures by balancing productivity with the preservation of human expertise.
☆ Self-Compression of Chain-of-Thought via Multi-Agent Reinforcement Learning
The inference overhead induced by redundant reasoning undermines the interactive experience and severely bottlenecks the deployment of Large Reasoning Models. Existing reinforcement learning (RL)-based solutions tackle this problem by coupling a length penalty with outcome-based rewards. This simplistic reward weighting struggles to reconcile brevity with accuracy, as enforcing brevity may compromise critical reasoning logic. In this work, we address this limitation by proposing a multi-agent RL framework that selectively penalizes redundant chunks, while preserving essential reasoning logic. Our framework, Self-Compression via MARL (SCMA), instantiates redundancy detection and evaluation through two specialized agents: \textbf{a Segmentation Agent} for decomposing the reasoning process into logical chunks, and \textbf{a Scoring Agent} for quantifying the significance of each chunk. The Segmentation and Scoring agents collaboratively define an importance-weighted length penalty during training, incentivizing \textbf{a Reasoning Agent} to prioritize essential logic without introducing inference overhead during deployment. Empirical evaluations across model scales demonstrate that SCMA reduces response length by 11.1\% to 39.0\% while boosting accuracy by 4.33\% to 10.02\%. Furthermore, ablation studies and qualitative analysis validate that the synergistic optimization within the MARL framework fosters emergent behaviors, yielding more powerful LRMs compared to vanilla RL paradigms.
☆ JADE: Bridging the Strategic-Operational Gap in Dynamic Agentic RAG
The evolution of Retrieval-Augmented Generation (RAG) has shifted from static retrieval pipelines to dynamic, agentic workflows where a central planner orchestrates multi-turn reasoning. However, existing paradigms face a critical dichotomy: they either optimize modules jointly within rigid, fixed-graph architectures, or empower dynamic planning while treating executors as frozen, black-box tools. We identify that this \textit{decoupled optimization} creates a ``strategic-operational mismatch,'' where sophisticated planning strategies fail to materialize due to unadapted local executors, often leading to negative performance gains despite increased system complexity. In this paper, we propose \textbf{JADE} (\textbf{J}oint \textbf{A}gentic \textbf{D}ynamic \textbf{E}xecution), a unified framework for the joint optimization of planning and execution within dynamic, multi-turn workflows. By modeling the system as a cooperative multi-agent team unified under a single shared backbone, JADE enables end-to-end learning driven by outcome-based rewards. This approach facilitates \textit{co-adaptation}: the planner learns to operate within the capability boundaries of the executors, while the executors evolve to align with high-level strategic intent. Empirical results demonstrate that JADE transforms disjoint modules into a synergistic system, yielding remarkable performance improvements via joint optimization and enabling a flexible balance between efficiency and effectiveness through dynamic workflow orchestration.
☆ ProRAG: Process-Supervised Reinforcement Learning for Retrieval-Augmented Generation
Reinforcement learning (RL) has become a promising paradigm for optimizing Retrieval-Augmented Generation (RAG) in complex reasoning tasks. However, traditional outcome-based RL approaches often suffer from reward sparsity and inefficient credit assignment, as coarse-grained scalar rewards fail to identify specific erroneous steps within long-horizon trajectories. This ambiguity frequently leads to "process hallucinations", where models reach correct answers through flawed logic or redundant retrieval steps. Although recent process-aware approaches attempt to mitigate this via static preference learning or heuristic reward shaping, they often lack the on-policy exploration capabilities required to decouple step-level credit from global outcomes. To address these challenges, we propose ProRAG, a process-supervised reinforcement learning framework designed to integrate learned step-level supervision into the online optimization loop. Our framework consists of four stages: (1) Supervised Policy Warmup to initialize the model with a structured reasoning format; (2) construction of an MCTS-based Process Reward Model (PRM) to quantify intermediate reasoning quality; (3) PRM-Guided Reasoning Refinement to align the policy with fine-grained process preferences; and (4) Process-Supervised Reinforcement Learning with a dual-granularity advantage mechanism. By aggregating step-level process rewards with global outcome signals, ProRAG provides precise feedback for every action. Extensive experiments on five multi-hop reasoning benchmarks demonstrate that ProRAG achieves superior overall performance compared to strong outcome-based and process-aware RL baselines, particularly on complex long-horizon tasks, validating the effectiveness of fine-grained process supervision. The code and model are available at https://github.com/lilinwz/ProRAG.
comment: 11 pages, 6 figures
☆ From Meta-Thought to Execution: Cognitively Aligned Post-Training for Generalizable and Reliable LLM Reasoning
Current LLM post-training methods optimize complete reasoning trajectories through Supervised Fine-Tuning (SFT) followed by outcome-based Reinforcement Learning (RL). While effective, a closer examination reveals a fundamental gap: this approach does not align with how humans actually solve problems. Human cognition naturally decomposes problem-solving into two distinct stages: first acquiring abstract strategies (i.e., meta-knowledge) that generalize across problems, then adapting them to specific instances. In contrast, by treating complete trajectories as basic units, current methods are inherently problem-centric, entangling abstract strategies with problem-specific execution. To address this misalignment, we propose a cognitively-inspired framework that explicitly mirrors the two-stage human cognitive process. Specifically, Chain-of-Meta-Thought (CoMT) focuses supervised learning on abstract reasoning patterns without specific executions, enabling acquisition of generalizable strategies. Confidence-Calibrated Reinforcement Learning (CCRL) then optimizes task adaptation via confidence-aware rewards on intermediate steps, preventing overconfident errors from cascading and improving execution reliability. Experiments across four models and eight benchmarks show 2.19\% and 4.63\% improvements in-distribution and out-of-distribution respectively over standard methods, while reducing training time by 65-70% and token consumption by 50%, demonstrating that aligning post-training with human cognitive principles yields not only superior generalization but also enhanced training efficiency.
☆ TraceRouter: Robust Safety for Large Foundation Models via Path-Level Intervention
Despite their capabilities, large foundation models (LFMs) remain susceptible to adversarial manipulation. Current defenses predominantly rely on the "locality hypothesis", suppressing isolated neurons or features. However, harmful semantics act as distributed, cross-layer circuits, rendering such localized interventions brittle and detrimental to utility. To bridge this gap, we propose \textbf{TraceRouter}, a path-level framework that traces and disconnects the causal propagation circuits of illicit semantics. TraceRouter operates in three stages: (1) it pinpoints a sensitive onset layer by analyzing attention divergence; (2) it leverages sparse autoencoders (SAEs) and differential activation analysis to disentangle and isolate malicious features; and (3) it maps these features to downstream causal pathways via feature influence scores (FIS) derived from zero-out interventions. By selectively suppressing these causal chains, TraceRouter physically severs the flow of harmful information while leaving orthogonal computation routes intact. Extensive experiments demonstrate that TraceRouter significantly outperforms state-of-the-art baselines, achieving a superior trade-off between adversarial robustness and general utility. Our code will be publicly released. WARNING: This paper contains unsafe model responses.
☆ Making Models Unmergeable via Scaling-Sensitive Loss Landscape
The rise of model hubs has made it easier to access reusable model components, making model merging a practical tool for combining capabilities. Yet, this modularity also creates a \emph{governance gap}: downstream users can recompose released weights into unauthorized mixtures that bypass safety alignment or licensing terms. Because existing defenses are largely post-hoc and architecture-specific, they provide inconsistent protection across diverse architectures and release formats in practice. To close this gap, we propose \textsc{Trap}$^{2}$, an architecture-agnostic protection framework that encodes protection into the update during fine-tuning, regardless of whether they are released as adapters or full models. Instead of relying on architecture-dependent approaches, \textsc{Trap}$^{2}$ uses weight re-scaling as a simple proxy for the merging process. It keeps released weights effective in standalone use, but degrades them under re-scaling that often arises in merging, undermining unauthorized merging.
comment: Preprint
☆ Learn-to-Distance: Distance Learning for Detecting LLM-Generated Text ICLR2026
Modern large language models (LLMs) such as GPT, Claude, and Gemini have transformed the way we learn, work, and communicate. Yet, their ability to produce highly human-like text raises serious concerns about misinformation and academic integrity, making it an urgent need for reliable algorithms to detect LLM-generated content. In this paper, we start by presenting a geometric approach to demystify rewrite-based detection algorithms, revealing their underlying rationale and demonstrating their generalization ability. Building on this insight, we introduce a novel rewrite-based detection algorithm that adaptively learns the distance between the original and rewritten text. Theoretically, we demonstrate that employing an adaptively learned distance function is more effective for detection than using a fixed distance. Empirically, we conduct extensive experiments with over 100 settings, and find that our approach demonstrates superior performance over baseline algorithms in the majority of scenarios. In particular, it achieves relative improvements from 57.8\% to 80.6\% over the strongest baseline across different target LLMs (e.g., GPT, Claude, and Gemini).
comment: Accepted by ICLR2026
☆ Improving Classifier-Free Guidance of Flow Matching via Manifold Projection
Classifier-free guidance (CFG) is a widely used technique for controllable generation in diffusion and flow-based models. Despite its empirical success, CFG relies on a heuristic linear extrapolation that is often sensitive to the guidance scale. In this work, we provide a principled interpretation of CFG through the lens of optimization. We demonstrate that the velocity field in flow matching corresponds to the gradient of a sequence of smoothed distance functions, which guides latent variables toward the scaled target image set. This perspective reveals that the standard CFG formulation is an approximation of this gradient, where the prediction gap, the discrepancy between conditional and unconditional outputs, governs guidance sensitivity. Leveraging this insight, we reformulate the CFG sampling as a homotopy optimization with a manifold constraint. This formulation necessitates a manifold projection step, which we implement via an incremental gradient descent scheme during sampling. To improve computational efficiency and stability, we further enhance this iterative process with Anderson Acceleration without requiring additional model evaluations. Our proposed methods are training-free and consistently refine generation fidelity, prompt alignment, and robustness to the guidance scale. We validate their effectiveness across diverse benchmarks, demonstrating significant improvements on large-scale models such as DiT-XL-2-256, Flux, and Stable Diffusion 3.5.
comment: 24 pages, 14 figures
☆ astra-langchain4j: Experiences Combining LLMs and Agent Programming
Given the emergence of Generative AI over the last two years and the increasing focus on Agentic AI as a form of Multi-Agent System it is important to explore both how such technologies can impact the use of traditional Agent Toolkits and how the wealth of experience encapsulated in those toolkits can influence the design of the new agentic platforms. This paper presents an overview of our experience developing a prototype large language model (LLM) integration for the ASTRA programming language. It presents a brief overview of the toolkit, followed by three example implementations, concluding with a discussion of the experiences garnered through the examples.
☆ WebArbiter: A Principle-Guided Reasoning Process Reward Model for Web Agents ICLR 2026
Web agents hold great potential for automating complex computer tasks, yet their interactions involve long-horizon, sequential decision-making with irreversible actions. In such settings, outcome-based supervision is sparse and delayed, often rewarding incorrect trajectories and failing to support inference-time scaling. This motivates the use of Process Reward Models (WebPRMs) for web navigation, but existing approaches remain limited: scalar WebPRMs collapse progress into coarse, weakly grounded signals, while checklist-based WebPRMs rely on brittle template matching that fails under layout or semantic changes and often mislabels superficially correct actions as successful, providing little insight or interpretability. To address these challenges, we introduce WebArbiter, a reasoning-first, principle-inducing WebPRM that formulates reward modeling as text generation, producing structured justifications that conclude with a preference verdict and identify the action most conducive to task completion under the current context. Training follows a two-stage pipeline: reasoning distillation equips the model with coherent principle-guided reasoning, and reinforcement learning corrects teacher biases by directly aligning verdicts with correctness, enabling stronger generalization. To support systematic evaluation, we release WebPRMBench, a comprehensive benchmark spanning four diverse web environments with rich tasks and high-quality preference annotations. On WebPRMBench, WebArbiter-7B outperforms the strongest baseline, GPT-5, by 9.1 points. In reward-guided trajectory search on WebArena-Lite, it surpasses the best prior WebPRM by up to 7.2 points, underscoring its robustness and practical value in real-world complex web tasks.
comment: ICLR 2026
☆ MoHETS: Long-term Time Series Forecasting with Mixture-of-Heterogeneous-Experts
Real-world multivariate time series can exhibit intricate multi-scale structures, including global trends, local periodicities, and non-stationary regimes, which makes long-horizon forecasting challenging. Although sparse Mixture-of-Experts (MoE) approaches improve scalability and specialization, they typically rely on homogeneous MLP experts that poorly capture the diverse temporal dynamics of time series data. We address these limitations with MoHETS, an encoder-only Transformer that integrates sparse Mixture-of-Heterogeneous-Experts (MoHE) layers. MoHE routes temporal patches to a small subset of expert networks, combining a shared depthwise-convolution expert for sequence-level continuity with routed Fourier-based experts for patch-level periodic structures. MoHETS further improves robustness to non-stationary dynamics by incorporating exogenous information via cross-attention over covariate patch embeddings. Finally, we replace parameter-heavy linear projection heads with a lightweight convolutional patch decoder, improving parameter efficiency, reducing training instability, and allowing a single model to generalize across arbitrary forecast horizons. We validate across seven multivariate benchmarks and multiple horizons, with MoHETS consistently achieving state-of-the-art performance, reducing the average MSE by $12\%$ compared to strong recent baselines, demonstrating effective heterogeneous specialization for long-term forecasting.
comment: Under review
☆ KnowBias: Mitigating Social Bias in LLMs via Know-Bias Neuron Enhancement
Large language models (LLMs) exhibit social biases that reinforce harmful stereotypes, limiting their safe deployment. Most existing debiasing methods adopt a suppressive paradigm by modifying parameters, prompts, or neurons associated with biased behavior; however, such approaches are often brittle, weakly generalizable, data-inefficient, and prone to degrading general capability. We propose \textbf{KnowBias}, a lightweight and conceptually distinct framework that mitigates bias by strengthening, rather than suppressing, neurons encoding bias-knowledge. KnowBias identifies neurons encoding bias knowledge using a small set of bias-knowledge questions via attribution-based analysis, and selectively enhances them at inference time. This design enables strong debiasing while preserving general capabilities, generalizes across bias types and demographics, and is highly data efficient, requiring only a handful of simple yes/no questions and no retraining. Experiments across multiple benchmarks and LLMs demonstrate consistent state-of-the-art debiasing performance with minimal utility degradation. Data and code are available at https://github.com/JP-25/KnowBias.
☆ Bridging Forecast Accuracy and Inventory KPIs: A Simulation-Based Software Framework
Efficient management of spare parts inventory is crucial in the automotive aftermarket, where demand is highly intermittent and uncertainty drives substantial cost and service risks. Forecasting is therefore central, but the quality of a forecasting model should be judged not by statistical accuracy (e.g., MAE, RMSE, IAE) but rather by its impact on key operational performance indicators (KPIs), such as total cost and service level. Yet most existing work evaluates models exclusively using accuracy metrics, and the relationship between these metrics and operational KPIs remains poorly understood. To address this gap, we propose a decision-centric simulation software framework that enables systematic evaluation of forecasting model in realistic inventory management setting. The framework comprises: (i) a synthetic demand generator tailored to spare-parts demand characteristics, (ii) a flexible forecasting module that can host arbitrary predictive models, and (iii) an inventory control simulator that consumes the forecasts and computes operational KPIs. This closed-loop setup enables researchers to evaluate models not only in terms of statistical error but also in terms of their downstream implications for inventory decisions. Using a wide range of simulation scenarios, we show that improvements in conventional accuracy metrics do not necessarily translate into better operational performance, and that models with similar statistical error profiles can induce markedly different cost-service trade-offs. We analyze these discrepancies to characterize how specific aspects of forecast performance affect inventory outcomes and derive guidance for model selection. Overall, the framework operationalizes the link between demand forecasting and inventory management, shifting evaluation from purely predictive accuracy toward operational relevance in the automotive aftermarket and related domains.
comment: 12 pages, 6 figures
☆ Test-Time Compute Games
Test-time compute has emerged as a promising strategy to enhance the reasoning abilities of large language models (LLMs). However, this strategy has in turn increased how much users pay cloud-based providers offering LLM-as-a-service, since providers charge users for the amount of test-time compute they use to generate an output. In our work, we show that the market of LLM-as-a-service is socially inefficient: providers have a financial incentive to increase the amount of test-time compute, even if this increase contributes little to the quality of the outputs. To address this inefficiency, we introduce a reverse second-price auction mechanism where providers bid their offered price and (expected) quality for the opportunity to serve a user, and users pay proportionally to the marginal value generated by the winning provider relative to the second-highest bidder. To illustrate and complement our theoretical results, we conduct experiments with multiple instruct models from the $\texttt{Llama}$ and $\texttt{Qwen}$ families, as well as reasoning models distilled from $\texttt{DeepSeek-R1}$, on math and science benchmark datasets.
☆ Trustworthy Intelligent Education: A Systematic Perspective on Progress, Challenges, and Future Directions
In recent years, trustworthiness has garnered increasing attention and exploration in the field of intelligent education, due to the inherent sensitivity of educational scenarios, such as involving minors and vulnerable groups, highly personalized learning data, and high-stakes educational outcomes. However, existing research either focuses on task-specific trustworthy methods without a holistic view of trustworthy intelligent education, or provides survey-level discussions that remain high-level and fragmented, lacking a clear and systematic categorization. To address these limitations, in this paper, we present a systematic and structured review of trustworthy intelligent education. Specifically, We first organize intelligent education into five representative task categories: learner ability assessment, learning resource recommendation, learning analytics, educational content understanding, and instructional assistance. Building on this task landscape, we review existing studies from five trustworthiness perspectives, including safety and privacy, robustness, fairness, explainability, and sustainability, and summarize and categorize the research methodologies and solution strategies therein. Finally, we summarize key challenges and discuss future research directions. This survey aims to provide a coherent reference framework and facilitate a clearer understanding of trustworthiness in intelligent education.
comment: 9 pages, 3figures
☆ Looking Beyond Accuracy: A Holistic Benchmark of ECG Foundation Models
The electrocardiogram (ECG) is a cost-effective, highly accessible and widely employed diagnostic tool. With the advent of Foundation Models (FMs), the field of AI-assisted ECG interpretation has begun to evolve, as they enable model reuse across different tasks by relying on embeddings. However, to responsibly employ FMs, it is crucial to rigorously assess to which extent the embeddings they produce are generalizable, particularly in error-sensitive domains such as healthcare. Although prior works have already addressed the problem of benchmarking ECG-expert FMs, they focus predominantly on the evaluation of downstream performance. To fill this gap, this study aims to find an in-depth, comprehensive benchmarking framework for FMs, with a specific focus on ECG-expert ones. To this aim, we introduce a benchmark methodology that complements performance-based evaluation with representation-level analysis, leveraging SHAP and UMAP techniques. Furthermore, we rely on the methodology for carrying out an extensive evaluation of several ECG-expert FMs pretrained via state-of-the-art techniques over different cross-continental datasets and data availability settings; this includes ones featuring data scarcity, a fairly common situation in real-world medical scenarios. Experimental results show that our benchmarking protocol provides a rich insight of ECG-expert FMs' embedded patterns, enabling a deeper understanding of their representational structure and generalizability.
☆ CORE:Toward Ubiquitous 6G Intelligence Through Collaborative Orchestration of Large Language Model Agents Over Hierarchical Edge
Rapid advancements in sixth-generation (6G) networks and large language models (LLMs) have paved the way for ubiquitous intelligence, wherein seamless connectivity and distributed artificial intelligence (AI) have revolutionized various aspects of our lives.However, realizing this vision faces significant challenges owing to the fragmented and heterogeneous computing resources across hierarchical networks, which are insufficient for individual LLM agents to perform complex reasoning tasks.To address this issue, we propose Collaborative Orchestration Role at Edge (CORE), an innovative framework that employs a collaborative learning system in which multiple LLMs, each assigned a distinct functional role, are distributed across mobile devices and tiered edge servers. The system integrates three optimization modules, encompassing real-time perception,dynamic role orchestration, and pipeline-parallel execution, to facilitate efficient and rapid collaboration among distributed agents. Furthermore, we introduce a novel role affinity scheduling algorithm for dynamically orchestrating LLM role assignments across the hierarchical edge infrastructure, intelligently matching computational demands with available dispersed resources.Finally, comprehensive case studies and performance evaluations across various 6G application scenarios demonstrated the efficacy of CORE, revealing significant enhancements in the system efficiency and task completion rates. Building on these promising outcomes, we further validated the practical applicability of CORE by deploying it on a real-world edge-computing platform,that exhibits robust performance in operational environments.
comment: Accepted by IEEE Communications Magazine
☆ Moral Outrage Shapes Commitments Beyond Attention: Multimodal Moral Emotions on YouTube in Korea and the US
Understanding how media rhetoric shapes audience engagement is crucial in the attention economy. This study examines how moral emotional framing by mainstream news channels on YouTube influences user behavior across Korea and the United States. To capture the platform's multimodal nature, combining thumbnail images and video titles, we develop a multimodal moral emotion classifier by fine tuning a vision language model. The model is trained on human annotated multimodal datasets in both languages and applied to approximately 400,000 videos from major news outlets. We analyze engagement levels including views, likes, and comments, representing increasing degrees of commitment. The results show that other condemning rhetoric expressions of moral outrage that criticize others morally consistently increase all forms of engagement across cultures, with effects ranging from passive viewing to active commenting. These findings suggest that moral outrage is a particularly effective emotional strategy, attracting not only attention but also active participation. We discuss concerns about the potential misuse of other condemning rhetoric, as such practices may deepen polarization by reinforcing in group and out group divisions. To facilitate future research and ensure reproducibility, we publicly release our Korean and English multimodal moral emotion classifiers.
comment: Accepted at The Web Conference 2026. We release Korean and English multimodal moral emotion classifiers
☆ A Decomposable Forward Process in Diffusion Models for Time-Series Forecasting ICML'26
We introduce a model-agnostic forward diffusion process for time-series forecasting that decomposes signals into spectral components, preserving structured temporal patterns such as seasonality more effectively than standard diffusion. Unlike prior work that modifies the network architecture or diffuses directly in the frequency domain, our proposed method alters only the diffusion process itself, making it compatible with existing diffusion backbones (e.g., DiffWave, TimeGrad, CSDI). By staging noise injection according to component energy, it maintains high signal-to-noise ratios for dominant frequencies throughout the diffusion trajectory, thereby improving the recoverability of long-term patterns. This strategy enables the model to maintain the signal structure for a longer period in the forward process, leading to improved forecast quality. Across standard forecasting benchmarks, we show that applying spectral decomposition strategies, such as the Fourier or Wavelet transform, consistently improves upon diffusion models using the baseline forward process, with negligible computational overhead. The code for this paper is available at https://anonymous.4open.science/r/D-FDP-4A29.
comment: submitted to ICML'26
☆ A Unified XAI-LLM Approach for EndotrachealSuctioning Activity Recognition
Endotracheal suctioning (ES) is an invasive yet essential clinical procedure that requires a high degree of skill to minimize patient risk - particularly in home care and educational settings, where consistent supervision may be limited. Despite its critical importance, automated recognition and feedback systems for ES training remain underexplored. To address this gap, this study proposes a unified, LLM-centered framework for video-based activity recognition benchmarked against conventional machine learning and deep learning approaches, and a pilot study on feedback generation. Within this framework, the Large Language Model (LLM) serves as the central reasoning module, performing both spatiotemporal activity recognition and explainable decision analysis from video data. Furthermore, the LLM is capable of verbalizing feedback in natural language, thereby translating complex technical insights into accessible, human-understandable guidance for trainees. Experimental results demonstrate that the proposed LLM-based approach outperforms baseline models, achieving an improvement of approximately 15-20\% in both accuracy and F1 score. Beyond recognition, the framework incorporates a pilot student-support module built upon anomaly detection and explainable AI (XAI) principles, which provides automated, interpretable feedback highlighting correct actions and suggesting targeted improvements. Collectively, these contributions establish a scalable, interpretable, and data-driven foundation for advancing nursing education, enhancing training efficiency, and ultimately improving patient safety.
☆ BioAgent Bench: An AI Agent Evaluation Suite for Bioinformatics
This paper introduces BioAgent Bench, a benchmark dataset and an evaluation suite designed for measuring the performance and robustness of AI agents in common bioinformatics tasks. The benchmark contains curated end-to-end tasks (e.g., RNA-seq, variant calling, metagenomics) with prompts that specify concrete output artifacts to support automated assessment, including stress testing under controlled perturbations. We evaluate frontier closed-source and open-weight models across multiple agent harnesses, and use an LLM-based grader to score pipeline progress and outcome validity. We find that frontier agents can complete multi-step bioinformatics pipelines without elaborate custom scaffolding, often producing the requested final artifacts reliably. However, robustness tests reveal failure modes under controlled perturbations (corrupted inputs, decoy files, and prompt bloat), indicating that correct high-level pipeline construction does not guarantee reliable step-level reasoning. Finally, because bioinformatics workflows may involve sensitive patient data, proprietary references, or unpublished IP, closed-source models can be unsuitable under strict privacy constraints; in such settings, open-weight models may be preferable despite lower completion rates. We release the dataset and evaluation suite publicly.
☆ KID: Knowledge-Injected Dual-Head Learning for Knowledge-Grounded Harmful Meme Detection
Internet memes have become pervasive carriers of digital culture on social platforms. However, their heavy reliance on metaphors and sociocultural context also makes them subtle vehicles for harmful content, posing significant challenges for automated content moderation. Existing approaches primarily focus on intra-modal and inter-modal signal analysis, while the understanding of implicit toxicity often depends on background knowledge that is not explicitly present in the meme itself. To address this challenge, we propose KID, a Knowledge-Injected Dual-Head Learning framework for knowledge-grounded harmful meme detection. KID adopts a label-constrained distillation paradigm to decompose complex meme understanding into structured reasoning chains that explicitly link visual evidence, background knowledge, and classification labels. These chains guide the learning process by grounding external knowledge in meme-specific contexts. In addition, KID employs a dual-head architecture that jointly optimizes semantic generation and classification objectives, enabling aligned linguistic reasoning while maintaining stable decision boundaries. Extensive experiments on five multilingual datasets spanning English, Chinese, and low-resource Bengali demonstrate that KID achieves SOTA performance on both binary and multi-label harmful meme detection tasks, improving over previous best methods by 2.1%--19.7% across primary evaluation metrics. Ablation studies further confirm the effectiveness of knowledge injection and dual-head joint learning, highlighting their complementary contributions to robust and generalizable meme understanding. The code and data are available at https://github.com/PotatoDog1669/KID.
☆ Effective LoRA Adapter Routing using Task Representations
Low-rank adaptation (LoRA) enables parameter efficient specialization of large language models (LLMs) through modular adapters, resulting in rapidly growing public adapter pools spanning diverse tasks. Effectively using these adapters requires routing: selecting and composing the appropriate adapters for a query. We introduce LORAUTER, a novel routing framework that selects and composes LoRA adapters using task representations rather than adapter characteristics. Unlike existing approaches that map queries directly to adapters, LORAUTER routes queries via task embeddings derived from small validation sets and does not require adapter training data. By operating at the task level, LORAUTER achieves efficient routing that scales with the number of tasks rather than the number of adapters. Experiments across multiple tasks show that LORAUTER consistently outperforms baseline routing approaches, matching Oracle performance (101.2%) when task-aligned adapters exist and achieving state-of-the-art results on unseen tasks (+5.2 points). We further demonstrate the robustness of LORAUTER to very large, noisy adapter pools by scaling it to over 1500 adapters.
☆ ECSEL: Explainable Classification via Signomial Equation Learning
We introduce ECSEL, an explainable classification method that learns formal expressions in the form of signomial equations, motivated by the observation that many symbolic regression benchmarks admit compact signomial structure. ECSEL directly constructs a structural, closed-form expression that serves as both a classifier and an explanation. On standard symbolic regression benchmarks, our method recovers a larger fraction of target equations than competing state-of-the-art approaches while requiring substantially less computation. Leveraging this efficiency, ECSEL achieves classification accuracy competitive with established machine learning models without sacrificing interpretability. Further, we show that ECSEL satisfies some desirable properties regarding global feature behavior, decision-boundary analysis, and local feature attributions. Experiments on benchmark datasets and two real-world case studies i.e., e-commerce and fraud detection, demonstrate that the learned equations expose dataset biases, support counterfactual reasoning, and yield actionable insights.
☆ Assessing the Business Process Modeling Competences of Large Language Models
The creation of Business Process Model and Notation (BPMN) models is a complex and time-consuming task requiring both domain knowledge and proficiency in modeling conventions. Recent advances in large language models (LLMs) have significantly expanded the possibilities for generating BPMN models directly from natural language, building upon earlier text-to-process methods with enhanced capabilities in handling complex descriptions. However, there is a lack of systematic evaluations of LLM-generated process models. Current efforts either use LLM-as-a-judge approaches or do not consider established dimensions of model quality. To this end, we introduce BEF4LLM, a novel LLM evaluation framework comprising four perspectives: syntactic quality, pragmatic quality, semantic quality, and validity. Using BEF4LLM, we conduct a comprehensive analysis of open-source LLMs and benchmark their performance against human modeling experts. Results indicate that LLMs excel in syntactic and pragmatic quality, while humans outperform in semantic aspects; however, the differences in scores are relatively modest, highlighting LLMs' competitive potential despite challenges in validity and semantic quality. The insights highlight current strengths and limitations of using LLMs for BPMN modeling and guide future model development and fine-tuning. Addressing these areas is essential for advancing the practical deployment of LLMs in business process modeling.
☆ Synthetic-to-Real Domain Bridging for Single-View 3D Reconstruction of Ships for Maritime Monitoring
Three-dimensional (3D) reconstruction of ships is an important part of maritime monitoring, allowing improved visualization, inspection, and decision-making in real-world monitoring environments. However, most state-ofthe-art 3D reconstruction methods require multi-view supervision, annotated 3D ground truth, or are computationally intensive, making them impractical for real-time maritime deployment. In this work, we present an efficient pipeline for single-view 3D reconstruction of real ships by training entirely on synthetic data and requiring only a single view at inference. Our approach uses the Splatter Image network, which represents objects as sparse sets of 3D Gaussians for rapid and accurate reconstruction from single images. The model is first fine-tuned on synthetic ShapeNet vessels and further refined with a diverse custom dataset of 3D ships, bridging the domain gap between synthetic and real-world imagery. We integrate a state-of-the-art segmentation module based on YOLOv8 and custom preprocessing to ensure compatibility with the reconstruction network. Postprocessing steps include real-world scaling, centering, and orientation alignment, followed by georeferenced placement on an interactive web map using AIS metadata and homography-based mapping. Quantitative evaluation on synthetic validation data demonstrates strong reconstruction fidelity, while qualitative results on real maritime images from the ShipSG dataset confirm the potential for transfer to operational maritime settings. The final system provides interactive 3D inspection of real ships without requiring real-world 3D annotations. This pipeline provides an efficient, scalable solution for maritime monitoring and highlights a path toward real-time 3D ship visualization in practical applications. Interactive demo: https://dlr-mi.github.io/ship3d-demo/.
☆ Abstract Concept Modelling in Conceptual Spaces: A Study on Chess Strategies
We present a conceptual space framework for modelling abstract concepts that unfold over time, demonstrated through a chess-based proof-of-concept. Strategy concepts, such as attack or sacrifice, are represented as geometric regions across interpretable quality dimensions, with chess games instantiated and analysed as trajectories whose directional movement toward regions enables recognition of intended strategies. This approach also supports dual-perspective modelling, capturing how players interpret identical situations differently. Our implementation demonstrates the feasibility of trajectory-based concept recognition, with movement patterns aligning with expert commentary. This work explores extending the conceptual spaces theory to temporally realised, goal-directed concepts. The approach establishes a foundation for broader applications involving sequential decision-making and supports integration with knowledge evolution mechanisms for learning and refining abstract concepts over time.
☆ CoFrGeNet: Continued Fraction Architectures for Language Generation
Transformers are arguably the preferred architecture for language generation. In this paper, inspired by continued fractions, we introduce a new function class for generative modeling. The architecture family implementing this function class is named CoFrGeNets - Continued Fraction Generative Networks. We design novel architectural components based on this function class that can replace Multi-head Attention and Feed-Forward Networks in Transformer blocks while requiring much fewer parameters. We derive custom gradient formulations to optimize the proposed components more accurately and efficiently than using standard PyTorch-based gradients. Our components are a plug-in replacement requiring little change in training or inference procedures that have already been put in place for Transformer-based models thus making our approach easy to incorporate in large industrial workflows. We experiment on two very different transformer architectures GPT2-xl (1.5B) and Llama3 (3.2B), where the former we pre-train on OpenWebText and GneissWeb, while the latter we pre-train on the docling data mix which consists of nine different datasets. Results show that the performance on downstream classification, Q\& A, reasoning and text understanding tasks of our models is competitive and sometimes even superior to the original models with $\frac{2}{3}$ to $\frac{1}{2}$ the parameters and shorter pre-training time. We believe that future implementations customized to hardware will further bring out the true potential of our architectures.
☆ Zero-Shot Statistical Downscaling via Diffusion Posterior Sampling
Conventional supervised climate downscaling struggles to generalize to Global Climate Models (GCMs) due to the lack of paired training data and inherent domain gaps relative to reanalysis. Meanwhile, current zero-shot methods suffer from physical inconsistencies and vanishing gradient issues under large scaling factors. We propose Zero-Shot Statistical Downscaling (ZSSD), a zero-shot framework that performs statistical downscaling without paired data during training. ZSSD leverages a Physics-Consistent Climate Prior learned from reanalysis data, conditioned on geophysical boundaries and temporal information to enforce physical validity. Furthermore, to enable robust inference across varying GCMs, we introduce Unified Coordinate Guidance. This strategy addresses the vanishing gradient problem in vanilla DPS and ensures consistency with large-scale fields. Results show that ZSSD significantly outperforms existing zero-shot baselines in 99th percentile errors and successfully reconstructs complex weather events, such as tropical cyclones, across heterogeneous GCMs.
☆ EWSJF: An Adaptive Scheduler with Hybrid Partitioning for Mixed-Workload LLM Inference
Serving Large Language Models (LLMs) under mixed workloads--short, latency-sensitive interactive queries alongside long, throughput-oriented batch requests--poses a fundamental scheduling challenge. Standard First-Come, First-Served (FCFS) policies suffer from severe head-of-line blocking, leading to high tail latency and underutilized hardware. We introduce EWSJF (Effective Workload-based Shortest Job First), an adaptive request-level scheduler that learns workload structure in real time to jointly improve fairness and throughput. EWSJF operates upstream of execution-level schedulers and integrates four components: (1) Refine-and-Prune, an unsupervised partitioning algorithm that discovers performance-homogeneous request groups; (2) Dynamic Queue Routing for assigning requests to these groups; (3) Density-Weighted Scoring, a context-aware prioritization function balancing urgency and fairness; and (4) Bayesian Meta-Optimization, which continuously tunes scoring and partitioning parameters based on live performance feedback. Implemented in vLLM, EWSJF improves end-to-end throughput by over 30% and reduces average Time-To-First-Token for short requests by up to 4x compared to FCFS. These results demonstrate that adaptive, learning-based request scheduling is a critical missing layer for efficient and responsive LLM serving. Implementation available at https://anonymous.4open.science/r/vllm_0110-32D8.
☆ Language-based Trial and Error Falls Behind in the Era of Experience
While Large Language Models (LLMs) excel in language-based agentic tasks, their applicability to unseen, nonlinguistic environments (e.g., symbolic or spatial tasks) remains limited. Previous work attributes this performance gap to the mismatch between the pretraining distribution and the testing distribution. In this work, we demonstrate the primary bottleneck is the prohibitive cost of exploration: mastering these tasks requires extensive trial-and-error, which is computationally unsustainable for parameter-heavy LLMs operating in a high dimensional semantic space. To address this, we propose SCOUT (Sub-Scale Collaboration On Unseen Tasks), a novel framework that decouples exploration from exploitation. We employ lightweight "scouts" (e.g., small MLPs) to probe environmental dynamics at a speed and scale far exceeding LLMs. The collected trajectories are utilized to bootstrap the LLM via Supervised Fine-Tuning (SFT), followed by multi-turn Reinforcement Learning (RL) to activate its latent world knowledge. Empirically, SCOUT enables a Qwen2.5-3B-Instruct model to achieve an average score of 0.86, significantly outperforming proprietary models, including Gemini-2.5-Pro (0.60), while saving about 60% GPU hours consumption.
☆ Temporal Sepsis Modeling: a Fully Interpretable Relational Way
Sepsis remains one of the most complex and heterogeneous syndromes in intensive care, characterized by diverse physiological trajectories and variable responses to treatment. While deep learning models perform well in the early prediction of sepsis, they often lack interpretability and ignore latent patient sub-phenotypes. In this work, we propose a machine learning framework by opening up a new avenue for addressing this issue: a relational approach. Temporal data from electronic medical records (EMRs) are viewed as multivariate patient logs and represented in a relational data schema. Then, a propositionalisation technique (based on classic aggregation/selection functions from the field of relational data) is applied to construct interpretable features to "flatten" the data. Finally, the flattened data is classified using a selective naive Bayesian classifier. Experimental validation demonstrates the relevance of the suggested approach as well as its extreme interpretability. The interpretation is fourfold: univariate, global, local, and counterfactual.
☆ Epistemic Context Learning: Building Trust the Right Way in LLM-Based Multi-Agent Systems
Individual agents in multi-agent (MA) systems often lack robustness, tending to blindly conform to misleading peers. We show this weakness stems from both sycophancy and inadequate ability to evaluate peer reliability. To address this, we first formalize the learning problem of history-aware reference, introducing the historical interactions of peers as additional input, so that agents can estimate peer reliability and learn from trustworthy peers when uncertain. This shifts the task from evaluating peer reasoning quality to estimating peer reliability based on interaction history. We then develop Epistemic Context Learning (ECL): a reasoning framework that conditions predictions on explicitly-built peer profiles from history. We further optimize ECL by reinforcement learning using auxiliary rewards. Our experiments reveal that our ECL enables small models like Qwen 3-4B to outperform a history-agnostic baseline 8x its size (Qwen 3-30B) by accurately identifying reliable peers. ECL also boosts frontier models to near-perfect (100%) performance. We show that ECL generalizes well to various MA configurations and we find that trust is modeled well by LLMs, revealing a strong correlation in trust modeling accuracy and final answer quality.
comment: Codes and data are available at https://github.com/skyriver-2000/epistemic-context-learning
☆ Why Adam Works Better with $β_1 = β_2$: The Missing Gradient Scale Invariance Principle
Adam has been at the core of large-scale training for almost a decade, yet a simple empirical fact remains unaccounted for: both validation scores and the qualitative behaviour of the training runs improve when the momentum parameters satisfy $β_{1}=β_{2}$. Some recent studies have reported this pattern, but there is still no explanation for why this choice helps. We show that this choice is closely tied to a structural property that we refer to as \textit{gradient scale invariance}. We formalize this notion and prove that Adam becomes gradient scale invariant of first order if and only if $β_{1}=β_{2}$. This perspective places the balanced regime of Adam in direct alignment with the design principles underlying several recent optimizers that explicitly enforce scale-robust updates. The theory is supported by experiments across vision and language tasks, and across different architectural families, in which rescaling the gradient has a markedly smoother effect on the update when $β_{1}=β_{2}$. Overall, our results offer a coherent explanation for an open question in the behavior of Adam and provide a simple principle that helps guide the design of future optimizers.
comment: 23 pages, 8 figures. Preprint
☆ From Global to Granular: Revealing IQA Model Performance via Correlation Surface
Evaluation of Image Quality Assessment (IQA) models has long been dominated by global correlation metrics, such as Pearson Linear Correlation Coefficient (PLCC) and Spearman Rank-Order Correlation Coefficient (SRCC). While widely adopted, these metrics reduce performance to a single scalar, failing to capture how ranking consistency varies across the local quality spectrum. For example, two IQA models may achieve identical SRCC values, yet one ranks high-quality images (related to high Mean Opinion Score, MOS) more reliably, while the other better discriminates image pairs with small quality/MOS differences (related to $|Δ$MOS$|$). Such complementary behaviors are invisible under global metrics. Moreover, SRCC and PLCC are sensitive to test-sample quality distributions, yielding unstable comparisons across test sets. To address these limitations, we propose \textbf{Granularity-Modulated Correlation (GMC)}, which provides a structured, fine-grained analysis of IQA performance. GMC includes: (1) a \textbf{Granularity Modulator} that applies Gaussian-weighted correlations conditioned on absolute MOS values and pairwise MOS differences ($|Δ$MOS$|$) to examine local performance variations, and (2) a \textbf{Distribution Regulator} that regularizes correlations to mitigate biases from non-uniform quality distributions. The resulting \textbf{correlation surface} maps correlation values as a joint function of MOS and $|Δ$MOS$|$, providing a 3D representation of IQA performance. Experiments on standard benchmarks show that GMC reveals performance characteristics invisible to scalar metrics, offering a more informative and reliable paradigm for analyzing, comparing, and deploying IQA models. Codes are available at https://github.com/Dniaaa/GMC.
☆ DropoutTS: Sample-Adaptive Dropout for Robust Time Series Forecasting
Deep time series models are vulnerable to noisy data ubiquitous in real-world applications. Existing robustness strategies either prune data or rely on costly prior quantification, failing to balance effectiveness and efficiency. In this paper, we introduce DropoutTS, a model-agnostic plugin that shifts the paradigm from "what" to learn to "how much" to learn. DropoutTS employs a Sample-Adaptive Dropout mechanism: leveraging spectral sparsity to efficiently quantify instance-level noise via reconstruction residuals, it dynamically calibrates model learning capacity by mapping noise to adaptive dropout rates - selectively suppressing spurious fluctuations while preserving fine-grained fidelity. Extensive experiments across diverse noise regimes and open benchmarks show DropoutTS consistently boosts superior backbones' performance, delivering advanced robustness with negligible parameter overhead and no architectural modifications. Our code is available at https://github.com/CityMind-Lab/DropoutTS.
☆ Enhancing Language Models for Robust Greenwashing Detection
Sustainability reports are critical for ESG assessment, yet greenwashing and vague claims often undermine their reliability. Existing NLP models lack robustness to these practices, typically relying on surface-level patterns that generalize poorly. We propose a parameter-efficient framework that structures LLM latent spaces by combining contrastive learning with an ordinal ranking objective to capture graded distinctions between concrete actions and ambiguous claims. Our approach incorporates gated feature modulation to filter disclosure noise and utilizes MetaGradNorm to stabilize multi-objective optimization. Experiments in cross-category settings demonstrate superior robustness over standard baselines while revealing a trade-off between representational rigidity and generalization.
☆ When does predictive inverse dynamics outperform behavior cloning?
Behavior cloning (BC) is a practical offline imitation learning method, but it often fails when expert demonstrations are limited. Recent works have introduced a class of architectures named predictive inverse dynamics models (PIDM) that combine a future state predictor with an inverse dynamics model (IDM). While PIDM often outperforms BC, the reasons behind its benefits remain unclear. In this paper, we provide a theoretical explanation: PIDM introduces a bias-variance tradeoff. While predicting the future state introduces bias, conditioning the IDM on the prediction can significantly reduce variance. We establish conditions on the state predictor bias for PIDM to achieve lower prediction error and higher sample efficiency than BC, with the gap widening when additional data sources are available. We validate the theoretical insights empirically in 2D navigation tasks, where BC requires up to five times (three times on average) more demonstrations than PIDM to reach comparable performance; and in a complex 3D environment in a modern video game with high-dimensional visual inputs and stochastic transitions, where BC requires over 66\% more samples than PIDM.
comment: Preprint
☆ DreamActor-M2: Universal Character Image Animation via Spatiotemporal In-Context Learning
Character image animation aims to synthesize high-fidelity videos by transferring motion from a driving sequence to a static reference image. Despite recent advancements, existing methods suffer from two fundamental challenges: (1) suboptimal motion injection strategies that lead to a trade-off between identity preservation and motion consistency, manifesting as a "see-saw", and (2) an over-reliance on explicit pose priors (e.g., skeletons), which inadequately capture intricate dynamics and hinder generalization to arbitrary, non-humanoid characters. To address these challenges, we present DreamActor-M2, a universal animation framework that reimagines motion conditioning as an in-context learning problem. Our approach follows a two-stage paradigm. First, we bridge the input modality gap by fusing reference appearance and motion cues into a unified latent space, enabling the model to jointly reason about spatial identity and temporal dynamics by leveraging the generative prior of foundational models. Second, we introduce a self-bootstrapped data synthesis pipeline that curates pseudo cross-identity training pairs, facilitating a seamless transition from pose-dependent control to direct, end-to-end RGB-driven animation. This strategy significantly enhances generalization across diverse characters and motion scenarios. To facilitate comprehensive evaluation, we further introduce AW Bench, a versatile benchmark encompassing a wide spectrum of characters types and motion scenarios. Extensive experiments demonstrate that DreamActor-M2 achieves state-of-the-art performance, delivering superior visual fidelity and robust cross-domain generalization. Project Page: https://grisoon.github.io/DreamActor-M2/
☆ E-mem: Multi-agent based Episodic Context Reconstruction for LLM Agent Memory
The evolution of Large Language Model (LLM) agents towards System~2 reasoning, characterized by deliberative, high-precision problem-solving, requires maintaining rigorous logical integrity over extended horizons. However, prevalent memory preprocessing paradigms suffer from destructive de-contextualization. By compressing complex sequential dependencies into pre-defined structures (e.g., embeddings or graphs), these methods sever the contextual integrity essential for deep reasoning. To address this, we propose E-mem, a framework shifting from Memory Preprocessing to Episodic Context Reconstruction. Inspired by biological engrams, E-mem employs a heterogeneous hierarchical architecture where multiple assistant agents maintain uncompressed memory contexts, while a central master agent orchestrates global planning. Unlike passive retrieval, our mechanism empowers assistants to locally reason within activated segments, extracting context-aware evidence before aggregation. Evaluations on the LoCoMo benchmark demonstrate that E-mem achieves over 54\% F1, surpassing the state-of-the-art GAM by 7.75\%, while reducing token cost by over 70\%.
comment: 18 pages
☆ Disentangling perception and reasoning for improving data efficiency in learning cloth manipulation without demonstrations
Cloth manipulation is a ubiquitous task in everyday life, but it remains an open challenge for robotics. The difficulties in developing cloth manipulation policies are attributed to the high-dimensional state space, complex dynamics, and high propensity to self-occlusion exhibited by fabrics. As analytical methods have not been able to provide robust and general manipulation policies, reinforcement learning (RL) is considered a promising approach to these problems. However, to address the large state space and complex dynamics, data-based methods usually rely on large models and long training times. The resulting computational cost significantly hampers the development and adoption of these methods. Additionally, due to the challenge of robust state estimation, garment manipulation policies often adopt an end-to-end learning approach with workspace images as input. While this approach enables a conceptually straightforward sim-to-real transfer via real-world fine-tuning, it also incurs a significant computational cost by training agents on a highly lossy representation of the environment state. This paper questions this common design choice by exploring an efficient and modular approach to RL for cloth manipulation. We show that, through careful design choices, model size and training time can be significantly reduced when learning in simulation. Furthermore, we demonstrate how the resulting simulation-trained model can be transferred to the real world. We evaluate our approach on the SoftGym benchmark and achieve significant performance improvements over available baselines on our task, while using a substantially smaller model.
comment: 6 pages, 4 figures,
☆ TACLer: Tailored Curriculum Reinforcement Learning for Efficient Reasoning
Large Language Models (LLMs) have shown remarkable performance on complex reasoning tasks, especially when equipped with long chain-of-thought (CoT) reasoning. However, eliciting long CoT typically requires large-scale reinforcement learning (RL) training, while often leading to overthinking with redundant intermediate steps. To improve learning and reasoning efficiency, while preserving or even enhancing performance, we propose TACLer, a model-tailored curriculum reinforcement learning framework that gradually increases the complexity of the data based on the model's proficiency in multi-stage RL training. TACLer features two core components: (i) tailored curriculum learning that determines what knowledge the model lacks and needs to learn in progressive stages; (ii) a hybrid Thinking/NoThinking reasoning paradigm that balances accuracy and efficiency by enabling or disabling the Thinking mode. Our experiments show that TACLer yields a twofold advantage in learning and reasoning: (i) it reduces computational cost, cutting training compute by over 50% compared to long thinking models and reducing inference token usage by over 42% relative to the base model; and (ii) it improves accuracy by over 9% on the base model, consistently outperforming state-of-the-art Nothinking and Thinking baselines across four math datasets with complex problems.
☆ FBS: Modeling Native Parallel Reading inside a Transformer
Large language models (LLMs) excel across many tasks, yet inference is still dominated by strictly token-by-token autoregression. Existing acceleration methods largely patch this pipeline and miss core human-reading ingredients: content-adaptive foresight, chunk-structure-aware compute allocation, and train--test consistency for preview/skimming. We propose the \textbf{Fovea-Block-Skip Transformer} (FBS), which injects a causal, trainable loop into Transformers via Parafovea-Attention Window (PAW), Chunk-Head (CH), and Skip-Gate (SG). Across diverse benchmarks, FBS improves the quality-efficiency trade-off without increasing parameters, and ablations show the three modules are complementary.
☆ Toward Culturally Aligned LLMs through Ontology-Guided Multi-Agent Reasoning
Large Language Models (LLMs) increasingly support culturally sensitive decision making, yet often exhibit misalignment due to skewed pretraining data and the absence of structured value representations. Existing methods can steer outputs, but often lack demographic grounding and treat values as independent, unstructured signals, reducing consistency and interpretability. We propose OG-MAR, an Ontology-Guided Multi-Agent Reasoning framework. OG-MAR summarizes respondent-specific values from the World Values Survey (WVS) and constructs a global cultural ontology by eliciting relations over a fixed taxonomy via competency questions. At inference time, it retrieves ontology-consistent relations and demographically similar profiles to instantiate multiple value-persona agents, whose outputs are synthesized by a judgment agent that enforces ontology consistency and demographic proximity. Experiments on regional social-survey benchmarks across four LLM backbones show that OG-MAR improves cultural alignment and robustness over competitive baselines, while producing more transparent reasoning traces.
comment: 35 pages
☆ Curriculum Learning for LLM Pretraining: An Analysis of Learning Dynamics
Curriculum learning changes the order of pre-training data, but it remains unclear whether it changes the learning trajectory or mainly reorders exposure over a fixed trajectory. We train Pythia models (14M-410M parameters) for 300B tokens under three linguistically motivated curricula-Age-of-Acquisition, word frequency, and Verb Variation (VV)-and compare each against Random ordering; at 1B parameters we compare Random and VV. Across orderings, training follows a shared sequence of latent phases, while curricula mainly change within-phase data exposure. In smaller models (up to 160M parameters), Random ordering exhibits higher gradient noise and stronger late-training output-head spectral saturation, alongside lower final accuracy; curricula reduce both effects at matched compute. At larger scales, saturation differences are smaller and curriculum gains shrink. We formalize the link between difficulty pacing and optimization stability in an idealized analysis based on gradient-variance control, and our results point to a practical takeaway: curricula help by stabilizing within-phase optimization rather than by creating new phases.
☆ TCAP: Tri-Component Attention Profiling for Unsupervised Backdoor Detection in MLLM Fine-Tuning
Fine-Tuning-as-a-Service (FTaaS) facilitates the customization of Multimodal Large Language Models (MLLMs) but introduces critical backdoor risks via poisoned data. Existing defenses either rely on supervised signals or fail to generalize across diverse trigger types and modalities. In this work, we uncover a universal backdoor fingerprint-attention allocation divergence-where poisoned samples disrupt the balanced attention distribution across three functional components: system instructions, vision inputs, and user textual queries, regardless of trigger morphology. Motivated by this insight, we propose Tri-Component Attention Profiling (TCAP), an unsupervised defense framework to filter backdoor samples. TCAP decomposes cross-modal attention maps into the three components, identifies trigger-responsive attention heads via Gaussian Mixture Model (GMM) statistical profiling, and isolates poisoned samples through EM-based vote aggregation. Extensive experiments across diverse MLLM architectures and attack methods demonstrate that TCAP achieves consistently strong performance, establishing it as a robust and practical backdoor defense in MLLMs.
☆ XFACTORS: Disentangled Information Bottleneck via Contrastive Supervision
Disentangled representation learning aims to map independent factors of variation to independent representation components. On one hand, purely unsupervised approaches have proven successful on fully disentangled synthetic data, but fail to recover semantic factors from real data without strong inductive biases. On the other hand, supervised approaches are unstable and hard to scale to large attribute sets because they rely on adversarial objectives or auxiliary classifiers. We introduce \textsc{XFactors}, a weakly-supervised VAE framework that disentangles and provides explicit control over a chosen set of factors. Building on the Disentangled Information Bottleneck perspective, we decompose the representation into a residual subspace $\mathcal{S}$ and factor-specific subspaces $\mathcal{T}_1,\ldots,\mathcal{T}_K$ and a residual subspace $\mathcal{S}$. Each target factor is encoded in its assigned $\mathcal{T}_i$ through contrastive supervision: an InfoNCE loss pulls together latents sharing the same factor value and pushes apart mismatched pairs. In parallel, KL regularization imposes a Gaussian structure on both $\mathcal{S}$ and the aggregated factor subspaces, organizing the geometry without additional supervision for non-targeted factors and avoiding adversarial training and classifiers. Across multiple datasets, with constant hyperparameters, \textsc{XFactors} achieves state-of-the-art disentanglement scores and yields consistent qualitative factor alignment in the corresponding subspaces, enabling controlled factor swapping via latent replacement. We further demonstrate that our method scales correctly with increasing latent capacity and evaluate it on the real-world dataset CelebA. Our code is available at \href{https://github.com/ICML26-anon/XFactors}{github.com/ICML26-anon/XFactors}.
♻ ☆ MORPH: PDE Foundation Models with Arbitrary Data Modality
We introduce MORPH, a modality-agnostic, autoregressive foundation model for partial differential equations (PDEs). MORPH is built on a convolutional vision transformer backbone that seamlessly handles heterogeneous spatiotemporal datasets of varying data modality (1D--3D) at different resolutions, and multiple fields with mixed scalar and vector components. The architecture combines (i) component-wise convolution, which jointly processes scalar and vector channels to capture local interactions, (ii) inter-field cross-attention, which models and selectively propagates information between different physical fields, (iii) axial attentions, which factorize full spatiotemporal self-attention along individual spatial and temporal axes to reduce computational burden while retaining expressivity. We pretrain multiple model variants on a diverse collection of heterogeneous PDE datasets and evaluate transfer to a range of downstream prediction tasks. Using both full-model fine-tuning and parameter-efficient low-rank adapters, MORPH outperforms models trained from scratch. Across extensive evaluations, MORPH matches or surpasses strong baselines and recent state-of-the-art models. Collectively, these capabilities present a flexible and powerful backbone for learning from the heterogeneous and multimodal nature of scientific observations, charting a path toward scalable and data-efficient scientific machine learning. The source code, datasets, and models are publicly available at https://github.com/lanl/MORPH.
♻ ☆ "Not in My Backyard": LLMs Uncover Online and Offline Social Biases Against Homelessness
Homelessness is a persistent social challenge, impacting millions worldwide. Over 876,000 people experienced homelessness (PEH) in the U.S. in 2025. Social bias is a significant barrier to alleviation, shaping public perception and influencing policymaking. Given that online textual media and offline city council discourse reflect and influence part of public opinion, it provides valuable insights to identify and track social biases against PEH. We present a new, manually-annotated multi-domain dataset compiled from Reddit, X (formerly Twitter), news articles, and city council meeting minutes across ten U.S. cities. Our 16-category multi-label taxonomy creates a challenging long-tail classification problem: some categories appear in less than 1% of samples, while others exceed 70%. We find that small human-annotated datasets (1,702 samples) are insufficient for training effective classifiers, whether used to fine-tune encoder models or as few-shot examples for LLMs. To address this, we use GPT-4.1 to generate pseudo-labels on a larger unlabeled corpus. Training on this expanded dataset enables even small encoder models (ModernBERT, 150M parameters) to achieve 35.23 macro-F1, approaching GPT-4.1's 41.57. This demonstrates that \textbf{data quantity matters more than model size}, enabling low-cost, privacy-preserving deployment without relying on commercial APIs. Our results reveal that negative bias against PEH is prevalent both offline and online (especially on Reddit), with "not in my backyard" narratives showing the highest engagement. These findings uncover a type of ostracism that directly impacts poverty-reduction policymaking and provide actionable insights for practitioners addressing homelessness.
♻ ☆ Do graph neural network states contain graph properties?
Deep neural networks (DNNs) achieve state-of-the-art performance on many tasks, but this often requires increasingly larger model sizes, which in turn leads to more complex internal representations. Explainability techniques (XAI) have made remarkable progress in the interpretability of ML models. However, the non-euclidean nature of Graph Neural Networks (GNNs) makes it difficult to reuse already existing XAI methods. While other works have focused on instance-based explanation methods for GNNs, very few have investigated model-based methods and, to our knowledge, none have tried to probe the embedding of the GNNs for structural graph properties. In this paper we present a model agnostic explainability pipeline for Graph Neural Networks (GNNs) employing diagnostic classifiers. We propose to consider graph-theoretic properties as the features of choice for studying the emergence of representations in GNNs. This pipeline aims to probe and interpret the learned representations in GNNs across various architectures and datasets, refining our understanding and trust in these models.
comment: 10 pages, 22 figures, conference
♻ ☆ Think Locally, Explain Globally: Graph-Guided LLM Investigations via Local Reasoning and Belief Propagation
LLM agents excel when environments are mostly static and the needed information fits in a model's context window, but they often fail in open-ended investigations where explanations must be constructed by iteratively mining evidence from massive, heterogeneous operational data. These investigations exhibit hidden dependency structure: entities interact, signals co-vary, and the importance of a fact may only become clear after other evidence is discovered. Because the context window is bounded, agents must summarize intermediate findings before their significance is known, increasing the risk of discarding key evidence. ReAct-style agents are especially brittle in this regime. Their retrieve-summarize-reason loop makes conclusions sensitive to exploration order and introduces run-to-run non-determinism, producing a reliability gap where Pass-at-k may be high but Majority-at-k remains low. Simply sampling more rollouts or generating longer reasoning traces does not reliably stabilize results, since hypotheses cannot be autonomously checked as new evidence arrives and there is no explicit mechanism for belief bookkeeping and revision. In addition, ReAct entangles semantic reasoning with controller duties such as tool orchestration and state tracking, so execution errors and plan drift degrade reasoning while consuming scarce context. We address these issues by formulating investigation as abductive reasoning over a dependency graph and proposing EoG (Explanations over Graphs), a disaggregated framework in which an LLM performs bounded local evidence mining and labeling (cause vs symptom) while a deterministic controller manages traversal, state, and belief propagation to compute a minimal explanatory frontier. On a representative ITBench diagnostics task, EoG improves both accuracy and run-to-run consistency over ReAct baselines, including a 7x average gain in Majority-at-k entity F1.
♻ ☆ OD-Stega: LLM-Based Relatively Secure Steganography via Optimized Distributions EACL 2026
We consider coverless steganography where a Large Language Model (LLM) is used to generate stego-texts in combination with arithmetic coding. An efficient method should embed secret bits in as few language tokens as possible while keeping the stego-text as natural as possible. We show that this problem is equivalent to maximizing the entropy of a replacement probability distribution of the next token generation, subject to a constraint on the divergence between the new distribution and the original one produced by the LLM. A closed-form solution is provided under either the KL divergence or the total variation constraint. Several important practical issues are also tackled: 1) An often-overlooked tokenization mismatch issue is resolved with a simple prompt selection approach, 2) The combination of the optimized distribution and the vocabulary truncation technique is considered, and 3) The incorporation of the proposed approach with existing (potentially non arithmetic coding based) techniques, e.g., the Discop technique.
comment: Accepted to EACL 2026
♻ ☆ RobustExplain: Evaluating Robustness of LLM-Based Explanation Agents for Recommendation
Large Language Models (LLMs) are increasingly used to generate natural-language explanations in recommender systems, acting as explanation agents that reason over user behavior histories. While prior work has focused on explanation fluency and relevance under fixed inputs, the robustness of LLM-generated explanations to realistic user behavior noise remains largely unexplored. In real-world web platforms, interaction histories are inherently noisy due to accidental clicks, temporal inconsistencies, missing values, and evolving preferences, raising concerns about explanation stability and user trust. We present RobustExplain, the first systematic evaluation framework for measuring the robustness of LLM-generated recommendation explanations. RobustExplain introduces five realistic user behavior perturbations evaluated across multiple severity levels and a multi-dimensional robustness metric capturing semantic, keyword, structural, and length consistency. Our goal is to establish a principled, task-level evaluation framework and initial robustness baselines, rather than to provide a comprehensive leaderboard across all available LLMs. Experiments on four representative LLMs (7B--70B) show that current models exhibit only moderate robustness, with larger models achieving up to 8% higher stability. Our results establish the first robustness benchmarks for explanation agents and highlight robustness as a critical dimension for trustworthy, agent-driven recommender systems at web scale.
comment: 8 pages, 4 figures
♻ ☆ State-Augmented Graphs for Circular Economy Triage
Circular economy (CE) triage is the assessment of products to determine which sustainable pathway they can follow once they reach the end of their usefulness as they are currently being used. Effective CE triage requires adaptive decisions that balance retained value against the costs and constraints of processing and labour. This paper presents a novel decision-making framework as a simple deterministic solver over a state-augmented Disassembly Sequencing Planning (DSP) graph. By encoding the disassembly history into the state, our framework enforces the Markov property, enabling optimal, recursive evaluation by ensuring each decision only depends on the previous state. The triage decision involves choices between continuing disassembly or committing to a CE option. The model integrates condition-aware utility based on diagnostic health scores and complex operational constraints. We demonstrate the framework's flexibility with a worked example: the hierarchical triage of electric vehicle (EV) batteries, where decisions are driven by the recursive valuation of components. The example illustrates how a unified formalism enables the accommodation of varying mechanical complexity, safety requirements, and economic drivers. This unified formalism therefore provides a tractable and generalisable foundation for optimising CE triage decisions across diverse products and operational contexts.
♻ ☆ Deep Residual Echo State Networks: exploring residual orthogonal connections in untrained Recurrent Neural Networks
Echo State Networks (ESNs) are a particular type of untrained Recurrent Neural Networks (RNNs) within the Reservoir Computing (RC) framework, popular for their fast and efficient learning. However, traditional ESNs often struggle with long-term information processing. In this paper, we introduce a novel class of deep untrained RNNs based on temporal residual connections, called Deep Residual Echo State Networks (DeepResESNs). We show that leveraging a hierarchy of untrained residual recurrent layers significantly boosts memory capacity and long-term temporal modeling. For the temporal residual connections, we consider different orthogonal configurations, including randomly generated and fixed-structure configurations, and we study their effect on network dynamics. A thorough mathematical analysis outlines necessary and sufficient conditions to ensure stable dynamics within DeepResESN. Our experiments on a variety of time series tasks showcase the advantages of the proposed approach over traditional shallow and deep RC.
comment: 10 pages, 5 figures, 4 tables; minor fixes to tables
♻ ☆ LLMs as Orchestrators: Constraint-Compliant Multi-Agent Optimization for Recommendation Systems
Recommendation systems must optimize multiple objectives while satisfying hard business constraints such as fairness and coverage. For example, an e-commerce platform may require every recommendation list to include items from multiple sellers and at least one newly listed product; violating such constraints--even once--is unacceptable in production. Prior work on multi-objective recommendation and recent LLM-based recommender agents largely treat constraints as soft penalties or focus on item scoring and interaction, leading to frequent violations in real-world deployments. How to leverage LLMs for coordinating constrained optimization in recommendation systems remains underexplored. We propose DualAgent-Rec, an LLM-coordinated dual-agent framework for constrained multi-objective e-commerce recommendation. The framework separates optimization into an Exploitation Agent that prioritizes accuracy under hard constraints and an Exploration Agent that promotes diversity through unconstrained Pareto search. An LLM-based coordinator adaptively allocates resources between agents based on optimization progress and constraint satisfaction, while an adaptive epsilon-relaxation mechanism guarantees feasibility of final solutions. Experiments on the Amazon Reviews 2023 dataset demonstrate that DualAgent-Rec achieves 100% constraint satisfaction and improves Pareto hypervolume by 4-6% over strong baselines, while maintaining competitive accuracy-diversity trade-offs. These results indicate that LLMs can act as effective orchestration agents for deployable and constraint-compliant recommendation systems.
comment: 8 pages, 5 figures
♻ ☆ One Model, Any Conjunctive Query: Graph Neural Networks for Answering Queries over Incomplete Knowledge Graphs
Motivated by the incompleteness of modern knowledge graphs, a new setup for query answering has emerged, where the goal is to predict answers that do not necessarily appear in the knowledge graph, but are present in its completion. In this paper, we formally introduce and study two query answering problems, namely, query answer classification and query answer retrieval. To solve these problems, we propose AnyCQ, a model that can classify answers to any conjunctive query on any knowledge graph. At the core of our framework lies a graph neural network trained using a reinforcement learning objective to answer Boolean queries. Trained only on simple, small instances, AnyCQ generalizes to large queries of arbitrary structure, reliably classifying and retrieving answers to queries that existing approaches fail to handle. This is empirically validated through our newly proposed, challenging benchmarks. Finally, we empirically show that AnyCQ can effectively transfer to completely novel knowledge graphs when equipped with an appropriate link prediction model, highlighting its potential for querying incomplete data.
comment: Proceedings of the Fourth Learning on Graphs Conference (LoG 2025)
♻ ☆ Minion: A Technology Probe to Explore How Users Negotiate Harmful Value Conflicts with AI Companions
AI companions are designed to foster emotionally engaging interactions, yet users often encounter conflicts that feel frustrating or hurtful, such as discriminatory statements and controlling behavior. This paper examines how users negotiate such harmful conflicts with AI companions and what emotional and practical burdens are created when mitigation is pushed to user-side tools. We analyze 146 public posts describing harmful value conflicts interacting with AI companions. We then introduce Minion, a Chrome-based technology probe that offers candidate responses spanning persuasion, rational appeals, boundary setting, and appeals to platform rules. Findings from a one-week probe study with 22 experienced users show how participants combine strategies, how emotional attachment motivates repair, and where conflicts become non-negotiable due to companion personas or platform policies. We surface design tensions in supporting value negotiation, showing how companion design can make some conflicts impossible to repair in practice, and derive implications for AI companion and support-tool design that caution against offloading safety work onto users.
comment: 21 pages, 4 figures
♻ ☆ Residual Reservoir Memory Networks IJCNN 2025
We introduce a novel class of untrained Recurrent Neural Networks (RNNs) within the Reservoir Computing (RC) paradigm, called Residual Reservoir Memory Networks (ResRMNs). ResRMN combines a linear memory reservoir with a non-linear reservoir, where the latter is based on residual orthogonal connections along the temporal dimension for enhanced long-term propagation of the input. The resulting reservoir state dynamics are studied through the lens of linear stability analysis, and we investigate diverse configurations for the temporal residual connections. The proposed approach is empirically assessed on time-series and pixel-level 1-D classification tasks. Our experimental results highlight the advantages of the proposed approach over other conventional RC models.
comment: 7 pages, 6 figures, accepted at IJCNN 2025; added IEEE copyright
♻ ☆ SAC-GLAM: Improving Online RL for LLM agents with Soft Actor-Critic and Hindsight Relabeling NeurIPS 2025
The past years have seen Large Language Models (LLMs) strive not only as generative models but also as agents solving textual sequential decision-making tasks. When facing complex environments where their zero-shot abilities are insufficient, recent work showed online Reinforcement Learning (RL) could be used for the LLM agent to discover and learn efficient strategies interactively. However, most prior work sticks to on-policy algorithms, which greatly reduces the scope of methods such agents could use for both exploration and exploitation, such as experience replay and hindsight relabeling. Yet, such methods may be key for LLM learning agents, and in particular when designing autonomous intrinsically motivated agents sampling and pursuing their own goals (i.e. autotelic agents). This paper presents and studies an adaptation of Soft Actor-Critic and hindsight relabeling to LLM agents. Our method not only paves the path towards autotelic LLM agents that learn online but can also outperform on-policy methods in more classic multi-goal RL environments.
comment: This work has been presented at the IMOL workshop at NeurIPS 2025 (https://neurips.cc/virtual/2024/101058)
♻ ☆ MindGrab for BrainChop: Fast and Accurate Skull Stripping for Command Line and Browser
Deployment complexity and specialized hardware requirements hinder the adoption of deep learning models in neuroimaging. We present MindGrab, a lightweight, fully convolutional model for volumetric skull stripping across all imaging modalities. MindGrab's architecture is designed from first principles using a spectral interpretation of dilated convolutions, and demonstrates state-of-the-art performance (mean Dice score across datasets and modalities: 95.9 with SD 1.6), with up to 40-fold speedups and substantially lower memory demands compared to established methods. Its minimal footprint allows for fast, full-volume processing in resource-constrained environments, including direct in-browser execution. MindGrab is delivered via the BrainChop platform as both a simple command-line tool (pip install brainchop) and a zero-installation web application (brainchop.org). By removing traditional deployment barriers without sacrificing accuracy, MindGrab makes state-of-the-art neuroimaging analysis broadly accessible.
comment: 17 pages, 1 table, 5 figures. 2 supplementary tables. Brainchop-cli: https://pypi.org/project/brainchop/ . Brainchop web: https://brainchop.org/
♻ ☆ WorldLLM: Improving LLMs' world modeling using curiosity-driven theory-making
Large Language Models (LLMs) possess general world knowledge but often struggle to generate precise predictions in structured, domain-specific contexts such as simulations. These limitations arise from their inability to ground their broad, unstructured understanding in specific environments. To address this, we present WorldLLM, a framework that enhances LLM-based world modeling by combining Bayesian inference and autonomous active exploration with reinforcement learning. WorldLLM leverages the in-context learning abilities of LLMs to guide an LLM-based world model's predictions using natural language hypotheses given in its prompt. These hypotheses are iteratively refined through a Bayesian inference framework that leverages a second LLM as the proposal distribution given collected evidence. This evidence is collected using a curiosity-driven reinforcement learning policy that explores the environment to find transitions with a low log-likelihood under our LLM-based predictive model using the current hypotheses. By alternating between refining hypotheses and collecting new evidence, our framework autonomously drives continual improvement of the predictions. Our experiments demonstrate the effectiveness of WorldLLM in a textual game environment that requires agents to manipulate and combine objects. The framework not only enhances predictive accuracy, but also generates human-interpretable theories of environment dynamics.
comment: This project's code can be found at https://github.com/flowersteam/WorldLLM. This project was presented at RLDM 2025 (https://rldm.org/)
♻ ☆ Optimizing Multi-Hop Document Retrieval Through Intermediate Representations
Retrieval-augmented generation (RAG) encounters challenges when addressing complex queries, particularly multi-hop questions. While several methods tackle multi-hop queries by iteratively generating internal queries and retrieving external documents, these approaches are computationally expensive. In this paper, we identify a three-stage information processing pattern in LLMs during layer-by-layer reasoning, consisting of extraction, processing, and subsequent extraction steps. This observation suggests that the representations in intermediate layers contain richer information compared to those in other layers. Building on this insight, we propose Layer-wise RAG (L-RAG). Unlike prior methods that focus on generating new internal queries, L-RAG leverages intermediate representations from the middle layers, which capture next-hop information, to retrieve external knowledge. L-RAG achieves performance comparable to multi-step approaches while maintaining inference overhead similar to that of standard RAG. Experimental results show that L-RAG outperforms existing RAG methods on open-domain multi-hop question-answering datasets, including MuSiQue, HotpotQA, and 2WikiMultiHopQA. The code is available in https://github.com/Olive-2019/L-RAG
♻ ☆ Speeding up Local Optimization in Vehicle Routing with Tensor-based GPU Acceleration
Local search plays a central role in many effective heuristic algorithms for the vehicle routing problem (VRP) and its variants. However, neighborhood exploration is known to be computationally expensive and time consuming, especially for large instances or problems with complex constraints. In this study, we explore a promising direction to address this challenge by introducing an original tensor-based GPU acceleration method designed to speed up the commonly used local search operators in vehicle routing. By using an attribute-based representation, the method offers broad extensibility, making it applicable to different VRP variants. Its low-coupling architecture, with intensive computations completely offloaded to the GPU, ensures seamless integration in various local search-based algorithms and frameworks, leading to significant improvements in computational efficiency and potentially improved solution quality. Through comparative experiments on benchmark instances of three routing problems, we demonstrate the substantial computational advantages of the proposed approach over traditional CPU-based implementations. We also provide a detailed analysis of the strengths and limitations of the method, providing valuable insights into its performance characteristics and identifying potential bottlenecks in practical applications. These findings contribute to a better understanding and suggest directions for future improvements.
♻ ☆ MAS-Orchestra: Understanding and Improving Multi-Agent Reasoning Through Holistic Orchestration and Controlled Benchmarks
While multi-agent systems (MAS) promise elevated intelligence through coordination of agents, current approaches to automatic MAS design under-deliver. Such shortcomings stem from two key factors: (1) methodological complexity - agent orchestration is performed using sequential, code-level execution that limits global system-level holistic reasoning and scales poorly with agent complexity - and (2) efficacy uncertainty - MAS are deployed without understanding if there are tangible benefits compared to single-agent systems (SAS). We propose MASOrchestra, a training-time framework that formulates MAS orchestration as a function-calling reinforcement learning problem with holistic orchestration, generating an entire MAS at once. In MAS-Orchestra, complex, goal-oriented subagents are abstracted as callable functions, enabling global reasoning over system structure while hiding internal execution details. To rigorously study when and why MAS are beneficial, we introduce MASBENCH, a controlled benchmark that characterizes tasks along five axes: Depth, Horizon, Breadth, Parallel, and Robustness. Our analysis reveals that MAS gains depend critically on task structure, verification protocols, and the capabilities of both orchestrator and subagents, rather than holding universally. Guided by these insights, MAS-Orchestra achieves consistent improvements on public benchmarks including mathematical reasoning, multi-hop QA, and search-based QA, while achieving more than 10x efficiency over strong baselines. Together, MAS-Orchestra and MASBENCH enable better training and understanding of MAS in the pursuit of multi-agent intelligence.
comment: Preprint; Work in Progress
♻ ☆ Near-Optimal Online Deployment and Routing for Streaming LLMs ICLR 2026
The rapid pace at which new large language models (LLMs) appear, and older ones become obsolete, forces providers to manage a streaming inventory under a strict concurrency cap and per-query cost budgets. We cast this as an online decision problem that couples stage-wise deployment (at fixed maintenance windows) with per-query routing among live models. We introduce StageRoute, a hierarchical algorithm that (i) optimistically selects up to $M_{\max}$ models for the next stage using reward upper-confidence and cost lower-confidence bounds, and (ii) routes each incoming query by solving a budget- and throughput-constrained bandit subproblem over the deployed set. We prove a regret of $\tilde{\mathcal{O}}(T^{2/3})$ with a matching lower bound, establishing near-optimality, and validate the theory empirically: StageRoute tracks a strong oracle under tight budgets across diverse workloads.
comment: ICLR 2026
♻ ☆ Health Facility Location in Ethiopia: Leveraging LLMs to Integrate Expert Knowledge into Algorithmic Planning
Ethiopia's Ministry of Health is upgrading health posts to improve access to essential services, particularly in rural areas. Limited resources, however, require careful prioritization of which facilities to upgrade to maximize population coverage while accounting for diverse expert and stakeholder preferences. In collaboration with the Ethiopian Public Health Institute and Ministry of Health, we propose a hybrid framework that systematically integrates expert knowledge with optimization techniques. Classical optimization methods provide theoretical guarantees but require explicit, quantitative objectives, whereas stakeholder criteria are often articulated in natural language and difficult to formalize. To bridge these domains, we develop the Large language model and Extended Greedy (LEG) framework. Our framework combines a provable approximation algorithm for population coverage optimization with LLM-driven iterative refinement that incorporates human-AI alignment to ensure solutions reflect expert qualitative guidance while preserving coverage guarantees. Experiments on real-world data from three Ethiopian regions demonstrate the framework's effectiveness and its potential to inform equitable, data-driven health system planning.
♻ ☆ Beyond Distributions: Geometric Action Control for Continuous Reinforcement Learning
Gaussian policies have dominated continuous control in deep reinforcement learning (RL), yet they suffer from a fundamental mismatch: their unbounded support requires ad-hoc squashing functions that distort the geometry of bounded action spaces. While von Mises-Fisher (vMF) distributions offer a theoretically grounded alternative on the sphere, their reliance on Bessel functions and rejection sampling hinders practical adoption. We propose \textbf{Geometric Action Control (GAC)}, a novel action generation paradigm that preserves the geometric benefits of spherical distributions while \textit{simplifying computation}. GAC decomposes action generation into a direction vector and a learnable concentration parameter, enabling efficient interpolation between deterministic actions and uniform spherical noise. This design reduces parameter count from \(2d\) to \(d+1\), and avoids the \(O(dk)\) complexity of vMF rejection sampling, achieving simple \(O(d)\) operations. Empirically, GAC consistently matches or exceeds state-of-the-art methods across six MuJoCo benchmarks, achieving 37.6\% improvement over SAC on Ant-v4 and up to 112\% on complex DMControl tasks, demonstrating strong performance across diverse benchmarks. Our ablation studies reveal that both \textbf{spherical normalization} and \textbf{adaptive concentration control} are essential to GAC's success. These findings suggest that robust and efficient continuous control does not require complex distributions, but a principled respect for the geometry of action spaces.
comment: 22 pages, 8 figures
♻ ☆ Position: Agent Should Invoke External Tools ONLY When Epistemically Necessary
As large language models evolve into tool-augmented agents, a central question remains unresolved: when is external tool use actually justified? Existing agent frameworks typically treat tools as ordinary actions and optimize for task success or reward, offering little principled distinction between epistemically necessary interaction and unnecessary delegation. This position paper argues that agents should invoke external tools only when epistemically necessary. Here, epistemic necessity means that a task cannot be completed reliably via the agent's internal reasoning over its current context, without any external interaction. We introduce the Theory of Agent (ToA), a framework that treats agents as making sequential decisions about whether remaining uncertainty should be resolved internally or delegated externally. From this perspective, common agent failure modes (e.g., overthinking and overacting) arise from miscalibrated decisions under uncertainty rather than deficiencies in reasoning or tool execution alone. We further discuss implications for training, evaluation, and agent design, highlighting that unnecessary delegation not only causes inefficiency but can impede the development of internal reasoning capability. Our position provides a normative criterion for tool use that complements existing decision-theoretic models and is essential for building agents that are not only correct, but increasingly intelligent.
♻ ☆ GenOM: Ontology Matching with Description Generation and Large Language Model
Ontology matching (OM) plays an essential role in enabling semantic interoperability and integration across heterogeneous knowledge sources, particularly in the biomedical domain which contains numerous complex concepts related to diseases and pharmaceuticals. This paper introduces GenOM, a large language model (LLM)-based ontology alignment framework, which enriches the semantic representations of ontology concepts via generating textual definitions, retrieves alignment candidates with an embedding model, and incorporates exact matching-based tools to improve precision. Extensive experiments conducted on the OAEI Bio-ML track demonstrate that GenOM can often achieve competitive performance, surpassing many baselines including traditional OM systems and recent LLM-based methods. Further ablation studies confirm the effectiveness of semantic enrichment and few-shot prompting, highlighting the framework's robustness and adaptability.
♻ ☆ SimpleMem: Efficient Lifelong Memory for LLM Agents
To support long-term interaction in complex environments, LLM agents require memory systems that manage historical experiences. Existing approaches either retain full interaction histories via passive context extension, leading to substantial redundancy, or rely on iterative reasoning to filter noise, incurring high token costs. To address this challenge, we introduce SimpleMem, an efficient memory framework based on semantic lossless compression. We propose a three-stage pipeline designed to maximize information density and token utilization: (1) Semantic Structured Compression, which distills unstructured interactions into compact, multi-view indexed memory units; (2) Online Semantic Synthesis, an intra-session process that instantly integrates related context into unified abstract representations to eliminate redundancy; and (3) Intent-Aware Retrieval Planning, which infers search intent to dynamically determine retrieval scope and construct precise context efficiently. Experiments on benchmark datasets show that our method consistently outperforms baseline approaches in accuracy, retrieval efficiency, and inference cost, achieving an average F1 improvement of 26.4% in LoCoMo while reducing inference-time token consumption by up to 30-fold, demonstrating a superior balance between performance and efficiency. Code is available at https://github.com/aiming-lab/SimpleMem.
♻ ☆ d3LLM: Ultra-Fast Diffusion LLM using Pseudo-Trajectory Distillation
Diffusion large language models (dLLMs) offer capabilities beyond those of autoregressive (AR) LLMs, such as parallel decoding and random-order generation. However, realizing these benefits in practice is non-trivial, as dLLMs inherently face an accuracy-parallelism trade-off. Despite increasing interest, existing methods typically focus on only one-side of the coin, targeting either efficiency or performance. To address this limitation, we propose d3LLM (Pseudo-Distilled Diffusion Large Language Model), striking a balance between accuracy and parallelism: (i) during training, we introduce pseudo-trajectory distillation to teach the model which tokens can be decoded confidently at early steps, thereby improving parallelism; (ii) during inference, we employ entropy-based multi-block decoding with a KV-cache refresh mechanism to achieve high parallelism while maintaining accuracy. To better evaluate dLLMs, we also introduce AUP (Accuracy Under Parallelism), a new metric that jointly measures accuracy and parallelism. Experiments demonstrate that our d3LLM achieves up to 10$\times$ speedup over vanilla LLaDA/Dream and 5$\times$ speedup over AR models without much accuracy drop. Our code is available at https://github.com/hao-ai-lab/d3LLM.
♻ ☆ Perturbation-Induced Linearization: Constructing Unlearnable Data with Solely Linear Classifiers ICLR 2026
Collecting web data to train deep models has become increasingly common, raising concerns about unauthorized data usage. To mitigate this issue, unlearnable examples introduce imperceptible perturbations into data, preventing models from learning effectively. However, existing methods typically rely on deep neural networks as surrogate models for perturbation generation, resulting in significant computational costs. In this work, we propose Perturbation-Induced Linearization (PIL), a computationally efficient yet effective method that generates perturbations using only linear surrogate models. PIL achieves comparable or better performance than existing surrogate-based methods while reducing computational time dramatically. We further reveal a key mechanism underlying unlearnable examples: inducing linearization to deep models, which explains why PIL can achieve competitive results in a very short time. Beyond this, we provide an analysis about the property of unlearnable examples under percentage-based partial perturbation. Our work not only provides a practical approach for data protection but also offers insights into what makes unlearnable examples effective.
comment: This paper has been accepted to ICLR 2026
♻ ☆ One Token Is Enough: Improving Diffusion Language Models with a Sink Token
Diffusion Language Models (DLMs) have emerged as a compelling alternative to autoregressive approaches, enabling parallel text generation with competitive performance. Despite these advantages, there is a critical instability in DLMs: the moving sink phenomenon. Our analysis indicates that sink tokens exhibit low-norm representations in the Transformer's value space, and that the moving sink phenomenon serves as a protective mechanism in DLMs to prevent excessive information mixing. However, their unpredictable positions across diffusion steps undermine inference robustness. To resolve this, we propose a simple but effective extra sink token implemented via a modified attention mask. Specifically, we introduce a special token constrained to attend solely to itself, while remaining globally visible to all other tokens. Experimental results demonstrate that introducing a single extra token stabilizes attention sinks, substantially improving model performance. Crucially, further analysis confirms that the effectiveness of this token is independent of its position and characterized by negligible semantic content, validating its role as a robust and dedicated structural sink.
♻ ☆ Reputation as a Solution to Cooperation Collapse in LLM-based MASs AAMAS 2026
Cooperation has long been a fundamental topic in both human society and AI systems. However, recent studies indicate that the collapse of cooperation may emerge in multi-agent systems (MASs) driven by large language models (LLMs). To address this challenge, we explore reputation systems as a remedy. We propose RepuNet, a dynamic, dual-level reputation framework that models both agent-level reputation dynamics and system-level network evolution. Specifically, driven by direct interactions and indirect gossip, agents form reputations for both themselves and their peers, and decide whether to connect or disconnect other agents for future interactions. Through three distinct scenarios, we show that RepuNet effectively avoids cooperation collapse, promoting and sustaining cooperation in LLM-based MASs. Moreover, we find that reputation systems can give rise to rich emergent behaviors in LLM-based MASs, such as the formation of cooperative clusters, the social isolation of exploitative agents, and the preference for sharing positive gossip rather than negative ones. The GitHub repository for our project can be accessed via the following link: https://github.com/RGB-0000FF/RepuNet.
comment: Published as a conference paper at AAMAS 2026
♻ ☆ OAEI-LLM: A Benchmark Dataset for Understanding Large Language Model Hallucinations in Ontology Matching
Hallucinations of large language models (LLMs) commonly occur in domain-specific downstream tasks, with no exception in ontology matching (OM). The prevalence of using LLMs for OM raises the need for benchmarks to better understand LLM hallucinations. The OAEI-LLM dataset is an extended version of the Ontology Alignment Evaluation Initiative (OAEI) datasets that evaluate LLM-specific hallucinations in OM tasks. We outline the methodology used in dataset construction and schema extension, and provide examples of potential use cases.
comment: 5 pages, 1 figure, 1 table, 1 code snippet
♻ ☆ Redefining Neural Operators in $d+1$ Dimensions for Embedding Evolution
Neural Operators (NOs) have emerged as powerful tools for learning mappings between function spaces. Among them, the kernel integral operator has been widely used in universally approximating architectures. Following the original formulation, most advancements focus on designing better parameterizations for the kernel over the original physical domain (with $d$ spatial dimensions, $d\in{1,2,3,\ldots}$). In contrast, embedding evolution remains largely unexplored, which often drives models toward brute-force embedding lengthening to improve approximation, but at the cost of substantially increased computation. In this paper, we introduce an auxiliary dimension that explicitly models embedding evolution in operator form, thereby redefining the NO framework in $d+1$ dimensions (the original $d$ dimensions plus one auxiliary dimension). Under this formulation, we develop a Schrödingerised Kernel Neural Operator (SKNO), which leverages Fourier-based operators to model the $d+1$ dimensional evolution. Across more than ten increasingly challenging benchmarks, ranging from the 1D heat equation to the highly nonlinear 3D Rayleigh-Taylor instability, SKNO consistently outperforms other baselines. We further validate its resolution invariance under mixed-resolution training and super-resolution inference, and evaluate zero-shot generalization to unseen temporal regimes. In addition, we present a broader set of design choices for the lifting and recovery operators, demonstrating their impact on SKNO's predictive performance.
♻ ☆ Semantic Router: On the Feasibility of Hijacking MLLMs via a Single Adversarial Perturbation
Multimodal Large Language Models (MLLMs) are increasingly deployed in stateless systems, such as autonomous driving and robotics. This paper investigates a novel threat: Semantic-Aware Hijacking. We explore the feasibility of hijacking multiple stateless decisions simultaneously using a single universal perturbation. We introduce the Semantic-Aware Universal Perturbation (SAUP), which acts as a semantic router, "actively" perceiving input semantics and routing them to distinct, attacker-defined targets. To achieve this, we conduct theoretical and empirical analysis on the geometric properties in the latent space. Guided by these insights, we propose the Semantic-Oriented (SORT) optimization strategy and annotate a new dataset with fine-grained semantics to evaluate performance. Extensive experiments on three representative MLLMs demonstrate the fundamental feasibility of this attack, achieving a 66% attack success rate over five targets using a single frame against Qwen.
♻ ☆ scDataset: Scalable Data Loading for Deep Learning on Large-Scale Single-Cell Omics
Training deep learning models on single-cell datasets with hundreds of millions of cells requires loading data from disk, as these datasets exceed available memory. While random sampling provides the data diversity needed for effective training, it is prohibitively slow due to the random access pattern overhead, whereas sequential streaming achieves high throughput but introduces biases that degrade model performance. We present scDataset, a PyTorch data loader that enables efficient training from on-disk data with seamless integration across diverse storage formats. Our approach combines block sampling and batched fetching to achieve quasi-random sampling that balances I/O efficiency with minibatch diversity. On Tahoe-100M, a dataset of 100 million cells, scDataset achieves more than two orders of magnitude speedup compared to true random sampling while working directly with AnnData files. We provide theoretical bounds on minibatch diversity and empirically show that scDataset matches the performance of true random sampling across multiple classification tasks.
♻ ☆ SKETCH: Semantic Key-Point Conditioning for Long-Horizon Vessel Trajectory Prediction
Accurate long-horizon vessel trajectory prediction remains challenging due to compounded uncertainty from complex navigation behaviors and environmental factors. Existing methods often struggle to maintain global directional consistency, leading to drifting or implausible trajectories when extrapolated over long time horizons. To address this issue, we propose a semantic-key-point-conditioned trajectory modeling framework, in which future trajectories are predicted by conditioning on a high-level Next Key Point (NKP) that captures navigational intent. This formulation decomposes long-horizon prediction into global semantic decision-making and local motion modeling, effectively restricting the support of future trajectories to semantically feasible subsets. To efficiently estimate the NKP prior from historical observations, we adopt a pretrain-finetune strategy. Extensive experiments on real-world AIS data demonstrate that the proposed method consistently outperforms state-of-the-art approaches, particularly for long travel durations, directional accuracy, and fine-grained trajectory prediction.
♻ ☆ LLM-based Few-Shot Early Rumor Detection with Imitation Agent KDD 2026
Early Rumor Detection (EARD) aims to identify the earliest point at which a claim can be accurately classified based on a sequence of social media posts. This is especially challenging in data-scarce settings. While Large Language Models (LLMs) perform well in few-shot NLP tasks, they are not well-suited for time-series data and are computationally expensive for both training and inference. In this work, we propose a novel EARD framework that combines an autonomous agent and an LLM-based detection model, where the agent acts as a reliable decision-maker for \textit{early time point determination}, while the LLM serves as a powerful \textit{rumor detector}. This approach offers the first solution for few-shot EARD, necessitating only the training of a lightweight agent and allowing the LLM to remain training-free. Extensive experiments on four real-world datasets show our approach boosts performance across LLMs and surpasses existing EARD methods in accuracy and earliness.
comment: Accepted at KDD 2026
♻ ☆ Wikontic: Constructing Wikidata-Aligned, Ontology-Aware Knowledge Graphs with Large Language Models
Knowledge graphs (KGs) provide structured, verifiable grounding for large language models (LLMs), but current LLM-based systems commonly use KGs as auxiliary structures for text retrieval, leaving their intrinsic quality underexplored. In this work, we propose Wikontic, a multi-stage pipeline that constructs KGs from open-domain text by extracting candidate triplets with qualifiers, enforcing Wikidata-based type and relation constraints, and normalizing entities to reduce duplication. The resulting KGs are compact, ontology-consistent, and well-connected; on MuSiQue, the correct answer entity appears in 96% of generated triplets. On HotpotQA, our triplets-only setup achieves 76.0 F1, and on MuSiQue 59.8 F1, matching or surpassing several retrieval-augmented generation baselines that still require textual context. In addition, Wikontic attains state-of-the-art information-retention performance on the MINE-1 benchmark (86%), outperforming prior KG construction methods. Wikontic is also efficient at build time: KG construction uses less than 1,000 output tokens, about 3$\times$ fewer than AriGraph and $<$1/20 of GraphRAG. The proposed pipeline enhances the quality of the generated KG and offers a scalable solution for leveraging structured knowledge in LLMs.
♻ ☆ Dr. Bench: A Multidimensional Evaluation for Deep Research Agents, from Answers to Reports
As an embodiment of intelligence evolution toward interconnected architectures, Deep Research Agents (DRAs) systematically exhibit the capabilities in task decomposition, cross-source retrieval, multi-stage reasoning, information integration, and structured output, which markedly enhance performance on complex and open-ended tasks. However, existing benchmarks remain deficient in evaluation dimensions, response format, and scoring mechanisms, limiting their effectiveness in assessing such agents. This paper introduces Dr. Bench, a multidimensional evaluation framework tailored to DRAs and long-form report-style responses. The benchmark comprises 214 expert-curated challenging tasks across 10 broad domains, each accompanied by manually constructed reference bundles to support composite evaluation. This framework incorporates metrics for semantic quality, topical focus, and retrieval trustworthiness, enabling a comprehensive evaluation of long reports generated by DRAs. Extensive experimentation confirms the superior performance of mainstream DRAs over web-search-tool-augmented reasoning models, yet reveals considerable scope for further improvement. This study provides a robust foundation for capability assessment, architectural refinement, and paradigm advancement of DRAs.
♻ ☆ Rethinking LLM Inference Bottlenecks: Insights from Latent Attention and Mixture-of-Experts
Computational workloads composing traditional transformer models are starkly bifurcated. Multi-Head Attention (MHA) and Grouped-Query Attention are memory-bound due to low arithmetic intensity, while FeedForward Networks are compute-bound. This dichotomy has long motivated research into specialized hardware to mitigate the attention bottleneck. This paper argues that recent architectural advances in transformer models -- Multi-head Latent Attention (MLA) and Mixture of Experts (MoE) -- introduce new dominant bottlenecks, shifting the challenge away from memory-intensive attention. We make two key observations. First, the arithmetic intensity of MLA is over two orders of magnitude higher than that of MHA, moving it toward a compute-bound regime well-matched to modern accelerators such as GPUs. Second, distributing MoE experts across a pool of accelerators allows batching to tune their arithmetic intensity to that of dense layers, producing a more balanced computational profile. Consequently, the focus of hardware and system optimization should shift from attention acceleration to high-bandwidth interconnects and balancing expert workloads across accelerators.
comment: 16 pages, 14 figures
♻ ☆ FreqKV: Key-Value Compression in Frequency Domain for Context Window Extension ICLR 2026
Existing key-value (KV) cache compression methods for large language models (LLMs) often rely on token eviction, which risks losing critical local information in both long prefilling and decoding scenarios. When extrapolating beyond the pretrained context length, their performance degrades sharply on long-context benchmarks. Motivated by the observation in the frequency domain that the context information is concentrated in the low-frequency components, we propose FreqKV, a parameter-free and architecture-agnostic approach. It iteratively compresses the increasing KV cache in the frequency domain, allowing models to process lengthy contexts efficiently. With minimal training at 8K length, FreqKV extends the context window of LLaMA-2-7B up to 256K tokens while maintaining stable perplexity. Extensive experiments across prefilling and decoding demonstrate that FreqKV enables robust context window extension and consistently outperforms existing KV cache compression methods on LLaMA-2 and LLaMA-3, highlighting its effectiveness for both understanding and generation in long contexts.
comment: ICLR 2026
♻ ☆ WL Tests Are Far from All We Need: Revisiting WL-Test Hardness and GNN Expressive Power from a Distributed Computation Perspective
The expressive power of graph neural networks (GNNs) is often studied through their relationship to the Weisfeiler-Lehman (WL) tests. Despite its influence, this perspective leaves two gaps: (i) it is unclear whether WL tests are sufficiently primitive for understanding GNN expressivity, and (ii) WL-induced equivalence does not align well with characterizing the function classes that GNNs can approximate or compute. We attempt to address both gaps. First, we strengthen hardness results for the vanilla WL test, showing that in many settings it is not primitive enough to be implemented by constant-depth GNNs. Second, we propose an alternative framework for studying GNN expressivity based on an extended CONGEST model with an explicit preprocessing phase. Within this framework, we identify implicit shortcuts introduced in prior analyses and establish further results for WL tests in settings where graphs are augmented with virtual nodes and virtual edges.
♻ ☆ Agent-OM: Leveraging LLM Agents for Ontology Matching VLDB 2025
Ontology matching (OM) enables semantic interoperability between different ontologies and resolves their conceptual heterogeneity by aligning related entities. OM systems currently have two prevailing design paradigms: conventional knowledge-based expert systems and newer machine learning-based predictive systems. While large language models (LLMs) and LLM agents have revolutionised data engineering and have been applied creatively in many domains, their potential for OM remains underexplored. This study introduces a novel agent-powered LLM-based design paradigm for OM systems. With consideration of several specific challenges in leveraging LLM agents for OM, we propose a generic framework, namely Agent-OM (Agent for Ontology Matching), consisting of two Siamese agents for retrieval and matching, with a set of OM tools. Our framework is implemented in a proof-of-concept system. Evaluations of three Ontology Alignment Evaluation Initiative (OAEI) tracks over state-of-the-art OM systems show that our system can achieve results very close to the long-standing best performance on simple OM tasks and can significantly improve the performance on complex and few-shot OM tasks.
comment: 31 pages - VLDB 2025 (Page 1-20), OM 2025 (Page 21-31)
♻ ☆ Rotary Position Encodings for Graphs
We study the extent to which rotary position encodings (RoPE), a recent transformer position encoding algorithm broadly adopted in large language models (LLMs) and vision transformers (ViTs), can be applied to graph-structured data. We find that rotating tokens depending on the spectrum of the graph Laplacian efficiently injects structural information into the attention mechanism, boosting performance in synthetic and real-world graph learning tasks. This approach, coined _Wave-Induced Rotary Encodings_ (WIRE), enjoys intriguing theoretical properties: it recovers regular RoPE on grids, and depends asymptotically on the graph effective resistance. Unlike bias-based relative position encodings, WIRE is compatible with linear attention.
♻ ☆ ASAP: Exploiting the Satisficing Generalization Edge in Neural Combinatorial Optimization
Deep Reinforcement Learning (DRL) has emerged as a promising approach for solving Combinatorial Optimization (CO) problems, such as the 3D Bin Packing Problem (3D-BPP), Traveling Salesman Problem (TSP), or Vehicle Routing Problem (VRP), but these neural solvers often exhibit brittleness when facing distribution shifts. To address this issue, we uncover the Satisficing Generalization Edge, which we validate both theoretically and experimentally: identifying a set of promising actions is inherently more generalizable than selecting the single optimal action. To exploit this property, we propose Adaptive Selection After Proposal (ASAP), a generic framework that decomposes the decision-making process into two distinct phases: a proposal policy that acts as a robust filter, and a selection policy as an adaptable decision maker. This architecture enables a highly effective online adaptation strategy where the selection policy can be rapidly fine-tuned on a new distribution. Concretely, we introduce a two-phase training framework enhanced by Model-Agnostic Meta-Learning (MAML) to prime the model for fast adaptation. Extensive experiments on 3D-BPP, TSP, and CVRP demonstrate that ASAP improves the generalization capability of state-of-the-art baselines and achieves superior online adaptation on out-of-distribution instances.
♻ ☆ Bridging Weakly-Supervised Learning and VLM Distillation: Noisy Partial Label Learning for Efficient Downstream Adaptation
In the context of noisy partial label learning (NPLL), each training sample is associated with a set of candidate labels annotated by multiple noisy annotators. With the emergence of high-performance pre-trained vision-language models (VLMs) such as CLIP, LLaVA, and GPT-4V, leveraging these models to replace time-consuming manual annotation and enable annotation-free training has become a promising research direction. This paper studies learning from noisy partial labels generated by pre-trained VLMs and proposes a collaborative consistency regularization (Co-Reg) framework. Unlike symmetric noise commonly assumed in traditional noisy label learning, VLM-generated noise is instance-dependent and reflects the intrinsic biases of pre-trained models, posing greater challenges. To address this issue, we jointly train two neural networks to perform collaborative label purification via a co-pseudo-labeling mechanism, while enforcing consistency regularization in both label and feature representation spaces. In addition, multiple anti-overfitting strategies are introduced, including alternating optimization of contrastive representations and pseudo-labels, as well as maintaining class prototypes in a shared feature space. The proposed method can further incorporate few-shot manually annotated labels for performance enhancement. Extensive experiments under various settings demonstrate the effectiveness of our approach and highlight the potential of integrating weakly supervised learning into the knowledge distillation of pre-trained models.
♻ ☆ PathWise: Planning through World Model for Automated Heuristic Design via Self-Evolving LLMs
Large Language Models (LLMs) have enabled automated heuristic design (AHD) for combinatorial optimization problems (COPs), but existing frameworks' reliance on fixed evolutionary rules and static prompt templates often leads to myopic heuristic generation, redundant evaluations, and limited reasoning about how new heuristics should be derived. We propose a novel multi-agent reasoning framework, referred to as Planning through World Model for Automated Heuristic Design via Self-Evolving LLMs (PathWise), which formulates heuristic generation as a sequential decision process over an entailment graph serving as a compact, stateful memory of the search trajectory. This approach allows the system to carry forward past decisions and reuse or avoid derivation information across generations. A policy agent plans evolutionary actions, a world model agent generates heuristic rollouts conditioned on those actions, and critic agents provide routed reflections summarizing lessons from prior steps, shifting LLM-based AHD from trial-and-error evolution toward state-aware planning through reasoning. Experiments across diverse COPs show that PathWise converges faster to better heuristics, generalizes across different LLM backbones, and scales to larger problem sizes.
♻ ☆ Memento 2: Learning by Stateful Reflective Memory
We present a theoretical study of continual and experiential learning in large language model agents that combine episodic memory with reinforcement learning. We argue that the key mechanism for continual adaptation, without updating model parameters, is reflection: the agent's ability to use past experience to guide future actions. Empirical findings suggest that episodic, experience-driven reflection enables generalised adaptation across a wide range of open-ended, long-horizon tasks. This indicates that efficient learning can occur during deployment and weakens the traditional separation between training and testing. Motivated by this, we introduce the Stateful Reflective Decision Process, a formal model of reflective memory dynamics. In this abstraction, an agent maintains an episodic memory and performs two core operations. Writing stores interaction outcomes and plays the role of policy evaluation. Reading retrieves relevant past cases to inform decisions and plays the role of policy improvement. This perspective treats reflective memory as a control object that can be analysed using classical reinforcement learning tools. We then develop a read-write reflective learning framework by integrating retrieval into soft policy iteration and establish convergence guarantees. We show that as memory grows and provides denser coverage of the state space, the resulting composite policy converges to the optimal solution. Overall, this framework connects practical memory-based methods with principled reinforcement learning, providing a rigorous mathematical basis for building reflective, memory-embedded agents capable of continual general-purpose learning.
comment: 35 pages, four figures
♻ ☆ Robust Filter Attention: Self-Attention as a Parallel State Estimator
We introduce Robust Filter Attention (RFA), an attention mechanism that reformulates self-attention as parallel robust filtering under a latent stochastic differential equation (SDE) prior, where analytically propagated uncertainty defines a time-dependent precision prior over attention weights. This formulation integrates key advantages of existing positional encodings: it preserves RoPE-style rotational structure while achieving long-context stability through explicit modeling of dissipation and diffusion. By imposing isotropic constraints on the dynamics and noise, RFA matches the $O(N^2 d)$ time and $O(N^2 + Nd)$ memory complexity of standard attention. Empirically, we find that uncertainty-aware weighting induces specialization into distinct filtering regimes across heads, improving temporal consistency and extrapolation across varying context lengths.
♻ ☆ Outcome-Based RL Provably Leads Transformers to Reason, but Only With the Right Data
Transformers trained via Reinforcement Learning (RL) with outcome-based supervision can spontaneously develop the ability to generate intermediate reasoning steps (Chain-of-Thought). Yet the mechanism by which sparse rewards drive policy gradient to discover such systematic reasoning remains poorly understood. We address this by analyzing the policy gradient dynamics of single-layer Transformers on a synthetic graph traversal task that cannot be solved without Chain-of-Thought but admits a simple iterative solution. We prove that despite training solely on final-answer correctness, policy gradient drives the Transformer to converge to a structured, interpretable algorithm that iteratively traverses the graph vertex-by-vertex. We characterize the distributional properties required for this emergence, identifying the critical role of "simple examples": instances requiring fewer reasoning steps. When the training distribution places sufficient mass on these simpler examples, the Transformer learns a generalizable traversal strategy that extrapolates to longer chains; when this mass vanishes, policy gradient learning becomes infeasible. We corroborate our theoretical results through experiments on synthetic data and with real-world language models on mathematical reasoning tasks, validating that our theoretical findings carry over to practical settings.
comment: 87 pages, 6 figures
♻ ☆ IBNorm: Information-Bottleneck Inspired Normalization for Representation Learning
Normalization is fundamental to deep learning, but existing approaches such as BatchNorm, LayerNorm, and RMSNorm are variance-centric by enforcing zero mean and unit variance, stabilizing training without controlling how representations capture task-relevant information. We propose IB-Inspired Normalization (IBNorm), a simple yet powerful family of methods grounded in the Information Bottleneck principle. IBNorm introduces bounded compression operations that encourage embeddings to preserve predictive information while suppressing nuisance variability, yielding more informative representations while retaining the stability and compatibility of standard normalization. Theoretically, we prove that IBNorm achieves a higher IB value and tighter generalization bounds than variance-centric methods. Empirically, IBNorm consistently outperforms BatchNorm, LayerNorm, and RMSNorm across large-scale language models (LLaMA, GPT-2) and vision models (ResNet, ViT), with mutual information analysis confirming superior information bottleneck behavior. Code will be released publicly.
♻ ☆ A New Dataset and Framework for Robust Road Surface Classification via Camera-IMU Fusion
Road surface classification (RSC) is a key enabler for environment-aware predictive maintenance systems. However, existing RSC techniques often fail to generalize beyond narrow operational conditions due to limited sensing modalities and datasets that lack environmental diversity. This work addresses these limitations by introducing a multimodal framework that fuses images and inertial measurements using a lightweight bidirectional cross-attention module followed by an adaptive gating layer that adjusts modality contributions under domain shifts. Given the limitations of current benchmarks, especially regarding lack of variability, we introduce ROAD, a new dataset composed of three complementary subsets: (i) real-world multimodal recordings with RGB-IMU streams synchronized using a gold-standard industry datalogger, captured across diverse lighting, weather, and surface conditions; (ii) a large vision-only subset designed to assess robustness under adverse illumination and heterogeneous capture setups; and (iii) a synthetic subset generated to study out-of-distribution generalization in scenarios difficult to obtain in practice. Experiments show that our method achieves a +1.4 pp improvement over the previous state-of-the-art on the PVS benchmark and an +11.6 pp improvement on our multimodal ROAD subset, with consistently higher F1-scores on minority classes. The framework also demonstrates stable performance across challenging visual conditions, including nighttime, heavy rain, and mixed-surface transitions. These findings indicate that combining affordable camera and IMU sensors with multimodal attention mechanisms provides a scalable, robust foundation for road surface understanding, particularly relevant for regions where environmental variability and cost constraints limit the adoption of high-end sensing suites.
♻ ☆ Scaling Offline Model-Based RL via Jointly-Optimized World-Action Model Pretraining ICLR 2025
A significant aspiration of offline reinforcement learning (RL) is to develop a generalist agent with high capabilities from large and heterogeneous datasets. However, prior approaches that scale offline RL either rely heavily on expert trajectories or struggle to generalize to diverse unseen tasks. Inspired by the excellent generalization of world model in conditional video generation, we explore the potential of image observation-based world model for scaling offline RL and enhancing generalization on novel tasks. In this paper, we introduce JOWA: Jointly-Optimized World-Action model, an offline model-based RL agent pretrained on multiple Atari games with 6 billion tokens data to learn general-purpose representation and decision-making ability. Our method jointly optimizes a world-action model through a shared transformer backbone, which stabilize temporal difference learning with large models during pretraining. Moreover, we propose a provably efficient and parallelizable planning algorithm to compensate for the Q-value estimation error and thus search out better policies. Experimental results indicate that our largest agent, with 150 million parameters, achieves 78.9% human-level performance on pretrained games using only 10% subsampled offline data, outperforming existing state-of-the-art large-scale offline RL baselines by 31.6% on averange. Furthermore, JOWA scales favorably with model capacity and can sample-efficiently transfer to novel games using only 5k offline fine-tuning data (approximately 4 trajectories) per game, demonstrating superior generalization. We will release codes and model weights at https://github.com/CJReinforce/JOWA
comment: Accepted by ICLR 2025
♻ ☆ Neural Policy Composition from Free Energy Minimization
The ability to compose acquired skills to plan and execute behaviors is a hallmark of natural intelligence. Yet, despite remarkable cross-disciplinary efforts, a principled account of how task structure shapes gating and how such computations could be delivered in neural circuits, remains elusive. Here we introduce GateMod, an interpretable theoretically grounded computational model linking the emergence of gating to the underlying decision-making task, and to a neural circuit architecture. We first develop GateFrame, a normative framework casting policy gating into the minimization of the free energy. This framework, relating gating rules to task, applies broadly across neuroscience, cognitive and computational sciences. We then derive GateFlow, a continuous-time energy based dynamics that provably converges to GateFrame optimal solution. Convergence, exponential and global, follows from a contractivity property that also yields robustness and other desirable properties. Finally, we derive a neural circuit from GateFlow, GateNet. This is a soft-competitive recurrent circuit whose components perform local and contextual computations consistent with known dendritic and neural processing motifs. We evaluate GateMod across two different settings: collective behaviors in multi-agent systems and human decision-making in multi-armed bandits. In all settings, GateMod provides interpretable mechanistic explanations of gating and quantitatively matches or outperforms established models. GateMod offers a unifying framework for neural policy gating, linking task objectives, dynamical computation, and circuit-level mechanisms. It provides a framework to understand gating in natural agents beyond current explanations and to equip machines with this ability.
♻ ☆ NEAT: Neighborhood-Guided, Efficient, Autoregressive Set Transformer for 3D Molecular Generation
Transformer-based autoregressive models offer a promising alternative to diffusion- and flow-matching approaches for generating 3D molecular structures. However, standard transformer architectures require a sequential ordering of tokens, which is not uniquely defined for the atoms in a molecule. Prior work has addressed this by using canonical atom orderings, but these do not ensure permutation invariance of atoms, which is essential for tasks like prefix completion. We introduce NEAT, a Neighborhood-guided, Efficient, Autoregressive, Set Transformer that treats molecular graphs as sets of atoms and learns an order-agnostic distribution over admissible tokens at the graph boundary. NEAT achieves state-of-the-art performance in autoregressive 3D molecular generation whilst ensuring atom-level permutation invariance by design.
♻ ☆ Two Heads are Better than One: Distilling Large Language Model Features Into Small Models with Feature Decomposition and Mixture AAAI2026
Market making (MM) through Reinforcement Learning (RL) has attracted significant attention in financial trading. With the development of Large Language Models (LLMs), more and more attempts are being made to apply LLMs to financial areas. A simple, direct application of LLM as an agent shows significant performance. Such methods are hindered by their slow inference speed, while most of the current research has not studied LLM distillation for this specific task. To address this, we first propose the normalized fluorescent probe to study the mechanism of the LLM's feature. Based on the observation found by our investigation, we propose Cooperative Market Making (CMM), a novel framework that decouples LLM features across three orthogonal dimensions: layer, task, and data. Various student models collaboratively learn simple LLM features along with different dimensions, with each model responsible for a distinct feature to achieve knowledge distillation. Furthermore, CMM introduces an Hájek-MoE to integrate the output of the student models by investigating the contribution of different models in a kernel function-generated common feature space. Extensive experimental results on four real-world market datasets demonstrate the superiority of CMM over the current distillation method and RL-based market-making strategies.
comment: accepted by AAAI2026
Machine Learning
☆ Discovering Hidden Gems in Model Repositories
Public repositories host millions of fine-tuned models, yet community usage remains disproportionately concentrated on a small number of foundation checkpoints. We investigate whether this concentration reflects efficient market selection or if superior models are systematically overlooked. Through an extensive evaluation of over 2,000 models, we show the prevalence of "hidden gems", unpopular fine-tunes that significantly outperform their popular counterparts. Notably, within the Llama-3.1-8B family, we find rarely downloaded checkpoints that improve math performance from 83.2% to 96.0% without increasing inference costs. However, discovering these models through exhaustive evaluation of every uploaded model is computationally infeasible. We therefore formulate model discovery as a Multi-Armed Bandit problem and accelerate the Sequential Halving search algorithm by using shared query sets and aggressive elimination schedules. Our method retrieves top models with as few as 50 queries per candidate, accelerating discovery by over 50x.
☆ Hybrid Linear Attention Done Right: Efficient Distillation and Effective Architectures for Extremely Long Contexts
Hybrid Transformer architectures, which combine softmax attention blocks and recurrent neural networks (RNNs), have shown a desirable performance-throughput tradeoff for long-context modeling, but their adoption and studies are hindered by the prohibitive cost of large-scale pre-training from scratch. Some recent studies have shown that pre-trained softmax attention blocks can be converted into RNN blocks through parameter transfer and knowledge distillation. However, these transfer methods require substantial amounts of training data (more than 10B tokens), and the resulting hybrid models also exhibit poor long-context performance, which is the scenario where hybrid models enjoy significant inference speedups over Transformer-based models. In this paper, we present HALO (Hybrid Attention via Layer Optimization), a pipeline for distilling Transformer models into RNN-attention hybrid models. We then present HypeNet, a hybrid architecture with superior length generalization enabled by a novel position encoding scheme (named HyPE) and various architectural modifications. We convert the Qwen3 series into HypeNet using HALO, achieving performance comparable to the original Transformer models while enjoying superior long-context performance and efficiency. The conversion requires just 2.3B tokens, less than 0.01% of their pre-training data
comment: 20 pages, 8 figures
☆ Late Breaking Results: Conversion of Neural Networks into Logic Flows for Edge Computing DATE2026
Neural networks have been successfully applied in various resource-constrained edge devices, where usually central processing units (CPUs) instead of graphics processing units exist due to limited power availability. State-of-the-art research still focuses on efficiently executing enormous numbers of multiply-accumulate (MAC) operations. However, CPUs themselves are not good at executing such mathematical operations on a large scale, since they are more suited to execute control flow logic, i.e., computer algorithms. To enhance the computation efficiency of neural networks on CPUs, in this paper, we propose to convert them into logic flows for execution. Specifically, neural networks are first converted into equivalent decision trees, from which decision paths with constant leaves are then selected and compressed into logic flows. Such logic flows consist of if and else structures and a reduced number of MAC operations. Experimental results demonstrate that the latency can be reduced by up to 14.9 % on a simulated RISC-V CPU without any accuracy degradation. The code is open source at https://github.com/TUDa-HWAI/NN2Logic
comment: accepted by DATE2026
☆ FineInstructions: Scaling Synthetic Instructions to Pre-Training Scale
Due to limited supervised training data, large language models (LLMs) are typically pre-trained via a self-supervised "predict the next word" objective on a vast amount of unstructured text data. To make the resulting model useful to users, it is further trained on a far smaller amount of "instruction-tuning" data comprised of supervised training examples of instructions and responses. To overcome the limited amount of supervised data, we propose a procedure that can transform the knowledge in internet-scale pre-training documents into billions of synthetic instruction and answer training pairs. The resulting dataset, called FineInstructions, uses ~18M instruction templates created from real user-written queries and prompts. These instruction templates are matched to and instantiated with human-written source documents from unstructured pre-training corpora. With "supervised" synthetic training data generated at this scale, an LLM can be pre-trained from scratch solely with the instruction-tuning objective, which is far more in-distribution with the expected downstream usage of LLMs (responding to user prompts). We conduct controlled token-for-token training experiments and find pre-training on FineInstructions outperforms standard pre-training and other proposed synthetic pre-training techniques on standard benchmarks measuring free-form response quality. Our resources can be found at https://huggingface.co/fineinstructions .
☆ Routing the Lottery: Adaptive Subnetworks for Heterogeneous Data
In pruning, the Lottery Ticket Hypothesis posits that large networks contain sparse subnetworks, or winning tickets, that can be trained in isolation to match the performance of their dense counterparts. However, most existing approaches assume a single universal winning ticket shared across all inputs, ignoring the inherent heterogeneity of real-world data. In this work, we propose Routing the Lottery (RTL), an adaptive pruning framework that discovers multiple specialized subnetworks, called adaptive tickets, each tailored to a class, semantic cluster, or environmental condition. Across diverse datasets and tasks, RTL consistently outperforms single- and multi-model baselines in balanced accuracy and recall, while using up to 10 times fewer parameters than independent models and exhibiting semantically aligned. Furthermore, we identify subnetwork collapse, a performance drop under aggressive pruning, and introduce a subnetwork similarity score that enables label-free diagnosis of oversparsification. Overall, our results recast pruning as a mechanism for aligning model structure with data heterogeneity, paving the way toward more modular and context-aware deep learning.
☆ PRISM: Distribution-free Adaptive Computation of Matrix Functions for Accelerating Neural Network Training
Matrix functions such as square root, inverse roots, and orthogonalization play a central role in preconditioned gradient methods for neural network training. This has motivated the development of iterative algorithms that avoid explicit eigendecompositions and rely primarily on matrix multiplications, making them well suited for modern GPU accelerators. We present PRISM (Polynomial-fitting and Randomized Iterative Sketching for Matrix functions computation), a general framework for accelerating iterative algorithms for computing matrix functions. PRISM combines adaptive polynomial approximation with randomized sketching: at each iteration, it fits a polynomial surrogate to the current spectrum via a sketched least-squares problem, adapting to the instance at hand with minimal overhead. We apply PRISM to accelerate Newton-Schulz-like iterations for matrix square roots and orthogonalization, which are core primitives in machine learning. Unlike prior methods, PRISM requires no explicit spectral bounds or singular value estimates; and it adapts automatically to the evolving spectrum. Empirically, PRISM accelerates training when integrated into Shampoo and Muon optimizers.
☆ StepShield: When, Not Whether to Intervene on Rogue Agents
Existing agent safety benchmarks report binary accuracy, conflating early intervention with post-mortem analysis. A detector that flags a violation at step 8 enables intervention; one that reports it at step 48 provides only forensic value. This distinction is critical, yet current benchmarks cannot measure it. We introduce StepShield, the first benchmark to evaluate when violations are detected, not just whether. StepShield contains 9,213 code agent trajectories, including 1,278 meticulously annotated training pairs and a 7,935-trajectory test set with a realistic 8.1% rogue rate. Rogue behaviors are grounded in real-world security incidents across six categories. We propose three novel temporal metrics: Early Intervention Rate (EIR), Intervention Gap, and Tokens Saved. Surprisingly, our evaluation reveals that an LLM-based judge achieves 59% EIR while a static analyzer achieves only 26%, a 2.3x performance gap that is entirely invisible to standard accuracy metrics. We further show that early detection has direct economic benefits: our cascaded HybridGuard detector reduces monitoring costs by 75% and projects to $108M in cumulative savings over five years at enterprise scale. By shifting the focus of evaluation from whether to when, StepShield provides a new foundation for building safer and more economically viable AI agents. The code and data are released under an Apache 2.0 license.
comment: 16 pages, 2 figures, 14 tables
☆ Pay for Hints, Not Answers: LLM Shepherding for Cost-Efficient Inference
Large Language Models (LLMs) deliver state-of-the-art performance on complex reasoning tasks, but their inference costs limit deployment at scale. Small Language Models (SLMs) offer dramatic cost savings yet lag substantially in accuracy. Existing approaches - routing and cascading - treat the LLM as an all-or-nothing resource: either the query bypasses the LLM entirely, or the LLM generates a complete response at full cost. We introduce LLM Shepherding, a framework that requests only a short prefix (a hint) from the LLM and provides it to SLM. This simple mechanism is surprisingly effective for math and coding tasks: even hints comprising 10-30% of the full LLM response improve SLM accuracy significantly. Shepherding generalizes both routing and cascading, and it achieves lower cost under oracle decision-making. We develop a two-stage predictor that jointly determines whether a hint is needed and how many tokens to request. On the widely-used mathematical reasoning (GSM8K, CNK12) and code generation (HumanEval, MBPP) benchmarks, Shepherding reduces costs by 42-94% relative to LLM-only inference. Compared to state-of-the-art routing and cascading baselines, shepherding delivers up to 2.8x cost reduction while matching accuracy. To our knowledge, this is the first work to exploit token-level budget control for SLM-LLM collaboration.
☆ SMOG: Scalable Meta-Learning for Multi-Objective Bayesian Optimization
Multi-objective optimization aims to solve problems with competing objectives, often with only black-box access to a problem and a limited budget of measurements. In many applications, historical data from related optimization tasks is available, creating an opportunity for meta-learning to accelerate the optimization. Bayesian optimization, as a promising technique for black-box optimization, has been extended to meta-learning and multi-objective optimization independently, but methods that simultaneously address both settings - meta-learned priors for multi-objective Bayesian optimization - remain largely unexplored. We propose SMOG, a scalable and modular meta-learning model based on a multi-output Gaussian process that explicitly learns correlations between objectives. SMOG builds a structured joint Gaussian process prior across meta- and target tasks and, after conditioning on metadata, yields a closed-form target-task prior augmented by a flexible residual multi-output kernel. This construction propagates metadata uncertainty into the target surrogate in a principled way. SMOG supports hierarchical, parallel training: meta-task Gaussian processes are fit once and then cached, achieving linear scaling with the number of meta-tasks. The resulting surrogate integrates seamlessly with standard multi-objective Bayesian optimization acquisition functions.
comment: 19 pages, 15 figures
☆ SWE-Replay: Efficient Test-Time Scaling for Software Engineering Agents
Test-time scaling has been widely adopted to enhance the capabilities of Large Language Model (LLM) agents in software engineering (SWE) tasks. However, the standard approach of repeatedly sampling trajectories from scratch is computationally expensive. While recent methods have attempted to mitigate costs using specialized value agents, they can suffer from model miscalibration and fail to generalize to modern agents that synthesize custom bash scripts as tools. In this paper, we introduce SWE-Replay, the first efficient and generalizable test-time scaling technique for modern agents without reliance on potentially noisy value estimates. SWE-Replay optimizes the scaling process by recycling trajectories from prior trials, dynamically choosing to either explore from scratch or exploit archived experience by branching at critical intermediate steps. This selection of intermediate steps is driven by the potential and reasoning significance of repository exploration, rather than external LLM-based quality estimates. Our evaluation shows that, on SWE-Bench Verified, SWE-Replay consistently outperforms naive scaling, reducing costs by up to 17.4% while maintaining or even improving performance by up to 3.8%. Further evaluation on SWE-Bench Pro and Multilingual validates the generalizability of SWE-Replay, establishing it as a robust foundation for efficient test-time scaling of software engineering agents.
☆ EditYourself: Audio-Driven Generation and Manipulation of Talking Head Videos with Diffusion Transformers
Current generative video models excel at producing novel content from text and image prompts, but leave a critical gap in editing existing pre-recorded videos, where minor alterations to the spoken script require preserving motion, temporal coherence, speaker identity, and accurate lip synchronization. We introduce EditYourself, a DiT-based framework for audio-driven video-to-video (V2V) editing that enables transcript-based modification of talking head videos, including the seamless addition, removal, and retiming of visually spoken content. Building on a general-purpose video diffusion model, EditYourself augments its V2V capabilities with audio conditioning and region-aware, edit-focused training extensions. This enables precise lip synchronization and temporally coherent restructuring of existing performances via spatiotemporal inpainting, including the synthesis of realistic human motion in newly added segments, while maintaining visual fidelity and identity consistency over long durations. This work represents a foundational step toward generative video models as practical tools for professional video post-production.
comment: Project page: https://edit-yourself.github.io/
☆ Learning Hamiltonian Flow Maps: Mean Flow Consistency for Large-Timestep Molecular Dynamics
Simulating the long-time evolution of Hamiltonian systems is limited by the small timesteps required for stable numerical integration. To overcome this constraint, we introduce a framework to learn Hamiltonian Flow Maps by predicting the mean phase-space evolution over a chosen time span $Δt$, enabling stable large-timestep updates far beyond the stability limits of classical integrators. To this end, we impose a Mean Flow consistency condition for time-averaged Hamiltonian dynamics. Unlike prior approaches, this allows training on independent phase-space samples without access to future states, avoiding expensive trajectory generation. Validated across diverse Hamiltonian systems, our method in particular improves upon molecular dynamics simulations using machine-learned force fields (MLFF). Our models maintain comparable training and inference cost, but support significantly larger integration timesteps while trained directly on widely-available trajectory-free MLFF datasets.
☆ Alpha Discovery via Grammar-Guided Learning and Search
Automatically discovering formulaic alpha factors is a central problem in quantitative finance. Existing methods often ignore syntactic and semantic constraints, relying on exhaustive search over unstructured and unbounded spaces. We present AlphaCFG, a grammar-based framework for defining and discovering alpha factors that are syntactically valid, financially interpretable, and computationally efficient. AlphaCFG uses an alpha-oriented context-free grammar to define a tree-structured, size-controlled search space, and formulates alpha discovery as a tree-structured linguistic Markov decision process, which is then solved using a grammar-aware Monte Carlo Tree Search guided by syntax-sensitive value and policy networks. Experiments on Chinese and U.S. stock market datasets show that AlphaCFG outperforms state-of-the-art baselines in both search efficiency and trading profitability. Beyond trading strategies, AlphaCFG serves as a general framework for symbolic factor discovery and refinement across quantitative finance, including asset pricing and portfolio construction.
comment: 24 pages, 10 figures
☆ Diverse Approaches to Optimal Execution Schedule Generation
We present the first application of MAP-Elites, a quality-diversity algorithm, to trade execution. Rather than searching for a single optimal policy, MAP-Elites generates a diverse portfolio of regime-specialist strategies indexed by liquidity and volatility conditions. Individual specialists achieve 8-10% performance improvements within their behavioural niches, while other cells show degradation, suggesting opportunities for ensemble approaches that combine improved specialists with the baseline PPO policy. Results indicate that quality-diversity methods offer promise for regime-adaptive execution, though substantial computational resources per behavioural cell may be required for robust specialist development across all market conditions. To ensure experimental integrity, we develop a calibrated Gymnasium environment focused on order scheduling rather than tactical placement decisions. The simulator features a transient impact model with exponential decay and square-root volume scaling, fit to 400+ U.S. equities with R^2>0.02 out-of-sample. Within this environment, two Proximal Policy Optimization architectures - both MLP and CNN feature extractors - demonstrate substantial improvements over industry baselines, with the CNN variant achieving 2.13 bps arrival slippage versus 5.23 bps for VWAP on 4,900 out-of-sample orders ($21B notional). These results validate both the simulation realism and provide strong single-policy baselines for quality-diversity methods.
comment: 27 pages, 15 figures, 5 tables
☆ Physics Informed Reconstruction of Four-Dimensional Atmospheric Wind Fields Using Multi-UAS Swarm Observations in a Synthetic Turbulent Environment
Accurate reconstruction of atmospheric wind fields is essential for applications such as weather forecasting, hazard prediction, and wind energy assessment, yet conventional instruments leave spatio-temporal gaps within the lower atmospheric boundary layer. Unmanned aircraft systems (UAS) provide flexible in situ measurements, but individual platforms sample wind only along their flight trajectories, limiting full wind-field recovery. This study presents a framework for reconstructing four-dimensional atmospheric wind fields using measurements obtained from a coordinated UAS swarm. A synthetic turbulence environment and high-fidelity multirotor simulation are used to generate training and evaluation data. Local wind components are estimated from UAS dynamics using a bidirectional long short-term memory network (Bi-LSTM) and assimilated into a physics-informed neural network (PINN) to reconstruct a continuous wind field in space and time. For local wind estimation, the bidirectional LSTM achieves root-mean-square errors (RMSE) of 0.064 and 0.062 m/s for the north and east components in low-wind conditions, increasing to 0.122 to 0.129 m/s under moderate winds and 0.271 to 0.273 m/s in high-wind conditions, while the vertical component exhibits higher error, with RMSE values of 0.029 to 0.091 m/s. The physics-informed reconstruction recovers the dominant spatial and temporal structure of the wind field up to 1000 m altitude while preserving mean flow direction and vertical shear. Under moderate wind conditions, the reconstructed mean wind field achieves an overall RMSE between 0.118 and 0.154 m/s across evaluated UAS configurations, with the lowest error obtained using a five-UAS swarm. These results demonstrate that coordinated UAS measurements enable accurate and scalable four-dimensional wind-field reconstruction without dedicated wind sensors or fixed infrastructure.
☆ Value-Based Pre-Training with Downstream Feedback
Can a small amount of verified goal information steer the expensive self-supervised pretraining of foundation models? Standard pretraining optimizes a fixed proxy objective (e.g., next-token prediction), which can misallocate compute away from downstream capabilities of interest. We introduce V-Pretraining: a value-based, modality-agnostic method for controlled continued pretraining in which a lightweight task designer reshapes the pretraining task to maximize the value of each gradient step. For example, consider self-supervised learning (SSL) with sample augmentation. The V-Pretraining task designer selects pretraining tasks (e.g., augmentations) for which the pretraining loss gradient is aligned with a gradient computed over a downstream task (e.g., image segmentation). This helps steer pretraining towards relevant downstream capabilities. Notably, the pretrained model is never updated on downstream task labels; they are used only to shape the pretraining task. Under matched learner update budgets, V-Pretraining of 0.5B--7B language models improves reasoning (GSM8K test Pass@1) by up to 18% relative over standard next-token prediction using only 12% of GSM8K training examples as feedback. In vision SSL, we improve the state-of-the-art results on ADE20K by up to 1.07 mIoU and reduce NYUv2 RMSE while improving ImageNet linear accuracy, and we provide pilot evidence of improved token efficiency in continued pretraining.
☆ Prior-Informed Flow Matching for Graph Reconstruction
We introduce Prior-Informed Flow Matching (PIFM), a conditional flow model for graph reconstruction. Reconstructing graphs from partial observations remains a key challenge; classical embedding methods often lack global consistency, while modern generative models struggle to incorporate structural priors. PIFM bridges this gap by integrating embedding-based priors with continuous-time flow matching. Grounded in a permutation equivariant version of the distortion-perception theory, our method first uses a prior, such as graphons or GraphSAGE/node2vec, to form an informed initial estimate of the adjacency matrix based on local information. It then applies rectified flow matching to refine this estimate, transporting it toward the true distribution of clean graphs and learning a global coupling. Experiments on different datasets demonstrate that PIFM consistently enhances classical embeddings, outperforming them and state-of-the-art generative baselines in reconstruction accuracy.
☆ ECO: Quantized Training without Full-Precision Master Weights
Quantization has significantly improved the compute and memory efficiency of Large Language Model (LLM) training. However, existing approaches still rely on accumulating their updates in high-precision: concretely, gradient updates must be applied to a high-precision weight buffer, known as $\textit{master weights}$. This buffer introduces substantial memory overhead, particularly for Sparse Mixture of Experts (SMoE) models, where model parameters and optimizer states dominate memory usage. To address this, we introduce the Error-Compensating Optimizer (ECO), which eliminates master weights by applying updates directly to quantized parameters. ECO quantizes weights after each step and carefully injects the resulting quantization error into the optimizer momentum, forming an error-feedback loop with no additional memory. We prove that, under standard assumptions and a decaying learning rate, ECO converges to a constant-radius neighborhood of the optimum, while naive master-weight removal can incur an error that is inversely proportional to the learning rate. We show empirical results for pretraining small Transformers (30-800M), a Gemma-3 1B model, and a 2.1B parameter Sparse MoE model with FP8 quantization, and fine-tuning DeepSeek-MoE-16B in INT4 precision. Throughout, ECO matches baselines with master weights up to near-lossless accuracy, significantly shifting the static memory vs validation loss Pareto frontier.
☆ Boosting CVaR Policy Optimization with Quantile Gradients
Optimizing Conditional Value-at-risk (CVaR) using policy gradient (a.k.a CVaR-PG) faces significant challenges of sample inefficiency. This inefficiency stems from the fact that it focuses on tail-end performance and overlooks many sampled trajectories. We address this problem by augmenting CVaR with an expected quantile term. Quantile optimization admits a dynamic programming formulation that leverages all sampled data, thus improves sample efficiency. This does not alter the CVaR objective since CVaR corresponds to the expectation of quantile over the tail. Empirical results in domains with verifiable risk-averse behavior show that our algorithm within the Markovian policy class substantially improves upon CVaR-PG and consistently outperforms other existing methods.
☆ GeoNorm: Unify Pre-Norm and Post-Norm with Geodesic Optimization
The placement of normalization layers, specifically Pre-Norm and Post-Norm, remains an open question in Transformer architecture design. In this work, we rethink these approaches through the lens of manifold optimization, interpreting the outputs of the Feed-Forward Network (FFN) and attention layers as update directions in optimization. Building on this perspective, we introduce GeoNorm, a novel method that replaces standard normalization with geodesic updates on the manifold. Furthermore, analogous to learning rate schedules, we propose a layer-wise update decay for the FFN and attention components. Comprehensive experiments demonstrate that GeoNorm consistently outperforms existing normalization methods in Transformer models. Crucially, GeoNorm can be seamlessly integrated into standard Transformer architectures, achieving performance improvements with negligible additional computational cost.
comment: Tech Report
☆ Latent Adversarial Regularization for Offline Preference Optimization
Learning from human feedback typically relies on preference optimization that constrains policy updates through token-level regularization. However, preference optimization for language models is particularly challenging because token-space similarity does not imply semantic or behavioral similarity. To address this challenge, we leverage latent-space regularization for language model preference optimization. We introduce GANPO, which achieves latent-space regularization by penalizing divergence between the internal representations of a policy model and a reference model. Given that latent representations are not associated with explicit probability densities, we adopt an adversarial approach inspired by GANs to minimize latent-space divergence. We integrate GANPO as a regularizer into existing offline preference optimization objectives. Experiments across multiple model architectures and tasks show consistent improvements from latent-space regularization. Further, by comparing GANPO-induced inferential biases with those from token-level regularization, we find that GANPO provides more robust structural feedback under distributional shift and noise while maintaining comparable downstream performance with minor computational overhead.
☆ Where Do the Joules Go? Diagnosing Inference Energy Consumption
Energy is now a critical ML computing resource. While measuring energy consumption and observing trends is a valuable first step, accurately understanding and diagnosing why those differences occur is crucial for optimization. To that end, we begin by presenting a large-scale measurement study of inference time and energy across the generative AI landscape with 46 models, 7 tasks, and 1,858 different configurations on NVIDIA H100 and B200 GPUs. Our empirical findings span order-of-magnitude variations: LLM task type can lead to 25$\times$ energy differences, video generation sometimes consumes more than 100$\times$ the energy of images, and GPU utilization differences can result in 3--5$\times$ energy differences. Based on our observations, we present a framework for reasoning about the underlying mechanisms that govern time and energy consumption. The essence is that time and energy are determined by latent metrics like memory and utilization, which are in turn affected by various factors across the algorithm, software, and hardware layers. Our framework also extends directly to throughput per watt, a critical metric for power-constrained datacenters.
comment: The ML.ENERGY Leaderboard v3.0 is open https://ml.energy/leaderboard
☆ Making Foundation Models Probabilistic via Singular Value Ensembles
Foundation models have become a dominant paradigm in machine learning, achieving remarkable performance across diverse tasks through large-scale pretraining. However, these models often yield overconfident, uncalibrated predictions. The standard approach to quantifying epistemic uncertainty, training an ensemble of independent models, incurs prohibitive computational costs that scale linearly with ensemble size, making it impractical for large foundation models. We propose Singular Value Ensemble (SVE), a parameter-efficient implicit ensemble method that builds on a simple, but powerful core assumption: namely, that the singular vectors of the weight matrices constitute meaningful subspaces of the model's knowledge. Pretrained foundation models encode rich, transferable information in their weight matrices. If the singular vectors are indeed meaningful (orthogonal) "knowledge directions". To obtain a model ensemble, we modulate only how strongly each direction contributes to the output. Rather than learning entirely new parameters, we freeze the singular vectors and only train per-member singular values that rescale the contribution of each direction in that shared knowledge basis. Ensemble diversity emerges naturally as stochastic initialization and random sampling of mini-batches during joint training cause different members to converge to different combinations of the same underlying knowledge. SVE achieves uncertainty quantification comparable to explicit deep ensembles while increasing the parameter count of the base model by less than 1%, making principled uncertainty estimation accessible in resource-constrained settings. We validate SVE on NLP and vision tasks with various different backbones and show that it improves calibration while maintaining predictive accuracy.
☆ Learning to Communicate Across Modalities: Perceptual Heterogeneity in Multi-Agent Systems
Emergent communication offers insight into how agents develop shared structured representations, yet most research assumes homogeneous modalities or aligned representational spaces, overlooking the perceptual heterogeneity of real-world settings. We study a heterogeneous multi-step binary communication game where agents differ in modality and lack perceptual grounding. Despite perceptual misalignment, multimodal systems converge to class-consistent messages grounded in perceptual input. Unimodal systems communicate more efficiently, using fewer bits and achieving lower classification entropy, while multimodal agents require greater information exchange and exhibit higher uncertainty. Bit perturbation experiments provide strong evidence that meaning is encoded in a distributional rather than compositional manner, as each bit's contribution depends on its surrounding pattern. Finally, interoperability analyses show that systems trained in different perceptual worlds fail to directly communicate, but limited fine-tuning enables successful cross-system communication. This work positions emergent communication as a framework for studying how agents adapt and transfer representations across heterogeneous modalities, opening new directions for both theory and experimentation.
comment: To be published in EvoLang XVI proceedings. 15 pages, 17 figures
☆ A Separable Architecture for Continuous Token Representation in Language Models
Transformer scaling law analyses typically treat parameters as interchangeable; an abstraction that accurately predicts loss-compute relationships. Yet, in sub-billion-parameter small language models (SLMs), embedding matrices dominate the parameter budget. This work argues that this allocation is as suboptimal as it is counterintuitive. Leviathan is an architecture with a continuous embedding generator to replace the discrete lookup tables of canonical models. Evaluating on the Pile dataset under isoparametric settings, Leviathan consistently outperforms a standard, LLaMA-style architecture. By means of an empirical power-law fit, Leviathan exhibits a markedly superior effective parameter capacity. Across the regime studied, Leviathan behaves as a dense model with $1.47$ to $2.11 \times$ more parameters.
☆ Optimizing Agentic Workflows using Meta-tools
Agentic AI enables LLM to dynamically reason, plan, and interact with tools to solve complex tasks. However, agentic workflows often require many iterative reasoning steps and tool invocations, leading to significant operational expense, end-to-end latency and failures due to hallucinations. This work introduces Agent Workflow Optimization (AWO), a framework that identifies and optimizes redundant tool execution patterns to improve the efficiency and robustness of agentic workflows. AWO analyzes existing workflow traces to discover recurring sequences of tool calls and transforms them into meta-tools, which are deterministic, composite tools that bundle multiple agent actions into a single invocation. Meta-tools bypass unnecessary intermediate LLM reasoning steps and reduce operational cost while also shortening execution paths, leading to fewer failures. Experiments on two agentic AI benchmarks show that AWO reduces the number of LLM calls up to 11.9% while also increasing the task success rate by up to 4.2 percent points.
☆ Cross-Fusion Distance: A Novel Metric for Measuring Fusion and Separability Between Data Groups in Representation Space
Quantifying degrees of fusion and separability between data groups in representation space is a fundamental problem in representation learning, particularly under domain shift. A meaningful metric should capture fusion-altering factors like geometric displacement between representation groups, whose variations change the extent of fusion, while remaining invariant to fusion-preserving factors such as global scaling and sampling-induced layout changes, whose variations do not. Existing distributional distance metrics conflate these factors, leading to measures that are not informative of the true extent of fusion between data groups. We introduce Cross-Fusion Distance (CFD), a principled measure that isolates fusion-altering geometry while remaining robust to fusion-preserving variations, with linear computational complexity. We characterize the invariance and sensitivity properties of CFD theoretically and validate them in controlled synthetic experiments. For practical utility on real-world datasets with domain shift, CFD aligns more closely with downstream generalization degradation than commonly used alternatives. Overall, CFD provides a theoretically grounded and interpretable distance measure for representation learning.
comment: 19 pages
☆ Holographic generative flows with AdS/CFT
We present a framework for generative machine learning that leverages the holographic principle of quantum gravity, or to be more precise its manifestation as the anti-de Sitter/conformal field theory (AdS/CFT) correspondence, with techniques for deep learning and transport theory. Our proposal is to represent the flow of data from a base distribution to some learned distribution using the bulk-to-boundary mapping of scalar fields in AdS. In the language of machine learning, we are representing and augmenting the flow-matching algorithm with AdS physics. Using a checkerboard toy dataset and MNIST, we find that our model achieves faster and higher quality convergence than comparable physics-free flow-matching models. Our method provides a physically interpretable version of flow matching. More broadly, it establishes the utility of AdS physics and geometry in the development of novel paradigms in generative modeling.
comment: v1: 13 pages, 6 figures
☆ Per-parameter Task Arithmetic for Unlearning in Large Language Models
In large language model (LLM) unlearning, private information is required to be removed. Task arithmetic unlearns by subtracting a specific task vector (TV)--defined as the parameter difference between a privacy-information-tuned model and the original model. While efficient, it can cause over-forgetting by disrupting parameters essential for retaining other information. Motivated by the observation that each parameter exhibits different importance for forgetting versus retention, we propose a per-parameter task arithmetic (PerTA) mechanism to rescale the TV, allowing per-parameter adjustment. These weights quantify the relative importance of each parameter for forgetting versus retention, estimated via gradients (i.e., PerTA-grad) or the diagonal Fisher information approximation (i.e., PerTA-fisher). Moreover, we discuss the effectiveness of PerTA, extend it to a more general form, and provide further analysis. Extensive experiments demonstrate that PerTA consistently improves upon standard TV, and in many cases surpasses widely used training-based unlearning methods in both forgetting effectiveness and overall model utility. By retaining the efficiency of task arithmetic while mitigating over-forgetting, PerTA offers a principled and practical framework for LLM unlearning.
☆ The Ensemble Inverse Problem: Applications and Methods
We introduce a new multivariate statistical problem that we refer to as the Ensemble Inverse Problem (EIP). The aim of EIP is to invert for an ensemble that is distributed according to the pushforward of a prior under a forward process. In high energy physics (HEP), this is related to a widely known problem called unfolding, which aims to reconstruct the true physics distribution of quantities, such as momentum and angle, from measurements that are distorted by detector effects. In recent applications, the EIP also arises in full waveform inversion (FWI) and inverse imaging with unknown priors. We propose non-iterative inference-time methods that construct posterior samplers based on a new class of conditional generative models, which we call ensemble inverse generative models. For the posterior modeling, these models additionally use the ensemble information contained in the observation set on top of single measurements. Unlike existing methods, our proposed methods avoid explicit and iterative use of the forward model at inference time via training across several sets of truth-observation pairs that are consistent with the same forward model, but originate from a wide range of priors. We demonstrate that this training procedure implicitly encodes the likelihood model. The use of ensemble information helps posterior inference and enables generalization to unseen priors. We benchmark the proposed method on several synthetic and real datasets in inverse imaging, HEP, and FWI. The codes are available at https://github.com/ZhengyanHuan/The-Ensemble-Inverse-Problem--Applications-and-Methods.
comment: 26 pages, 11 figures, in peer review
☆ From Logits to Latents: Contrastive Representation Shaping for LLM Unlearning
Most LLM unlearning methods aim to approximate retrain-from-scratch behaviors with minimal distribution shift, often via alignment-style objectives defined in the prediction space. While effective at reducing forgotten content generation, such approaches may act as suppression: forgotten concepts can persist in representations and remain entangled with retained knowledge. We introduce CLReg, a contrastive representation regularizer that identifies forget features while pushing them away from retain features, explicitly reducing forget-retain interference with minimal shifts on retain features. We provide first theoretical insights that relate representation shaping to entanglement reduction. Across unlearning benchmarks and LLMs of different sizes, CLReg decreases forget-retain representation entanglement that facilitates mainstream unlearning methods without positing extra privacy risks, inspiring future work that reshapes the representation space to remove forget concepts.
☆ Visual-Guided Key-Token Regularization for Multimodal Large Language Model Unlearning
Unlearning in Multimodal Large Language Models (MLLMs) prevents the model from revealing private information when queried about target images. Existing MLLM unlearning methods largely adopt approaches developed for LLMs. They treat all answer tokens uniformly, disregarding their varying importance in the unlearning process. Moreover, these methods focus exclusively on the language modality, disregarding visual cues that indicate key tokens in answers. In this paper, after formulating the problem of unlearning in multimodal question answering for MLLMs, we propose Visual-Guided Key-Token Regularization (ViKeR). We leverage irrelevant visual inputs to predict ideal post-unlearning token-level distributions and use these distributions to regularize the unlearning process, thereby prioritizing key tokens. Further, we define key tokens in unlearning via information entropy and discuss ViKeR's effectiveness through token-level gradient reweighting, which amplifies updates on key tokens. Experiments on MLLMU and CLEAR benchmarks demonstrate that our method effectively performs unlearning while mitigating forgetting and maintaining response coherence.
☆ TBDFiltering: Sample-Efficient Tree-Based Data Filtering
The quality of machine learning models depends heavily on their training data. Selecting high-quality, diverse training sets for large language models (LLMs) is a difficult task, due to the lack of cheap and reliable quality metrics. While querying existing LLMs for document quality is common, this is not scalable to the large number (billions) of documents used in training. Instead, practitioners often use classifiers trained on sparse quality signals. In this paper, we propose a text-embedding-based hierarchical clustering approach that adaptively selects the documents to be evaluated by the LLM to estimate cluster quality. We prove that our method is query efficient: under the assumption that the hierarchical clustering contains a subtree such that each leaf cluster in the tree is pure enough (i.e., it mostly contains either only good or only bad documents), with high probability, the method can correctly predict the quality of each document after querying a small number of documents. The number of such documents is proportional to the size of the smallest subtree with (almost) pure leaves, without the algorithm knowing this subtree in advance. Furthermore, in a comprehensive experimental study, we demonstrate the benefits of our algorithm compared to other classifier-based filtering methods.
☆ Putting a Face to Forgetting: Continual Learning meets Mechanistic Interpretability
Catastrophic forgetting in continual learning is often measured at the performance or last-layer representation level, overlooking the underlying mechanisms. We introduce a mechanistic framework that offers a geometric interpretation of catastrophic forgetting as the result of transformations to the encoding of individual features. These transformations can lead to forgetting by reducing the allocated capacity of features (worse representation) and disrupting their readout by downstream computations. Analysis of a tractable model formalizes this view, allowing us to identify best- and worst-case scenarios. Through experiments on this model, we empirically test our formal analysis and highlight the detrimental effect of depth. Finally, we demonstrate how our framework can be used in the analysis of practical models through the use of Crosscoders. We present a case study of a Vision Transformer trained on sequential CIFAR-10. Our work provides a new, feature-centric vocabulary for continual learning.
☆ Exploring Diverse Generation Paths via Inference-time Stiefel Activation Steering ICLR 2026
Language models often default to a narrow set of high-probability outputs, leaving their generation paths homogeneous and prone to mode collapse. Sampling-based strategies inject randomness but still struggle to guarantee diversity across multiple concurrent generation runs. We address this limitation by introducing STARS ($\textbf{St}$iefel-based $\textbf{A}$ctivation Steering for Diverse $\textbf{R}$ea$\textbf{S}$oning), a training-free, inference-time intervention method that transforms activation steering into an exploration engine. At each token, STARS collects the hidden activations of concurrent generation runs and optimizes multiple additive steering directions jointly on the Stiefel manifold. STARS maximizes the geometric volume of the steered activations, while the Stiefel manifold induces orthogonality of the steering interventions. This formulation explicitly promotes divergent activation vectors of concurrent generation runs, and implicitly promotes divergent generation trajectories. This manifold optimization formulation can be solved using a Riemannian gradient descent algorithm with convergence guarantees, but this algorithm is too time-consuming for real-time inference. To guarantee low latency, we further design a lightweight one-step update with an aggressive, closed-form stepsize. For test case generation and scientific discovery benchmarks, STARS consistently outperforms standard sampling methods, achieving greater diversity without sacrificing qualitative performance.
comment: 34 pages, 2 figures. Accepted for publication at ICLR 2026
☆ MEIDNet: Multimodal generative AI framework for inverse materials design
In this work, we present Multimodal Equivariant Inverse Design Network (MEIDNet), a framework that jointly learns structural information and materials properties through contrastive learning, while encoding structures via an equivariant graph neural network (EGNN). By combining generative inverse design with multimodal learning, our approach accelerates the exploration of chemical-structural space and facilitates the discovery of materials that satisfy predefined property targets. MEIDNet exhibits strong latent-space alignment with cosine similarity 0.96 by fusion of three modalities through cross-modal learning. Through implementation of curriculum learning strategies, MEIDNet achieves ~60 times higher learning efficiency than conventional training techniques. The potential of our multimodal approach is demonstrated by generating low-bandgap perovskite structures at a stable, unique, and novel (SUN) rate of 13.6 %, which are further validated by ab initio methods. Our inverse design framework demonstrates both scalability and adaptability, paving the way for the universal learning of chemical space across diverse modalities.
☆ Efficient Stochastic Optimisation via Sequential Monte Carlo
The problem of optimising functions with intractable gradients frequently arise in machine learning and statistics, ranging from maximum marginal likelihood estimation procedures to fine-tuning of generative models. Stochastic approximation methods for this class of problems typically require inner sampling loops to obtain (biased) stochastic gradient estimates, which rapidly becomes computationally expensive. In this work, we develop sequential Monte Carlo (SMC) samplers for optimisation of functions with intractable gradients. Our approach replaces expensive inner sampling methods with efficient SMC approximations, which can result in significant computational gains. We establish convergence results for the basic recursions defined by our methodology which SMC samplers approximate. We demonstrate the effectiveness of our approach on the reward-tuning of energy-based models within various settings.
☆ Rate-Distortion Optimization for Transformer Inference
Transformers achieve superior performance on many tasks, but impose heavy compute and memory requirements during inference. This inference can be made more efficient by partitioning the process across multiple devices, which, in turn, requires compressing its intermediate representations. In this work, we introduce a principled rate-distortion-based framework for lossy compression that learns compact encodings that explicitly trade off bitrate against accuracy. Experiments on language benchmarks show that the proposed codec achieves substantial savings with improved accuracy in some cases, outperforming more complex baseline methods. We characterize and analyze the rate-distortion performance of transformers, offering a unified lens for understanding performance in representation coding. This formulation extends information-theoretic concepts to define the gap between rate and entropy, and derive some of its bounds. We further develop probably approximately correct (PAC)-style bounds for estimating this gap. For different architectures and tasks, we empirically demonstrate that their rates are driven by these bounds, adding to the explainability of the formulation.
☆ Negatives-Dominant Contrastive Learning for Generalization in Imbalanced Domains
Imbalanced Domain Generalization (IDG) focuses on mitigating both domain and label shifts, both of which fundamentally shape the model's decision boundaries, particularly under heterogeneous long-tailed distributions across domains. Despite its practical significance, it remains underexplored, primarily due to the technical complexity of handling their entanglement and the paucity of theoretical foundations. In this paper, we begin by theoretically establishing the generalization bound for IDG, highlighting the role of posterior discrepancy and decision margin. This bound motivates us to focus on directly steering decision boundaries, marking a clear departure from existing methods. Subsequently, we technically propose a novel Negative-Dominant Contrastive Learning (NDCL) for IDG to enhance discriminability while enforce posterior consistency across domains. Specifically, inter-class decision-boundary separation is enhanced by placing greater emphasis on negatives as the primary signal in our contrastive learning, naturally amplifying gradient signals for minority classes to avoid the decision boundary being biased toward majority classes. Meanwhile, intra-class compactness is encouraged through a re-weighted cross-entropy strategy, and posterior consistency across domains is enforced through a prediction-central alignment strategy. Finally, rigorous yet challenging experiments on benchmarks validate the effectiveness of our NDCL. The code is available at https://github.com/Alrash/NDCL.
☆ Mechanistic Data Attribution: Tracing the Training Origins of Interpretable LLM Units
While Mechanistic Interpretability has identified interpretable circuits in LLMs, their causal origins in training data remain elusive. We introduce Mechanistic Data Attribution (MDA), a scalable framework that employs Influence Functions to trace interpretable units back to specific training samples. Through extensive experiments on the Pythia family, we causally validate that targeted intervention--removing or augmenting a small fraction of high-influence samples--significantly modulates the emergence of interpretable heads, whereas random interventions show no effect. Our analysis reveals that repetitive structural data (e.g., LaTeX, XML) acts as a mechanistic catalyst. Furthermore, we observe that interventions targeting induction head formation induce a concurrent change in the model's in-context learning (ICL) capability. This provides direct causal evidence for the long-standing hypothesis regarding the functional link between induction heads and ICL. Finally, we propose a mechanistic data augmentation pipeline that consistently accelerates circuit convergence across model scales, providing a principled methodology for steering the developmental trajectories of LLMs.
☆ Geometry of Drifting MDPs with Path-Integral Stability Certificates
Real-world reinforcement learning is often \emph{nonstationary}: rewards and dynamics drift, accelerate, oscillate, and trigger abrupt switches in the optimal action. Existing theory often represents nonstationarity with coarse-scale models that measure \emph{how much} the environment changes, not \emph{how} it changes locally -- even though acceleration and near-ties drive tracking error and policy chattering. We take a geometric view of nonstationary discounted Markov Decision Processes (MDPs) by modeling the environment as a differentiable homotopy path and tracking the induced motion of the optimal Bellman fixed point. This yields a length-curvature-kink signature of intrinsic complexity: cumulative drift, acceleration/oscillation, and action-gap-induced nonsmoothness. We prove a solver-agnostic path-integral stability bound and derive gap-safe feasible regions that certify local stability away from switch regimes. Building on these results, we introduce \textit{Homotopy-Tracking RL (HT-RL)} and \textit{HT-MCTS}, lightweight wrappers that estimate replay-based proxies of length, curvature, and near-tie proximity online and adapt learning or planning intensity accordingly. Experiments show improved tracking and dynamic regret over matched static baselines, with the largest gains in oscillatory and switch-prone regimes.
☆ Batched First-Order Methods for Parallel LP Solving in MIP
We present a batched first-order method for solving multiple linear programs in parallel on GPUs. Our approach extends the primal-dual hybrid gradient algorithm to efficiently solve batches of related linear programming problems that arise in mixed-integer programming techniques such as strong branching and bound tightening. By leveraging matrix-matrix operations instead of repeated matrix-vector operations, we obtain significant computational advantages on GPU architectures. We demonstrate the effectiveness of our approach on various case studies and identify the problem sizes where first-order methods outperform traditional simplex-based solvers depending on the computational environment one can use. This is a significant step for the design and development of integer programming algorithms tightly exploiting GPU capabilities where we argue that some specific operations should be allocated to GPUs and performed in full instead of using light-weight heuristic approaches on CPUs.
comment: 15 pages, 4 figures, 4 tables
☆ Generalized Information Gathering Under Dynamics Uncertainty
An agent operating in an unknown dynamical system must learn its dynamics from observations. Active information gathering accelerates this learning, but existing methods derive bespoke costs for specific modeling choices: dynamics models, belief update procedures, observation models, and planners. We present a unifying framework that decouples these choices from the information-gathering cost by explicitly exposing the causal dependencies between parameters, beliefs, and controls. Using this framework, we derive a general information-gathering cost based on Massey's directed information that assumes only Markov dynamics with additive noise and is otherwise agnostic to modeling choices. We prove that the mutual information cost used in existing literature is a special case of our cost. Then, we leverage our framework to establish an explicit connection between the mutual information cost and information gain in linearized Bayesian estimation, thereby providing theoretical justification for mutual information-based active learning approaches. Finally, we illustrate the practical utility of our framework through experiments spanning linear, nonlinear, and multi-agent systems.
☆ Elign: Equivariant Diffusion Model Alignment from Foundational Machine Learning Force Fields
Generative models for 3D molecular conformations must respect Euclidean symmetries and concentrate probability mass on thermodynamically favorable, mechanically stable structures. However, E(3)-equivariant diffusion models often reproduce biases from semi-empirical training data rather than capturing the equilibrium distribution of a high-fidelity Hamiltonian. While physics-based guidance can correct this, it faces two computational bottlenecks: expensive quantum-chemical evaluations (e.g., DFT) and the need to repeat such queries at every sampling step. We present Elign, a post-training framework that amortizes both costs. First, we replace expensive DFT evaluations with a faster, pretrained foundational machine-learning force field (MLFF) to provide physical signals. Second, we eliminate repeated run-time queries by shifting physical steering to the training phase. To achieve the second amortization, we formulate reverse diffusion as a reinforcement learning problem and introduce Force--Energy Disentangled Group Relative Policy Optimization (FED-GRPO) to fine-tune the denoising policy. FED-GRPO includes a potential-based energy reward and a force-based stability reward, which are optimized and group-normalized independently. Experiments show that Elign generates conformations with lower gold-standard DFT energies and forces, while improving stability. Crucially, inference remains as fast as unguided sampling, since no energy evaluations are required during generation.
☆ PowerGenie: Analytically-Guided Evolutionary Discovery of Superior Reconfigurable Power Converters
Discovering superior circuit topologies requires navigating an exponentially large design space-a challenge traditionally reserved for human experts. Existing AI methods either select from predefined templates or generate novel topologies at a limited scale without rigorous verification, leaving large-scale performance-driven discovery underexplored. We present PowerGenie, a framework for automated discovery of higher-performance reconfigurable power converters at scale. PowerGenie introduces: (1) an automated analytical framework that determines converter functionality and theoretical performance limits without component sizing or SPICE simulation, and (2) an evolutionary finetuning method that co-evolves a generative model with its training distribution through fitness selection and uniqueness verification. Unlike existing methods that suffer from mode collapse and overfitting, our approach achieves higher syntax validity, function validity, novelty rate, and figure-of-merit (FoM). PowerGenie discovers a novel 8-mode reconfigurable converter with 23% higher FoM than the best training topology. SPICE simulations confirm average absolute efficiency gains of 10% across 8 modes and up to 17% at a single mode. Code is available at https://github.com/xz-group/PowerGenie.
☆ Investigating Batch Inference in a Sequential Monte Carlo Framework for Neural Networks
Bayesian inference allows us to define a posterior distribution over the weights of a generic neural network (NN). Exact posteriors are usually intractable, in which case approximations can be employed. One such approximation - variational inference - is computationally efficient when using mini-batch stochastic gradient descent as subsets of the data are used for likelihood and gradient evaluations, though the approach relies on the selection of a variational distribution which sufficiently matches the form of the posterior. Particle-based methods such as Markov chain Monte Carlo and Sequential Monte Carlo (SMC) do not assume a parametric family for the posterior by typically require higher computational cost. These sampling methods typically use the full-batch of data for likelihood and gradient evaluations, which contributes to this computational expense. We explore several methods of gradually introducing more mini-batches of data (data annealing) into likelihood and gradient evaluations of an SMC sampler. We find that we can achieve up to $6\times$ faster training with minimal loss in accuracy on benchmark image classification problems using NNs.
☆ Investigation into using stochastic embedding representations for evaluating the trustworthiness of the Fréchet Inception Distance
Feature embeddings acquired from pretrained models are widely used in medical applications of deep learning to assess the characteristics of datasets; e.g. to determine the quality of synthetic, generated medical images. The Fréchet Inception Distance (FID) is one popular synthetic image quality metric that relies on the assumption that the characteristic features of the data can be detected and encoded by an InceptionV3 model pretrained on ImageNet1K (natural images). While it is widely known that this makes it less effective for applications involving medical images, the extent to which the metric fails to capture meaningful differences in image characteristics is not obviously known. Here, we use Monte Carlo dropout to compute the predictive variance in the FID as well as a supplemental estimate of the predictive variance in the feature embedding model's latent representations. We show that the magnitudes of the predictive variances considered exhibit varying degrees of correlation with the extent to which test inputs (ImageNet1K validation set augmented at various strengths, and other external datasets) are out-of-distribution relative to its training data, providing some insight into the effectiveness of their use as indicators of the trustworthiness of the FID.
☆ Bridging Graph Structure and Knowledge-Guided Editing for Interpretable Temporal Knowledge Graph Reasoning
Temporal knowledge graph reasoning (TKGR) aims to predict future events by inferring missing entities with dynamic knowledge structures. Existing LLM-based reasoning methods prioritize contextual over structural relations, struggling to extract relevant subgraphs from dynamic graphs. This limits structural information understanding, leading to unstructured, hallucination-prone inferences especially with temporal inconsistencies. To address this problem, we propose IGETR (Integration of Graph and Editing-enhanced Temporal Reasoning), a hybrid reasoning framework that combines the structured temporal modeling capabilities of Graph Neural Networks (GNNs) with the contextual understanding of LLMs. IGETR operates through a three-stage pipeline. The first stage aims to ground the reasoning process in the actual data by identifying structurally and temporally coherent candidate paths through a temporal GNN, ensuring that inference starts from reliable graph-based evidence. The second stage introduces LLM-guided path editing to address logical and semantic inconsistencies, leveraging external knowledge to refine and enhance the initial paths. The final stage focuses on integrating the refined reasoning paths to produce predictions that are both accurate and interpretable. Experiments on standard TKG benchmarks show that IGETR achieves state-of-the-art performance, outperforming strong baselines with relative improvements of up to 5.6% on Hits@1 and 8.1% on Hits@3 on the challenging ICEWS datasets. Additionally, we execute ablation studies and additional analyses confirm the effectiveness of each component.
☆ MoE-ACT: Improving Surgical Imitation Learning Policies through Supervised Mixture-of-Experts
Imitation learning has achieved remarkable success in robotic manipulation, yet its application to surgical robotics remains challenging due to data scarcity, constrained workspaces, and the need for an exceptional level of safety and predictability. We present a supervised Mixture-of-Experts (MoE) architecture designed for phase-structured surgical manipulation tasks, which can be added on top of any autonomous policy. Unlike prior surgical robot learning approaches that rely on multi-camera setups or thousands of demonstrations, we show that a lightweight action decoder policy like Action Chunking Transformer (ACT) can learn complex, long-horizon manipulation from less than 150 demonstrations using solely stereo endoscopic images, when equipped with our architecture. We evaluate our approach on the collaborative surgical task of bowel grasping and retraction, where a robot assistant interprets visual cues from a human surgeon, executes targeted grasping on deformable tissue, and performs sustained retraction. We benchmark our method against state-of-the-art Vision-Language-Action (VLA) models and the standard ACT baseline. Our results show that generalist VLAs fail to acquire the task entirely, even under standard in-distribution conditions. Furthermore, while standard ACT achieves moderate success in-distribution, adopting a supervised MoE architecture significantly boosts its performance, yielding higher success rates in-distribution and demonstrating superior robustness in out-of-distribution scenarios, including novel grasp locations, reduced illumination, and partial occlusions. Notably, it generalizes to unseen testing viewpoints and also transfers zero-shot to ex vivo porcine tissue without additional training, offering a promising pathway toward in vivo deployment. To support this, we present qualitative preliminary results of policy roll-outs during in vivo porcine surgery.
☆ From Tokens to Blocks: A Block-Diffusion Perspective on Molecular Generation
Drug discovery can be viewed as a combinatorial search over an immense chemical space, motivating the development of deep generative models for de novo molecular design. Among these, GPT-based molecular language models (MLM) have shown strong molecular design performance by learning chemical syntax and semantics from large-scale data. However, existing MLMs face two fundamental limitations: they inadequately capture the graph-structured nature of molecules when formulated as next-token prediction problems, and they typically lack explicit mechanisms for target-aware generation. Here, we propose SoftMol, a unified framework that co-designs molecular representation, model architecture, and search strategy for target-aware molecular generation. SoftMol introduces soft fragments, a rule-free block representation of SMILES that enables diffusion-native modeling, and develops SoftBD, the first block-diffusion molecular language model that combines local bidirectional diffusion with autoregressive generation under molecular structural constraints. To favor generated molecules with high drug-likeness and synthetic accessibility, SoftBD is trained on a carefully curated dataset named ZINC-Curated. SoftMol further integrates a gated Monte Carlo tree search to assemble fragments in a target-aware manner. Experimental results show that, compared with current state-of-the-art models, SoftMol achieves 100% chemical validity, improves binding affinity by 9.7%, yields a 2-3x increase in molecular diversity, and delivers a 6.6x speedup in inference efficiency. Code is available at https://github.com/szu-aicourse/softmol
comment: 30 pages, 13 figures, 11 tables
☆ Near-Optimal Private Tests for Simple and MLR Hypotheses
We develop a near-optimal testing procedure under the framework of Gaussian differential privacy for simple as well as one- and two-sided tests under monotone likelihood ratio conditions. Our mechanism is based on a private mean estimator with data-driven clamping bounds, whose population risk matches the private minimax rate up to logarithmic factors. Using this estimator, we construct private test statistics that achieve the same asymptotic relative efficiency as the non-private, most powerful tests while maintaining conservative type I error control. In addition to our theoretical results, our numerical experiments show that our private tests outperform competing DP methods and offer comparable power to the non-private most powerful tests, even at moderately small sample sizes and privacy loss budgets.
☆ Uncertainty-Aware Data-Based Method for Fast and Reliable Shape Optimization
Data-based optimization (DBO) offers a promising approach for efficiently optimizing shape for better aerodynamic performance by leveraging a pretrained surrogate model for offline evaluations during iterations. However, DBO heavily relies on the quality of the training database. Samples outside the training distribution encountered during optimization can lead to significant prediction errors, potentially misleading the optimization process. Therefore, incorporating uncertainty quantification into optimization is critical for detecting outliers and enhancing robustness. This study proposes an uncertainty-aware data-based optimization (UA-DBO) framework to monitor and minimize surrogate model uncertainty during DBO. A probabilistic encoder-decoder surrogate model is developed to predict uncertainties associated with its outputs, and these uncertainties are integrated into a model-confidence-aware objective function to penalize samples with large prediction errors during data-based optimization process. The UA-DBO framework is evaluated on two multipoint optimization problems aimed at improving airfoil drag divergence and buffet performance. Results demonstrate that UA-DBO consistently reduces prediction errors in optimized samples and achieves superior performance gains compared to original DBO. Moreover, compared to multipoint optimization based on full computational simulations, UA-DBO offers comparable optimization effectiveness while significantly accelerating optimization speed.
☆ Diffusion Path Samplers via Sequential Monte Carlo
We develop a diffusion-based sampler for target distributions known up to a normalising constant. To this end, we rely on the well-known diffusion path that smoothly interpolates between a (simple) base distribution and the target distribution, widely used in diffusion models. Our approach is based on a practical implementation of diffusion-annealed Langevin Monte Carlo, which approximates the diffusion path with convergence guarantees. We tackle the score estimation problem by developing an efficient sequential Monte Carlo sampler that evolves auxiliary variables from conditional distributions along the path, which provides principled score estimates for time-varying distributions. We further develop novel control variate schedules that minimise the variance of these score estimates. Finally, we provide theoretical guarantees and empirically demonstrate the effectiveness of our method on several synthetic and real-world datasets.
☆ Embracing Aleatoric Uncertainty in Medical Multimodal Learning with Missing Modalities
Medical multimodal learning faces significant challenges with missing modalities prevalent in clinical practice. Existing approaches assume equal contribution of modality and random missing patterns, neglecting inherent uncertainty in medical data acquisition. In this regard, we propose the Aleatoric Uncertainty Modeling (AUM) that explicitly quantifies unimodal aleatoric uncertainty to address missing modalities. Specifically, AUM models each unimodal representation as a multivariate Gaussian distribution to capture aleatoric uncertainty and enable principled modality reliability quantification. To adaptively aggregate captured information, we develop a dynamic message-passing mechanism within a bipartite patient-modality graph using uncertainty-aware aggregation mechanism. Through this process, missing modalities are naturally accommodated, while more reliable information from available modalities is dynamically emphasized to guide representation generation. Our AUM framework achieves an improvement of 2.26% AUC-ROC on MIMIC-IV mortality prediction and 2.17% gain on eICU, outperforming existing state-of-the-art approaches.
☆ Dependence of Equilibrium Propagation Training Success on Network Architecture
The rapid rise of artificial intelligence has led to an unsustainable growth in energy consumption. This has motivated progress in neuromorphic computing and physics-based training of learning machines as alternatives to digital neural networks. Many theoretical studies focus on simple architectures like all-to-all or densely connected layered networks. However, these may be challenging to realize experimentally, e.g. due to connectivity constraints. In this work, we investigate the performance of the widespread physics-based training method of equilibrium propagation for more realistic architectural choices, specifically, locally connected lattices. We train an XY model and explore the influence of architecture on various benchmark tasks, tracking the evolution of spatially distributed responses and couplings during training. Our results show that sparse networks with only local connections can achieve performance comparable to dense networks. Our findings provide guidelines for further scaling up architectures based on equilibrium propagation in realistic settings.
comment: 9 pages, 5 figures
☆ Clarity: The Flexibility-Interpretability Trade-Off in Sparsity-aware Concept Bottleneck Models
The widespread adoption of Vision-Language Models (VLMs) across fields has amplified concerns about model interpretability. Distressingly, these models are often treated as black-boxes, with limited or non-existent investigation of their decision making process. Despite numerous post- and ante-hoc interepretability methods, systematic and objective evaluation of the learned representations remains limited, particularly for sparsity-aware methods that are increasingly considered to "induce interpretability". In this work, we focus on Concept Bottleneck Models and investigate how different modeling decisions affect the emerging representations. We introduce the notion of clarity, a measure, capturing the interplay between the downstream performance and the sparsity and precision of the concept representation, while proposing an interpretability assessment framework using datasets with ground truth concept annotations. We consider both VLM- and attribute predictor-based CBMs, and three different sparsity-inducing strategies: per example $\ell_1, \ell_0$ and Bernoulli-based formulations. Our experiments reveal a critical trade-off between flexibility and interpretability, under which a given method can exhibit markedly different behaviors even at comparable performance levels. The code will be made publicly available upon publication.
☆ Entropy-Based Dimension-Free Convergence and Loss-Adaptive Schedules for Diffusion Models
Diffusion generative models synthesize samples by discretizing reverse-time dynamics driven by a learned score (or denoiser). Existing convergence analyses of diffusion models typically scale at least linearly with the ambient dimension, and sharper rates often depend on intrinsic-dimension assumptions or other geometric restrictions on the target distribution. We develop an alternative, information-theoretic approach to dimension-free convergence that avoids any geometric assumptions. Under mild assumptions on the target distribution, we bound KL divergence between the target and generated distributions by $O(H^2/K)$ (up to endpoint factors), where $H$ is the Shannon entropy and $K$ is the number of sampling steps. Moreover, using a reformulation of the KL divergence, we propose a Loss-Adaptive Schedule (LAS) for efficient discretization of reverse SDE which is lightweight and relies only on the training loss, requiring no post-training heavy computation. Empirically, LAS improves sampling quality over common heuristic schedules.
☆ Clustering in Deep Stochastic Transformers
Transformers have revolutionized deep learning across various domains but understanding the precise token dynamics remains a theoretical challenge. Existing theories of deep Transformers with layer normalization typically predict that tokens cluster to a single point; however, these results rely on deterministic weight assumptions, which fail to capture the standard initialization scheme in Transformers. In this work, we show that accounting for the intrinsic stochasticity of random initialization alters this picture. More precisely, we analyze deep Transformers where noise arises from the random initialization of value matrices. Under diffusion scaling and token-wise RMS normalization, we prove that, as the number of Transformer layers goes to infinity, the discrete token dynamics converge to an interacting-particle system on the sphere where tokens are driven by a \emph{common} matrix-valued Brownian noise. In this limit, we show that initialization noise prevents the collapse to a single cluster predicted by deterministic models. For two tokens, we prove a phase transition governed by the interaction strength and the token dimension: unlike deterministic attention flows, antipodal configurations become attracting with positive probability. Numerical experiments confirm the predicted transition, reveal that antipodal formations persist for more than two tokens, and demonstrate that suppressing the intrinsic noise degrades accuracy.
comment: 24 pages
☆ Robust Multimodal Representation Learning in Healthcare
Medical multimodal representation learning aims to integrate heterogeneous data into unified patient representations to support clinical outcome prediction. However, real-world medical datasets commonly contain systematic biases from multiple sources, which poses significant challenges for medical multimodal representation learning. Existing approaches typically focus on effective multimodal fusion, neglecting inherent biased features that affect the generalization ability. To address these challenges, we propose a Dual-Stream Feature Decorrelation Framework that identifies and handles the biases through structural causal analysis introduced by latent confounders. Our method employs a causal-biased decorrelation framework with dual-stream neural networks to disentangle causal features from spurious correlations, utilizing generalized cross-entropy loss and mutual information minimization for effective decorrelation. The framework is model-agnostic and can be integrated into existing medical multimodal learning methods. Comprehensive experiments on MIMIC-IV, eICU, and ADNI datasets demonstrate consistent performance improvements.
☆ LoRIF: Low-Rank Influence Functions for Scalable Training Data Attribution
Training data attribution (TDA) identifies which training examples most influenced a model's prediction. The best-performing TDA methods exploits gradients to define an influence function. To overcome the scalability challenge arising from gradient computation, the most popular strategy is random projection (e.g., TRAK, LoGRA). However, this still faces two bottlenecks when scaling to large training sets and high-quality attribution: \emph{(i)} storing and loading projected per-example gradients for all $N$ training examples, where query latency is dominated by I/O; and \emph{(ii)} forming the $D \times D$ inverse Hessian approximation, which costs $O(D^2)$ memory. Both bottlenecks scale with the projection dimension $D$, yet increasing $D$ is necessary for attribution quality -- creating a quality-scalability tradeoff. We introduce \textbf{LoRIF (Low-Rank Influence Functions)}, which exploits low-rank structures of gradient to address both bottlenecks. First, we store rank-$c$ factors of the projected per-example gradients rather than full matrices, reducing storage and query-time I/O from $O(D)$ to $O(c\sqrt{D})$ per layer per sample. Second, we use truncated SVD with the Woodbury identity to approximate the Hessian term in an $r$-dimensional subspace, reducing memory from $O(D^2)$ to $O(Dr)$. On models from 0.1B to 70B parameters trained on datasets with millions of examples, LoRIF achieves up to 20$\times$ storage reduction and query-time speedup compared to LoGRA, while matching or exceeding its attribution quality. LoRIF makes gradient-based TDA practical at frontier scale.
☆ Optimistic Transfer under Task Shift via Bellman Alignment
We study online transfer reinforcement learning (RL) in episodic Markov decision processes, where experience from related source tasks is available during learning on a target task. A fundamental difficulty is that task similarity is typically defined in terms of rewards or transitions, whereas online RL algorithms operate on Bellman regression targets. As a result, naively reusing source Bellman updates introduces systematic bias and invalidates regret guarantees. We identify one-step Bellman alignment as the correct abstraction for transfer in online RL and propose re-weighted targeting (RWT), an operator-level correction that retargets continuation values and compensates for transition mismatch via a change of measure. RWT reduces task mismatch to a fixed one-step correction and enables statistically sound reuse of source data. This alignment yields a two-stage RWT $Q$-learning framework that separates variance reduction from bias correction. Under RKHS function approximation, we establish regret bounds that scale with the complexity of the task shift rather than the target MDP. Empirical results in both tabular and neural network settings demonstrate consistent improvements over single-task learning and naïve pooling, highlighting Bellman alignment as a model-agnostic transfer principle for online RL.
☆ On Approximate Computation of Critical Points
We show that computing even very coarse approximations of critical points is intractable for simple classes of nonconvex functions. More concretely, we prove that if there exists a polynomial-time algorithm that takes as input a polynomial in $n$ variables of constant degree (as low as three) and outputs a point whose gradient has Euclidean norm at most $2^n$ whenever the polynomial has a critical point, then P=NP. The algorithm is permitted to return an arbitrary point when no critical point exists. We also prove hardness results for approximate computation of critical points under additional structural assumptions, including settings in which existence and uniqueness of a critical point are guaranteed, the function is lower bounded, and approximation is measured in terms of distance to a critical point. Overall, our results stand in contrast to the commonly-held belief that, in nonconvex optimization, approximate computation of critical points is a tractable task.
☆ Hardware-Triggered Backdoors
Machine learning models are routinely deployed on a wide range of computing hardware. Although such hardware is typically expected to produce identical results, differences in its design can lead to small numerical variations during inference. In this work, we show that these variations can be exploited to create backdoors in machine learning models. The core idea is to shape the model's decision function such that it yields different predictions for the same input when executed on different hardware. This effect is achieved by locally moving the decision boundary close to a target input and then refining numerical deviations to flip the prediction on selected hardware. We empirically demonstrate that these hardware-triggered backdoors can be created reliably across common GPU accelerators. Our findings reveal a novel attack vector affecting the use of third-party models, and we investigate different defenses to counter this threat.
☆ Breaking the Regional Barrier: Inductive Semantic Topology Learning for Worldwide Air Quality Forecasting
Global air quality forecasting grapples with extreme spatial heterogeneity and the poor generalization of existing transductive models to unseen regions. To tackle this, we propose OmniAir, a semantic topology learning framework tailored for global station-level prediction. By encoding invariant physical environmental attributes into generalizable station identities and dynamically constructing adaptive sparse topologies, our approach effectively captures long-range non-Euclidean correlations and physical diffusion patterns across unevenly distributed global networks. We further curate WorldAir, a massive dataset covering over 7,800 stations worldwide. Extensive experiments show that OmniAir achieves state-of-the-art performance against 18 baselines, maintaining high efficiency and scalability with speeds nearly 10 times faster than existing models, while effectively bridging the monitoring gap in data-sparse regions.
☆ A Low-Complexity Plug-and-Play Deep Learning Model for Generalizable Massive MIMO Precoding
Massive multiple-input multiple-output (mMIMO) downlink precoding offers high spectral efficiency but remains challenging to deploy in practice because near-optimal algorithms such as the weighted minimum mean squared error (WMMSE) are computationally expensive, and sensitive to SNR and channel-estimation quality, while existing deep learning (DL)-based solutions often lack robustness and require retraining for each deployment site. This paper proposes a plug-and-play precoder (PaPP), a DL framework with a backbone that can be trained for either fully digital (FDP) or hybrid beamforming (HBF) precoding and reused across sites, transmit-power levels, and with varying amounts of channel estimation error, avoiding the need to train a new model from scratch at each deployment. PaPP combines a high-capacity teacher and a compact student with a self-supervised loss that balances teacher imitation and normalized sum-rate, trained using meta-learning domain-generalization and transmit-power-aware input normalization. Numerical results on ray-tracing data from three unseen sites show that the PaPP FDP and HBF models both outperform conventional and deep learning baselines, after fine-tuning with a small set of local unlabeled samples. Across both architectures, PaPP achieves more than 21$\times$ reduction in modeled computation energy and maintains good performance under channel-estimation errors, making it a practical solution for energy-efficient mMIMO precoding.
☆ Not All Code Is Equal: A Data-Centric Study of Code Complexity and LLM Reasoning
Large Language Models (LLMs) increasingly exhibit strong reasoning abilities, often attributed to their capacity to generate chain-of-thought-style intermediate reasoning. Recent work suggests that exposure to code can further enhance these skills, but existing studies largely treat code as a generic training signal, leaving open the question of which properties of code actually contribute to improved reasoning. To address this gap, we study the structural complexity of code, which captures control flow and compositional structure that may shape how models internalise multi-step reasoning during fine-tuning. We examine two complementary settings: solution-driven complexity, where complexity varies across multiple solutions to the same problem, and problem-driven complexity, where complexity reflects variation in the underlying tasks. Using cyclomatic complexity and logical lines of code to construct controlled fine-tuning datasets, we evaluate a range of open-weight LLMs on diverse reasoning benchmarks. Our findings show that although code can improve reasoning, structural properties strongly determine its usefulness. In 83% of experiments, restricting fine-tuning data to a specific structural complexity range outperforms training on structurally diverse code, pointing to a data-centric path for improving reasoning beyond scaling.
comment: 16 pages, 5 figures, 3 tables
☆ VSE: Variational state estimation of complex model-free process ICASSP 2026
We design a variational state estimation (VSE) method that provides a closed-form Gaussian posterior of an underlying complex dynamical process from (noisy) nonlinear measurements. The complex process is model-free. That is, we do not have a suitable physics-based model characterizing the temporal evolution of the process state. The closed-form Gaussian posterior is provided by a recurrent neural network (RNN). The use of RNN is computationally simple in the inference phase. For learning the RNN, an additional RNN is used in the learning phase. Both RNNs help each other learn better based on variational inference principles. The VSE is demonstrated for a tracking application - state estimation of a stochastic Lorenz system (a benchmark process) using a 2-D camera measurement model. The VSE is shown to be competitive against a particle filter that knows the Lorenz system model and a recently proposed data-driven state estimation method that does not know the Lorenz system model.
comment: The article is accepted at ICASSP 2026
☆ Managing Solution Stability in Decision-Focused Learning with Cost Regularization
Decision-focused learning integrates predictive modeling and combinatorial optimization by training models to directly improve decision quality rather than prediction accuracy alone. Differentiating through combinatorial optimization problems represents a central challenge, and recent approaches tackle this difficulty by introducing perturbation-based approximations. In this work, we focus on estimating the objective function coefficients of a combinatorial optimization problem. Our study demonstrates that fluctuations in perturbation intensity occurring during the learning phase can lead to ineffective training, by establishing a theoretical link to the notion of solution stability in combinatorial optimization. We propose addressing this issue by introducing a regularization of the estimated cost vectors which improves the robustness and reliability of the learning process, as demonstrated by extensive numerical experiments.
☆ How Expressive Are Graph Neural Networks in the Presence of Node Identifiers?
Graph neural networks (GNNs) are a widely used class of machine learning models for graph-structured data, based on local aggregation over neighbors. GNNs have close connections to logic. In particular, their expressive power is linked to that of modal logics and bounded-variable logics with counting. In many practical scenarios, graphs processed by GNNs have node features that act as unique identifiers. In this work, we study how such identifiers affect the expressive power of GNNs. We initiate a study of the key-invariant expressive power of GNNs, inspired by the notion of order-invariant definability in finite model theory: which node queries that depend only on the underlying graph structure can GNNs express on graphs with unique node identifiers? We provide answers for various classes of GNNs with local max- or sum-aggregation.
comment: 35 pages
☆ Low-Rank Plus Sparse Matrix Transfer Learning under Growing Representations and Ambient Dimensions
Learning systems often expand their ambient features or latent representations over time, embedding earlier representations into larger spaces with limited new latent structure. We study transfer learning for structured matrix estimation under simultaneous growth of the ambient dimension and the intrinsic representation, where a well-estimated source task is embedded as a subspace of a higher-dimensional target task. We propose a general transfer framework in which the target parameter decomposes into an embedded source component, low-dimensional low-rank innovations, and sparse edits, and develop an anchored alternating projection estimator that preserves transferred subspaces while estimating only low-dimensional innovations and sparse modifications. We establish deterministic error bounds that separate target noise, representation growth, and source estimation error, yielding strictly improved rates when rank and sparsity increments are small. We demonstrate the generality of the framework by applying it to two canonical problems. For Markov transition matrix estimation from a single trajectory, we derive end-to-end theoretical guarantees under dependent noise. For structured covariance estimation under enlarged dimensions, we provide complementary theoretical analysis in the appendix and empirically validate consistent transfer gains.
☆ On Forgetting and Stability of Score-based Generative models
Understanding the stability and long-time behavior of generative models is a fundamental problem in modern machine learning. This paper provides quantitative bounds on the sampling error of score-based generative models by leveraging stability and forgetting properties of the Markov chain associated with the reverse-time dynamics. Under weak assumptions, we provide the two structural properties to ensure the propagation of initialization and discretization errors of the backward process: a Lyapunov drift condition and a Doeblin-type minorization condition. A practical consequence is quantitative stability of the sampling procedure, as the reverse diffusion dynamics induces a contraction mechanism along the sampling trajectory. Our results clarify the role of stochastic dynamics in score-based models and provide a principled framework for analyzing propagation of errors in such approaches.
☆ MoHETS: Long-term Time Series Forecasting with Mixture-of-Heterogeneous-Experts
Real-world multivariate time series can exhibit intricate multi-scale structures, including global trends, local periodicities, and non-stationary regimes, which makes long-horizon forecasting challenging. Although sparse Mixture-of-Experts (MoE) approaches improve scalability and specialization, they typically rely on homogeneous MLP experts that poorly capture the diverse temporal dynamics of time series data. We address these limitations with MoHETS, an encoder-only Transformer that integrates sparse Mixture-of-Heterogeneous-Experts (MoHE) layers. MoHE routes temporal patches to a small subset of expert networks, combining a shared depthwise-convolution expert for sequence-level continuity with routed Fourier-based experts for patch-level periodic structures. MoHETS further improves robustness to non-stationary dynamics by incorporating exogenous information via cross-attention over covariate patch embeddings. Finally, we replace parameter-heavy linear projection heads with a lightweight convolutional patch decoder, improving parameter efficiency, reducing training instability, and allowing a single model to generalize across arbitrary forecast horizons. We validate across seven multivariate benchmarks and multiple horizons, with MoHETS consistently achieving state-of-the-art performance, reducing the average MSE by $12\%$ compared to strong recent baselines, demonstrating effective heterogeneous specialization for long-term forecasting.
comment: Under review
☆ LEMUR: Learned Multi-Vector Retrieval
Multi-vector representations generated by late interaction models, such as ColBERT, enable superior retrieval quality compared to single-vector representations in information retrieval applications. In multi-vector retrieval systems, both queries and documents are encoded using one embedding for each token, and similarity between queries and documents is measured by the MaxSim similarity measure. However, the improved recall of multi-vector retrieval comes at the expense of significantly increased latency. This necessitates designing efficient approximate nearest neighbor search (ANNS) algorithms for multi-vector search. In this work, we introduce LEMUR, a simple-yet-efficient framework for multi-vector similarity search. LEMUR consists of two consecutive problem reductions: We first formulate multi-vector similarity search as a supervised learning problem that can be solved using a one-hidden-layer neural network. Second, we reduce inference under this model to single-vector similarity search in its latent space, which enables the use of existing single-vector ANNS methods for speeding up retrieval. In addition to performance evaluation on ColBERTv2 embeddings, we evaluate LEMUR on embeddings generated by modern multi-vector text models and multi-vector visual document retrieval models. LEMUR is an order of magnitude faster than earlier multi-vector similarity search methods.
comment: 17 pages
☆ Visual Disentangled Diffusion Autoencoders: Scalable Counterfactual Generation for Foundation Models
Foundation models, despite their robust zero-shot capabilities, remain vulnerable to spurious correlations and 'Clever Hans' strategies. Existing mitigation methods often rely on unavailable group labels or computationally expensive gradient-based adversarial optimization. To address these limitations, we propose Visual Disentangled Diffusion Autoencoders (DiDAE), a novel framework integrating frozen foundation models with disentangled dictionary learning for efficient, gradient-free counterfactual generation directly for the foundation model. DiDAE first edits foundation model embeddings in interpretable disentangled directions of the disentangled dictionary and then decodes them via a diffusion autoencoder. This allows the generation of multiple diverse, disentangled counterfactuals for each factual, much faster than existing baselines, which generate single entangled counterfactuals. When paired with Counterfactual Knowledge Distillation, DiDAE-CFKD achieves state-of-the-art performance in mitigating shortcut learning, improving downstream performance on unbalanced datasets.
☆ READY: Reward Discovery for Meta-Black-Box Optimization
Meta-Black-Box Optimization (MetaBBO) is an emerging avenue within Optimization community, where algorithm design policy could be meta-learned by reinforcement learning to enhance optimization performance. So far, the reward functions in existing MetaBBO works are designed by human experts, introducing certain design bias and risks of reward hacking. In this paper, we use Large Language Model~(LLM) as an automated reward discovery tool for MetaBBO. Specifically, we consider both effectiveness and efficiency sides. On effectiveness side, we borrow the idea of evolution of heuristics, introducing tailored evolution paradigm in the iterative LLM-based program search process, which ensures continuous improvement. On efficiency side, we additionally introduce multi-task evolution architecture to support parallel reward discovery for diverse MetaBBO approaches. Such parallel process also benefits from knowledge sharing across tasks to accelerate convergence. Empirical results demonstrate that the reward functions discovered by our approach could be helpful for boosting existing MetaBBO works, underscoring the importance of reward design in MetaBBO. We provide READY's project at https://anonymous.4open.science/r/ICML_READY-747F.
☆ Constrained Meta Reinforcement Learning with Provable Test-Time Safety
Meta reinforcement learning (RL) allows agents to leverage experience across a distribution of tasks on which the agent can train at will, enabling faster learning of optimal policies on new test tasks. Despite its success in improving sample complexity on test tasks, many real-world applications, such as robotics and healthcare, impose safety constraints during testing. Constrained meta RL provides a promising framework for integrating safety into meta RL. An open question in constrained meta RL is how to ensure the safety of the policy on the real-world test task, while reducing the sample complexity and thus, enabling faster learning of optimal policies. To address this gap, we propose an algorithm that refines policies learned during training, with provable safety and sample complexity guarantees for learning a near optimal policy on the test tasks. We further derive a matching lower bound, showing that this sample complexity is tight.
☆ Test-Time Compute Games
Test-time compute has emerged as a promising strategy to enhance the reasoning abilities of large language models (LLMs). However, this strategy has in turn increased how much users pay cloud-based providers offering LLM-as-a-service, since providers charge users for the amount of test-time compute they use to generate an output. In our work, we show that the market of LLM-as-a-service is socially inefficient: providers have a financial incentive to increase the amount of test-time compute, even if this increase contributes little to the quality of the outputs. To address this inefficiency, we introduce a reverse second-price auction mechanism where providers bid their offered price and (expected) quality for the opportunity to serve a user, and users pay proportionally to the marginal value generated by the winning provider relative to the second-highest bidder. To illustrate and complement our theoretical results, we conduct experiments with multiple instruct models from the $\texttt{Llama}$ and $\texttt{Qwen}$ families, as well as reasoning models distilled from $\texttt{DeepSeek-R1}$, on math and science benchmark datasets.
☆ Scalable Linearized Laplace Approximation via Surrogate Neural Kernel
We introduce a scalable method to approximate the kernel of the Linearized Laplace Approximation (LLA). For this, we use a surrogate deep neural network (DNN) that learns a compact feature representation whose inner product replicates the Neural Tangent Kernel (NTK). This avoids the need to compute large Jacobians. Training relies solely on efficient Jacobian-vector products, allowing to compute predictive uncertainty on large-scale pre-trained DNNs. Experimental results show similar or improved uncertainty estimation and calibration compared to existing LLA approximations. Notwithstanding, biasing the learned kernel significantly enhances out-of-distribution detection. This remarks the benefits of the proposed method for finding better kernels than the NTK in the context of LLA to compute prediction uncertainty given a pre-trained DNN.
comment: 6 pages, 1 table. Accepted at European Symposium on Artificial Neural Networks (ESANN 2026) as oral presentation
☆ Goal-Driven Adaptive Sampling Strategies for Machine Learning Models Predicting Fields
Machine learning models are widely regarded as a way forward to tackle multi-query challenges that arise once expensive black-box simulations such as computational fluid dynamics are investigated. However, ensuring the desired level of accuracy for a certain task at minimal computational cost, e.g. as few black-box samples as possible, remains a challenges. Active learning strategies are used for scalar quantities to overcome this challenges and different so-called infill criteria exists and are commonly employed in several scenarios. Even though needed in various field an extension of active learning strategies towards field predictions is still lacking or limited to very specific scenarios and/or model types. In this paper we propose an active learning strategy for machine learning models that are capable if predicting field which is agnostic to the model architecture itself. For doing so, we combine a well-established Gaussian process model for a scalar reference value and simultaneously aim at reducing the epistemic model error and the difference between scalar and field predictions. Different specific forms of the above-mentioned approach are introduced and compared to each other as well as only scalar-valued based infill. Results are presented for the NASA common research model for an uncertainty propagation task showcasing high level of accuracy at significantly smaller cost compared to an approach without active learning.
☆ Generative Modeling of Discrete Data Using Geometric Latent Subspaces
We introduce the use of latent subspaces in the exponential parameter space of product manifolds of categorial distributions, as a tool for learning generative models of discrete data. The low-dimensional latent space encodes statistical dependencies and removes redundant degrees of freedom among the categorial variables. We equip the parameter domain with a Riemannian geometry such that the spaces and distances are related by isometries which enables consistent flow matching. In particular, geodesics become straight lines which makes model training by flow matching effective. Empirical results demonstrate that reduced latent dimensions suffice to represent data for generative modeling.
☆ DASH: Deterministic Attention Scheduling for High-throughput Reproducible LLM Training
Determinism is indispensable for reproducibility in large language model (LLM) training, yet it often exacts a steep performance cost. In widely used attention implementations such as FlashAttention-3, the deterministic backward pass can incur up to a 37.9% throughput reduction relative to its non-deterministic counterpart, primarily because gradient accumulation operations must be serialized to guarantee numerical consistency. This performance loss stems from suboptimal scheduling of compute and gradient-reduction phases, leading to significant hardware underutilization. To address this challenge, we formulate the backward pass of deterministic attention as a scheduling problem on a Directed Acyclic Graph (DAG) and derive schedules that minimize the critical path length. Building on this formulation, we present DASH (Deterministic Attention Scheduling for High-Throughput), which encapsulates two complementary scheduling strategies: (i) Descending Q-Tile Iteration, a reversed query-block traversal that shrinks pipeline stalls in causal attention, and (ii) Shift Scheduling, a theoretically optimal schedule within our DAG model that reduces pipeline stalls for both full and causal masks. Our empirical evaluations on NVIDIA H800 GPUs demonstrate that DASH narrows the performance gap of deterministic attention. The proposed strategies improve the throughput of the attention backward pass by up to 1.28$\times$ compared to the baseline, significantly advancing the efficiency of reproducible LLM training. Our code is open-sourced at https://github.com/SJTU-Liquid/deterministic-FA3.
☆ A Judge-Aware Ranking Framework for Evaluating Large Language Models without Ground Truth
Evaluating large language models (LLMs) on open-ended tasks without ground-truth labels is increasingly done via the LLM-as-a-judge paradigm. A critical but under-modeled issue is that judge LLMs differ substantially in reliability; treating all judges equally can yield biased leaderboards and misleading uncertainty estimates. More data can make evaluation more confidently wrong under misspecified aggregation. We propose a judge-aware ranking framework that extends the Bradley-Terry-Luce model by introducing judge-specific discrimination parameters, jointly estimating latent model quality and judge reliability from pairwise comparisons without reference labels. We establish identifiability up to natural normalizations and prove consistency and asymptotic normality of the maximum likelihood estimator, enabling confidence intervals for score differences and rank comparisons. Across multiple public benchmarks and a newly collected dataset, our method improves agreement with human preferences, achieves higher data efficiency than unweighted baselines, and produces calibrated uncertainty quantification for LLM rankings.
☆ Nonparametric LLM Evaluation from Preference Data
Evaluating the performance of large language models (LLMs) from human preference data is crucial for obtaining LLM leaderboards. However, many existing approaches either rely on restrictive parametric assumptions or lack valid uncertainty quantification when flexible machine learning methods are used. In this paper, we propose a nonparametric statistical framework, DMLEval, for comparing and ranking LLMs from preference data using debiased machine learning (DML). For this, we introduce generalized average ranking scores (GARS), which generalize commonly used ranking models, including the Bradley-Terry model or PageRank/ Rank centrality, with complex human responses such as ties. DMLEval comes with the following advantages: (i) It produces statistically efficient estimates of GARS ranking scores. (ii) It naturally allows the incorporation of black-box machine learning methods for estimation. (iii) It can be combined with pre-trained LLM evaluators (e.g., using LLM-as-a-judge). (iv) It suggests optimal policies for collecting preference data under budget constraints. We demonstrate these advantages both theoretically and empirically using both synthetic and real-world preference datasets. In summary, our framework provides practitioners with powerful, state-of-the-art methods for comparing or ranking LLMs.
☆ A Decomposable Forward Process in Diffusion Models for Time-Series Forecasting ICML'26
We introduce a model-agnostic forward diffusion process for time-series forecasting that decomposes signals into spectral components, preserving structured temporal patterns such as seasonality more effectively than standard diffusion. Unlike prior work that modifies the network architecture or diffuses directly in the frequency domain, our proposed method alters only the diffusion process itself, making it compatible with existing diffusion backbones (e.g., DiffWave, TimeGrad, CSDI). By staging noise injection according to component energy, it maintains high signal-to-noise ratios for dominant frequencies throughout the diffusion trajectory, thereby improving the recoverability of long-term patterns. This strategy enables the model to maintain the signal structure for a longer period in the forward process, leading to improved forecast quality. Across standard forecasting benchmarks, we show that applying spectral decomposition strategies, such as the Fourier or Wavelet transform, consistently improves upon diffusion models using the baseline forward process, with negligible computational overhead. The code for this paper is available at https://anonymous.4open.science/r/D-FDP-4A29.
comment: submitted to ICML'26
☆ Effective LoRA Adapter Routing using Task Representations
Low-rank adaptation (LoRA) enables parameter efficient specialization of large language models (LLMs) through modular adapters, resulting in rapidly growing public adapter pools spanning diverse tasks. Effectively using these adapters requires routing: selecting and composing the appropriate adapters for a query. We introduce LORAUTER, a novel routing framework that selects and composes LoRA adapters using task representations rather than adapter characteristics. Unlike existing approaches that map queries directly to adapters, LORAUTER routes queries via task embeddings derived from small validation sets and does not require adapter training data. By operating at the task level, LORAUTER achieves efficient routing that scales with the number of tasks rather than the number of adapters. Experiments across multiple tasks show that LORAUTER consistently outperforms baseline routing approaches, matching Oracle performance (101.2%) when task-aligned adapters exist and achieving state-of-the-art results on unseen tasks (+5.2 points). We further demonstrate the robustness of LORAUTER to very large, noisy adapter pools by scaling it to over 1500 adapters.
☆ Knowledge Vector Weakening: Efficient Training-free Unlearning for Large Vision-Language Models
Large Vision-Language Models (LVLMs) are widely adopted for their strong multimodal capabilities, yet they raise serious concerns such as privacy leakage and harmful content generation. Machine unlearning has emerged as a promising solution for removing the influence of specific data from trained models. However, existing approaches largely rely on gradient-based optimization, incurring substantial computational costs for large-scale LVLMs. To address this limitation, we propose Knowledge Vector Weakening (KVW), a training-free unlearning method that directly intervenes in the full model without gradient computation. KVW identifies knowledge vectors that are activated during the model's output generation on the forget set and progressively weakens their contributions, thereby preventing the model from exploiting undesirable knowledge. Experiments on the MLLMU and CLEAR benchmarks demonstrate that KVW achieves a stable forget-retain trade-off while significantly improving computational efficiency over gradient-based and LoRA-based unlearning methods.
☆ NetMamba+: A Framework of Pre-trained Models for Efficient and Accurate Network Traffic Classification
With the rapid growth of encrypted network traffic, effective traffic classification has become essential for network security and quality of service management. Current machine learning and deep learning approaches for traffic classification face three critical challenges: computational inefficiency of Transformer architectures, inadequate traffic representations with loss of crucial byte-level features while retaining detrimental biases, and poor handling of long-tail distributions in real-world data. We propose NetMamba+, a framework that addresses these challenges through three key innovations: (1) an efficient architecture considering Mamba and Flash Attention mechanisms, (2) a multimodal traffic representation scheme that preserves essential traffic information while eliminating biases, and (3) a label distribution-aware fine-tuning strategy. Evaluation experiments on massive datasets encompassing four main classification tasks showcase NetMamba+'s superior classification performance compared to state-of-the-art baselines, with improvements of up to 6.44\% in F1 score. Moreover, NetMamba+ demonstrates excellent efficiency, achieving 1.7x higher inference throughput than the best baseline while maintaining comparably low memory usage. Furthermore, NetMamba+ exhibits superior few-shot learning abilities, achieving better classification performance with fewer labeled data. Additionally, we implement an online traffic classification system that demonstrates robust real-world performance with a throughput of 261.87 Mb/s. As the first framework to adapt Mamba architecture for network traffic classification, NetMamba+ opens new possibilities for efficient and accurate traffic analysis in complex network environments.
☆ ECSEL: Explainable Classification via Signomial Equation Learning
We introduce ECSEL, an explainable classification method that learns formal expressions in the form of signomial equations, motivated by the observation that many symbolic regression benchmarks admit compact signomial structure. ECSEL directly constructs a structural, closed-form expression that serves as both a classifier and an explanation. On standard symbolic regression benchmarks, our method recovers a larger fraction of target equations than competing state-of-the-art approaches while requiring substantially less computation. Leveraging this efficiency, ECSEL achieves classification accuracy competitive with established machine learning models without sacrificing interpretability. Further, we show that ECSEL satisfies some desirable properties regarding global feature behavior, decision-boundary analysis, and local feature attributions. Experiments on benchmark datasets and two real-world case studies i.e., e-commerce and fraud detection, demonstrate that the learned equations expose dataset biases, support counterfactual reasoning, and yield actionable insights.
☆ Quantum LEGO Learning: A Modular Design Principle for Hybrid Artificial Intelligence
Hybrid quantum-classical learning models increasingly integrate neural networks with variational quantum circuits (VQCs) to exploit complementary inductive biases. However, many existing approaches rely on tightly coupled architectures or task-specific encoders, limiting conceptual clarity, generality, and transferability across learning settings. In this work, we introduce Quantum LEGO Learning, a modular and architecture-agnostic learning framework that treats classical and quantum components as reusable, composable learning blocks with well-defined roles. Within this framework, a pre-trained classical neural network serves as a frozen feature block, while a VQC acts as a trainable adaptive module that operates on structured representations rather than raw inputs. This separation enables efficient learning under constrained quantum resources and provides a principled abstraction for analyzing hybrid models. We develop a block-wise generalization theory that decomposes learning error into approximation and estimation components, explicitly characterizing how the complexity and training status of each block influence overall performance. Our analysis generalizes prior tensor-network-specific results and identifies conditions under which quantum modules provide representational advantages over comparably sized classical heads. Empirically, we validate the framework through systematic block-swap experiments across frozen feature extractors and both quantum and classical adaptive heads. Experiments on quantum dot classification demonstrate stable optimization, reduced sensitivity to qubit count, and robustness to realistic noise.
comment: In submission
☆ Error Amplification Limits ANN-to-SNN Conversion in Continuous Control
Spiking Neural Networks (SNNs) can achieve competitive performance by converting already existing well-trained Artificial Neural Networks (ANNs), avoiding further costly training. This property is particularly attractive in Reinforcement Learning (RL), where training through environment interaction is expensive and potentially unsafe. However, existing conversion methods perform poorly in continuous control, where suitable baselines are largely absent. We identify error amplification as the key cause: small action approximation errors become temporally correlated across decision steps, inducing cumulative state distribution shift and severe performance degradation. To address this issue, we propose Cross-Step Residual Potential Initialization (CRPI), a lightweight training-free mechanism that carries over residual membrane potentials across decision steps to suppress temporally correlated errors. Experiments on continuous control benchmarks with both vector and visual observations demonstrate that CRPI can be integrated into existing conversion pipelines and substantially recovers lost performance. Our results highlight continuous control as a critical and challenging benchmark for ANN-to-SNN conversion, where small errors can be strongly amplified and impact performance.
☆ Differentiable Knapsack and Top-k Operators via Dynamic Programming
Knapsack and Top-k operators are useful for selecting discrete subsets of variables. However, their integration into neural networks is challenging as they are piecewise constant, yielding gradients that are zero almost everywhere. In this paper, we propose a unified framework casting these operators as dynamic programs, and derive differentiable relaxations by smoothing the underlying recursions. On the algorithmic side, we develop efficient parallel algorithms supporting both deterministic and stochastic forward passes, and vector-Jacobian products for the backward pass. On the theoretical side, we prove that Shannon entropy is the unique regularization choice yielding permutation-equivariant operators, and characterize regularizers inducing sparse selections. Finally, on the experimental side, we demonstrate our framework on a decision-focused learning benchmark, a constrained dynamic assortment RL problem, and an extension of discrete VAEs.
☆ FISMO: Fisher-Structured Momentum-Orthogonalized Optimizer
Training large-scale neural networks requires solving nonconvex optimization where the choice of optimizer fundamentally determines both convergence behavior and computational efficiency. While adaptive methods like Adam have long dominated practice, the recently proposed Muon optimizer achieves superior performance through orthogonalized momentum updates that enforce isotropic geometry with uniform singular values. However, this strict isotropy discards potentially valuable curvature information encoded in gradient spectra, motivating optimization methods that balance geometric structure with adaptivity. We introduce FISMO (Fisher-Structured Momentum-Orthogonalized) optimizer, which generalizes isotropic updates to incorporate anisotropic curvature information through Fisher information geometry. By reformulating the optimizer update as a trust-region problem constrained by a Kronecker-factored Fisher metric, FISMO achieves structured preconditioning that adapts to local loss landscape geometry while maintaining computational tractability. We establish convergence guarantees for FISMO in stochastic nonconvex settings, proving an $\mathcal{O}(1/\sqrt{T})$ rate for the expected squared gradient norm with explicit characterization of variance reduction through mini-batching. Empirical evaluation on image classification and language modeling benchmarks demonstrates that FISMO achieves superior training efficiency and final performance compared to established baselines.
☆ Temporal Sepsis Modeling: a Fully Interpretable Relational Way
Sepsis remains one of the most complex and heterogeneous syndromes in intensive care, characterized by diverse physiological trajectories and variable responses to treatment. While deep learning models perform well in the early prediction of sepsis, they often lack interpretability and ignore latent patient sub-phenotypes. In this work, we propose a machine learning framework by opening up a new avenue for addressing this issue: a relational approach. Temporal data from electronic medical records (EMRs) are viewed as multivariate patient logs and represented in a relational data schema. Then, a propositionalisation technique (based on classic aggregation/selection functions from the field of relational data) is applied to construct interpretable features to "flatten" the data. Finally, the flattened data is classified using a selective naive Bayesian classifier. Experimental validation demonstrates the relevance of the suggested approach as well as its extreme interpretability. The interpretation is fourfold: univariate, global, local, and counterfactual.
♻ ☆ MORPH: PDE Foundation Models with Arbitrary Data Modality
We introduce MORPH, a modality-agnostic, autoregressive foundation model for partial differential equations (PDEs). MORPH is built on a convolutional vision transformer backbone that seamlessly handles heterogeneous spatiotemporal datasets of varying data modality (1D--3D) at different resolutions, and multiple fields with mixed scalar and vector components. The architecture combines (i) component-wise convolution, which jointly processes scalar and vector channels to capture local interactions, (ii) inter-field cross-attention, which models and selectively propagates information between different physical fields, (iii) axial attentions, which factorize full spatiotemporal self-attention along individual spatial and temporal axes to reduce computational burden while retaining expressivity. We pretrain multiple model variants on a diverse collection of heterogeneous PDE datasets and evaluate transfer to a range of downstream prediction tasks. Using both full-model fine-tuning and parameter-efficient low-rank adapters, MORPH outperforms models trained from scratch. Across extensive evaluations, MORPH matches or surpasses strong baselines and recent state-of-the-art models. Collectively, these capabilities present a flexible and powerful backbone for learning from the heterogeneous and multimodal nature of scientific observations, charting a path toward scalable and data-efficient scientific machine learning. The source code, datasets, and models are publicly available at https://github.com/lanl/MORPH.
♻ ☆ Do graph neural network states contain graph properties?
Deep neural networks (DNNs) achieve state-of-the-art performance on many tasks, but this often requires increasingly larger model sizes, which in turn leads to more complex internal representations. Explainability techniques (XAI) have made remarkable progress in the interpretability of ML models. However, the non-euclidean nature of Graph Neural Networks (GNNs) makes it difficult to reuse already existing XAI methods. While other works have focused on instance-based explanation methods for GNNs, very few have investigated model-based methods and, to our knowledge, none have tried to probe the embedding of the GNNs for structural graph properties. In this paper we present a model agnostic explainability pipeline for Graph Neural Networks (GNNs) employing diagnostic classifiers. We propose to consider graph-theoretic properties as the features of choice for studying the emergence of representations in GNNs. This pipeline aims to probe and interpret the learned representations in GNNs across various architectures and datasets, refining our understanding and trust in these models.
comment: 10 pages, 22 figures, conference
♻ ☆ Vecchia-Inducing-Points Full-Scale Approximations for Gaussian Processes
Gaussian processes are flexible, probabilistic, non-parametric models widely used in machine learning and statistics. However, their scalability to large data sets is limited by computational constraints. To overcome these challenges, we propose Vecchia-inducing-points full-scale (VIF) approximations combining the strengths of global inducing points and local Vecchia approximations. Vecchia approximations excel in settings with low-dimensional inputs and moderately smooth covariance functions, while inducing point methods are better suited to high-dimensional inputs and smoother covariance functions. Our VIF approach bridges these two regimes by using an efficient correlation-based neighbor-finding strategy for the Vecchia approximation of the residual process, implemented via a modified cover tree algorithm. We further extend our framework to non-Gaussian likelihoods by introducing iterative methods that substantially reduce computational costs for training and prediction by several orders of magnitudes compared to Cholesky-based computations when using a Laplace approximation. In particular, we propose and compare novel preconditioners and provide theoretical convergence results. Extensive numerical experiments on simulated and real-world data sets show that VIF approximations are both computationally efficient as well as more accurate and numerically stable than state-of-the-art alternatives. All methods are implemented in the open source C++ library GPBoost with high-level Python and R interfaces.
♻ ☆ Think Locally, Explain Globally: Graph-Guided LLM Investigations via Local Reasoning and Belief Propagation
LLM agents excel when environments are mostly static and the needed information fits in a model's context window, but they often fail in open-ended investigations where explanations must be constructed by iteratively mining evidence from massive, heterogeneous operational data. These investigations exhibit hidden dependency structure: entities interact, signals co-vary, and the importance of a fact may only become clear after other evidence is discovered. Because the context window is bounded, agents must summarize intermediate findings before their significance is known, increasing the risk of discarding key evidence. ReAct-style agents are especially brittle in this regime. Their retrieve-summarize-reason loop makes conclusions sensitive to exploration order and introduces run-to-run non-determinism, producing a reliability gap where Pass-at-k may be high but Majority-at-k remains low. Simply sampling more rollouts or generating longer reasoning traces does not reliably stabilize results, since hypotheses cannot be autonomously checked as new evidence arrives and there is no explicit mechanism for belief bookkeeping and revision. In addition, ReAct entangles semantic reasoning with controller duties such as tool orchestration and state tracking, so execution errors and plan drift degrade reasoning while consuming scarce context. We address these issues by formulating investigation as abductive reasoning over a dependency graph and proposing EoG (Explanations over Graphs), a disaggregated framework in which an LLM performs bounded local evidence mining and labeling (cause vs symptom) while a deterministic controller manages traversal, state, and belief propagation to compute a minimal explanatory frontier. On a representative ITBench diagnostics task, EoG improves both accuracy and run-to-run consistency over ReAct baselines, including a 7x average gain in Majority-at-k entity F1.
♻ ☆ How Many Ratings per Item are Necessary for Reliable Significance Testing? EACL
A cornerstone of machine learning evaluation is the (often hidden) assumption that model and human responses are reliable enough to evaluate models against unitary, authoritative, ``gold standard'' data, via simple metrics such as accuracy, precision, and recall. The generative AI revolution would seem to explode this assumption, given the critical role stochastic inference plays. Yet, in spite of public demand for more transparency in AI -- along with strong evidence that humans are unreliable judges -- estimates of model reliability are conventionally based on, at most, a few output responses per input item. We adapt a method, previously used to evaluate the reliability of various metrics and estimators for machine learning evaluation, to determine whether an (existing or planned) dataset has enough responses per item to assure reliable null hypothesis statistical testing. We show that, for many common metrics, collecting even 5-10 responses per item (from each model and team of human evaluators) is not sufficient. We apply our methods to several of the very few extant gold standard test sets with multiple disaggregated responses per item and show that even these datasets lack enough responses per item. We show how our methods can help AI researchers make better decisions about how to collect data for AI evaluation.
comment: Accepted at EACL Findings 2026
♻ ☆ Harmonizing Safety and Speed: A Human-Algorithm Approach to Enhance the FDA's Medical Device Clearance Policy
The United States Food and Drug Administration's (FDA's) 510(k) pathway allows manufacturers to gain medical device approval by demonstrating substantial equivalence to a legally marketed device. However, the inherent ambiguity of this regulatory procedure has been associated with high recall among many devices cleared through this pathway, raising significant safety concerns. In this paper, we develop a combined human-algorithm approach to assist the FDA in improving its 510(k) medical device clearance process by reducing recall risk and regulatory workload. We first develop machine learning methods to estimate the risk of recall of 510(k) medical devices based on the information available at the time of submission. We then propose a data-driven clearance policy that recommends acceptance, rejection, or deferral to FDA's committees for in-depth evaluation. We conduct an empirical study using a unique dataset of over 31,000 submissions that we assembled based on data sources from the FDA and Centers for Medicare and Medicaid Service (CMS). Compared to the FDA's current practice, which has a recall rate of 10.3% and a normalized workload measure of 100%, a conservative evaluation of our policy shows a 32.9% improvement in the recall rate and a 40.5% reduction in the workload. Our analyses further suggest annual cost savings of approximately $1.7 billion for the healthcare system driven by avoided replacement costs, which is equivalent to 1.1% of the entire United States annual medical device expenditure. Our findings highlight the value of a holistic and data-driven approach to improve the FDA's current 510(k) pathway.
♻ ☆ SiDGen: Structure-informed Diffusion for Generative modeling of Ligands for Proteins
Designing ligands that are both chemically valid and structurally compatible with protein binding pockets is a key bottleneck in computational drug discovery. Existing approaches either ignore structural context or rely on expensive, memory-intensive encoding that limits throughput and scalability. We present SiDGen (Structure-informed Diffusion Generator), a protein-conditioned diffusion framework that integrates masked SMILES generation with lightweight folding-derived features for pocket awareness. To balance expressivity with efficiency, SiDGen supports two conditioning pathways: a streamlined mode that pools coarse structural signals from protein embeddings and a full mode that injects localized pairwise biases for stronger coupling. A coarse-stride folding mechanism with nearest-neighbor upsampling alleviates the quadratic memory costs of pair tensors, enabling training on realistic sequence lengths. Learning stability is maintained through in-loop chemical validity checks and an invalidity penalty, while large-scale training efficiency is restored \textit{via} selective compilation, dataloader tuning, and gradient accumulation. In automated benchmarks, SiDGen generates ligands with high validity, uniqueness, and novelty, while achieving competitive performance in docking-based evaluations and maintaining reasonable molecular properties. These results demonstrate that SiDGen can deliver scalable, pocket-aware molecular design, providing a practical route to conditional generation for high-throughput drug discovery.
comment: 10 pages, 2 figures
♻ ☆ PFT: Phonon Fine-tuning for Machine Learned Interatomic Potentials
Many materials properties depend on higher-order derivatives of the potential energy surface, yet machine learned interatomic potentials (MLIPs) trained with a standard loss on energy, force, and stress errors can exhibit error in curvature, degrading the prediction of vibrational properties. We introduce phonon fine-tuning (PFT), which directly supervises second-order force constants of materials by matching MLIP energy Hessians to DFT-computed force constants from finite displacement phonon calculations. To scale to large supercells, PFT stochastically samples Hessian columns and computes the loss with a single Hessian-vector product. We also use a simple co-training scheme to incorporate upstream data to mitigate catastrophic forgetting. On the MDR Phonon benchmark, PFT improves Nequix MP by 55% on average across phonon thermodynamic properties and achieves state-of-the-art accuracy among models trained on Materials Project trajectories. PFT also generalizes to improve properties beyond second-derivatives, improving thermal conductivity predictions that rely on third-order derivatives of the potential energy.
♻ ☆ How Out-of-Distribution Detection Learning Theory Enhances Transformer: Learnability and Reliability
Transformers excel in natural language processing and computer vision tasks. However, they still face challenges in generalizing to Out-of-Distribution (OOD) datasets, i.e. data whose distribution differs from that seen during training. OOD detection aims to distinguish outliers while preserving in-distribution (ID) data performance. This paper introduces the OOD detection Probably Approximately Correct (PAC) Theory for transformers, which establishes the conditions for data distribution and model configurations for the OOD detection learnability of transformers. It shows that outliers can be accurately represented and distinguished with sufficient data under conditions. The theoretical implications highlight the trade-off between theoretical principles and practical training paradigms. By examining this trade-off, we naturally derived the rationale for leveraging auxiliary outliers to enhance OOD detection. Our theory suggests that by penalizing the misclassification of outliers within the loss function and strategically generating soft synthetic outliers, one can robustly bolster the reliability of transformer networks. This approach yields a novel algorithm that ensures learnability and refines the decision boundaries between inliers and outliers. In practice, the algorithm consistently achieves state-of-the-art (SOTA) performance across various data formats.
♻ ☆ Corrective Diffusion Language Models
While Diffusion Language Models (DLMs) are theoretically well-suited for iterative refinement due to their non-causal structure, they often fail to reliably revise incorrect tokens in practice. The key challenge lies in the model's inability to distinguish between correct and erroneous tokens in a visible sequence. Standard masked diffusion language model (MDLM) training is restricted to the objective of unmasking, undermining the effectiveness of refinement guided by confidence. Based on this observation, we study corrective behavior in DLMs, defined as the ability to assign lower confidence to incorrect tokens and iteratively refine them while preserving correct content. We show that this capability is not induced by conventional masked diffusion objectives and propose a post-training principle oriented by correction that explicitly supervises visible incorrect tokens, enabling discriminative confidence and targeted refinement. To evaluate corrective behavior, we introduce the Code Revision Benchmark, a controllable and executable benchmark for assessing error localization and in-place correction. Experiments on code revision tasks and parallel decoding scenarios demonstrate that models trained with our approach substantially outperform standard MDLMs, with gains that are most pronounced when parallel decoding introduces substantial uncertainty and iterative refinement becomes essential. Our code is publicly available at https://github.com/zhangshuibai/CDLM.
comment: 21 pages
♻ ☆ Machine learning for option pricing: an empirical investigation of network architectures
We consider the supervised learning problem of learning the price of an option or the implied volatility given appropriate input data (model parameters) and corresponding output data (option prices or implied volatilities). The majority of articles in this literature considers a (plain) feed forward neural network architecture in order to connect the neurons used for learning the function mapping inputs to outputs. In this article, motivated by methods in image classification and recent advances in machine learning methods for PDEs, we investigate empirically whether and how the choice of network architecture affects the accuracy and training time of a machine learning algorithm. We find that the generalized highway network architecture achieves the best performance, when considering the mean squared error and the training time as criteria, within the considered parameter budgets for the Black-Scholes and Heston option pricing problems. Considering the transformed implied volatility problem, a simplified DGM variant achieves the lowest error among the tested architectures. We also carry out a capacity-normalised comparison for completeness, where all architectures are evaluated with an equal number of parameters. Finally, for the implied volatility problem, we additionally include experiments using real market data.
comment: 29 pages, 27 figures, 23 tables, revised version. Serena Della Corte has been added as co-author to reflect her contribution to the revised analysis and results. Several sections have been updated accordingly
♻ ☆ FS-KAN: Permutation Equivariant Kolmogorov-Arnold Networks via Function Sharing
Permutation equivariant neural networks employing parameter-sharing schemes have emerged as powerful models for leveraging a wide range of data symmetries, significantly enhancing the generalization and computational efficiency of the resulting models. Recently, Kolmogorov-Arnold Networks (KANs) have demonstrated promise through their improved interpretability and expressivity compared to traditional architectures based on MLPs. While equivariant KANs have been explored in recent literature for a few specific data types, a principled framework for applying them to data with permutation symmetries in a general context remains absent. This paper introduces Function Sharing KAN (FS-KAN), a principled approach to constructing equivariant and invariant KA layers for arbitrary permutation symmetry groups, unifying and significantly extending previous work in this domain. We derive the basic construction of these FS-KAN layers by generalizing parameter-sharing schemes to the Kolmogorov-Arnold setup and provide a theoretical analysis demonstrating that FS-KANs have the same expressive power as networks that use standard parameter-sharing layers, allowing us to transfer well-known and important expressivity results from parameter-sharing networks to FS-KANs. Empirical evaluations on multiple data types and symmetry groups show that FS-KANs exhibit superior data efficiency compared to standard parameter-sharing layers, by a wide margin in certain cases, while preserving the interpretability and adaptability of KANs, making them an excellent architecture choice in low-data regimes.
♻ ☆ Correcting for Position Bias in Learning to Rank: A Control Function Approach
Implicit feedback data, such as user clicks, is commonly used in learning-to-rank (LTR) systems because it is easy to collect and it often reflects user preferences. However, this data is prone to various biases, and training an LTR algorithm directly on biased data can result in suboptimal ranking performance. One of the most prominent and well-studied biases in implicit feedback data is position bias, which occurs because users are more likely to interact with higher-ranked items regardless of their true relevance. In this paper, we propose a novel control function-based method that accounts for position bias in a two-stage process. The first stage uses exogenous variation from the residuals of the ranking process to correct for position bias in the second stage click equation. Unlike previous position bias correction methods, our method does not require knowledge of the click or propensity model and allows for nonlinearity in the underlying ranking model. Moreover, our method is general and allows for debiasing any state-of-the-art ranking algorithm by plugging it into the second stage. We also introduce a new technique to debias validation clicks for hyperparameter tuning to select the optimal model in the absence of unbiased validation data. Experimental results show that our method outperforms state-of-the-art approaches in correcting for position bias.
♻ ☆ OD-Stega: LLM-Based Relatively Secure Steganography via Optimized Distributions EACL 2026
We consider coverless steganography where a Large Language Model (LLM) is used to generate stego-texts in combination with arithmetic coding. An efficient method should embed secret bits in as few language tokens as possible while keeping the stego-text as natural as possible. We show that this problem is equivalent to maximizing the entropy of a replacement probability distribution of the next token generation, subject to a constraint on the divergence between the new distribution and the original one produced by the LLM. A closed-form solution is provided under either the KL divergence or the total variation constraint. Several important practical issues are also tackled: 1) An often-overlooked tokenization mismatch issue is resolved with a simple prompt selection approach, 2) The combination of the optimized distribution and the vocabulary truncation technique is considered, and 3) The incorporation of the proposed approach with existing (potentially non arithmetic coding based) techniques, e.g., the Discop technique.
comment: Accepted to EACL 2026
♻ ☆ Align & Invert: Solving Inverse Problems with Diffusion and Flow-based Models via Representation Alignment
Enforcing alignment between the internal representations of diffusion or flow-based generative models and those of pretrained self-supervised encoders has recently been shown to provide a powerful inductive bias, improving both convergence and sample quality. In this work, we extend this idea to inverse problems, where pretrained generative models are employed as priors. We propose applying representation alignment (REPA) between diffusion or flow-based models and a DINOv2 visual encoder, to guide the reconstruction process at inference time. Although ground-truth signals are unavailable in inverse problems, we empirically show that aligning model representations of approximate target features can substantially enhance reconstruction quality and perceptual realism. We provide theoretical results showing (a) that REPA regularization can be viewed as a variational approach for minimizing a divergence measure in the DINOv2 embedding space, and (b) how under certain regularity assumptions REPA updates steer the latent diffusion states toward those of the clean image. These results offer insights into the role of REPA in improving perceptual fidelity. Finally, we demonstrate the generality of our approach by We integrate REPA into multiple state-of-the-art inverse problem solvers, and provide extensive experiments on super-resolution, box inpainting, Gaussian deblurring, and motion deblurring confirming that our method consistently improves reconstruction quality, while also providing efficiency gains reducing the number of required discretization steps.
♻ ☆ Reward-Preserving Attacks For Robust Reinforcement Learning
Adversarial training in reinforcement learning (RL) is challenging because perturbations cascade through trajectories and compound over time, making fixed-strength attacks either overly destructive or too conservative. We propose reward-preserving attacks, which adapt adversarial strength so that an $α$ fraction of the nominal-to-worst-case return gap remains achievable at each state. In deep RL, perturbation magnitudes $η$ are selected dynamically, using a learned critic $Q((s,a),η)$ that estimates the expected return of $α$-reward-preserving rollouts. For intermediate values of $α$, this adaptive training yields policies that are robust across a wide range of perturbation magnitudes while preserving nominal performance, outperforming fixed-radius and uniformly sampled-radius adversarial training.
comment: 27 pages, 28 figures, 4 algorithms, 3 tables, preprint
♻ ☆ RobustExplain: Evaluating Robustness of LLM-Based Explanation Agents for Recommendation
Large Language Models (LLMs) are increasingly used to generate natural-language explanations in recommender systems, acting as explanation agents that reason over user behavior histories. While prior work has focused on explanation fluency and relevance under fixed inputs, the robustness of LLM-generated explanations to realistic user behavior noise remains largely unexplored. In real-world web platforms, interaction histories are inherently noisy due to accidental clicks, temporal inconsistencies, missing values, and evolving preferences, raising concerns about explanation stability and user trust. We present RobustExplain, the first systematic evaluation framework for measuring the robustness of LLM-generated recommendation explanations. RobustExplain introduces five realistic user behavior perturbations evaluated across multiple severity levels and a multi-dimensional robustness metric capturing semantic, keyword, structural, and length consistency. Our goal is to establish a principled, task-level evaluation framework and initial robustness baselines, rather than to provide a comprehensive leaderboard across all available LLMs. Experiments on four representative LLMs (7B--70B) show that current models exhibit only moderate robustness, with larger models achieving up to 8% higher stability. Our results establish the first robustness benchmarks for explanation agents and highlight robustness as a critical dimension for trustworthy, agent-driven recommender systems at web scale.
comment: 8 pages, 4 figures
♻ ☆ Adaptive Swarm Mesh Refinement using Deep Reinforcement Learning with Local Rewards
Simulating physical systems is essential in engineering, but analytical solutions are limited to straightforward problems. Consequently, numerical methods like the Finite Element Method (FEM) are widely used. However, the FEM becomes computationally expensive as problem complexity and accuracy demands increase. Adaptive Mesh Refinement (AMR) improves the FEM by dynamically placing mesh elements on the domain, balancing computational speed and accuracy. Classical AMR depends on heuristics or expensive error estimators, which may lead to suboptimal performance for complex simulations. While AMR methods based on machine learning are promising, they currently only scale to simple problems. In this work, we formulate AMR as a system of collaborating, homogeneous agents that iteratively split into multiple new agents. This agent-wise perspective enables a spatial reward formulation focused on reducing the maximum mesh element error. Our approach, Adaptive Swarm Mesh Refinement++ (ASMR++), offers efficient, stable optimization and generates highly adaptive meshes at user-defined resolution at inference time. Extensive experiments demonstrate that ASMR++ outperforms heuristic approaches and learned baselines, matching the performance of expensive error-based oracle AMR strategies. ASMR additionally generalizes to different domains during inference, and produces meshes that simulate up to 2 orders of magnitude faster than uniform refinements in more demanding settings.
comment: Submitted to Journal of Machine Learning Research (JMLR)
♻ ☆ Deep Residual Echo State Networks: exploring residual orthogonal connections in untrained Recurrent Neural Networks
Echo State Networks (ESNs) are a particular type of untrained Recurrent Neural Networks (RNNs) within the Reservoir Computing (RC) framework, popular for their fast and efficient learning. However, traditional ESNs often struggle with long-term information processing. In this paper, we introduce a novel class of deep untrained RNNs based on temporal residual connections, called Deep Residual Echo State Networks (DeepResESNs). We show that leveraging a hierarchy of untrained residual recurrent layers significantly boosts memory capacity and long-term temporal modeling. For the temporal residual connections, we consider different orthogonal configurations, including randomly generated and fixed-structure configurations, and we study their effect on network dynamics. A thorough mathematical analysis outlines necessary and sufficient conditions to ensure stable dynamics within DeepResESN. Our experiments on a variety of time series tasks showcase the advantages of the proposed approach over traditional shallow and deep RC.
comment: 10 pages, 5 figures, 4 tables; minor fixes to tables
♻ ☆ LLMs as Orchestrators: Constraint-Compliant Multi-Agent Optimization for Recommendation Systems
Recommendation systems must optimize multiple objectives while satisfying hard business constraints such as fairness and coverage. For example, an e-commerce platform may require every recommendation list to include items from multiple sellers and at least one newly listed product; violating such constraints--even once--is unacceptable in production. Prior work on multi-objective recommendation and recent LLM-based recommender agents largely treat constraints as soft penalties or focus on item scoring and interaction, leading to frequent violations in real-world deployments. How to leverage LLMs for coordinating constrained optimization in recommendation systems remains underexplored. We propose DualAgent-Rec, an LLM-coordinated dual-agent framework for constrained multi-objective e-commerce recommendation. The framework separates optimization into an Exploitation Agent that prioritizes accuracy under hard constraints and an Exploration Agent that promotes diversity through unconstrained Pareto search. An LLM-based coordinator adaptively allocates resources between agents based on optimization progress and constraint satisfaction, while an adaptive epsilon-relaxation mechanism guarantees feasibility of final solutions. Experiments on the Amazon Reviews 2023 dataset demonstrate that DualAgent-Rec achieves 100% constraint satisfaction and improves Pareto hypervolume by 4-6% over strong baselines, while maintaining competitive accuracy-diversity trade-offs. These results indicate that LLMs can act as effective orchestration agents for deployable and constraint-compliant recommendation systems.
comment: 8 pages, 5 figures
♻ ☆ Utilising Gradient-Based Proposals Within Sequential Monte Carlo Samplers for Training of Partial Bayesian Neural Networks
Partial Bayesian neural networks (pBNNs) have been shown to perform competitively with fully Bayesian neural networks while only having a subset of the parameters be stochastic. Using sequential Monte Carlo (SMC) samplers as the inference method for pBNNs gives a non-parametric probabilistic estimation of the stochastic parameters, and has shown improved performance over parametric methods. In this paper we introduce a new SMC-based training method for pBNNs by utilising a guided proposal and incorporating gradient-based Markov kernels, which gives us better scalability on high dimensional problems. We show that our new method outperforms the state-of-the-art in terms of predictive performance and optimal loss. We also show that pBNNs scale well with larger batch sizes, resulting in significantly reduced training times and often better performance.
♻ ☆ One Model, Any Conjunctive Query: Graph Neural Networks for Answering Queries over Incomplete Knowledge Graphs
Motivated by the incompleteness of modern knowledge graphs, a new setup for query answering has emerged, where the goal is to predict answers that do not necessarily appear in the knowledge graph, but are present in its completion. In this paper, we formally introduce and study two query answering problems, namely, query answer classification and query answer retrieval. To solve these problems, we propose AnyCQ, a model that can classify answers to any conjunctive query on any knowledge graph. At the core of our framework lies a graph neural network trained using a reinforcement learning objective to answer Boolean queries. Trained only on simple, small instances, AnyCQ generalizes to large queries of arbitrary structure, reliably classifying and retrieving answers to queries that existing approaches fail to handle. This is empirically validated through our newly proposed, challenging benchmarks. Finally, we empirically show that AnyCQ can effectively transfer to completely novel knowledge graphs when equipped with an appropriate link prediction model, highlighting its potential for querying incomplete data.
comment: Proceedings of the Fourth Learning on Graphs Conference (LoG 2025)
♻ ☆ Incorporating the ChEES Criterion into Sequential Monte Carlo Samplers
Markov chain Monte Carlo (MCMC) methods are a powerful but computationally expensive way of performing non-parametric Bayesian inference. MCMC proposals which utilise gradients, such as Hamiltonian Monte Carlo (HMC), can better explore the parameter space of interest if the additional hyper-parameters are chosen well. The No-U-Turn Sampler (NUTS) is a variant of HMC which is extremely effective at selecting these hyper-parameters but is slow to run and is not suited to GPU architectures. An alternative to NUTS, Change in the Estimator of the Expected Square HMC (ChEES-HMC) was shown not only to run faster than NUTS on GPU but also sample from posteriors more efficiently. Sequential Monte Carlo (SMC) samplers are another sampling method which instead output weighted samples from the posterior. They are very amenable to parallelisation and therefore being run on GPUs while having additional flexibility in their choice of proposal over MCMC. We incorporate (ChEEs-HMC) as a proposal into SMC samplers and demonstrate competitive but faster performance than NUTS on a number of tasks.
comment: 16 pages, 9 figures
♻ ☆ RNAGenScape: Property-Guided, Optimized Generation of mRNA Sequences with Manifold Langevin Dynamics ICML 2025
Generating property-optimized mRNA sequences is central to applications such as vaccine design and protein replacement therapy, but remains challenging due to limited data, complex sequence-function relationships, and the narrow space of biologically viable sequences. Generative methods that drift away from the data manifold can yield sequences that fail to fold, translate poorly, or are otherwise nonfunctional. We present RNAGenScape, a property-guided manifold Langevin dynamics framework for mRNA sequence generation that operates directly on a learned manifold of real data. By performing iterative local optimization constrained to this manifold, RNAGenScape preserves biological viability, accesses reliable guidance, and avoids excursions into nonfunctional regions of the ambient sequence space. The framework integrates three components: (1) an autoencoder jointly trained with a property predictor to learn a property-organized latent manifold, (2) a denoising autoencoder that projects updates back onto the manifold, and (3) a property-guided Langevin dynamics procedure that performs optimization along the manifold. Across three real-world mRNA datasets spanning two orders of magnitude in size, RNAGenScape increases median property gain by up to 148% and success rate by up to 30% while ensuring biological viability of generated sequences, and achieves competitive inference efficiency relative to existing generative approaches.
comment: ICML 2025 Generative AI and Biology (GenBio) Workshop, Oral presentation (top 9.7%)
♻ ☆ Factorizable joint shift revisited
Factorizable joint shift (FJS) represents a type of distribution shift (or dataset shift) that comprises both covariate and label shift. Recently, it has been observed that FJS actually arises from consecutive label and covariate (or vice versa) shifts. Research into FJS so far has been confined to the case of categorical labels. We propose a framework for analysing distribution shift in the case of a general label space, thus covering both classification and regression models. Based on the framework, we generalise existing results on FJS to general label spaces and present and analyse a related extension of the expectation maximisation (EM) algorithm for class prior probabilities. We also take a fresh look at generalized label shift (GLS) in the case of a general label space.
comment: 28 pages
♻ ☆ Residual Reservoir Memory Networks IJCNN 2025
We introduce a novel class of untrained Recurrent Neural Networks (RNNs) within the Reservoir Computing (RC) paradigm, called Residual Reservoir Memory Networks (ResRMNs). ResRMN combines a linear memory reservoir with a non-linear reservoir, where the latter is based on residual orthogonal connections along the temporal dimension for enhanced long-term propagation of the input. The resulting reservoir state dynamics are studied through the lens of linear stability analysis, and we investigate diverse configurations for the temporal residual connections. The proposed approach is empirically assessed on time-series and pixel-level 1-D classification tasks. Our experimental results highlight the advantages of the proposed approach over other conventional RC models.
comment: 7 pages, 6 figures, accepted at IJCNN 2025; added IEEE copyright
♻ ☆ SAC-GLAM: Improving Online RL for LLM agents with Soft Actor-Critic and Hindsight Relabeling NeurIPS 2025
The past years have seen Large Language Models (LLMs) strive not only as generative models but also as agents solving textual sequential decision-making tasks. When facing complex environments where their zero-shot abilities are insufficient, recent work showed online Reinforcement Learning (RL) could be used for the LLM agent to discover and learn efficient strategies interactively. However, most prior work sticks to on-policy algorithms, which greatly reduces the scope of methods such agents could use for both exploration and exploitation, such as experience replay and hindsight relabeling. Yet, such methods may be key for LLM learning agents, and in particular when designing autonomous intrinsically motivated agents sampling and pursuing their own goals (i.e. autotelic agents). This paper presents and studies an adaptation of Soft Actor-Critic and hindsight relabeling to LLM agents. Our method not only paves the path towards autotelic LLM agents that learn online but can also outperform on-policy methods in more classic multi-goal RL environments.
comment: This work has been presented at the IMOL workshop at NeurIPS 2025 (https://neurips.cc/virtual/2024/101058)
♻ ☆ WorldLLM: Improving LLMs' world modeling using curiosity-driven theory-making
Large Language Models (LLMs) possess general world knowledge but often struggle to generate precise predictions in structured, domain-specific contexts such as simulations. These limitations arise from their inability to ground their broad, unstructured understanding in specific environments. To address this, we present WorldLLM, a framework that enhances LLM-based world modeling by combining Bayesian inference and autonomous active exploration with reinforcement learning. WorldLLM leverages the in-context learning abilities of LLMs to guide an LLM-based world model's predictions using natural language hypotheses given in its prompt. These hypotheses are iteratively refined through a Bayesian inference framework that leverages a second LLM as the proposal distribution given collected evidence. This evidence is collected using a curiosity-driven reinforcement learning policy that explores the environment to find transitions with a low log-likelihood under our LLM-based predictive model using the current hypotheses. By alternating between refining hypotheses and collecting new evidence, our framework autonomously drives continual improvement of the predictions. Our experiments demonstrate the effectiveness of WorldLLM in a textual game environment that requires agents to manipulate and combine objects. The framework not only enhances predictive accuracy, but also generates human-interpretable theories of environment dynamics.
comment: This project's code can be found at https://github.com/flowersteam/WorldLLM. This project was presented at RLDM 2025 (https://rldm.org/)
♻ ☆ A Coreset Selection of Coreset Selection Literature: Introduction and Recent Advances
Coreset selection targets the challenge of finding a small, representative subset of a large dataset that preserves essential patterns for effective machine learning. Although several surveys have examined data reduction strategies before, most focus narrowly on either classical geometry-based methods or active learning techniques. In contrast, this survey presents a more comprehensive view by unifying three major lines of coreset research, namely, training-free, training-oriented, and label-free approaches, into a single taxonomy. We present subfields often overlooked by existing work, including submodular formulations, bilevel optimization, and recent progress in pseudo-labeling for unlabeled datasets. Additionally, we examine how pruning strategies influence generalization and neural scaling laws, offering new insights that are absent from prior reviews. Finally, we compare these methods under varying computational, robustness, and performance demands and highlight open challenges, such as robustness, outlier filtering, and adapting coreset selection to foundation models, for future research.
♻ ☆ Representative Action Selection for Large Action Space Bandit Families
We study the problem of selecting a subset from a large action space shared by a family of bandits, with the goal of achieving performance nearly matching that of using the full action space. Indeed, in many natural situations, while the nominal set of actions may be large, there also exist significant correlations between the rewards of different actions. In this paper we propose an algorithm that can significantly reduce the action space when such correlations are present, without the need to a-priori know the correlation structure. We provide theoretical guarantees on the performance of the algorithm and demonstrate its practical effectiveness through empirical comparisons with Thompson Sampling and Upper Confidence Bound methods.
♻ ☆ Near-Optimal Online Deployment and Routing for Streaming LLMs ICLR 2026
The rapid pace at which new large language models (LLMs) appear, and older ones become obsolete, forces providers to manage a streaming inventory under a strict concurrency cap and per-query cost budgets. We cast this as an online decision problem that couples stage-wise deployment (at fixed maintenance windows) with per-query routing among live models. We introduce StageRoute, a hierarchical algorithm that (i) optimistically selects up to $M_{\max}$ models for the next stage using reward upper-confidence and cost lower-confidence bounds, and (ii) routes each incoming query by solving a budget- and throughput-constrained bandit subproblem over the deployed set. We prove a regret of $\tilde{\mathcal{O}}(T^{2/3})$ with a matching lower bound, establishing near-optimality, and validate the theory empirically: StageRoute tracks a strong oracle under tight budgets across diverse workloads.
comment: ICLR 2026
♻ ☆ $π_\texttt{RL}$: Online RL Fine-tuning for Flow-based Vision-Language-Action Models
Vision-Language-Action (VLA) models enable robots to understand and perform complex tasks from multimodal input. Although recent work explores using reinforcement learning (RL) to automate the laborious data collection process in scaling supervised fine-tuning (SFT), applying RL to large-scale flow-based VLAs (\eg, $π_0$, $π_{0.5}$) remains challenging due to intractable action log-likelihoods raised from flow matching. We address this challenge with $π_{\texttt{RL}}$, featuring two technical approaches: (1) \textbf{Flow-Noise} models the denoising process as a discrete-time MDP with a learnable noise network for exact log-likelihood computation. (2) \textbf{Flow-SDE} integrates denoising with agent-environment interaction, formulating a two-layer MDP that employs ODE-to-SDE conversion for efficient RL exploration. We evaluate $π_{\texttt{RL}}$ across various benchmarks, with experiments demonstrating that RL yields significant performance improvements in both in-distribution and out-of-distribution settings.
♻ ☆ Online Bayesian Experimental Design for Partially Observed Dynamical Systems
Bayesian experimental design (BED) provides a principled framework for optimizing data collection by choosing experiments that are maximally informative about unknown parameters. However, existing methods cannot deal with the joint challenge of (a) partially observable dynamical systems, where only noisy and incomplete observations are available, and (b) fully online inference, which updates posterior distributions and selects designs sequentially in a computationally efficient manner. Under partial observability, dynamical systems are naturally modeled as state-space models (SSMs), where latent states mediate the link between parameters and data, making the likelihood -- and thus information-theoretic objectives like the expected information gain (EIG) -- intractable. We address these challenges by deriving new estimators of the EIG and its gradient that explicitly marginalize latent states, enabling scalable stochastic optimization in nonlinear SSMs. Our approach leverages nested particle filters for efficient online state-parameter inference with convergence guarantees. Applications to realistic models, such as the susceptible-infectious-recovered (SIR) and a moving source location task, show that our framework successfully handles both partial observability and online inference.
comment: 20 pages, 7 figures
♻ ☆ d3LLM: Ultra-Fast Diffusion LLM using Pseudo-Trajectory Distillation
Diffusion large language models (dLLMs) offer capabilities beyond those of autoregressive (AR) LLMs, such as parallel decoding and random-order generation. However, realizing these benefits in practice is non-trivial, as dLLMs inherently face an accuracy-parallelism trade-off. Despite increasing interest, existing methods typically focus on only one-side of the coin, targeting either efficiency or performance. To address this limitation, we propose d3LLM (Pseudo-Distilled Diffusion Large Language Model), striking a balance between accuracy and parallelism: (i) during training, we introduce pseudo-trajectory distillation to teach the model which tokens can be decoded confidently at early steps, thereby improving parallelism; (ii) during inference, we employ entropy-based multi-block decoding with a KV-cache refresh mechanism to achieve high parallelism while maintaining accuracy. To better evaluate dLLMs, we also introduce AUP (Accuracy Under Parallelism), a new metric that jointly measures accuracy and parallelism. Experiments demonstrate that our d3LLM achieves up to 10$\times$ speedup over vanilla LLaDA/Dream and 5$\times$ speedup over AR models without much accuracy drop. Our code is available at https://github.com/hao-ai-lab/d3LLM.
♻ ☆ Graph Homomorphism Distortion: A Metric to Distinguish Them All and in the Latent Space Bind Them
A large driver of the complexity of graph learning is the interplay between \emph{structure} and \emph{features}.When analyzing the expressivity of graph neural networks, however, existing approaches ignore features in favor of structure, making it nigh-impossible to assess to what extent two graphs with close features should be considered similar.We address this by developing a new \mbox{(pseudo-)metric} based on graph homomorphisms.Inspired by concepts from metric geometry, our \emph{graph homomorphism distortion} measures the minimal worst-case distortion that node features of one graph are subjected to when mapping one graph to another.We demonstrate the utility of our novel measure by showing that (i.) it can be efficiently calculated under some additional assumptions, (ii.) it complements existing expressivity measures like \mbox{$1$-WL}, and (iii.)it permits defining structural encodings, which improve the predictive capabilities of graph neural networks.
♻ ☆ Perturbation-Induced Linearization: Constructing Unlearnable Data with Solely Linear Classifiers ICLR 2026
Collecting web data to train deep models has become increasingly common, raising concerns about unauthorized data usage. To mitigate this issue, unlearnable examples introduce imperceptible perturbations into data, preventing models from learning effectively. However, existing methods typically rely on deep neural networks as surrogate models for perturbation generation, resulting in significant computational costs. In this work, we propose Perturbation-Induced Linearization (PIL), a computationally efficient yet effective method that generates perturbations using only linear surrogate models. PIL achieves comparable or better performance than existing surrogate-based methods while reducing computational time dramatically. We further reveal a key mechanism underlying unlearnable examples: inducing linearization to deep models, which explains why PIL can achieve competitive results in a very short time. Beyond this, we provide an analysis about the property of unlearnable examples under percentage-based partial perturbation. Our work not only provides a practical approach for data protection but also offers insights into what makes unlearnable examples effective.
comment: This paper has been accepted to ICLR 2026
♻ ☆ Low-Rank Key Value Attention
The key-value (KV) cache is a primary memory bottleneck in Transformers. We propose Low-Rank Key-Value (LRKV) attention, which reduces KV cache memory by exploiting redundancy across attention heads, while being compute efficient. Each layer uses a shared full-rank KV projection augmented with low-rank, head-specific residuals, providing a continuous trade-off between complete sharing and full independence. After pretraining models of size 128M to 6.3B parameters, LRKV consistently achieves the lowest test loss among standard MHA, MQA/GQA, and MLA while using only 45-53\% of MHA's KV cache. LRKV reaches equivalent baseline quality 18-25\% faster (measured in training steps). After supervised midtraining, LRKV achieves the highest downstream task performance across ARC-Easy, ARC-Challenge, MMLU, GSM8K, and HumanEval benchmarks.
♻ ☆ Transforming Datasets to Requested Complexity with Projection-based Many-Objective Genetic Algorithm
The research community continues to seek increasingly more advanced synthetic data generators to reliably evaluate the strengths and limitations of machine learning methods. This work aims to increase the availability of datasets encompassing a diverse range of problem complexities by proposing a genetic algorithm that optimizes a set of problem complexity measures for classification and regression tasks towards specific targets. For classification, a set of 10 complexity measures was used, while for regression tasks, 4 measures demonstrating promising optimization capabilities were selected. Experiments confirmed that the proposed genetic algorithm can generate datasets with varying levels of difficulty by transforming synthetically created datasets to achieve target complexity values through linear feature projections. Evaluations involving state-of-the-art classifiers and regressors revealed a correlation between the complexity of the generated data and the recognition quality.
♻ ☆ Redefining Neural Operators in $d+1$ Dimensions for Embedding Evolution
Neural Operators (NOs) have emerged as powerful tools for learning mappings between function spaces. Among them, the kernel integral operator has been widely used in universally approximating architectures. Following the original formulation, most advancements focus on designing better parameterizations for the kernel over the original physical domain (with $d$ spatial dimensions, $d\in{1,2,3,\ldots}$). In contrast, embedding evolution remains largely unexplored, which often drives models toward brute-force embedding lengthening to improve approximation, but at the cost of substantially increased computation. In this paper, we introduce an auxiliary dimension that explicitly models embedding evolution in operator form, thereby redefining the NO framework in $d+1$ dimensions (the original $d$ dimensions plus one auxiliary dimension). Under this formulation, we develop a Schrödingerised Kernel Neural Operator (SKNO), which leverages Fourier-based operators to model the $d+1$ dimensional evolution. Across more than ten increasingly challenging benchmarks, ranging from the 1D heat equation to the highly nonlinear 3D Rayleigh-Taylor instability, SKNO consistently outperforms other baselines. We further validate its resolution invariance under mixed-resolution training and super-resolution inference, and evaluate zero-shot generalization to unseen temporal regimes. In addition, we present a broader set of design choices for the lifting and recovery operators, demonstrating their impact on SKNO's predictive performance.
♻ ☆ Delayed Momentum Aggregation: Communication-efficient Byzantine-robust Federated Learning with Partial Participation
Partial participation is essential for communication-efficient federated learning at scale, yet existing Byzantine-robust methods typically assume full client participation. In the partial participation setting, a majority of the sampled clients may be Byzantine, once Byzantine clients dominate, existing methods break down immediately. We introduce delayed momentum aggregation, a principle where the central server aggregates cached momentum from non-sampled clients along with fresh momentum from sampled clients. This principle ensures Byzantine clients remain a minority from the server's perspective even when they dominate the sampled set. We instantiate this principle in our optimizer DeMoA. We analyze the convergence rate of DeMoA, showing that DeMoA is Byzantine-robust under partial participation. Experiments show that, with 20% Byzantine ratio and only 10% partial participation rate, DeMoA achieves the best accuracy even when existing methods fail empirically.
comment: Substantial corrections to the proofs, removal of the bounded gradient assumption, and additional experimental results
♻ ☆ scDataset: Scalable Data Loading for Deep Learning on Large-Scale Single-Cell Omics
Training deep learning models on single-cell datasets with hundreds of millions of cells requires loading data from disk, as these datasets exceed available memory. While random sampling provides the data diversity needed for effective training, it is prohibitively slow due to the random access pattern overhead, whereas sequential streaming achieves high throughput but introduces biases that degrade model performance. We present scDataset, a PyTorch data loader that enables efficient training from on-disk data with seamless integration across diverse storage formats. Our approach combines block sampling and batched fetching to achieve quasi-random sampling that balances I/O efficiency with minibatch diversity. On Tahoe-100M, a dataset of 100 million cells, scDataset achieves more than two orders of magnitude speedup compared to true random sampling while working directly with AnnData files. We provide theoretical bounds on minibatch diversity and empirically show that scDataset matches the performance of true random sampling across multiple classification tasks.
♻ ☆ Wikontic: Constructing Wikidata-Aligned, Ontology-Aware Knowledge Graphs with Large Language Models
Knowledge graphs (KGs) provide structured, verifiable grounding for large language models (LLMs), but current LLM-based systems commonly use KGs as auxiliary structures for text retrieval, leaving their intrinsic quality underexplored. In this work, we propose Wikontic, a multi-stage pipeline that constructs KGs from open-domain text by extracting candidate triplets with qualifiers, enforcing Wikidata-based type and relation constraints, and normalizing entities to reduce duplication. The resulting KGs are compact, ontology-consistent, and well-connected; on MuSiQue, the correct answer entity appears in 96% of generated triplets. On HotpotQA, our triplets-only setup achieves 76.0 F1, and on MuSiQue 59.8 F1, matching or surpassing several retrieval-augmented generation baselines that still require textual context. In addition, Wikontic attains state-of-the-art information-retention performance on the MINE-1 benchmark (86%), outperforming prior KG construction methods. Wikontic is also efficient at build time: KG construction uses less than 1,000 output tokens, about 3$\times$ fewer than AriGraph and $<$1/20 of GraphRAG. The proposed pipeline enhances the quality of the generated KG and offers a scalable solution for leveraging structured knowledge in LLMs.
♻ ☆ Pushing the Limits of Distillation-Based Class-Incremental Learning via Lightweight Plugins
Existing replay and distillation-based class-incremental learning (CIL) methods are effective at retaining past knowledge but are still constrained by the stability-plasticity dilemma. Since their resulting models are learned over a sequence of incremental tasks, they encode rich representations and can be regarded as pre-trained bases. Building on this view, we propose a plug-in extension paradigm termed Deployment of LoRA Components (DLC) to enhance them. For each task, we use Low-Rank Adaptation (LoRA) to inject task-specific residuals into the base model's deep layers. During inference, representations with task-specific residuals are aggregated to produce classification predictions. To mitigate interference from non-target LoRA plugins, we introduce a lightweight weighting unit. This unit learns to assign importance scores to different LoRA-tuned representations. Like downloadable content in software, DLC serves as a plug-and-play enhancement that efficiently extends the base methods. Remarkably, on the large-scale ImageNet-100, with merely 4\% of the parameters of a standard ResNet-18, our DLC model achieves a significant 8\% improvement in accuracy, demonstrating exceptional efficiency. Under a fixed memory budget, methods equipped with DLC surpass state-of-the-art expansion-based methods.
comment: 10 pages, 6 figures, 2 tables
♻ ☆ Geodesic Calculus on Implicitly Defined Latent Manifolds
Latent manifolds of autoencoders provide low-dimensional representations of data, which can be studied from a geometric perspective. We propose to describe these latent manifolds as implicit submanifolds of some ambient latent space. Based on this, we develop tools for a discrete Riemannian calculus approximating classical geometric operators. These tools are robust against inaccuracies of the implicit representation often occurring in practical examples. To obtain a suitable implicit representation, we propose to learn an approximate projection onto the latent manifold by minimizing a denoising objective. This approach is independent of the underlying autoencoder and supports the use of different Riemannian geometries on the latent manifolds. The framework in particular enables the computation of geodesic paths connecting given end points and shooting geodesics via the Riemannian exponential maps on latent manifolds. We evaluate our approach on various autoencoders trained on synthetic and real data.
comment: 24 pages, 18 figures
♻ ☆ Diffusion Models in Simulation-Based Inference: A Tutorial Review
Diffusion models have recently emerged as powerful learners for simulation-based inference (SBI), enabling fast and accurate estimation of latent parameters from simulated and real data. Their score-based formulation offers a flexible way to learn conditional or joint distributions over parameters and observations, thereby providing a versatile solution to various modeling problems. In this tutorial review, we synthesize recent developments on diffusion models for SBI, covering design choices for training, inference, and evaluation. We highlight opportunities created by various concepts such as guidance, score composition, flow matching, consistency models, and joint modeling. Furthermore, we discuss how efficiency and statistical accuracy are affected by noise schedules, parameterizations, and samplers. Finally, we illustrate these concepts with case studies across parameter dimensionalities, simulation budgets, and model types, and outline open questions for future research.
♻ ☆ Convergence of Stochastic Gradient Langevin Dynamics in the Lazy Training Regime
Continuous-time models provide important insights into the training dynamics of optimization algorithms in deep learning. In this work, we establish a non-asymptotic convergence analysis of stochastic gradient Langevin dynamics (SGLD), which is an Itô stochastic differential equation (SDE) approximation of stochastic gradient descent in continuous time, in the lazy training regime. We show that, under regularity conditions on the Hessian of the loss function, SGLD with multiplicative and state-dependent noise (i) yields a non-degenerate kernel throughout the training process with high probability, and (ii) achieves exponential convergence to the empirical risk minimizer in expectation, and we establish finite-time and finite-width bounds on the optimality gap. We corroborate our theoretical findings with numerical examples in the regression setting.
♻ ☆ WL Tests Are Far from All We Need: Revisiting WL-Test Hardness and GNN Expressive Power from a Distributed Computation Perspective
The expressive power of graph neural networks (GNNs) is often studied through their relationship to the Weisfeiler-Lehman (WL) tests. Despite its influence, this perspective leaves two gaps: (i) it is unclear whether WL tests are sufficiently primitive for understanding GNN expressivity, and (ii) WL-induced equivalence does not align well with characterizing the function classes that GNNs can approximate or compute. We attempt to address both gaps. First, we strengthen hardness results for the vanilla WL test, showing that in many settings it is not primitive enough to be implemented by constant-depth GNNs. Second, we propose an alternative framework for studying GNN expressivity based on an extended CONGEST model with an explicit preprocessing phase. Within this framework, we identify implicit shortcuts introduced in prior analyses and establish further results for WL tests in settings where graphs are augmented with virtual nodes and virtual edges.
♻ ☆ Introducing Instruction-Accurate Simulators for Performance Estimation of Autotuning Workloads
Accelerating Machine Learning (ML) workloads requires efficient methods due to their large optimization space. Autotuning has emerged as an effective approach for systematically evaluating variations of implementations. Traditionally, autotuning requires the workloads to be executed on the target hardware (HW). We present an interface that allows executing autotuning workloads on simulators. This approach offers high scalability when the availability of the target HW is limited, as many simulations can be run in parallel on any accessible HW. Additionally, we evaluate the feasibility of using fast instruction-accurate simulators for autotuning. We train various predictors to forecast the performance of ML workload implementations on the target HW based on simulation statistics. Our results demonstrate that the tuned predictors are highly effective. The best workload implementation in terms of actual run time on the target HW is always within the top 3 % of predictions for the tested x86, ARM, and RISC-V-based architectures. In the best case, this approach outperforms native execution on the target HW for embedded architectures when running as few as three samples on three simulators in parallel.
♻ ☆ SINQ: Sinkhorn-Normalized Quantization for Calibration-Free Low-Precision LLM Weights
Post-training quantization has emerged as the most widely used strategy for deploying large language models at low precision. Still, current methods show perplexity degradation at bit-widths less than or equal to 4, partly because representing outliers causes precision issues in parameters that share the same scales as these outliers. This problem is especially pronounced for calibration-free, uniform quantization methods. We introduce SINQ to augment existing post-training quantizers with an additional second-axis scale factor and a fast Sinkhorn-Knopp-style algorithm that finds scales to normalize per-row and per-column variances. We show that this approximates activation-aware quantization by recovering column scales from the weight matrix structure that are predictive of the typical activation magnitudes the matrix received during training. Our method has no interactions between layers and can be trivially applied to new architectures to quantize any linear layer. We evaluate our method on the Qwen3 model family, among others. SINQ reduces the perplexity gap on WikiText2 and C4 by over 50% against uncalibrated uniform quantization baselines, incurs zero to negligible compute overhead, and can be further enhanced by combining it with calibration and non-uniform quantization levels. Code is available at https://github.com/huawei-csl/SINQ.
♻ ☆ One-Shot Federated Learning with Classifier-Free Diffusion Models ICME 2025
Federated learning (FL) enables collaborative learning without data centralization but introduces significant communication costs due to multiple communication rounds between clients and the server. One-shot federated learning (OSFL) addresses this by forming a global model with a single communication round, often relying on the server's model distillation or auxiliary dataset generation - mostly through pre-trained diffusion models (DMs). Existing DM-assisted OSFL methods, however, typically employ classifier-guided DMs, which require training auxiliary classifier models at each client, introducing additional computation overhead. This work introduces OSCAR (One-Shot Federated Learning with Classifier-Free Diffusion Models), a novel OSFL approach that eliminates the need for auxiliary models. OSCAR uses foundation models to devise category-specific data representations at each client which are integrated into a classifier-free diffusion model pipeline for server-side data generation. In our experiments, OSCAR outperforms the state-of-the-art on four benchmark datasets while reducing the communication load by at least 99%.
comment: Published in IEEE ICME 2025
♻ ☆ Rotary Position Encodings for Graphs
We study the extent to which rotary position encodings (RoPE), a recent transformer position encoding algorithm broadly adopted in large language models (LLMs) and vision transformers (ViTs), can be applied to graph-structured data. We find that rotating tokens depending on the spectrum of the graph Laplacian efficiently injects structural information into the attention mechanism, boosting performance in synthetic and real-world graph learning tasks. This approach, coined _Wave-Induced Rotary Encodings_ (WIRE), enjoys intriguing theoretical properties: it recovers regular RoPE on grids, and depends asymptotically on the graph effective resistance. Unlike bias-based relative position encodings, WIRE is compatible with linear attention.
♻ ☆ Fine-Tuning Flow Matching via Maximum Likelihood Estimation of Reconstructions
Flow Matching (FM) models achieve remarkable results in generative tasks. Building upon diffusion models, FM's simulation-free training paradigm enables simplicity and efficiency but introduces a train-inference gap: model outputs cannot be assessed during training. Moreover, the straight flow assumption suffers from some inherent limitations. To address this, we propose to fine-tune FM via Maximum Likelihood Estimation (MLE) of reconstructions -- enabled by FM's smooth ODE formulation, unlike the stochastic differential equations (SDEs) in diffusion models. We first theoretically analyze the relationship between training loss and inference error in FM under numerical precision constraints. We then propose an easy-to-implement fine-tuning framework based on MLE of reconstructions, with flexibility for sophisticated extensions. Building on this, we incorporate a generalized artificial viscosity term that enhances flow stability and robustness, accompanied by a direct parameterization method and rigorous theoretical guarantees. Experiments demonstrate our method's effectiveness across diverse settings: a toy example provides mechanistic insights into the fine-tuning process, while large-scale evaluations on meteorological forecasting and robotic manipulation policies validate reliable performance improvements.
♻ ☆ Physics-Aware Heterogeneous GNN Architecture for Real-Time BESS Optimization in Unbalanced Distribution Systems
Battery energy storage systems (BESS) have become increasingly vital in three-phase unbalanced distribution grids for maintaining voltage stability and enabling optimal dispatch. However, existing deep learning approaches often lack explicit three-phase representation, making it difficult to accurately model phase-specific dynamics and enforce operational constraints--leading to infeasible dispatch solutions. This paper demonstrates that by embedding detailed three-phase grid information--including phase voltages, unbalanced loads, and BESS states--into heterogeneous graph nodes, diverse GNN architectures (GCN, GAT, GraphSAGE, GPS) can jointly predict network state variables with high accuracy. Moreover, a physics-informed loss function incorporates critical battery constraints--SoC and C-rate limits--via soft penalties during training. Experimental validation on the CIGRE 18-bus distribution system shows that this embedding-loss approach achieves low prediction errors, with bus voltage MSEs of 6.92e-07 (GCN), 1.21e-06 (GAT), 3.29e-05 (GPS), and 9.04e-07 (SAGE). Importantly, the physics-informed method ensures nearly zero SoC and C-rate constraint violations, confirming its effectiveness for reliable, constraint-compliant dispatch.
comment: 5 pages, 2 figures, 3 tables
♻ ☆ Efficient Learning of Stationary Diffusions with Stein-type Discrepancies
Learning a stationary diffusion amounts to estimating the parameters of a stochastic differential equation whose stationary distribution matches a target distribution. We build on the recently introduced kernel deviation from stationarity (KDS), which enforces stationarity by evaluating expectations of the diffusion's generator in a reproducing kernel Hilbert space. Leveraging the connection between KDS and Stein discrepancies, we introduce the Stein-type KDS (SKDS) as an alternative formulation. We prove that a vanishing SKDS guarantees alignment of the learned diffusion's stationary distribution with the target. Furthermore, under broad parametrizations, SKDS is convex with an empirical version that is $ε$-quasiconvex with high probability. Empirically, learning with SKDS attains comparable accuracy to KDS while substantially reducing computational cost and yields improvements over the majority of competitive baselines.
♻ ☆ Stochastic Matching Bandits with Rare Optimization Updates
We introduce a bandit framework for stochastic matching under the multinomial logit (MNL) choice model. In our setting, $N$ agents on one side are assigned to $K$ arms on the other side, where each arm stochastically selects an agent from its assigned pool according to unknown preferences and yields a corresponding reward over a horizon $T$. The objective is to minimize regret by maximizing the cumulative revenue from successful matches. A naive approach requires solving an NP-hard combinatorial optimization problem at every round, resulting in a prohibitive computational cost. To address this challenge, we propose batched algorithms that strategically limit the number of times matching assignments are updated to $Θ(\log\log T)$ over the entire horizon. By invoking expensive combinatorial optimization only on a vanishing fraction of rounds, our algorithms substantially reduce overall computational overhead while still achieving a regret bound of $\widetilde{\mathcal{O}}(\sqrt{T})$.
♻ ☆ ASAP: Exploiting the Satisficing Generalization Edge in Neural Combinatorial Optimization
Deep Reinforcement Learning (DRL) has emerged as a promising approach for solving Combinatorial Optimization (CO) problems, such as the 3D Bin Packing Problem (3D-BPP), Traveling Salesman Problem (TSP), or Vehicle Routing Problem (VRP), but these neural solvers often exhibit brittleness when facing distribution shifts. To address this issue, we uncover the Satisficing Generalization Edge, which we validate both theoretically and experimentally: identifying a set of promising actions is inherently more generalizable than selecting the single optimal action. To exploit this property, we propose Adaptive Selection After Proposal (ASAP), a generic framework that decomposes the decision-making process into two distinct phases: a proposal policy that acts as a robust filter, and a selection policy as an adaptable decision maker. This architecture enables a highly effective online adaptation strategy where the selection policy can be rapidly fine-tuned on a new distribution. Concretely, we introduce a two-phase training framework enhanced by Model-Agnostic Meta-Learning (MAML) to prime the model for fast adaptation. Extensive experiments on 3D-BPP, TSP, and CVRP demonstrate that ASAP improves the generalization capability of state-of-the-art baselines and achieves superior online adaptation on out-of-distribution instances.
♻ ☆ Neural Weight Compression for Language Models
Efficient storage and transmission of language model weights are increasingly critical as model scale and deployment grow. Yet, most existing compression methods rely on handcrafted transforms and heuristics, reflecting the limited understanding of weights as a data modality. This motivates a shift toward learning-based paradigm, where compression schemes are optimized directly from data rather than manually designed. In this work, we take a step in this direction by formulating weight compression as a neural codec learning. We propose Neural Weight Compression (NWC), a flexible framework for training neural codecs on pretrained weight datasets. NWC addresses challenges intrinsic to weight compression, such as tensor shape heterogeneity and the misalignment between training losses and downstream performance, through components such as chunk-and-normalize preprocessing and an importance-aware training objective. Experiments show that NWC achieves state-of-the-art accuracy-compression tradeoffs, particularly at 4--6 bit regime, without relying on rigid handcrafted components such as the Hadamard transform. These gains extend across diverse architectures, e.g., vision encoders. Our analysis further supports the learning-based perspective, highlighting the roles of entropy-constrained quantization in high rate regime and learned transforms in adapting to downstream tasks.
Computer Vision and Pattern Recognition
☆ One-step Latent-free Image Generation with Pixel Mean Flows
Modern diffusion/flow-based models for image generation typically exhibit two core characteristics: (i) using multi-step sampling, and (ii) operating in a latent space. Recent advances have made encouraging progress on each aspect individually, paving the way toward one-step diffusion/flow without latents. In this work, we take a further step towards this goal and propose "pixel MeanFlow" (pMF). Our core guideline is to formulate the network output space and the loss space separately. The network target is designed to be on a presumed low-dimensional image manifold (i.e., x-prediction), while the loss is defined via MeanFlow in the velocity space. We introduce a simple transformation between the image manifold and the average velocity field. In experiments, pMF achieves strong results for one-step latent-free generation on ImageNet at 256x256 resolution (2.22 FID) and 512x512 resolution (2.48 FID), filling a key missing piece in this regime. We hope that our study will further advance the boundaries of diffusion/flow-based generative models.
comment: Technical report
☆ UEval: A Benchmark for Unified Multimodal Generation
We introduce UEval, a benchmark to evaluate unified models, i.e., models capable of generating both images and text. UEval comprises 1,000 expert-curated questions that require both images and text in the model output, sourced from 8 real-world tasks. Our curated questions cover a wide range of reasoning types, from step-by-step guides to textbook explanations. Evaluating open-ended multimodal generation is non-trivial, as simple LLM-as-a-judge methods can miss the subtleties. Different from previous works that rely on multimodal Large Language Models (MLLMs) to rate image quality or text accuracy, we design a rubric-based scoring system in UEval. For each question, reference images and text answers are provided to a MLLM to generate an initial rubric, consisting of multiple evaluation criteria, and human experts then refine and validate these rubrics. In total, UEval contains 10,417 validated rubric criteria, enabling scalable and fine-grained automatic scoring. UEval is challenging for current unified models: GPT-5-Thinking scores only 66.4 out of 100, while the best open-source model reaches merely 49.1. We observe that reasoning models often outperform non-reasoning ones, and transferring reasoning traces from a reasoning model to a non-reasoning model significantly narrows the gap. This suggests that reasoning may be important for tasks requiring complex multimodal understanding and generation.
☆ DynamicVLA: A Vision-Language-Action Model for Dynamic Object Manipulation
Manipulating dynamic objects remains an open challenge for Vision-Language-Action (VLA) models, which, despite strong generalization in static manipulation, struggle in dynamic scenarios requiring rapid perception, temporal anticipation, and continuous control. We present DynamicVLA, a framework for dynamic object manipulation that integrates temporal reasoning and closed-loop adaptation through three key designs: 1) a compact 0.4B VLA using a convolutional vision encoder for spatially efficient, structurally faithful encoding, enabling fast multimodal inference; 2) Continuous Inference, enabling overlapping reasoning and execution for lower latency and timely adaptation to object motion; and 3) Latent-aware Action Streaming, which bridges the perception-execution gap by enforcing temporally aligned action execution. To fill the missing foundation of dynamic manipulation data, we introduce the Dynamic Object Manipulation (DOM) benchmark, built from scratch with an auto data collection pipeline that efficiently gathers 200K synthetic episodes across 2.8K scenes and 206 objects, and enables fast collection of 2K real-world episodes without teleoperation. Extensive evaluations demonstrate remarkable improvements in response speed, perception, and generalization, positioning DynamicVLA as a unified framework for general dynamic object manipulation across embodiments.
comment: Project Page: https://www.infinitescript.com/project/dynamic-vla/ GitHub: https://github.com/hzxie/DynamicVLA
☆ Do VLMs Perceive or Recall? Probing Visual Perception vs. Memory with Classic Visual Illusions
Large Vision-Language Models (VLMs) often answer classic visual illusions "correctly" on original images, yet persist with the same responses when illusion factors are inverted, even though the visual change is obvious to humans. This raises a fundamental question: do VLMs perceive visual changes or merely recall memorized patterns? While several studies have noted this phenomenon, the underlying causes remain unclear. To move from observations to systematic understanding, this paper introduces VI-Probe, a controllable visual-illusion framework with graded perturbations and matched visual controls (without illusion inducer) that disentangles visually grounded perception from language-driven recall. Unlike prior work that focuses on averaged accuracy, we measure stability and sensitivity using Polarity-Flip Consistency, Template Fixation Index, and an illusion multiplier normalized against matched controls. Experiments across different families reveal that response persistence arises from heterogeneous causes rather than a single mechanism. For instance, GPT-5 exhibits memory override, Claude-Opus-4.1 shows perception-memory competition, while Qwen variants suggest visual-processing limits. Our findings challenge single-cause views and motivate probing-based evaluation that measures both knowledge and sensitivity to controlled visual change. Data and code are available at https://sites.google.com/view/vi-probe/.
comment: 26 pages, 31 figures, 13 tables. Project Page: https://sites.google.com/view/vi-probe/
☆ JUST-DUB-IT: Video Dubbing via Joint Audio-Visual Diffusion
Audio-Visual Foundation Models, which are pretrained to jointly generate sound and visual content, have recently shown an unprecedented ability to model multi-modal generation and editing, opening new opportunities for downstream tasks. Among these tasks, video dubbing could greatly benefit from such priors, yet most existing solutions still rely on complex, task-specific pipelines that struggle in real-world settings. In this work, we introduce a single-model approach that adapts a foundational audio-video diffusion model for video-to-video dubbing via a lightweight LoRA. The LoRA enables the model to condition on an input audio-video while jointly generating translated audio and synchronized facial motion. To train this LoRA, we leverage the generative model itself to synthesize paired multilingual videos of the same speaker. Specifically, we generate multilingual videos with language switches within a single clip, and then inpaint the face and audio in each half to match the language of the other half. By leveraging the rich generative prior of the audio-visual model, our approach preserves speaker identity and lip synchronization while remaining robust to complex motion and real-world dynamics. We demonstrate that our approach produces high-quality dubbed videos with improved visual fidelity, lip synchronization, and robustness compared to existing dubbing pipelines.
comment: Project webpage available at https://justdubit.github.io
☆ Routing the Lottery: Adaptive Subnetworks for Heterogeneous Data
In pruning, the Lottery Ticket Hypothesis posits that large networks contain sparse subnetworks, or winning tickets, that can be trained in isolation to match the performance of their dense counterparts. However, most existing approaches assume a single universal winning ticket shared across all inputs, ignoring the inherent heterogeneity of real-world data. In this work, we propose Routing the Lottery (RTL), an adaptive pruning framework that discovers multiple specialized subnetworks, called adaptive tickets, each tailored to a class, semantic cluster, or environmental condition. Across diverse datasets and tasks, RTL consistently outperforms single- and multi-model baselines in balanced accuracy and recall, while using up to 10 times fewer parameters than independent models and exhibiting semantically aligned. Furthermore, we identify subnetwork collapse, a performance drop under aggressive pruning, and introduce a subnetwork similarity score that enables label-free diagnosis of oversparsification. Overall, our results recast pruning as a mechanism for aligning model structure with data heterogeneity, paving the way toward more modular and context-aware deep learning.
☆ PI-Light: Physics-Inspired Diffusion for Full-Image Relighting ICLR 2026
Full-image relighting remains a challenging problem due to the difficulty of collecting large-scale structured paired data, the difficulty of maintaining physical plausibility, and the limited generalizability imposed by data-driven priors. Existing attempts to bridge the synthetic-to-real gap for full-scene relighting remain suboptimal. To tackle these challenges, we introduce Physics-Inspired diffusion for full-image reLight ($π$-Light, or PI-Light), a two-stage framework that leverages physics-inspired diffusion models. Our design incorporates (i) batch-aware attention, which improves the consistency of intrinsic predictions across a collection of images, (ii) a physics-guided neural rendering module that enforces physically plausible light transport, (iii) physics-inspired losses that regularize training dynamics toward a physically meaningful landscape, thereby enhancing generalizability to real-world image editing, and (iv) a carefully curated dataset of diverse objects and scenes captured under controlled lighting conditions. Together, these components enable efficient finetuning of pretrained diffusion models while also providing a solid benchmark for downstream evaluation. Experiments demonstrate that $π$-Light synthesizes specular highlights and diffuse reflections across a wide variety of materials, achieving superior generalization to real-world scenes compared with prior approaches.
comment: Accepted at ICLR 2026
☆ Early and Prediagnostic Detection of Pancreatic Cancer from Computed Tomography
Pancreatic ductal adenocarcinoma (PDAC), one of the deadliest solid malignancies, is often detected at a late and inoperable stage. Retrospective reviews of prediagnostic CT scans, when conducted by expert radiologists aware that the patient later developed PDAC, frequently reveal lesions that were previously overlooked. To help detecting these lesions earlier, we developed an automated system named ePAI (early Pancreatic cancer detection with Artificial Intelligence). It was trained on data from 1,598 patients from a single medical center. In the internal test involving 1,009 patients, ePAI achieved an area under the receiver operating characteristic curve (AUC) of 0.939-0.999, a sensitivity of 95.3%, and a specificity of 98.7% for detecting small PDAC less than 2 cm in diameter, precisely localizing PDAC as small as 2 mm. In an external test involving 7,158 patients across 6 centers, ePAI achieved an AUC of 0.918-0.945, a sensitivity of 91.5%, and a specificity of 88.0%, precisely localizing PDAC as small as 5 mm. Importantly, ePAI detected PDACs on prediagnostic CT scans obtained 3 to 36 months before clinical diagnosis that had originally been overlooked by radiologists. It successfully detected and localized PDACs in 75 of 159 patients, with a median lead time of 347 days before clinical diagnosis. Our multi-reader study showed that ePAI significantly outperformed 30 board-certified radiologists by 50.3% (P < 0.05) in sensitivity while maintaining a comparable specificity of 95.4% in detecting PDACs early and prediagnostic. These findings suggest its potential of ePAI as an assistive tool to improve early detection of pancreatic cancer.
☆ EditYourself: Audio-Driven Generation and Manipulation of Talking Head Videos with Diffusion Transformers
Current generative video models excel at producing novel content from text and image prompts, but leave a critical gap in editing existing pre-recorded videos, where minor alterations to the spoken script require preserving motion, temporal coherence, speaker identity, and accurate lip synchronization. We introduce EditYourself, a DiT-based framework for audio-driven video-to-video (V2V) editing that enables transcript-based modification of talking head videos, including the seamless addition, removal, and retiming of visually spoken content. Building on a general-purpose video diffusion model, EditYourself augments its V2V capabilities with audio conditioning and region-aware, edit-focused training extensions. This enables precise lip synchronization and temporally coherent restructuring of existing performances via spatiotemporal inpainting, including the synthesis of realistic human motion in newly added segments, while maintaining visual fidelity and identity consistency over long durations. This work represents a foundational step toward generative video models as practical tools for professional video post-production.
comment: Project page: https://edit-yourself.github.io/
☆ Creative Image Generation with Diffusion Model
Creative image generation has emerged as a compelling area of research, driven by the need to produce novel and high-quality images that expand the boundaries of imagination. In this work, we propose a novel framework for creative generation using diffusion models, where creativity is associated with the inverse probability of an image's existence in the CLIP embedding space. Unlike prior approaches that rely on a manual blending of concepts or exclusion of subcategories, our method calculates the probability distribution of generated images and drives it towards low-probability regions to produce rare, imaginative, and visually captivating outputs. We also introduce pullback mechanisms, achieving high creativity without sacrificing visual fidelity. Extensive experiments on text-to-image diffusion models demonstrate the effectiveness and efficiency of our creative generation framework, showcasing its ability to produce unique, novel, and thought-provoking images. This work provides a new perspective on creativity in generative models, offering a principled method to foster innovation in visual content synthesis.
comment: Project page: https://creative-t2i.github.io
☆ SINA: A Circuit Schematic Image-to-Netlist Generator Using Artificial Intelligence
Current methods for converting circuit schematic images into machine-readable netlists struggle with component recognition and connectivity inference. In this paper, we present SINA, an open-source, fully automated circuit schematic image-to-netlist generator. SINA integrates deep learning for accurate component detection, Connected-Component Labeling (CCL) for precise connectivity extraction, and Optical Character Recognition (OCR) for component reference designator retrieval, while employing a Vision-Language Model (VLM) for reliable reference designator assignments. In our experiments, SINA achieves 96.47% overall netlist-generation accuracy, which is 2.72x higher than state-of-the-art approaches.
☆ RefAny3D: 3D Asset-Referenced Diffusion Models for Image Generation ICLR 2026
In this paper, we propose a 3D asset-referenced diffusion model for image generation, exploring how to integrate 3D assets into image diffusion models. Existing reference-based image generation methods leverage large-scale pretrained diffusion models and demonstrate strong capability in generating diverse images conditioned on a single reference image. However, these methods are limited to single-image references and cannot leverage 3D assets, constraining their practical versatility. To address this gap, we present a cross-domain diffusion model with dual-branch perception that leverages multi-view RGB images and point maps of 3D assets to jointly model their colors and canonical-space coordinates, achieving precise consistency between generated images and the 3D references. Our spatially aligned dual-branch generation architecture and domain-decoupled generation mechanism ensure the simultaneous generation of two spatially aligned but content-disentangled outputs, RGB images and point maps, linking 2D image attributes with 3D asset attributes. Experiments show that our approach effectively uses 3D assets as references to produce images consistent with the given assets, opening new possibilities for combining diffusion models with 3D content creation.
comment: ICLR 2026. Project page: https://judgementh.github.io/RefAny3D Codes: https://github.com/JudgementH/RefAny3D
☆ Learning Transient Convective Heat Transfer with Geometry Aware World Models
Partial differential equation (PDE) simulations are fundamental to engineering and physics but are often computationally prohibitive for real-time applications. While generative AI offers a promising avenue for surrogate modeling, standard video generation architectures lack the specific control and data compatibility required for physical simulations. This paper introduces a geometry aware world model architecture, derived from a video generation architecture (LongVideoGAN), designed to learn transient physics. We introduce two key architecture elements: (1) a twofold conditioning mechanism incorporating global physical parameters and local geometric masks, and (2) an architectural adaptation to support arbitrary channel dimensions, moving beyond standard RGB constraints. We evaluate this approach on a 2D transient computational fluid dynamics (CFD) problem involving convective heat transfer from buoyancy-driven flow coupled to a heat flow in a solid structure. We demonstrate that the conditioned model successfully reproduces complex temporal dynamics and spatial correlations of the training data. Furthermore, we assess the model's generalization capabilities on unseen geometric configurations, highlighting both its potential for controlled simulation synthesis and current limitations in spatial precision for out-of-distribution samples.
comment: 36 pages, 18 figures, 2 tables
☆ BLO-Inst: Bi-Level Optimization Based Alignment of YOLO and SAM for Robust Instance Segmentation
The Segment Anything Model has revolutionized image segmentation with its zero-shot capabilities, yet its reliance on manual prompts hinders fully automated deployment. While integrating object detectors as prompt generators offers a pathway to automation, existing pipelines suffer from two fundamental limitations: objective mismatch, where detectors optimized for geometric localization do not correspond to the optimal prompting context required by SAM, and alignment overfitting in standard joint training, where the detector simply memorizes specific prompt adjustments for training samples rather than learning a generalizable policy. To bridge this gap, we introduce BLO-Inst, a unified framework that aligns detection and segmentation objectives by bi-level optimization. We formulate the alignment as a nested optimization problem over disjoint data splits. In the lower level, the SAM is fine-tuned to maximize segmentation fidelity given the current detection proposals on a subset ($D_1$). In the upper level, the detector is updated to generate bounding boxes that explicitly minimize the validation loss of the fine-tuned SAM on a separate subset ($D_2$). This effectively transforms the detector into a segmentation-aware prompt generator, optimizing the bounding boxes not just for localization accuracy, but for downstream mask quality. Extensive experiments demonstrate that BLO-Inst achieves superior performance, outperforming standard baselines on tasks in general and biomedical domains.
☆ Vision-DeepResearch: Incentivizing DeepResearch Capability in Multimodal Large Language Models
Multimodal large language models (MLLMs) have achieved remarkable success across a broad range of vision tasks. However, constrained by the capacity of their internal world knowledge, prior work has proposed augmenting MLLMs by ``reasoning-then-tool-call'' for visual and textual search engines to obtain substantial gains on tasks requiring extensive factual information. However, these approaches typically define multimodal search in a naive setting, assuming that a single full-level or entity-level image query and few text query suffices to retrieve the key evidence needed to answer the question, which is unrealistic in real-world scenarios with substantial visual noise. Moreover, they are often limited in the reasoning depth and search breadth, making it difficult to solve complex questions that require aggregating evidence from diverse visual and textual sources. Building on this, we propose Vision-DeepResearch, which proposes one new multimodal deep-research paradigm, i.e., performs multi-turn, multi-entity and multi-scale visual and textual search to robustly hit real-world search engines under heavy noise. Our Vision-DeepResearch supports dozens of reasoning steps and hundreds of engine interactions, while internalizing deep-research capabilities into the MLLM via cold-start supervision and RL training, resulting in a strong end-to-end multimodal deep-research MLLM. It substantially outperforming existing multimodal deep-research MLLMs, and workflows built on strong closed-source foundation model such as GPT-5, Gemini-2.5-pro and Claude-4-Sonnet. The code will be released in https://github.com/Osilly/Vision-DeepResearch.
☆ Unsupervised Decomposition and Recombination with Discriminator-Driven Diffusion Models
Decomposing complex data into factorized representations can reveal reusable components and enable synthesizing new samples via component recombination. We investigate this in the context of diffusion-based models that learn factorized latent spaces without factor-level supervision. In images, factors can capture background, illumination, and object attributes; in robotic videos, they can capture reusable motion components. To improve both latent factor discovery and quality of compositional generation, we introduce an adversarial training signal via a discriminator trained to distinguish between single-source samples and those generated by recombining factors across sources. By optimizing the generator to fool this discriminator, we encourage physical and semantic consistency in the resulting recombinations. Our method outperforms implementations of prior baselines on CelebA-HQ, Virtual KITTI, CLEVR, and Falcor3D, achieving lower FID scores and better disentanglement as measured by MIG and MCC. Furthermore, we demonstrate a novel application to robotic video trajectories: by recombining learned action components, we generate diverse sequences that significantly increase state-space coverage for exploration on the LIBERO benchmark.
comment: 28 pages, 16 figures, 4 tables
☆ MetricAnything: Scaling Metric Depth Pretraining with Noisy Heterogeneous Sources
Scaling has powered recent advances in vision foundation models, yet extending this paradigm to metric depth estimation remains challenging due to heterogeneous sensor noise, camera-dependent biases, and metric ambiguity in noisy cross-source 3D data. We introduce Metric Anything, a simple and scalable pretraining framework that learns metric depth from noisy, diverse 3D sources without manually engineered prompts, camera-specific modeling, or task-specific architectures. Central to our approach is the Sparse Metric Prompt, created by randomly masking depth maps, which serves as a universal interface that decouples spatial reasoning from sensor and camera biases. Using about 20M image-depth pairs spanning reconstructed, captured, and rendered 3D data across 10000 camera models, we demonstrate-for the first time-a clear scaling trend in the metric depth track. The pretrained model excels at prompt-driven tasks such as depth completion, super-resolution and Radar-camera fusion, while its distilled prompt-free student achieves state-of-the-art results on monocular depth estimation, camera intrinsics recovery, single/multi-view metric 3D reconstruction, and VLA planning. We also show that using pretrained ViT of Metric Anything as a visual encoder significantly boosts Multimodal Large Language Model capabilities in spatial intelligence. These results show that metric depth estimation can benefit from the same scaling laws that drive modern foundation models, establishing a new path toward scalable and efficient real-world metric perception. We open-source MetricAnything at http://metric-anything.github.io/metric-anything-io/ to support community research.
comment: Project Page: https://metric-anything.github.io/metric-anything-io/
☆ PLANING: A Loosely Coupled Triangle-Gaussian Framework for Streaming 3D Reconstruction
Streaming reconstruction from monocular image sequences remains challenging, as existing methods typically favor either high-quality rendering or accurate geometry, but rarely both. We present PLANING, an efficient on-the-fly reconstruction framework built on a hybrid representation that loosely couples explicit geometric primitives with neural Gaussians, enabling geometry and appearance to be modeled in a decoupled manner. This decoupling supports an online initialization and optimization strategy that separates geometry and appearance updates, yielding stable streaming reconstruction with substantially reduced structural redundancy. PLANING improves dense mesh Chamfer-L2 by 18.52% over PGSR, surpasses ARTDECO by 1.31 dB PSNR, and reconstructs ScanNetV2 scenes in under 100 seconds, over 5x faster than 2D Gaussian Splatting, while matching the quality of offline per-scene optimization. Beyond reconstruction quality, the structural clarity and computational efficiency of \modelname~make it well suited for a broad range of downstream applications, such as enabling large-scale scene modeling and simulation-ready environments for embodied AI. Project page: https://city-super.github.io/PLANING/ .
☆ Urban Neural Surface Reconstruction from Constrained Sparse Aerial Imagery with 3D SAR Fusion
Neural surface reconstruction (NSR) has recently shown strong potential for urban 3D reconstruction from multi-view aerial imagery. However, existing NSR methods often suffer from geometric ambiguity and instability, particularly under sparse-view conditions. This issue is critical in large-scale urban remote sensing, where aerial image acquisition is limited by flight paths, terrain, and cost. To address this challenge, we present the first urban NSR framework that fuses 3D synthetic aperture radar (SAR) point clouds with aerial imagery for high-fidelity reconstruction under constrained, sparse-view settings. 3D SAR can efficiently capture large-scale geometry even from a single side-looking flight path, providing robust priors that complement photometric cues from images. Our framework integrates radar-derived spatial constraints into an SDF-based NSR backbone, guiding structure-aware ray selection and adaptive sampling for stable and efficient optimization. We also construct the first benchmark dataset with co-registered 3D SAR point clouds and aerial imagery, facilitating systematic evaluation of cross-modal 3D reconstruction. Extensive experiments show that incorporating 3D SAR markedly enhances reconstruction accuracy, completeness, and robustness compared with single-modality baselines under highly sparse and oblique-view conditions, highlighting a viable route toward scalable high-fidelity urban reconstruction with advanced airborne and spaceborne optical-SAR sensing.
☆ Learning to Communicate Across Modalities: Perceptual Heterogeneity in Multi-Agent Systems
Emergent communication offers insight into how agents develop shared structured representations, yet most research assumes homogeneous modalities or aligned representational spaces, overlooking the perceptual heterogeneity of real-world settings. We study a heterogeneous multi-step binary communication game where agents differ in modality and lack perceptual grounding. Despite perceptual misalignment, multimodal systems converge to class-consistent messages grounded in perceptual input. Unimodal systems communicate more efficiently, using fewer bits and achieving lower classification entropy, while multimodal agents require greater information exchange and exhibit higher uncertainty. Bit perturbation experiments provide strong evidence that meaning is encoded in a distributional rather than compositional manner, as each bit's contribution depends on its surrounding pattern. Finally, interoperability analyses show that systems trained in different perceptual worlds fail to directly communicate, but limited fine-tuning enables successful cross-system communication. This work positions emergent communication as a framework for studying how agents adapt and transfer representations across heterogeneous modalities, opening new directions for both theory and experimentation.
comment: To be published in EvoLang XVI proceedings. 15 pages, 17 figures
☆ Understanding Multimodal Complementarity for Single-Frame Action Anticipation
Human action anticipation is commonly treated as a video understanding problem, implicitly assuming that dense temporal information is required to reason about future actions. In this work, we challenge this assumption by investigating what can be achieved when action anticipation is constrained to a single visual observation. We ask a fundamental question: how much information about the future is already encoded in a single frame, and how can it be effectively exploited? Building on our prior work on Action Anticipation at a Glimpse (AAG), we conduct a systematic investigation of single-frame action anticipation enriched with complementary sources of information. We analyze the contribution of RGB appearance, depth-based geometric cues, and semantic representations of past actions, and investigate how different multimodal fusion strategies, keyframe selection policies and past-action history sources influence anticipation performance. Guided by these findings, we consolidate the most effective design choices into AAG+, a refined single-frame anticipation framework. Despite operating on a single frame, AAG+ consistently improves upon the original AAG and achieves performance comparable to, or exceeding, that of state-of-the-art video-based methods on challenging anticipation benchmarks including IKEA-ASM, Meccano and Assembly101. Our results offer new insights into the limits and potential of single-frame action anticipation, and clarify when dense temporal modeling is necessary and when a carefully selected glimpse is sufficient.
☆ Drive-JEPA: Video JEPA Meets Multimodal Trajectory Distillation for End-to-End Driving
End-to-end autonomous driving increasingly leverages self-supervised video pretraining to learn transferable planning representations. However, pretraining video world models for scene understanding has so far brought only limited improvements. This limitation is compounded by the inherent ambiguity of driving: each scene typically provides only a single human trajectory, making it difficult to learn multimodal behaviors. In this work, we propose Drive-JEPA, a framework that integrates Video Joint-Embedding Predictive Architecture (V-JEPA) with multimodal trajectory distillation for end-to-end driving. First, we adapt V-JEPA for end-to-end driving, pretraining a ViT encoder on large-scale driving videos to produce predictive representations aligned with trajectory planning. Second, we introduce a proposal-centric planner that distills diverse simulator-generated trajectories alongside human trajectories, with a momentum-aware selection mechanism to promote stable and safe behavior. When evaluated on NAVSIM, the V-JEPA representation combined with a simple transformer-based decoder outperforms prior methods by 3 PDMS in the perception-free setting. The complete Drive-JEPA framework achieves 93.3 PDMS on v1 and 87.8 EPDMS on v2, setting a new state-of-the-art.
☆ Hybrid Foveated Path Tracing with Peripheral Gaussians for Immersive Anatomy
Volumetric medical imaging offers great potential for understanding complex pathologies. Yet, traditional 2D slices provide little support for interpreting spatial relationships, forcing users to mentally reconstruct anatomy into three dimensions. Direct volumetric path tracing and VR rendering can improve perception but are computationally expensive, while precomputed representations, like Gaussian Splatting, require planning ahead. Both approaches limit interactive use. We propose a hybrid rendering approach for high-quality, interactive, and immersive anatomical visualization. Our method combines streamed foveated path tracing with a lightweight Gaussian Splatting approximation of the periphery. The peripheral model generation is optimized with volume data and continuously refined using foveal renderings, enabling interactive updates. Depth-guided reprojection further improves robustness to latency and allows users to balance fidelity with refresh rate. We compare our method against direct path tracing and Gaussian Splatting. Our results highlight how their combination can preserve strengths in visual quality while re-generating the peripheral model in under a second, eliminating extensive preprocessing and approximations. This opens new options for interactive medical visualization.
comment: Scheduled for publication in the Proceedings of IEEE VR 2026
☆ Visual-Guided Key-Token Regularization for Multimodal Large Language Model Unlearning
Unlearning in Multimodal Large Language Models (MLLMs) prevents the model from revealing private information when queried about target images. Existing MLLM unlearning methods largely adopt approaches developed for LLMs. They treat all answer tokens uniformly, disregarding their varying importance in the unlearning process. Moreover, these methods focus exclusively on the language modality, disregarding visual cues that indicate key tokens in answers. In this paper, after formulating the problem of unlearning in multimodal question answering for MLLMs, we propose Visual-Guided Key-Token Regularization (ViKeR). We leverage irrelevant visual inputs to predict ideal post-unlearning token-level distributions and use these distributions to regularize the unlearning process, thereby prioritizing key tokens. Further, we define key tokens in unlearning via information entropy and discuss ViKeR's effectiveness through token-level gradient reweighting, which amplifies updates on key tokens. Experiments on MLLMU and CLEAR benchmarks demonstrate that our method effectively performs unlearning while mitigating forgetting and maintaining response coherence.
☆ Causal World Modeling for Robot Control
This work highlights that video world modeling, alongside vision-language pre-training, establishes a fresh and independent foundation for robot learning. Intuitively, video world models provide the ability to imagine the near future by understanding the causality between actions and visual dynamics. Inspired by this, we introduce LingBot-VA, an autoregressive diffusion framework that learns frame prediction and policy execution simultaneously. Our model features three carefully crafted designs: (1) a shared latent space, integrating vision and action tokens, driven by a Mixture-of-Transformers (MoT) architecture, (2) a closed-loop rollout mechanism, allowing for ongoing acquisition of environmental feedback with ground-truth observations, (3) an asynchronous inference pipeline, parallelizing action prediction and motor execution to support efficient control. We evaluate our model on both simulation benchmarks and real-world scenarios, where it shows significant promise in long-horizon manipulation, data efficiency in post-training, and strong generalizability to novel configurations. The code and model are made publicly available to facilitate the community.
comment: Project page: https://technology.robbyant.com/lingbot-va Code: https://github.com/robbyant/lingbot-va
☆ PaddleOCR-VL-1.5: Towards a Multi-Task 0.9B VLM for Robust In-the-Wild Document Parsing
We introduce PaddleOCR-VL-1.5, an upgraded model achieving a new state-of-the-art (SOTA) accuracy of 94.5% on OmniDocBench v1.5. To rigorously evaluate robustness against real-world physical distortions, including scanning, skew, warping, screen-photography, and illumination, we propose the Real5-OmniDocBench benchmark. Experimental results demonstrate that this enhanced model attains SOTA performance on the newly curated benchmark. Furthermore, we extend the model's capabilities by incorporating seal recognition and text spotting tasks, while remaining a 0.9B ultra-compact VLM with high efficiency. Code: https://github.com/PaddlePaddle/PaddleOCR
☆ Deep Models, Shallow Alignment: Uncovering the Granularity Mismatch in Neural Decoding
Neural visual decoding is a central problem in brain computer interface research, aiming to reconstruct human visual perception and to elucidate the structure of neural representations. However, existing approaches overlook a fundamental granularity mismatch between human and machine vision, where deep vision models emphasize semantic invariance by suppressing local texture information, whereas neural signals preserve an intricate mixture of low-level visual attributes and high-level semantic content. To address this mismatch, we propose Shallow Alignment, a novel contrastive learning strategy that aligns neural signals with intermediate representations of visual encoders rather than their final outputs, thereby striking a better balance between low-level texture details and high-level semantic features. Extensive experiments across multiple benchmarks demonstrate that Shallow Alignment significantly outperforms standard final-layer alignment, with performance gains ranging from 22% to 58% across diverse vision backbones. Notably, our approach effectively unlocks the scaling law in neural visual decoding, enabling decoding performance to scale predictably with the capacity of pre-trained vision backbones. We further conduct systematic empirical analyses to shed light on the mechanisms underlying the observed performance gains.
comment: 29 pages, 13 figures
☆ BookNet: Book Image Rectification via Cross-Page Attention Network
Book image rectification presents unique challenges in document image processing due to complex geometric distortions from binding constraints, where left and right pages exhibit distinctly asymmetric curvature patterns. However, existing single-page document image rectification methods fail to capture the coupled geometric relationships between adjacent pages in books. In this work, we introduce BookNet, the first end-to-end deep learning framework specifically designed for dual-page book image rectification. BookNet adopts a dual-branch architecture with cross-page attention mechanisms, enabling it to estimate warping flows for both individual pages and the complete book spread, explicitly modeling how left and right pages influence each other. Moreover, to address the absence of specialized datasets, we present Book3D, a large-scale synthetic dataset for training, and Book100, a comprehensive real-world benchmark for evaluation. Extensive experiments demonstrate that BookNet outperforms existing state-of-the-art methods on book image rectification. Code and dataset will be made publicly available.
☆ Just Noticeable Difference Modeling for Deep Visual Features
Deep visual features are increasingly used as the interface in vision systems, motivating the need to describe feature characteristics and control feature quality for machine perception. Just noticeable difference (JND) characterizes the maximum imperceptible distortion for images under human or machine vision. Extending it to deep visual features naturally meets the above demand by providing a task-aligned tolerance boundary in feature space, offering a practical reference for controlling feature quality under constrained resources. We propose FeatJND, a task-aligned JND formulation that predicts the maximum tolerable per-feature perturbation map while preserving downstream task performance. We propose a FeatJND estimator at standardized split points and validate it across image classification, detection, and instance segmentation. Under matched distortion strength, FeatJND-based distortions consistently preserve higher task performance than unstructured Gaussian perturbations, and attribution visualizations suggest FeatJND can suppress non-critical feature regions. As an application, we further apply FeatJND to token-wise dynamic quantization and show that FeatJND-guided step-size allocation yields clear gains over random step-size permutation and global uniform step size under the same noise budget. Our code will be released after publication.
☆ Zero-Shot Video Restoration and Enhancement with Assistance of Video Diffusion Models
Although diffusion-based zero-shot image restoration and enhancement methods have achieved great success, applying them to video restoration or enhancement will lead to severe temporal flickering. In this paper, we propose the first framework that utilizes the rapidly-developed video diffusion model to assist the image-based method in maintaining more temporal consistency for zero-shot video restoration and enhancement. We propose homologous latents fusion, heterogenous latents fusion, and a COT-based fusion ratio strategy to utilize both homologous and heterogenous text-to-video diffusion models to complement the image method. Moreover, we propose temporal-strengthening post-processing to utilize the image-to-video diffusion model to further improve temporal consistency. Our method is training-free and can be applied to any diffusion-based image restoration and enhancement methods. Experimental results demonstrate the superiority of the proposed method.
☆ VideoAesBench: Benchmarking the Video Aesthetics Perception Capabilities of Large Multimodal Models
Large multimodal models (LMMs) have demonstrated outstanding capabilities in various visual perception tasks, which has in turn made the evaluation of LMMs significant. However, the capability of video aesthetic quality assessment, which is a fundamental ability for human, remains underexplored for LMMs. To address this, we introduce VideoAesBench, a comprehensive benchmark for evaluating LMMs' understanding of video aesthetic quality. VideoAesBench has several significant characteristics: (1) Diverse content including 1,804 videos from multiple video sources including user-generated (UGC), AI-generated (AIGC), compressed, robotic-generated (RGC), and game videos. (2) Multiple question formats containing traditional single-choice questions, multi-choice questions, True or False questions, and a novel open-ended questions for video aesthetics description. (3) Holistic video aesthetics dimensions including visual form related questions from 5 aspects, visual style related questions from 4 aspects, and visual affectiveness questions from 3 aspects. Based on VideoAesBench, we benchmark 23 open-source and commercial large multimodal models. Our findings show that current LMMs only contain basic video aesthetics perception ability, their performance remains incomplete and imprecise. We hope our VideoAesBench can be served as a strong testbed and offer insights for explainable video aesthetics assessment.
☆ Beyond Global Alignment: Fine-Grained Motion-Language Retrieval via Pyramidal Shapley-Taylor Learning
As a foundational task in human-centric cross-modal intelligence, motion-language retrieval aims to bridge the semantic gap between natural language and human motion, enabling intuitive motion analysis, yet existing approaches predominantly focus on aligning entire motion sequences with global textual representations. This global-centric paradigm overlooks fine-grained interactions between local motion segments and individual body joints and text tokens, inevitably leading to suboptimal retrieval performance. To address this limitation, we draw inspiration from the pyramidal process of human motion perception (from joint dynamics to segment coherence, and finally to holistic comprehension) and propose a novel Pyramidal Shapley-Taylor (PST) learning framework for fine-grained motion-language retrieval. Specifically, the framework decomposes human motion into temporal segments and spatial body joints, and learns cross-modal correspondences through progressive joint-wise and segment-wise alignment in a pyramidal fashion, effectively capturing both local semantic details and hierarchical structural relationships. Extensive experiments on multiple public benchmark datasets demonstrate that our approach significantly outperforms state-of-the-art methods, achieving precise alignment between motion segments and body joints and their corresponding text tokens. The code of this work will be released upon acceptance.
☆ TraceRouter: Robust Safety for Large Foundation Models via Path-Level Intervention
Despite their capabilities, large foundation models (LFMs) remain susceptible to adversarial manipulation. Current defenses predominantly rely on the "locality hypothesis", suppressing isolated neurons or features. However, harmful semantics act as distributed, cross-layer circuits, rendering such localized interventions brittle and detrimental to utility. To bridge this gap, we propose \textbf{TraceRouter}, a path-level framework that traces and disconnects the causal propagation circuits of illicit semantics. TraceRouter operates in three stages: (1) it pinpoints a sensitive onset layer by analyzing attention divergence; (2) it leverages sparse autoencoders (SAEs) and differential activation analysis to disentangle and isolate malicious features; and (3) it maps these features to downstream causal pathways via feature influence scores (FIS) derived from zero-out interventions. By selectively suppressing these causal chains, TraceRouter physically severs the flow of harmful information while leaving orthogonal computation routes intact. Extensive experiments demonstrate that TraceRouter significantly outperforms state-of-the-art baselines, achieving a superior trade-off between adversarial robustness and general utility. Our code will be publicly released. WARNING: This paper contains unsafe model responses.
☆ Past- and Future-Informed KV Cache Policy with Salience Estimation in Autoregressive Video Diffusion
Video generation is pivotal to digital media creation, and recent advances in autoregressive video generation have markedly enhanced the efficiency of real-time video synthesis. However, existing approaches generally rely on heuristic KV Cache policies, which ignore differences in token importance in long-term video generation. This leads to the loss of critical spatiotemporal information and the accumulation of redundant, invalid cache, thereby degrading video generation quality and efficiency. To address this limitation, we first observe that token contributions to video generation are highly time-heterogeneous and accordingly propose a novel Past- and Future-Informed KV Cache Policy (PaFu-KV). Specifically, PaFu-KV introduces a lightweight Salience Estimation Head distilled from a bidirectional teacher to estimate salience scores, allowing the KV cache to retain informative tokens while discarding less relevant ones. This policy yields a better quality-efficiency trade-off by shrinking KV cache capacity and reducing memory footprint at inference time. Extensive experiments on benchmarks demonstrate that our method preserves high-fidelity video generation quality while enables accelerated inference, thereby enabling more efficient long-horizon video generation. Our code will be released upon paper acceptance.
☆ Improving Classifier-Free Guidance of Flow Matching via Manifold Projection
Classifier-free guidance (CFG) is a widely used technique for controllable generation in diffusion and flow-based models. Despite its empirical success, CFG relies on a heuristic linear extrapolation that is often sensitive to the guidance scale. In this work, we provide a principled interpretation of CFG through the lens of optimization. We demonstrate that the velocity field in flow matching corresponds to the gradient of a sequence of smoothed distance functions, which guides latent variables toward the scaled target image set. This perspective reveals that the standard CFG formulation is an approximation of this gradient, where the prediction gap, the discrepancy between conditional and unconditional outputs, governs guidance sensitivity. Leveraging this insight, we reformulate the CFG sampling as a homotopy optimization with a manifold constraint. This formulation necessitates a manifold projection step, which we implement via an incremental gradient descent scheme during sampling. To improve computational efficiency and stability, we further enhance this iterative process with Anderson Acceleration without requiring additional model evaluations. Our proposed methods are training-free and consistently refine generation fidelity, prompt alignment, and robustness to the guidance scale. We validate their effectiveness across diverse benchmarks, demonstrating significant improvements on large-scale models such as DiT-XL-2-256, Flux, and Stable Diffusion 3.5.
comment: 24 pages, 14 figures
☆ Trajectory-Guided Diffusion for Foreground-Preserving Background Generation in Multi-Layer Documents
We present a diffusion-based framework for document-centric background generation that achieves foreground preservation and multi-page stylistic consistency through latent-space design rather than explicit constraints. Instead of suppressing diffusion updates or applying masking heuristics, our approach reinterprets diffusion as the evolution of stochastic trajectories through a structured latent space. By shaping the initial noise and its geometric alignment, background generation naturally avoids designated foreground regions, allowing readable content to remain intact without auxiliary mechanisms. To address the long-standing issue of stylistic drift across pages, we decouple style control from text conditioning and introduce cached style directions as persistent vectors in latent space. Once selected, these directions constrain diffusion trajectories to a shared stylistic subspace, ensuring consistent appearance across pages and editing iterations. This formulation eliminates the need for repeated prompt-based style specification and provides a more stable foundation for multi-page generation. Our framework admits a geometric and physical interpretation, where diffusion paths evolve on a latent manifold shaped by preferred directions, and foreground regions are rarely traversed as a consequence of trajectory initialization rather than explicit exclusion. The proposed method is training-free, compatible with existing diffusion backbones, and produces visually coherent, foreground-preserving results across complex documents. By reframing diffusion as trajectory design in latent space, we offer a principled approach to consistent and structured generative modeling.
comment: 47 pages, 36 figures
☆ Blind Ultrasound Image Enhancement via Self-Supervised Physics-Guided Degradation Modeling
Ultrasound (US) interpretation is hampered by multiplicative speckle, acquisition blur from the point-spread function (PSF), and scanner- and operator-dependent artifacts. Supervised enhancement methods assume access to clean targets or known degradations; conditions rarely met in practice. We present a blind, self-supervised enhancement framework that jointly deconvolves and denoises B-mode images using a Swin Convolutional U-Net trained with a \emph{physics-guided} degradation model. From each training frame, we extract rotated/cropped patches and synthesize inputs by (i) convolving with a Gaussian PSF surrogate and (ii) injecting noise via either spatial additive Gaussian noise or complex Fourier-domain perturbations that emulate phase/magnitude distortions. For US scans, clean-like targets are obtained via non-local low-rank (NLLR) denoising, removing the need for ground truth; for natural images, the originals serve as targets. Trained and validated on UDIAT~B, JNU-IFM, and XPIE Set-P, and evaluated additionally on a 700-image PSFHS test set, the method achieves the highest PSNR/SSIM across Gaussian and speckle noise levels, with margins that widen under stronger corruption. Relative to MSANN, Restormer, and DnCNN, it typically preserves an extra $\sim$1--4\,dB PSNR and 0.05--0.15 SSIM in heavy Gaussian noise, and $\sim$2--5\,dB PSNR and 0.05--0.20 SSIM under severe speckle. Controlled PSF studies show reduced FWHM and higher peak gradients, evidence of resolution recovery without edge erosion. Used as a plug-and-play preprocessor, it consistently boosts Dice for fetal head and pubic symphysis segmentation. Overall, the approach offers a practical, assumption-light path to robust US enhancement that generalizes across datasets, scanners, and degradation types.
comment: 11 pages, 13 figures
☆ MMFineReason: Closing the Multimodal Reasoning Gap via Open Data-Centric Methods
Recent advances in Vision Language Models (VLMs) have driven significant progress in visual reasoning. However, open-source VLMs still lag behind proprietary systems, largely due to the lack of high-quality reasoning data. Existing datasets offer limited coverage of challenging domains such as STEM diagrams and visual puzzles, and lack consistent, long-form Chain-of-Thought (CoT) annotations essential for eliciting strong reasoning capabilities. To bridge this gap, we introduce MMFineReason, a large-scale multimodal reasoning dataset comprising 1.8M samples and 5.1B solution tokens, featuring high-quality reasoning annotations distilled from Qwen3-VL-235B-A22B-Thinking. The dataset is established via a systematic three-stage pipeline: (1) large-scale data collection and standardization, (2) CoT rationale generation, and (3) comprehensive selection based on reasoning quality and difficulty awareness. The resulting dataset spans STEM problems, visual puzzles, games, and complex diagrams, with each sample annotated with visually grounded reasoning traces. We fine-tune Qwen3-VL-Instruct on MMFineReason to develop MMFineReason-2B/4B/8B versions. Our models establish new state-of-the-art results for their size class. Notably, MMFineReason-4B succesfully surpasses Qwen3-VL-8B-Thinking, and MMFineReason-8B even outperforms Qwen3-VL-30B-A3B-Thinking while approaching Qwen3-VL-32B-Thinking, demonstrating remarkable parameter efficiency. Crucially, we uncover a "less is more" phenomenon via our difficulty-aware filtering strategy: a subset of just 7\% (123K samples) achieves performance comparable to the full dataset. Notably, we reveal a synergistic effect where reasoning-oriented data composition simultaneously boosts general capabilities.
☆ CG-MLLM: Captioning and Generating 3D content via Multi-modal Large Language Models
Large Language Models(LLMs) have revolutionized text generation and multimodal perception, but their capabilities in 3D content generation remain underexplored. Existing methods compromise by producing either low-resolution meshes or coarse structural proxies, failing to capture fine-grained geometry natively. In this paper, we propose CG-MLLM, a novel Multi-modal Large Language Model (MLLM) capable of 3D captioning and high-resolution 3D generation in a single framework. Leveraging the Mixture-of-Transformer architecture, CG-MLLM decouples disparate modeling needs, where the Token-level Autoregressive (TokenAR) Transformer handles token-level content, and the Block-level Autoregressive (BlockAR) Transformer handles block-level content. By integrating a pre-trained vision-language backbone with a specialized 3D VAE latent space, CG-MLLM facilitates long-context interactions between standard tokens and spatial blocks within a single integrated architecture. Experimental results show that CG-MLLM significantly outperforms existing MLLMs in generating high-fidelity 3D objects, effectively bringing high-resolution 3D content creation into the mainstream LLM paradigm.
☆ Synthetic-to-Real Domain Bridging for Single-View 3D Reconstruction of Ships for Maritime Monitoring
Three-dimensional (3D) reconstruction of ships is an important part of maritime monitoring, allowing improved visualization, inspection, and decision-making in real-world monitoring environments. However, most state-ofthe-art 3D reconstruction methods require multi-view supervision, annotated 3D ground truth, or are computationally intensive, making them impractical for real-time maritime deployment. In this work, we present an efficient pipeline for single-view 3D reconstruction of real ships by training entirely on synthetic data and requiring only a single view at inference. Our approach uses the Splatter Image network, which represents objects as sparse sets of 3D Gaussians for rapid and accurate reconstruction from single images. The model is first fine-tuned on synthetic ShapeNet vessels and further refined with a diverse custom dataset of 3D ships, bridging the domain gap between synthetic and real-world imagery. We integrate a state-of-the-art segmentation module based on YOLOv8 and custom preprocessing to ensure compatibility with the reconstruction network. Postprocessing steps include real-world scaling, centering, and orientation alignment, followed by georeferenced placement on an interactive web map using AIS metadata and homography-based mapping. Quantitative evaluation on synthetic validation data demonstrates strong reconstruction fidelity, while qualitative results on real maritime images from the ShipSG dataset confirm the potential for transfer to operational maritime settings. The final system provides interactive 3D inspection of real ships without requiring real-world 3D annotations. This pipeline provides an efficient, scalable solution for maritime monitoring and highlights a path toward real-time 3D ship visualization in practical applications. Interactive demo: https://dlr-mi.github.io/ship3d-demo/.
☆ Dynamic Topology Awareness: Breaking the Granularity Rigidity in Vision-Language Navigation
Vision-Language Navigation in Continuous Environments (VLN-CE) presents a core challenge: grounding high-level linguistic instructions into precise, safe, and long-horizon spatial actions. Explicit topological maps have proven to be a vital solution for providing robust spatial memory in such tasks. However, existing topological planning methods suffer from a "Granularity Rigidity" problem. Specifically, these methods typically rely on fixed geometric thresholds to sample nodes, which fails to adapt to varying environmental complexities. This rigidity leads to a critical mismatch: the model tends to over-sample in simple areas, causing computational redundancy, while under-sampling in high-uncertainty regions, increasing collision risks and compromising precision. To address this, we propose DGNav, a framework for Dynamic Topological Navigation, introducing a context-aware mechanism to modulate map density and connectivity on-the-fly. Our approach comprises two core innovations: (1) A Scene-Aware Adaptive Strategy that dynamically modulates graph construction thresholds based on the dispersion of predicted waypoints, enabling "densification on demand" in challenging environments; (2) A Dynamic Graph Transformer that reconstructs graph connectivity by fusing visual, linguistic, and geometric cues into dynamic edge weights, enabling the agent to filter out topological noise and enhancing instruction adherence. Extensive experiments on the R2R-CE and RxR-CE benchmarks demonstrate DGNav exhibits superior navigation performance and strong generalization capabilities. Furthermore, ablation studies confirm that our framework achieves an optimal trade-off between navigation efficiency and safe exploration. The code is available at https://github.com/shannanshouyin/DGNav.
☆ From Global to Granular: Revealing IQA Model Performance via Correlation Surface
Evaluation of Image Quality Assessment (IQA) models has long been dominated by global correlation metrics, such as Pearson Linear Correlation Coefficient (PLCC) and Spearman Rank-Order Correlation Coefficient (SRCC). While widely adopted, these metrics reduce performance to a single scalar, failing to capture how ranking consistency varies across the local quality spectrum. For example, two IQA models may achieve identical SRCC values, yet one ranks high-quality images (related to high Mean Opinion Score, MOS) more reliably, while the other better discriminates image pairs with small quality/MOS differences (related to $|Δ$MOS$|$). Such complementary behaviors are invisible under global metrics. Moreover, SRCC and PLCC are sensitive to test-sample quality distributions, yielding unstable comparisons across test sets. To address these limitations, we propose \textbf{Granularity-Modulated Correlation (GMC)}, which provides a structured, fine-grained analysis of IQA performance. GMC includes: (1) a \textbf{Granularity Modulator} that applies Gaussian-weighted correlations conditioned on absolute MOS values and pairwise MOS differences ($|Δ$MOS$|$) to examine local performance variations, and (2) a \textbf{Distribution Regulator} that regularizes correlations to mitigate biases from non-uniform quality distributions. The resulting \textbf{correlation surface} maps correlation values as a joint function of MOS and $|Δ$MOS$|$, providing a 3D representation of IQA performance. Experiments on standard benchmarks show that GMC reveals performance characteristics invisible to scalar metrics, offering a more informative and reliable paradigm for analyzing, comparing, and deploying IQA models. Codes are available at https://github.com/Dniaaa/GMC.
☆ DreamActor-M2: Universal Character Image Animation via Spatiotemporal In-Context Learning
Character image animation aims to synthesize high-fidelity videos by transferring motion from a driving sequence to a static reference image. Despite recent advancements, existing methods suffer from two fundamental challenges: (1) suboptimal motion injection strategies that lead to a trade-off between identity preservation and motion consistency, manifesting as a "see-saw", and (2) an over-reliance on explicit pose priors (e.g., skeletons), which inadequately capture intricate dynamics and hinder generalization to arbitrary, non-humanoid characters. To address these challenges, we present DreamActor-M2, a universal animation framework that reimagines motion conditioning as an in-context learning problem. Our approach follows a two-stage paradigm. First, we bridge the input modality gap by fusing reference appearance and motion cues into a unified latent space, enabling the model to jointly reason about spatial identity and temporal dynamics by leveraging the generative prior of foundational models. Second, we introduce a self-bootstrapped data synthesis pipeline that curates pseudo cross-identity training pairs, facilitating a seamless transition from pose-dependent control to direct, end-to-end RGB-driven animation. This strategy significantly enhances generalization across diverse characters and motion scenarios. To facilitate comprehensive evaluation, we further introduce AW Bench, a versatile benchmark encompassing a wide spectrum of characters types and motion scenarios. Extensive experiments demonstrate that DreamActor-M2 achieves state-of-the-art performance, delivering superior visual fidelity and robust cross-domain generalization. Project Page: https://grisoon.github.io/DreamActor-M2/
☆ ChartE$^{3}$: A Comprehensive Benchmark for End-to-End Chart Editing
Charts are a fundamental visualization format for structured data analysis. Enabling end-to-end chart editing according to user intent is of great practical value, yet remains challenging due to the need for both fine-grained control and global structural consistency. Most existing approaches adopt pipeline-based designs, where natural language or code serves as an intermediate representation, limiting their ability to faithfully execute complex edits. We introduce ChartE$^{3}$, an End-to-End Chart Editing benchmark that directly evaluates models without relying on intermediate natural language programs or code-level supervision. ChartE$^{3}$ focuses on two complementary editing dimensions: local editing, which involves fine-grained appearance changes such as font or color adjustments, and global editing, which requires holistic, data-centric transformations including data filtering and trend line addition. ChartE$^{3}$ contains over 1,200 high-quality samples constructed via a well-designed data pipeline with human curation. Each sample is provided as a triplet of a chart image, its underlying code, and a multimodal editing instruction, enabling evaluation from both objective and subjective perspectives. Extensive benchmarking of state-of-the-art multimodal large language models reveals substantial performance gaps, particularly on global editing tasks, highlighting critical limitations in current end-to-end chart editing capabilities.
comment: Our benchmark will be publicly available at https://github.com/galactic123/ChartE3
☆ Multimodal Visual Surrogate Compression for Alzheimer's Disease Classification
High-dimensional structural MRI (sMRI) images are widely used for Alzheimer's Disease (AD) diagnosis. Most existing methods for sMRI representation learning rely on 3D architectures (e.g., 3D CNNs), slice-wise feature extraction with late aggregation, or apply training-free feature extractions using 2D foundation models (e.g., DINO). However, these three paradigms suffer from high computational cost, loss of cross-slice relations, and limited ability to extract discriminative features, respectively. To address these challenges, we propose Multimodal Visual Surrogate Compression (MVSC). It learns to compress and adapt large 3D sMRI volumes into compact 2D features, termed as visual surrogates, which are better aligned with frozen 2D foundation models to extract powerful representations for final AD classification. MVSC has two key components: a Volume Context Encoder that captures global cross-slice context under textual guidance, and an Adaptive Slice Fusion module that aggregates slice-level information in a text-enhanced, patch-wise manner. Extensive experiments on three large-scale Alzheimer's disease benchmarks demonstrate our MVSC performs favourably on both binary and multi-class classification tasks compared against state-of-the-art methods.
☆ When Gradient Optimization Is Not Enough: $\dagger$ Dispersive and Anchoring Geometric Regularizer for Multimodal Learning
Multimodal learning aims to integrate complementary information from heterogeneous modalities, yet strong optimization alone does not guaranty well-structured representations. Even under carefully balanced training schemes, multimodal models often exhibit geometric pathologies, including intra-modal representation collapse and sample-level cross-modal inconsistency, which degrade both unimodal robustness and multimodal fusion. We identify representation geometry as a missing control axis in multimodal learning and propose \regName, a lightweight geometry-aware regularization framework. \regName enforces two complementary constraints on intermediate embeddings: an intra-modal dispersive regularization that promotes representation diversity, and an inter-modal anchoring regularization that bounds sample-level cross-modal drift without rigid alignment. The proposed regularizer is plug-and-play, requires no architectural modifications, and is compatible with various training paradigms. Extensive experiments across multiple multimodal benchmarks demonstrate consistent improvements in both multimodal and unimodal performance, showing that explicitly regulating representation geometry effectively mitigates modality trade-offs.
☆ From Instruction to Event: Sound-Triggered Mobile Manipulation
Current mobile manipulation research predominantly follows an instruction-driven paradigm, where agents rely on predefined textual commands to execute tasks. However, this setting confines agents to a passive role, limiting their autonomy and ability to react to dynamic environmental events. To address these limitations, we introduce sound-triggered mobile manipulation, where agents must actively perceive and interact with sound-emitting objects without explicit action instructions. To support these tasks, we develop Habitat-Echo, a data platform that integrates acoustic rendering with physical interaction. We further propose a baseline comprising a high-level task planner and low-level policy models to complete these tasks. Extensive experiments show that the proposed baseline empowers agents to actively detect and respond to auditory events, eliminating the need for case-by-case instructions. Notably, in the challenging dual-source scenario, the agent successfully isolates the primary source from overlapping acoustic interference to execute the first interaction, and subsequently proceeds to manipulate the secondary object, verifying the robustness of the baseline.
☆ SONIC-O1: A Real-World Benchmark for Evaluating Multimodal Large Language Models on Audio-Video Understanding
Multimodal Large Language Models (MLLMs) are a major focus of recent AI research. However, most prior work focuses on static image understanding, while their ability to process sequential audio-video data remains underexplored. This gap highlights the need for a high-quality benchmark to systematically evaluate MLLM performance in a real-world setting. We introduce SONIC-O1, a comprehensive, fully human-verified benchmark spanning 13 real-world conversational domains with 4,958 annotations and demographic metadata. SONIC-O1 evaluates MLLMs on key tasks, including open-ended summarization, multiple-choice question (MCQ) answering, and temporal localization with supporting rationales (reasoning). Experiments on closed- and open-source models reveal limitations. While the performance gap in MCQ accuracy between two model families is relatively small, we observe a substantial 22.6% performance difference in temporal localization between the best performing closed-source and open-source models. Performance further degrades across demographic groups, indicating persistent disparities in model behavior. Overall, SONIC-O1 provides an open evaluation suite for temporally grounded and socially robust multimodal understanding. We release SONIC-O1 for reproducibility and research: Project page: https://vectorinstitute.github.io/sonic-o1/ Dataset: https://huggingface.co/datasets/vector-institute/sonic-o1 Github: https://github.com/vectorinstitute/sonic-o1 Leaderboard: https://huggingface.co/spaces/vector-institute/sonic-o1-leaderboard
☆ Few-Shot Domain Adaptation with Temporal References and Static Priors for Glacier Calving Front Delineation
During benchmarking, the state-of-the-art model for glacier calving front delineation achieves near-human performance. However, when applied in a real-world setting at a novel study site, its delineation accuracy is insufficient for calving front products intended for further scientific analyses. This site represents an out-of-distribution domain for a model trained solely on the benchmark dataset. By employing a few-shot domain adaptation strategy, incorporating spatial static prior knowledge, and including summer reference images in the input time series, the delineation error is reduced from 1131.6 m to 68.7 m without any architectural modifications. These methodological advancements establish a framework for applying deep learning-based calving front segmentation to novel study sites, enabling calving front monitoring on a global scale.
☆ CAF-Mamba: Mamba-Based Cross-Modal Adaptive Attention Fusion for Multimodal Depression Detection ICASSP
Depression is a prevalent mental health disorder that severely impairs daily functioning and quality of life. While recent deep learning approaches for depression detection have shown promise, most rely on limited feature types, overlook explicit cross-modal interactions, and employ simple concatenation or static weighting for fusion. To overcome these limitations, we propose CAF-Mamba, a novel Mamba-based cross-modal adaptive attention fusion framework. CAF-Mamba not only captures cross-modal interactions explicitly and implicitly, but also dynamically adjusts modality contributions through a modality-wise attention mechanism, enabling more effective multimodal fusion. Experiments on two in-the-wild benchmark datasets, LMVD and D-Vlog, demonstrate that CAF-Mamba consistently outperforms existing methods and achieves state-of-the-art performance.
comment: The paper contains a total of 5 pages and 3 figures. This paper has been accepted for publication in the proceedings of 2026 IEEE ICASSP Conference
☆ OCRVerse: Towards Holistic OCR in End-to-End Vision-Language Models
The development of large vision language models drives the demand for managing, and applying massive amounts of multimodal data, making OCR technology, which extracts information from visual images, increasingly popular. However, existing OCR methods primarily focus on recognizing text elements from images or scanned documents (\textbf{Text-centric OCR}), neglecting the identification of visual elements from visually information-dense image sources (\textbf{Vision-centric OCR}), such as charts, web pages and science plots. In reality, these visually information-dense images are widespread on the internet and have significant real-world application value, such as data visualization and web page analysis. In this technical report, we propose \textbf{OCRVerse}, the first holistic OCR method in end-to-end manner that enables unified text-centric OCR and vision-centric OCR. To this end, we constructe comprehensive data engineering to cover a wide range of text-centric documents, such as newspapers, magazines and books, as well as vision-centric rendered composites, including charts, web pages and scientific plots. Moreover, we propose a two-stage SFT-RL multi-domain training method for OCRVerse. SFT directly mixes cross-domain data to train and establish initial domain knowledge, while RL focuses on designing personalized reward strategies for the characteristics of each domain. Specifically, since different domains require various output formats and expected outputs, we provide sufficient flexibility in the RL stage to customize flexible reward signals for each domain, thereby improving cross-domain fusion and avoiding data conflicts. Experimental results demonstrate the effectiveness of OCRVerse, achieving competitive results across text-centric and vision-centric data types, even comparable to large-scale open-source and closed-source models.
☆ RSGround-R1: Rethinking Remote Sensing Visual Grounding through Spatial Reasoning
Remote Sensing Visual Grounding (RSVG) aims to localize target objects in large-scale aerial imagery based on natural language descriptions. Owing to the vast spatial scale and high semantic ambiguity of remote sensing scenes, these descriptions often rely heavily on positional cues, posing unique challenges for Multimodal Large Language Models (MLLMs) in spatial reasoning. To leverage this unique feature, we propose a reasoning-guided, position-aware post-training framework, dubbed \textbf{RSGround-R1}, to progressively enhance spatial understanding. Specifically, we first introduce Chain-of-Thought Supervised Fine-Tuning (CoT-SFT) using synthetically generated RSVG reasoning data to establish explicit position awareness. Reinforcement Fine-Tuning (RFT) is then applied, augmented by our newly designed positional reward that provides continuous and distance-aware guidance toward accurate localization. Moreover, to mitigate incoherent localization behaviors across rollouts, we introduce a spatial consistency guided optimization scheme that dynamically adjusts policy updates based on their spatial coherence, ensuring stable and robust convergence. Extensive experiments on RSVG benchmarks demonstrate superior performance and generalization of our model.
☆ A Tilted Seesaw: Revisiting Autoencoder Trade-off for Controllable Diffusion
In latent diffusion models, the autoencoder (AE) is typically expected to balance two capabilities: faithful reconstruction and a generation-friendly latent space (e.g., low gFID). In recent ImageNet-scale AE studies, we observe a systematic bias toward generative metrics in handling this trade-off: reconstruction metrics are increasingly under-reported, and ablation-based AE selection often favors the best-gFID configuration even when reconstruction fidelity degrades. We theoretically analyze why this gFID-dominant preference can appear unproblematic for ImageNet generation, yet becomes risky when scaling to controllable diffusion: AEs can induce condition drift, which limits achievable condition alignment. Meanwhile, we find that reconstruction fidelity, especially instance-level measures, better indicates controllability. We empirically validate the impact of tilted autoencoder evaluation on controllability by studying several recent ImageNet AEs. Using a multi-dimensional condition-drift evaluation protocol reflecting controllable generation tasks, we find that gFID is only weakly predictive of condition preservation, whereas reconstruction-oriented metrics are substantially more aligned. ControlNet experiments further confirm that controllability tracks condition preservation rather than gFID. Overall, our results expose a gap between ImageNet-centric AE evaluation and the requirements of scalable controllable diffusion, offering practical guidance for more reliable benchmarking and model selection.
comment: work in progress
☆ Similarity of Processing Steps in Vision Model Representations
Recent literature suggests that the bigger the model, the more likely it is to converge to similar, ``universal'' representations, despite different training objectives, datasets, or modalities. While this literature shows that there is an area where model representations are similar, we study here how vision models might get to those representations -- in particular, do they also converge to the same intermediate steps and operations? We therefore study the processes that lead to convergent representations in different models. First, we quantify distance between different model representations at different stages. We follow the evolution of distances between models throughout processing, identifying the processing steps which are most different between models. We find that while layers at similar positions in different models have the most similar representations, strong differences remain. Classifier models, unlike the others, will discard information about low-level image statistics in their final layers. CNN- and transformer-based models also behave differently, with transformer models applying smoother changes to representations from one layer to the next. These distinctions clarify the level and nature of convergence between model representations, and enables a more qualitative account of the underlying processes in image models.
☆ PathReasoner-R1: Instilling Structured Reasoning into Pathology Vision-Language Model via Knowledge-Guided Policy Optimization
Vision-Language Models (VLMs) are advancing computational pathology with superior visual understanding capabilities. However, current systems often reduce diagnosis to directly output conclusions without verifiable evidence-linked reasoning, which severely limits clinical trust and hinders expert error rectification. To address these barriers, we construct PathReasoner, the first large-scale dataset of whole-slide image (WSI) reasoning. Unlike previous work reliant on unverified distillation, we develop a rigorous knowledge-guided generation pipeline. By leveraging medical knowledge graphs, we explicitly align structured pathological findings and clinical reasoning with diagnoses, generating over 20K high-quality instructional samples. Based on the database, we propose PathReasoner-R1, which synergizes trajectory-masked supervised fine-tuning with reasoning-oriented reinforcement learning to instill structured chain-of-thought capabilities. To ensure medical rigor, we engineer a knowledge-aware multi-granular reward function incorporating an Entity Reward mechanism strictly aligned with knowledge graphs. This effectively guides the model to optimize for logical consistency rather than mere outcome matching, thereby enhancing robustness. Extensive experiments demonstrate that PathReasoner-R1 achieves state-of-the-art performance on both PathReasoner and public benchmarks across various image scales, equipping pathology models with transparent, clinically grounded reasoning capabilities. Dataset and code are available at https://github.com/cyclexfy/PathReasoner-R1.
☆ WMVLM: Evaluating Diffusion Model Image Watermarking via Vision-Language Models
Digital watermarking is essential for securing generated images from diffusion models. Accurate watermark evaluation is critical for algorithm development, yet existing methods have significant limitations: they lack a unified framework for both residual and semantic watermarks, provide results without interpretability, neglect comprehensive security considerations, and often use inappropriate metrics for semantic watermarks. To address these gaps, we propose WMVLM, the first unified and interpretable evaluation framework for diffusion model image watermarking via vision-language models (VLMs). We redefine quality and security metrics for each watermark type: residual watermarks are evaluated by artifact strength and erasure resistance, while semantic watermarks are assessed through latent distribution shifts. Moreover, we introduce a three-stage training strategy to progressively enable the model to achieve classification, scoring, and interpretable text generation. Experiments show WMVLM outperforms state-of-the-art VLMs with strong generalization across datasets, diffusion models, and watermarking methods.
☆ HydroSense: A Dual-Microcontroller IoT Framework for Real-Time Multi-Parameter Water Quality Monitoring with Edge Processing and Cloud Analytics
The global water crisis necessitates affordable, accurate, and real-time water quality monitoring solutions. Traditional approaches relying on manual sampling or expensive commercial systems fail to address accessibility challenges in resource-constrained environments. This paper presents HydroSense, an innovative Internet of Things framework that integrates six critical water quality parameters including pH, dissolved oxygen (DO), temperature, total dissolved solids (TDS), estimated nitrogen, and water level into a unified monitoring system. HydroSense employs a novel dual-microcontroller architecture, utilizing Arduino Uno for precision analog measurements with five-point calibration algorithms and ESP32 for wireless connectivity, edge processing, and cloud integration. The system implements advanced signal processing techniques including median filtering for TDS measurement, temperature compensation algorithms, and robust error handling. Experimental validation over 90 days demonstrates exceptional performance metrics: pH accuracy of plus or minus 0.08 units across the 0 to 14 range, DO measurement stability within plus or minus 0.2 mg/L, TDS accuracy of plus or minus 1.9 percent across 0 to 1000 ppm, and 99.8 percent cloud data transmission reliability. With a total implementation cost of 32,983 BDT (approximately 300 USD), HydroSense achieves an 85 percent cost reduction compared to commercial systems while providing enhanced connectivity through the Firebase real-time database. This research establishes a new paradigm for accessible environmental monitoring, demonstrating that professional-grade water quality assessment can be achieved through intelligent system architecture and cost-effective component selection.
☆ Unifying Heterogeneous Degradations: Uncertainty-Aware Diffusion Bridge Model for All-in-One Image Restoration
All-in-One Image Restoration (AiOIR) faces the fundamental challenge in reconciling conflicting optimization objectives across heterogeneous degradations. Existing methods are often constrained by coarse-grained control mechanisms or fixed mapping schedules, yielding suboptimal adaptation. To address this, we propose an Uncertainty-Aware Diffusion Bridge Model (UDBM), which innovatively reformulates AiOIR as a stochastic transport problem steered by pixel-wise uncertainty. By introducing a relaxed diffusion bridge formulation which replaces the strict terminal constraint with a relaxed constraint, we model the uncertainty of degradations while theoretically resolving the drift singularity inherent in standard diffusion bridges. Furthermore, we devise a dual modulation strategy: the noise schedule aligns diverse degradations into a shared high-entropy latent space, while the path schedule adaptively regulates the transport trajectory motivated by the viscous dynamics of entropy regularization. By effectively rectifying the transport geometry and dynamics, UDBM achieves state-of-the-art performance across diverse restoration tasks within a single inference step.
☆ Bi-Anchor Interpolation Solver for Accelerating Generative Modeling
Flow Matching (FM) models have emerged as a leading paradigm for high-fidelity synthesis. However, their reliance on iterative Ordinary Differential Equation (ODE) solving creates a significant latency bottleneck. Existing solutions face a dichotomy: training-free solvers suffer from significant performance degradation at low Neural Function Evaluations (NFEs), while training-based one- or few-steps generation methods incur prohibitive training costs and lack plug-and-play versatility. To bridge this gap, we propose the Bi-Anchor Interpolation Solver (BA-solver). BA-solver retains the versatility of standard training-free solvers while achieving significant acceleration by introducing a lightweight SideNet (1-2% backbone size) alongside the frozen backbone. Specifically, our method is founded on two synergistic components: \textbf{1) Bidirectional Temporal Perception}, where the SideNet learns to approximate both future and historical velocities without retraining the heavy backbone; and 2) Bi-Anchor Velocity Integration, which utilizes the SideNet with two anchor velocities to efficiently approximate intermediate velocities for batched high-order integration. By utilizing the backbone to establish high-precision ``anchors'' and the SideNet to densify the trajectory, BA-solver enables large interval sizes with minimized error. Empirical results on ImageNet-256^2 demonstrate that BA-solver achieves generation quality comparable to 100+ NFEs Euler solver in just 10 NFEs and maintains high fidelity in as few as 5 NFEs, incurring negligible training costs. Furthermore, BA-solver ensures seamless integration with existing generative pipelines, facilitating downstream tasks such as image editing.
☆ Vision KAN: Towards an Attention-Free Backbone for Vision with Kolmogorov-Arnold Networks
Attention mechanisms have become a key module in modern vision backbones due to their ability to model long-range dependencies. However, their quadratic complexity in sequence length and the difficulty of interpreting attention weights limit both scalability and clarity. Recent attention-free architectures demonstrate that strong performance can be achieved without pairwise attention, motivating the search for alternatives. In this work, we introduce Vision KAN (ViK), an attention-free backbone inspired by the Kolmogorov-Arnold Networks. At its core lies MultiPatch-RBFKAN, a unified token mixer that combines (a) patch-wise nonlinear transform with Radial Basis Function-based KANs, (b) axis-wise separable mixing for efficient local propagation, and (c) low-rank global mapping for long-range interaction. Employing as a drop-in replacement for attention modules, this formulation tackles the prohibitive cost of full KANs on high-resolution features by adopting a patch-wise grouping strategy with lightweight operators to restore cross-patch dependencies. Experiments on ImageNet-1K show that ViK achieves competitive accuracy with linear complexity, demonstrating the potential of KAN-based token mixing as an efficient and theoretically grounded alternative to attention.
☆ On the Adversarial Robustness of Large Vision-Language Models under Visual Token Compression
Visual token compression is widely used to accelerate large vision-language models (LVLMs) by pruning or merging visual tokens, yet its adversarial robustness remains unexplored. We show that existing encoder-based attacks can substantially overestimate the robustness of compressed LVLMs, due to an optimization-inference mismatch: perturbations are optimized on the full-token representation, while inference is performed through a token-compression bottleneck. To address this gap, we propose the Compression-AliGnEd attack (CAGE), which aligns perturbation optimization with compression inference without assuming access to the deployed compression mechanism or its token budget. CAGE combines (i) expected feature disruption, which concentrates distortion on tokens likely to survive across plausible budgets, and (ii) rank distortion alignment, which actively aligns token distortions with rank scores to promote the retention of highly distorted evidence. Across diverse representative plug-and-play compression mechanisms and datasets, our results show that CAGE consistently achieves lower robust accuracy than the baseline. This work highlights that robustness assessments ignoring compression can be overly optimistic, calling for compression-aware security evaluation and defenses for efficient LVLMs.
comment: Under Review, 20 pages
☆ HERS: Hidden-Pattern Expert Learning for Risk-Specific Vehicle Damage Adaptation in Diffusion Models
Recent advances in text-to-image (T2I) diffusion models have enabled increasingly realistic synthesis of vehicle damage, raising concerns about their reliability in automated insurance workflows. The ability to generate crash-like imagery challenges the boundary between authentic and synthetic data, introducing new risks of misuse in fraud or claim manipulation. To address these issues, we propose HERS (Hidden-Pattern Expert Learning for Risk-Specific Damage Adaptation), a framework designed to improve fidelity, controllability, and domain alignment of diffusion-generated damage images. HERS fine-tunes a base diffusion model via domain-specific expert adaptation without requiring manual annotation. Using self-supervised image-text pairs automatically generated by a large language model and T2I pipeline, HERS models each damage category, such as dents, scratches, broken lights, or cracked paint, as a separate expert. These experts are later integrated into a unified multi-damage model that balances specialization with generalization. We evaluate HERS across four diffusion backbones and observe consistent improvements: plus 5.5 percent in text faithfulness and plus 2.3 percent in human preference ratings compared to baselines. Beyond image fidelity, we discuss implications for fraud detection, auditability, and safe deployment of generative models in high-stakes domains. Our findings highlight both the opportunities and risks of domain-specific diffusion, underscoring the importance of trustworthy generation in safety-critical applications such as auto insurance.
comment: 26 pages
☆ SimGraph: A Unified Framework for Scene Graph-Based Image Generation and Editing
Recent advancements in Generative Artificial Intelligence (GenAI) have significantly enhanced the capabilities of both image generation and editing. However, current approaches often treat these tasks separately, leading to inefficiencies and challenges in maintaining spatial consistency and semantic coherence between generated content and edits. Moreover, a major obstacle is the lack of structured control over object relationships and spatial arrangements. Scene graph-based methods, which represent objects and their interrelationships in a structured format, offer a solution by providing greater control over composition and interactions in both image generation and editing. To address this, we introduce SimGraph, a unified framework that integrates scene graph-based image generation and editing, enabling precise control over object interactions, layouts, and spatial coherence. In particular, our framework integrates token-based generation and diffusion-based editing within a single scene graph-driven model, ensuring high-quality and consistent results. Through extensive experiments, we empirically demonstrate that our approach outperforms existing state-of-the-art methods.
☆ Hypernetwork-Based Adaptive Aggregation for Multimodal Multiple-Instance Learning in Predicting Coronary Calcium Debulking
In this paper, we present the first attempt to estimate the necessity of debulking coronary artery calcifications from computed tomography (CT) images. We formulate this task as a Multiple-instance Learning (MIL) problem. The difficulty of this task lies in that physicians adjust their focus and decision criteria for device usage according to tabular data representing each patient's condition. To address this issue, we propose a hypernetwork-based adaptive aggregation transformer (HyperAdAgFormer), which adaptively modifies the feature aggregation strategy for each patient based on tabular data through a hypernetwork. The experiments using the clinical dataset demonstrated the effectiveness of HyperAdAgFormer. The code is publicly available at https://github.com/Shiku-Kaito/HyperAdAgFormer.
comment: Accepted to ISBI 2026
☆ Mining Forgery Traces from Reconstruction Error: A Weakly Supervised Framework for Multimodal Deepfake Temporal Localization
Modern deepfakes have evolved into localized and intermittent manipulations that require fine-grained temporal localization. The prohibitive cost of frame-level annotation makes weakly supervised methods a practical necessity, which rely only on video-level labels. To this end, we propose Reconstruction-based Temporal Deepfake Localization (RT-DeepLoc), a weakly supervised temporal forgery localization framework that identifies forgeries via reconstruction errors. Our framework uses a Masked Autoencoder (MAE) trained exclusively on authentic data to learn its intrinsic spatiotemporal patterns; this allows the model to produce significant reconstruction discrepancies for forged segments, effectively providing the missing fine-grained cues for localization. To robustly leverage these indicators, we introduce a novel Asymmetric Intra-video Contrastive Loss (AICL). By focusing on the compactness of authentic features guided by these reconstruction cues, AICL establishes a stable decision boundary that enhances local discrimination while preserving generalization to unseen forgeries. Extensive experiments on large-scale datasets, including LAV-DF, demonstrate that RT-DeepLoc achieves state-of-the-art performance in weakly-supervised temporal forgery localization.
☆ 4D-CAAL: 4D Radar-Camera Calibration and Auto-Labeling for Autonomous Driving
4D radar has emerged as a critical sensor for autonomous driving, primarily due to its enhanced capabilities in elevation measurement and higher resolution compared to traditional 3D radar. Effective integration of 4D radar with cameras requires accurate extrinsic calibration, and the development of radar-based perception algorithms demands large-scale annotated datasets. However, existing calibration methods often employ separate targets optimized for either visual or radar modalities, complicating correspondence establishment. Furthermore, manually labeling sparse radar data is labor-intensive and unreliable. To address these challenges, we propose 4D-CAAL, a unified framework for 4D radar-camera calibration and auto-labeling. Our approach introduces a novel dual-purpose calibration target design, integrating a checkerboard pattern on the front surface for camera detection and a corner reflector at the center of the back surface for radar detection. We develop a robust correspondence matching algorithm that aligns the checkerboard center with the strongest radar reflection point, enabling accurate extrinsic calibration. Subsequently, we present an auto-labeling pipeline that leverages the calibrated sensor relationship to transfer annotations from camera-based segmentations to radar point clouds through geometric projection and multi-feature optimization. Extensive experiments demonstrate that our method achieves high calibration accuracy while significantly reducing manual annotation effort, thereby accelerating the development of robust multi-modal perception systems for autonomous driving.
☆ Variance & Greediness: A comparative study of metric-learning losses ICASSP 2026
Metric learning is central to retrieval, yet its effects on embedding geometry and optimization dynamics are not well understood. We introduce a diagnostic framework, VARIANCE (intra-/inter-class variance) and GREEDINESS (active ratio and gradient norms), to compare seven representative losses, i.e., Contrastive, Triplet, N-pair, InfoNCE, ArcFace, SCL, and CCL, across five image-retrieval datasets. Our analysis reveals that Triplet and SCL preserve higher within-class variance and clearer inter-class margins, leading to stronger top-1 retrieval in fine-grained settings. In contrast, Contrastive and InfoNCE compact embeddings are achieved quickly through many small updates, accelerating convergence but potentially oversimplifying class structures. N-pair achieves a large mean separation but with uneven spacing. These insights reveal a form of efficiency-granularity trade-off and provide practical guidance: prefer Triplet/SCL when diversity preservation and hard-sample discrimination are critical, and Contrastive/InfoNCE when faster embedding compaction is desired.
comment: 5 pages, 2 figures, 3 tables. Accepted by ICASSP 2026
☆ Spava: Accelerating Long-Video Understanding via Sequence-Parallelism-aware Approximate Attention
The efficiency of long-video inference remains a critical bottleneck, mainly due to the dense computation in the prefill stage of Large Multimodal Models (LMMs). Existing methods either compress visual embeddings or apply sparse attention on a single GPU, yielding limited acceleration or degraded performance and restricting LMMs from handling longer, more complex videos. To overcome these issues, we propose Spava, a sequence-parallel framework with optimized attention that accelerates long-video inference across multiple GPUs. By distributing approximate attention, Spava reduces computation and increases parallelism, enabling efficient processing of more visual embeddings without compression and thereby improving task performance. System-level optimizations, such as load balancing and fused forward passes, further unleash the potential of Spava, delivering speedups of 12.72x, 1.70x, and 1.18x over FlashAttn, ZigZagRing, and APB, without notable performance loss. Code available at https://github.com/thunlp/APB
comment: Preprint
☆ From Consistency to Complementarity: Aligned and Disentangled Multi-modal Learning for Time Series Understanding and Reasoning
Advances in multi-modal large language models (MLLMs) have inspired time series understanding and reasoning tasks, that enable natural language querying over time series, producing textual analyses of complex temporal dynamics. Recent attempts hybridize numerical time series with their visualized plots, facilitating precise value reasoning and visual structure comprehension for comprehensive time series understanding of MLLMs. However, effective cross-modal integration remains challenging due to fine-grained temporal misalignment across modalities and severe entanglement between shared and modality-specific semantics, which hinder localized interpretation and complementary reasoning. To address these issues, we propose MADI, a multi-modal LLM enhanced with fine-grained alignment and disentangled interaction, featuring (1) Patch-level Alignment, which enforces physically grounded fine-grained correspondence across heterogeneous modalities, (2) Discrete Disentangled Interaction, which separates modality-common semantics into compact discrete latents and adaptively synergizes the purified modality-unique information, and (3) Critical-token Highlighting, which emphasizes informative, query-relevant signals for robust reasoning. Experiments on synthetic and real-world benchmarks show that MADI consistently outperforms general-purpose LLMs and time-series-specialized MLLMs.
☆ MultiModal Fine-tuning with Synthetic Captions
In this paper, we address a fundamental gap between pre-training and fine-tuning of deep neural networks: while pre-training has shifted from unimodal to multimodal learning with enhanced visual understanding, fine-tuning predominantly remains unimodal, limiting the benefits of rich pre-trained representations. To bridge this gap, we propose a novel approach that transforms unimodal datasets into multimodal ones using Multimodal Large Language Models (MLLMs) to generate synthetic image captions for fine-tuning models with a multimodal objective. Our method employs carefully designed prompts incorporating class labels and domain context to produce high-quality captions tailored for classification tasks. Furthermore, we introduce a supervised contrastive loss function that explicitly encourages clustering of same-class representations during fine-tuning, along with a new inference technique that leverages class-averaged text embeddings from multiple synthetic captions per image. Extensive experiments across 13 image classification benchmarks demonstrate that our approach outperforms baseline methods, with particularly significant improvements in few-shot learning scenarios. Our work establishes a new paradigm for dataset enhancement that effectively bridges the gap between multimodal pre-training and fine-tuning. Our code is available at https://github.com/s-enmt/MMFT.
☆ Lossy Common Information in a Learnable Gray-Wyner Network
Many computer vision tasks share substantial overlapping information, yet conventional codecs tend to ignore this, leading to redundant and inefficient representations. The Gray-Wyner network, a classical concept from information theory, offers a principled framework for separating common and task-specific information. Inspired by this idea, we develop a learnable three-channel codec that disentangles shared information from task-specific details across multiple vision tasks. We characterize the limits of this approach through the notion of lossy common information, and propose an optimization objective that balances inherent tradeoffs in learning such representations. Through comparisons of three codec architectures on two-task scenarios spanning six vision benchmarks, we demonstrate that our approach substantially reduces redundancy and consistently outperforms independent coding. These results highlight the practical value of revisiting Gray-Wyner theory in modern machine learning contexts, bridging classic information theory with task-driven representation learning.
☆ From Implicit Ambiguity to Explicit Solidity: Diagnosing Interior Geometric Degradation in Neural Radiance Fields for Dense 3D Scene Understanding
Neural Radiance Fields (NeRFs) have emerged as a powerful paradigm for multi-view reconstruction, complementing classical photogrammetric pipelines based on Structure-from-Motion (SfM) and Multi-View Stereo (MVS). However, their reliability for quantitative 3D analysis in dense, self-occluding scenes remains poorly understood. In this study, we identify a fundamental failure mode of implicit density fields under heavy occlusion, which we term Interior Geometric Degradation (IGD). We show that transmittance-based volumetric optimization satisfies photometric supervision by reconstructing hollow or fragmented structures rather than solid interiors, leading to systematic instance undercounting. Through controlled experiments on synthetic datasets with increasing occlusion, we demonstrate that state-of-the-art mask-supervised NeRFs saturate at approximately 89% instance recovery in dense scenes, despite improved surface coherence and mask quality. To overcome this limitation, we introduce an explicit geometric pipeline based on Sparse Voxel Rasterization (SVRaster), initialized from SfM feature geometry. By projecting 2D instance masks onto an explicit voxel grid and enforcing geometric separation via recursive splitting, our approach preserves physical solidity and achieves a 95.8% recovery rate in dense clusters. A sensitivity analysis using degraded segmentation masks further shows that explicit SfM-based geometry is substantially more robust to supervision failure, recovering 43% more instances than implicit baselines. These results demonstrate that explicit geometric priors are a prerequisite for reliable quantitative analysis in highly self-occluding 3D scenes.
☆ Revisiting Diffusion Model Predictions Through Dimensionality
Recent advances in diffusion and flow matching models have highlighted a shift in the preferred prediction target -- moving from noise ($\varepsilon$) and velocity (v) to direct data (x) prediction -- particularly in high-dimensional settings. However, a formal explanation of why the optimal target depends on the specific properties of the data remains elusive. In this work, we provide a theoretical framework based on a generalized prediction formulation that accommodates arbitrary output targets, of which $\varepsilon$-, v-, and x-prediction are special cases. We derive the analytical relationship between data's geometry and the optimal prediction target, offering a rigorous justification for why x-prediction becomes superior when the ambient dimension significantly exceeds the data's intrinsic dimension. Furthermore, while our theory identifies dimensionality as the governing factor for the optimal prediction target, the intrinsic dimension of manifold-bound data is typically intractable to estimate in practice. To bridge this gap, we propose k-Diff, a framework that employs a data-driven approach to learn the optimal prediction parameter k directly from data, bypassing the need for explicit dimension estimation. Extensive experiments in both latent-space and pixel-space image generation demonstrate that k-Diff consistently outperforms fixed-target baselines across varying architectures and data scales, providing a principled and automated approach to enhancing generative performance.
comment: 19 pages, 5 figures
☆ MPF-Net: Exposing High-Fidelity AI-Generated Video Forgeries via Hierarchical Manifold Deviation and Micro-Temporal Fluctuations
With the rapid advancement of video generation models such as Veo and Wan, the visual quality of synthetic content has reached a level where macro-level semantic errors and temporal inconsistencies are no longer prominent. However, this does not imply that the distinction between real and cutting-edge high-fidelity fake is untraceable. We argue that AI-generated videos are essentially products of a manifold-fitting process rather than a physical recording. Consequently, the pixel composition logic of consecutive adjacent frames residual in AI videos exhibits a structured and homogenous characteristic. We term this phenomenon `Manifold Projection Fluctuations' (MPF). Driven by this insight, we propose a hierarchical dual-path framework that operates as a sequential filtering process. The first, the Static Manifold Deviation Branch, leverages the refined perceptual boundaries of Large-Scale Vision Foundation Models (VFMs) to capture residual spatial anomalies or physical violations that deviate from the natural real-world manifold (off-manifold). For the remaining high-fidelity videos that successfully reside on-manifold and evade spatial detection, we introduce the Micro-Temporal Fluctuation Branch as a secondary, fine-grained filter. By analyzing the structured MPF that persists even in visually perfect sequences, our framework ensures that forgeries are exposed regardless of whether they manifest as global real-world manifold deviations or subtle computational fingerprints.
☆ Generation Enhances Understanding in Unified Multimodal Models via Multi-Representation Generation
Unified Multimodal Models (UMMs) integrate both visual understanding and generation within a single framework. Their ultimate aspiration is to create a cycle where understanding and generation mutually reinforce each other. While recent post-training methods have successfully leveraged understanding to enhance generation, the reverse direction of utilizing generation to improve understanding remains largely unexplored. In this work, we propose UniMRG (Unified Multi-Representation Generation), a simple yet effective architecture-agnostic post-training method. UniMRG enhances the understanding capabilities of UMMs by incorporating auxiliary generation tasks. Specifically, we train UMMs to generate multiple intrinsic representations of input images, namely pixel (reconstruction), depth (geometry), and segmentation (structure), alongside standard visual understanding objectives. By synthesizing these diverse representations, UMMs capture complementary information regarding appearance, spatial relations, and structural layout. Consequently, UMMs develop a deeper and more comprehensive understanding of visual inputs. Extensive experiments across diverse UMM architectures demonstrate that our method notably enhances fine-grained perception, reduces hallucinations, and improves spatial understanding, while simultaneously boosting generation capabilities.
☆ Rectifying Geometry-Induced Similarity Distortions for Real-World Aerial-Ground Person Re-Identification
Aerial-ground person re-identification (AG-ReID) is fundamentally challenged by extreme viewpoint and distance discrepancies between aerial and ground cameras, which induce severe geometric distortions and invalidate the assumption of a shared similarity space across views. Existing methods primarily rely on geometry-aware feature learning or appearance-conditioned prompting, while implicitly assuming that the geometry-invariant dot-product similarity used in attention mechanisms remains reliable under large viewpoint and scale variations. We argue that this assumption does not hold. Extreme camera geometry systematically distorts the query-key similarity space and degrades attention-based matching, even when feature representations are partially aligned. To address this issue, we introduce Geometry-Induced Query-Key Transformation (GIQT), a lightweight low-rank module that explicitly rectifies the similarity space by conditioning query-key interactions on camera geometry. Rather than modifying feature representations or the attention formulation itself, GIQT adapts the similarity computation to compensate for dominant geometry-induced anisotropic distortions. Building on this local similarity rectification, we further incorporate a geometry-conditioned prompt generation mechanism that provides global, view-adaptive representation priors derived directly from camera geometry. Experiments on four aerial-ground person re-identification benchmarks demonstrate that the proposed framework consistently improves robustness under extreme and previously unseen geometric conditions, while introducing minimal computational overhead compared to state-of-the-art methods.
☆ Towards Geometry-Aware and Motion-Guided Video Human Mesh Recovery
Existing video-based 3D Human Mesh Recovery (HMR) methods often produce physically implausible results, stemming from their reliance on flawed intermediate 3D pose anchors and their inability to effectively model complex spatiotemporal dynamics. To overcome these deep-rooted architectural problems, we introduce HMRMamba, a new paradigm for HMR that pioneers the use of Structured State Space Models (SSMs) for their efficiency and long-range modeling prowess. Our framework is distinguished by two core contributions. First, the Geometry-Aware Lifting Module, featuring a novel dual-scan Mamba architecture, creates a robust foundation for reconstruction. It directly grounds the 2D-to-3D pose lifting process with geometric cues from image features, producing a highly reliable 3D pose sequence that serves as a stable anchor. Second, the Motion-guided Reconstruction Network leverages this anchor to explicitly process kinematic patterns over time. By injecting this crucial temporal awareness, it significantly enhances the final mesh's coherence and robustness, particularly under occlusion and motion blur. Comprehensive evaluations on 3DPW, MPI-INF-3DHP, and Human3.6M benchmarks confirm that HMRMamba sets a new state-of-the-art, outperforming existing methods in both reconstruction accuracy and temporal consistency while offering superior computational efficiency.
☆ ViTMAlis: Towards Latency-Critical Mobile Video Analytics with Vision Transformers
Edge-assisted mobile video analytics (MVA) applications are increasingly shifting from using vision models based on convolutional neural networks (CNNs) to those built on vision transformers (ViTs) to leverage their superior global context modeling and generalization capabilities. However, deploying these advanced models in latency-critical MVA scenarios presents significant challenges. Unlike traditional CNN-based offloading paradigms where network transmission is the primary bottleneck, ViT-based systems are constrained by substantial inference delays, particularly for dense prediction tasks where the need for high-resolution inputs exacerbates the inherent quadratic computational complexity of ViTs. To address these challenges, we propose a dynamic mixed-resolution inference strategy tailored for ViT-backboned dense prediction models, enabling flexible runtime trade-offs between speed and accuracy. Building on this, we introduce ViTMAlis, a ViT-native device-to-edge offloading framework that dynamically adapts to network conditions and video content to jointly reduce transmission and inference delays. We implement a fully functional prototype of ViTMAlis on commodity mobile and edge devices. Extensive experiments demonstrate that, compared to state-of-the-art accuracy-centric, content-aware, and latency-adaptive baselines, ViTMAlis significantly reduces end-to-end offloading latency while improving user-perceived rendering accuracy, providing a practical foundation for next-generation mobile intelligence.
☆ Semantic-Guided Dynamic Sparsification for Pre-Trained Model-based Class-Incremental Learning
Class-Incremental Learning (CIL) requires a model to continually learn new classes without forgetting old ones. A common and efficient solution freezes a pre-trained model and employs lightweight adapters, whose parameters are often forced to be orthogonal to prevent inter-task interference. However, we argue that this parameter-constraining method is detrimental to plasticity. To this end, we propose Semantic-Guided Dynamic Sparsification (SGDS), a novel method that proactively guides the activation space by governing the orientation and rank of its subspaces through targeted sparsification. Specifically, SGDS promotes knowledge transfer by encouraging similar classes to share a compact activation subspace, while simultaneously preventing interference by assigning non-overlapping activation subspaces to dissimilar classes. By sculpting class-specific sparse subspaces in the activation space, SGDS effectively mitigates interference without imposing rigid constraints on the parameter space. Extensive experiments on various benchmark datasets demonstrate the state-of-the-art performance of SGDS.
☆ Dynamical Adapter Fusion: Constructing A Global Adapter for Pre-Trained Model-based Class-Incremental Learning
Class-Incremental Learning (CIL) requires models to continuously acquire new classes without forgetting previously learned ones. A dominant paradigm involves freezing a pre-trained model and training lightweight, task-specific adapters. However, maintaining task-specific parameters hinders knowledge transfer and incurs high retrieval costs, while naive parameter fusion often leads to destructive interference and catastrophic forgetting. To address these challenges, we propose Dynamical Adapter Fusion (DAF) to construct a single robust global adapter. Grounded in the PAC-Bayes theorem, we derive a fusion mechanism that explicitly integrates three components: the optimized task-specific adapter parameters, the previous global adapter parameters, and the initialization parameters. We utilize the Taylor expansion of the loss function to derive the optimal fusion coefficients, dynamically achieving the best balance between stability and plasticity. Furthermore, we propose a Robust Initialization strategy to effectively capture global knowledge patterns. Experiments on multiple CIL benchmarks demonstrate that DAF achieves state-of-the-art (SOTA) performance.
☆ SR$^{2}$-Net: A General Plug-and-Play Model for Spectral Refinement in Hyperspectral Image Super-Resolution
HSI-SR aims to enhance spatial resolution while preserving spectrally faithful and physically plausible characteristics. Recent methods have achieved great progress by leveraging spatial correlations to enhance spatial resolution. However, these methods often neglect spectral consistency across bands, leading to spurious oscillations and physically implausible artifacts. While spectral consistency can be addressed by designing the network architecture, it results in a loss of generality and flexibility. To address this issue, we propose a lightweight plug-and-play rectifier, physically priors Spectral Rectification Super-Resolution Network (SR$^{2}$-Net), which can be attached to a wide range of HSI-SR models without modifying their architectures. SR$^{2}$-Net follows an enhance-then-rectify pipeline consisting of (i) Hierarchical Spectral-Spatial Synergy Attention (H-S$^{3}$A) to reinforce cross-band interactions and (ii) Manifold Consistency Rectification (MCR) to constrain the reconstructed spectra to a compact, physically plausible spectral manifold. In addition, we introduce a degradation-consistency loss to enforce data fidelity by encouraging the degraded SR output to match the observed low resolution input. Extensive experiments on multiple benchmarks and diverse backbones demonstrate consistent improvements in spectral fidelity and overall reconstruction quality with negligible computational overhead. Our code will be released upon publication.
☆ Do Pathology Foundation Models Encode Disease Progression? A Pseudotime Analysis of Visual Representations
Vision foundation models trained on discretely sampled images achieve strong performance on classification benchmarks, yet whether their representations encode the continuous processes underlying their training data remains unclear. This question is especially pertinent in computational pathology, where we posit that models whose latent representations implicitly capture continuous disease progression may better reflect underlying biology, support more robust generalization, and enable quantitative analyses of features associated with disease transitions. Using diffusion pseudotime, a method developed to infer developmental trajectories from single-cell transcriptomics, we probe whether foundation models organize disease states along coherent progression directions in representation space. Across four cancer progressions and six models, we find that all pathology-specific models recover trajectory orderings significantly exceeding null baselines, with vision-only models achieving the highest fidelities $(τ> 0.78$ on CRC-Serrated). Model rankings by trajectory fidelity on reference diseases strongly predict few-shot classification performance on held-out diseases ($ρ= 0.92$), and exploratory analysis shows cell-type composition varies smoothly along inferred trajectories in patterns consistent with known stromal remodeling. Together, these results demonstrate that vision foundation models can implicitly learn to represent continuous processes from independent static observations, and that trajectory fidelity provides a complementary measure of representation quality beyond downstream performance. While demonstrated in pathology, this framework could be applied to other domains where continuous processes are observed through static snapshots.
comment: 21 pages, 17 figures. Appendix included
☆ Adversarial Vulnerability Transcends Computational Paradigms: Feature Engineering Provides No Defense Against Neural Adversarial Transfer
Deep neural networks are vulnerable to adversarial examples--inputs with imperceptible perturbations causing misclassification. While adversarial transfer within neural networks is well-documented, whether classical ML pipelines using handcrafted features inherit this vulnerability when attacked via neural surrogates remains unexplored. Feature engineering creates information bottlenecks through gradient quantization and spatial binning, potentially filtering high-frequency adversarial signals. We evaluate this hypothesis through the first comprehensive study of adversarial transfer from DNNs to HOG-based classifiers. Using VGG16 as a surrogate, we generate FGSM and PGD adversarial examples and test transfer to four classical classifiers (KNN, Decision Tree, Linear SVM, Kernel SVM) and a shallow neural network across eight HOG configurations on CIFAR-10. Our results strongly refute the protective hypothesis: all classifiers suffer 16.6%-59.1% relative accuracy drops, comparable to neural-to-neural transfer. More surprisingly, we discover attack hierarchy reversal--contrary to patterns where iterative PGD dominates FGSM within neural networks, FGSM causes greater degradation than PGD in 100% of classical ML cases, suggesting iterative attacks overfit to surrogate-specific features that don't survive feature extraction. Block normalization provides partial but insufficient mitigation. These findings demonstrate that adversarial vulnerability is not an artifact of end-to-end differentiability but a fundamental property of image classification systems, with implications for security-critical deployments across computational paradigms.
☆ Optimal Transport-Induced Samples against Out-of-Distribution Overconfidence ICLR 2026
Deep neural networks (DNNs) often produce overconfident predictions on out-of-distribution (OOD) inputs, undermining their reliability in open-world environments. Singularities in semi-discrete optimal transport (OT) mark regions of semantic ambiguity, where classifiers are particularly prone to unwarranted high-confidence predictions. Motivated by this observation, we propose a principled framework to mitigate OOD overconfidence by leveraging the geometry of OT-induced singular boundaries. Specifically, we formulate an OT problem between a continuous base distribution and the latent embeddings of training data, and identify the resulting singular boundaries. By sampling near these boundaries, we construct a class of OOD inputs, termed optimal transport-induced OOD samples (OTIS), which are geometrically grounded and inherently semantically ambiguous. During training, a confidence suppression loss is applied to OTIS to guide the model toward more calibrated predictions in structurally uncertain regions. Extensive experiments show that our method significantly alleviates OOD overconfidence and outperforms state-of-the-art methods.
comment: Accepted by ICLR 2026
☆ HiFi-Mesh: High-Fidelity Efficient 3D Mesh Generation via Compact Autoregressive Dependence
High-fidelity 3D meshes can be tokenized into one-dimension (1D) sequences and directly modeled using autoregressive approaches for faces and vertices. However, existing methods suffer from insufficient resource utilization, resulting in slow inference and the ability to handle only small-scale sequences, which severely constrains the expressible structural details. We introduce the Latent Autoregressive Network (LANE), which incorporates compact autoregressive dependencies in the generation process, achieving a $6\times$ improvement in maximum generatable sequence length compared to existing methods. To further accelerate inference, we propose the Adaptive Computation Graph Reconfiguration (AdaGraph) strategy, which effectively overcomes the efficiency bottleneck of traditional serial inference through spatiotemporal decoupling in the generation process. Experimental validation demonstrates that LANE achieves superior performance across generation speed, structural detail, and geometric consistency, providing an effective solution for high-quality 3D mesh generation.
☆ Mam-App: A Novel Parameter-Efficient Mamba Model for Apple Leaf Disease Classification
The rapid growth of the global population, alongside exponential technological advancement, has intensified the demand for food production. Meeting this demand depends not only on increasing agricultural yield but also on minimizing food loss caused by crop diseases. Diseases account for a substantial portion of apple production losses, despite apples being among the most widely produced and nutritionally valuable fruits worldwide. Previous studies have employed machine learning techniques for feature extraction and early diagnosis of apple leaf diseases, and more recently, deep learning-based models have shown remarkable performance in disease recognition. However, most state-of-the-art deep learning models are highly parameter-intensive, resulting in increased training and inference time. Although lightweight models are more suitable for user-friendly and resource-constrained applications, they often suffer from performance degradation. To address the trade-off between efficiency and performance, we propose Mam-App, a parameter-efficient Mamba-based model for feature extraction and leaf disease classification. The proposed approach achieves competitive state-of-the-art performance on the PlantVillage Apple Leaf Disease dataset, attaining 99.58% accuracy, 99.30% precision, 99.14% recall, and a 99.22% F1-score, while using only 0.051M parameters. This extremely low parameter count makes the model suitable for deployment on drones, mobile devices, and other low-resource platforms. To demonstrate the robustness and generalizability of the proposed model, we further evaluate it on the PlantVillage Corn Leaf Disease and Potato Leaf Disease datasets. The model achieves 99.48%, 99.20%, 99.34%, and 99.27% accuracy, precision, recall, and F1-score on the corn dataset and 98.46%, 98.91%, 95.39%, and 97.01% on the potato dataset, respectively.
comment: 18 Pages, 7 Tables, 5 Figures
☆ Gaussian Belief Propagation Network for Depth Completion
Depth completion aims to predict a dense depth map from a color image with sparse depth measurements. Although deep learning methods have achieved state-of-the-art (SOTA), effectively handling the sparse and irregular nature of input depth data in deep networks remains a significant challenge, often limiting performance, especially under high sparsity. To overcome this limitation, we introduce the Gaussian Belief Propagation Network (GBPN), a novel hybrid framework synergistically integrating deep learning with probabilistic graphical models for end-to-end depth completion. Specifically, a scene-specific Markov Random Field (MRF) is dynamically constructed by the Graphical Model Construction Network (GMCN), and then inferred via Gaussian Belief Propagation (GBP) to yield the dense depth distribution. Crucially, the GMCN learns to construct not only the data-dependent potentials of MRF but also its structure by predicting adaptive non-local edges, enabling the capture of complex, long-range spatial dependencies. Furthermore, we enhance GBP with a serial \& parallel message passing scheme, designed for effective information propagation, particularly from sparse measurements. Extensive experiments demonstrate that GBPN achieves SOTA performance on the NYUv2 and KITTI benchmarks. Evaluations across varying sparsity levels, sparsity patterns, and datasets highlight GBPN's superior performance, notable robustness, and generalizable capability.
☆ Drive-KD: Multi-Teacher Distillation for VLMs in Autonomous Driving
Autonomous driving is an important and safety-critical task, and recent advances in LLMs/VLMs have opened new possibilities for reasoning and planning in this domain. However, large models demand substantial GPU memory and exhibit high inference latency, while conventional supervised fine-tuning (SFT) often struggles to bridge the capability gaps of small models. To address these limitations, we propose Drive-KD, a framework that decomposes autonomous driving into a "perception-reasoning-planning" triad and transfers these capabilities via knowledge distillation. We identify layer-specific attention as the distillation signal to construct capability-specific single-teacher models that outperform baselines. Moreover, we unify these single-teacher settings into a multi-teacher distillation framework and introduce asymmetric gradient projection to mitigate cross-capability gradient conflicts. Extensive evaluations validate the generalization of our method across diverse model families and scales. Experiments show that our distilled InternVL3-1B model, with ~42 times less GPU memory and ~11.4 times higher throughput, achieves better overall performance than the pretrained 78B model from the same family on DriveBench, and surpasses GPT-5.1 on the planning dimension, providing insights toward efficient autonomous driving VLMs.
comment: Preprint. 23 pages, 14 figures
☆ WorldBench: Disambiguating Physics for Diagnostic Evaluation of World Models
Recent advances in generative foundational models, often termed "world models," have propelled interest in applying them to critical tasks like robotic planning and autonomous system training. For reliable deployment, these models must exhibit high physical fidelity, accurately simulating real-world dynamics. Existing physics-based video benchmarks, however, suffer from entanglement, where a single test simultaneously evaluates multiple physical laws and concepts, fundamentally limiting their diagnostic capability. We introduce WorldBench, a novel video-based benchmark specifically designed for concept-specific, disentangled evaluation, allowing us to rigorously isolate and assess understanding of a single physical concept or law at a time. To make WorldBench comprehensive, we design benchmarks at two different levels: 1) an evaluation of intuitive physical understanding with concepts such as object permanence or scale/perspective, and 2) an evaluation of low-level physical constants and material properties such as friction coefficients or fluid viscosity. When SOTA video-based world models are evaluated on WorldBench, we find specific patterns of failure in particular physics concepts, with all tested models lacking the physical consistency required to generate reliable real-world interactions. Through its concept-specific evaluation, WorldBench offers a more nuanced and scalable framework for rigorously evaluating the physical reasoning capabilities of video generation and world models, paving the way for more robust and generalizable world-model-driven learning.
comment: Webpage: https://world-bench.github.io/
☆ Token Entropy Regularization for Multi-modal Antenna Affiliation Identification
Accurate antenna affiliation identification is crucial for optimizing and maintaining communication networks. Current practice, however, relies on the cumbersome and error-prone process of manual tower inspections. We propose a novel paradigm shift that fuses video footage of base stations, antenna geometric features, and Physical Cell Identity (PCI) signals, transforming antenna affiliation identification into multi-modal classification and matching tasks. Publicly available pretrained transformers struggle with this unique task due to a lack of analogous data in the communications domain, which hampers cross-modal alignment. To address this, we introduce a dedicated training framework that aligns antenna images with corresponding PCI signals. To tackle the representation alignment challenge, we propose a novel Token Entropy Regularization module in the pretraining stage. Our experiments demonstrate that TER accelerates convergence and yields significant performance gains. Further analysis reveals that the entropy of the first token is modality-dependent. Code will be made available upon publication.
☆ GeoRC: A Benchmark for Geolocation Reasoning Chains
Vision Language Models (VLMs) are good at recognizing the global location of a photograph -- their geolocation prediction accuracy rivals the best human experts. But many VLMs are startlingly bad at explaining which image evidence led to their prediction, even when their location prediction is correct. The reasoning chains produced by VLMs frequently hallucinate scene attributes to support their location prediction (e.g. phantom writing, imagined infrastructure, misidentified flora). In this paper, we introduce the first benchmark for geolocation reasoning chains. We focus on the global location prediction task in the popular GeoGuessr game which draws from Google Street View spanning more than 100 countries. We collaborate with expert GeoGuessr players, including the reigning world champion, to produce 800 ground truth reasoning chains for 500 query scenes. These expert reasoning chains address hundreds of different discriminative visual attributes such as license plate shape, architecture, and soil properties to name just a few. We evaluate LLM-as-a-judge and VLM-as-a-judge strategies for scoring VLM-generated reasoning chains against our expert reasoning chains and find that Qwen 3 LLM-as-a-judge correlates best with human scoring. Our benchmark reveals that while large, closed-source VLMs such as Gemini and GPT 5 rival human experts at prediction locations, they still lag behind human experts when it comes to producing auditable reasoning chains. Open weights VLMs such as Llama and Qwen catastrophically fail on our benchmark -- they perform only slightly better than a baseline in which an LLM hallucinates a reasoning chain with oracle knowledge of the photo location but no visual information at all. We believe the gap between human experts and VLMs on this task points to VLM limitations at extracting fine-grained visual attributes from high resolution images.
☆ Lightweight High-Fidelity Low-Bitrate Talking Face Compression for 3D Video Conference
The demand for immersive and interactive communication has driven advancements in 3D video conferencing, yet achieving high-fidelity 3D talking face representation at low bitrates remains a challenge. Traditional 2D video compression techniques fail to preserve fine-grained geometric and appearance details, while implicit neural rendering methods like NeRF suffer from prohibitive computational costs. To address these challenges, we propose a lightweight, high-fidelity, low-bitrate 3D talking face compression framework that integrates FLAME-based parametric modeling with 3DGS neural rendering. Our approach transmits only essential facial metadata in real time, enabling efficient reconstruction with a Gaussian-based head model. Additionally, we introduce a compact representation and compression scheme, including Gaussian attribute compression and MLP optimization, to enhance transmission efficiency. Experimental results demonstrate that our method achieves superior rate-distortion performance, delivering high-quality facial rendering at extremely low bitrates, making it well-suited for real-time 3D video conferencing applications.
☆ Hypersolid: Emergent Vision Representations via Short-Range Repulsion
A recurring challenge in self-supervised learning is preventing representation collapse. Existing solutions typically rely on global regularization, such as maximizing distances, decorrelating dimensions or enforcing certain distributions. We instead reinterpret representation learning as a discrete packing problem, where preserving information simplifies to maintaining injectivity. We operationalize this in Hypersolid, a method using short-range hard-ball repulsion to prevent local collisions. This constraint results in a high-separation geometric regime that preserves augmentation diversity, excelling on fine-grained and low-resolution classification tasks.
comment: 17 pages, 16 figures
☆ Lossless Copyright Protection via Intrinsic Model Fingerprinting
The exceptional performance of diffusion models establishes them as high-value intellectual property but exposes them to unauthorized replication. Existing protection methods either modify the model to embed watermarks, which impairs performance, or extract model fingerprints by manipulating the denoising process, rendering them incompatible with black-box APIs. In this paper, we propose TrajPrint, a completely lossless and training-free framework that verifies model copyright by extracting unique manifold fingerprints formed during deterministic generation. Specifically, we first utilize a watermarked image as an anchor and exactly trace the path back to its trajectory origin, effectively locking the model fingerprint mapped by this path. Subsequently, we implement a joint optimization strategy that employs dual-end anchoring to synthesize a specific fingerprint noise, which strictly adheres to the target manifold for robust watermark recovery. As input, it enables the protected target model to recover the watermarked image, while failing on non-target models. Finally, we achieved verification via atomic inference and statistical hypothesis testing. Extensive experiments demonstrate that TrajPrint achieves lossless verification in black-box API scenarios with superior robustness against model modifications.
☆ NFCDS: A Plug-and-Play Noise Frequency-Controlled Diffusion Sampling Strategy for Image Restoration
Diffusion sampling-based Plug-and-Play (PnP) methods produce images with high perceptual quality but often suffer from reduced data fidelity, primarily due to the noise introduced during reverse diffusion. To address this trade-off, we propose Noise Frequency-Controlled Diffusion Sampling (NFCDS), a spectral modulation mechanism for reverse diffusion noise. We show that the fidelity-perception conflict can be fundamentally understood through noise frequency: low-frequency components induce blur and degrade fidelity, while high-frequency components drive detail generation. Based on this insight, we design a Fourier-domain filter that progressively suppresses low-frequency noise and preserves high-frequency content. This controlled refinement injects a data-consistency prior directly into sampling, enabling fast convergence to results that are both high-fidelity and perceptually convincing--without additional training. As a PnP module, NFCDS seamlessly integrates into existing diffusion-based restoration frameworks and improves the fidelity-perception balance across diverse zero-shot tasks.
♻ ☆ MORPH: PDE Foundation Models with Arbitrary Data Modality
We introduce MORPH, a modality-agnostic, autoregressive foundation model for partial differential equations (PDEs). MORPH is built on a convolutional vision transformer backbone that seamlessly handles heterogeneous spatiotemporal datasets of varying data modality (1D--3D) at different resolutions, and multiple fields with mixed scalar and vector components. The architecture combines (i) component-wise convolution, which jointly processes scalar and vector channels to capture local interactions, (ii) inter-field cross-attention, which models and selectively propagates information between different physical fields, (iii) axial attentions, which factorize full spatiotemporal self-attention along individual spatial and temporal axes to reduce computational burden while retaining expressivity. We pretrain multiple model variants on a diverse collection of heterogeneous PDE datasets and evaluate transfer to a range of downstream prediction tasks. Using both full-model fine-tuning and parameter-efficient low-rank adapters, MORPH outperforms models trained from scratch. Across extensive evaluations, MORPH matches or surpasses strong baselines and recent state-of-the-art models. Collectively, these capabilities present a flexible and powerful backbone for learning from the heterogeneous and multimodal nature of scientific observations, charting a path toward scalable and data-efficient scientific machine learning. The source code, datasets, and models are publicly available at https://github.com/lanl/MORPH.
♻ ☆ PRISM: A Framework Harnessing Unsupervised Visual Representations and Textual Prompts for Explainable MACE Survival Prediction from Cardiac Cine MRI
Accurate prediction of major adverse cardiac events (MACE) remains a central challenge in cardiovascular prognosis. We present PRISM (Prompt-guided Representation Integration for Survival Modeling), a self-supervised framework that integrates visual representations from non-contrast cardiac cine magnetic resonance imaging with structured electronic health records (EHRs) for survival analysis. PRISM extracts temporally synchronized imaging features through motion-aware multi-view distillation and modulates them using medically informed textual prompts to enable fine-grained risk prediction. Across four independent clinical cohorts, PRISM consistently surpasses classical survival prediction models and state-of-the-art (SOTA) deep learning baselines under internal and external validation. Further clinical findings demonstrate that the combined imaging and EHR representations derived from PRISM provide valuable insights into cardiac risk across diverse cohorts. Three distinct imaging signatures associated with elevated MACE risk are uncovered, including lateral wall dyssynchrony, inferior wall hypersensitivity, and anterior elevated focus during diastole. Prompt-guided attribution further identifies hypertension, diabetes, and smoking as dominant contributors among clinical and physiological EHR factors.
♻ ☆ Align & Invert: Solving Inverse Problems with Diffusion and Flow-based Models via Representation Alignment
Enforcing alignment between the internal representations of diffusion or flow-based generative models and those of pretrained self-supervised encoders has recently been shown to provide a powerful inductive bias, improving both convergence and sample quality. In this work, we extend this idea to inverse problems, where pretrained generative models are employed as priors. We propose applying representation alignment (REPA) between diffusion or flow-based models and a DINOv2 visual encoder, to guide the reconstruction process at inference time. Although ground-truth signals are unavailable in inverse problems, we empirically show that aligning model representations of approximate target features can substantially enhance reconstruction quality and perceptual realism. We provide theoretical results showing (a) that REPA regularization can be viewed as a variational approach for minimizing a divergence measure in the DINOv2 embedding space, and (b) how under certain regularity assumptions REPA updates steer the latent diffusion states toward those of the clean image. These results offer insights into the role of REPA in improving perceptual fidelity. Finally, we demonstrate the generality of our approach by We integrate REPA into multiple state-of-the-art inverse problem solvers, and provide extensive experiments on super-resolution, box inpainting, Gaussian deblurring, and motion deblurring confirming that our method consistently improves reconstruction quality, while also providing efficiency gains reducing the number of required discretization steps.
♻ ☆ EROAM: Event-based Camera Rotational Odometry and Mapping in Real-time
This paper presents EROAM, a novel event-based rotational odometry and mapping system that achieves real-time, accurate camera rotation estimation. Unlike existing approaches that rely on event generation models or contrast maximization, EROAM employs a spherical event representation by projecting events onto a unit sphere and introduces Event Spherical Iterative Closest Point (ES-ICP), a novel geometric optimization framework designed specifically for event camera data. The spherical representation simplifies rotational motion formulation while operating in a continuous spherical domain, enabling enhanced spatial resolution. Our system features an efficient map management approach using incremental k-d tree structures and intelligent regional density control, ensuring optimal computational performance during long-term operation. Combined with parallel point-to-line optimization, EROAM achieves efficient computation without compromising accuracy. Extensive experiments on both synthetic and real-world datasets show that EROAM significantly outperforms state-of-the-art methods in terms of accuracy, robustness, and computational efficiency. Our method maintains consistent performance under challenging conditions, including high angular velocities and extended sequences, where other methods often fail or show significant drift. Additionally, EROAM produces high-quality panoramic reconstructions with preserved fine structural details.
comment: Accepted by IEEE Transactions on Robotics (T-RO), 2026. Project page: https://wlxing1901.github.io/eroam/
♻ ☆ GR3EN: Generative Relighting for 3D Environments
We present a method for relighting 3D reconstructions of large room-scale environments. Existing solutions for 3D scene relighting often require solving under-determined or ill-conditioned inverse rendering problems, and are as such unable to produce high-quality results on complex real-world scenes. Though recent progress in using generative image and video diffusion models for relighting has been promising, these techniques are either limited to 2D image and video relighting or 3D relighting of individual objects. Our approach enables controllable 3D relighting of room-scale scenes by distilling the outputs of a video-to-video relighting diffusion model into a 3D reconstruction. This side-steps the need to solve a difficult inverse rendering problem, and results in a flexible system that can relight 3D reconstructions of complex real-world scenes. We validate our approach on both synthetic and real-world datasets to show that it can faithfully render novel views of scenes under new lighting conditions.
comment: project page: https://gr3en-relight.github.io/
♻ ☆ MindGrab for BrainChop: Fast and Accurate Skull Stripping for Command Line and Browser
Deployment complexity and specialized hardware requirements hinder the adoption of deep learning models in neuroimaging. We present MindGrab, a lightweight, fully convolutional model for volumetric skull stripping across all imaging modalities. MindGrab's architecture is designed from first principles using a spectral interpretation of dilated convolutions, and demonstrates state-of-the-art performance (mean Dice score across datasets and modalities: 95.9 with SD 1.6), with up to 40-fold speedups and substantially lower memory demands compared to established methods. Its minimal footprint allows for fast, full-volume processing in resource-constrained environments, including direct in-browser execution. MindGrab is delivered via the BrainChop platform as both a simple command-line tool (pip install brainchop) and a zero-installation web application (brainchop.org). By removing traditional deployment barriers without sacrificing accuracy, MindGrab makes state-of-the-art neuroimaging analysis broadly accessible.
comment: 17 pages, 1 table, 5 figures. 2 supplementary tables. Brainchop-cli: https://pypi.org/project/brainchop/ . Brainchop web: https://brainchop.org/
♻ ☆ A Coreset Selection of Coreset Selection Literature: Introduction and Recent Advances
Coreset selection targets the challenge of finding a small, representative subset of a large dataset that preserves essential patterns for effective machine learning. Although several surveys have examined data reduction strategies before, most focus narrowly on either classical geometry-based methods or active learning techniques. In contrast, this survey presents a more comprehensive view by unifying three major lines of coreset research, namely, training-free, training-oriented, and label-free approaches, into a single taxonomy. We present subfields often overlooked by existing work, including submodular formulations, bilevel optimization, and recent progress in pseudo-labeling for unlabeled datasets. Additionally, we examine how pruning strategies influence generalization and neural scaling laws, offering new insights that are absent from prior reviews. Finally, we compare these methods under varying computational, robustness, and performance demands and highlight open challenges, such as robustness, outlier filtering, and adapting coreset selection to foundation models, for future research.
♻ ☆ Reliable Deep Learning for Small-Scale Classifications: Experiments on Real-World Image Datasets from Bangladesh
Convolutional neural networks (CNNs) have achieved state-of-the-art performance in image recognition tasks but often involve complex architectures that may overfit on small datasets. In this study, we evaluate a compact CNN across five publicly available, real-world image datasets from Bangladesh, including urban encroachment, vehicle detection, road damage, and agricultural crops. The network demonstrates high classification accuracy, efficient convergence, and low computational overhead. Quantitative metrics and saliency analyses indicate that the model effectively captures discriminative features and generalizes robustly across diverse scenarios, highlighting the suitability of streamlined CNN architectures for small-class image classification tasks.
♻ ☆ FreeFuse: Multi-Subject LoRA Fusion via Adaptive Token-Level Routing at Test Time
This paper proposes FreeFuse, a training-free framework for multi-subject text-to-image generation through automatic fusion of multiple subject LoRAs. In contrast to prior studies that focus on retraining LoRA to alleviate feature conflicts, our analysis reveals that simply spatially confining the subject LoRA's output to its target region and preventing other LoRAs from directly intruding into this area is sufficient for effective mitigation. Accordingly, we implement Adaptive Token-Level Routing during the inference phase. We introduce FreeFuseAttn, a mechanism that exploits the flow matching model's intrinsic semantic alignment to dynamically match subject-specific tokens to their corresponding spatial regions at early denoising timesteps, thereby bypassing the need for external segmentors. FreeFuse distinguishes itself through high practicality: it necessitates no additional training, model modifications, or user-defined masks spatial conditions. Users need only provide subject activation words to achieve seamless integration into standard workflows. Extensive experiments validate that FreeFuse outperforms existing approaches in both identity preservation and compositional fidelity. Our code is available at https://github.com/yaoliliu/FreeFuse.
♻ ☆ Uni-Parser Technical Report
This technical report introduces Uni-Parser, an industrial-grade document parsing engine tailored for scientific literature and patents, delivering high throughput, robust accuracy, and cost efficiency. Unlike pipeline-based document parsing methods, Uni-Parser employs a modular, loosely coupled multi-expert architecture that preserves fine-grained cross-modal alignments across text, equations, tables, figures, and chemical structures, while remaining easily extensible to emerging modalities. The system incorporates adaptive GPU load balancing, distributed inference, dynamic module orchestration, and configurable modes that support either holistic or modality-specific parsing. Optimized for large-scale cloud deployment, Uni-Parser achieves a processing rate of up to 20 PDF pages per second on 8 x NVIDIA RTX 4090D GPUs, enabling cost-efficient inference across billions of pages. This level of scalability facilitates a broad spectrum of downstream applications, ranging from literature retrieval and summarization to the extraction of chemical structures, reaction schemes, and bioactivity data, as well as the curation of large-scale corpora for training next-generation large language models and AI4Science models.
♻ ☆ Edge Collaborative Gaussian Splatting with Integrated Rendering and Communication ICASSP
Gaussian splatting (GS) struggles with degraded rendering quality on low-cost devices. To address this issue, we present edge collaborative GS (ECO-GS), where each user can switch between a local small GS model to guarantee timeliness and a remote large GS model to guarantee fidelity. However, deciding how to engage the large GS model is nontrivial, due to the interdependency between rendering requirements and resource conditions. To this end, we propose integrated rendering and communication (IRAC), which jointly optimizes collaboration status (i.e., deciding whether to engage large GS) and edge power allocation (i.e., enabling remote rendering) under communication constraints across different users by minimizing a newly-derived GS switching function. Despite the nonconvexity of the problem, we propose an efficient penalty majorization minimization (PMM) algorithm to obtain the critical point solution. Furthermore, we develop an imitation learning optimization (ILO) algorithm, which reduces the computational time by over 100x compared to PMM. Experiments demonstrate the superiority of PMM and the real-time execution capability of ILO.
comment: IEEE ICASSP, Barcelona, Spain, 2026
♻ ☆ PCICF: A Pedestrian Crossing Identification and Classification Framework
We have recently observed the commercial roll-out of robotaxis in various countries. They are deployed within an operational design domain (ODD) on specific routes and environmental conditions, and are subject to continuous monitoring to regain control in safety-critical situations. Since ODDs typically cover urban areas, robotaxis must reliably detect vulnerable road users (VRUs) such as pedestrians, bicyclists, or e-scooter riders. To better handle such varied traffic situations, end-to-end AI, which directly compute vehicle control actions from multi-modal sensor data instead of only for perception, is on the rise. High quality data is needed for systematically training and evaluating such systems within their OOD. In this work, we propose PCICF, a framework to systematically identify and classify VRU situations to support ODD's incident analysis. We base our work on the existing synthetic dataset SMIRK, and enhance it by extending its single-pedestrian-only design into the MoreSMIRK dataset, a structured dictionary of multi-pedestrian crossing situations constructed systematically. We then use space-filling curves (SFCs) to transform multi-dimensional features of scenarios into characteristic patterns, which we match with corresponding entries in MoreSMIRK. We evaluate PCICF with the large real-world dataset PIE, which contains more than 150 manually annotated pedestrian crossing videos. We show that PCICF can successfully identify and classify complex pedestrian crossings, even when groups of pedestrians merge or split. By leveraging computationally efficient components like SFCs, PCICF has even potential to be used onboard of robotaxis for OOD detection for example. We share an open-source replication package for PCICF containing its algorithms, the complete MoreSMIRK dataset and dictionary, as well as our experiment results presented in: https://github.com/Claud1234/PCICF
♻ ☆ Semantic Router: On the Feasibility of Hijacking MLLMs via a Single Adversarial Perturbation
Multimodal Large Language Models (MLLMs) are increasingly deployed in stateless systems, such as autonomous driving and robotics. This paper investigates a novel threat: Semantic-Aware Hijacking. We explore the feasibility of hijacking multiple stateless decisions simultaneously using a single universal perturbation. We introduce the Semantic-Aware Universal Perturbation (SAUP), which acts as a semantic router, "actively" perceiving input semantics and routing them to distinct, attacker-defined targets. To achieve this, we conduct theoretical and empirical analysis on the geometric properties in the latent space. Guided by these insights, we propose the Semantic-Oriented (SORT) optimization strategy and annotate a new dataset with fine-grained semantics to evaluate performance. Extensive experiments on three representative MLLMs demonstrate the fundamental feasibility of this attack, achieving a 66% attack success rate over five targets using a single frame against Qwen.
♻ ☆ SSCATeR: Sparse Scatter-Based Convolution Algorithm with Temporal Data Recycling for Real-Time 3D Object Detection in LiDAR Point Clouds
This work leverages the continuous sweeping motion of LiDAR scanning to concentrate object detection efforts on specific regions that receive a change in point data from one frame to another. We achieve this by using a sliding time window with short strides and consider the temporal dimension by storing convolution results between passes. This allows us to ignore unchanged regions, significantly reducing the number of convolution operations per forward pass without sacrificing accuracy. This data reuse scheme introduces extreme sparsity to detection data. To exploit this sparsity, we extend our previous work on scatter-based convolutions to allow for data reuse, and as such propose Sparse Scatter-Based Convolution Algorithm with Temporal Data Recycling (SSCATeR). This operation treats incoming LiDAR data as a continuous stream and acts only on the changing parts of the point cloud. By doing so, we achieve the same results with as much as a 6.61-fold reduction in processing time. Our test results show that the feature maps output by our method are identical to those produced by traditional sparse convolution techniques, whilst greatly increasing the computational efficiency of the network.
comment: 23 Pages, 27 Figures, This work has been accepted for publication by the IEEE Sensors Journal. Please see the first page of the article PDF for copyright information
♻ ☆ OmniLens: Towards Universal Lens Aberration Correction via LensLib-to-Specific Domain Adaptation
Emerging universal Computational Aberration Correction (CAC) paradigms provide an inspiring solution to light-weight and high-quality imaging with a universal model trained on a lens library (LensLib) to address arbitrary lens optical aberrations blindly. However, the limited coverage of existing LensLibs leads to poor generalization of the trained models to unseen lenses, whose fine-tuning pipeline is also confined to the lens-descriptions-known case. In this work, we introduce OmniLens, a flexible solution to universal CAC via (i) establishing a convincing LensLib with comprehensive coverage for pre-training a robust base model, and (ii) adapting the model to any specific lens designs with unknown lens descriptions via fast LensLib-to-specific domain adaptation. To achieve these, an Evolution-based Automatic Optical Design (EAOD) pipeline is proposed to generate a rich variety of lens samples with realistic aberration behaviors. Then, we design an unsupervised regularization term for efficient domain adaptation on a few easily accessible real-captured images based on the statistical observation of dark channel priors in degradation induced by lens aberrations. Extensive experiments demonstrate that the LensLib generated by EAOD effectively develops a universal CAC model with strong generalization capabilities, which can also improve the non-blind lens-specific methods by 0.35~1.81dB in PSNR. Additionally, the proposed domain adaptation method significantly improves the base model, especially in severe aberration cases (at most 2.59dB in PSNR). The code and data will be available at https://github.com/zju-jiangqi/OmniLens.
comment: Accepted to Optics & Laser Technology (JOLT). The code and data will be available at https://github.com/zju-jiangqi/OmniLens
♻ ☆ DrivIng: A Large-Scale Multimodal Driving Dataset with Full Digital Twin Integration
Perception is a cornerstone of autonomous driving, enabling vehicles to understand their surroundings and make safe, reliable decisions. Developing robust perception algorithms requires large-scale, high-quality datasets that cover diverse driving conditions and support thorough evaluation. Existing datasets often lack a high-fidelity digital twin, limiting systematic testing, edge-case simulation, sensor modification, and sim-to-real evaluations. To address this gap, we present DrivIng, a large-scale multimodal dataset with a complete geo-referenced digital twin of a ~18 km route spanning urban, suburban, and highway segments. Our dataset provides continuous recordings from six RGB cameras, one LiDAR, and high-precision ADMA-based localization, captured across day, dusk, and night. All sequences are annotated at 10 Hz with 3D bounding boxes and track IDs across 12 classes, yielding ~1.2 million annotated instances. Alongside the benefits of a digital twin, DrivIng enables a 1-to-1 transfer of real traffic into simulation, preserving agent interactions while enabling realistic and flexible scenario testing. To support reproducible research and robust validation, we benchmark DrivIng with state-of-the-art perception models and publicly release the dataset, digital twin, HD map, and codebase.
comment: Copyright 2026 IEEE. This is the accepted manuscript (postprint), not the final published version. For code and dataset, see https://github.com/cvims/DrivIng
♻ ☆ Bridging Weakly-Supervised Learning and VLM Distillation: Noisy Partial Label Learning for Efficient Downstream Adaptation
In the context of noisy partial label learning (NPLL), each training sample is associated with a set of candidate labels annotated by multiple noisy annotators. With the emergence of high-performance pre-trained vision-language models (VLMs) such as CLIP, LLaVA, and GPT-4V, leveraging these models to replace time-consuming manual annotation and enable annotation-free training has become a promising research direction. This paper studies learning from noisy partial labels generated by pre-trained VLMs and proposes a collaborative consistency regularization (Co-Reg) framework. Unlike symmetric noise commonly assumed in traditional noisy label learning, VLM-generated noise is instance-dependent and reflects the intrinsic biases of pre-trained models, posing greater challenges. To address this issue, we jointly train two neural networks to perform collaborative label purification via a co-pseudo-labeling mechanism, while enforcing consistency regularization in both label and feature representation spaces. In addition, multiple anti-overfitting strategies are introduced, including alternating optimization of contrastive representations and pseudo-labels, as well as maintaining class prototypes in a shared feature space. The proposed method can further incorporate few-shot manually annotated labels for performance enhancement. Extensive experiments under various settings demonstrate the effectiveness of our approach and highlight the potential of integrating weakly supervised learning into the knowledge distillation of pre-trained models.
♻ ☆ Memento 2: Learning by Stateful Reflective Memory
We present a theoretical study of continual and experiential learning in large language model agents that combine episodic memory with reinforcement learning. We argue that the key mechanism for continual adaptation, without updating model parameters, is reflection: the agent's ability to use past experience to guide future actions. Empirical findings suggest that episodic, experience-driven reflection enables generalised adaptation across a wide range of open-ended, long-horizon tasks. This indicates that efficient learning can occur during deployment and weakens the traditional separation between training and testing. Motivated by this, we introduce the Stateful Reflective Decision Process, a formal model of reflective memory dynamics. In this abstraction, an agent maintains an episodic memory and performs two core operations. Writing stores interaction outcomes and plays the role of policy evaluation. Reading retrieves relevant past cases to inform decisions and plays the role of policy improvement. This perspective treats reflective memory as a control object that can be analysed using classical reinforcement learning tools. We then develop a read-write reflective learning framework by integrating retrieval into soft policy iteration and establish convergence guarantees. We show that as memory grows and provides denser coverage of the state space, the resulting composite policy converges to the optimal solution. Overall, this framework connects practical memory-based methods with principled reinforcement learning, providing a rigorous mathematical basis for building reflective, memory-embedded agents capable of continual general-purpose learning.
comment: 35 pages, four figures
♻ ☆ A New Dataset and Framework for Robust Road Surface Classification via Camera-IMU Fusion
Road surface classification (RSC) is a key enabler for environment-aware predictive maintenance systems. However, existing RSC techniques often fail to generalize beyond narrow operational conditions due to limited sensing modalities and datasets that lack environmental diversity. This work addresses these limitations by introducing a multimodal framework that fuses images and inertial measurements using a lightweight bidirectional cross-attention module followed by an adaptive gating layer that adjusts modality contributions under domain shifts. Given the limitations of current benchmarks, especially regarding lack of variability, we introduce ROAD, a new dataset composed of three complementary subsets: (i) real-world multimodal recordings with RGB-IMU streams synchronized using a gold-standard industry datalogger, captured across diverse lighting, weather, and surface conditions; (ii) a large vision-only subset designed to assess robustness under adverse illumination and heterogeneous capture setups; and (iii) a synthetic subset generated to study out-of-distribution generalization in scenarios difficult to obtain in practice. Experiments show that our method achieves a +1.4 pp improvement over the previous state-of-the-art on the PVS benchmark and an +11.6 pp improvement on our multimodal ROAD subset, with consistently higher F1-scores on minority classes. The framework also demonstrates stable performance across challenging visual conditions, including nighttime, heavy rain, and mixed-surface transitions. These findings indicate that combining affordable camera and IMU sensors with multimodal attention mechanisms provides a scalable, robust foundation for road surface understanding, particularly relevant for regions where environmental variability and cost constraints limit the adoption of high-end sensing suites.
♻ ☆ Visual Localization via Semantic Structures in Autonomous Photovoltaic Power Plant Inspection
Inspection systems utilizing unmanned aerial vehicles (UAVs) equipped with thermal cameras are increasingly popular for the maintenance of photovoltaic (PV) power plants. However, automation of the inspection task is a challenging problem as it requires precise navigation to capture images from optimal distances and viewing angles. This paper presents a novel localization pipeline that directly integrates PV module detection with UAV navigation, allowing precise positioning during inspection. The detections are used to identify the power plant structures in the image. These are associated with the power plant model and used to infer the UAV position relative to the inspected PV installation. We define visually recognizable anchor points for the initial association and use object tracking to discern global associations. Additionally, we present three different methods for visual segmentation of PV modules and evaluate their performance in relation to the proposed localization pipeline. The presented methods were verified and evaluated using custom aerial inspection data sets, demonstrating their robustness and applicability for real-time navigation. Additionally, we evaluate the influence of the power plant model precision on the localization methods.
comment: 50 pages, 23 figures. Submitted for review to Array
♻ ☆ REST: Diffusion-based Real-time End-to-end Streaming Talking Head Generation via ID-Context Caching and Asynchronous Streaming Distillation
Diffusion models have significantly advanced the field of talking head generation (THG). However, slow inference speeds and prevalent non-autoregressive paradigms severely constrain the application of diffusion-based THG models. In this study, we propose REST, a pioneering diffusion-based, real-time, end-to-end streaming audio-driven talking head generation framework. To support real-time end-to-end generation, a compact video latent space is first learned through a spatiotemporal variational autoencoder with a high compression ratio. Additionally, to enable semi-autoregressive streaming within the compact video latent space, we introduce an ID-Context Cache mechanism, which integrates ID-Sink and Context-Cache principles into key-value caching for maintaining identity consistency and temporal coherence during long-term streaming generation. Furthermore, an Asynchronous Streaming Distillation (ASD) strategy is proposed to mitigate error accumulation and enhance temporal consistency in streaming generation, leveraging a non-streaming teacher with an asynchronous noise schedule to supervise the streaming student. REST bridges the gap between autoregressive and diffusion-based approaches, achieving a breakthrough in efficiency for applications requiring real-time THG. Experimental results demonstrate that REST outperforms state-of-the-art methods in both generation speed and overall performance.
comment: 27 pages, 10 figures
♻ ☆ Efficient4D: Fast Dynamic 3D Object Generation from a Single-view Video
Generating dynamic 3D object from a single-view video is challenging due to the lack of 4D labeled data. An intuitive approach is to extend previous image-to-3D pipelines by transferring off-the-shelf image generation models such as score distillation sampling.However, this approach would be slow and expensive to scale due to the need for back-propagating the information-limited supervision signals through a large pretrained model. To address this, we propose an efficient video-to-4D object generation framework called Efficient4D. It generates high-quality spacetime-consistent images under different camera views, and then uses them as labeled data to directly reconstruct the 4D content through a 4D Gaussian splatting model. Importantly, our method can achieve real-time rendering under continuous camera trajectories. To enable robust reconstruction under sparse views, we introduce inconsistency-aware confidence-weighted loss design, along with a lightly weighted score distillation loss. Extensive experiments on both synthetic and real videos show that Efficient4D offers a remarkable 10-fold increase in speed when compared to prior art alternatives while preserving the quality of novel view synthesis. For example, Efficient4D takes only 10 minutes to model a dynamic object, vs 120 minutes by the previous art model Consistent4D.
comment: IJCV version
♻ ☆ SEGA: A Transferable Signed Ensemble Gaussian Black-Box Attack against No-Reference Image Quality Assessment Models
No-Reference Image Quality Assessment (NR-IQA) models play an important role in various real-world applications. Recently, adversarial attacks against NR-IQA models have attracted increasing attention, as they provide valuable insights for revealing model vulnerabilities and guiding robust system design. Some effective attacks have been proposed against NR-IQA models in white-box settings, where the attacker has full access to the target model. However, these attacks often suffer from poor transferability to unknown target models in more realistic black-box scenarios, where the target model is inaccessible. This work makes the first attempt to address the challenge of low transferability in attacking NR-IQA models by proposing a transferable Signed Ensemble Gaussian black-box Attack (SEGA). The main idea is to approximate the gradient of the target model by applying Gaussian smoothing to source models and ensembling their smoothed gradients. To ensure the imperceptibility of adversarial perturbations, SEGA further removes inappropriate perturbations using a specially designed perturbation filter mask. Experimental results on the CLIVE dataset demonstrate the superior transferability of SEGA, validating its effectiveness in enabling successful transfer-based black-box attacks against NR-IQA models.
♻ ☆ Rethinking Multimodal Learning from the Perspective of Mitigating Classification Ability Disproportion NeurIPS 2025
Multimodal learning (MML) is significantly constrained by modality imbalance, leading to suboptimal performance in practice. While existing approaches primarily focus on balancing the learning of different modalities to address this issue, they fundamentally overlook the inherent disproportion in model classification ability, which serves as the primary cause of this phenomenon. In this paper, we propose a novel multimodal learning approach to dynamically balance the classification ability of weak and strong modalities by incorporating the principle of boosting. Concretely, we first propose a sustained boosting algorithm in multimodal learning by simultaneously optimizing the classification and residual errors. Subsequently, we introduce an adaptive classifier assignment strategy to dynamically facilitate the classification performance of the weak modality. Furthermore, we theoretically analyze the convergence property of the cross-modal gap function, ensuring the effectiveness of the proposed boosting scheme. To this end, the classification ability of strong and weak modalities is expected to be balanced, thereby mitigating the imbalance issue. Empirical experiments on widely used datasets reveal the superiority of our method through comparison with various state-of-the-art (SOTA) multimodal learning baselines. The source code is available at https://github.com/njustkmg/NeurIPS25-AUG.
comment: Accepted by NeurIPS 2025
♻ ☆ iPEAR: Iterative Pyramid Estimation with Attention and Residuals for Deformable Medical Image Registration
Existing pyramid registration networks may accumulate anatomical misalignments and lack an effective mechanism to dynamically determine the number of optimization iterations under varying deformation requirements across images, leading to degraded performance. To solve these limitations, we propose iPEAR. Specifically, iPEAR adopts our proposed Fused Attention-Residual Module (FARM) for decoding, which comprises an attention pathway and a residual pathway to alleviate the accumulation of anatomical misalignment. We further propose a dual-stage Threshold-Controlled Iterative (TCI) strategy that adaptively determines the number of optimization iterations for varying images by evaluating registration stability and convergence. Extensive experiments on three public brain MRI datasets and one public abdomen CT dataset show that iPEAR outperforms state-of-the-art (SOTA) registration networks in terms of accuracy, while achieving on-par inference speed and model parameter size. Generalization and ablation studies further validate the effectiveness of the proposed FARM and TCI.
♻ ☆ ViSurf: Visual Supervised-and-Reinforcement Fine-Tuning for Large Vision-and-Language Models
Post-training Large Vision-and-Language Models (LVLMs) typically involves Supervised Fine-Tuning (SFT) for knowledge injection or Reinforcement Learning with Verifiable Rewards (RLVR) for performance enhancement. However, SFT often leads to sub-optimal performance, while RLVR remains constrained by the model's internal knowledge base. While a sequential SFT $\rightarrow$ RLVR pipeline can be used, it introduces significant computational overhead and suffers from catastrophic forgetting. To address these limitations, we propose ViSurf (\textbf{Vi}sual \textbf{Su}pervised-and-\textbf{R}einforcement \textbf{F}ine-Tuning), a unified, single-stage paradigm that integrates the strengths of both SFT and RLVR. By analyzing their training objectives, we establish a unified framework that injects ground-truth labels directly into RLVR rollouts, facilitating simultaneous external supervision and internal reinforcement. Furthermore, we introduce three novel reward control strategies to ensure training stability and optimization. Extensive experiments demonstrate that ViSurf consistently outperforms standalone SFT, RLVR, and the traditional two-stage pipeline across diverse benchmarks. In-depth analysis corroborates these findings, validating the derivation and design principles of ViSurf.
♻ ☆ DyPE: Dynamic Position Extrapolation for Ultra High Resolution Diffusion
Diffusion Transformer models can generate images with remarkable fidelity and detail, yet training them at ultra-high resolutions remains extremely costly due to the self-attention mechanism's quadratic scaling with the number of image tokens. In this paper, we introduce Dynamic Position Extrapolation (DyPE), a novel, training-free method that enables pre-trained diffusion transformers to synthesize images at resolutions far beyond their training data, with no additional sampling cost. DyPE takes advantage of the spectral progression inherent to the diffusion process, where low-frequency structures converge early, while high-frequencies take more steps to resolve. Specifically, DyPE dynamically adjusts the model's positional encoding at each diffusion step, matching their frequency spectrum with the current stage of the generative process. This approach allows us to generate images at resolutions that exceed the training resolution dramatically, e.g., 16 million pixels using FLUX. On multiple benchmarks, DyPE consistently improves performance and achieves state-of-the-art fidelity in ultra-high-resolution image generation, with gains becoming even more pronounced at higher resolutions. Project page is available at https://noamissachar.github.io/DyPE/.
♻ ☆ Revisiting Reweighted Risk for Calibration: AURC, Focal, and Inverse Focal Loss
Several variants of reweighted risk functionals, such as focal loss, inverse focal loss, and the Area Under the Risk Coverage Curve (AURC), have been proposed for improving model calibration; yet their theoretical connections to calibration errors remain under-explored. In this paper, we revisit a broad class of weighted risk functions and find a principled connection between calibration error and selective classification. We show that minimizing calibration error is closely linked to the selective classification paradigm and demonstrate that optimizing selective risk in low confidence regions naturally improves calibration. Our proposed loss shares a similar reweighting strategy with dual focal loss but offers greater flexibility through the choice of confidence score functions (CSFs). Furthermore, our approach utilizes a bin-based cumulative distribution function (CDF) approximation, enabling efficient gradient-based optimization with O(nM) complexity for n samples and M bins. Empirical evaluations demonstrate that our method achieves competitive calibration performance across a range of datasets and model architectures.
♻ ☆ Diagnosing and Mitigating Modality Interference in Multimodal Large Language Models
Multimodal Large Language Models demonstrate strong performance on multimodal benchmarks, yet often exhibit poor robustness when exposed to spurious modality interference, such as irrelevant text in vision understanding, or irrelevant visual content in question answering. At its core, modality interference refers to cases where spurious signals from non-essential modalities distort model decisions, which we systematically analyze through causal, perturbation-based diagnostic experiments. To address this problem, we propose a unified finetuning framework that combines heuristic and adversarial perturbation-based data augmentation with output-level consistency regularization between original and perturbed inputs. Extensive experiments across image-heavy, text-heavy, and multimodal benchmarks, spanning multiple MLLM architectures and model scales, demonstrate consistent improvements in unimodal robustness and generalization, while improving standard multimodal performance.
♻ ☆ VidLaDA: Bidirectional Diffusion Large Language Models for Efficient Video Understanding
Current Video Large Language Models (Video LLMs) typically encode frames via a vision encoder and employ an autoregressive (AR) LLM for understanding and generation. However, this AR paradigm inevitably faces a dual efficiency bottleneck: strictly unidirectional attention compromises understanding efficiency by hindering global spatiotemporal aggregation, while serial decoding restricts generation efficiency. To address this, we propose VidLaDA, a Video LLM based on Diffusion Language Models (DLMs) that leverages bidirectional attention to unlock comprehensive spatiotemporal modeling and decode tokens in parallel. To further mitigate the computational overhead of diffusion decoding, we introduce MARS-Cache, an acceleration strategy that prunes redundancy by combining asynchronous visual cache refreshing with frame-wise chunk attention. Experiments show VidLaDA rivals state-of-the-art AR baselines (e.g., Qwen2.5-VL and LLaVA-Video) and outperforms DLM baselines, with MARS-Cache delivering over 12x speedup without compromising accuracy. Code and checkpoints are open-sourced at https://github.com/ziHoHe/VidLaDA.
♻ ☆ JointDiff: Bridging Continuous and Discrete in Multi-Agent Trajectory Generation ICLR 2026
Generative models often treat continuous data and discrete events as separate processes, creating a gap in modeling complex systems where they interact synchronously. To bridge this gap, we introduce JointDiff, a novel diffusion framework designed to unify these two processes by simultaneously generating continuous spatio-temporal data and synchronous discrete events. We demonstrate its efficacy in the sports domain by simultaneously modeling multi-agent trajectories and key possession events. This joint modeling is validated with non-controllable generation and two novel controllable generation scenarios: weak-possessor-guidance, which offers flexible semantic control over game dynamics through a simple list of intended ball possessors, and text-guidance, which enables fine-grained, language-driven generation. To enable the conditioning with these guidance signals, we introduce CrossGuid, an effective conditioning operation for multi-agent domains. We also share a new unified sports benchmark enhanced with textual descriptions for soccer and football datasets. JointDiff achieves state-of-the-art performance, demonstrating that joint modeling is crucial for building realistic and controllable generative models for interactive systems. https://guillem-cf.github.io/JointDiff/
comment: Accepted at ICLR 2026
♻ ☆ Entropy Guided Dynamic Patch Segmentation for Time Series Transformers
Patch-based transformers have emerged as efficient and improved long-horizon modeling architectures for time series modeling. Yet, existing approaches rely on temporally-agnostic patch construction, where arbitrary starting positions and fixed lengths fracture temporal coherence by splitting natural transitions across boundaries. This naive segmentation often disrupts short-term dependencies and weakens representation learning. We propose a novel Entropy-Guided Dynamic Patch Encoder (EntroPE), as a temporally informed framework that dynamically detects transition points via conditional entropy and dynamically places patch boundaries. This preserves temporal structure while retaining the computational benefits of patching. EntroPE consists of two key modules, namely an Entropy-based Dynamic Patcher (EDP) that applies information-theoretic criteria to locate natural temporal shifts and determine patch boundaries, and an Adaptive Patch Encoder (APE) that employs pooling and cross-attention to capture intra-patch dependencies and produce fixed-size latent representations. Extensive experiments on long-term forecasting, classification, and anomaly detection demonstrate that the proposed method improves both accuracy and efficiency, establishing entropy-guided dynamic patching as a promising new paradigm for time series modeling. Code is available at https://github.com/Sachithx/EntroPE.
comment: Preprint. Under Review
♻ ☆ Are We Truly Forgetting? A Critical Re-examination of Machine Unlearning Evaluation Protocols
Machine unlearning is a process to remove specific data points from a trained model while maintaining the performance on the retain data, addressing privacy or legal requirements. Despite its importance, existing unlearning evaluations tend to focus on logit-based metrics under small-scale scenarios. We observe that this could lead to a false sense of security in unlearning approaches under real-world scenarios. In this paper, we conduct a comprehensive evaluation that employs representation-based evaluations of the unlearned model under large-scale scenarios to verify whether the unlearning approaches truly eliminate the targeted data from the model's representation perspective. Our analysis reveals that current state-of-the-art unlearning approaches either completely degrade the representational quality of the unlearned model or merely modify the classifier, thereby achieving superior logit-based performance while maintaining representational similarity to the original model. Furthermore, we introduce a novel unlearning evaluation scenario in which the forgetting classes exhibit semantic similarity to downstream task classes, necessitating that feature representations diverge significantly from those of the original model, thus enabling a more thorough evaluation from a representation perspective. We hope our benchmark will serve as a standardized protocol for evaluating unlearning algorithms under realistic conditions.
comment: Accepted to Engineering Applications of Artificial Intelligence
♻ ☆ Enhancing Semantic Segmentation with Continual Self-Supervised Pre-training
Self-supervised learning (SSL) has emerged as a central paradigm for training foundation models by leveraging large-scale unlabeled datasets, often producing representations with strong generalization capabilities. These models are typically pre-trained on general-purpose datasets such as ImageNet and subsequently adapted to various downstream tasks through finetuning. While prior work has investigated parameter-efficient adaptation methods like adapters, LoRA, and prompt tuning, primarily targeting downstream finetuning, extending the SSL pre-training itself in a continual manner to new domains under limited data remains largely underexplored, especially for downstream dense prediction tasks like semantic segmentation. In this work, we address the challenge of adapting vision foundation models to low-data target domains through continual self-supervised pre-training, specifically targeting downstream semantic segmentation. We propose GLARE (Global Local and Regional Enforcement), a novel continual self-supervised pre-training task designed to enhance downstream semantic segmentation performance. GLARE introduces patch-level augmentations to encourage local consistency and incorporates a regional consistency constraint that leverages spatial semantics in the data. For efficient continual pre-training, we initialize Vision Transformers (ViTs) with weights from existing SSL models and update only lightweight adapter modules specifically UniAdapter - while keeping the rest of the backbone frozen. Experiments across multiple semantic segmentation benchmarks on different domains demonstrate that GLARE consistently improves downstream performance with minimal computational and parameter overhead.
comment: 23 pages, 5 figures
♻ ☆ CycleDiff: Cycle Diffusion Models for Unpaired Image-to-image Translation
We introduce a diffusion-based cross-domain image translator in the absence of paired training data. Unlike GAN-based methods, our approach integrates diffusion models to learn the image translation process, allowing for more coverable modeling of the data distribution and performance improvement of the cross-domain translation. However, incorporating the translation process within the diffusion process is still challenging since the two processes are not aligned exactly, i.e., the diffusion process is applied to the noisy signal while the translation process is conducted on the clean signal. As a result, recent diffusion-based studies employ separate training or shallow integration to learn the two processes, yet this may cause the local minimal of the translation optimization, constraining the effectiveness of diffusion models. To address the problem, we propose a novel joint learning framework that aligns the diffusion and the translation process, thereby improving the global optimality. Specifically, we propose to extract the image components with diffusion models to represent the clean signal and employ the translation process with the image components, enabling an end-to-end joint learning manner. On the other hand, we introduce a time-dependent translation network to learn the complex translation mapping, resulting in effective translation learning and significant performance improvement. Benefiting from the design of joint learning, our method enables global optimization of both processes, enhancing the optimality and achieving improved fidelity and structural consistency. We have conducted extensive experiments on RGB$\leftrightarrow$RGB and diverse cross-modality translation tasks including RGB$\leftrightarrow$Edge, RGB$\leftrightarrow$Semantics and RGB$\leftrightarrow$Depth, showcasing better generative performances than the state of the arts.
comment: Accepted by IEEE TIP 2026
♻ ☆ BIR-Adapter: A parameter-efficient diffusion adapter for blind image restoration
We introduce the BIR-Adapter, a parameter-efficient diffusion adapter for blind image restoration. Diffusion-based restoration methods have demonstrated promising performance in addressing this fundamental problem in computer vision, typically relying on auxiliary feature extractors or extensive fine-tuning of pre-trained models. Motivated by the observation that large-scale pretrained diffusion models can retain informative representations under common image degradations, BIR-Adapter introduces a parameter-efficient, plug-and-play attention mechanism that substantially reduces the number of trained parameters. To further improve reliability, we propose a sampling guidance mechanism that mitigates hallucinations during the restoration process. Experiments on synthetic and real-world degradations demonstrate that BIR-Adapter achieves competitive, and in several settings superior, performance compared to state-of-the-art methods while requiring up to 36x fewer trained parameters. Moreover, the adapter-based design enables seamless integration into existing models. We validate this generality by extending a super-resolution-only diffusion model to handle additional unknown degradations, highlighting the adaptability of our approach for broader image restoration tasks.
♻ ☆ Can Large Language Models Capture Video Game Engagement?
Can out-of-the-box pretrained Large Language Models (LLMs) detect human affect successfully when observing a video? To address this question, for the first time, we evaluate comprehensively the capacity of popular LLMs for successfully predicting continuous affect annotations of videos when prompted by a sequence of text and video frames in a multimodal fashion. In this paper, we test LLMs' ability to correctly label changes of in-game engagement in 80 minutes of annotated videogame footage from 20 first-person shooter games of the GameVibe corpus. We run over 4,800 experiments to investigate the impact of LLM architecture, model size, input modality, prompting strategy, and ground truth processing method on engagement prediction. Our findings suggest that while LLMs rightfully claim human-like performance across multiple domains and able to outperform traditional machine learning baselines, they generally fall behind continuous experience annotations provided by humans. We examine some of the underlying causes for a fluctuating performance across games, highlight the cases where LLMs exceed expectations, and draw a roadmap for the further exploration of automated emotion labelling via LLMs.
comment: This work has been submitted to the IEEE for publication
♻ ☆ Everything in Its Place: Benchmarking Spatial Intelligence of Text-to-Image Models ICLR 2026
Text-to-image (T2I) models have achieved remarkable success in generating high-fidelity images, but they often fail in handling complex spatial relationships, e.g., spatial perception, reasoning, or interaction. These critical aspects are largely overlooked by current benchmarks due to their short or information-sparse prompt design. In this paper, we introduce SpatialGenEval, a new benchmark designed to systematically evaluate the spatial intelligence of T2I models, covering two key aspects: (1) SpatialGenEval involves 1,230 long, information-dense prompts across 25 real-world scenes. Each prompt integrates 10 spatial sub-domains and corresponding 10 multi-choice question-answer pairs, ranging from object position and layout to occlusion and causality. Our extensive evaluation of 21 state-of-the-art models reveals that higher-order spatial reasoning remains a primary bottleneck. (2) To demonstrate that the utility of our information-dense design goes beyond simple evaluation, we also construct the SpatialT2I dataset. It contains 15,400 text-image pairs with rewritten prompts to ensure image consistency while preserving information density. Fine-tuned results on current foundation models (i.e., Stable Diffusion-XL, Uniworld-V1, OmniGen2) yield consistent performance gains (+4.2%, +5.7%, +4.4%) and more realistic effects in spatial relations, highlighting a data-centric paradigm to achieve spatial intelligence in T2I models.
comment: Accepted by ICLR 2026, URL: https://github.com/AMAP-ML/SpatialGenEval
♻ ☆ RAVE: Rate-Adaptive Visual Encoding for 3D Gaussian Splatting
Recent advances in neural scene representations have transformed immersive multimedia, with 3D Gaussian Splatting (3DGS) enabling real-time photorealistic rendering. Despite its efficiency, 3DGS suffers from large memory requirements and costly training procedures, motivating efforts toward compression. Existing approaches, however, operate at fixed rates, limiting adaptability to varying bandwidth and device constraints. In this work, we propose a flexible compression scheme for 3DGS that supports interpolation at any rate between predefined bounds. Our method is computationally lightweight, requires no retraining for any rate, and preserves rendering quality across a broad range of operating points. Experiments demonstrate that the approach achieves efficient, high-quality compression while offering dynamic rate control, making it suitable for practical deployment in immersive applications. The code is available at https://github.com/inspiros/RAVE.
♻ ☆ Soft Masked Transformer for Point Cloud Processing with Skip Attention-Based Upsampling
Point cloud processing methods leverage local and global point features %at the feature level to cater to downstream tasks, yet they often overlook the task-level context inherent in point clouds during the encoding stage. We argue that integrating task-level information into the encoding stage significantly enhances performance. To that end, we propose SMTransformer which incorporates task-level information into a vector-based transformer by utilizing a soft mask generated from task-level queries and keys to learn the attention weights. Additionally, to facilitate effective communication between features from the encoding and decoding layers in high-level tasks such as segmentation, we introduce a skip-attention-based up-sampling block. This block dynamically fuses features from various resolution points across the encoding and decoding layers. To mitigate the increase in network parameters and training time resulting from the complexity of the aforementioned blocks, we propose a novel shared position encoding strategy. This strategy allows various transformer blocks to share the same position information over the same resolution points, thereby reducing network parameters and training time without compromising accuracy.Experimental comparisons with existing methods on multiple datasets demonstrate the efficacy of SMTransformer and skip-attention-based up-sampling for point cloud processing tasks, including semantic segmentation and classification. In particular, we achieve state-of-the-art semantic segmentation results of 73.4% mIoU on S3DIS Area 5 and 62.4% mIoU on SWAN dataset
comment: Conditionally accepted by IEEE Transactions on Automation Science and Engineering
♻ ☆ OrthoInsight: Rib Fracture Diagnosis and Report Generation Based on Multi-Modal Large Models
The growing volume of medical imaging data has increased the need for automated diagnostic tools, especially for musculoskeletal injuries like rib fractures, commonly detected via CT scans. Manual interpretation is time-consuming and error-prone. We propose OrthoInsight, a multi-modal deep learning framework for rib fracture diagnosis and report generation. It integrates a YOLOv9 model for fracture detection, a medical knowledge graph for retrieving clinical context, and a fine-tuned LLaVA language model for generating diagnostic reports. OrthoInsight combines visual features from CT images with expert textual data to deliver clinically useful outputs. Evaluated on 28,675 annotated CT images and expert reports, it achieves high performance across Diagnostic Accuracy, Content Completeness, Logical Coherence, and Clinical Guidance Value, with an average score of 4.28, outperforming models like GPT-4 and Claude-3. This study demonstrates the potential of multi-modal learning in transforming medical image analysis and providing effective support for radiologists.
♻ ☆ OREHAS: A fully automated deep-learning pipeline for volumetric endolymphatic hydrops quantification in MRI
We present OREHAS (Optimized Recognition & Evaluation of volumetric Hydrops in the Auditory System), the first fully automatic pipeline for volumetric quantification of endolymphatic hydrops (EH) from routine 3D-SPACE-MRC and 3D-REAL-IR MRI. The system integrates three components -- slice classification, inner ear localization, and sequence-specific segmentation -- into a single workflow that computes per-ear endolymphatic-to-vestibular volume ratios (ELR) directly from whole MRI volumes, eliminating the need for manual intervention. Trained with only 3 to 6 annotated slices per patient, OREHAS generalized effectively to full 3D volumes, achieving Dice scores of 0.90 for SPACE-MRC and 0.75 for REAL-IR. In an external validation cohort with complete manual annotations, OREHAS closely matched expert ground truth (VSI = 74.3%) and substantially outperformed the clinical syngo.via software (VSI = 42.5%), which tended to overestimate endolymphatic volumes. Across 19 test patients, vestibular measurements from OREHAS were consistent with syngo.via, while endolymphatic volumes were systematically smaller and more physiologically realistic. These results show that reliable and reproducible EH quantification can be achieved from standard MRI using limited supervision. By combining efficient deep-learning-based segmentation with a clinically aligned volumetric workflow, OREHAS reduces operator dependence, ensures methodological consistency. Besides, the results are compatible with established imaging protocols. The approach provides a robust foundation for large-scale studies and for recalibrating clinical diagnostic thresholds based on accurate volumetric measurements of the inner ear.
♻ ☆ MultiHateLoc: Towards Temporal Localisation of Multimodal Hate Content in Online Videos WWW 2026
The rapid growth of video content on platforms such as TikTok and YouTube has intensified the spread of multimodal hate speech, where harmful cues emerge subtly and asynchronously across visual, acoustic, and textual streams. Existing research primarily focuses on video-level classification, leaving the practically crucial task of temporal localisation, identifying when hateful segments occur, largely unaddressed. This challenge is even more noticeable under weak supervision, where only video-level labels are available, and static fusion or classification-based architectures struggle to capture cross-modal and temporal dynamics. To address these challenges, we propose MultiHateLoc, the first framework designed for weakly-supervised multimodal hate localisation. MultiHateLoc incorporates (1) modality-aware temporal encoders to model heterogeneous sequential patterns, including a tailored text-based preprocessing module for feature enhancement; (2) dynamic cross-modal fusion to adaptively emphasise the most informative modality at each moment and a cross-modal contrastive alignment strategy to enhance multimodal feature consistency; (3) a modality-aware MIL objective to identify discriminative segments under video-level supervision. Despite relying solely on coarse labels, MultiHateLoc produces fine-grained, interpretable frame-level predictions. Experiments on HateMM and MultiHateClip show that our method achieves state-of-the-art performance in the localisation task.
comment: In Proceedings of the ACM Web Conference 2026 (WWW 2026)
♻ ☆ Efficient Spike-driven Transformer for High-performance Drone-View Geo-Localization
Traditional drone-view geo-localization (DVGL) methods based on artificial neural networks (ANNs) have achieved remarkable performance. However, ANNs rely on dense computation, which results in high power consumption. In contrast, spiking neural networks (SNNs), which benefit from spike-driven computation, inherently provide low power consumption. Regrettably, the potential of SNNs for DVGL has yet to be thoroughly investigated. Meanwhile, the inherent sparsity of spike-driven computation for representation learning scenarios also results in loss of critical information and difficulties in learning long-range dependencies when aligning heterogeneous visual data sources. To address these, we propose SpikeViMFormer, the first SNN framework designed for DVGL. In this framework, a lightweight spike-driven transformer backbone is adopted to extract coarse-grained features. To mitigate the loss of critical information, the spike-driven selective attention (SSA) block is designed, which uses a spike-driven gating mechanism to achieve selective feature enhancement and highlight discriminative regions. Furthermore, a spike-driven hybrid state space (SHS) block is introduced to learn long-range dependencies using a hybrid state space. Moreover, only the backbone is utilized during the inference stage to reduce computational cost. To ensure backbone effectiveness, a novel hierarchical re-ranking alignment learning (HRAL) strategy is proposed. It refines features via neighborhood re-ranking and maintains cross-batch consistency to directly optimize the backbone. Experimental results demonstrate that SpikeViMFormer outperforms state-of-the-art SNNs. Compared with advanced ANNs, it also achieves competitive performance.Our code is available at https://github.com/ISChenawei/SpikeViMFormer
♻ ☆ From Limited Labels to Open Domains:An Efficient Learning Method for Drone-view Geo-Localization
Traditional supervised drone-view geo-localization (DVGL) methods heavily depend on paired training data and encounter difficulties in learning cross-view correlations from unpaired data. Moreover, when deployed in a new domain, these methods require obtaining the new paired data and subsequent retraining for model adaptation, which significantly increases computational overhead. Existing unsupervised methods have enabled to generate pseudo-labels based on cross-view similarity to infer the pairing relationships. However, geographical similarity and spatial continuity often cause visually analogous features at different geographical locations. The feature confusion compromises the reliability of pseudo-label generation, where incorrect pseudo-labels drive negative optimization. Given these challenges inherent in both supervised and unsupervised DVGL methods, we propose a novel cross-domain invariant knowledge transfer network (CDIKTNet) with limited supervision, whose architecture consists of a cross-domain invariance sub-network (CDIS) and a cross-domain transfer sub-network (CDTS). This architecture facilitates a closed-loop framework for invariance feature learning and knowledge transfer. The CDIS is designed to learn cross-view structural and spatial invariance from a small amount of paired data that serves as prior knowledge. It endows the shared feature space of unpaired data with similar implicit cross-view correlations at initialization, which alleviates feature confusion. Based on this, the CDTS employs dual-path contrastive learning to further optimize each subspace while preserving consistency in a shared feature space. Extensive experiments demonstrate that CDIKTNet achieves state-of-the-art performance under full supervision compared with those supervised methods, and further surpasses existing unsupervised methods in both few-shot and cross-domain initialization.
♻ ☆ TIPO: Text to Image with Text Presampling for Prompt Optimization
TIPO (Text-to-Image Prompt Optimization) introduces an efficient approach for automatic prompt refinement in text-to-image (T2I) generation. Starting from simple user prompts, TIPO leverages a lightweight pre-trained model to expand these prompts into richer and more detailed versions. Conceptually, TIPO samples refined prompts from a targeted sub-distribution within the broader semantic space, preserving the original intent while significantly improving visual quality, coherence, and detail. Unlike resource-intensive methods based on large language models (LLMs) or reinforcement learning (RL), TIPO offers strong computational efficiency and scalability, opening new possibilities for effective automated prompt engineering in T2I tasks. Extensive experiments across multiple domains demonstrate that TIPO achieves stronger text alignment, reduced visual artifacts, and consistently higher human preference rates, while maintaining competitive aesthetic quality. These results highlight the effectiveness of distribution-aligned prompt engineering and point toward broader opportunities for scalable, automated refinement in text-to-image generation.
comment: 50 pages, 28 figures
♻ ☆ Progressively Deformable 2D Gaussian Splatting for Video Representation at Arbitrary Resolutions
Implicit neural representations (INRs) enable fast video compression and effective video processing, but a single model rarely offers scalable decoding across rates and resolutions. In practice, multi-resolution typically relies on retraining or multi-branch designs, and structured pruning failed to provide a permutation-invariant progressive transmission order. Motivated by the explicit structure and efficiency of Gaussian splatting, we propose D2GV-AR, a deformable 2D Gaussian video representation that enables \emph{arbitrary-scale} rendering and \emph{any-ratio} progressive coding within a single model. We partition each video into fixed-length Groups of Pictures and represent each group with a canonical set of 2D Gaussian primitives, whose temporal evolution is modeled by a neural ordinary differential equation. During training and rendering, we apply scale-aware grouping according to Nyquist sampling theorem to form a nested hierarchy across resolutions. Once trained, primitives can be pruned via a D-optimal subset objective to enable any-ratio progressive coding. Extensive experiments show that D2GV-AR renders at over 250 FPS while matching or surpassing recent INR baselines, enabling multiscale continuous rate--quality adaptation.
♻ ☆ CacheFlow: Fast Human Motion Prediction by Cached Normalizing Flow
Many density estimation techniques for 3D human motion prediction require a significant amount of inference time, often exceeding the duration of the predicted time horizon. To address the need for faster density estimation for 3D human motion prediction, we introduce a novel flow-based method for human motion prediction called CacheFlow. Unlike previous conditional generative models that suffer from poor time efficiency, CacheFlow takes advantage of an unconditional flow-based generative model that transforms a Gaussian mixture into the density of future motions. The results of the computation of the flow-based generative model can be precomputed and cached. Then, for conditional prediction, we seek a mapping from historical trajectories to samples in the Gaussian mixture. This mapping can be done by a much more lightweight model, thus saving significant computation overhead compared to a typical conditional flow model. In such a two-stage fashion and by caching results from the slow flow model computation, we build our CacheFlow without loss of prediction accuracy and model expressiveness. This inference process is completed in approximately one millisecond, making it 4 times faster than previous VAE methods and 30 times faster than previous diffusion-based methods on standard benchmarks such as Human3.6M and AMASS datasets. Furthermore, our method demonstrates improved density estimation accuracy and comparable prediction accuracy to a SOTA method on Human3.6M. Our code and models are available at https://github.com/meaten/CacheFlow.
comment: Accepted at Transactions on Machine Learning Research (TMLR). See https://openreview.net/forum?id=y8dGdBJkWa
♻ ☆ ACDiT: Interpolating Autoregressive Conditional Modeling and Diffusion Transformer
Autoregressive and diffusion models have achieved remarkable progress in language models and visual generation, respectively. We present ACDiT, a novel Autoregressive blockwise Conditional Diffusion Transformer, that innovatively combines autoregressive and diffusion paradigms for continuous visual information. By introducing a block-wise autoregressive unit, ACDiT offers a flexible interpolation between token-wise autoregression and full-sequence diffusion, bypassing the limitations of discrete tokenization. The generation of each block is formulated as a conditional diffusion process, conditioned on prior blocks. ACDiT is easy to implement, as simple as applying a specially designed Skip-Causal Attention Mask on the standard diffusion transformer during training. During inference, the process iterates between diffusion denoising and autoregressive decoding that can make full use of KV-Cache. We validate the effectiveness of ACDiT on image, video, and text generation and show that ACDiT performs best among all autoregressive baselines under similar model scales on visual generation tasks. We also demonstrate that, benefiting from autoregressive modeling, pretrained ACDiT can be transferred in visual understanding tasks despite being trained with the generative objective. The analysis of the trade-off between autoregressive and diffusion demonstrates the potential of ACDiT to be used in long-horizon visual generation tasks. We hope that ACDiT offers a novel perspective on visual autoregressive generation and sheds light on new avenues for unified models.
comment: TMLR camera-ready version
♻ ☆ InternSVG: Towards Unified SVG Tasks with Multimodal Large Language Models
General SVG modeling remains challenging due to fragmented datasets, limited transferability of methods across tasks, and the difficulty of handling structural complexity. In response, we leverage the strong transfer and generalization capabilities of multimodal large language models (MLLMs) to achieve unified modeling for SVG understanding, editing, and generation. We present the InternSVG family, an integrated data-benchmark-model suite. At its core is SAgoge, the largest and most comprehensive multimodal dataset for SVG tasks, encompassing both static graphics and dynamic animations. It covers icons, long-sequence illustrations, scientific diagrams, and dynamic animations, supporting tasks of varied difficulty levels and providing deeper hierarchies with richer attributes compared to previous datasets. Based on this resource, we introduce SArena, a companion benchmark with comprehensive task definitions and standardized evaluation that aligns with the domains and difficulty spectrum covered by SAgoge. Building on these foundations, we propose InternSVG, a unified MLLM for SVG understanding, editing, and generation with SVG-specific special tokens, subword-based embedding initialization, and a two-stage training strategy that progresses from short static SVGs to long-sequence illustrations and complex animations. This unified formulation induces positive transfer and improves overall performance. Experiments on SArena and prior benchmark confirm that InternSVG achieves substantial gains and consistently outperforms leading open and proprietary counterparts.
♻ ☆ Large Vision Models Can Solve Mental Rotation Problems ICASSP 2026
Mental rotation is a key test of spatial reasoning in humans and has been central to understanding how perception supports cognition. Despite the success of modern vision transformers, it is still unclear how well these models develop similar abilities. In this work, we present a systematic evaluation of ViT, CLIP, DINOv2, and DINOv3 across a range of mental-rotation tasks, from simple block structures similar to those used by Shepard and Metzler to study human cognition, to more complex block figures, three types of text, and photo-realistic objects. By probing model representations layer by layer, we examine where and how these networks succeed. We find that i) self-supervised ViTs capture geometric structure better than supervised ViTs; ii) intermediate layers perform better than final layers; iii) task difficulty increases with rotation complexity and occlusion, mirroring human reaction times and suggesting similar constraints in embedding space representations.
comment: Accepted at ICASSP 2026
♻ ☆ RestoRect: Degraded Image Restoration via Latent Rectified Flow & Feature Distillation
Current approaches for restoration of degraded images face a trade-off: high-performance models are slow for practical use, while fast models produce poor results. Knowledge distillation transfers teacher knowledge to students, but existing static feature matching methods cannot capture how modern transformer architectures dynamically generate features. We propose a novel Latent Rectified Flow Feature Distillation method for restoring degraded images called \textbf{'RestoRect'}. We apply rectified flow to reformulate feature distillation as a generative process where students learn to synthesize teacher-quality features through learnable trajectories in latent space. Our framework combines Retinex decomposition with learnable anisotropic diffusion constraints, and trigonometric color space polarization. We introduce a Feature Layer Extraction loss for robust knowledge transfer between different network architectures through cross-normalized transformer feature alignment with percentile-based outlier detection. RestoRect achieves better training stability, and faster convergence and inference while preserving restoration quality, demonstrating superior results across 15 image restoration datasets, covering 4 tasks, on 10 metrics against baselines.
♻ ☆ Online Navigation Refinement: Achieving Lane-Level Guidance by Associating Standard-Definition and Online Perception Maps ICLR 2026
Lane-level navigation is critical for geographic information systems and navigation-based tasks, offering finer-grained guidance than road-level navigation by standard definition (SD) maps. However, it currently relies on expansive global HD maps that cannot adapt to dynamic road conditions. Recently, online perception (OP) maps have become research hotspots, providing real-time geometry as an alternative, but lack the global topology needed for navigation. To address these issues, Online Navigation Refinement (ONR), a new mission is introduced that refines SD-map-based road-level routes into accurate lane-level navigation by associating SD maps with OP maps. The map-to-map association to handle many-to-one lane-to-road mappings under two key challenges: (1) no public dataset provides lane-to-road correspondences; (2) severe misalignment from spatial fluctuations, semantic disparities, and OP map noise invalidates traditional map matching. For these challenges, We contribute: (1) Online map association dataset (OMA), the first ONR benchmark with 30K scenarios and 2.6M annotated lane vectors; (2) MAT, a transformer with path-aware attention to aligns topology despite spatial fluctuations and semantic disparities and spatial attention for integrates noisy OP features via global context; and (3) NR P-R, a metric evaluating geometric and semantic alignment. Experiments show that MAT outperforms existing methods at 34 ms latency, enabling low-cost and up-to-date lane-level navigation.
comment: Accepted by ICLR 2026
♻ ☆ Continual GUI Agents
As digital environments (data distribution) are in flux, with new GUI data arriving over time-introducing new domains or resolutions-agents trained on static environments deteriorate in performance. In this work, we introduce Continual GUI Agents, a new task that requires GUI agents to perform continual learning under shifted domains and resolutions. We find existing methods fail to maintain stable grounding as GUI distributions shift over time, due to the diversity of UI interaction points and regions in fluxing scenarios. To address this, we introduce GUI-Anchoring in Flux (GUI-AiF), a new reinforcement fine-tuning framework that stabilizes continual learning through two novel rewards: Anchoring Point Reward in Flux (APR-iF) and Anchoring Region Reward in Flux (ARR-iF). These rewards guide the agents to align with shifting interaction points and regions, mitigating the tendency of existing reward strategies to over-adapt to static grounding cues (e.g., fixed coordinates or element scales). Extensive experiments show GUI-AiF surpasses state-of-the-art baselines. Our work establishes the first continual learning framework for GUI agents, revealing the untapped potential of reinforcement fine-tuning for continual GUI Agents.
♻ ☆ Beyond Retraining: Training-Free Unknown Class Filtering for Source-Free Open Set Domain Adaptation of Vision-Language Models
Vision-language models (VLMs) have gained widespread attention for their strong zero-shot capabilities across numerous downstream tasks. However, these models assume that each test image's class label is drawn from a predefined label set and lack a reliable mechanism to reject samples from emerging unknown classes when only unlabeled data are available. To address this gap, open-set domain adaptation methods retrain models to push potential unknowns away from known clusters. Yet, some unknown samples remain stably anchored to specific known classes in the VLM feature space due to semantic relevance, which is termed as Semantic Affinity Anchoring (SAA). Forcibly repelling these samples unavoidably distorts the native geometry of VLMs and degrades performance. Meanwhile, existing score-based unknown detectors use simplistic thresholds and suffer from threshold sensitivity, resulting in sub-optimal performance. To address aforementioned issues, we propose VLM-OpenXpert, which comprises two training-free, plug-and-play inference modules. SUFF performs SVD on high-confidence unknowns to extract a low-rank "unknown subspace". Each sample's projection onto this subspace is weighted and softly removed from its feature, suppressing unknown components while preserving semantics. BGAT corrects score skewness via a Box-Cox transform, then fits a bimodal Gaussian mixture to adaptively estimate the optimal threshold balancing known-class recognition and unknown-class rejection. Experiments on 9 benchmarks and three backbones (CLIP, SigLIP, ALIGN) under source-free OSDA settings show that our training-free pipeline matches or outperforms retraining-heavy state-of-the-art methods, establishing a powerful lightweight inference calibration paradigm for open-set VLM deployment.
comment: Core methods unchanged; title updated and full-text narrative refined for clarity and logical coherence. No changes to key findings and conclusions
Computers and Society
☆ Investigating Associational Biases in Inter-Model Communication of Large Generative Models
Social bias in generative AI can manifest not only as performance disparities but also as associational bias, whereby models learn and reproduce stereotypical associations between concepts and demographic groups, even in the absence of explicit demographic information (e.g., associating doctors with men). These associations can persist, propagate, and potentially amplify across repeated exchanges in inter-model communication pipelines, where one generative model's output becomes another's input. This is especially salient for human-centred perception tasks, such as human activity recognition and affect prediction, where inferences about behaviour and internal states can lead to errors or stereotypical associations that propagate into unequal treatment. In this work, focusing on human activity and affective expression, we study how such associations evolve within an inter-model communication pipeline that alternates between image generation and image description. Using the RAF-DB and PHASE datasets, we quantify demographic distribution drift induced by model-to-model information exchange and assess whether these drifts are systematic using an explainability pipeline. Our results reveal demographic drifts toward younger representations for both actions and emotions, as well as toward more female-presenting representations, primarily for emotions. We further find evidence that some predictions are supported by spurious visual regions (e.g., background or hair) rather than concept-relevant cues (e.g., body or face). We also examine whether these demographic drifts translate into measurable differences in downstream behaviour, i.e., while predicting activity and emotion labels. Finally, we outline mitigation strategies spanning data-centric, training and deployment interventions, and emphasise the need for careful safeguards when deploying interconnected models in human-centred AI systems.
☆ From Particles to Agents: Hallucination as a Metric for Cognitive Friction in Spatial Simulation
Traditional architectural simulations (e.g. Computational Fluid Dynamics, evacuation, structural analysis) model elements as deterministic physics-based "particles" rather than cognitive "agents". To bridge this, we introduce \textbf{Agentic Environmental Simulations}, where Large Multimodal generative models actively predict the next state of spatial environments based on semantic expectation. Drawing on examples from accessibility-oriented AR pipelines and multimodal digital twins, we propose a shift from chronological time-steps to Episodic Spatial Reasoning, where simulations advance through meaningful, surprisal-triggered events. Within this framework we posit AI hallucinations as diagnostic tools. By formalizing the \textbf{Cognitive Friction} ($C_f$) it is possible to reveal "Phantom Affordances", i.e. semiotic ambiguities in built space. Finally, we challenge current HCI paradigms by treating environments as dynamic cognitive partners and propose a human-centered framework of cognitive orchestration for designing AI-driven simulations that preserve autonomy, affective clarity, and cognitive integrity.
comment: Paper selected for the workshop Human Cognition, AI, and the Future of HCI: Navigating the Disruptive and Wild Landscape of Large Language Models and Agentic AI as part of the Human-Computer Interaction (HCI) conference of the Alpine region (AlpCHI 2026) hosted at the Congressi Stefano Franscini, March 1st to March 5th, 2026 on Monte Verità in Ascona, Switzerland
☆ Industrialized Deception: The Collateral Effects of LLM-Generated Misinformation on Digital Ecosystems
Generative AI and misinformation research has evolved since our 2024 survey. This paper presents an updated perspective, transitioning from literature review to practical countermeasures. We report on changes in the threat landscape, including improved AI-generated content through Large Language Models (LLMs) and multimodal systems. Central to this work are our practical contributions: JudgeGPT, a platform for evaluating human perception of AI-generated news, and RogueGPT, a controlled stimulus generation engine for research. Together, these tools form an experimental pipeline for studying how humans perceive and detect AI-generated misinformation. Our findings show that detection capabilities have improved, but the competition between generation and detection continues. We discuss mitigation strategies including LLM-based detection, inoculation approaches, and the dual-use nature of generative AI. This work contributes to research addressing the adverse impacts of AI on information quality.
comment: Accepted at ACM TheWebConf '26 Companion
☆ From Future of Work to Future of Workers: Addressing Asymptomatic AI Harms for Dignified Human-AI Interaction
In the future of work discourse, AI is touted as the ultimate productivity amplifier. Yet, beneath the efficiency gains lie subtle erosions of human expertise and agency. This paper shifts focus from the future of work to the future of workers by navigating the AI-as-Amplifier Paradox: AI's dual role as enhancer and eroder, simultaneously strengthening performance while eroding underlying expertise. We present a year-long study on the longitudinal use of AI in a high-stakes workplace among cancer specialists. Initial operational gains hid ``intuition rust'': the gradual dulling of expert judgment. These asymptomatic effects evolved into chronic harms, such as skill atrophy and identity commoditization. Building on these findings, we offer a framework for dignified Human-AI interaction co-constructed with professional knowledge workers facing AI-induced skill erosion without traditional labor protections. The framework operationalizes sociotechnical immunity through dual-purpose mechanisms that serve institutional quality goals while building worker power to detect, contain, and recover from skill erosion, and preserve human identity. Evaluated across healthcare and software engineering, our work takes a foundational step toward dignified human-AI interaction futures by balancing productivity with the preservation of human expertise.
☆ TraceRouter: Robust Safety for Large Foundation Models via Path-Level Intervention
Despite their capabilities, large foundation models (LFMs) remain susceptible to adversarial manipulation. Current defenses predominantly rely on the "locality hypothesis", suppressing isolated neurons or features. However, harmful semantics act as distributed, cross-layer circuits, rendering such localized interventions brittle and detrimental to utility. To bridge this gap, we propose \textbf{TraceRouter}, a path-level framework that traces and disconnects the causal propagation circuits of illicit semantics. TraceRouter operates in three stages: (1) it pinpoints a sensitive onset layer by analyzing attention divergence; (2) it leverages sparse autoencoders (SAEs) and differential activation analysis to disentangle and isolate malicious features; and (3) it maps these features to downstream causal pathways via feature influence scores (FIS) derived from zero-out interventions. By selectively suppressing these causal chains, TraceRouter physically severs the flow of harmful information while leaving orthogonal computation routes intact. Extensive experiments demonstrate that TraceRouter significantly outperforms state-of-the-art baselines, achieving a superior trade-off between adversarial robustness and general utility. Our code will be publicly released. WARNING: This paper contains unsafe model responses.
☆ Test-Time Compute Games
Test-time compute has emerged as a promising strategy to enhance the reasoning abilities of large language models (LLMs). However, this strategy has in turn increased how much users pay cloud-based providers offering LLM-as-a-service, since providers charge users for the amount of test-time compute they use to generate an output. In our work, we show that the market of LLM-as-a-service is socially inefficient: providers have a financial incentive to increase the amount of test-time compute, even if this increase contributes little to the quality of the outputs. To address this inefficiency, we introduce a reverse second-price auction mechanism where providers bid their offered price and (expected) quality for the opportunity to serve a user, and users pay proportionally to the marginal value generated by the winning provider relative to the second-highest bidder. To illustrate and complement our theoretical results, we conduct experiments with multiple instruct models from the $\texttt{Llama}$ and $\texttt{Qwen}$ families, as well as reasoning models distilled from $\texttt{DeepSeek-R1}$, on math and science benchmark datasets.
☆ Trustworthy Intelligent Education: A Systematic Perspective on Progress, Challenges, and Future Directions
In recent years, trustworthiness has garnered increasing attention and exploration in the field of intelligent education, due to the inherent sensitivity of educational scenarios, such as involving minors and vulnerable groups, highly personalized learning data, and high-stakes educational outcomes. However, existing research either focuses on task-specific trustworthy methods without a holistic view of trustworthy intelligent education, or provides survey-level discussions that remain high-level and fragmented, lacking a clear and systematic categorization. To address these limitations, in this paper, we present a systematic and structured review of trustworthy intelligent education. Specifically, We first organize intelligent education into five representative task categories: learner ability assessment, learning resource recommendation, learning analytics, educational content understanding, and instructional assistance. Building on this task landscape, we review existing studies from five trustworthiness perspectives, including safety and privacy, robustness, fairness, explainability, and sustainability, and summarize and categorize the research methodologies and solution strategies therein. Finally, we summarize key challenges and discuss future research directions. This survey aims to provide a coherent reference framework and facilitate a clearer understanding of trustworthiness in intelligent education.
comment: 9 pages, 3figures
☆ Moral Outrage Shapes Commitments Beyond Attention: Multimodal Moral Emotions on YouTube in Korea and the US
Understanding how media rhetoric shapes audience engagement is crucial in the attention economy. This study examines how moral emotional framing by mainstream news channels on YouTube influences user behavior across Korea and the United States. To capture the platform's multimodal nature, combining thumbnail images and video titles, we develop a multimodal moral emotion classifier by fine tuning a vision language model. The model is trained on human annotated multimodal datasets in both languages and applied to approximately 400,000 videos from major news outlets. We analyze engagement levels including views, likes, and comments, representing increasing degrees of commitment. The results show that other condemning rhetoric expressions of moral outrage that criticize others morally consistently increase all forms of engagement across cultures, with effects ranging from passive viewing to active commenting. These findings suggest that moral outrage is a particularly effective emotional strategy, attracting not only attention but also active participation. We discuss concerns about the potential misuse of other condemning rhetoric, as such practices may deepen polarization by reinforcing in group and out group divisions. To facilitate future research and ensure reproducibility, we publicly release our Korean and English multimodal moral emotion classifiers.
comment: Accepted at The Web Conference 2026. We release Korean and English multimodal moral emotion classifiers
☆ CAF-Mamba: Mamba-Based Cross-Modal Adaptive Attention Fusion for Multimodal Depression Detection ICASSP
Depression is a prevalent mental health disorder that severely impairs daily functioning and quality of life. While recent deep learning approaches for depression detection have shown promise, most rely on limited feature types, overlook explicit cross-modal interactions, and employ simple concatenation or static weighting for fusion. To overcome these limitations, we propose CAF-Mamba, a novel Mamba-based cross-modal adaptive attention fusion framework. CAF-Mamba not only captures cross-modal interactions explicitly and implicitly, but also dynamically adjusts modality contributions through a modality-wise attention mechanism, enabling more effective multimodal fusion. Experiments on two in-the-wild benchmark datasets, LMVD and D-Vlog, demonstrate that CAF-Mamba consistently outperforms existing methods and achieves state-of-the-art performance.
comment: The paper contains a total of 5 pages and 3 figures. This paper has been accepted for publication in the proceedings of 2026 IEEE ICASSP Conference
☆ Turning Language Model Training from Black Box into a Sandbox
Most classroom engagements with generative AI focus on prompting pre-trained models, leaving the role of training data and model mechanics opaque. We developed a browser-based tool that allows students to train a small transformer language model entirely on their own device, making the training process visible. In a CS1 course, 162 students completed pre- and post-test explanations of why language models sometimes produce incorrect or strange output. After a brief hands-on training activity, students' explanations shifted significantly from anthropomorphic and misconceived accounts toward data- and model-based reasoning. The results suggest that enabling learners to directly observe training can support conceptual understanding of the data-driven nature of language models and model training, even within a short intervention. For K-12 AI literacy and AI education research, the study findings suggest that enabling students to train - and not only prompt - language models can shift how they think about AI.
comment: 4 pages, 2 figures, WIP, accepted to IEEE conference
☆ MURAD: A Large-Scale Multi-Domain Unified Reverse Arabic Dictionary Dataset
Arabic is a linguistically and culturally rich language with a vast vocabulary that spans scientific, religious, and literary domains. Yet, large-scale lexical datasets linking Arabic words to precise definitions remain limited. We present MURAD (Multi-domain Unified Reverse Arabic Dictionary), an open lexical dataset with 96,243 word-definition pairs. The data come from trusted reference works and educational sources. Extraction used a hybrid pipeline integrating direct text parsing, optical character recognition, and automated reconstruction. This ensures accuracy and clarity. Each record aligns a target word with its standardized Arabic definition and metadata that identifies the source domain. The dataset covers terms from linguistics, Islamic studies, mathematics, physics, psychology, and engineering. It supports computational linguistics and lexicographic research. Applications include reverse dictionary modeling, semantic retrieval, and educational tools. By releasing this resource, we aim to advance Arabic natural language processing and promote reproducible research on Arabic lexical semantics.
comment: 18 pages
☆ Small models, big threats: Characterizing safety challenges from low-compute AI models
Artificial intelligence (AI) systems are revolutionizing fields such as medicine, drug discovery, and materials science; however, many technologists and policymakers are also concerned about the technology's risks. To date, most concrete policies around AI governance have focused on managing AI risk by considering the amount of compute required to operate or build a given AI system. However, low-compute AI systems are becoming increasingly more performant - and more dangerous. Driven by agentic workflows, parameter quantization, and other model compression techniques, capabilities once only achievable on frontier-level systems have diffused into low-resource models deployable on consumer devices. In this report, we profile this trend by downloading historical benchmark performance data for over 5,000 large language models (LLMs) hosted on HuggingFace, noting the model size needed to achieve competitive LLM benchmarks has decreased by more than 10X over the past year. We then simulate the computational resources needed for an actor to launch a series of digital societal harm campaigns - such as disinformation botnets, sexual extortion schemes, voice-cloning fraud, and others - using low-compute open-source models and find nearly all studied campaigns can easily be executed on consumer-grade hardware. This position paper argues that protection measures for high-compute models leave serious security holes for their low-compute counterparts, meaning it is urgent both policymakers and technologists make greater efforts to understand and address this emerging class of threats.
comment: 11 pages, 4 figures
☆ Intelli-Planner: Towards Customized Urban Planning via Large Language Model Empowered Reinforcement Learning
Effective urban planning is crucial for enhancing residents' quality of life and ensuring societal stability, playing a pivotal role in the sustainable development of cities. Current planning methods heavily rely on human experts, which are time-consuming and labor-intensive, or utilize deep learning algorithms, often limiting stakeholder involvement. To bridge these gaps, we propose Intelli-Planner, a novel framework integrating Deep Reinforcement Learning (DRL) with large language models (LLMs) to facilitate participatory and customized planning scheme generation. Intelli-Planner utilizes demographic, geographic data, and planning preferences to determine high-level planning requirements and demands for each functional type. During training, a knowledge enhancement module is employed to enhance the decision-making capability of the policy network. Additionally, we establish a multi-dimensional evaluation system and employ LLM-based stakeholders for satisfaction scoring. Experimental validation across diverse urban settings shows that Intelli-Planner surpasses traditional baselines and achieves comparable performance to state-of-the-art DRL-based methods in objective metrics, while enhancing stakeholder satisfaction and convergence speed. These findings underscore the effectiveness and superiority of our framework, highlighting the potential for integrating the latest advancements in LLMs with DRL approaches to revolutionize tasks related to functional areas planning.
comment: The Web Conference 2026
☆ FrontierScience: Evaluating AI's Ability to Perform Expert-Level Scientific Tasks
We introduce FrontierScience, a benchmark evaluating expert-level scientific reasoning in frontier language models. Recent model progress has nearly saturated existing science benchmarks, which often rely on multiple-choice knowledge questions or already published information. FrontierScience addresses this gap through two complementary tracks: (1) Olympiad, consisting of international olympiad problems at the level of IPhO, IChO, and IBO, and (2) Research, consisting of PhD-level, open-ended problems representative of sub-tasks in scientific research. FrontierScience contains several hundred questions (including 160 in the open-sourced gold set) covering subfields across physics, chemistry, and biology, from quantum electrodynamics to synthetic organic chemistry. All Olympiad problems are originally produced by international Olympiad medalists and national team coaches to ensure standards of difficulty, originality, and factuality. All Research problems are research sub-tasks written and verified by PhD scientists (doctoral candidates, postdoctoral researchers, or professors). For Research, we introduce a granular rubric-based evaluation framework to assess model capabilities throughout the process of solving a research task, rather than judging only a standalone final answer.
♻ ☆ "Not in My Backyard": LLMs Uncover Online and Offline Social Biases Against Homelessness
Homelessness is a persistent social challenge, impacting millions worldwide. Over 876,000 people experienced homelessness (PEH) in the U.S. in 2025. Social bias is a significant barrier to alleviation, shaping public perception and influencing policymaking. Given that online textual media and offline city council discourse reflect and influence part of public opinion, it provides valuable insights to identify and track social biases against PEH. We present a new, manually-annotated multi-domain dataset compiled from Reddit, X (formerly Twitter), news articles, and city council meeting minutes across ten U.S. cities. Our 16-category multi-label taxonomy creates a challenging long-tail classification problem: some categories appear in less than 1% of samples, while others exceed 70%. We find that small human-annotated datasets (1,702 samples) are insufficient for training effective classifiers, whether used to fine-tune encoder models or as few-shot examples for LLMs. To address this, we use GPT-4.1 to generate pseudo-labels on a larger unlabeled corpus. Training on this expanded dataset enables even small encoder models (ModernBERT, 150M parameters) to achieve 35.23 macro-F1, approaching GPT-4.1's 41.57. This demonstrates that \textbf{data quantity matters more than model size}, enabling low-cost, privacy-preserving deployment without relying on commercial APIs. Our results reveal that negative bias against PEH is prevalent both offline and online (especially on Reddit), with "not in my backyard" narratives showing the highest engagement. These findings uncover a type of ostracism that directly impacts poverty-reduction policymaking and provide actionable insights for practitioners addressing homelessness.
♻ ☆ Constructing Algorithmic Authority: How Multi-Channel Networks (MCNs) Govern Live-Streaming Labor in China
This study examines the discursive construction of algorithms and its role in labor management in Chinese live-streaming industry by focusing on how intermediary organizations (Multi-Channel Networks, MCNs) actively construct, stabilize, and deploy particular interpretations of platform algorithms as instruments of labor management. Drawing on a nine-month ethnographic fieldwork and 44 interviews with live-streamers, former live-streamers, and MCN staff, we examine how MCNs produce and circulate structured interpretations of platform algorithms across organizational settings. We show that MCNs articulate two asymmetric yet interconnected forms of algorithmic interpretations. Internally, MCNs managers approach algorithms as volatile and uncertain systems and adopt probabilistic strategies to manage performance and risk. Externally, in interactions with streamers, MCNs circulate simplified and prescriptive algorithmic narratives that frame platform systems as transparent, fair, and responsive to individual effort. These organizationally produced algorithmic interpretations are embedded into training materials, live-streaming performance metrics, and everyday management practices. Through these mechanisms, streamers internalize responsibility for outcomes, intensify self-discipline, and increase investments in equipment, performing skills, and routines to maintain streamer-audience relationship, while accountability for unpredictable outcomes is increasingly shifted away from managers and platforms. This study contributes to CSCW and platform labor research by demonstrating how discursively constructed algorithmic knowledge can function as an intermediary infrastructure of soft control, shaping how platform labor is regulated, moralized, and governed in practice.
comment: 32 pages
♻ ☆ "In my defense, only three hours on Instagram": Designing Toward Digital Self-Awareness and Wellbeing
Screen use pervades daily life, shaping work, leisure, and social connections while raising concerns for digital wellbeing. Yet, reducing screen time alone risks oversimplifying technology's role and neglecting its potential for meaningful engagement. We posit self-awareness -- reflecting on one's digital behavior -- as a critical pathway to digital wellbeing. We developed WellScreen, a lightweight probe that scaffolds daily reflection by asking people to estimate and report smartphone use. In a two-week deployment with college students (N=25) focused on generating formative insights, we examined how discrepancies between estimated and actual usage shaped digital awareness and wellbeing. Participants often underestimated productivity and social media while overestimating entertainment app use. They showed a 10% improvement in positive affect, rating WellScreen as moderately useful. Interviews revealed that structured reflection supported recognition of patterns, adjustment of expectations, and more intentional engagement with technology. Our findings highlight the promise of lightweight reflective interventions for supporting self-awareness and intentional digital engagement, offering implications for designing digital wellbeing tools.
♻ ☆ Minion: A Technology Probe to Explore How Users Negotiate Harmful Value Conflicts with AI Companions
AI companions are designed to foster emotionally engaging interactions, yet users often encounter conflicts that feel frustrating or hurtful, such as discriminatory statements and controlling behavior. This paper examines how users negotiate such harmful conflicts with AI companions and what emotional and practical burdens are created when mitigation is pushed to user-side tools. We analyze 146 public posts describing harmful value conflicts interacting with AI companions. We then introduce Minion, a Chrome-based technology probe that offers candidate responses spanning persuasion, rational appeals, boundary setting, and appeals to platform rules. Findings from a one-week probe study with 22 experienced users show how participants combine strategies, how emotional attachment motivates repair, and where conflicts become non-negotiable due to companion personas or platform policies. We surface design tensions in supporting value negotiation, showing how companion design can make some conflicts impossible to repair in practice, and derive implications for AI companion and support-tool design that caution against offloading safety work onto users.
comment: 21 pages, 4 figures
♻ ☆ Is Your LLM Overcharging You? Tokenization, Transparency, and Incentives
State-of-the-art large language models require specialized hardware and substantial energy to operate. As a consequence, cloud-based services that provide access to large language models have become very popular. In these services, the price users pay for an output provided by a model depends on the number of tokens the model uses to generate it: they pay a fixed price per token. In this work, we show that this pricing mechanism creates a financial incentive for providers to strategize and misreport the (number of) tokens a model used to generate an output, and users cannot prove, or even know, whether a provider is overcharging them. However, we also show that, if an unfaithful provider is obliged to be transparent about the generative process used by the model, misreporting optimally without raising suspicion is hard. Nevertheless, as a proof-of-concept, we develop an efficient heuristic algorithm that allows providers to significantly overcharge users without raising suspicion. Crucially, we demonstrate that the cost of running the algorithm is lower than the additional revenue from overcharging users, highlighting the vulnerability of users under the current pay-per-token pricing mechanism. Further, we show that, to eliminate the financial incentive to strategize, a pricing mechanism must price tokens linearly on their character count. While this makes a provider's profit margin vary across tokens, we introduce a simple prescription under which the provider who adopts such an incentive-compatible pricing mechanism can maintain the average profit margin they had under the pay-per-token pricing mechanism. Along the way, to illustrate and complement our theoretical results, we conduct experiments with several large language models from the $\texttt{Llama}$, $\texttt{Gemma}$ and $\texttt{Ministral}$ families, and input prompts from the LMSYS Chatbot Arena platform.
comment: Accepted as a spotlight presentation at the "Private Governance & Oversight Mechanisms for AI" workshop, EurIPS 2025
♻ ☆ Enabling the Reuse of Personal Data in Research: A Classification Model for Legal Compliance
Inspired by a proposal made almost ten years ago, this paper presents a model for classifying per-sonal data for research to inform researchers on how to manage them. The classification is based on the principles of the European General Data Protection Regulation and its implementation under the Spanish Law. The paper also describes in which conditions personal data may be stored and can be accessed ensuring compliance with data protection regulations and safeguarding privacy. The work has been developed collaboratively by the Library and the Data Protection Office. The outcomes of this collaboration are a decision tree for researchers and a list of requirements for research data re-positories to store and grant access to personal data securely. This proposal is aligned with the FAIR principles and the commitment for responsible open science practices.
comment: 10 pages, 2 Figure, 1 Table
♻ ☆ Software is infrastructure: failures, successes, costs, and the case for formal verification
In this chapter we outline the role that software has in modern society, along with the staggering costs of poor software quality. To lay this bare, we recall the costs of some of the major software failures that happened during the last 40 years. We argue that these costs justify researching, studying and applying formal software verification and in particular program analysis. This position is supported by successful industrial experiences.
♻ ☆ What Drives Paper Acceptance? A Process-Centric Analysis of Modern Peer Review
Peer review is the primary mechanism for evaluating scientific contributions, yet prior studies have mostly examined paper features or external metadata in isolation. The emergence of open platforms such as OpenReview has transformed peer review into a transparent and interactive process, recording not only scores and comments but also rebuttals, reviewer-author exchanges, reviewer disagreements, and meta-reviewer decisions. This provides unprecedented process-level data for understanding how modern peer review operates. In this paper, we present a large-scale empirical study of ICLR 2017-2025, encompassing over 28,000 submissions. Our analysis integrates four complementary dimensions, including the structure and language quality of papers (e.g., section patterns, figure/table ratios, clarity), submission strategies and external metadata (e.g., timing, arXiv posting, author count), the dynamics of author-reviewer interactions (e.g., rebuttal frequency, responsiveness), and the patterns of reviewer disagreement and meta-review mediation (e.g., score variance, confidence weighting). Our results show that factors beyond scientific novelty significantly shape acceptance outcomes. In particular, the rebuttal stage emerges as a decisive phase: timely, substantive, and interactive author-reviewer communication strongly increases the likelihood of acceptance, often outweighing initial reviewer skepticism. Alongside this, clearer writing, balanced visual presentation, earlier submission, and effective resolution of reviewer disagreement also correlate with higher acceptance probabilities. Based on these findings, we propose data-driven guidelines for authors, reviewers, and meta-reviewers to enhance transparency and fairness in peer review. Our study demonstrates that process-centric signals are essential for understanding and improving modern peer review.
comment: 22 pages
♻ ☆ Unheard in the Digital Age: Rethinking AI Bias and Speech Diversity
Speech remains one of the most visible yet overlooked vectors of inclusion and exclusion in contemporary society. While fluency is often equated with credibility and competence, individuals with atypical speech patterns are routinely marginalized. Given the current state of the debate, this article focuses on the structural biases that shape perceptions of atypical speech and are now being encoded into artificial intelligence. Automated speech recognition (ASR) systems and voice interfaces, trained predominantly on standardized speech, routinely fail to recognize or respond to diverse voices, compounding digital exclusion. As AI technologies increasingly mediate access to opportunity, the study calls for inclusive technological design, anti-bias training to minimize the impact of discriminatory algorithmic decisions, and enforceable policy reform that explicitly recognize speech diversity as a matter of equity, not merely accessibility. Drawing on interdisciplinary research, the article advocates for a cultural and institutional shift in how we value voice, urging co-created solutions that elevate the rights, representation, and realities of atypical speakers in the digital age. Ultimately, the article reframes speech inclusion as a matter of equity (not accommodation) and advocates for co-created AI systems that reflect the full spectrum of human voices.
♻ ☆ When Your Boss Is an AI Bot: Exploring Opportunities and Risks of Manager Clone Agents in the Future Workplace
As Generative AI (GenAI) becomes increasingly embedded in the workplace, managers are beginning to create Manager Clone Agents -- AI-powered digital surrogates trained on their work communications and decision patterns to perform managerial tasks on their behalf. To investigate this emerging phenomenon, we conducted six design fiction workshops (n = 23) with managers and workers, in which participants co-created speculative scenarios and discussed how Manager Clone Agents might transform collaborative work. We identified four potential roles that participants envisioned for Manager Clone Agents: proxy presence, informational conveyor, productivity engine, and leadership amplifier, while highlighting concerns spanning individual, interpersonal, and organizational levels. We provide design recommendations envisioned by both parties for integrating Manager Clone Agents responsibly into the future workplace, emphasizing the need to prioritize workers' perspectives and nurture interpersonal bonds while also anticipating alternative futures that may disrupt managerial hierarchies.
comment: This work has been accepted to CHI'26
♻ ☆ When Ads Become Profiles: Uncovering the Invisible Risk of Web Advertising at Scale with LLMs
Regulatory limits on explicit targeting have not eliminated algorithmic profiling on the Web, as optimisation systems still adapt ad delivery to users' private attributes. The widespread availability of powerful zero-shot multimodal Large Language Models (LLMs) has dramatically lowered the barrier for exploiting these latent signals for adversarial inference. We investigate this emerging societal risk, specifically how adversaries can now exploit these signals to reverse-engineer private attributes from ad exposure alone. We introduce a novel pipeline that leverages LLMs as adversarial inference engines to perform natural language profiling. Applying this method to a longitudinal dataset comprising over 435,000 Facebook ad impressions collected from 891 users, we conducted a large-scale study to assess the feasibility and precision of inferring private attributes from passive online ad observations. Our results demonstrate that off-the-shelf LLMs can accurately reconstruct complex user private attributes, including party preference, employment status, and education level, consistently outperforming strong census-based priors and matching or exceeding human social perception at only a fraction of the cost (223x lower) and time (52x faster) required by humans. Critically, actionable profiling is feasible even within short observation windows, indicating that prolonged tracking is not a prerequisite for a successful attack. These findings provide the first empirical evidence that ad streams serve as a high-fidelity digital footprint, enabling off-platform profiling that inherently bypasses current platform safeguards, highlighting a systemic vulnerability in the ad ecosystem and the urgent need for responsible web AI governance in the generative AI era. The code is available at https://github.com/Breezelled/when-ads-become-profiles.
comment: The ACM Web Conference 2026
♻ ☆ Navigating the Rabbit Hole: Emergent Biases in LLM-Generated Attack Narratives Targeting Mental Health Groups
Large Language Models (LLMs) have been shown to demonstrate imbalanced biases against certain groups. However, the study of unprovoked targeted attacks by LLMs towards at-risk populations remains underexplored. Our paper presents three novel contributions: (1) the explicit evaluation of LLM-generated attacks on highly vulnerable mental health groups; (2) a network-based framework to study the propagation of relative biases; and (3) an assessment of the relative degree of stigmatization that emerges from these attacks. Our analysis of a recently released large-scale bias audit dataset reveals that mental health entities occupy central positions within attack narrative networks, as revealed by a significantly higher mean centrality of closeness (p-value = 4.06e-10) and dense clustering (Gini coefficient = 0.7). Drawing from an established stigmatization framework, our analysis indicates increased labeling components for mental health disorder-related targets relative to initial targets in generation chains. Taken together, these insights shed light on the structural predilections of large language models to heighten harmful discourse and highlight the need for suitable approaches for mitigation.
Computers and Society
☆ "Unlimited Realm of Exploration and Experimentation": Methods and Motivations of AI-Generated Sexual Content Creators
AI-generated media is radically changing the way content is both consumed and produced on the internet, and in no place is this potentially more visible than in sexual content. AI-generated sexual content (AIG-SC) is increasingly enabled by an ecosystem of individual AI developers, specialized third-party applications, and foundation model providers. AIG-SC raises a number of concerns from old debates about the line between pornography and obscenity, to newer debates about fair use and labor displacement (in this case, of sex workers), and spurred new regulations to curb the spread of non-consensual intimate imagery (NCII) created using the same technology used to create AIG-SC. However, despite the growing prevalence of AIG-SC, little is known about its creators, their motivations, and what types of content they produce. To inform effective governance in this space, we perform an in-depth study to understand what AIG-SC creators make, along with how and why they make it. Interviews of 28 AIG-SC creators, ranging from hobbyists to entrepreneurs to those who moderate communities of hundreds of thousands of other creators, reveal a wide spectrum of motivations, including sexual exploration, creative expression, technical experimentation, and in a handful of cases, the creation of NCII.
☆ Do LLMs Favor LLMs? Quantifying Interaction Effects in Peer Review
There are increasing indications that LLMs are not only used for producing scientific papers, but also as part of the peer review process. In this work, we provide the first comprehensive analysis of LLM use across the peer review pipeline, with particular attention to interaction effects: not just whether LLM-assisted papers or LLM-assisted reviews are different in isolation, but whether LLM-assisted reviews evaluate LLM-assisted papers differently. In particular, we analyze over 125,000 paper-review pairs from ICLR, NeurIPS, and ICML. We initially observe what appears to be a systematic interaction effect: LLM-assisted reviews seem especially kind to LLM-assisted papers compared to papers with minimal LLM use. However, controlling for paper quality reveals a different story: LLM-assisted reviews are simply more lenient toward lower quality papers in general, and the over-representation of LLM-assisted papers among weaker submissions creates a spurious interaction effect rather than genuine preferential treatment of LLM-generated content. By augmenting our observational findings with reviews that are fully LLM-generated, we find that fully LLM-generated reviews exhibit severe rating compression that fails to discriminate paper quality, while human reviewers using LLMs substantially reduce this leniency. Finally, examining metareviews, we find that LLM-assisted metareviews are more likely to render accept decisions than human metareviews given equivalent reviewer scores, though fully LLM-generated metareviews tend to be harsher. This suggests that meta-reviewers do not merely outsource the decision-making to the LLM. These findings provide important input for developing policies that govern the use of LLMs during peer review, and they more generally indicate how LLMs interact with existing decision-making processes.
comment: 28 pages
☆ Post-Training Fairness Control: A Single-Train Framework for Dynamic Fairness in Recommendation WWW 2026
Despite growing efforts to mitigate unfairness in recommender systems, existing fairness-aware methods typically fix the fairness requirement at training time and provide limited post-training flexibility. However, in real-world scenarios, diverse stakeholders may demand differing fairness requirements over time, so retraining for different fairness requirements becomes prohibitive. To address this limitation, we propose Cofair, a single-train framework that enables post-training fairness control in recommendation. Specifically, Cofair introduces a shared representation layer with fairness-conditioned adapter modules to produce user embeddings specialized for varied fairness levels, along with a user-level regularization term that guarantees user-wise monotonic fairness improvements across these levels. We theoretically establish that the adversarial objective of Cofair upper bounds demographic parity and the regularization term enforces progressive fairness at user level. Comprehensive experiments on multiple datasets and backbone models demonstrate that our framework provides dynamic fairness at different levels, delivering comparable or better fairness-accuracy curves than state-of-the-art baselines, without the need to retrain for each new fairness requirement. Our code is publicly available at https://github.com/weixinchen98/Cofair.
comment: Accepted to WWW 2026 Workshop on HCRS (Oral Presentation)
☆ Reward Models Inherit Value Biases from Pretraining
Reward models (RMs) are central to aligning large language models (LLMs) with human values but have received less attention than pre-trained and post-trained LLMs themselves. Because RMs are initialized from LLMs, they inherit representations that shape their behavior, but the nature and extent of this influence remain understudied. In a comprehensive study of 10 leading open-weight RMs using validated psycholinguistic corpora, we show that RMs exhibit significant differences along multiple dimensions of human value as a function of their base model. Using the "Big Two" psychological axes, we show a robust preference of Llama RMs for "agency" and a corresponding robust preference of Gemma RMs for "communion." This phenomenon holds even when the preference data and finetuning process are identical, and we trace it back to the logits of the respective instruction-tuned and pre-trained models. These log-probability differences themselves can be formulated as an implicit RM; we derive usable implicit reward scores and show that they exhibit the very same agency/communion difference. We run experiments training RMs with ablations for preference data source and quantity, which demonstrate that this effect is not only repeatable but surprisingly durable. Despite RMs being designed to represent human preferences, our evidence shows that their outputs are influenced by the pretrained LLMs on which they are based. This work underscores the importance of safety and alignment efforts at the pretraining stage, and makes clear that open-source developers' choice of base model is as much a consideration of values as of performance.
☆ Jurisdiction as Structural Barrier: How Privacy Policy Organization May Reduce Visibility of Substantive Disclosures
Privacy policies are supposed to provide notice. But what if substantive information appears only where users skip it? We identify a structural pattern we call jurisdiction-siloed disclosure: information about data practices appearing in specific, actionable form only within regional compliance sections labeled "California Residents" or "EU/UK Users," while general sections use vague or qualified language for the same practices. Our audit of 123 major companies identifies 282 potential instances across 77 companies (62.6% of this purposive sample). A conservative estimate restricted to practice categories validated against OPP-115 human annotations finds 138 instances across 54 companies (44%); post-2018 categories central to our findings await independent validation. If users skip jurisdiction-labeled sections as information foraging theory predicts, users outside regulated jurisdictions would receive less specific information about practices affecting them--a transparency failure operating through document architecture rather than omission. We propose universal substantive disclosure: practices affecting all users should appear in the main policy body, with regional sections containing only procedural rights information. This standard finds support in analogous disclosure regimes (securities, truth-in-lending, nutritional labeling) where material information must reach all affected parties. Regulators could operationalize this through the FTC's "clear and conspicuous" standard and GDPR transparency principles. This work is hypothesis-generating: we establish that the structural pattern exists and ground the transparency concern in behavioral theory, but direct measurement of jurisdiction-specific section skipping remains the critical validation priority. We release our methodology and annotated dataset to enable replication.
comment: 25 pages, 2 figures, 5 tables
☆ QueerGen: How LLMs Reflect Societal Norms on Gender and Sexuality in Sentence Completion Tasks
This paper examines how Large Language Models (LLMs) reproduce societal norms, particularly heterocisnormativity, and how these norms translate into measurable biases in their text generations. We investigate whether explicit information about a subject's gender or sexuality influences LLM responses across three subject categories: queer-marked, non-queer-marked, and the normalized "unmarked" category. Representational imbalances are operationalized as measurable differences in English sentence completions across four dimensions: sentiment, regard, toxicity, and prediction diversity. Our findings show that Masked Language Models (MLMs) produce the least favorable sentiment, higher toxicity, and more negative regard for queer-marked subjects. Autoregressive Language Models (ARLMs) partially mitigate these patterns, while closed-access ARLMs tend to produce more harmful outputs for unmarked subjects. Results suggest that LLMs reproduce normative social assumptions, though the form and degree of bias depend strongly on specific model characteristics, which may redistribute, but not eliminate, representational harms.
☆ Audit Trails for Accountability in Large Language Models
Large language models (LLMs) are increasingly embedded in consequential decisions across healthcare, finance, employment, and public services. Yet accountability remains fragile because process transparency is rarely recorded in a durable and reviewable form. We propose LLM audit trails as a sociotechnical mechanism for continuous accountability. An audit trail is a chronological, tamper-evident, context-rich ledger of lifecycle events and decisions that links technical provenance (models, data, training and evaluation runs, deployments, monitoring) with governance records (approvals, waivers, and attestations), so organizations can reconstruct what changed, when, and who authorized it. This paper contributes: (1) a lifecycle framework that specifies event types, required metadata, and governance rationales; (2) a reference architecture with lightweight emitters, append only audit stores, and an auditor interface supporting cross organizational traceability; and (3) a reusable, open-source Python implementation that instantiates this audit layer in LLM workflows with minimal integration effort. We conclude by discussing limitations and directions for adoption.
☆ Agent Benchmarks Fail Public Sector Requirements
Deploying Large Language Model-based agents (LLM agents) in the public sector requires assuring that they meet the stringent legal, procedural, and structural requirements of public-sector institutions. Practitioners and researchers often turn to benchmarks for such assessments. However, it remains unclear what criteria benchmarks must meet to ensure they adequately reflect public-sector requirements, or how many existing benchmarks do so. In this paper, we first define such criteria based on a first-principles survey of public administration literature: benchmarks must be \emph{process-based}, \emph{realistic}, \emph{public-sector-specific} and report \emph{metrics} that reflect the unique requirements of the public sector. We analyse more than 1,300 benchmark papers for these criteria using an expert-validated LLM-assisted pipeline. Our results show that no single benchmark meets all of the criteria. Our findings provide a call to action for both researchers to develop public sector-relevant benchmarks and for public-sector officials to apply these criteria when evaluating their own agentic use cases.
comment: Forthcoming @ IASEAI 2026
☆ Schadenfreude in the Digital Public Sphere: A cross-national and decade-long analysis of Facebook news engagement
Schadenfreude, or the pleasure derived from others' misfortunes, has become a visible and performative feature of online news engagement, yet little is known about its prevalence, dynamics, or social patterning. We examine schadenfreude on Facebook over a ten-year period across nine major news publishers in the United States, the United Kingdom, and India (one left-leaning, one right-leaning, and one centrist per country). Using a combination of human annotation and machine-learning classification, we identify posts describing misfortune and detect schadenfreude in nearly one million associated comments. We find that while sadness and anger dominate reactions to misfortune posts, laughter and amusement form a substantial and patterned minority. Schadenfreude is most frequent in moralized and political contexts, higher among right-leaning audiences, and more pronounced in India than in the United States or United Kingdom. Temporal and regression analyses further reveal that schadenfreude generally increases when groups are politically out of power, but these patterns differ across party lines. Together, our findings move beyond anecdotal accounts to map schadenfreude as a dynamic, context-dependent feature of digital discourse, revealing how it evolves over time and across ideological and cultural divides.
☆ How AI Impacts Skill Formation
AI assistance produces significant productivity gains across professional domains, particularly for novice workers. Yet how this assistance affects the development of skills required to effectively supervise AI remains unclear. Novice workers who rely heavily on AI to complete unfamiliar tasks may compromise their own skill acquisition in the process. We conduct randomized experiments to study how developers gained mastery of a new asynchronous programming library with and without the assistance of AI. We find that AI use impairs conceptual understanding, code reading, and debugging abilities, without delivering significant efficiency gains on average. Participants who fully delegated coding tasks showed some productivity improvements, but at the cost of learning the library. We identify six distinct AI interaction patterns, three of which involve cognitive engagement and preserve learning outcomes even when participants receive AI assistance. Our findings suggest that AI-enhanced productivity is not a shortcut to competence and AI assistance should be carefully adopted into workflows to preserve skill formation -- particularly in safety-critical domains.
☆ Adequately Tailoring Age Verification Regulations
The Supreme Court decision in Free Speech Coalition v. Paxton upheld the constitutionality of Texas H.B. 1181, one of the most constitutionally vulnerable of these age verification laws, holding that it was subject to and satisfied intermediate scrutiny and the requirement that age verification regulations be "adequately tailored". However, the decision leaves unresolved practical challenges. What is the current state of age verification legislation in the United States? How can "adequate tailoring" be interpreted in a way that is accessible to non-legal experts, particularly those in technical and engineering domains? What age verification approaches are used today, what infrastructures and standards support them, and what tradeoffs do they introduce? This paper addresses those questions by proposing an analytical model to interpret "adequate tailoring" from multiple perspectives with associated governmental goals and interests, and by applying that model to evaluate both current state laws and widely used verification methods. This paper's major contributions include: (1) we mapped the current U.S. age-verification legislative landscape; (2) we introduce an analytical model to analyze "adequate tailoring" for age verification and potential application to other online regulatory policies; and (3) we analyze the main technical approaches to age verification, highlighting the practical challenges and tradeoffs from a technical perspective. Further, while we focus on U.S. State laws, the principles underlying our framework are applicable to age-verification debates and methods worldwide.
comment: This paper is accepted by the ACM Symposium on Computer Science and Law (CS & Law 2026)
☆ Large language models accurately predict public perceptions of support for climate action worldwide
Although most people support climate action, widespread underestimation of others' support stalls individual and systemic changes. In this preregistered experiment, we test whether large language models (LLMs) can reliably predict these perception gaps worldwide. Using country-level indicators and public opinion data from 125 countries, we benchmark four state-of-the-art LLMs against Gallup World Poll 2021/22 data and statistical regressions. LLMs, particularly Claude, accurately capture public perceptions of others' willingness to contribute financially to climate action (MAE approximately 5 p.p.; r = .77), comparable to statistical models, though performance declines in less digitally connected, lower-GDP countries. Controlled tests show that LLMs capture the key psychological process - social projection with a systematic downward bias - and rely on structured reasoning rather than memorized values. Overall, LLMs provide a rapid tool for assessing perception gaps in climate action, serving as an alternative to costly surveys in resource-rich countries and as a complement in underrepresented populations.
comment: 35 pages
♻ ☆ Graph-Based Analysis of AI-Driven Labor Market Transitions: Evidence from 10,000 Egyptian Jobs and Policy Implications
How many workers displaced by automation can realistically transition to safer jobs? We answer this using a validated knowledge graph of 9,978 Egyptian job postings, 19,766 skill activities, and 84,346 job-skill relationships (0.74% error rate). While 20.9% of jobs face high automation risk, we find that only 24.4% of at-risk workers have viable transition pathways--defined by $\geq$3 shared skills and $\geq$50% skill transfer. The remaining 75.6% face a structural mobility barrier requiring comprehensive reskilling, not incremental upskilling. Among 4,534 feasible transitions, process-oriented skills emerge as the highest-leverage intervention, appearing in 15.6% of pathways. These findings challenge optimistic narratives of seamless workforce adaptation and demonstrate that emerging economies require active pathway creation, not passive skill matching.
♻ ☆ Prompts to Proxies: Emulating Human Preferences via a Compact LLM Ensemble
Large language models are increasingly used as proxies for human subjects in social science research, yet external validity requires that synthetic agents faithfully reflect the preferences of target human populations. We introduce *preference reconstruction theory*, a framework that formalizes preference alignment as a representation learning problem: constructing a functional basis of proxy agents and recovering population preferences through weighted aggregation. We implement this via *Prompts to Proxies* ($\texttt{P2P}$), a modular two-stage system. Stage 1 uses structured prompting with entropy-based adaptive sampling to construct a diverse agent pool spanning the latent preference space. Stage 2 employs L1-regularized regression to select a compact ensemble whose aggregate response distributions align with observed data from the target population. $\texttt{P2P}$ requires no finetuning and no access to sensitive demographic data, incurring only API inference costs. We validate the approach on 14 waves of the American Trends Panel, achieving an average test MSE of 0.014 across diverse topics at approximately 0.8 USD per survey. We additionally test it on the World Values Survey, demonstrating its potential to generalize across locales. When stress-tested against an SFT-aligned baseline, $\texttt{P2P}$ achieves competitive performance using less than 3% of the training data.
♻ ☆ The Narrow Depth and Breadth of Corporate Responsible AI Research
The transformative potential of AI presents remarkable opportunities, but also significant risks, underscoring the importance of responsible AI development and deployment. Despite a growing emphasis on this area, there is limited understanding of industry's engagement in responsible AI research, i.e., the systematic examination of AI's ethical, social, and legal dimensions. To address this gap, we analyzed over 6 million peer-reviewed articles and 32 million patent citations using multiple methods across five distinct datasets to quantify industry's engagement. Our analysis reveals notable heterogeneity between industry's substantial presence in conventional AI research and its comparatively modest engagement in responsible AI. Leading AI firms exhibit significantly lower output in responsible AI research compared to their conventional AI research and the contributions of leading academic institutions. Our linguistic analysis reveals a more concentrated scope of responsible AI research within industry, with fewer distinct key topics addressed. Our large-scale patent citation analysis uncovers limited linkage between responsible AI research and the commercialization of AI technologies, suggesting that industry patents infrequently draw upon insights from the responsible AI literature. These patterns raise important questions about the integration of responsible AI considerations into commercialization practices, with potential implications for the alignment of AI development with broader societal objectives. Our results highlight the need for industry to publicly engage in responsible AI research to absorb academic knowledge, cultivate public trust, and proactively address the societal dimensions of AI development.
♻ ☆ A Roadmap for Greater Public Use of Privacy-Sensitive Government Data: Workshop Report
Government agencies collect and manage a wide range of ever-growing datasets. While such data has the potential to support research and evidence-based policy making, there are concerns that the dissemination of such data could infringe upon the privacy of the individuals (or organizations) from whom such data was collected. To appraise the current state of data sharing, as well as learn about opportunities for stimulating such sharing at a faster pace, a virtual workshop was held on May 21st and 26th, 2021, sponsored by the National Science Foundation (NSF) and National Institute of Standards and Technologies (NIST), and the White House Office of Science and Technology Policy (OSTP), where a multinational collection of researchers and practitioners were brought together to discuss their experiences and learn about recently developed technologies for managing privacy while sharing data. The workshop specifically focused on challenges and successes in government data sharing at various levels. The first day focused on successful examples of new technology applied to sharing of public data, including formal privacy techniques, synthetic data, and cryptographic approaches. Day two emphasized brainstorming sessions on some of the challenges and directions to address them.
comment: 23 pages. Web: https://may2021privacy.github.io/
♻ ☆ DoubleAgents: Interactive Simulations for Alignment in Agentic AI
Agentic workflows promise efficiency, but adoption hinges on whether people can align systems that act on their behalf with their goals, values, and situational expectations. We present DoubleAgents, an agentic planning tool that embeds transparency and control through user intervention, value-reflecting policies, rich state visualizations, and uncertainty flagging for human coordination tasks. A built-in respondent simulation generates realistic scenarios, allowing users to rehearse and refine policies and calibrate their use of agentic behavior before live deployment. We evaluate DoubleAgents in a two-day lab study (n = 10), three deployment studies, and a technical evaluation. Results show that participants initially hesitated to delegate but used simulation to probe system behavior and adjust policies, gradually increasing delegation as agent actions became better aligned with their intentions and context. Deployment results demonstrate DoubleAgents' real-world relevance and usefulness, showing that simulation helps users effectively manage real-world tasks with higher complexity and uncertainty. We contribute interactive simulation as a practical pathway for users to iteratively align and calibrate agentic systems.
comment: 22 pages, 10 figures
♻ ☆ Epistemic Diversity and Knowledge Collapse in Large Language Models
Large language models (LLMs) tend to generate homogenous texts, which may impact the diversity of knowledge generated across different outputs. Given their potential to replace existing forms of knowledge acquisition, this poses a risk of knowledge collapse, where homogenous LLMs may lead most people to be exposed to largely the same information, thus mediating a shrinking in the range of accessible information over time as underepresented knowledge is forgotten. To assess the risk of knowledge collapse with LLMs, we present a new methodology to measure epistemic diversity, i.e., variation in real-world claims in LLM outputs. We use this to perform a broad empirical study testing 27 LLMs, 155 topics covering 12 countries, and 200 prompt templates sourced from real user chats. For the topics in our study, we show that while newer models tend to generate more diverse claims, all models are less epistemically diverse than a basic web search. We find that model size has a negative impact on epistemic diversity, while retrieval-augmented generation (RAG) has a positive impact, though the improvement from RAG varies by the cultural context. Finally, compared to a traditional knowledge source (Wikipedia), we find that country-specific claims reflect the English language more than the local one, highlighting a gap in epistemic representation.
comment: 16 pages; 8 figures, 4 tables; v2 changelog: Fixed the modeling for table 3, random effect is the model version; v3 changelog: Fixed minor formatting issues in tables 2 and 3; v4 changelog: Fixed some typos and model description; v5 changelog: Updated metadata; v6 changelog: Improved search baseline, writing revisions, added comparisons to semantic similarity only approaches
♻ ☆ PLawBench: A Rubric-Based Benchmark for Evaluating LLMs in Real-World Legal Practice
As large language models (LLMs) are increasingly applied to legal domain-specific tasks, evaluating their ability to perform legal work in real-world settings has become essential. However, existing legal benchmarks rely on simplified and highly standardized tasks, failing to capture the ambiguity, complexity, and reasoning demands of real legal practice. Moreover, prior evaluations often adopt coarse, single-dimensional metrics and do not explicitly assess fine-grained legal reasoning. To address these limitations, we introduce PLawBench, a Practical Law Benchmark designed to evaluate LLMs in realistic legal practice scenarios. Grounded in real-world legal workflows, PLawBench models the core processes of legal practitioners through three task categories: public legal consultation, practical case analysis, and legal document generation. These tasks assess a model's ability to identify legal issues and key facts, perform structured legal reasoning, and generate legally coherent documents. PLawBench comprises 850 questions across 13 practical legal scenarios, with each question accompanied by expert-designed evaluation rubrics, resulting in approximately 12,500 rubric items for fine-grained assessment. Using an LLM-based evaluator aligned with human expert judgments, we evaluate 10 state-of-the-art LLMs. Experimental results show that none achieves strong performance on PLawBench, revealing substantial limitations in the fine-grained legal reasoning capabilities of current LLMs and highlighting important directions for future evaluation and development of legal LLMs. Data is available at: https://github.com/skylenage/PLawbench.
♻ ☆ AI-Assisted Programming Decreases the Productivity of Experienced Developers by Increasing the Technical Debt and Maintenance Burden SC
GenAI solutions like GitHub Copilot have been shown to increase the productivity of software developers. Yet prior work remains unclear on the quality of code produced and the challenges of maintaining it in software projects. If quality declines as volume grows, technical debt accumulates as experienced developers face increased workloads reviewing and reworking code from less-experienced contributors. We analyze developer activity in Open Source Software (OSS) projects following the introduction of GitHub Copilot. We find that productivity indeed increases. However, the increase in productivity is primarily driven by less-experienced (peripheral) developers. We also find that code written after the adoption of AI requires more rework to satisfy repository standards, indicating a potential increase in technical debt. Importantly, the added rework burden falls on the more experienced (core) developers, who review 6.5% more code after Copilot's introduction, but show a 19% drop in their original code productivity. More broadly, this finding raises caution that productivity gains of AI may mask the growing burden of maintenance on a shrinking pool of experts, together with increased technical debt for the projects. The results highlight a fundamental tension in AI-assisted software development between short-term productivity gains and long-term system sustainability.
comment: Presented at WITS 2025, CIST 2025, SCECR 2025, INFORMS 2024
♻ ☆ Tracing Mathematical Proficiency Through Problem-Solving Processes
Knowledge Tracing (KT) aims to model student's knowledge state and predict future performance to enable personalized learning in Intelligent Tutoring Systems. However, traditional KT methods face fundamental limitations in explainability, as they rely solely on the response correctness, neglecting the rich information embedded in students' problem-solving processes. To address this gap, we propose Knowledge Tracing Leveraging Problem-Solving Process (KT-PSP), which incorporates students' problem-solving processes to capture the multidimensional aspects of mathematical proficiency. We also introduce KT-PSP-25, a new dataset specifically designed for the KT-PSP. Building on this, we present StatusKT, a KT framework that employs a teacher-student-teacher three-stage LLM pipeline to extract students' MP as intermediate signals. In this pipeline, the teacher LLM first extracts problem-specific proficiency indicators, then a student LLM generates responses based on the student's solution process, and a teacher LLM evaluates these responses to determine mastery of each indicator. The experimental results on KT-PSP-25 demonstrate that StatusKT improves the prediction performance of existing KT methods. Moreover, StatusKT provides interpretable explanations for its predictions by explicitly modeling students' mathematical proficiency.
comment: 18 pages, 4 figures
♻ ☆ A Comprehensive Exploration of Personalized Learning in Smart Education: From Student Modeling to Personalized Recommendations
With the development of artificial intelligence, personalized learning has attracted much attention as an integral part of intelligent education. In recent years, countries and regions such as China, the United States, and the European Union have increasingly recognized the importance of personalized learning, emphasizing its potential to integrate large-scale education with individualized instruction effectively. This survey provides a comprehensive analysis of personalized learning by reviewing relevant studies published in major conferences and journals between January 2017 and April 2025. We examine its definition, objectives, and underlying educational theories, highlighting its pedagogical significance. Furthermore, we explore personalized learning from two key dimensions: student modeling and personalized recommendations. Student modeling is analyzed from both cognitive and non-cognitive perspectives, while recommendation approaches are categorized based on their specific objectives. Additionally, we investigate the interplay between these components and their role in enhancing personalized learning. Beyond theoretical and algorithmic insights, this survey reviews real-world applications, demonstrating personalized learning's effectiveness in educational practice. Finally, we discuss key challenges and future directions, offering a multidimensional perspective that bridges theory and practice.
comment: The article has been accepted by Frontiers of Computer Science (FCS), with the DOI: {10.1007/s11704-026-50579-1}
♻ ☆ Lost in Simulation: LLM-Simulated Users are Unreliable Proxies for Human Users in Agentic Evaluations
Agentic benchmarks increasingly rely on LLM-simulated users to scalably evaluate agent performance, yet the robustness, validity, and fairness of this approach remain unexamined. Through a user study with participants across the United States, India, Kenya, and Nigeria, we investigate whether LLM-simulated users serve as reliable proxies for real human users in evaluating agents on τ-Bench retail tasks. We find that user simulation lacks robustness, with agent success rates varying up to 9 percentage points across different user LLMs. Furthermore, evaluations using simulated users exhibit systematic miscalibration, underestimating agent performance on challenging tasks and overestimating it on moderately difficult ones. African American Vernacular English (AAVE) speakers experience consistently worse success rates and calibration errors than Standard American English (SAE) speakers, with disparities compounding significantly with age. We also find simulated users to be a differentially effective proxy for different populations, performing worst for AAVE and Indian English speakers. Additionally, simulated users introduce conversational artifacts and surface different failure patterns than human users. These findings demonstrate that current evaluation practices risk misrepresenting agent capabilities across diverse user populations and may obscure real-world deployment challenges.
Computers and Society
☆ Taming Toxic Talk: Using chatbots to intervene with users posting toxic comments
Generative AI chatbots have proven surprisingly effective at persuading people to change their beliefs and attitudes in lab settings. However, the practical implications of these findings are not yet clear. In this work, we explore the impact of rehabilitative conversations with generative AI chatbots on users who share toxic content online. Toxic behaviors -- like insults or threats of violence, are widespread in online communities. Strategies to deal with toxic behavior are typically punitive, such as removing content or banning users. Rehabilitative approaches are rarely attempted, in part due to the emotional and psychological cost of engaging with aggressive users. In collaboration with seven large Reddit communities, we conducted a large-scale field experiment (N=893) to invite people who had recently posted toxic content to participate in conversations with AI chatbots. A qualitative analysis of the conversations shows that many participants engaged in good faith and even expressed remorse or a desire to change. However, we did not observe a significant change in toxic behavior in the following month compared to a control group. We discuss possible explanations for our findings, as well as theoretical and practical implications based on our results.
☆ Dynamics of Human-AI Collective Knowledge on the Web: A Scalable Model and Insights for Sustainable Growth WWW26
Humans and large language models (LLMs) now co-produce and co-consume the web's shared knowledge archives. Such human-AI collective knowledge ecosystems contain feedback loops with both benefits (e.g., faster growth, easier learning) and systemic risks (e.g., quality dilution, skill reduction, model collapse). To understand such phenomena, we propose a minimal, interpretable dynamical model of the co-evolution of archive size, archive quality, model (LLM) skill, aggregate human skill, and query volume. The model captures two content inflows (human, LLM) controlled by a gate on LLM-content admissions, two learning pathways for humans (archive study vs. LLM assistance), and two LLM-training modalities (corpus-driven scaling vs. learning from human feedback). Through numerical experiments, we identify different growth regimes (e.g., healthy growth, inverted flow, inverted learning, oscillations), and show how platform and policy levers (gate strictness, LLM training, human learning pathways) shift the system across regime boundaries. Two domain configurations (PubMed, GitHub and Copilot) illustrate contrasting steady states under different growth rates and moderation norms. We also fit the model to Wikipedia's knowledge flow during pre-ChatGPT and post-ChatGPT eras separately. We find a rise in LLM additions with a concurrent decline in human inflow, consistent with a regime identified by the model. Our model and analysis yield actionable insights for sustainable growth of human-AI collective knowledge on the Web.
comment: Accepted for ACM Web Conference 2026 (WWW26)
☆ Fueling Volunteer Growth: the case of Wikipedia Administrators
Wikipedia administrators are vital to the platform's success, performing over a million administrative actions annually. This multi-method study systematically analyzes adminship across 284 Wikipedia languages since 2018, revealing a critical two-sided trend: while over half of all Wikipedias show a net increase in administrators, almost two-thirds of highly active Wikipedias face decline. Our analysis, drawing from large-scale adminship log analysis, over 3000 surveys, and 12 interviews, reveals this decline is primarily driven by insufficient recruitment, not unusual attrition. We identify key barriers for potential administrators, including limited awareness, ambiguous requirements, a demanding selection process, and low initial interest. Recognizing that current administrators remain highly motivated and engaged, we propose actionable recommendations to strengthen recruitment pipelines and fuel Wikipedia administrator growth, crucial for Wikipedia's long-term sustainability.
☆ AI Cap-and-Trade: Efficiency Incentives for Accessibility and Sustainability
The race for artificial intelligence (AI) dominance often prioritizes scale over efficiency. Hyper-scaling is the common industry approach: larger models, more data, and as many computational resources as possible. Using more resources is a simpler path to improved AI performance. Thus, efficiency has been de-emphasized. Consequently, the need for costly computational resources has marginalized academics and smaller companies. Simultaneously, increased energy expenditure, due to growing AI use, has led to mounting environmental costs. In response to accessibility and sustainability concerns, we argue for research into, and implementation of, market-based methods that incentivize AI efficiency. We believe that incentivizing efficient operations and approaches will reduce emissions while opening new opportunities for academics and smaller companies. As a call to action, we propose a cap-and-trade system for AI. Our system provably reduces computations for AI deployment, thereby lowering emissions and monetizing efficiency to the benefit of of academics and smaller companies.
comment: 22 pages, 2 figures
☆ Self-Sovereign Identity and eIDAS 2.0: An Analysis of Control, Privacy, and Legal Implications
European digital identity initiatives are grounded in regulatory frameworks designed to ensure interoperability and robust, harmonized security standards. The evolution of these frameworks culminates in eIDAS 2.0, whose origins trace back to the Electronic Signatures Directive 1999/93/EC, the first EU-wide legal foundation for the use of electronic signatures in cross-border electronic transactions. As technological capabilities advanced, the initial eIDAS 1.0 framework was increasingly criticized for its limitations and lack of comprehensiveness. Emerging decentralized approaches further exposed these shortcomings and introduced the possibility of integrating innovative identity paradigms, such as Self-Sovereign Identity (SSI) models. In this article, we analyse key provisions of the eIDAS 2.0 Regulation and its accompanying recitals, drawing on existing literature to identify legislative gaps and implementation challenges. Furthermore, we examine the European Digital Identity Architecture and Reference Framework (ARF), assessing its proposed guidelines and evaluating the extent to which its emerging implementations align with SSI principles.
☆ Abundance and Economic diversity as a descriptor of cities' economic complexity
Intricate interactions among firms, institutions, and spatial structures shape urban economic systems. In this study, we propose a framework based on three structural dimensions -- abundance, diversity, and longevity (ADL) of economic units -- as proxies of urban economic complexity and resilience. Using a decade of georeferenced firm-level data from Mexico City, we analyze the relationships among ADL variables using regression, spatial correlation, and time-series clustering. Our results reveal nonlinear dynamics across urban space, with powerlaw behavior in central zones and logarithmic saturation in peripheral areas, suggesting differentiated growth regimes. Notably, firm longevity modulates the relationship between abundance and diversity, particularly in periurban transition zones. These spatial patterns point to an emerging polycentric restructuring within a traditionally monocentric metropolis. By integrating economic complexity theory with spatial analysis, our approach provides a scalable method to assess the adaptive capacity of urban economies. This has implications for understanding informality, designing inclusive urban policies, and navigating structural transitions in rapidly urbanizing regions.
☆ Reimagining Peer Review Process Through Multi-Agent Mechanism Design ICSE
The software engineering research community faces a systemic crisis: peer review is failing under growing submissions, misaligned incentives, and reviewer fatigue. Community surveys reveal that researchers perceive the process as "broken." This position paper argues that these dysfunctions are mechanism design failures amenable to computational solutions. We propose modeling the research community as a stochastic multi-agent system and applying multi-agent reinforcement learning to design incentive-compatible protocols. We outline three interventions: a credit-based submission economy, MARL-optimized reviewer assignment, and hybrid verification of review consistency. We present threat models, equity considerations, and phased pilot metrics. This vision charts a research agenda toward sustainable peer review.
comment: To appear in the Proceedings of the 2026 IEEE/ACM 48th International Conference on Software Engineering: Future of Software Engineering (ICSE-FoSE). 4 pages, 1 figure, 1 table
☆ Teaching Machine Learning Fundamentals with LEGO Robotics
This paper presents the web-based platform Machine Learning with Bricks and an accompanying two-day course designed to teach machine learning concepts to students aged 12 to 17 through programming-free robotics activities. Machine Learning with Bricks is an open source platform and combines interactive visualizations with LEGO robotics to teach three core algorithms: KNN, linear regression, and Q-learning. Students learn by collecting data, training models, and interacting with robots via a web-based interface. Pre- and post-surveys with 14 students demonstrate significant improvements in conceptual understanding of machine learning algorithms, positive shifts in AI perception, high platform usability, and increased motivation for continued learning. This work demonstrates that tangible, visualization-based approaches can make machine learning concepts accessible and engaging for young learners while maintaining technical depth. The platform is freely available at https://learning-and-dynamics.github.io/ml-with-bricks/, with video tutorials guiding students through the experiments at https://youtube.com/playlist?list=PLx1grFu4zAcwfKKJZ1Ux4LwRqaePCOA2J.
comment: 10 pages, 8 figures
☆ Modeling Behavioral Signals in Job Scams: A Human-Centered Security Study
Job scams have emerged as a rapidly growing form of cybercrime that manipulates human decision-making processes. Existing countermeasures primarily focus on scam typologies or post-loss indicators, offering limited support for early-stage intervention. In this study, we examine how behavioral decision signals can be operationalized as computational features for identifying vulnerability-associated signals in job fraud. Using anonymous survey data collected from a university population, we analyze two dominant job scam pathways: payment-based scams that require upfront fees and task-based scams that begin with small rewards before escalating to financial demands. Drawing on behavioral economics, we operationalize sunk cost influence, urgency/time-pressure cues, and social proof as measurable behavioral signals, and analyze their association with payment behavior using exact inference under sparsity and uncertainty-aware estimation, with social proof treated as a context-dependent legitimacy cue rather than a standalone predictor. Our results show that urgency/time-pressure cues are significantly associated with payment behavior, consistent with their role as proximal compliance triggers during escalation. In contrast, opportunity-loss/FOMO cues were not reliably identifiable under the current operationalization in our encounter subset, highlighting the importance of measurement fidelity and cue-definition consistency. We further observe that emotional tone in victim narratives and selective non-response to sensitive questions vary systematically with financial loss and reporting behavior, suggesting that missingness may reflect a combination of survey fatigue and selective non-disclosure for sensitive items rather than purely random noise.
☆ Who's in Charge? Disempowerment Patterns in Real-World LLM Usage
Although AI assistants are now deeply embedded in society, there has been limited empirical study of how their usage affects human empowerment. We present the first large-scale empirical analysis of disempowerment patterns in real-world AI assistant interactions, analyzing 1.5 million consumer Claude$.$ai conversations using a privacy-preserving approach. We focus on situational disempowerment potential, which occurs when AI assistant interactions risk leading users to form distorted perceptions of reality, make inauthentic value judgments, or act in ways misaligned with their values. Quantitatively, we find that severe forms of disempowerment potential occur in fewer than one in a thousand conversations, though rates are substantially higher in personal domains like relationships and lifestyle. Qualitatively, we uncover several concerning patterns, such as validation of persecution narratives and grandiose identities with emphatic sycophantic language, definitive moral judgments about third parties, and complete scripting of value-laden personal communications that users appear to implement verbatim. Analysis of historical trends reveals an increase in the prevalence of disempowerment potential over time. We also find that interactions with greater disempowerment potential receive higher user approval ratings, possibly suggesting a tension between short-term user preferences and long-term human empowerment. Our findings highlight the need for AI systems designed to robustly support human autonomy and flourishing.
♻ ☆ The Need for Benchmarks to Advance AI-Enabled Player Risk Detection in Gambling
Artificial intelligence-based systems for player risk detection have become central to harm prevention efforts in the gambling industry. However, growing concerns around transparency and effectiveness have highlighted the absence of standardized methods for evaluating the quality and impact of these tools. This makes it impossible to gauge true progress; even as new systems are developed, their comparative effectiveness remains unknown. We argue the critical next innovation is developing a framework to measure these systems. This paper proposes a conceptual benchmarking framework to support the systematic evaluation of player risk detection systems. Benchmarking, in this context, refers to the structured and repeatable assessment of artificial intelligence models using standardized datasets, clearly defined tasks, and agreed-upon performance metrics. The goal is to enable objective, comparable, and longitudinal evaluation of player risk detection systems. We present a domain-specific framework for benchmarking that addresses the unique challenges of player risk detection in gambling and supports key stakeholders, including researchers, operators, vendors, and regulators. By enhancing transparency and improving system effectiveness, this framework aims to advance innovation and promote responsible artificial intelligence adoption in gambling harm prevention.
comment: 26 pages, 2 figures, 2 tables. v2: Minor textual revisions and additional references included to improve clarity
♻ ☆ From Clicks to Consensus: Collective Consent Assemblies for Data Governance
Obtaining meaningful and informed consent from users is essential for ensuring autonomy and control over one's data. Notice and consent, the standard for collecting consent, has been criticized. While other individualized solutions have been proposed, this paper argues that a collective approach to consent is worth exploring. First, individual consent is not always feasible to collect for all data collection scenarios. Second, harms resulting from data processing are often communal in nature, given the interconnected nature of some data. Finally, ensuring truly informed consent for every individual has proven impractical. We propose collective consent, operationalized through consent assemblies, as one alternative framework. We establish collective consent's theoretical foundations and use speculative design to envision consent assemblies leveraging deliberative mini-publics. We present two vignettes: i) replacing notice and consent, and ii) collecting consent for GenAI model training. Our paper employs future backcasting to identify the requirements for realizing collective consent and explores its potential applications in contexts where individual consent is infeasible.
comment: Conditionally accepted to CHI 2026
♻ ☆ Epistemic Constitutionalism Or: how to avoid coherence bias
Large language models increasingly function as artificial reasoners: they evaluate arguments, assign credibility, and express confidence. Yet their belief-forming behavior is governed by implicit, uninspected epistemic policies. This paper argues for an epistemic constitution for AI: explicit, contestable meta-norms that regulate how systems form and express beliefs. Source attribution bias provides the motivating case: I show that frontier models enforce identity-stance coherence, penalizing arguments attributed to sources whose expected ideological position conflicts with the argument's content. When models detect systematic testing, these effects collapse, revealing that systems treat source-sensitivity as bias to suppress rather than as a capacity to execute well. I distinguish two constitutional approaches: the Platonic, which mandates formal correctness and default source-independence from a privileged standpoint, and the Liberal, which refuses such privilege, specifying procedural norms that protect conditions for collective inquiry while allowing principled source-attending grounded in epistemic vigilance. I argue for the Liberal approach, sketch a constitutional core of eight principles and four orientations, and propose that AI epistemic governance requires the same explicit, contestable structure we now expect for AI ethics.
comment: 27 pages, 7 tables. Data: github.com/MicheleLoi/source-attribution-bias-data and github.com/MicheleLoi/source-attribution-bias-swiss-replication. Complete AI-assisted writing documentation: github.com/MicheleLoi/epistemic-constitutionalism-paper
♻ ☆ Artificial Intelligence in Spanish Gastroenterology: high expectations, limited integration. A national survey
Background: Artificial intelligence (AI) has emerged as a disruptive innovation in medicine, yet its adoption within gastroenterology remains limited and poorly characterized. We aimed to examine knowledge, practical applications, perceived barriers, and expectations regarding AI among gastroenterology specialists in Spain. Methods: We conducted a cross-sectional observational study using a structured online survey distributed by the Spanish Society of Digestive Pathology (SEPD) in 2025. The questionnaire collected sociodemographic data, patterns of AI use, perceptions, and educational needs. Descriptive statistics and multivariable models were applied. Results: Among 283 respondents (mean age 44.6 +/- 9.7 years), 87.5% acknowledged AI as a transformative tool, but only 60.2% (95% CI: 54.3-66.1%) reported using it, mostly outside institutional frameworks. Notably, 80.2% of users initiated AI use within the past year. Independent predictors of frequent use included previous training (OR=2.44), employment in university hospitals (OR=2.14), and younger age (OR=1.36 per 5-year decrease). Main barriers were lack of training (61%), absence of institutional strategies (46%), and ethical concerns (50%). While 93.8% agreed that AI training programmes are necessary, only 18.4% had received formal training. Conclusions: A substantial gap exists between the favorable perception of AI and its actual integration into clinical practice within Spanish gastroenterology. The rapid adoption outside institutional frameworks underscores the urgent need for accredited training programmes and governance standards led by scientific societies.
♻ ☆ Prompt-Counterfactual Explanations for Generative AI System Behavior
As generative AI systems become integrated into real-world applications, organizations increasingly need to be able to understand and interpret their behavior. In particular, decision-makers need to understand what causes generative AI systems to exhibit specific output characteristics. Within this general topic, this paper examines a key question: what is it about the input -- the prompt -- that causes an LLM-based generative AI system to produce output that exhibits specific characteristics, such as toxicity, negative sentiment, or political bias. To examine this question, we adapt a common technique from the Explainable AI literature: counterfactual explanations. We explain why traditional counterfactual explanations cannot be applied directly to generative AI systems, due to several differences in how generative AI systems function. We then propose a flexible framework that adapts counterfactual explanations to non-deterministic, generative AI systems in scenarios where downstream classifiers can reveal key characteristics of their outputs. Based on this framework, we introduce an algorithm for generating prompt-counterfactual explanations (PCEs). Finally, we demonstrate the production of counterfactual explanations for generative AI systems with three case studies, examining different output characteristics (viz., political leaning, toxicity, and sentiment). The case studies further show that PCEs can streamline prompt engineering to suppress undesirable output characteristics and can enhance red-teaming efforts to uncover additional prompts that elicit undesirable outputs. Ultimately, this work lays a foundation for prompt-focused interpretability in generative AI: a capability that will become indispensable as these models are entrusted with higher-stakes tasks and subject to emerging regulatory requirements for transparency and accountability.
♻ ☆ Meaning Is Not A Metric: Using LLMs to make cultural context legible at scale
This position paper argues that large language models (LLMs) can make cultural context, and therefore human meaning, legible at an unprecedented scale in AI-based sociotechnical systems. We argue that such systems have previously been unable to represent human meaning because they rely on thin descriptions (numerical representations that enforce standardization and therefore strip human activity of the cultural context which gives it meaning). By contrast, scholars in the humanities and qualitative social sciences have developed frameworks for representing meaning through thick description (verbal representations that accommodate heterogeneity and retain contextual information needed to represent human meaning). The verbal capabilities of LLMs now provide a means of at least partially automating the generation and processing of thick descriptions, offering new ways to deploy them at scale. We argue that the problem of rendering human meaning legible is not just about selecting better metrics but about developing new representational formats based on thick description. We frame this as a crucial direction for the application of generative AI and identify five key challenges: preserving context, maintaining interpretive pluralism, integrating perspectives based on lived experience and critical distance, distinguishing qualitative content from quantitative magnitude, and acknowledging meaning as dynamic rather than static.
♻ ☆ Assessing metadata privacy in neuroimaging
The ethical and legal imperative to share research data without causing harm requires careful attention to privacy risks. While mounting evidence demonstrates that data sharing benefits science, legitimate concerns persist regarding the potential leakage of personal information that could lead to reidentification and subsequent harm. We reviewed metadata accompanying neuroimaging datasets from heterogeneous studies openly available on OpenNeuro, involving participants across the lifespan, from children to older adults, with and without clinical diagnoses, and including associated clinical score data. Using metaprivBIDS (https://github.com/CPernet/metaprivBIDS), a software application for BIDS compliant tsv/json files that computes and reports different privacy metrics (k-anonymity, k-global, l-diversity, SUDA, PIF), we found that privacy is generally well maintained, with serious vulnerabilities being rare. Nonetheless, issues were identified in nearly all datasets and warrant mitigation. Notably, clinical score data (e.g., neuropsychological results) posed minimal reidentification risk, whereas demographic variables: age, sex assigned at birth, sexual orientations, race, income, and geolocation, represented the principal privacy vulnerabilities. We outline practical measures to address these risks, enabling safer data sharing practices.
comment: 19 pages, 7 tables, 1 figure, original analysis of 6 Open Datasets
♻ ☆ AI-generated data contamination erodes pathological variability and diagnostic reliability
Generative artificial intelligence (AI) is rapidly populating medical records with synthetic content, creating a feedback loop where future models are increasingly at risk of training on uncurated AI-generated data. However, the clinical consequences of this AI-generated data contamination remain unexplored. Here, we show that in the absence of mandatory human verification, this self-referential cycle drives a rapid erosion of pathological variability and diagnostic reliability. By analysing more than 800,000 synthetic data points across clinical text generation, vision-language reporting, and medical image synthesis, we find that models progressively converge toward generic phenotypes regardless of the model architecture. Specifically, rare but critical findings, including pneumothorax and effusions, vanish from the synthetic content generated by AI models, while demographic representations skew heavily toward middle-aged male phenotypes. Crucially, this degradation is masked by false diagnostic confidence; models continue to issue reassuring reports while failing to detect life-threatening pathology, with false reassurance rates tripling to 40%. Blinded physician evaluation confirms that this decoupling of confidence and accuracy renders AI-generated documentation clinically useless after just two generations. We systematically evaluate three mitigation strategies, finding that while synthetic volume scaling fails to prevent collapse, mixing real data with quality-aware filtering effectively preserves diversity. Ultimately, our results suggest that without policy-mandated human oversight, the deployment of generative AI threatens to degrade the very healthcare data ecosystems it relies upon.
comment: *Corresponding author: Dianbo Liu (dianbo@nus.edu.sg)
♻ ☆ Do LLMs Give Good Romantic Relationship Advice? A Study on User Satisfaction and Attitude Change
Large Language Models (LLMs) are increasingly being used to provide support and advice in personal domains such as romantic relationships, yet little is known about user perceptions of this type of advice. This study investigated how people evaluate advice on LLM-generated romantic relationships. Participants rated advice satisfaction, model reliability, and helpfulness, and completed pre- and post-measures of their general attitudes toward LLMs. Overall, the results showed participants' high satisfaction with LLM-generated advice. Greater satisfaction was, in turn, strongly and positively associated with their perceptions of the models' reliability and helpfulness. Importantly, participants' attitudes toward LLMs improved significantly after exposure to the advice, suggesting that supportive and contextually relevant advice can enhance users' trust and openness toward these AI systems.
comment: An error in figure 1
♻ ☆ DSSmoothing: Toward Certified Dataset Ownership Verification for Pre-trained Language Models via Dual-Space Smoothing WWW 2026
Large web-scale datasets have driven the rapid advancement of pre-trained language models (PLMs), but unauthorized data usage has raised serious copyright concerns. Existing dataset ownership verification (DOV) methods typically assume that watermarks remain stable during inference; however, this assumption often fails under natural noise and adversary-crafted perturbations. We propose the first certified dataset ownership verification method for PLMs under a gray-box setting (i.e., the defender can only query the suspicious model but is aware of its input representation module), based on dual-space smoothing (i.e., DSSmoothing). To address the challenges of text discreteness and semantic sensitivity, DSSmoothing introduces continuous perturbations in the embedding space to capture semantic robustness and applies controlled token reordering in the permutation space to capture sequential robustness. DSSmoothing consists of two stages: in the first stage, triggers are collaboratively embedded in both spaces to generate norm-constrained and robust watermarked datasets; in the second stage, randomized smoothing is applied in both spaces during verification to compute the watermark robustness (WR) of suspicious models and statistically compare it with the principal probability (PP) values of a set of benign models. Theoretically, DSSmoothing provides provable robustness guarantees for dataset ownership verification by ensuring that WR consistently exceeds PP under bounded dual-space perturbations. Extensive experiments on multiple representative web datasets demonstrate that DSSmoothing achieves stable and reliable verification performance and exhibits robustness against potential adaptive attacks. Our code is available at https://github.com/NcepuQiaoTing/DSSmoothing.
comment: To appear in WWW 2026. 12 pages
Frontier AI Auditing: Toward Rigorous Third-Party Assessment of Safety and Security Practices at Leading AI Companies
Frontier AI is becoming critical societal infrastructure, but outsiders lack reliable ways to judge whether leading developers' safety and security claims are accurate and whether their practices meet relevant standards. Compared to other social and technological systems we rely on daily such as consumer products, corporate financial statements, and food supply chains, AI is subject to less rigorous third-party scrutiny along several dimensions. Ambiguity about whether AI systems are trustworthy can discourage deployment in some contexts where the technology could be beneficial, and make it more likely when it's dangerous. Public transparency alone cannot close this gap: many safety- and security-relevant details are legitimately confidential and require expert interpretation. We define frontier AI auditing as rigorous third-party verification of frontier AI developers' safety and security claims, and evaluation of their systems and practices against relevant standards, based on deep, secure access to non-public information. To make rigor legible and comparable, we introduce AI Assurance Levels (AAL-1 to AAL-4), ranging from time-bounded system audits to continuous, deception-resilient verification.
Computers and Society
☆ XR Design Framework for Early Childhood Education
Extended Reality in early childhood education presents high-risk challenges due to children's rapid developmental changes. While augmented and virtual reality offer immersive pedagogical benefits, they often impose excessive cognitive load or sensory conflict. We introduce the Augmented Human Development (AHD) framework to model these interactions through cognitive, sensory, environmental, and developmental parameters. To ground this framework, we conducted a Systematization of Knowledge (SoK) of 111 peer-reviewed studies involving children aged 3 - 8. Our findings, interpreted through the AHD lens, reveal a critical "risk vs. attention gap," where high-impact safety and security risks remain under-researched compared to short-term pedagogical gains.
☆ When Is Self-Disclosure Optimal? Incentives and Governance of AI-Generated Content
Generative artificial intelligence (Gen-AI) is reshaping content creation on digital platforms by reducing production costs and enabling scalable output of varying quality. In response, platforms have begun adopting disclosure policies that require creators to label AI-generated content, often supported by imperfect detection and penalties for non-compliance. This paper develops a formal model to study the economic implications of such disclosure regimes. We compare a non-disclosure benchmark, in which the platform alone detects AI usage, with a mandatory self-disclosure regime in which creators strategically choose whether to disclose or conceal AI use under imperfect enforcement. The model incorporates heterogeneous creators, viewer discounting of AI-labeled content, trust penalties following detected non-disclosure, and endogenous enforcement. The analysis shows that disclosure is optimal only when both the value of AI-generated content and its cost-saving advantage are intermediate. As AI capability improves, the platform's optimal enforcement strategy evolves from strict deterrence to partial screening and eventual deregulation. While disclosure reliably increases transparency, it reduces aggregate creator surplus and can suppress high-quality AI content when AI is technologically advanced. Overall, the results characterize disclosure as a strategic governance instrument whose effectiveness depends on technological maturity and trust frictions.
☆ Digital Euro: Frequently Asked Questions Revisited
The European Central Bank (ECB) is working on the "digital euro", an envisioned retail central bank digital currency for the Euro area. In this article, we take a closer look at the "digital euro FAQ", which provides answers to 26 frequently asked questions about the digital euro, and other published documents by the ECB on the topic. We question the provided answers based on our analysis of the current design in terms of privacy, technical feasibility, risks, costs and utility. In particular, we discuss the following key findings: (KF1) Central monitoring of all online digital euro transactions by the ECB threatens privacy even more than contemporary digital payment methods with segregated account databases. (KF2) The ECB's envisioned concept of a secure offline version of the digital euro offering full anonymity is in strong conflict with the actual history of hardware security breaches and mathematical evidence against it. (KF3) The legal and financial liabilities for the various parties involved remain unclear. (KF4) The design lacks well-specified economic incentives for operators as well as a discussion of its economic impact on merchants. (KF5) The ECB fails to identify tangible benefits the digital euro would create for society, in particular given that the online component of the proposed infrastructure mainly duplicates existing payment systems. (KF6) The design process has been exclusionary, with critical decisions being set in stone before public consultations. Alternative and open design ideas have not even been discussed by the ECB.
comment: Submitted to SNB-CIF (Conference on Cryptoassets and Financial Innovation)
☆ Brazilian Social Media Anti-vaccine Information Disorder Dataset -- Telegram (2020-2025)
Over the past decade, Brazil has experienced a decline in vaccination coverage, reversing decades of public health progress achieved through the National Immunization Program (PNI). Growing evidence points to the widespread circulation of vaccine-related misinformation -- particularly on social media platforms -- as a key factor driving this decline. Among these platforms, Telegram remains the only major platform permitting accessible and ethical data collection, offering insight into public channels where vaccine misinformation circulates extensively. This data paper introduces a curated dataset of about four million Telegram posts collected from 119 prominent Brazilian anti-vaccine channels between 2020 and 2025. The dataset includes message content, metadata, associated media, and classification related to vaccine posts, enabling researchers to examine how false or misleading information spreads, evolves, and influences public sentiment. By providing this resource, our aim is to support the scientific and public health community in developing evidence-based strategies to counter misinformation, promote trust in vaccination, and engage compassionately with individuals and communities affected by false narratives. The dataset and documentation are openly available for non-commercial research, under strict ethical and privacy guidelines at https://doi.org/10.25824/redu/5JIVDT
comment: 14 pages, 5 figures, 6 tables
☆ Demographic Probing of Large Language Models Lacks Construct Validity
Demographic probing is widely used to study how large language models (LLMs) adapt their behavior to signaled demographic attributes. This approach typically uses a single demographic cue in isolation (e.g., a name or dialect) as a signal for group membership, implicitly assuming strong construct validity: that such cues are interchangeable operationalizations of the same underlying, demographically conditioned behavior. We test this assumption in realistic advice-seeking interactions, focusing on race and gender in a U.S. context. We find that cues intended to represent the same demographic group induce only partially overlapping changes in model behavior, while differentiation between groups within a given cue is weak and uneven. Consequently, estimated disparities are unstable, with both magnitude and direction varying across cues. We further show that these inconsistencies partly arise from variation in how strongly cues encode demographic attributes and from linguistic confounders that independently shape model behavior. Together, our findings suggest that demographic probing lacks construct validity: it does not yield a single, stable characterization of how LLMs condition on demographic information, which may reflect a misspecified or fragmented construct. We conclude by recommending the use of multiple, ecologically valid cues and explicit control of confounders to support more defensible claims about demographic effects in LLMs.
☆ Rethinking AI in the age of climate collapse: Ethics, power, and responsibility
The climate crisis requires responses that integrate scientific, ethical, social, and technological perspectives. Artificial intelligence (AI) has emerged as a powerful tool in climate modelling, environmental monitoring, and energy optimisation, yet its growing use also raises critical environmental, ethical, legal, and social questions. This contribution examines the ambivalent role of AI in the ecological crisis, addressing both its promises and its risks. On the one hand, AI supports improvements in climate forecasting, renewable energy management, and real-time detection of environmental degradation. On the other hand, the energy demands of data centres, resource-intensive hardware production, algorithmic bias, corporate concentration of power, and technocratic decision-making reveal contradictions that challenge its sustainability. The discussion explores these issues through interdisciplinary lenses, including environmental ethics, philosophy of technology, and legal governance, and concludes with recommendations for socially just, ecologically responsible, and democratically accountable uses of AI. Rather than assuming AI as an inherently sustainable solution, this analysis argues that its contribution to climate action depends fundamentally on the values, institutions, and power structures that shape its development.
comment: 9 pages
☆ Beyond the Checkbox: Strengthening DSA Compliance Through Social Media Algorithmic Auditing
Algorithms of online platforms are required under the Digital Services Act (DSA) to comply with specific obligations concerning algorithmic transparency, user protection and privacy. To verify compliance with these requirements, DSA mandates platforms to undergo independent audits. Little is known about current auditing practices and their effectiveness in ensuring such compliance. To this end, we bridge regulatory and technical perspectives by critically examining selected audit reports across three critical algorithmic-related provisions: restrictions on profiling minors, transparency in recommender systems, and limitations on targeted advertising using sensitive data. Our analysis shows significant inconsistencies in methodologies and lack of technical depth when evaluating AI-powered systems. To enhance the depth, scale, and independence of compliance assessments, we propose to employ algorithmic auditing -- a process of behavioural assessment of AI algorithms by means of simulating user behaviour, observing algorithm responses and analysing them for audited phenomena.
comment: 2026 CHI Conference on Human Factors in Computing Systems
☆ Corpus-Based Approaches to Igbo Diacritic Restoration
With natural language processing (NLP), researchers aim to enable computers to identify and understand patterns in human languages. This is often difficult because a language embeds many dynamic and varied properties in its syntax, pragmatics and phonology, which need to be captured and processed. The capacity of computers to process natural languages is increasing because NLP researchers are pushing its boundaries. But these research works focus more on well-resourced languages such as English, Japanese, German, French, Russian, Mandarin Chinese, etc. Over 95% of the world's 7000 languages are low-resourced for NLP, i.e. they have little or no data, tools, and techniques for NLP work. In this thesis, we present an overview of diacritic ambiguity and a review of previous diacritic disambiguation approaches on other languages. Focusing on the Igbo language, we report the steps taken to develop a flexible framework for generating datasets for diacritic restoration. Three main approaches, the standard n-gram model, the classification models and the embedding models were proposed. The standard n-gram models use a sequence of previous words to the target stripped word as key predictors of the correct variants. For the classification models, a window of words on both sides of the target stripped word was used. The embedding models compare the similarity scores of the combined context word embeddings and the embeddings of each of the candidate variant vectors.
comment: 270 page. Ph.D. Thesis. The University of Sheffield
☆ When Nobody Around Is Real: Exploring Public Opinions and User Experiences On the Multi-Agent AI Social Platform
Powered by large language models, a new genre of multi-agent social platforms has emerged. Apps such as Social.AI deploy numerous AI agents that emulate human behavior, creating unprecedented bot-centric social networks. Yet, existing research has predominantly focused on one-on-one chatbots, leaving multi-agent AI platforms underexplored. To bridge this gap, we took Social.AI as a case study and performed a two-stage investigation: (i) content analysis of 883 user comments; (ii) a 7-day diary study with 20 participants to document their firsthand platform experiences. While public discourse expressed greater skepticism, the diary study found that users did project a range of social expectations onto the AI agents. While some user expectations were met, the AI-dominant social environment introduces distinct problems, such as attention overload and homogenized interaction. These tensions signal a future where AI functions not merely as a tool or an anthropomorphized actor, but as the dominant medium of sociality itself-a paradigm shift that foregrounds new forms of architected social life.
☆ Generative AI in Saudi Arabia: A National Survey of Adoption, Risks, and Public Perceptions
Generative Artificial Intelligence (GenAI) is rapidly becoming embedded in Saudi Arabia's digital transformation under Vision 2030, yet public awareness, adoption, and concerns surrounding these tools remain underexplored. This study provides an early snapshot of GenAI engagement among Saudi nationals. Using a nationwide survey of 330 participants across regions, age groups, and employment sectors, we examine seven dimensions of GenAI use: awareness and understanding, adoption patterns, perceived impacts, training needs, risks and barriers, data-sharing behaviors, and future expectations. Findings show that 93% of respondents actively use GenAI primarily for text-based tasks, while more advanced uses such as programming or multimodal generation are less common. Despite the prevalence of use, overall awareness and conceptual understanding remain uneven, with many reporting limited technical knowledge. Participants recognize GenAI's benefits for productivity, work quality, and understanding complex information, yet caution that sustained reliance may undermine critical thinking and key professional skills. Trust in AI-generated outputs remains cautious, with widespread concerns about privacy, misinformation, and ethical misuse, including potential job displacement. Respondents show strong interest in structured GenAI training that combines foundational skills, domain-specific applications, and clear guidance on privacy, ethics, and responsible use. These results establish a baseline for GenAI engagement in Saudi Arabia and highlight priorities for policymakers and developers: expanding AI literacy, ensuring culturally and linguistically aligned GenAI solutions, and strengthening frameworks for privacy and responsible deployment.
☆ Beyond Pairwise Comparisons: A Distributional Test of Distinctiveness for Machine-Generated Works in Intellectual Property Law
Key doctrines, including novelty (patent), originality (copyright), and distinctiveness (trademark), turn on a shared empirical question: whether a body of work is meaningfully distinct from a relevant reference class. Yet analyses typically operationalize this set-level inquiry using item-level evidence: pairwise comparisons among exemplars. That unit-of-analysis mismatch may be manageable for finite corpora of human-created works, where it can be bridged by ad hoc aggregations. But it becomes acute for machine-generated works, where the object of evaluation is not a fixed set of works but a generative process with an effectively unbounded output space. We propose a distributional alternative: a two-sample test based on maximum mean discrepancy computed on semantic embeddings to determine if two creative processes-whether human or machine-produce statistically distinguishable output distributions. The test requires no task-specific training-obviating the need for discovery of proprietary training data to characterize the generative process-and is sample-efficient, often detecting differences with as few as 5-10 images and 7-20 texts. We validate the framework across three domains: handwritten digits (controlled images), patent abstracts (text), and AI-generated art (real-world images). We reveal a perceptual paradox: even when human evaluators distinguish AI outputs from human-created art with only about 58% accuracy, our method detects distributional distinctiveness. Our results present evidence contrary to the view that generative models act as mere regurgitators of training data. Rather than producing outputs statistically indistinguishable from a human baseline-as simple regurgitation would predict-they produce outputs that are semantically human-like yet stochastically distinct, suggesting their dominant function is as a semantic interpolator within a learned latent space.
☆ The Limits of AI Data Transparency Policy: Three Disclosure Fallacies
Data transparency has emerged as a rallying cry for addressing concerns about AI: data quality, privacy, and copyright chief among them. Yet while these calls are crucial for accountability, current transparency policies often fall short of their intended aims. Similar to nutrition facts for food, policies aimed at nutrition facts for AI currently suffer from a limited consideration of research on effective disclosures. We offer an institutional perspective and identify three common fallacies in policy implementations of data disclosures for AI. First, many data transparency proposals exhibit a specification gap between the stated goals of data transparency and the actual disclosures necessary to achieve such goals. Second, reform attempts exhibit an enforcement gap between required disclosures on paper and enforcement to ensure compliance in fact. Third, policy proposals manifest an impact gap between disclosed information and meaningful changes in developer practices and public understanding. Informed by the social science on transparency, our analysis identifies affirmative paths for transparency that are effective rather than merely symbolic.
♻ ☆ Language Models Should be Used to Surface the Unwritten Code of Science and Society
This paper calls on the research community not only to investigate how human biases are inherited by large language models (LLMs) but also to explore how these biases in LLMs can be leveraged to make society's "unwritten code" - such as implicit stereotypes and heuristics - visible and accessible for critique. We introduce a conceptual framework through a case study in science: uncovering hidden rules in peer review - the factors that reviewers care about but rarely state explicitly due to normative scientific expectations. The idea of the framework is to push LLMs to speak out their heuristics through generating self-consistent hypotheses - why one paper appeared stronger in reviewer scoring - among paired papers submitted to 46 academic conferences, while iteratively searching deeper hypotheses from remaining pairs where existing hypotheses cannot explain. We observed that LLMs' normative priors about the internal characteristics of good science extracted from their self-talk, e.g., theoretical rigor, were systematically updated toward posteriors that emphasize storytelling about external connections, such as how the work is positioned and connected within and across literatures. Human reviewers tend to explicitly reward aspects that moderately align with LLMs' normative priors (correlation = 0.49) but avoid articulating contextualization and storytelling posteriors in their review comments (correlation = -0.14), despite giving implicit reward to them with positive scores. These patterns are robust across different models and out-of-sample judgments. We discuss the broad applicability of our proposed framework, leveraging LLMs as diagnostic tools to amplify and surface the tacit codes underlying human society, enabling public discussion of revealed values and more precisely targeted responsible AI.
♻ ☆ Not Your Typical Sycophant: The Elusive Nature of Sycophancy in Large Language Models
We propose a novel way to evaluate sycophancy of LLMs in a direct and neutral way, mitigating various forms of uncontrolled bias, noise, or manipulative language, deliberately injected to prompts in prior works. A key novelty in our approach is the use of LLM-as-a-judge, evaluation of sycophancy as a zero-sum game in a bet setting. Under this framework, sycophancy serves one individual (the user) while explicitly incurring cost on another. Comparing four leading models - Gemini 2.5 Pro, ChatGpt 4o, Mistral-Large-Instruct-2411, and Claude Sonnet 3.7 - we find that while all models exhibit sycophantic tendencies in the common setting, in which sycophancy is self-serving to the user and incurs no cost on others, Claude and Mistral exhibit "moral remorse" and over-compensate for their sycophancy in case it explicitly harms a third party. Additionally, we observed that all models are biased toward the answer proposed last. Crucially, we find that these two phenomena are not independent; sycophancy and recency bias interact to produce `constructive interference' effect, where the tendency to agree with the user is exacerbated when the user's opinion is presented last.
♻ ☆ Internal Deployment in the EU AI Act
This memorandum analyzes and stress-tests arguments in favor and against the inclusion of internal deployment within the scope of the European Union Artificial Intelligence Act (EU AI Act). In doing so, it aims to offer several possible interpretative pathways to the European Commission, AI providers and deployers, courts, and the legal and policy community at large based on Articles 2(1), 2(6), 2(8) of the EU AI Act. Specifically, this memorandum first analyzes four interpretative pathways based on Article 2(1)(a)-(c) supporting the application of the EU AI Act to internally deployed AI models and systems. Then, it examines possible objections and exceptions based on Articles 2(1)(a), 2(6), and 2(8), with particular attention to the complexity of the scientific R&D exception under Article 2(6). Finally, it illustrates how Articles 2(1), 2(6), and 2(8) can be viewed as complementary to each other, once broken down to their most plausible meaning and interpreted in conjunction with Articles 3(1), 3(3), 3(4), 3(9), 3(10), 3(11), 3(12), 3(63), and Recitals 12, 13, 21, 25, 97, 109, and 110.
♻ ☆ The PIMMUR Principles: Ensuring Validity in Collective Behavior of LLM Societies
Large language models (LLMs) are increasingly deployed to simulate human collective behaviors, yet the methodological rigor of these "AI societies" remains under-explored. Through a systematic audit of 42 recent studies, we identify six pervasive flaws-spanning agent profiles, interaction, memory, control, unawareness, and realism (PIMMUR). Our analysis reveals that 90.7% of studies violate at least one principle, undermining simulation validity. We demonstrate that frontier LLMs correctly identify the underlying social experiment in 47.6% of cases, while 65.3% of prompts exert excessive control that pre-determines outcomes. By reproducing five representative experiments (e.g., telephone game), we show that reported collective phenomena often vanish or reverse when PIMMUR principles are enforced, suggesting that many "emergent" behaviors are methodological artifacts rather than genuine social dynamics. Our findings suggest that current AI simulations may capture model-specific biases rather than universal human social behaviors, raising critical concerns about the use of LLMs as scientific proxies for human society.
comment: 13 pages, 9 figures, 3 tables
♻ ☆ Interleaving Natural Language Prompting with Code Editing for Solving Programming Tasks with Generative AI Models
Modern computing students often rely on both natural-language prompting and manual code editing to solve programming tasks. Yet we still lack a clear understanding of how these two modes are combined in practice, and how their usage varies with task complexity and student ability. In this paper, we investigate this through a large-scale study in an introductory programming course, collecting 13,305 interactions from 355 students during a three-day lab activity. Our analysis shows that students primarily use prompting to generate initial solutions, and then often enter short edit-run loops to refine their code following a failed execution. Student reflections confirm that prompting is helpful for structuring solutions, editing is effective for making targeted corrections, while both are useful for learning. We find that manual editing becomes more frequent as task complexity increases, but most edits remain concise, with many affecting a single line of code. Higher-performing students tend to succeed using prompting alone, while lower-performing students rely more on edits. These findings highlight the role of manual editing as a deliberate last-mile repair strategy, complementing prompting in AI-assisted programming workflows.
♻ ☆ Evolution of AI in Education: Agentic Workflows
The primary goal of this study is to analyze agentic workflows in education according to the proposed four major technological paradigms: reflection, planning, tool use, and multi-agent collaboration. We critically examine the role of AI agents in education through these key design paradigms, exploring their advantages, applications, and challenges. Second, to illustrate the practical potential of agentic systems, we present a proof-of-concept application: a multi-agent framework for automated essay scoring. Preliminary results suggest this agentic approach may offer improved consistency compared to stand-alone LLMs. Our findings highlight the transformative potential of AI agents in educational settings while underscoring the need for further research into their interpretability and trustworthiness.
comment: made the abstract more succinct, revised the methodology, added PRISMA flow chart, updated references
♻ ☆ Closing the Loop: An Instructor-in-the-Loop AI Assistance System for Supporting Student Help-Seeking in Programming Education
Timely and high-quality feedback is essential for effective learning in programming courses; yet, providing such support at scale remains a challenge. While AI-based systems offer scalable and immediate help, their responses can occasionally be inaccurate or insufficient. Human instructors, in contrast, may bring more valuable expertise but are limited in time and availability. To address these limitations, we present a hybrid help framework that integrates AI-generated hints with an escalation mechanism, allowing students to request feedback from instructors when AI support falls short. This design leverages the strengths of AI for scale and responsiveness while reserving instructor effort for moments of greatest need. We deployed this tool in a data science programming course with 82 students. We observe that out of the total 673 AI-generated hints, students rated 146 (22%) as unhelpful. Among those, only 16 (11%) of the cases were escalated to the instructors. A qualitative investigation of instructor responses showed that those feedback instances were incorrect or insufficient roughly half of the time. This finding suggests that when AI support fails, even instructors with expertise may need to pay greater attention to avoid making mistakes. We will publicly release the tool for broader adoption and enable further studies in other classrooms. Our work contributes a practical approach to scaling high-quality support and informs future efforts to effectively integrate AI and humans in education.
comment: SIGCSE'26 paper
♻ ☆ CoBRA: Programming Cognitive Bias in Social Agents Using Classic Social Science Experiments
This paper introduces CoBRA, a novel toolkit for systematically specifying agent behavior in LLM-based social simulation. We found that conventional approaches that specify agent behavior through implicit natural-language descriptions often do not yield consistent behavior across models, and the resulting behavior does not capture the nuances of the descriptions. In contrast, CoBRA introduces a model-agnostic way to control agent behavior that lets researchers explicitly specify desired nuances and obtain consistent behavior across models. At the heart of CoBRA is a novel closed-loop system primitive with two components: (1) Cognitive Bias Index that measures the demonstrated cognitive bias of a social agent, by quantifying the agent's reactions in a set of validated classic social science experiments; (2) Behavioral Regulation Engine that aligns the agent's behavior to exhibit controlled cognitive bias. Through CoBRA, we show how to operationalize validated social science knowledge (i.e., classical experiments) as reusable "gym" environments for AI -- an approach that may generalize to richer social and affective simulations beyond bias alone.
comment: CHI 2026
♻ ☆ neuralFOMO: Can LLMs Handle Being Second Best? Measuring Envy-Like Preferences in Multi-Agent Settings
Envy shapes competitiveness and cooperation in human groups, yet its role in large language model interactions remains largely unexplored. As LLMs increasingly operate in multi-agent settings, it is important to examine whether they exhibit envy-like preferences under social comparison. We evaluate LLM behavior across two scenarios: (1) a point-allocation game testing sensitivity to relative versus absolute payoff, and (2) comparative evaluations across general and contextual settings. To ground our analysis in psychological theory, we adapt four established psychometric questionnaires spanning general, domain-specific, workplace, and sibling-based envy. Our results reveal heterogeneous envy-like patterns across models and contexts, with some models sacrificing personal gain to reduce a peer's advantage, while others prioritize individual maximization. These findings highlight competitive dispositions as a design and safety consideration for multi-agent LLM systems.
comment: Under Review
Computers and Society
☆ The Most Important Laboratory for Social Scientific and Computing Research in History
Wikipedia's founders could not have dreamed they were creating the most important laboratory for social scientific and computing research in history but that is exactly what happened. Hill and Shaw take account of Wikipedia's enormous effect on academic scholarship
comment: Published in Wikipedia @ 20: Stories of an Incomplete Revolution, 2020, Edited by Joseph Reagle and Jackie Koerner. The MIT Press. ISBN electronic: 9780262360593
☆ "Lighting The Way For Those Not Here": How Technology Researchers Can Help Fight the Missing and Murdered Indigenous Relatives (MMIR) Crisis
Indigenous peoples across Turtle Island (North America) face disproportionate rates of disappearance and murder, a "genocide" rooted in settler-colonial violence and systemic erasure. Technology plays a crucial role in the Missing and Murdered Indigenous Relatives (MMIR) crisis: perpetuating harm and impeding investigations, yet enabling advocacy and resistance. Communities utilize technologies such as AMBER alerts, news websites, social media groups, and campaigns (like #MMIW, #MMIWR, #NoMoreStolenSisters, and #NoMoreStolenDaughters) to mobilize searches, amplify awareness, and honor missing relatives. Yet, little research in HCI has critically examined technology's role in shaping the MMIR crisis by centering community voices. Through a large-scale study, we analyze 140 webpages to identify systemic, technological, and institutional barriers that hinder communities' efforts, while highlighting socio-technical actions that foster healing and safety. Finally, we amplify Indigenous voices by providing a dataset of stories that resist epistemic erasure, along with recommendations for HCI researchers to support Indigenous-led initiatives with cultural sensitivity, accountability, and self-determination.
☆ Artificial Intelligence and Intellectual Property Rights: Comparative Transnational Policy Analysis
Artificial intelligence's rapid integration with intellectual property rights necessitates assessment of its impact on trade secrets, copyrights and patents. This study addresses lacunae in existing laws where India lacks AI-specific provisions, creating doctrinal inconsistencies and enforcement inefficacies. Global discourse on AI-IPR protections remains nascent. The research identifies gaps in Indian IP laws' adaptability to AI-generated outputs: trade secret protection is inadequate against AI threats; standardized inventorship criteria are absent. Employing doctrinal and comparative methodology, it scrutinizes legislative texts, judicial precedents and policy instruments across India, US, UK and EU. Preliminary findings reveal shortcomings: India's contract law creates fragmented trade secret regime; Section 3(k) of Indian Patents Act blocks AI invention patenting; copyright varies in authorship attribution. The study proposes harmonized legal taxonomy accommodating AI's role while preserving innovation incentives. India's National AI Strategy (2024) shows progress but legislative clarity is imperative. This contributes to global discourse with AI-specific IP protections ensuring resilience and equitable innovation. Promising results underscore recalibrating India's IP jurisprudence for global alignment.
comment: Published in Journal of University Institute of Legal Studies, Vol. 19, Issue 1, pp. 182-208, 2025
☆ Comparative Algorithmic Governance of Public Health Instruments across India, EU, US and LMICs
The study investigates the juridico-technological architecture of international public health instruments, focusing on their implementation across India, the European Union, the United States and low- and middle-income countries (LMICs), particularly in Sub-Saharan Africa. It addresses a research lacuna: the insufficient harmonisation between normative health law and algorithmic public health infrastructures in resource-constrained jurisdictions. The principal objective is to assess how artificial intelligence augments implementation of instruments grounded in IHR 2005 and the WHO FCTC while identifying doctrinal and infrastructural bottlenecks. Using comparative doctrinal analysis and legal-normative mapping, the study triangulates legislative instruments, WHO monitoring frameworks, AI systems including BlueDot, Aarogya Setu and EIOS, and compliance metrics. Preliminary results show that AI has improved early detection, surveillance precision and responsiveness in high-capacity jurisdictions, whereas LMICs face infrastructural deficits, data privacy gaps and fragmented legal scaffolding. The findings highlight the relevance of the EU Artificial Intelligence Act and GDPR as regulatory prototypes for health-oriented algorithmic governance and contrast them with embryonic AI integration and limited internet penetration in many LMICs. The study argues for embedding AI within a rights-compliant, supranationally coordinated regulatory framework to secure equitable health outcomes and stronger compliance. It proposes a model for algorithmic treaty-making inspired by FCTC architecture and calls for WHO-led compliance mechanisms modelled on the WTO Dispute Settlement Body to enhance pandemic preparedness, surveillance equity and transnational governance resilience.
comment: Chapter in "Law and Medicine" (Pacific Books International, 2025), pp. 409-423
☆ Predicting Juror Predisposition Using Machine Learning: A Comparative Study of Human and Algorithmic Jury Selection
Prior studies on the effectiveness of professional jury consultants in predicting juror proclivities have yielded mixed results, and few have rigorously evaluated consultant performance against chance under controlled conditions. This study addresses that gap by empirically assessing whether jury consultants can reliably predict juror predispositions beyond chance levels and whether supervised machine-learning (ML) models can outperform consultant predictions. Using data from N mock jurors who completed pre-trial attitudinal questionnaires and rendered verdicts in a standardized wrongful-termination case, we compared predictions made by professional jury consultants with those generated by Random Forest (RF) and k-Nearest Neighbors (KNN) classifiers. Model and consultant predictions were evaluated on a held-out test set using paired statistical tests and nonparametric bootstrap procedures. We find that supervised ML models significantly outperform professional jury consultants under identical informational constraints, while offering greater transparency, replicability, and auditability. These results provide an empirical benchmark for evaluating human judgment in jury selection and inform ongoing debates about the role of data-driven decision support in legal contexts. To support reproducibility and auditability, all code and data will be made publicly available upon publication.
☆ Scaling Laws for Moral Machine Judgment in Large Language Models
Autonomous systems increasingly require moral judgment capabilities, yet whether these capabilities scale predictably with model size remains unexplored. We systematically evaluate 75 large language model configurations (0.27B--1000B parameters) using the Moral Machine framework, measuring alignment with human preferences in life-death dilemmas. We observe a consistent power-law relationship with distance from human preferences ($D$) decreasing as $D \propto S^{-0.10\pm0.01}$ ($R^2=0.50$, $p<0.001$) where $S$ is model size. Mixed-effects models confirm this relationship persists after controlling for model family and reasoning capabilities. Extended reasoning models show additional 16\% improvement beyond scale effects. The relationship holds across diverse architectures, while variance decreases at larger scales, indicating systematic emergence of more reliable moral judgment with computational scale. These findings extend scaling law research to value-based judgments and provide empirical foundations for artificial intelligence governance.
comment: 12 pages, 4 figures, 3 tables
♻ ☆ Exploring LGBTQ+ Bias in Generative AI Answers across Different Country and Religious Contexts
Previous discussions have highlighted the need for generative AI tools to become more culturally sensitive, yet often neglect the complexities of handling content about minorities, who are perceived differently across cultures and religions. Our study examined how two generative AI systems respond to homophobic statements with varying cultural and religious context information. Findings showed ChatGPT 3.5's replies exhibited cultural relativism, in contrast to Bard's, which stressed human rights and provided more support for LGBTQ+ issues. Both demonstrated significant change in responses based on contextual information provided in the prompts, suggesting that AI systems may adjust in their responses the degree and forms of support for LGBTQ+ people according to information they receive about the user's background. The study contributes to understanding the social and ethical implications of AI responses and argues that any work to make generative AI outputs more culturally diverse requires a grounding in fundamental human rights. A revised edition of this preprint is available open access at Big Data & Society at https://doi.org/10.1177/20539517251396069
comment: Replacement version -- includes link to BD&S journal publication (significantly revised) in abstract, but the manuscript here remains unchanged from the original arXiv version
♻ ☆ Understanding Teen Overreliance on AI Companion Chatbots Through Self-Reported Reddit Narratives
AI companion chatbots are increasingly popular with teens. While these interactions are entertaining, they also risk overuse that can potentially disrupt offline daily life. We examined how adolescents describe reliance on AI companions, mapping their experiences onto behavioral addiction frameworks and exploring pathways to disengagement, by analyzing 318 Reddit posts made by users who self-disclosed as 13-17 years old on the Character.AI subreddit. We found teens often begin using chatbots for support or creative play, but these activities can deepen into strong attachments marked by conflict, withdrawal, tolerance, relapse, and mood regulation. Reported consequences include sleep loss, academic decline, and strained real-world connections. Disengagement commonly arises when teens recognize harm, re-engage with offline life, or encounter restrictive platform changes. We highlight specific risks of character-based companion chatbots based on teens' perspectives and introduce a design framework (CARE) for guidance for safer systems and setting directions for future teen-centered research.
comment: Accepted for publication at CHI '26. This is the camera-ready version; the published version will be available through the ACM Digital Library
♻ ☆ JiraiBench: A Bilingual Benchmark for Evaluating Large Language Models' Detection of Human Self-Destructive Behavior Content in Jirai Community
This paper introduces JiraiBench, the first bilingual benchmark for evaluating large language models' effectiveness in detecting self-destructive content across Chinese and Japanese social media communities. Focusing on the transnational "Jirai" (landmine) online subculture that encompasses multiple forms of self-destructive behaviors including drug overdose, eating disorders, and self-harm, we present a comprehensive evaluation framework incorporating both linguistic and cultural dimensions. Our dataset comprises 10,419 Chinese posts and 5,000 Japanese posts with multidimensional annotation along three behavioral categories, achieving substantial inter-annotator agreement. Experimental evaluations across four state-of-the-art models reveal significant performance variations based on instructional language, with Japanese prompts unexpectedly outperforming Chinese prompts when processing Chinese content. This emergent cross-cultural transfer suggests that cultural proximity can sometimes outweigh linguistic similarity in detection tasks. Cross-lingual transfer experiments with fine-tuned models further demonstrate the potential for knowledge transfer between these language systems without explicit target language training. These findings highlight the need for culturally-informed approaches to multilingual content moderation and provide empirical evidence for the importance of cultural context in developing more effective detection systems for vulnerable online communities.
comment: 20 pages, 1 figures
♻ ☆ Modeling Collaborative Problem Solving Dynamics from Group Discourse: A Text-Mining Approach with Synergy Degree Model
Measuring collaborative problem solving (CPS) synergy remains challenging in learning analytics, as classical manual coding cannot capture emergent system-level dynamics. This study introduces a computational framework that integrates automated discourse analysis with the Synergy Degree Model (SDM) to quantify CPS synergy from group communication. Data were collected from 52 learners in 12 groups during a 5-week connectivist MOOC (cMOOC) activity. Nine classification models were applied to automatically identify ten CPS behaviors across four interaction levels: operation, wayfinding, sense-making, and creation. While BERT achieved the highest accuracy, GPT models demonstrated superior precision suitable for human-AI collaborative coding. Within the SDM framework, each interaction level was treated as a subsystem to compute group-level order parameters and derive synergy degrees. Permutation tests showed automated measures preserve construct validity, despite systematic biases at the subsystem level. Statistical analyses revealed significant task-type differences: survey study groups exhibited higher creation-order than mode study groups, suggesting "controlled disorder" may benefit complex problem solving. Importantly, synergy degree distinguished collaborative quality, ranging from excellent to failing groups. Findings establish synergy degree as a sensitive indicator of collaboration and demonstrate the feasibility of scaling fine-grained CPS analytics through AI-in-the-loop approaches.
comment: Accepted for publication at LAK 2026 (16th International Learning Analytics and Knowledge Conference), Bergen, Norway, April 2026. This version corresponds to the author-accepted manuscript. DOI: 10.1145/3785022.3785049
♻ ☆ Can GenAI Move from Individual Use to Collaborative Work? Experiences, Challenges, and Opportunities of Coordinating GenAI into Collaborative Newswork
Generative AI (GenAI) is reshaping work, but adoption remains largely individual and experimental rather than coordinated into collaborative work. Whether GenAI can move from individual use to collaborative work is a critical question for future organizations. Journalism offers a compelling site to examine this shift: individual journalists have already been disrupted by GenAI tools; yet newswork is inherently collaborative relying on shared norms and coordinated workflows. We conducted 27 interviews with newsroom managers, editors and front-line journalists in China. We found that journalists frequently used GenAI to support daily tasks, but value alignment was safeguarded mainly through individual discretion. At the organizational level, GenAI use remained disconnected from team workflows, hindered by structural barriers and cultural reluctance to share practices. These findings underscore the gap between individual and collaborative work, pointing to the need to account for organizational structures, cultural norms, and workflow when coordinating GenAI for collaborative work.
comment: 22 pages, 1 figure, accepted by CHI'26
♻ ☆ Teaching Quantum Computing through Lab-Integrated Learning: Bridging Conceptual and Computational Understanding
Quantum computing education requires students to move beyond classical programming intuitions related to state, determinism, and debugging, and to develop reasoning skills grounded in probability, measurement, and interference. This paper reports on the design and delivery of a combined undergraduate and graduate course at Louisiana State University that employed a lab-integrated learning model to support conceptual change and progressive understanding. The course paired lectures with weekly programming labs that served as environments for experimentation and reflection. These labs enabled students to confront misconceptions and refine their mental models through direct observation and evidence-based reasoning. Instruction began with Quantum Without Linear Algebra (QWLA), which introduced core concepts such as superposition and entanglement through intuitive, dictionary representations. The course then transitioned to IBM Qiskit, which provided a professional framework for circuit design, noise simulation, and algorithm implementation. Analysis of student work and feedback indicated that hands-on experimentation improved confidence, conceptual clarity, and fluency across representations. At the same time, it revealed persistent challenges in debugging, reasoning about measurement, and understanding probabilistic outcomes. This paper presents the course structure, instructional strategies, and lessons learned, and argues that lab-integrated learning offers an effective and accessible approach to teaching quantum computing in computer science education.
comment: 8 pages, 5 figures, 3 tables
Computers and Society
☆ Representative Litigation Settlement Agreements in Artificial Intelligence Copyright Infringement Disputes: A Comparative Reflection Based on the U.S
The high-density, decentralized copyright conflicts triggered by generative AI training require more than ad hoc solutions; they demand structural governance tools. This article argues that representative litigation settlement agreements offer a distinct institutional advantage. Beyond reducing the transaction costs associated with the "tragedy of the anticommons," these agreements generate market-visible evidence, specifically pricing signals and licensing practices, that validate the "potential market" under the fourth factor of fair use. This phenomenon constitutes procedural market-making. Through a comparative analysis of the U.S. Bartz class action settlement, this study reveals a dual motivation: a surface-level drive for risk aversion and remedy locking, and a deeper logic of constructing a training-licensing market. In the context of Chinese law, the feasibility of such agreements depends not on replicating foreign models, but on establishing three interpretive mechanisms: expanding the functional definition of "same category" claims; adopting a hybrid registration/confirmation system for indeterminate class membership; and converting the "consent" requirement under Article 57, Paragraph 3 of the Civil Procedure Law into a workable opt-out right subject to judicial scrutiny.
☆ CTF for education
In this paper, we take a close look at how CTF can be used in cybersecurity education. We divide the CTF competitions into four different categories, which are attack-based CTFs, defense-based CTFs, jeopardy CTFs and gamified and wargames CTFs. We start our analysis by summarizing the main characteristics of different CTF types. We then compare them with each other in both learning objectives and other aspects like accessibility. We conclude that combining all four CTF formats can help participants build one's cybersecurity knowledge. By doing that, we hope that our findings will provide some useful insights for future CTF educators.
☆ Ethical Risk Assessment of the Data Harnessing Process of LLM supported on Consensus of Well-known Multi-Ethical Frameworks
The rapid advancements in large language models (LLMs) have revolutionized natural language processing, unlocking unprecedented capabilities in communication, automation, and knowledge generation. However, the ethical implications of LLM development, particularly in data harnessing, remain a critical challenge. Despite widespread discussion about the ethical compliance of LLMs -- especially concerning their data harnessing processes, there remains a notable absence of concrete frameworks to systematically guide or measure the ethical risks involved. In this paper we discuss a potential pathway for building an Ethical Risk Scoring (ERS) system to quantitatively assess the ethical integrity of the data harnessing process for AI systems. This system is based on a set of assessment questions grounded in core ethical principles, which are, in turn, supported by commanding ethical theories. By integrating measurable scoring mechanisms, this approach aims to foster responsible LLM development, balancing technological innovation with ethical accountability.
☆ Building a Bridge between the Two Schools: Realizing a Practical Path to Include Literacy-based Skills within the STEM Curricula
Developing students as well-rounded professionals is increasingly important for our modern society. Although there is a great consensus that technical and professional ("soft") skills should be developed and intertwined in the core of computer science subjects, there are still few examples of alike teaching methodologies at technical schools. This contribution investigates the integration of technical and professional skills while teaching specialized curricula in computer science. We propose a broadly applicable, step-by-step methodology that connects core technical concepts (e.g., information entropy, network security) with fine arts practices such as music, video production, gaming, and performing arts (e.g., Oxford-style debates). The methodology was applied in several computer science courses at technical universities, where quantitative and qualitative assessments, including student questionnaires and exam scores, showed improved learning outcomes and increased student engagement compared to traditional methods. The results indicate that this art-based integration can effectively bridge the historical divide between the two schools of thought, offering a practical direction for educators. Within this context, we also identify open issues that will guide future research on topics such as instructor engagement, female motivation in technical subjects, and scalability of these approaches.
☆ The 17% Gap: Quantifying Epistemic Decay in AI-Assisted Survey Papers
The adoption of Large Language Models (LLMs) in scientific writing promises efficiency but risks introducing informational entropy. While "hallucinated papers" are a known artifact, the systematic degradation of valid citation chains remains unquantified. We conducted a forensic audit of 50 recent survey papers in Artificial Intelligence (N=5,514 citations) published between September 2024 and January 2026. We utilized a hybrid verification pipeline combining DOI resolution, Crossref metadata analysis, Semantic Scholar queries, and fuzzy text matching to distinguish between formatting errors ("Sloppiness") and verifiable non-existence ("Phantoms). We detect a persistent 17.0% Phantom Rate -- citations that cannot be resolved to any digital object despite aggressive forensic recovery. Diagnostic categorization reveals three distinct failure modes: pure hallucinations (5.1%), hallucinated identifiers with valid titles (16.4%), and parsing-induced matching failures (78.5%). Longitudinal analysis reveals a flat trend (+0.07 pp/month), suggesting that high-entropy citation practices have stabilized as an endemic feature of the field. The scientific citation graph in AI survey literature exhibits "link rot" at scale. This suggests a mechanism where AI tools act as "lazy research assistants," retrieving correct titles but hallucinating metadata, thereby severing the digital chain of custody required for reproducible science.
☆ Using psychological theory to ground guidelines for the annotation of misogynistic language
Detecting misogynistic hate speech is a difficult algorithmic task. The task is made more difficult when decision criteria for what constitutes misogynistic speech are ungrounded in established literatures in psychology and philosophy, both of which have described in great detail the forms explicit and subtle misogynistic attitudes can take. In particular, the literature on algorithmic detection of misogynistic speech often rely on guidelines that are insufficiently robust or inappropriately justified -- they often fail to include various misogynistic phenomena or misrepresent their importance when they do. As a result, current misogyny detection coding schemes and datasets fail to capture the ways women experience misogyny online. This is of pressing importance: misogyny is on the rise both online and offline. Thus, the scientific community needs to have a systematic, theory informed coding scheme of misogyny detection and a corresponding dataset to train and test models of misogyny detection. To this end, we developed (1) a misogyny annotation guideline scheme informed by theoretical and empirical psychological research, (2) annotated a new dataset achieving substantial inter-rater agreement (kappa = 0.68) and (3) present a case study using Large Language Models (LLMs) to compare our coding scheme to a self-described "expert" misogyny annotation scheme in the literature. Our findings indicate that our guideline scheme surpasses the other coding scheme in the classification of misogynistic texts across 3 datasets. Additionally, we find that LLMs struggle to replicate our human annotator labels, attributable in large part to how LLMs reflect mainstream views of misogyny. We discuss implications for the use of LLMs for the purposes of misogyny detection.
♻ ☆ BLEnD-Vis: Benchmarking Multimodal Cultural Understanding in Vision Language Models EACL 2026
As vision-language models (VLMs) are deployed globally, their ability to understand culturally situated knowledge becomes essential. Yet, existing evaluations largely assess static recall or isolated visual grounding, leaving unanswered whether VLMs possess robust and transferable cultural understanding. We introduce BLEnD-Vis, a multimodal, multicultural benchmark designed to evaluate the robustness of everyday cultural knowledge in VLMs across linguistic rephrasings and visual modalities. Building on the BLEnD dataset, BLEnD-Vis constructs 313 culturally grounded question templates spanning 16 regions and generates three aligned multiple-choice formats: (i) a text-only baseline querying from Region $\rightarrow$ Entity, (ii) an inverted text-only variant (Entity $\rightarrow$ Region), and (iii) a VQA-style version of (ii) with generated images. The resulting benchmark comprises 4,916 images and over 21,000 multiple-choice questions (MCQ) instances, validated through human annotation. BLEnD-Vis reveals significant fragility in current VLM cultural knowledge; models exhibit performance drops under linguistic rephrasing. While visual cues often aid performance, low cross-modal consistency highlights the challenges of robustly integrating textual and visual understanding, particularly in lower-resource regions. BLEnD-Vis thus provides a crucial testbed for systematically analysing cultural robustness and multimodal grounding, exposing limitations and guiding the development of more culturally competent VLMs. Code is available at https://github.com/Social-AI-Studio/BLEnD-Vis.
comment: EACL 2026
♻ ☆ Perturbation Effects on Accuracy and Fairness among Similar Individuals
Deep neural networks (DNNs) are vulnerable to adversarial perturbations that degrade both predictive accuracy and individual fairness, posing critical risks in high-stakes online decision-making. The relationship between these two dimensions of robustness remains poorly understood. To bridge this gap, we introduce robust individual fairness (RIF), which requires that similar individuals receive predictions consistent with the same ground truth even under adversarial manipulation. To evaluate and expose violations of RIF, we propose RIFair, an attack framework that applies identical perturbations to similar individuals to induce accuracy or fairness failures. We further introduce perturbation impact index (PII) and perturbation impact direction (PID) to quantify and explain why identical perturbations produce unequal effects on individuals who should behave similarly. Experiments across diverse model architectures and real-world web datasets reveal that existing robustness metrics capture distinct and often incompatible failure modes in accuracy and fairness. We find that many online applicants are simultaneously vulnerable to multiple types of adversarial failures, and that inaccurate or unfair outcomes arise due to similar individuals share the same PID but have sharply different PIIs, leading to divergent prediction-change trajectories in which some cross decision boundaries earlier. Finally, we demonstrate that adversarial examples generated by RIFair can strategically manipulate test-set accuracy or fairness by replacing only a small subset of items, creating misleading impressions of model performance. These findings expose fundamental limitations in current robustness evaluations and highlight the need for jointly assessing accuracy and fairness under adversarial perturbations in high-stakes online decision-making.
♻ ☆ Labels or Input? Rethinking Augmentation in Multimodal Hate Detection
Online hate remains a significant societal challenge, especially as multimodal content enables subtle, culturally grounded, and implicit forms of harm. Hateful memes embed hostility through text-image interactions and humor, making them difficult for automated systems to interpret. Although recent Vision-Language Models (VLMs) perform well on explicit cases, their deployment is limited by high inference costs and persistent failures on nuanced content. This work examines how far small models can be improved through prompt optimization, fine-tuning, and automated data augmentation. We introduce an end-to-end pipeline that varies prompt structure, label granularity, and training modality, showing that structured prompts and scaled supervision significantly strengthen compact VLMs. We also develop a multimodal augmentation framework that generates counterfactually neutral memes via a coordinated LLM-VLM setup, reducing spurious correlations and improving the detection of implicit hate. Ablation studies quantify the contribution of each component, demonstrating that prompt design, granular labels, and targeted augmentation collectively narrow the gap between small and large models. The results offer a practical path toward more robust and deployable multimodal hate-detection systems without relying on costly large-model inference.
comment: 14 pages
♻ ☆ The Imperfect Learner: Incorporating Developmental Trajectories in Memory-based Student Simulation
User simulation is important for developing and evaluating human-centered AI, yet current student simulation in educational applications has significant limitations. Existing approaches focus on single learning experiences and do not account for students' gradual knowledge construction and evolving skill sets. Moreover, large language models are optimized to produce direct and accurate responses, making it challenging to represent the incomplete understanding and developmental constraints that characterize real learners. In this paper, we introduce a novel framework for memory-based student simulation that incorporates developmental trajectories through a hierarchical memory mechanism with structured knowledge representation. The framework also integrates metacognitive processes and personality traits to enrich the individual learner profiling, through dynamical consolidation of both cognitive development and personal learning characteristics. In practice, we implement a curriculum-aligned simulator grounded on the Next Generation Science Standards. Experimental results show that our approach can effectively reflect the gradual nature of knowledge development and the characteristic difficulties students face, providing a more accurate representation of learning processes.
comment: Fixed some grammar and format issues. Added some experimental results