MyArxiv
Computation and Language
☆ Evaluating Memory in LLM Agents via Incremental Multi-Turn Interactions
Recent benchmarks for Large Language Model (LLM) agents primarily focus on evaluating reasoning, planning, and execution capabilities, while another critical component-memory, encompassing how agents memorize, update, and retrieve long-term information-is under-evaluated due to the lack of benchmarks. We term agents with memory mechanisms as memory agents. In this paper, we identify four core competencies essential for memory agents: accurate retrieval, test-time learning, long-range understanding, and conflict resolution. Existing datasets either rely on limited context lengths or are tailored for static, long-context settings like book-based QA, which do not reflect the interactive, multi-turn nature of memory agents that incrementally accumulate information. Furthermore, no existing benchmarks cover all four competencies. Therefore, we introduce MemoryAgentBench, a new benchmark specifically designed for memory agents. Our benchmark combines reformulated existing datasets with newly constructed ones, covering the above four memory competencies, providing a systematic and challenging testbed for assessing memory quality. We evaluate a diverse set of memory agents, ranging from simple context-based and retrieval-augmented generation (RAG) systems to advanced agents with external memory modules and tool integration. Empirical results reveal that current methods fall short of mastering all four competencies, underscoring the need for further research into comprehensive memory mechanisms for LLM agents.
comment: 23 Pages, Y. Hu and Y. Wang contribute equally
☆ Open Vision Reasoner: Transferring Linguistic Cognitive Behavior for Visual Reasoning
The remarkable reasoning capability of large language models (LLMs) stems from cognitive behaviors that emerge through reinforcement with verifiable rewards. This work investigates how to transfer this principle to Multimodal LLMs (MLLMs) to unlock advanced visual reasoning. We introduce a two-stage paradigm built on Qwen2.5-VL-7B: a massive linguistic cold-start fine-tuning, followed by multimodal reinforcement learning (RL) spanning nearly 1,000 steps, surpassing all previous open-source efforts in scale. This pioneering work reveals three fundamental insights: 1) Behavior transfer emerges surprisingly early in cold start due to linguistic mental imagery. 2) Cold start broadly memorizes visual behaviors, while RL critically discerns and scales up effective patterns. 3) Transfer strategically favors high-utility behaviors such as visual reflection. Our resulting model, Open-Vision-Reasoner (OVR), achieves state-of-the-art performance on a suite of reasoning benchmarks, including 95.3% on MATH500, 51.8% on MathVision and 54.6% on MathVerse. We release our model, data, and training dynamics to catalyze the development of more capable, behavior-aligned multimodal reasoners.
☆ Response Attack: Exploiting Contextual Priming to Jailbreak Large Language Models
Contextual priming, where earlier stimuli covertly bias later judgments, offers an unexplored attack surface for large language models (LLMs). We uncover a contextual priming vulnerability in which the previous response in the dialogue can steer its subsequent behavior toward policy-violating content. Building on this insight, we propose Response Attack, which uses an auxiliary LLM to generate a mildly harmful response to a paraphrased version of the original malicious query. They are then formatted into the dialogue and followed by a succinct trigger prompt, thereby priming the target model to generate harmful content. Across eight open-source and proprietary LLMs, RA consistently outperforms seven state-of-the-art jailbreak techniques, achieving higher attack success rates. To mitigate this threat, we construct and release a context-aware safety fine-tuning dataset, which significantly reduces the attack success rate while preserving model capabilities. The code and data are available at https://github.com/Dtc7w3PQ/Response-Attack.
comment: 21 pages, 9 figures. Code and data available at https://github.com/Dtc7w3PQ/Response-Attack
☆ When Chain of Thought is Necessary, Language Models Struggle to Evade Monitors
While chain-of-thought (CoT) monitoring is an appealing AI safety defense, recent work on "unfaithfulness" has cast doubt on its reliability. These findings highlight an important failure mode, particularly when CoT acts as a post-hoc rationalization in applications like auditing for bias. However, for the distinct problem of runtime monitoring to prevent severe harm, we argue the key property is not faithfulness but monitorability. To this end, we introduce a conceptual framework distinguishing CoT-as-rationalization from CoT-as-computation. We expect that certain classes of severe harm will require complex, multi-step reasoning that necessitates CoT-as-computation. Replicating the experimental setups of prior work, we increase the difficulty of the bad behavior to enforce this necessity condition; this forces the model to expose its reasoning, making it monitorable. We then present methodology guidelines to stress-test CoT monitoring against deliberate evasion. Applying these guidelines, we find that models can learn to obscure their intentions, but only when given significant help, such as detailed human-written strategies or iterative optimization against the monitor. We conclude that, while not infallible, CoT monitoring offers a substantial layer of defense that requires active protection and continued stress-testing.
☆ SciMaster: Towards General-Purpose Scientific AI Agents, Part I. X-Master as Foundation: Can We Lead on Humanity's Last Exam?
The rapid advancements of AI agents have ignited the long-held ambition of leveraging them to accelerate scientific discovery. Achieving this goal requires a deep understanding of the frontiers of human knowledge. As such, Humanity's Last Exam (HLE) provides an exceptionally challenging touchstone for evaluating scientific AI agents. In this work, we aim to construct the foundational architecture for general-purpose agents and validate the capabilities through leading performance on HLE. To achieve this, we introduce X-Master, a tool-augmented reasoning agent designed to emulate human researchers by interacting flexibly with external tools during its reasoning process. This agent, guided by the conceptualization of code as an interaction language, can flexibly leverage built-in Python libraries and our customized tools to augment the reasoning. We further scale its capabilities through X-Masters, a scattered-and-stacked agentic workflow that systematically enhances breadth and depth of reasoning. Our open-source solution, X-Masters, sets a new state-of-the-art record on HLE with a score of 32.1%, surpassing OpenAI's and Google's Deep Research (26.6% and 26.9%) and becoming the first to exceed the 30% threshold. This work allows us to gain a deeper understanding of complex task-solving and accumulates valuable experience that can inform future advancements, guiding subsequent model training.
comment: 12 pages, 7 figures
☆ Logit Reweighting for Topic-Focused Summarization
Generating abstractive summaries that adhere to a specific topic remains a significant challenge for language models. While standard approaches, such as fine-tuning, are resource-intensive, simpler methods like prompt engineering often struggle to maintain topical focus, particularly with smaller models. To address this, we propose a lightweight method that enhances topical relevance by directly reweighting the logits of topic-relevant tokens during generation. We evaluate three such reweighting techniques: Constant Shift, which adds a constant value to logits; Factor Scaling, which multiplies them by a factor; and Threshold Selection, which selectively boosts logits that exceed a probability threshold. Experiments on the NEWTS topical summarization dataset, using both Gemma-2B and Llama-3-8B models, show that these techniques effectively increase the use of topic-relevant vocabulary. Notably, the Threshold Selection method successfully improves topical focus without compromising summary quality-a trade-off often seen in other approaches. Our findings demonstrate that directly reweighting logits is a practical and resource-efficient alternative to fine-tuning, offering a promising pathway for precisely controlling the thematic content of generated text.
comment: 11 pages, 13 figures
☆ Interleaving Logic and Counting
Reasoning with quantifier expressions in natural language combines logical and arithmetical features, transcending strict divides between qualitative and quantitative. Our topic is this cooperation of styles as it occurs in common linguistic usage and its extension into the broader practice of natural language plus "grassroots mathematics". We begin with a brief review of first-order logic with counting operators and cardinality comparisons. This system is known to be of high complexity, and drowns out finer aspects of the combination of logic and counting. We move to a small fragment that can represent numerical syllogisms and basic reasoning about comparative size: monadic first-order logic with counting. We provide normal forms that allow for axiomatization, determine which arithmetical notions can be defined on finite and on infinite models, and conversely, we discuss which logical notions can be defined out of purely arithmetical ones, and what sort of (non-)classical logics can be induced. Next, we investigate a series of strengthenings, again using normal form methods. The monadic second-order version is close, in a precise sense, to additive Presburger Arithmetic, while versions with the natural device of tuple counting take us to Diophantine equations, making the logic undecidable. We also define a system that combines basic modal logic over binary accessibility relations with counting, needed to formulate ubiquitous reasoning patterns such as the Pigeonhole Principle. We return to our starting point in natural language, confronting the architecture of our formal systems with linguistic quantifier vocabulary and syntax. We conclude with some general thoughts on yet further entanglements of logic and counting in formal systems, on rethinking the qualitative/quantitative divide, and on connecting our analysis to empirical findings in cognitive science.
☆ MedGemma Technical Report
Artificial intelligence (AI) has significant potential in healthcare applications, but its training and deployment faces challenges due to healthcare's diverse data, complex tasks, and the need to preserve privacy. Foundation models that perform well on medical tasks and require less task-specific tuning data are critical to accelerate the development of healthcare AI applications. We introduce MedGemma, a collection of medical vision-language foundation models based on Gemma 3 4B and 27B. MedGemma demonstrates advanced medical understanding and reasoning on images and text, significantly exceeding the performance of similar-sized generative models and approaching the performance of task-specific models, while maintaining the general capabilities of the Gemma 3 base models. For out-of-distribution tasks, MedGemma achieves 2.6-10% improvement on medical multimodal question answering, 15.5-18.1% improvement on chest X-ray finding classification, and 10.8% improvement on agentic evaluations compared to the base models. Fine-tuning MedGemma further improves performance in subdomains, reducing errors in electronic health record information retrieval by 50% and reaching comparable performance to existing specialized state-of-the-art methods for pneumothorax classification and histopathology patch classification. We additionally introduce MedSigLIP, a medically-tuned vision encoder derived from SigLIP. MedSigLIP powers the visual understanding capabilities of MedGemma and as an encoder achieves comparable or better performance than specialized medical image encoders. Taken together, the MedGemma collection provides a strong foundation of medical image and text capabilities, with potential to significantly accelerate medical research and development of downstream applications. The MedGemma collection, including tutorials and model weights, can be found at https://goo.gle/medgemma.
Pre-Trained Policy Discriminators are General Reward Models
We offer a novel perspective on reward modeling by formulating it as a policy discriminator, which quantifies the difference between two policies to generate a reward signal, guiding the training policy towards a target policy with desired behaviors. Based on this conceptual insight, we propose a scalable pre-training method named Policy Discriminative Learning (POLAR), which trains a reward model (RM) to discern identical policies and discriminate different ones. Unlike traditional reward modeling methods relying on absolute preferences, POLAR captures the relative difference between one policy and an arbitrary target policy, which is a scalable, high-level optimization objective suitable for modeling generic ranking relationships. Leveraging the POLAR pre-training paradigm, we present a series of RMs with parameter scales from 1.8B to 7B. Empirical results show that POLAR substantially outperforms traditional non-pre-trained methods, significantly enhancing RM performance. For instance, POLAR-7B could improve preference accuracy from 54.8% to 81.0% on STEM tasks and from 57.9% to 85.5% on creative writing tasks compared to SOTA baselines. POLAR also shows robust generalization capabilities in RLHF using Reinforcement Fine-tuning (RFT), providing reliable reward signals and markedly enhancing policy performance--improving LLaMa3.1-8B from an average of 47.36% to 56.33% and Qwen2.5-32B from 64.49% to 70.47% on 20 benchmarks. Moreover, scaling experiments reveal a clear power-law relationship between computation and performance, supported by linear correlation coefficients approaching 0.99. The impressive performance, strong generalization, and scaling properties suggest that POLAR is a promising direction for developing general and strong reward models.
☆ From Fragments to Facts: A Curriculum-Driven DPO Approach for Generating Hindi News Veracity Explanations
In an era of rampant misinformation, generating reliable news explanations is vital, especially for under-represented languages like Hindi. Lacking robust automated tools, Hindi faces challenges in scaling misinformation detection. To bridge this gap, we propose a novel framework integrating Direct Preference Optimization (DPO) with curriculum learning to align machine-generated explanations with human reasoning. Fact-checked explanations from credible sources serve as preferred responses, while LLM outputs highlight system limitations and serve as non-preferred responses. To refine task-specific alignment, we introduce two key parameters -- Actuality and Finesse -- into the DPO loss function, enhancing explanation quality and consistency. Experiments with LLMs (Mistral, Llama, Gemma) and PLMs (mBART, mT5) confirm the framework's effectiveness in generating coherent, contextually relevant explanations. This scalable approach combats misinformation and extends automated explanation generation to low-resource languages.
☆ OpenS2S: Advancing Open-Source End-to-End Empathetic Large Speech Language Model
Empathetic interaction is a cornerstone of human-machine communication, due to the need for understanding speech enriched with paralinguistic cues and generating emotional and expressive responses. However, the most powerful empathetic LSLMs are increasingly closed off, leaving the crucial details about the architecture, data and development opaque to researchers. Given the critical need for transparent research into the LSLMs and empathetic behavior, we present OpenS2S, a fully open-source, transparent and end-to-end LSLM designed to enable empathetic speech interactions. Based on our empathetic speech-to-text model BLSP-Emo, OpenS2S further employs a streaming interleaved decoding architecture to achieve low-latency speech generation. To facilitate end-to-end training, OpenS2S incorporates an automated data construction pipeline that synthesizes diverse, high-quality empathetic speech dialogues at low cost. By leveraging large language models to generate empathetic content and controllable text-to-speech systems to introduce speaker and emotional variation, we construct a scalable training corpus with rich paralinguistic diversity and minimal human supervision. We release the fully open-source OpenS2S model, including the dataset, model weights, pre-training and fine-tuning codes, to empower the broader research community and accelerate innovation in empathetic speech systems. The project webpage can be accessed at https://casia-lm.github.io/OpenS2S
comment: Technical Report
☆ Critiques of World Models
World Model, the supposed algorithmic surrogate of the real-world environment which biological agents experience with and act upon, has been an emerging topic in recent years because of the rising needs to develop virtual agents with artificial (general) intelligence. There has been much debate on what a world model really is, how to build it, how to use it, and how to evaluate it. In this essay, starting from the imagination in the famed Sci-Fi classic Dune, and drawing inspiration from the concept of "hypothetical thinking" in psychology literature, we offer critiques of several schools of thoughts on world modeling, and argue the primary goal of a world model to be simulating all actionable possibilities of the real world for purposeful reasoning and acting. Building on the critiques, we propose a new architecture for a general-purpose world model, based on hierarchical, multi-level, and mixed continuous/discrete representations, and a generative and self-supervision learning framework, with an outlook of a Physical, Agentic, and Nested (PAN) AGI system enabled by such a model.
☆ InfoSteer: Steering Information Utility in Language Model Post-Training
Recent advancements in language models (LMs) gradually ushered in an era where post-training is crucial. Yet, post-training approaches such as supervised fine-tuning (SFT) do not guarantee effective use of knowledge acquired during pretraining. We therefore present \ours, a lightweight method that encourages parametric information utilization in LMs during post-training. This is achieved via treating FFN layer as associate key-value memory, and promotes the use of stored memory vectors via forward-pass interventions or regularization during backpropagation. We find this simple guidance during post-training phase delivers consistent performance improvements across diverse model families--including Qwen, Gemma and Llama-spanning over 15 downstream tasks in both ID and OOD evaluations. Beyond performance gains, we also find that steered LMs can adaptively allocate information-placing more emphasis on generating semantically meaningful tokens, while using fewer resources on simple transition ones (e.g., `,' or `and'). Our work underscores that vanilla post-training does not fully leverage pre-training potential, and steering LMs in latent representation space offers a promising approach that enhances both performance and interpretability.
☆ AI Generated Text Detection Using Instruction Fine-tuned Large Language and Transformer-Based Models
Large Language Models (LLMs) possess an extraordinary capability to produce text that is not only coherent and contextually relevant but also strikingly similar to human writing. They adapt to various styles and genres, producing content that is both grammatically correct and semantically meaningful. Recently, LLMs have been misused to create highly realistic phishing emails, spread fake news, generate code to automate cyber crime, and write fraudulent scientific articles. Additionally, in many real-world applications, the generated content including style and topic and the generator model are not known beforehand. The increasing prevalence and sophistication of artificial intelligence (AI)-generated texts have made their detection progressively more challenging. Various attempts have been made to distinguish machine-generated text from human-authored content using linguistic, statistical, machine learning, and ensemble-based approaches. This work focuses on two primary objectives Task-A, which involves distinguishing human-written text from machine-generated text, and Task-B, which attempts to identify the specific LLM model responsible for the generation. Both of these tasks are based on fine tuning of Generative Pre-trained Transformer (GPT_4o-mini), Large Language Model Meta AI (LLaMA) 3 8B, and Bidirectional Encoder Representations from Transformers (BERT). The fine-tuned version of GPT_4o-mini and the BERT model has achieved accuracies of 0.9547 for Task-A and 0.4698 for Task-B.
comment: 7 pages, 3 figures
☆ Interpretable Mnemonic Generation for Kanji Learning via Expectation-Maximization
Learning Japanese vocabulary is a challenge for learners from Roman alphabet backgrounds due to script differences. Japanese combines syllabaries like hiragana with kanji, which are logographic characters of Chinese origin. Kanji are also complicated due to their complexity and volume. Keyword mnemonics are a common strategy to aid memorization, often using the compositional structure of kanji to form vivid associations. Despite recent efforts to use large language models (LLMs) to assist learners, existing methods for LLM-based keyword mnemonic generation function as a black box, offering limited interpretability. We propose a generative framework that explicitly models the mnemonic construction process as driven by a set of common rules, and learn them using a novel Expectation-Maximization-type algorithm. Trained on learner-authored mnemonics from an online platform, our method learns latent structures and compositional rules, enabling interpretable and systematic mnemonics generation. Experiments show that our method performs well in the cold-start setting for new learners while providing insight into the mechanisms behind effective mnemonic creation.
☆ SMART: Simulated Students Aligned with Item Response Theory for Question Difficulty Prediction
Item (question) difficulties play a crucial role in educational assessments, enabling accurate and efficient assessment of student abilities and personalization to maximize learning outcomes. Traditionally, estimating item difficulties can be costly, requiring real students to respond to items, followed by fitting an item response theory (IRT) model to get item difficulty estimates. This approach cannot be applied to the cold-start setting for previously unseen items either. In this work, we present SMART (Simulated Students Aligned with IRT), a novel method for aligning simulated students with instructed ability, which can then be used in simulations to predict the difficulty of open-ended items. We achieve this alignment using direct preference optimization (DPO), where we form preference pairs based on how likely responses are under a ground-truth IRT model. We perform a simulation by generating thousands of responses, evaluating them with an LLM-based scoring model, and fit the resulting data to an IRT model to obtain item difficulty estimates. Through extensive experiments on a real-world student response dataset, we show that SMART outperforms other item difficulty prediction methods by leveraging its improved ability alignment.
☆ An Evaluation of Large Language Models on Text Summarization Tasks Using Prompt Engineering Techniques ACSA
Large Language Models (LLMs) continue to advance natural language processing with their ability to generate human-like text across a range of tasks. Despite the remarkable success of LLMs in Natural Language Processing (NLP), their performance in text summarization across various domains and datasets has not been comprehensively evaluated. At the same time, the ability to summarize text effectively without relying on extensive training data has become a crucial bottleneck. To address these issues, we present a systematic evaluation of six LLMs across four datasets: CNN/Daily Mail and NewsRoom (news), SAMSum (dialog), and ArXiv (scientific). By leveraging prompt engineering techniques including zero-shot and in-context learning, our study evaluates the performance using the ROUGE and BERTScore metrics. In addition, a detailed analysis of inference times is conducted to better understand the trade-off between summarization quality and computational efficiency. For Long documents, introduce a sentence-based chunking strategy that enables LLMs with shorter context windows to summarize extended inputs in multiple stages. The findings reveal that while LLMs perform competitively on news and dialog tasks, their performance on long scientific documents improves significantly when aided by chunking strategies. In addition, notable performance variations were observed based on model parameters, dataset properties, and prompt design. These results offer actionable insights into how different LLMs behave across task types, contributing to ongoing research in efficient, instruction-based NLP systems.
comment: This manuscript is an extended version of the work accepted for publication in the International Journal of Advanced Computer Science and Applications (IJACSA), Volume 16, Issue 6, June 2025
☆ Reviving Cultural Heritage: A Novel Approach for Comprehensive Historical Document Restoration
Historical documents represent an invaluable cultural heritage, yet have undergone significant degradation over time through tears, water erosion, and oxidation. Existing Historical Document Restoration (HDR) methods primarily focus on single modality or limited-size restoration, failing to meet practical needs. To fill this gap, we present a full-page HDR dataset (FPHDR) and a novel automated HDR solution (AutoHDR). Specifically, FPHDR comprises 1,633 real and 6,543 synthetic images with character-level and line-level locations, as well as character annotations in different damage grades. AutoHDR mimics historians' restoration workflows through a three-stage approach: OCR-assisted damage localization, vision-language context text prediction, and patch autoregressive appearance restoration. The modular architecture of AutoHDR enables seamless human-machine collaboration, allowing for flexible intervention and optimization at each restoration stage. Experiments demonstrate AutoHDR's remarkable performance in HDR. When processing severely damaged documents, our method improves OCR accuracy from 46.83\% to 84.05\%, with further enhancement to 94.25\% through human-machine collaboration. We believe this work represents a significant advancement in automated historical document restoration and contributes substantially to cultural heritage preservation. The model and dataset are available at https://github.com/SCUT-DLVCLab/AutoHDR.
☆ AI-Driven Cytomorphology Image Synthesis for Medical Diagnostics SC
Biomedical datasets often contain a large sample imbalance and are subject to strict privacy constraints, which together hinder the development of accurate machine learning models. One potential solution is to generate synthetic images, as this can improve data availability while preserving patient privacy. However, it remains difficult to generate synthetic images of sufficient quality for training robust classifiers. In this work, we focus on the classification of single white blood cells, a key component in the diagnosis of hematological diseases such as acute myeloid leukemia (AML), a severe blood cancer. We demonstrate how synthetic images generated with a fine-tuned stable diffusion model using LoRA weights when guided by real few-shot samples of the target white blood cell classes, can enhance classifier performance for limited data. When training a ResNet classifier, accuracy increased from 27.3\% to 78.4\% (+51.1\%) by adding 5000 synthetic images per class to a small and highly imbalanced real dataset. For a CLIP-based classifier, the accuracy improved from 61.8\% to 76.8\% (+15.0\%). The synthetic images are highly similar to real images, and they can help overcome dataset limitations, enhancing model generalization. Our results establish synthetic images as a tool in biomedical research, improving machine learning models, and facilitating medical diagnosis and research.
comment: 8 pages, 6 figures, 2 tables. Final Degree Project (TFG) submitted at ESCI-UPF and conducted at Helmholtz Munich
☆ Verified Language Processing with Hybrid Explainability: A Technical Report
The volume and diversity of digital information have led to a growing reliance on Machine Learning techniques, such as Natural Language Processing, for interpreting and accessing appropriate data. While vector and graph embeddings represent data for similarity tasks, current state-of-the-art pipelines lack guaranteed explainability, failing to determine similarity for given full texts accurately. These considerations can also be applied to classifiers exploiting generative language models with logical prompts, which fail to correctly distinguish between logical implication, indifference, and inconsistency, despite being explicitly trained to recognise the first two classes. We present a novel pipeline designed for hybrid explainability to address this. Our methodology combines graphs and logic to produce First-Order Logic representations, creating machine- and human-readable representations through Montague Grammar. Preliminary results indicate the effectiveness of this approach in accurately capturing full text similarity. To the best of our knowledge, this is the first approach to differentiate between implication, inconsistency, and indifference for text classification tasks. To address the limitations of existing approaches, we use three self-contained datasets annotated for the former classification task to determine the suitability of these approaches in capturing sentence structure equivalence, logical connectives, and spatiotemporal reasoning. We also use these data to compare the proposed method with language models pre-trained for detecting sentence entailment. The results show that the proposed method outperforms state-of-the-art models, indicating that natural language understanding cannot be easily generalised by training over extensive document corpora. This work offers a step toward more transparent and reliable Information Retrieval from extensive textual data.
☆ Co-DETECT: Collaborative Discovery of Edge Cases in Text Classification
We introduce Co-DETECT (Collaborative Discovery of Edge cases in TExt ClassificaTion), a novel mixed-initiative annotation framework that integrates human expertise with automatic annotation guided by large language models (LLMs). Co-DETECT starts with an initial, sketch-level codebook and dataset provided by a domain expert, then leverages the LLM to annotate the data and identify edge cases that are not well described by the initial codebook. Specifically, Co-DETECT flags challenging examples, induces high-level, generalizable descriptions of edge cases, and assists user in incorporating edge case handling rules to improve the codebook. This iterative process enables more effective handling of nuanced phenomena through compact, generalizable annotation rules. Extensive user study, qualitative and quantitative analyses prove the effectiveness of Co-DETECT.
☆ Do We Really Need Specialization? Evaluating Generalist Text Embeddings for Zero-Shot Recommendation and Search RecSys 2025
Pre-trained language models (PLMs) are widely used to derive semantic representations from item metadata in recommendation and search. In sequential recommendation, PLMs enhance ID-based embeddings through textual metadata, while in product search, they align item characteristics with user intent. Recent studies suggest task and domain-specific fine-tuning are needed to improve representational power. This paper challenges this assumption, showing that Generalist Text Embedding Models (GTEs), pre-trained on large-scale corpora, can guarantee strong zero-shot performance without specialized adaptation. Our experiments demonstrate that GTEs outperform traditional and fine-tuned models in both sequential recommendation and product search. We attribute this to a superior representational power, as they distribute features more evenly across the embedding space. Finally, we show that compressing embedding dimensions by focusing on the most informative directions (e.g., via PCA) effectively reduces noise and improves the performance of specialized models. To ensure reproducibility, we provide our repository at https://split.to/gte4ps.
comment: Accept as Short Paper at RecSys 2025
☆ From Autonomy to Agency: Agentic Vehicles for Human-Centered Mobility Systems
Autonomy, from the Greek autos (self) and nomos (law), refers to the capacity to operate according to internal rules without external control. Accordingly, autonomous vehicles (AuVs) are defined as systems capable of perceiving their environment and executing preprogrammed tasks independently of external input. However, both research and real-world deployments increasingly showcase vehicles that demonstrate behaviors beyond this definition (including the SAE levels 1 to 6), such as interaction with humans and machines, goal adaptation, contextual reasoning, external tool use, and long-term planning, particularly with the integration of large language models (LLMs) and agentic AI systems. These developments reveal a conceptual gap between technical autonomy and the broader cognitive and social capabilities needed for future human-centered mobility systems. To address this, we introduce the concept of agentic vehicles (AgVs), referring to vehicles that integrate agentic AI to reason, adapt, and interact within complex environments. This paper presents a systems-level framework to characterize AgVs, focusing on their cognitive and communicative layers and differentiating them from conventional AuVs. It synthesizes relevant advances in agentic AI, robotics, multi-agent systems, and human-machine interaction, and highlights how agentic AI, through high-level reasoning and tool use, can function not merely as computational tools but as interactive agents embedded in mobility ecosystems. The paper concludes by identifying key challenges in the development and governance of AgVs, including safety, real-time control, public acceptance, ethical alignment, and regulatory frameworks.
☆ Can Video LLMs Refuse to Answer? Alignment for Answerability in Video Large Language Models ICLR 2025
In the broader context of deep learning, Multimodal Large Language Models have achieved significant breakthroughs by leveraging powerful Large Language Models as a backbone to align different modalities into the language space. A prime exemplification is the development of Video Large Language Models (Video-LLMs). While numerous advancements have been proposed to enhance the video understanding capabilities of these models, they are predominantly trained on questions generated directly from video content. However, in real-world scenarios, users often pose questions that extend beyond the informational scope of the video, highlighting the need for Video-LLMs to assess the relevance of the question. We demonstrate that even the best-performing Video-LLMs fail to reject unfit questions-not necessarily due to a lack of video understanding, but because they have not been trained to identify and refuse such questions. To address this limitation, we propose alignment for answerability, a framework that equips Video-LLMs with the ability to evaluate the relevance of a question based on the input video and appropriately decline to answer when the question exceeds the scope of the video, as well as an evaluation framework with a comprehensive set of metrics designed to measure model behavior before and after alignment. Furthermore, we present a pipeline for creating a dataset specifically tailored for alignment for answerability, leveraging existing video-description paired datasets.
comment: ICLR 2025
☆ ArtifactsBench: Bridging the Visual-Interactive Gap in LLM Code Generation Evaluation
The generative capabilities of Large Language Models (LLMs) are rapidly expanding from static code to dynamic, interactive visual artifacts. This progress is bottlenecked by a critical evaluation gap: established benchmarks focus on algorithmic correctness and are blind to the visual fidelity and interactive integrity that define modern user experiences. To bridge this gap, we introduce ArtifactsBench, a new benchmark and paradigm for the automated, multimodal evaluation of visual code generation. Our framework programmatically renders each generated artifact and captures its dynamic behavior through temporal screenshots. This visual evidence, alongside the source code, is then assessed by a Multimodal LLM (MLLM)-as-Judge, which is rigorously guided by a fine-grained, per-task checklist to ensure holistic and reproducible scoring. We construct a new benchmark of 1,825 diverse tasks and evaluate over 30 leading LLMs. Our automated evaluation achieves a striking 94.4% ranking consistency with WebDev Arena, the gold-standard for human preference in web development, and over 90% pairwise agreement with human experts. This establishes ArtifactsBench as the first framework to reliably automate the assessment of human-perceived quality at scale. Our analysis provides a high-resolution map of the current SOTA, revealing that generalist models often outperform domain-specific ones. We open-source ArtifactsBench, including the benchmark, evaluation harness, and baseline results at https://artifactsbenchmark.github.io/, to provide the community with a scalable and accurate tool to accelerate the development of user-centric generative models.
☆ Taming the Tri-Space Tension: ARC-Guided Hallucination Modeling and Control for Text-to-Image Generation
Despite remarkable progress in image quality and prompt fidelity, text-to-image (T2I) diffusion models continue to exhibit persistent "hallucinations", where generated content subtly or significantly diverges from the intended prompt semantics. While often regarded as unpredictable artifacts, we argue that these failures reflect deeper, structured misalignments within the generative process. In this work, we propose a cognitively inspired perspective that reinterprets hallucinations as trajectory drift within a latent alignment space. Empirical observations reveal that generation unfolds within a multiaxial cognitive tension field, where the model must continuously negotiate competing demands across three key critical axes: semantic coherence, structural alignment, and knowledge grounding. We then formalize this three-axis space as the \textbf{Hallucination Tri-Space} and introduce the Alignment Risk Code (ARC): a dynamic vector representation that quantifies real-time alignment tension during generation. The magnitude of ARC captures overall misalignment, its direction identifies the dominant failure axis, and its imbalance reflects tension asymmetry. Based on this formulation, we develop the TensionModulator (TM-ARC): a lightweight controller that operates entirely in latent space. TM-ARC monitors ARC signals and applies targeted, axis-specific interventions during the sampling process. Extensive experiments on standard T2I benchmarks demonstrate that our approach significantly reduces hallucination without compromising image quality or diversity. This framework offers a unified and interpretable approach for understanding and mitigating generative failures in diffusion-based T2I systems.
comment: 12 pages, 6 figures, 4 tables
☆ ReLoop: "Seeing Twice and Thinking Backwards" via Closed-loop Training to Mitigate Hallucinations in Multimodal understanding
While Multimodal Large Language Models (MLLMs) have achieved remarkable progress in open-ended visual question answering, they remain vulnerable to hallucinations. These are outputs that contradict or misrepresent input semantics, posing a critical challenge to the reliability and factual consistency. Existing methods often rely on external verification or post-hoc correction, lacking an internal mechanism to validate outputs directly during training. To bridge this gap, we propose ReLoop, a unified closed-loop training framework that encourages multimodal consistency for cross-modal understanding in MLLMs. ReLoop adopts a ring-shaped structure that integrates three complementary consistency feedback mechanisms, obliging MLLMs to "seeing twice and thinking backwards". Specifically, ReLoop employs the frozen Consistency Feedback Plugin (CFP), comprising semantic reconstruction, visual description, and an attention supervision module for attention alignment. These components collectively enforce semantic reversibility, visual consistency, and interpretable attention, enabling the model to correct its outputs during training. Extensive evaluations and analyses demonstrate the effectiveness of ReLoop in reducing hallucination rates across multiple benchmarks, establishing a robust method for hallucination mitigation in MLLMs. We will release our source code and data in the camera-ready version.
comment: 8 pages,6 figures,5 tables
☆ SIGIR 2025 -- LiveRAG Challenge Report
The LiveRAG Challenge at SIGIR 2025, held between March and May 2025, provided a competitive platform for advancing Retrieval-Augmented Generation (RAG) technologies. Participants from academia and industry were invited to develop a RAG-based question-answering system using a fixed corpus (Fineweb-10BT) and a common open-source LLM (Falcon3-10B-Instruct). The goal was to facilitate challenging comparisons of retrieval and prompting strategies. During the Live Challenge Day, 70 teams from 27 different countries provided answers and supportive information to 500 unseen questions within a strict two-hour time window. Evaluation was conducted in two stages: first an automated LLM-as-a-judge approach was used to compute correctness and faithfulness score, then a manual review of top ranked submissions was conducted. The finalists were announced on June 12, 2025, with prizes awarded during the LiveRAG Workshop at SIGIR 2025 in Padua, Italy.
comment: 9 pages, 5 tables
☆ O_FT@EvalLLM2025 : étude comparative de choix de données et de stratégies d'apprentissage pour l'adaptation de modèles de langue à un domaine
This paper presents the work carried out by the O_FT team, joint with Orange and Ouest-France, on adapting language models to the defense domain as part of the EvalLLM2025 challenge. This work focused on adapting the \texttt{Mistral-7B-Instruct-v0.3} model using classical techniques of continued pre-training and instruction-tuning. The core of our efforts is based on collecting, generating, and selecting data for these two stages as well as for model evaluation. Experiments show that our adapted models have better domain-specific knowledge and improved domain-specific task processing skills, along with comparable (or even superior) performance on general knowledge and skills. Considering the carbon footprint of our adaptations, this work demonstrates the feasibility of domain adaptation for relatively small models. -- Ce document pr\'esente les travaux r\'ealis\'es par l'\'equipe O_FT conjointe \`a Orange et Ouest-France sur l'adaptation de mod\`eles de langue au domaine de la d\'efense dans le cadre du challenge EvalLLM2025. Ces travaux se sont concentr\'es sur l'adaptation du mod\`ele \texttt{Mistral-7B-Instruct-v0.3} avec des techniques classiques de poursuite du pr\'e-entra\^inement et d'affinage sur instructions. L'essentiel de nos travaux a port\'e sur la constitution, g\'en\'eration et s\'election de donn\'ees pour ces deux \'etapes ainsi que pour l'\'evaluation des mod\`eles. Les exp\'eriences montrent que nos mod\`eles adapt\'es ont de meilleures de connaissances de fond et une meilleure capacit\'e de traitement de t\^aches sur le domaine de la d\'efense, ainsi que des performances comparables (voire sup\'erieures) sur des connaissances ou capacit\'es g\'en\'eralistes. Mis au regard des empreintes carbones de nos adaptations, ces travaux d\'emontrent ainsi la viabilit\'e de l'adaptation \`a un domaine de mod\`eles relativement petits.
comment: 22 pages + 10 pages appendices, in French language
☆ MARBLE: A Multi-Agent Rule-Based LLM Reasoning Engine for Accident Severity Prediction
Accident severity prediction plays a critical role in transportation safety systems but is a persistently difficult task due to incomplete data, strong feature dependencies, and severe class imbalance in which rare but high-severity cases are underrepresented and hard to detect. Existing methods often rely on monolithic models or black box prompting, which struggle to scale in noisy, real-world settings and offer limited interpretability. To address these challenges, we propose MARBLE a multiagent rule based LLM engine that decomposes the severity prediction task across a team of specialized reasoning agents, including an interchangeable ML-backed agent. Each agent focuses on a semantic subset of features (e.g., spatial, environmental, temporal), enabling scoped reasoning and modular prompting without the risk of prompt saturation. Predictions are coordinated through either rule-based or LLM-guided consensus mechanisms that account for class rarity and confidence dynamics. The system retains structured traces of agent-level reasoning and coordination outcomes, supporting in-depth interpretability and post-hoc performance diagnostics. Across both UK and US datasets, MARBLE consistently outperforms traditional machine learning classifiers and state-of-the-art (SOTA) prompt-based reasoning methods including Chain-of-Thought (CoT), Least-to-Most (L2M), and Tree-of-Thought (ToT) achieving nearly 90% accuracy where others plateau below 48%. This performance redefines the practical ceiling for accident severity classification under real world noise and extreme class imbalance. Our results position MARBLE as a generalizable and interpretable framework for reasoning under uncertainty in safety-critical applications.
comment: 13 pages, 5 figures
☆ Emergent Semantics Beyond Token Embeddings: Transformer LMs with Frozen Visual Unicode Representations
Understanding the locus of semantic representation in large language models (LLMs) is crucial for interpretability and architectural innovation. The dominant paradigm posits that trainable input embeddings serve as foundational "meaning vectors." This paper challenges that view. We construct Transformer models where the embedding layer is entirely frozen, with vectors derived not from data, but from the visual structure of Unicode glyphs. These non-semantic, precomputed visual embeddings are fixed throughout training. Our method is compatible with any tokenizer, including a novel Unicode-centric tokenizer we introduce to ensure universal text coverage. Despite the absence of trainable, semantically initialized embeddings, our models converge, generate coherent text, and, critically, outperform architecturally identical models with trainable embeddings on the MMLU reasoning benchmark. We attribute this to "representational interference" in conventional models, where the embedding layer is burdened with learning both structural and semantic features. Our results indicate that high-level semantics are not inherent to input embeddings but are an emergent property of the Transformer's compositional architecture and data scale. This reframes the role of embeddings from meaning containers to structural primitives. We release all code and models to foster further research.
☆ Building Open-Retrieval Conversational Question Answering Systems by Generating Synthetic Data and Decontextualizing User Questions SIGDIAL 2025
We consider open-retrieval conversational question answering (OR-CONVQA), an extension of question answering where system responses need to be (i) aware of dialog history and (ii) grounded in documents (or document fragments) retrieved per question. Domain-specific OR-CONVQA training datasets are crucial for real-world applications, but hard to obtain. We propose a pipeline that capitalizes on the abundance of plain text documents in organizations (e.g., product documentation) to automatically produce realistic OR-CONVQA dialogs with annotations. Similarly to real-world humanannotated OR-CONVQA datasets, we generate in-dialog question-answer pairs, self-contained (decontextualized, e.g., no referring expressions) versions of user questions, and propositions (sentences expressing prominent information from the documents) the system responses are grounded in. We show how the synthetic dialogs can be used to train efficient question rewriters that decontextualize user questions, allowing existing dialog-unaware retrievers to be utilized. The retrieved information and the decontextualized question are then passed on to an LLM that generates the system's response.
comment: Accepted at SIGDIAL 2025
☆ Transcribing Spanish Texts from the Past: Experiments with Transkribus, Tesseract and Granite
This article presents the experiments and results obtained by the GRESEL team in the IberLEF 2025 shared task PastReader: Transcribing Texts from the Past. Three types of experiments were conducted with the dual aim of participating in the task and enabling comparisons across different approaches. These included the use of a web-based OCR service, a traditional OCR engine, and a compact multimodal model. All experiments were run on consumer-grade hardware, which, despite lacking high-performance computing capacity, provided sufficient storage and stability. The results, while satisfactory, leave room for further improvement. Future work will focus on exploring new techniques and ideas using the Spanish-language dataset provided by the shared task, in collaboration with Biblioteca Nacional de Espa\~na (BNE).
comment: This paper was written as part of a shared task organized within the 2025 edition of the Iberian Languages Evaluation Forum (IberLEF 2025), held at SEPLN 2025 in Zaragoza. This paper describes the joint participation of two teams in said competition, GRESEL1 and GRESEL2, each with an individual paper that will be published in CEUR
☆ $\textit{Grahak-Nyay:}$ Consumer Grievance Redressal through Large Language Models
Access to consumer grievance redressal in India is often hindered by procedural complexity, legal jargon, and jurisdictional challenges. To address this, we present $\textbf{Grahak-Nyay}$ (Justice-to-Consumers), a chatbot that streamlines the process using open-source Large Language Models (LLMs) and Retrieval-Augmented Generation (RAG). Grahak-Nyay simplifies legal complexities through a concise and up-to-date knowledge base. We introduce three novel datasets: $\textit{GeneralQA}$ (general consumer law), $\textit{SectoralQA}$ (sector-specific knowledge) and $\textit{SyntheticQA}$ (for RAG evaluation), along with $\textit{NyayChat}$, a dataset of 300 annotated chatbot conversations. We also introduce $\textit{Judgments}$ data sourced from Indian Consumer Courts to aid the chatbot in decision making and to enhance user trust. We also propose $\textbf{HAB}$ metrics ($\textbf{Helpfulness, Accuracy, Brevity}$) to evaluate chatbot performance. Legal domain experts validated Grahak-Nyay's effectiveness. Code and datasets will be released.
☆ Dialogue-Based Multi-Dimensional Relationship Extraction from Novels NLPCC2025
Relation extraction is a crucial task in natural language processing, with broad applications in knowledge graph construction and literary analysis. However, the complex context and implicit expressions in novel texts pose significant challenges for automatic character relationship extraction. This study focuses on relation extraction in the novel domain and proposes a method based on Large Language Models (LLMs). By incorporating relationship dimension separation, dialogue data construction, and contextual learning strategies, the proposed method enhances extraction performance. Leveraging dialogue structure information, it improves the model's ability to understand implicit relationships and demonstrates strong adaptability in complex contexts. Additionally, we construct a high-quality Chinese novel relation extraction dataset to address the lack of labeled resources and support future research. Experimental results show that our method outperforms traditional baselines across multiple evaluation metrics and successfully facilitates the automated construction of character relationship networks in novels.
comment: The paper has been accepted by NLPCC2025. 12 pages, 5 figures, 5 tables
☆ Spec-TOD: A Specialized Instruction-Tuned LLM Framework for Efficient Task-Oriented Dialogue Systems
Task-oriented dialogue (TOD) systems facilitate goal-driven interactions between users and machines. While recent advances in deep learning have improved the performance, TOD systems often struggle in low-resource scenarios with limited labeled data. To address this challenge, we propose Spec-TOD, a novel framework designed to train an end-to-end TOD system with limited data. Spec-TOD introduces two main innovations: (i) a novel specialized end-to-end TOD framework that incorporates explicit task instructions for instruction-tuned large language models (LLMs), and (ii) an efficient training strategy that leverages lightweight, specialized LLMs to achieve strong performance with minimal supervision. Experiments on the MultiWOZ dataset, a widely used TOD benchmark, demonstrate that Spec-TOD achieves competitive results while significantly reducing the need for labeled data. These findings highlight the potential of the proposed framework in advancing efficient and effective TOD systems in low-resource settings.
comment: Accepted at SIGdial 2025
☆ From Vision To Language through Graph of Events in Space and Time: An Explainable Self-supervised Approach
The task of describing video content in natural language is commonly referred to as video captioning. Unlike conventional video captions, which are typically brief and widely available, long-form paragraph descriptions in natural language are scarce. This limitation of current datasets is due to the expensive human manual annotation required and to the highly challenging task of explaining the language formation process from the perspective of the underlying story, as a complex system of interconnected events in space and time. Through a thorough analysis of recently published methods and available datasets, we identify a general lack of published resources dedicated to the problem of describing videos in complex language, beyond the level of descriptions in the form of enumerations of simple captions. Furthermore, while state-of-the-art methods produce impressive results on the task of generating shorter captions from videos by direct end-to-end learning between the videos and text, the problem of explaining the relationship between vision and language is still beyond our reach. In this work, we propose a shared representation between vision and language, based on graphs of events in space and time, which can be obtained in an explainable and analytical way, to integrate and connect multiple vision tasks to produce the final natural language description. Moreover, we also demonstrate how our automated and explainable video description generation process can function as a fully automatic teacher to effectively train direct, end-to-end neural student pathways, within a self-supervised neuro-analytical system. We validate that our explainable neuro-analytical approach generates coherent, rich and relevant textual descriptions on videos collected from multiple varied datasets, using both standard evaluation metrics, human annotations and consensus from ensembles of state-of-the-art VLMs.
comment: arXiv admin note: text overlap with arXiv:2501.08460
☆ A Survey of Pun Generation: Datasets, Evaluations and Methodologies
Pun generation seeks to creatively modify linguistic elements in text to produce humour or evoke double meanings. It also aims to preserve coherence and contextual appropriateness, making it useful in creative writing and entertainment across various media and contexts. Although pun generation has received considerable attention in computational linguistics, there is currently no dedicated survey that systematically reviews this specific area. To bridge this gap, this paper provides a comprehensive review of pun generation datasets and methods across different stages, including conventional approaches, deep learning techniques, and pre-trained language models. Additionally, we summarise both automated and human evaluation metrics used to assess the quality of pun generation. Finally, we discuss the research challenges and propose promising directions for future work.
☆ Reason to Rote: Rethinking Memorization in Reasoning
Large language models readily memorize arbitrary training instances, such as label noise, yet they perform strikingly well on reasoning tasks. In this work, we investigate how language models memorize label noise, and why such memorization in many cases does not heavily affect generalizable reasoning capabilities. Using two controllable synthetic reasoning datasets with noisy labels, four-digit addition (FDA) and two-hop relational reasoning (THR), we discover a reliance of memorization on generalizable reasoning mechanisms: models continue to compute intermediate reasoning outputs even when retrieving memorized noisy labels, and intervening reasoning adversely affects memorization. We further show that memorization operates through distributed encoding, i.e., aggregating various inputs and intermediate results, rather than building a look-up mechanism from inputs to noisy labels. Moreover, our FDA case study reveals memorization occurs via outlier heuristics, where existing neuron activation patterns are slightly shifted to fit noisy labels. Together, our findings suggest that memorization of label noise in language models builds on, rather than overrides, the underlying reasoning mechanisms, shedding lights on the intriguing phenomenon of benign memorization.
comment: 21 pages, 14 figures
☆ ABench-Physics: Benchmarking Physical Reasoning in LLMs via High-Difficulty and Dynamic Physics Problems
Large Language Models (LLMs) have shown impressive performance in domains such as mathematics and programming, yet their capabilities in physics remain underexplored and poorly understood. Physics poses unique challenges that demand not only precise computation but also deep conceptual understanding and physical modeling skills. Existing benchmarks often fall short due to limited difficulty, multiple-choice formats, and static evaluation settings that fail to capture physical modeling ability. In this paper, we introduce ABench-Physics, a novel benchmark designed to rigorously evaluate LLMs' physical reasoning and generalization capabilities. ABench-Physics consists of two components: Phy_A, a static set of 400 graduate- or Olympiad-level problems; and Phy_B, a dynamic subset of 100 problems equipped with an automatic variation engine to test model robustness across changing conditions. All questions require precise numerical answers, with strict formatting and tolerance constraints. Our evaluation of several state-of-the-art LLMs reveals substantial performance gaps, highlighting persistent limitations in physical reasoning, especially in generalization to dynamic variants. ABench-Physics provides a challenging and diagnostic framework for advancing scientific reasoning in LLMs.
☆ CoSteer: Collaborative Decoding-Time Personalization via Local Delta Steering
Personalized text generation has become crucial for adapting language models to diverse and evolving users' personal context across cultural, temporal, and contextual dimensions. While existing methods often rely on centralized fine-tuning or static preference alignment, they struggle to achieve real-time adaptation under resource constraints inherent to personal devices. This limitation creates a dilemma: large cloud-based models lack access to localized user-specific information, while small on-device models cannot match the generation quality of their cloud counterparts. To address this dichotomy, we present CoSteer, a novel collaborative framework that enables decoding-time personalization through localized delta steering. Our key insight lies in leveraging the logits difference between personal context-aware and -agnostic outputs from local small models as steering signals for cloud-based LLMs. Specifically, we formulate token-level optimization as an online learning problem, where local delta vectors dynamically adjust the remote LLM's logits within the on-device environment. This approach preserves privacy by transmitting only the final steered tokens rather than raw data or intermediate vectors, while maintaining cloud-based LLMs' general capabilities without fine-tuning. Through comprehensive experiments on various personalized generation tasks, we demonstrate that CoSteer effectively assists LLMs in generating personalized content by leveraging locally stored user profiles and histories, ensuring privacy preservation through on-device data processing while maintaining acceptable computational overhead.
☆ LLMs as Architects and Critics for Multi-Source Opinion Summarization
Multi-source Opinion Summarization (M-OS) extends beyond traditional opinion summarization by incorporating additional sources of product metadata such as descriptions, key features, specifications, and ratings, alongside reviews. This integration results in comprehensive summaries that capture both subjective opinions and objective product attributes essential for informed decision-making. While Large Language Models (LLMs) have shown significant success in various Natural Language Processing (NLP) tasks, their potential in M-OS remains largely unexplored. Additionally, the lack of evaluation datasets for this task has impeded further advancements. To bridge this gap, we introduce M-OS-EVAL, a benchmark dataset for evaluating multi-source opinion summaries across 7 key dimensions: fluency, coherence, relevance, faithfulness, aspect coverage, sentiment consistency, specificity. Our results demonstrate that M-OS significantly enhances user engagement, as evidenced by a user study in which, on average, 87% of participants preferred M-OS over opinion summaries. Our experiments demonstrate that factually enriched summaries enhance user engagement. Notably, M-OS-PROMPTS exhibit stronger alignment with human judgment, achieving an average Spearman correlation of \r{ho} = 0.74, which surpasses the performance of previous methodologies.
☆ A Tale of Two Scripts: Transliteration and Post-Correction for Judeo-Arabic
Judeo-Arabic refers to Arabic variants historically spoken by Jewish communities across the Arab world, primarily during the Middle Ages. Unlike standard Arabic, it is written in Hebrew script by Jewish writers and for Jewish audiences. Transliterating Judeo-Arabic into Arabic script is challenging due to ambiguous letter mappings, inconsistent orthographic conventions, and frequent code-switching into Hebrew and Aramaic. In this paper, we introduce a two-step approach to automatically transliterate Judeo-Arabic into Arabic script: simple character-level mapping followed by post-correction to address grammatical and orthographic errors. We also present the first benchmark evaluation of LLMs on this task. Finally, we show that transliteration enables Arabic NLP tools to perform morphosyntactic tagging and machine translation, which would have not been feasible on the original texts.
☆ Word stress in self-supervised speech models: A cross-linguistic comparison
In this paper we study word stress representations learned by self-supervised speech models (S3M), specifically the Wav2vec 2.0 model. We investigate the S3M representations of word stress for five different languages: Three languages with variable or lexical stress (Dutch, English and German) and two languages with fixed or demarcative stress (Hungarian and Polish). We train diagnostic stress classifiers on S3M embeddings and show that they can distinguish between stressed and unstressed syllables in read-aloud short sentences with high accuracy. We also tested language-specificity effects of S3M word stress. The results indicate that the word stress representations are language-specific, with a greater difference between the set of variable versus the set of fixed stressed languages.
comment: Accepted to Interspeech 2025
☆ "This Suits You the Best": Query Focused Comparative Explainable Summarization
Product recommendations inherently involve comparisons, yet traditional opinion summarization often fails to provide holistic comparative insights. We propose the novel task of generating Query-Focused Comparative Explainable Summaries (QF-CES) using Multi-Source Opinion Summarization (M-OS). To address the lack of query-focused recommendation datasets, we introduce MS-Q2P, comprising 7,500 queries mapped to 22,500 recommended products with metadata. We leverage Large Language Models (LLMs) to generate tabular comparative summaries with query-specific explanations. Our approach is personalized, privacy-preserving, recommendation engine-agnostic, and category-agnostic. M-OS as an intermediate step reduces inference latency approximately by 40% compared to the direct input approach (DIA), which processes raw data directly. We evaluate open-source and proprietary LLMs for generating and assessing QF-CES. Extensive evaluations using QF-CES-PROMPT across 5 dimensions (clarity, faithfulness, informativeness, format adherence, and query relevance) showed an average Spearman correlation of 0.74 with human judgments, indicating its potential for QF-CES evaluation.
☆ LOOM-Scope: a comprehensive and efficient LOng-cOntext Model evaluation framework
Long-context processing has become a fundamental capability for large language models~(LLMs). To assess model's long-context performance, numerous long-context evaluation benchmarks have been proposed. However, variations in evaluation settings across these benchmarks lead to inconsistent results, making it difficult to draw reliable comparisons. Besides, the high computational cost of long-context evaluation poses a significant barrier for the community to conduct comprehensive assessments of long-context models. In this paper, we propose LOOM-Scope, a comprehensive and efficient framework for long-context evaluation. LOOM-Scope standardizes evaluation settings across diverse benchmarks, supports deployment of efficient long-context inference acceleration methods, and introduces a holistic yet lightweight benchmark suite to evaluate models comprehensively. Homepage: https://loomscope.github.io
☆ Why We Feel What We Feel: Joint Detection of Emotions and Their Opinion Triggers in E-commerce
Customer reviews on e-commerce platforms capture critical affective signals that drive purchasing decisions. However, no existing research has explored the joint task of emotion detection and explanatory span identification in e-commerce reviews - a crucial gap in understanding what triggers customer emotional responses. To bridge this gap, we propose a novel joint task unifying Emotion detection and Opinion Trigger extraction (EOT), which explicitly models the relationship between causal text spans (opinion triggers) and affective dimensions (emotion categories) grounded in Plutchik's theory of 8 primary emotions. In the absence of labeled data, we introduce EOT-X, a human-annotated collection of 2,400 reviews with fine-grained emotions and opinion triggers. We evaluate 23 Large Language Models (LLMs) and present EOT-DETECT, a structured prompting framework with systematic reasoning and self-reflection. Our framework surpasses zero-shot and chain-of-thought techniques, across e-commerce domains.
comment: 23 pages, 11 figures, 7 tables. Dataset and code will be made publicly available
☆ XiYan-SQL: A Novel Multi-Generator Framework For Text-to-SQL
To leverage the advantages of LLM in addressing challenges in the Text-to-SQL task, we present XiYan-SQL, an innovative framework effectively generating and utilizing multiple SQL candidates. It consists of three components: 1) a Schema Filter module filtering and obtaining multiple relevant schemas; 2) a multi-generator ensemble approach generating multiple highquality and diverse SQL queries; 3) a selection model with a candidate reorganization strategy implemented to obtain the optimal SQL query. Specifically, for the multi-generator ensemble, we employ a multi-task fine-tuning strategy to enhance the capabilities of SQL generation models for the intrinsic alignment between SQL and text, and construct multiple generation models with distinct generation styles by fine-tuning across different SQL formats. The experimental results and comprehensive analysis demonstrate the effectiveness and robustness of our framework. Overall, XiYan-SQL achieves a new SOTA performance of 75.63% on the notable BIRD benchmark, surpassing all previous methods. It also attains SOTA performance on the Spider test set with an accuracy of 89.65%.
☆ R1-RE: Cross-Domain Relationship Extraction with RLVR
Relationship extraction (RE) is a core task in natural language processing. Traditional approaches typically frame RE as a supervised learning problem, directly mapping context to labels-an approach that often suffers from poor out-of-domain (OOD) generalization. Inspired by the workflow of human annotators, we reframe RE as a reasoning task guided by annotation guidelines and introduce R1-RE, the first reinforcement learning with verifiable reward (RLVR) framework for RE tasks. Our method elicits the reasoning abilities of small language models for annotation tasks, resulting in significantly improved OOD robustness. We evaluate our approach on the public Sem-2010 dataset and a private MDKG dataset. The R1-RE-7B model attains an average OOD accuracy of approximately 70%, on par with leading proprietary models such as GPT-4o. Additionally, our comprehensive analysis provides novel insights into the training dynamics and emergent reasoning behaviors of the RLVR paradigm for RE.
comment: 14 pages, 7 figures
☆ Put Teacher in Student's Shoes: Cross-Distillation for Ultra-compact Model Compression Framework KDD 2025
In the era of mobile computing, deploying efficient Natural Language Processing (NLP) models in resource-restricted edge settings presents significant challenges, particularly in environments requiring strict privacy compliance, real-time responsiveness, and diverse multi-tasking capabilities. These challenges create a fundamental need for ultra-compact models that maintain strong performance across various NLP tasks while adhering to stringent memory constraints. To this end, we introduce Edge ultra-lIte BERT framework (EI-BERT) with a novel cross-distillation method. EI-BERT efficiently compresses models through a comprehensive pipeline including hard token pruning, cross-distillation and parameter quantization. Specifically, the cross-distillation method uniquely positions the teacher model to understand the student model's perspective, ensuring efficient knowledge transfer through parameter integration and the mutual interplay between models. Through extensive experiments, we achieve a remarkably compact BERT-based model of only 1.91 MB - the smallest to date for Natural Language Understanding (NLU) tasks. This ultra-compact model has been successfully deployed across multiple scenarios within the Alipay ecosystem, demonstrating significant improvements in real-world applications. For example, it has been integrated into Alipay's live Edge Recommendation system since January 2024, currently serving the app's recommendation traffic across \textbf{8.4 million daily active devices}.
comment: Accepted by KDD 2025
☆ Knowledge-Aware Self-Correction in Language Models via Structured Memory Graphs
Large Language Models (LLMs) are powerful yet prone to generating factual errors, commonly referred to as hallucinations. We present a lightweight, interpretable framework for knowledge-aware self-correction of LLM outputs using structured memory graphs based on RDF triples. Without retraining or fine-tuning, our method post-processes model outputs and corrects factual inconsistencies via external semantic memory. We demonstrate the approach using DistilGPT-2 and show promising results on simple factual prompts.
comment: 8 pages, 4 figures
☆ Retain or Reframe? A Computational Framework for the Analysis of Framing in News Articles and Reader Comments
When a news article describes immigration as an "economic burden" or a "humanitarian crisis," it selectively emphasizes certain aspects of the issue. Although \textit{framing} shapes how the public interprets such issues, audiences do not absorb frames passively but actively reorganize the presented information. While this relationship between source content and audience response is well-documented in the social sciences, NLP approaches often ignore it, detecting frames in articles and responses in isolation. We present the first computational framework for large-scale analysis of framing across source content (news articles) and audience responses (reader comments). Methodologically, we refine frame labels and develop a framework that reconstructs dominant frames in articles and comments from sentence-level predictions, and aligns articles with topically relevant comments. Applying our framework across eleven topics and two news outlets, we find that frame reuse in comments correlates highly across outlets, while topic-specific patterns vary. We release a frame classifier that performs well on both articles and comments, a dataset of article and comment sentences manually labeled for frames, and a large-scale dataset of articles and comments with predicted frame labels.
☆ PRIME: Large Language Model Personalization with Cognitive Memory and Thought Processes
Large language model (LLM) personalization aims to align model outputs with individuals' unique preferences and opinions. While recent efforts have implemented various personalization methods, a unified theoretical framework that can systematically understand the drivers of effective personalization is still lacking. In this work, we integrate the well-established cognitive dual-memory model into LLM personalization, by mirroring episodic memory to historical user engagements and semantic memory to long-term, evolving user beliefs. Specifically, we systematically investigate memory instantiations and introduce a unified framework, PRIME, using episodic and semantic memory mechanisms. We further augment PRIME with a novel personalized thinking capability inspired by the slow thinking strategy. Moreover, recognizing the absence of suitable benchmarks, we introduce a dataset using Change My View (CMV) from Reddit, specifically designed to evaluate long-context personalization. Extensive experiments validate PRIME's effectiveness across both long- and short-context scenarios. Further analysis confirms that PRIME effectively captures dynamic personalization beyond mere popularity biases.
☆ VLM2Vec-V2: Advancing Multimodal Embedding for Videos, Images, and Visual Documents
Multimodal embedding models have been crucial in enabling various downstream tasks such as semantic similarity, information retrieval, and clustering over different modalities. However, existing multimodal embeddings like VLM2Vec, E5-V, GME are predominantly focused on natural images, with limited support for other visual forms such as videos and visual documents. This restricts their applicability in real-world scenarios, including AI agents, multi-modal search and recommendation, and retrieval-augmented generation (RAG). To close this gap, we propose VLM2Vec-V2, a unified framework for learning embeddings across diverse visual forms. First, we introduce MMEB-V2, a comprehensive benchmark that extends MMEB with five new task types: visual document retrieval, video retrieval, temporal grounding, video classification and video question answering - spanning text, image, video, and visual document inputs. Next, we train VLM2Vec-V2, a general-purpose embedding model that supports text, image, video, and visual document inputs. Extensive experiments show that VLM2Vec-V2 achieves strong performance not only on the newly introduced video and document retrieval tasks, but also improves over prior baselines on the original image benchmarks. Through extensive evaluation, our study offers insights into the generalizability of various multimodal embedding models and highlights effective strategies for unified embedding learning, laying the groundwork for more scalable and adaptable representation learning in both research and real-world settings.
comment: Technical Report
♻ ☆ Judging the Judges: Can Large Vision-Language Models Fairly Evaluate Chart Comprehension and Reasoning? ACL 2025
Charts are ubiquitous as they help people understand and reason with data. Recently, various downstream tasks, such as chart question answering, chart2text, and fact-checking, have emerged. Large Vision-Language Models (LVLMs) show promise in tackling these tasks, but their evaluation is costly and time-consuming, limiting real-world deployment. While using LVLMs as judges to assess the chart comprehension capabilities of other LVLMs could streamline evaluation processes, challenges like proprietary datasets, restricted access to powerful models, and evaluation costs hinder their adoption in industrial settings. To this end, we present a comprehensive evaluation of 13 open-source LVLMs as judges for diverse chart comprehension and reasoning tasks. We design both pairwise and pointwise evaluation tasks covering criteria like factual correctness, informativeness, and relevancy. Additionally, we analyze LVLM judges based on format adherence, positional consistency, length bias, and instruction-following. We focus on cost-effective LVLMs (<10B parameters) suitable for both research and commercial use, following a standardized evaluation protocol and rubric to measure the LVLM judge's accuracy. Experimental results reveal notable variability: while some open LVLM judges achieve GPT-4-level evaluation performance (about 80% agreement with GPT-4 judgments), others struggle (below ~10% agreement). Our findings highlight that state-of-the-art open-source LVLMs can serve as cost-effective automatic evaluators for chart-related tasks, though biases such as positional preference and length bias persist.
comment: Accepted at ACL 2025 Industry Track
♻ ☆ Late Chunking: Contextual Chunk Embeddings Using Long-Context Embedding Models
Many use cases require retrieving smaller portions of text, and dense vector-based retrieval systems often perform better with shorter text segments, as the semantics are less likely to be over-compressed in the embeddings. Consequently, practitioners often split text documents into smaller chunks and encode them separately. However, chunk embeddings created in this way can lose contextual information from surrounding chunks, resulting in sub-optimal representations. In this paper, we introduce a novel method called late chunking, which leverages long context embedding models to first embed all tokens of the long text, with chunking applied after the transformer model and just before mean pooling - hence the term late in its naming. The resulting chunk embeddings capture the full contextual information, leading to superior results across various retrieval tasks. The method is generic enough to be applied to a wide range of long-context embedding models and works without additional training. To further increase the effectiveness of late chunking, we propose a dedicated fine-tuning approach for embedding models.
comment: 11 pages, 3rd draft
♻ ☆ OPeRA: A Dataset of Observation, Persona, Rationale, and Action for Evaluating LLMs on Human Online Shopping Behavior Simulation
Can large language models (LLMs) accurately simulate the next web action of a specific user? While LLMs have shown promising capabilities in generating ``believable'' human behaviors, evaluating their ability to mimic real user behaviors remains an open challenge, largely due to the lack of high-quality, publicly available datasets that capture both the observable actions and the internal reasoning of an actual human user. To address this gap, we introduce OPERA, a novel dataset of Observation, Persona, Rationale, and Action collected from real human participants during online shopping sessions. OPERA is the first public dataset that comprehensively captures: user personas, browser observations, fine-grained web actions, and self-reported just-in-time rationales. We developed both an online questionnaire and a custom browser plugin to gather this dataset with high fidelity. Using OPERA, we establish the first benchmark to evaluate how well current LLMs can predict a specific user's next action and rationale with a given persona and history. This dataset lays the groundwork for future research into LLM agents that aim to act as personalized digital twins for human.
♻ ☆ The Super Weight in Large Language Models
Recent works have shown a surprising result: a small fraction of Large Language Model (LLM) parameter outliers are disproportionately important to the quality of the model. LLMs contain billions of parameters, so these small fractions, such as 0.01%, translate to hundreds of thousands of parameters. In this work, we present an even more surprising finding: Pruning as few as a single parameter can destroy an LLM's ability to generate text -- increasing perplexity by 3 orders of magnitude and reducing zero-shot accuracy to guessing. We propose a data-free method for identifying such parameters, termed super weights, using a single forward pass through the model. We additionally find that these super weights induce correspondingly rare and large activation outliers, termed super activations. When preserved with high precision, super activations can improve simple round-to-nearest quantization to become competitive with state-of-the-art methods. For weight quantization, we similarly find that by preserving the super weight and clipping other weight outliers, round-to-nearest quantization can scale to much larger block sizes than previously considered. To facilitate further research into super weights, we provide an index of super weight coordinates for common, openly available LLMs.
♻ ☆ jina-embeddings-v4: Universal Embeddings for Multimodal Multilingual Retrieval
We introduce jina-embeddings-v4, a 3.8 billion parameter multimodal embedding model that unifies text and image representations through a novel architecture supporting both single-vector and multi-vector embeddings in the late interaction style. The model incorporates task-specific Low-Rank Adaptation (LoRA) adapters to optimize performance across diverse retrieval scenarios, including query-document retrieval, semantic text similarity, and code search. Comprehensive evaluations demonstrate that jina-embeddings-v4 achieves state-of-the-art performance on both single-modal and cross-modal retrieval tasks, with particular strength in processing visually rich content such as tables, charts, diagrams, and mixed-media formats. To facilitate evaluation of this capability, we also introduce Jina-VDR, a novel benchmark specifically designed for visually rich image retrieval.
comment: 22 pages, 1-10 main, 14-22 experimental results, benchmark tables
♻ ☆ On the Role of Feedback in Test-Time Scaling of Agentic AI Workflows
Agentic AI workflows (systems that autonomously plan and act) are becoming widespread, yet their task success rate on complex tasks remains low. A promising solution is inference-time alignment, which uses extra compute at test time to improve performance. Inference-time alignment relies on three components: sampling, evaluation, and feedback. While most prior work studies sampling and automatic evaluation, feedback remains underexplored. To study the role of feedback, we introduce Iterative Agent Decoding (IAD), a procedure that repeatedly inserts feedback extracted from different forms of critiques (reward models or AI-generated textual feedback) between decoding steps. Through IAD, we analyze feedback along four dimensions: (1) its role in the accuracy-compute trade-offs with limited inference budget, (2) quantifying the gains over diversity-only baselines such as best-of-N sampling, (3) effectiveness of composing feedback from reward models versus textual critique, and (4) robustness to noisy or low-quality feedback. Across Sketch2Code, Text2SQL, Intercode, and WebShop, we show that IAD with proper integration of high fidelity feedback leads to consistent gains up to 10 percent absolute performance improvement over various baselines such as best-of-N. Our findings underscore feedback as a crucial knob for inference-time alignment of agentic AI workflows with limited inference budget.
♻ ☆ Extended Inductive Reasoning for Personalized Preference Inference from Behavioral Signals
Large language models (LLMs) have demonstrated significant success in complex reasoning tasks such as math and coding. In contrast to these tasks where deductive reasoning predominates, inductive reasoning-the ability to derive general rules from incomplete evidence, remains underexplored. This paper investigates extended inductive reasoning in LLMs through the lens of personalized preference inference, a critical challenge in LLM alignment where current approaches struggle to capture diverse user preferences. The task demands strong inductive reasoning capabilities as user preferences are typically embedded implicitly across various interaction forms, requiring models to synthesize consistent preference patterns from scattered signals. We propose AlignXplore, a model that leverages extended reasoning chains to enable systematic preference inference from behavioral signals in users' interaction histories. Such explicit preference articulation enables efficient streaming inference: when new behavioral signals emerge, the model can directly build upon previously inferred preference descriptions rather than reprocessing historical signals from scratch, while also supporting iterative refinement to the inferred preferences. We develop AlignXplore by combining cold-start training based on synthetic data with subsequent online reinforcement learning. Through extensive experiments, we demonstrate that AlignXplore achieves substantial improvements over the backbone model by an average of 15.49\% on in-domain and out-of-domain benchmarks, while maintaining strong generalization ability across different input formats and downstream models. Further analyses establish best practices for preference inference learning through systematic comparison of reward modeling strategies, while revealing the emergence of human-like inductive reasoning patterns during training.
♻ ☆ Enhancing Personalized Multi-Turn Dialogue with Curiosity Reward
Effective conversational agents like large language models (LLMs) must personalize their interactions to adapt to user preferences, personalities, and attributes across diverse domains like education and healthcare. Current methods like Reinforcement Learning from Human Feedback (RLHF), often prioritize helpfulness and safety but fall short in fostering truly empathetic, adaptive, and personalized dialogues. Existing personalization approaches typically rely on extensive user history, limiting their effectiveness for new or context-limited users. To address these limitations, we propose leveraging a user model to incorporate a curiosity-based intrinsic reward into multi-turn RLHF. This novel reward mechanism encourages the LLM agent to actively infer user traits by optimizing conversations to improve its user model's accuracy. Consequently, the agent delivers more personalized interactions by learning more about the user. We demonstrate our method's effectiveness in two distinct domains: significantly improving personalization performance in a conversational recommendation task, and personalizing conversations for different learning styles in an educational setting. We show improved generalization capabilities compared to traditional multi-turn RLHF, all while maintaining conversation quality. Our method offers a promising solution for creating more personalized, adaptive, and engaging conversational agents.
♻ ☆ Reviewing Scientific Papers for Critical Problems With Reasoning LLMs: Baseline Approaches and Automatic Evaluation
Recent advancements in large language models have sparked interest in utilizing them to aid the peer review process of scientific publication amid the peer review crisis. However, having AI models generate full reviews in the same way as human reviewers risks exacerbating the irresponsible use of LLM-generated reviews. As an alternative, we propose adopting LLMs as manuscript quality checkers. We introduce several baseline approaches and an extendable automatic evaluation framework using top reasoning LLMs as judges to tackle the difficulty of recruiting domain experts for manual evaluation. Utilizing papers withdrawn from arXiv, we validated our proposed methods with several leading reasoning LLMs from multiple vendors and assessed their performance and API costs for identifying critical errors and unsoundness problems in scientific papers. o3 exhibited the best problem identification performance among all models at a modest cost. This paper provides insights into document-based scientific understanding/reasoning and lays a foundation for future applications. Our dataset, code, and model outputs are publicly available.
comment: Add results from new experiments; update discussion and GitHub link
♻ ☆ NativQA Framework: Enabling LLMs with Native, Local, and Everyday Knowledge
The rapid advancement of large language models (LLMs) has raised concerns about cultural bias, fairness, and their applicability in diverse linguistic and underrepresented regional contexts. To enhance and benchmark the capabilities of LLMs, there is a need to develop large-scale resources focused on multilingual, local, and cultural contexts. In this study, we propose the NativQA framework, which can seamlessly construct large-scale, culturally and regionally aligned QA datasets in native languages. The framework utilizes user-defined seed queries and leverages search engines to collect location-specific, everyday information. It has been evaluated across 39 locations in 24 countries and in 7 languages -- ranging from extremely low-resource to high-resource languages -- resulting in over 300K Question-Answer (QA) pairs. The developed resources can be used for LLM benchmarking and further fine-tuning. The framework has been made publicly available for the community (https://gitlab.com/nativqa/nativqa-framework).
comment: LLMs, Native, Multilingual, Language Diversity, Contextual Understanding, Minority Languages, Culturally Informed, Foundation Models, Large Language Models
♻ ☆ SEPSIS: I Can Catch Your Lies -- A New Paradigm for Deception Detection ACL
Deception is the intentional practice of twisting information. It is a nuanced societal practice deeply intertwined with human societal evolution, characterized by a multitude of facets. This research explores the problem of deception through the lens of psychology, employing a framework that categorizes deception into three forms: lies of omission, lies of commission, and lies of influence. The primary focus of this study is specifically on investigating only lies of omission. We propose a novel framework for deception detection leveraging NLP techniques. We curated an annotated dataset of 876,784 samples by amalgamating a popular large-scale fake news dataset and scraped news headlines from the Twitter handle of the Times of India, a well-known Indian news media house. Each sample has been labeled with four layers, namely: (i) the type of omission (speculation, bias, distortion, sounds factual, and opinion), (ii) colors of lies(black, white, etc), and (iii) the intention of such lies (to influence, etc) (iv) topic of lies (political, educational, religious, etc). We present a novel multi-task learning pipeline that leverages the dataless merging of fine-tuned language models to address the deception detection task mentioned earlier. Our proposed model achieved an F1 score of 0.87, demonstrating strong performance across all layers, including the type, color, intent, and topic aspects of deceptive content. Finally, our research explores the relationship between lies of omission and propaganda techniques. To accomplish this, we conducted an in-depth analysis, uncovering compelling findings. For instance, our analysis revealed a significant correlation between loaded language and opinion, shedding light on their interconnectedness. To encourage further research in this field, we are releasing the SEPSIS dataset and code at https://huggingface.co/datasets/ankurani/deception.
comment: ACL SRW 2025
♻ ☆ Language Models can Self-Improve at State-Value Estimation for Better Search
Collecting ground-truth rewards or human demonstrations for multi-step reasoning tasks is often prohibitively expensive and time consuming, especially in interactive domains like web tasks. To address this bottleneck, we present self-taught lookahead (STL), a self-supervised method that leverages state-transition dynamics to improve a value model capable of effectively guiding language model-controlled search without any labeled data. We find that moderately sized (8 billion parameters) open-weight value models improved with STL can match the performance of using a gpt-4o value model. Furthermore, we find that specialized value models learned with STL can be deployed with computationally lightweight search algorithms, achieving performance that matches that of more expensive tree search methods, while reducing costs by an order of magnitude.
♻ ☆ End-to-End Evaluation for Low-Latency Simultaneous Speech Translation EMNLP 2023
The challenge of low-latency speech translation has recently draw significant interest in the research community as shown by several publications and shared tasks. Therefore, it is essential to evaluate these different approaches in realistic scenarios. However, currently only specific aspects of the systems are evaluated and often it is not possible to compare different approaches. In this work, we propose the first framework to perform and evaluate the various aspects of low-latency speech translation under realistic conditions. The evaluation is carried out in an end-to-end fashion. This includes the segmentation of the audio as well as the run-time of the different components. Secondly, we compare different approaches to low-latency speech translation using this framework. We evaluate models with the option to revise the output as well as methods with fixed output. Furthermore, we directly compare state-of-the-art cascaded as well as end-to-end systems. Finally, the framework allows to automatically evaluate the translation quality as well as latency and also provides a web interface to show the low-latency model outputs to the user.
comment: Demo paper at EMNLP 2023
♻ ☆ Using Large Multimodal Models to Extract Knowledge Components for Knowledge Tracing from Multimedia Question Information
Knowledge tracing models have enabled a range of intelligent tutoring systems to provide feedback to students. However, existing methods for knowledge tracing in learning sciences are predominantly reliant on statistical data and instructor-defined knowledge components, making it challenging to integrate AI-generated educational content with traditional established methods. We propose a method for automatically extracting knowledge components from educational content using instruction-tuned large multimodal models. We validate this approach by comprehensively evaluating it against knowledge tracing benchmarks in five domains. Our results indicate that the automatically extracted knowledge components can effectively replace human-tagged labels, offering a promising direction for enhancing intelligent tutoring systems in limited-data scenarios, achieving more explainable assessments in educational settings, and laying the groundwork for automated assessment.
comment: Accepted to Educational Data Mining 2025
♻ ☆ Why Do Open-Source LLMs Struggle with Data Analysis? A Systematic Empirical Study
Large Language Models (LLMs) hold promise in automating data analysis tasks, yet open-source models face significant limitations in these kinds of reasoning-intensive scenarios. In this work, we investigate strategies to enhance the data analysis capabilities of open-source LLMs. By curating a seed dataset of diverse, realistic scenarios, we evaluate models across three dimensions: data understanding, code generation, and strategic planning. Our analysis reveals three key findings: (1) Strategic planning quality serves as the primary determinant of model performance; (2) Interaction design and task complexity significantly influence reasoning capabilities; (3) Data quality demonstrates a greater impact than diversity in achieving optimal performance. We leverage these insights to develop a data synthesis methodology, demonstrating significant improvements in open-source LLMs' analytical reasoning capabilities.
comment: Work in progress
♻ ☆ Are Information Retrieval Approaches Good at Harmonising Longitudinal Survey Questions in Social Science? SIGIR 2025
Automated detection of semantically equivalent questions in longitudinal social science surveys is crucial for long-term studies informing empirical research in the social, economic, and health sciences. Retrieving equivalent questions faces dual challenges: inconsistent representation of theoretical constructs (i.e. concept/sub-concept) across studies as well as between question and response options, and the evolution of vocabulary and structure in longitudinal text. To address these challenges, our multi-disciplinary collaboration of computer scientists and survey specialists presents a new information retrieval (IR) task of identifying concept (e.g. Housing, Job, etc.) equivalence across question and response options to harmonise longitudinal population studies. This paper investigates multiple unsupervised approaches on a survey dataset spanning 1946-2020, including probabilistic models, linear probing of language models, and pre-trained neural networks specialised for IR. We show that IR-specialised neural models achieve the highest overall performance with other approaches performing comparably. Additionally, the re-ranking of the probabilistic model's results with neural models only introduces modest improvements of 0.07 at most in F1-score. Qualitative post-hoc evaluation by survey specialists shows that models generally have a low sensitivity to questions with high lexical overlap, particularly in cases where sub-concepts are mismatched. Altogether, our analysis serves to further research on harmonising longitudinal studies in social science.
comment: Accepted at SIGIR 2025
♻ ☆ Do LLMs Understand the Safety of Their Inputs? Training-Free Moderation via Latent Prototypes
With the rise of LLMs, ensuring model safety and alignment has become a critical concern. While modern instruction-finetuned LLMs incorporate alignment during training, they still frequently require moderation tools to prevent unsafe behavior. The most common approach to moderation are guard models that flag unsafe inputs. However, guards require costly training and are typically limited to fixed-size, pre-trained options, making them difficult to adapt to evolving risks and resource constraints. We hypothesize that instruction-finetuned LLMs already encode safety-relevant information internally and explore training-free safety assessment methods that work with off-the-shelf models. We show that simple prompting allows models to recognize harmful inputs they would otherwise mishandle. We also demonstrate that safe and unsafe prompts are distinctly separable in the models' latent space. Building on this, we introduce the Latent Prototype Moderator (LPM), a training-free moderation method that uses Mahalanobis distance in latent space to assess input safety. LPM is a lightweight, customizable add-on that generalizes across model families and sizes. Our method matches or exceeds state-of-the-art guard models across multiple safety benchmarks, offering a practical and flexible solution for scalable LLM moderation.
♻ ☆ CritiQ: Mining Data Quality Criteria from Human Preferences ACL 2025
Language model heavily depends on high-quality data for optimal performance. Existing approaches rely on manually designed heuristics, the perplexity of existing models, training classifiers, or careful prompt engineering, which require significant expert experience and human annotation effort while introduce biases. We introduce CritiQ, a novel data selection method that automatically mines criteria from human preferences for data quality with only ~30 human-annotated pairs and performs efficient data selection. The main component, CritiQ Flow, employs a manager agent to evolve quality criteria and worker agents to make pairwise judgments. We build a knowledge base that extracts quality criteria from previous work to boost CritiQ Flow. Compared to perplexity- and classifier- based methods, verbal criteria are more interpretable and possess reusable value. After deriving the criteria, we train the CritiQ Scorer to give quality scores and perform efficient data selection. We demonstrate the effectiveness of our method in the code, math, and logic domains, achieving high accuracy on human-annotated test sets. To validate the quality of the selected data, we continually train Llama 3.1 models and observe improved performance on downstream tasks compared to uniform sampling. Ablation studies validate the benefits of the knowledge base and the reflection process. We analyze how criteria evolve and the effectiveness of majority voting.
comment: to be published in ACL 2025, Code is available at https://github.com/KYLN24/CritiQ
♻ ☆ RewardAnything: Generalizable Principle-Following Reward Models
Reward Models, essential for guiding Large Language Model optimization, are typically trained on fixed preference datasets, resulting in rigid alignment to single, implicit preference distributions. This prevents adaptation to diverse real-world needs-from conciseness in one task to detailed explanations in another. The standard practice of collecting task-specific preference data and retraining reward models is resource-intensive, often producing biased rewards, and limits practical application. We introduce generalizable, principle-following reward models. We propose that RMs should understand and adhere to dynamically provided natural language specifications of reward principles, similar to instruction-following in LLMs. To measure this capability, we develop RABench, a comprehensive benchmark for RMs focusing on generalization across diverse principles. Evaluations on RABench reveal poor generalization of current RMs. As a solution, we present RewardAnything, a novel RM designed and trained to explicitly follow natural language principles. We achieve SotA performance with RewardAnything in traditional RM benchmark simply by specifying a well-defined principle, and results on RABench show we excel in adapting to novel principles without retraining. Furthermore, RewardAnything integrates seamlessly with existing RLHF methods and we show by a case study on how to automatically and efficiently align LLMs with only natural language principles.
comment: 25 pages, 9 figures, Code & model weights available at: https://zhuohaoyu.github.io/RewardAnything
♻ ☆ BiMa: Towards Biases Mitigation for Text-Video Retrieval via Scene Element Guidance ACM MM 2025
Text-video retrieval (TVR) systems often suffer from visual-linguistic biases present in datasets, which cause pre-trained vision-language models to overlook key details. To address this, we propose BiMa, a novel framework designed to mitigate biases in both visual and textual representations. Our approach begins by generating scene elements that characterize each video by identifying relevant entities/objects and activities. For visual debiasing, we integrate these scene elements into the video embeddings, enhancing them to emphasize fine-grained and salient details. For textual debiasing, we introduce a mechanism to disentangle text features into content and bias components, enabling the model to focus on meaningful content while separately handling biased information. Extensive experiments and ablation studies across five major TVR benchmarks (i.e., MSR-VTT, MSVD, LSMDC, ActivityNet, and DiDeMo) demonstrate the competitive performance of BiMa. Additionally, the model's bias mitigation capability is consistently validated by its strong results on out-of-distribution retrieval tasks.
comment: Accepted at ACM MM 2025
♻ ☆ Qwen vs. Gemma Integration with Whisper: A Comparative Study in Multilingual SpeechLLM Systems
This paper presents our system for the MLC-SLM Challenge 2025, focusing on multilingual speech recognition and language modeling with large language models (LLMs). Our approach combines a fine-tuned Whisper-large-v3 encoder with efficient projector architectures and various decoder configurations. We employ a three-stage training methodology that progressively optimizes the encoder, projector, and LLM components. Our system achieves competitive performance with a private test average WER/CER result of 16.63% using the Gemma3-12B and 18.6% using the Qwen2.5-7B as decoder-only language model.
comment: Accepted to Interspeech MLCSLM-2025 Workshop
♻ ☆ Thunder-DeID: Accurate and Efficient De-identification Framework for Korean Court Judgments
To ensure a balance between open access to justice and personal data protection, the South Korean judiciary mandates the de-identification of court judgments before they can be publicly disclosed. However, the current de-identification process is inadequate for handling court judgments at scale while adhering to strict legal requirements. Additionally, the legal definitions and categorizations of personal identifiers are vague and not well-suited for technical solutions. To tackle these challenges, we propose a de-identification framework called Thunder-DeID, which aligns with relevant laws and practices. Specifically, we (i) construct and release the first Korean legal dataset containing annotated judgments along with corresponding lists of entity mentions, (ii) introduce a systematic categorization of Personally Identifiable Information (PII), and (iii) develop an end-to-end deep neural network (DNN)-based de-identification pipeline. Our experimental results demonstrate that our model achieves state-of-the-art performance in the de-identification of court judgments.
♻ ☆ Text Detoxification: Data Efficiency, Semantic Preservation and Model Generalization
The widespread dissemination of toxic content on social media poses a serious threat to both online environments and public discourse, highlighting the urgent need for detoxification methods that effectively remove toxicity while preserving the original semantics. However, existing approaches often struggle to simultaneously achieve strong detoxification performance, semantic preservation, and robustness to out-of-distribution data. Moreover, they typically rely on costly, manually annotated parallel corpora while showing poor data efficiency. To address these challenges, we propose a two-stage training framework that jointly optimizes for data efficiency, semantic preservation, and model generalization. We first perform supervised fine-tuning on a small set of high-quality, filtered parallel data to establish a strong initialization. Then, we leverage unlabeled toxic inputs and a custom-designed reward model to train the LLM using Group Relative Policy Optimization. Experimental results demonstrate that our method effectively mitigates the trade-offs faced by previous work, achieving state-of-the-art performance with improved generalization and significantly reduced dependence on annotated data. Our code is available at: https://github.com/allacnobug/Detoxification-of-Text.
♻ ☆ MAIN: Mutual Alignment Is Necessary for instruction tuning
Instruction tuning has empowered large language models (LLMs) to achieve remarkable performance, yet its success heavily depends on the availability of large-scale, high-quality instruction-response pairs. To meet this demand, various methods have been developed to synthesize data at scale. However, current methods for scaling up data generation often overlook a crucial aspect: the alignment between instructions and responses. We hypothesize that the quality of instruction-response pairs is determined not by the individual quality of each component, but by the degree of mutual alignment. To address this, we propose a Mutual Alignment Framework (MAIN) which enforces coherence between instructions and responses through mutual constraints. We demonstrate that MAIN generalizes well across model architectures and sizes, achieving state-of-the-art performance on LLaMA, Mistral, and Qwen models across diverse benchmarks. This work underscores the critical role of instruction-response alignment in enabling generalizable and high-quality instruction tuning for LLMs.
♻ ☆ Markovian Transformers for Informative Language Modeling
Chain-of-Thought (CoT) reasoning often fails to faithfully reflect a language model's underlying decision process. We address this by making CoT text causally essential in a "Markovian" language model, factoring next-token prediction through an intermediate CoT and training it to predict future tokens independently of the original prompt. We formalize this via an "informativeness" objective that quantifies how much a trained CoT improves next-token predictions over a baseline. Using policy gradient, we show that Llama 3.1 8B achieves a 33.2% absolute accuracy improvement on GSM8K. Perturbation tests confirm stronger reliance on the CoT, while cross-model transfers indicate these reasoning traces generalize across interpreters. Our approach enhances both accuracy and interpretability, potentially extending CoT reasoning to arbitrarily long contexts and diverse tasks.
comment: 18 pages, 6 figures
♻ ☆ Pensieve Grader: An AI-Powered, Ready-to-Use Platform for Effortless Handwritten STEM Grading
Grading handwritten, open-ended responses remains a major bottleneck in large university STEM courses. We introduce Pensieve (https://www.pensieve.co), an AI-assisted grading platform that leverages large language models (LLMs) to transcribe and evaluate student work, providing instructors with rubric-aligned scores, transcriptions, and confidence ratings. Unlike prior tools that focus narrowly on specific tasks like transcription or rubric generation, Pensieve supports the entire grading pipeline-from scanned student submissions to final feedback-within a human-in-the-loop interface. Pensieve has been deployed in real-world courses at over 20 institutions and has graded more than 300,000 student responses. We present system details and empirical results across four core STEM disciplines: Computer Science, Mathematics, Physics, and Chemistry. Our findings show that Pensieve reduces grading time by an average of 65%, while maintaining a 95.4% agreement rate with instructor-assigned grades for high-confidence predictions.
comment: 7 pages, 5 figues, 1 table
♻ ☆ Eka-Eval : A Comprehensive Evaluation Framework for Large Language Models in Indian Languages
The rapid advancement of Large Language Models (LLMs) has intensified the need for evaluation frameworks that address the requirements of linguistically diverse regions, such as India, and go beyond English-centric benchmarks. We introduce EKA-EVAL, a unified evaluation framework that integrates over 35+ benchmarks (including 10 Indic benchmarks) across nine major evaluation categories. The framework provides broader coverage than existing Indian language evaluation tools, offering 11 core capabilities through a modular architecture, seamless integration with Hugging Face and proprietary models, and plug-and-play usability. As the first end-to-end suite for scalable, multilingual LLM benchmarking, the framework combines extensive benchmarks, modular workflows, and dedicated support for low-resource Indian languages to enable inclusive assessment of LLM capabilities across diverse domains. We conducted extensive comparisons against five existing baselines, demonstrating that EKA-EVAL achieves the highest participant ratings in four out of five categories. The framework is open-source and publicly available at: https://github.com/lingo-iitgn/eka-eval.
♻ ☆ Breach in the Shield: Unveiling the Vulnerabilities of Large Language Models
Large Language Models (LLMs) and Vision-Language Models (VLMs) have achieved impressive performance across a wide range of tasks, yet they remain vulnerable to carefully crafted perturbations. In this study, we seek to pinpoint the sources of this fragility by identifying parameters and input dimensions (pixels or token embeddings) that are susceptible to such perturbations. To this end, we propose a stability measure called \textbf{FI}, \textbf{F}irst order local \textbf{I}nfluence, which is rooted in information geometry and quantifies the sensitivity of individual parameter and input dimensions. Our extensive analysis across LLMs and VLMs (from 1.5B to 13B parameters) reveals that: (I) A small subset of parameters or input dimensions with high FI values disproportionately contribute to model brittleness. (II) Mitigating the influence of these vulnerable parameters during model merging leads to improved performance.
♻ ☆ A Text is Worth Several Tokens: Text Embedding from LLMs Secretly Aligns Well with The Key Tokens ACL2025
Text embeddings from large language models (LLMs) have achieved excellent results in tasks such as information retrieval, semantic textual similarity, etc. In this work, we show an interesting finding: when feeding a text into the LLM-based embedder, the obtained text embedding will be able to be aligned with the key tokens in the input text. We first fully analyze this phenomenon on eight LLM-based embedders and show that this phenomenon is universal and is not affected by model architecture, training strategy, and embedding method. With a deeper analysis, we find that the main change in embedding space between these embedders and their LLM backbones is in the first principal component. By adjusting the first principal component, we can align text embedding with the key tokens. Finally, we give several examples to demonstrate the vast application potential of this finding: (1) we propose a simple and practical sparse retrieval method based on the aligned tokens, which can achieve 80% of the dense retrieval effect of the same model while reducing the computation significantly; (2) we show that our findings provide a novel perspective to help understand novel technologies (e.g., instruction-following embedding) and fuzzy concepts (e.g., semantic relatedness vs. similarity) in this field.
comment: ACL2025 Oral
♻ ☆ Towards Cost-Effective Reward Guided Text Generation ICML 2025
Reward-guided text generation (RGTG) has emerged as a viable alternative to offline reinforcement learning from human feedback (RLHF). RGTG methods can align baseline language models to human preferences without further training like in standard RLHF methods. However, they rely on a reward model to score each candidate token generated by the language model at inference, incurring significant test-time overhead. Additionally, the reward model is usually only trained to score full sequences, which can lead to sub-optimal choices for partial sequences. In this work, we present a novel reward model architecture that is trained, using a Bradley-Terry loss, to prefer the optimal expansion of a sequence with just a \emph{single call} to the reward model at each step of the generation process. That is, a score for all possible candidate tokens is generated simultaneously, leading to efficient inference. We theoretically analyze various RGTG reward models and demonstrate that prior techniques prefer sub-optimal sequences compared to our method during inference. Empirically, our reward model leads to significantly faster inference than other RGTG methods. It requires fewer calls to the reward model and performs competitively compared to previous RGTG and offline RLHF methods.
comment: 18 pages. Work accepted at ICML 2025
♻ ☆ Position: Machine Learning Conferences Should Establish a "Refutations and Critiques" Track
Science progresses by iteratively advancing and correcting humanity's understanding of the world. In machine learning (ML) research, rapid advancements have led to an explosion of publications, but have also led to misleading, incorrect, flawed or perhaps even fraudulent studies being accepted and sometimes highlighted at ML conferences due to the fallibility of peer review. While such mistakes are understandable, ML conferences do not offer robust processes to help the field systematically correct when such errors are made. This position paper argues that ML conferences should establish a dedicated "Refutations and Critiques" (R&C) Track. This R&C Track would provide a high-profile, reputable platform to support vital research that critically challenges prior research, thereby fostering a dynamic self-correcting research ecosystem. We discuss key considerations including track design, review principles, potential pitfalls, and provide an illustrative example submission concerning a recent ICLR 2025 Oral. We conclude that ML conferences should create official, reputable mechanisms to help ML research self-correct.
♻ ☆ Gradient-guided Attention Map Editing: Towards Efficient Contextual Hallucination Mitigation NAACL 2025
In tasks like summarization and open-book question answering (QA), Large Language Models (LLMs) often encounter "contextual hallucination", where they produce irrelevant or incorrect responses despite having access to accurate source information. This typically occurs because these models tend to prioritize self-generated content over the input context, causing them to disregard pertinent details. To address this challenge, we introduce a novel method called "Guided Attention Map Editing" (GAME), which dynamically adjusts attention maps to improve contextual relevance. During inference, GAME employs a trained classifier to identify attention maps prone to inducing hallucinations and executes targeted interventions. These interventions, guided by gradient-informed "edit directions'', strategically redistribute attention weights across various heads to effectively reduce hallucination. Comprehensive evaluations on challenging summarization and open-book QA tasks show that GAME consistently reduces hallucinations across a variety of open-source models. Specifically, GAME reduces hallucinations by 10% in the XSum summarization task while achieving a 7X speed-up in computational efficiency compared to the state-of-the-art baselines.
comment: Accepted as Finding of NAACL 2025
♻ ☆ Inside you are many wolves: Using cognitive models to interpret value trade-offs in LLMs
Navigating everyday social situations often requires juggling conflicting goals, such as conveying a harsh truth, maintaining trust, all while still being mindful of another person's feelings. These value trade-offs are an integral part of human decision-making and language use, however, current tools for interpreting such dynamic and multi-faceted notions of values in LLMs are limited. In cognitive science, so-called "cognitive models" provide formal accounts of these trade-offs in humans, by modeling the weighting of a speaker's competing utility functions in choosing an action or utterance. In this work, we use a leading cognitive model of polite speech to interpret the extent to which LLMs represent human-like trade-offs. We apply this lens to systematically evaluate value trade-offs in two encompassing model settings: degrees of reasoning "effort" in frontier black-box models, and RL post-training dynamics of open-source models. Our results highlight patterns of higher informational utility than social utility in reasoning models, and in open-source models shown to be stronger in mathematical reasoning. Our findings from LLMs' training dynamics suggest large shifts in utility values early on in training with persistent effects of the choice of base model and pretraining data, compared to feedback dataset or alignment method. We show that our method is responsive to diverse aspects of the rapidly evolving LLM landscape, with insights for forming hypotheses about other high-level behaviors, shaping training regimes for reasoning models, and better controlling trade-offs between values during model training.
comment: 11 pages, 3 figures
Artificial Intelligence
☆ Evaluating Memory in LLM Agents via Incremental Multi-Turn Interactions
Recent benchmarks for Large Language Model (LLM) agents primarily focus on evaluating reasoning, planning, and execution capabilities, while another critical component-memory, encompassing how agents memorize, update, and retrieve long-term information-is under-evaluated due to the lack of benchmarks. We term agents with memory mechanisms as memory agents. In this paper, we identify four core competencies essential for memory agents: accurate retrieval, test-time learning, long-range understanding, and conflict resolution. Existing datasets either rely on limited context lengths or are tailored for static, long-context settings like book-based QA, which do not reflect the interactive, multi-turn nature of memory agents that incrementally accumulate information. Furthermore, no existing benchmarks cover all four competencies. Therefore, we introduce MemoryAgentBench, a new benchmark specifically designed for memory agents. Our benchmark combines reformulated existing datasets with newly constructed ones, covering the above four memory competencies, providing a systematic and challenging testbed for assessing memory quality. We evaluate a diverse set of memory agents, ranging from simple context-based and retrieval-augmented generation (RAG) systems to advanced agents with external memory modules and tool integration. Empirical results reveal that current methods fall short of mastering all four competencies, underscoring the need for further research into comprehensive memory mechanisms for LLM agents.
comment: 23 Pages, Y. Hu and Y. Wang contribute equally
☆ From Marginal to Joint Predictions: Evaluating Scene-Consistent Trajectory Prediction Approaches for Automated Driving SC 2025
Accurate motion prediction of surrounding traffic participants is crucial for the safe and efficient operation of automated vehicles in dynamic environments. Marginal prediction models commonly forecast each agent's future trajectories independently, often leading to sub-optimal planning decisions for an automated vehicle. In contrast, joint prediction models explicitly account for the interactions between agents, yielding socially and physically consistent predictions on a scene level. However, existing approaches differ not only in their problem formulation but also in the model architectures and implementation details used, making it difficult to compare them. In this work, we systematically investigate different approaches to joint motion prediction, including post-processing of the marginal predictions, explicitly training the model for joint predictions, and framing the problem as a generative task. We evaluate each approach in terms of prediction accuracy, multi-modality, and inference efficiency, offering a comprehensive analysis of the strengths and limitations of each approach. Several prediction examples are available at https://frommarginaltojointpred.github.io/.
comment: Accepted at International Conference on Intelligent Transportation Systems 2025 (ITSC 2025)
☆ Action Space Reduction Strategies for Reinforcement Learning in Autonomous Driving
Reinforcement Learning (RL) offers a promising framework for autonomous driving by enabling agents to learn control policies through interaction with environments. However, large and high-dimensional action spaces often used to support fine-grained control can impede training efficiency and increase exploration costs. In this study, we introduce and evaluate two novel structured action space modification strategies for RL in autonomous driving: dynamic masking and relative action space reduction. These approaches are systematically compared against fixed reduction schemes and full action space baselines to assess their impact on policy learning and performance. Our framework leverages a multimodal Proximal Policy Optimization agent that processes both semantic image sequences and scalar vehicle states. The proposed dynamic and relative strategies incorporate real-time action masking based on context and state transitions, preserving action consistency while eliminating invalid or suboptimal choices. Through comprehensive experiments across diverse driving routes, we show that action space reduction significantly improves training stability and policy performance. The dynamic and relative schemes, in particular, achieve a favorable balance between learning speed, control precision, and generalization. These findings highlight the importance of context-aware action space design for scalable and reliable RL in autonomous driving tasks.
☆ When Chain of Thought is Necessary, Language Models Struggle to Evade Monitors
While chain-of-thought (CoT) monitoring is an appealing AI safety defense, recent work on "unfaithfulness" has cast doubt on its reliability. These findings highlight an important failure mode, particularly when CoT acts as a post-hoc rationalization in applications like auditing for bias. However, for the distinct problem of runtime monitoring to prevent severe harm, we argue the key property is not faithfulness but monitorability. To this end, we introduce a conceptual framework distinguishing CoT-as-rationalization from CoT-as-computation. We expect that certain classes of severe harm will require complex, multi-step reasoning that necessitates CoT-as-computation. Replicating the experimental setups of prior work, we increase the difficulty of the bad behavior to enforce this necessity condition; this forces the model to expose its reasoning, making it monitorable. We then present methodology guidelines to stress-test CoT monitoring against deliberate evasion. Applying these guidelines, we find that models can learn to obscure their intentions, but only when given significant help, such as detailed human-written strategies or iterative optimization against the monitor. We conclude that, while not infallible, CoT monitoring offers a substantial layer of defense that requires active protection and continued stress-testing.
☆ Modeling Latent Partner Strategies for Adaptive Zero-Shot Human-Agent Collaboration
In collaborative tasks, being able to adapt to your teammates is a necessary requirement for success. When teammates are heterogeneous, such as in human-agent teams, agents need to be able to observe, recognize, and adapt to their human partners in real time. This becomes particularly challenging in tasks with time pressure and complex strategic spaces where the dynamics can change rapidly. In this work, we introduce TALENTS, a strategy-conditioned cooperator framework that learns to represent, categorize, and adapt to a range of partner strategies, enabling ad-hoc teamwork. Our approach utilizes a variational autoencoder to learn a latent strategy space from trajectory data. This latent space represents the underlying strategies that agents employ. Subsequently, the system identifies different types of strategy by clustering the data. Finally, a cooperator agent is trained to generate partners for each type of strategy, conditioned on these clusters. In order to adapt to previously unseen partners, we leverage a fixed-share regret minimization algorithm that infers and adjusts the estimated partner strategy dynamically. We assess our approach in a customized version of the Overcooked environment, posing a challenging cooperative cooking task that demands strong coordination across a wide range of possible strategies. Using an online user study, we show that our agent outperforms current baselines when working with unfamiliar human partners.
comment: Best Paper Award at the RSS 2025 Generative Models x HRI (GenAI-HRI) Workshop
☆ SciMaster: Towards General-Purpose Scientific AI Agents, Part I. X-Master as Foundation: Can We Lead on Humanity's Last Exam?
The rapid advancements of AI agents have ignited the long-held ambition of leveraging them to accelerate scientific discovery. Achieving this goal requires a deep understanding of the frontiers of human knowledge. As such, Humanity's Last Exam (HLE) provides an exceptionally challenging touchstone for evaluating scientific AI agents. In this work, we aim to construct the foundational architecture for general-purpose agents and validate the capabilities through leading performance on HLE. To achieve this, we introduce X-Master, a tool-augmented reasoning agent designed to emulate human researchers by interacting flexibly with external tools during its reasoning process. This agent, guided by the conceptualization of code as an interaction language, can flexibly leverage built-in Python libraries and our customized tools to augment the reasoning. We further scale its capabilities through X-Masters, a scattered-and-stacked agentic workflow that systematically enhances breadth and depth of reasoning. Our open-source solution, X-Masters, sets a new state-of-the-art record on HLE with a score of 32.1%, surpassing OpenAI's and Google's Deep Research (26.6% and 26.9%) and becoming the first to exceed the 30% threshold. This work allows us to gain a deeper understanding of complex task-solving and accumulates valuable experience that can inform future advancements, guiding subsequent model training.
comment: 12 pages, 7 figures
☆ CTA: Cross-Task Alignment for Better Test Time Training
Deep learning models have demonstrated exceptional performance across a wide range of computer vision tasks. However, their performance often degrades significantly when faced with distribution shifts, such as domain or dataset changes. Test-Time Training (TTT) has emerged as an effective method to enhance model robustness by incorporating an auxiliary unsupervised task during training and leveraging it for model updates at test time. In this work, we introduce CTA (Cross-Task Alignment), a novel approach for improving TTT. Unlike existing TTT methods, CTA does not require a specialized model architecture and instead takes inspiration from the success of multi-modal contrastive learning to align a supervised encoder with a self-supervised one. This process enforces alignment between the learned representations of both models, thereby mitigating the risk of gradient interference, preserving the intrinsic robustness of self-supervised learning and enabling more semantically meaningful updates at test-time. Experimental results demonstrate substantial improvements in robustness and generalization over the state-of-the-art on several benchmark datasets.
comment: Preprint, under review
☆ All in One: Visual-Description-Guided Unified Point Cloud Segmentation ICCV2025
Unified segmentation of 3D point clouds is crucial for scene understanding, but is hindered by its sparse structure, limited annotations, and the challenge of distinguishing fine-grained object classes in complex environments. Existing methods often struggle to capture rich semantic and contextual information due to limited supervision and a lack of diverse multimodal cues, leading to suboptimal differentiation of classes and instances. To address these challenges, we propose VDG-Uni3DSeg, a novel framework that integrates pre-trained vision-language models (e.g., CLIP) and large language models (LLMs) to enhance 3D segmentation. By leveraging LLM-generated textual descriptions and reference images from the internet, our method incorporates rich multimodal cues, facilitating fine-grained class and instance separation. We further design a Semantic-Visual Contrastive Loss to align point features with multimodal queries and a Spatial Enhanced Module to model scene-wide relationships efficiently. Operating within a closed-set paradigm that utilizes multimodal knowledge generated offline, VDG-Uni3DSeg achieves state-of-the-art results in semantic, instance, and panoptic segmentation, offering a scalable and practical solution for 3D understanding. Our code is available at https://github.com/Hanzy1996/VDG-Uni3DSeg.
comment: Accepted by ICCV2025
☆ MedGemma Technical Report
Artificial intelligence (AI) has significant potential in healthcare applications, but its training and deployment faces challenges due to healthcare's diverse data, complex tasks, and the need to preserve privacy. Foundation models that perform well on medical tasks and require less task-specific tuning data are critical to accelerate the development of healthcare AI applications. We introduce MedGemma, a collection of medical vision-language foundation models based on Gemma 3 4B and 27B. MedGemma demonstrates advanced medical understanding and reasoning on images and text, significantly exceeding the performance of similar-sized generative models and approaching the performance of task-specific models, while maintaining the general capabilities of the Gemma 3 base models. For out-of-distribution tasks, MedGemma achieves 2.6-10% improvement on medical multimodal question answering, 15.5-18.1% improvement on chest X-ray finding classification, and 10.8% improvement on agentic evaluations compared to the base models. Fine-tuning MedGemma further improves performance in subdomains, reducing errors in electronic health record information retrieval by 50% and reaching comparable performance to existing specialized state-of-the-art methods for pneumothorax classification and histopathology patch classification. We additionally introduce MedSigLIP, a medically-tuned vision encoder derived from SigLIP. MedSigLIP powers the visual understanding capabilities of MedGemma and as an encoder achieves comparable or better performance than specialized medical image encoders. Taken together, the MedGemma collection provides a strong foundation of medical image and text capabilities, with potential to significantly accelerate medical research and development of downstream applications. The MedGemma collection, including tutorials and model weights, can be found at https://goo.gle/medgemma.
☆ EmbodieDreamer: Advancing Real2Sim2Real Transfer for Policy Training via Embodied World Modeling
The rapid advancement of Embodied AI has led to an increasing demand for large-scale, high-quality real-world data. However, collecting such embodied data remains costly and inefficient. As a result, simulation environments have become a crucial surrogate for training robot policies. Yet, the significant Real2Sim2Real gap remains a critical bottleneck, particularly in terms of physical dynamics and visual appearance. To address this challenge, we propose EmbodieDreamer, a novel framework that reduces the Real2Sim2Real gap from both the physics and appearance perspectives. Specifically, we propose PhysAligner, a differentiable physics module designed to reduce the Real2Sim physical gap. It jointly optimizes robot-specific parameters such as control gains and friction coefficients to better align simulated dynamics with real-world observations. In addition, we introduce VisAligner, which incorporates a conditional video diffusion model to bridge the Sim2Real appearance gap by translating low-fidelity simulated renderings into photorealistic videos conditioned on simulation states, enabling high-fidelity visual transfer. Extensive experiments validate the effectiveness of EmbodieDreamer. The proposed PhysAligner reduces physical parameter estimation error by 3.74% compared to simulated annealing methods while improving optimization speed by 89.91\%. Moreover, training robot policies in the generated photorealistic environment leads to a 29.17% improvement in the average task success rate across real-world tasks after reinforcement learning. Code, model and data will be publicly available.
comment: Project Page: https://embodiedreamer.github.io/
☆ Train-before-Test Harmonizes Language Model Rankings
Existing language model benchmarks provide contradictory model rankings, even for benchmarks that aim to capture similar skills. This dilemma of conflicting rankings hampers model selection, clouds model comparisons, and adds confusion to a growing ecosystem of competing models. Recent work attributed ranking disagreement to the phenomenon of training on the test task: As released, different models exhibit a different level of preparation for any given test task. A candidate solution to the problem is train-before-test: Give each model the same benchmark-specific finetuning before evaluation. Our primary contribution is a broad empirical evaluation of train-before-test across 24 benchmarks and 61 models. We show that train-before-test significantly improves ranking agreement consistently across all benchmarks. Whereas rankings have little external validity to start with, they enjoy a significant degree of external validity when applying train-before-test: Model rankings transfer gracefully from one benchmark to the other. Even within the same model family, train-before-test reduces strong ranking disagreement to near-perfect agreement. In addition, train-before-test reduces the model-score matrix to essentially rank one, revealing new insights into the latent factors of benchmark performance. Our work supports the recommendation to make train-before-test a default component of LLM benchmarking.
☆ Infrastructuring Contestability: A Framework for Community-Defined AI Value Pluralism
The proliferation of AI-driven systems presents a fundamental challenge to Human-Computer Interaction (HCI) and Computer-Supported Cooperative Work (CSCW), often diminishing user agency and failing to account for value pluralism. Current approaches to value alignment, which rely on centralized, top-down definitions, lack the mechanisms for meaningful contestability. This leaves users and communities unable to challenge or shape the values embedded in the systems that govern their digital lives, creating a crisis of legitimacy and trust. This paper introduces Community-Defined AI Value Pluralism (CDAVP), a socio-technical framework that addresses this gap. It reframes the design problem from achieving a single aligned state to infrastructuring a dynamic ecosystem for value deliberation and application. At its core, CDAVP enables diverse, self-organizing communities to define and maintain explicit value profiles - rich, machine-readable representations that can encompass not only preferences but also community-specific rights and duties. These profiles are then contextually activated by the end-user, who retains ultimate control (agency) over which values guide the AI's behavior. AI applications, in turn, are designed to transparently interpret these profiles and moderate conflicts, adhering to a set of non-negotiable, democratically-legitimated meta-rules. The designer's role shifts from crafting static interfaces to becoming an architect of participatory ecosystems. We argue that infrastructuring for pluralism is a necessary pathway toward achieving robust algorithmic accountability and genuinely contestable, human-centric AI.
☆ CREW-WILDFIRE: Benchmarking Agentic Multi-Agent Collaborations at Scale
Despite rapid progress in large language model (LLM)-based multi-agent systems, current benchmarks fall short in evaluating their scalability, robustness, and coordination capabilities in complex, dynamic, real-world tasks. Existing environments typically focus on small-scale, fully observable, or low-complexity domains, limiting their utility for developing and assessing next-generation multi-agent Agentic AI frameworks. We introduce CREW-Wildfire, an open-source benchmark designed to close this gap. Built atop the human-AI teaming CREW simulation platform, CREW-Wildfire offers procedurally generated wildfire response scenarios featuring large maps, heterogeneous agents, partial observability, stochastic dynamics, and long-horizon planning objectives. The environment supports both low-level control and high-level natural language interactions through modular Perception and Execution modules. We implement and evaluate several state-of-the-art LLM-based multi-agent Agentic AI frameworks, uncovering significant performance gaps that highlight the unsolved challenges in large-scale coordination, communication, spatial reasoning, and long-horizon planning under uncertainty. By providing more realistic complexity, scalable architecture, and behavioral evaluation metrics, CREW-Wildfire establishes a critical foundation for advancing research in scalable multi-agent Agentic intelligence. All code, environments, data, and baselines will be released to support future research in this emerging domain.
comment: Our project website is at: http://generalroboticslab.com/CREW-Wildfire
☆ OpenS2S: Advancing Open-Source End-to-End Empathetic Large Speech Language Model
Empathetic interaction is a cornerstone of human-machine communication, due to the need for understanding speech enriched with paralinguistic cues and generating emotional and expressive responses. However, the most powerful empathetic LSLMs are increasingly closed off, leaving the crucial details about the architecture, data and development opaque to researchers. Given the critical need for transparent research into the LSLMs and empathetic behavior, we present OpenS2S, a fully open-source, transparent and end-to-end LSLM designed to enable empathetic speech interactions. Based on our empathetic speech-to-text model BLSP-Emo, OpenS2S further employs a streaming interleaved decoding architecture to achieve low-latency speech generation. To facilitate end-to-end training, OpenS2S incorporates an automated data construction pipeline that synthesizes diverse, high-quality empathetic speech dialogues at low cost. By leveraging large language models to generate empathetic content and controllable text-to-speech systems to introduce speaker and emotional variation, we construct a scalable training corpus with rich paralinguistic diversity and minimal human supervision. We release the fully open-source OpenS2S model, including the dataset, model weights, pre-training and fine-tuning codes, to empower the broader research community and accelerate innovation in empathetic speech systems. The project webpage can be accessed at https://casia-lm.github.io/OpenS2S
comment: Technical Report
☆ Critiques of World Models
World Model, the supposed algorithmic surrogate of the real-world environment which biological agents experience with and act upon, has been an emerging topic in recent years because of the rising needs to develop virtual agents with artificial (general) intelligence. There has been much debate on what a world model really is, how to build it, how to use it, and how to evaluate it. In this essay, starting from the imagination in the famed Sci-Fi classic Dune, and drawing inspiration from the concept of "hypothetical thinking" in psychology literature, we offer critiques of several schools of thoughts on world modeling, and argue the primary goal of a world model to be simulating all actionable possibilities of the real world for purposeful reasoning and acting. Building on the critiques, we propose a new architecture for a general-purpose world model, based on hierarchical, multi-level, and mixed continuous/discrete representations, and a generative and self-supervision learning framework, with an outlook of a Physical, Agentic, and Nested (PAN) AGI system enabled by such a model.
☆ LAID: Lightweight AI-Generated Image Detection in Spatial and Spectral Domains
The recent proliferation of photorealistic AI-generated images (AIGI) has raised urgent concerns about their potential misuse, particularly on social media platforms. Current state-of-the-art AIGI detection methods typically rely on large, deep neural architectures, creating significant computational barriers to real-time, large-scale deployment on platforms like social media. To challenge this reliance on computationally intensive models, we introduce LAID, the first framework -- to our knowledge -- that benchmarks and evaluates the detection performance and efficiency of off-the-shelf lightweight neural networks. In this framework, we comprehensively train and evaluate selected models on a representative subset of the GenImage dataset across spatial, spectral, and fusion image domains. Our results demonstrate that lightweight models can achieve competitive accuracy, even under adversarial conditions, while incurring substantially lower memory and computation costs compared to current state-of-the-art methods. This study offers valuable insight into the trade-off between efficiency and performance in AIGI detection and lays a foundation for the development of practical, scalable, and trustworthy detection systems. The source code of LAID can be found at: https://github.com/nchivar/LAID.
comment: To appear in the proceedings of PST2025
☆ AI Generated Text Detection Using Instruction Fine-tuned Large Language and Transformer-Based Models
Large Language Models (LLMs) possess an extraordinary capability to produce text that is not only coherent and contextually relevant but also strikingly similar to human writing. They adapt to various styles and genres, producing content that is both grammatically correct and semantically meaningful. Recently, LLMs have been misused to create highly realistic phishing emails, spread fake news, generate code to automate cyber crime, and write fraudulent scientific articles. Additionally, in many real-world applications, the generated content including style and topic and the generator model are not known beforehand. The increasing prevalence and sophistication of artificial intelligence (AI)-generated texts have made their detection progressively more challenging. Various attempts have been made to distinguish machine-generated text from human-authored content using linguistic, statistical, machine learning, and ensemble-based approaches. This work focuses on two primary objectives Task-A, which involves distinguishing human-written text from machine-generated text, and Task-B, which attempts to identify the specific LLM model responsible for the generation. Both of these tasks are based on fine tuning of Generative Pre-trained Transformer (GPT_4o-mini), Large Language Model Meta AI (LLaMA) 3 8B, and Bidirectional Encoder Representations from Transformers (BERT). The fine-tuned version of GPT_4o-mini and the BERT model has achieved accuracies of 0.9547 for Task-A and 0.4698 for Task-B.
comment: 7 pages, 3 figures
☆ Effects of Unplanned Incoming Flights on Airport Relief Processes after a Major Natural Disaster
The severity of natural disasters is increasing every year, impacting many people's lives. During the response phase of disasters, airports are important hubs where relief aid arrives and people need to be evacuated. However, the airport often forms a bottleneck in these relief operations due to the sudden need for increased capacity. Limited research has been done on the operational side of airport disaster management. Experts identify the main problems as, first, the asymmetry of information between the airport and incoming flights, and second, the lack of resources. The goal of this research is to understand the effects of incomplete knowledge of incoming flights with different resource allocation strategies on the performance of cargo handling operations at an airport after a natural disaster. An agent-based model is created, implementing realistic offloading strategies with different degrees of information uncertainty. Model calibration and verification are performed with experts in the field. The model performance is measured by the average turnaround time, which is divided into offloading time, boarding time, and cumulative waiting times. The results show that the effects of one unplanned aircraft are negligible. However, all waiting times increase with more arriving unplanned aircraft.
☆ OGF: An Online Gradient Flow Method for Optimizing the Statistical Steady-State Time Averages of Unsteady Turbulent Flows
Turbulent flows are chaotic and unsteady, but their statistical distribution converges to a statistical steady state. Engineering quantities of interest typically take the form of time-average statistics such as $ \frac{1}{t} \int_0^t f ( u(x,\tau; \theta) ) d\tau \overset{t \rightarrow \infty}{\rightarrow} F(x; \theta)$, where $u(x,t; \theta)$ are solutions of the Navier--Stokes equations with parameters $\theta$. Optimizing over $F(x; \theta)$ has many engineering applications including geometric optimization, flow control, and closure modeling. However, this remains an open challenge, as existing computational approaches are incapable of scaling to physically representative numbers of grid points. The fundamental obstacle is the chaoticity of turbulent flows: gradients calculated with the adjoint method diverge exponentially as $t \rightarrow \infty$. We develop a new online gradient-flow (OGF) method that is scalable to large degree-of-freedom systems and enables optimizing for the steady-state statistics of chaotic, unsteady, turbulence-resolving simulations. The method forward-propagates an online estimate for the gradient of $F(x; \theta)$ while simultaneously performing online updates of the parameters $\theta$. A key feature is the fully online nature of the algorithm to facilitate faster optimization progress and its combination with a finite-difference estimator to avoid the divergence of gradients due to chaoticity. The proposed OGF method is demonstrated for optimizations over three chaotic ordinary and partial differential equations: the Lorenz-63 equation, the Kuramoto--Sivashinsky equation, and Navier--Stokes solutions of compressible, forced, homogeneous isotropic turbulence. In each case, the OGF method successfully reduces the loss based on $F(x; \theta)$ by several orders of magnitude and accurately recovers the optimal parameters.
comment: 29 pages, 13 figures
☆ GIST: Cross-Domain Click-Through Rate Prediction via Guided Content-Behavior Distillation
Cross-domain Click-Through Rate prediction aims to tackle the data sparsity and the cold start problems in online advertising systems by transferring knowledge from source domains to a target domain. Most existing methods rely on overlapping users to facilitate this transfer, often focusing on joint training or pre-training with fine-tuning approach to connect the source and target domains. However, in real-world industrial settings, joint training struggles to learn optimal representations with different distributions, and pre-training with fine-tuning is not well-suited for continuously integrating new data. To address these issues, we propose GIST, a cross-domain lifelong sequence model that decouples the training processes of the source and target domains. Unlike previous methods that search lifelong sequences in the source domains using only content or behavior signals or their simple combinations, we innovatively introduce a Content-Behavior Joint Training Module (CBJT), which aligns content-behavior distributions and combines them with guided information to facilitate a more stable representation. Furthermore, we develop an Asymmetric Similarity Integration strategy (ASI) to augment knowledge transfer through similarity computation. Extensive experiments demonstrate the effectiveness of GIST, surpassing SOTA methods on offline evaluations and an online A/B test. Deployed on the Xiaohongshu (RedNote) platform, GIST effectively enhances online ads system performance at scale, serving hundreds of millions of daily active users.
☆ Interpretable Mnemonic Generation for Kanji Learning via Expectation-Maximization
Learning Japanese vocabulary is a challenge for learners from Roman alphabet backgrounds due to script differences. Japanese combines syllabaries like hiragana with kanji, which are logographic characters of Chinese origin. Kanji are also complicated due to their complexity and volume. Keyword mnemonics are a common strategy to aid memorization, often using the compositional structure of kanji to form vivid associations. Despite recent efforts to use large language models (LLMs) to assist learners, existing methods for LLM-based keyword mnemonic generation function as a black box, offering limited interpretability. We propose a generative framework that explicitly models the mnemonic construction process as driven by a set of common rules, and learn them using a novel Expectation-Maximization-type algorithm. Trained on learner-authored mnemonics from an online platform, our method learns latent structures and compositional rules, enabling interpretable and systematic mnemonics generation. Experiments show that our method performs well in the cold-start setting for new learners while providing insight into the mechanisms behind effective mnemonic creation.
☆ An Evaluation of Large Language Models on Text Summarization Tasks Using Prompt Engineering Techniques ACSA
Large Language Models (LLMs) continue to advance natural language processing with their ability to generate human-like text across a range of tasks. Despite the remarkable success of LLMs in Natural Language Processing (NLP), their performance in text summarization across various domains and datasets has not been comprehensively evaluated. At the same time, the ability to summarize text effectively without relying on extensive training data has become a crucial bottleneck. To address these issues, we present a systematic evaluation of six LLMs across four datasets: CNN/Daily Mail and NewsRoom (news), SAMSum (dialog), and ArXiv (scientific). By leveraging prompt engineering techniques including zero-shot and in-context learning, our study evaluates the performance using the ROUGE and BERTScore metrics. In addition, a detailed analysis of inference times is conducted to better understand the trade-off between summarization quality and computational efficiency. For Long documents, introduce a sentence-based chunking strategy that enables LLMs with shorter context windows to summarize extended inputs in multiple stages. The findings reveal that while LLMs perform competitively on news and dialog tasks, their performance on long scientific documents improves significantly when aided by chunking strategies. In addition, notable performance variations were observed based on model parameters, dataset properties, and prompt design. These results offer actionable insights into how different LLMs behave across task types, contributing to ongoing research in efficient, instruction-based NLP systems.
comment: This manuscript is an extended version of the work accepted for publication in the International Journal of Advanced Computer Science and Applications (IJACSA), Volume 16, Issue 6, June 2025
☆ LVM4CSI: Enabling Direct Application of Pre-Trained Large Vision Models for Wireless Channel Tasks
Accurate channel state information (CSI) is critical to the performance of wireless communication systems, especially with the increasing scale and complexity introduced by 5G and future 6G technologies. While artificial intelligence (AI) offers a promising approach to CSI acquisition and utilization, existing methods largely depend on task-specific neural networks (NNs) that require expert-driven design and large training datasets, limiting their generalizability and practicality. To address these challenges, we propose LVM4CSI, a general and efficient framework that leverages the structural similarity between CSI and computer vision (CV) data to directly apply large vision models (LVMs) pre-trained on extensive CV datasets to wireless tasks without any fine-tuning, in contrast to large language model-based methods that generally necessitate fine-tuning. LVM4CSI maps CSI tasks to analogous CV tasks, transforms complex-valued CSI into visual formats compatible with LVMs, and integrates lightweight trainable layers to adapt extracted features to specific communication objectives. We validate LVM4CSI through three representative case studies, including channel estimation, human activity recognition, and user localization. Results demonstrate that LVM4CSI achieves comparable or superior performance to task-specific NNs, including an improvement exceeding 9.61 dB in channel estimation and approximately 40% reduction in localization error. Furthermore, it significantly reduces the number of trainable parameters and eliminates the need for task-specific NN design.
comment: This work has been submitted for possible publication
☆ VerifyLLM: LLM-Based Pre-Execution Task Plan Verification for Robots IROS 2025
In the field of robotics, researchers face a critical challenge in ensuring reliable and efficient task planning. Verifying high-level task plans before execution significantly reduces errors and enhance the overall performance of these systems. In this paper, we propose an architecture for automatically verifying high-level task plans before their execution in simulator or real-world environments. Leveraging Large Language Models (LLMs), our approach consists of two key steps: first, the conversion of natural language instructions into Linear Temporal Logic (LTL), followed by a comprehensive analysis of action sequences. The module uses the reasoning capabilities of the LLM to evaluate logical coherence and identify potential gaps in the plan. Rigorous testing on datasets of varying complexity demonstrates the broad applicability of the module to household tasks. We contribute to improving the reliability and efficiency of task planning and addresses the critical need for robust pre-execution verification in autonomous systems. The code is available at https://verifyllm.github.io.
comment: IROS 2025
☆ Rule Learning for Knowledge Graph Reasoning under Agnostic Distribution Shift
Knowledge graph (KG) reasoning remains a critical research area focused on inferring missing knowledge by analyzing relationships among observed facts. Despite its success, a key limitation of existing KG reasoning methods is their dependence on the I.I.D assumption. This assumption can easily be violated due to unknown sample selection bias during training or agnostic distribution shifts during testing, significantly compromising model performance and reliability. To facilitate the deployment of KG reasoning in wild environments, this study investigates learning logical rules from KGs affected by unknown selection bias. Additionally, we address test sets with agnostic distribution shifts, formally defining this challenge as out-of-distribution (OOD) KG reasoning-a previously underexplored problem. To solve the issue, we propose the Stable Rule Learning (StableRule) framework, an end-to-end methodology that integrates feature decorrelation with rule learning network, to enhance OOD generalization performance. By leveraging feature decorrelation, the StableRule framework mitigates the adverse effects of covariate shifts arising in OOD scenarios, thereby improving the robustness of the rule learning component in effectively deriving logical rules. Extensive experiments on seven benchmark KGs demonstrate the framework's superior effectiveness and stability across diverse heterogeneous environments, underscoring its practical significance for real-world applications.
☆ Reviving Cultural Heritage: A Novel Approach for Comprehensive Historical Document Restoration
Historical documents represent an invaluable cultural heritage, yet have undergone significant degradation over time through tears, water erosion, and oxidation. Existing Historical Document Restoration (HDR) methods primarily focus on single modality or limited-size restoration, failing to meet practical needs. To fill this gap, we present a full-page HDR dataset (FPHDR) and a novel automated HDR solution (AutoHDR). Specifically, FPHDR comprises 1,633 real and 6,543 synthetic images with character-level and line-level locations, as well as character annotations in different damage grades. AutoHDR mimics historians' restoration workflows through a three-stage approach: OCR-assisted damage localization, vision-language context text prediction, and patch autoregressive appearance restoration. The modular architecture of AutoHDR enables seamless human-machine collaboration, allowing for flexible intervention and optimization at each restoration stage. Experiments demonstrate AutoHDR's remarkable performance in HDR. When processing severely damaged documents, our method improves OCR accuracy from 46.83\% to 84.05\%, with further enhancement to 94.25\% through human-machine collaboration. We believe this work represents a significant advancement in automated historical document restoration and contributes substantially to cultural heritage preservation. The model and dataset are available at https://github.com/SCUT-DLVCLab/AutoHDR.
☆ PRING: Rethinking Protein-Protein Interaction Prediction from Pairs to Graphs
Deep learning-based computational methods have achieved promising results in predicting protein-protein interactions (PPIs). However, existing benchmarks predominantly focus on isolated pairwise evaluations, overlooking a model's capability to reconstruct biologically meaningful PPI networks, which is crucial for biology research. To address this gap, we introduce PRING, the first comprehensive benchmark that evaluates protein-protein interaction prediction from a graph-level perspective. PRING curates a high-quality, multi-species PPI network dataset comprising 21,484 proteins and 186,818 interactions, with well-designed strategies to address both data redundancy and leakage. Building on this golden-standard dataset, we establish two complementary evaluation paradigms: (1) topology-oriented tasks, which assess intra and cross-species PPI network construction, and (2) function-oriented tasks, including protein complex pathway prediction, GO module analysis, and essential protein justification. These evaluations not only reflect the model's capability to understand the network topology but also facilitate protein function annotation, biological module detection, and even disease mechanism analysis. Extensive experiments on four representative model categories, consisting of sequence similarity-based, naive sequence-based, protein language model-based, and structure-based approaches, demonstrate that current PPI models have potential limitations in recovering both structural and functional properties of PPI networks, highlighting the gap in supporting real-world biological applications. We believe PRING provides a reliable platform to guide the development of more effective PPI prediction models for the community. The dataset and source code of PRING are available at https://github.com/SophieSarceau/PRING.
☆ Beyond Features: How Dataset Design Influences Multi-Agent Trajectory Prediction Performance
Accurate trajectory prediction is critical for safe autonomous navigation, yet the impact of dataset design on model performance remains understudied. This work systematically examines how feature selection, cross-dataset transfer, and geographic diversity influence trajectory prediction accuracy in multi-agent settings. We evaluate a state-of-the-art model using our novel L4 Motion Forecasting dataset based on our own data recordings in Germany and the US. This includes enhanced map and agent features. We compare our dataset to the US-centric Argoverse 2 benchmark. First, we find that incorporating supplementary map and agent features unique to our dataset, yields no measurable improvement over baseline features, demonstrating that modern architectures do not need extensive feature sets for optimal performance. The limited features of public datasets are sufficient to capture convoluted interactions without added complexity. Second, we perform cross-dataset experiments to evaluate how effective domain knowledge can be transferred between datasets. Third, we group our dataset by country and check the knowledge transfer between different driving cultures.
☆ The Hidden Threat in Plain Text: Attacking RAG Data Loaders
Large Language Models (LLMs) have transformed human-machine interaction since ChatGPT's 2022 debut, with Retrieval-Augmented Generation (RAG) emerging as a key framework that enhances LLM outputs by integrating external knowledge. However, RAG's reliance on ingesting external documents introduces new vulnerabilities. This paper exposes a critical security gap at the data loading stage, where malicious actors can stealthily corrupt RAG pipelines by exploiting document ingestion. We propose a taxonomy of 9 knowledge-based poisoning attacks and introduce two novel threat vectors -- Content Obfuscation and Content Injection -- targeting common formats (DOCX, HTML, PDF). Using an automated toolkit implementing 19 stealthy injection techniques, we test five popular data loaders, finding a 74.4% attack success rate across 357 scenarios. We further validate these threats on six end-to-end RAG systems -- including white-box pipelines and black-box services like NotebookLM and OpenAI Assistants -- demonstrating high success rates and critical vulnerabilities that bypass filters and silently compromise output integrity. Our results emphasize the urgent need to secure the document ingestion process in RAG systems against covert content manipulations.
comment: currently under submission
☆ How Rules Represent Causal Knowledge: Causal Modeling with Abductive Logic Programs
Pearl observes that causal knowledge enables predicting the effects of interventions, such as actions, whereas descriptive knowledge only permits drawing conclusions from observation. This paper extends Pearl's approach to causality and interventions to the setting of stratified abductive logic programs. It shows how stable models of such programs can be given a causal interpretation by building on philosophical foundations and recent work by Bochman and Eelink et al. In particular, it provides a translation of abductive logic programs into causal systems, thereby clarifying the informal causal reading of logic program rules and supporting principled reasoning about external actions. The main result establishes that the stable model semantics for stratified programs conforms to key philosophical principles of causation, such as causal sufficiency, natural necessity, and irrelevance of unobserved effects. This justifies the use of stratified abductive logic programs as a framework for causal modeling and for predicting the effects of interventions
☆ Sequential Attention-based Sampling for Histopathological Analysis
Deep neural networks are increasingly applied for automated histopathology. Yet, whole-slide images (WSIs) are often acquired at gigapixel sizes, rendering it computationally infeasible to analyze them entirely at high resolution. Diagnostic labels are largely available only at the slide-level, because expert annotation of images at a finer (patch) level is both laborious and expensive. Moreover, regions with diagnostic information typically occupy only a small fraction of the WSI, making it inefficient to examine the entire slide at full resolution. Here, we propose SASHA -- {\it S}equential {\it A}ttention-based {\it S}ampling for {\it H}istopathological {\it A}nalysis -- a deep reinforcement learning approach for efficient analysis of histopathological images. First, SASHA learns informative features with a lightweight hierarchical, attention-based multiple instance learning (MIL) model. Second, SASHA samples intelligently and zooms selectively into a small fraction (10-20\%) of high-resolution patches, to achieve reliable diagnosis. We show that SASHA matches state-of-the-art methods that analyze the WSI fully at high-resolution, albeit at a fraction of their computational and memory costs. In addition, it significantly outperforms competing, sparse sampling methods. We propose SASHA as an intelligent sampling model for medical imaging challenges that involve automated diagnosis with exceptionally large images containing sparsely informative features.
☆ ICAS: Detecting Training Data from Autoregressive Image Generative Models ACM MM 2025
Autoregressive image generation has witnessed rapid advancements, with prominent models such as scale-wise visual auto-regression pushing the boundaries of visual synthesis. However, these developments also raise significant concerns regarding data privacy and copyright. In response, training data detection has emerged as a critical task for identifying unauthorized data usage in model training. To better understand the vulnerability of autoregressive image generative models to such detection, we conduct the first study applying membership inference to this domain. Our approach comprises two key components: implicit classification and an adaptive score aggregation strategy. First, we compute the implicit token-wise classification score within the query image. Then we propose an adaptive score aggregation strategy to acquire a final score, which places greater emphasis on the tokens with lower scores. A higher final score indicates that the sample is more likely to be involved in the training set. To validate the effectiveness of our method, we adapt existing detection algorithms originally designed for LLMs to visual autoregressive models. Extensive experiments demonstrate the superiority of our method in both class-conditional and text-to-image scenarios. Moreover, our approach exhibits strong robustness and generalization under various data transformations. Furthermore, sufficient experiments suggest two novel key findings: (1) A linear scaling law on membership inference, exposing the vulnerability of large foundation models. (2) Training data from scale-wise visual autoregressive models is easier to detect than other autoregressive paradigms.Our code is available at https://github.com/Chrisqcwx/ImageAR-MIA.
comment: ACM MM 2025
☆ Replacing thinking with tool usage enables reasoning in small language models
Recent advances have established a new machine learning paradigm based on scaling up compute at inference time as well as at training time. In that line of work, a combination of Supervised Fine-Tuning (SFT) on synthetic demonstrations and Reinforcement Learning with Verifiable Rewards (RLVR) is used for training Large Language Models to expend extra compute during inference in the form of "thoughts" expressed in natural language. In this paper, we propose to instead format these tokens as a multi-turn interaction trace with a stateful tool. At each turn, the new state of the tool is appended to the context of the model, whose job is to generate the tokens necessary to control the tool via a custom DSL. We benchmark this approach on the problem of repairing malfunctioning Python code, and show that this constrained setup allows for faster sampling of experience and a denser reward signal, allowing even models of size up to 3B parameters to learn how to proficiently expend additional compute on the task.
comment: 23 pages, includes appendix
☆ INTER: Mitigating Hallucination in Large Vision-Language Models by Interaction Guidance Sampling
Hallucinations in large vision-language models (LVLMs) pose significant challenges for real-world applications, as LVLMs may generate responses that appear plausible yet remain inconsistent with the associated visual content. This issue rarely occurs in human cognition. We argue that this discrepancy arises from humans' ability to effectively leverage multimodal interaction information in data samples. Specifically, humans typically first gather multimodal information, analyze the interactions across modalities for understanding, and then express their understanding through language. Motivated by this observation, we conduct extensive experiments on popular LVLMs and obtained insights that surprisingly reveal human-like, though less pronounced, cognitive behavior of LVLMs on multimodal samples. Building on these findings, we further propose \textbf{INTER}: \textbf{Inter}action Guidance Sampling, a novel training-free algorithm that mitigate hallucinations without requiring additional data. Specifically, INTER explicitly guides LVLMs to effectively reapply their understanding of multimodal interaction information when generating responses, thereby reducing potential hallucinations. On six benchmarks including VQA and image captioning tasks, INTER achieves an average improvement of up to 3.4\% on five LVLMs compared to the state-of-the-art decoding strategy. The code will be released when the paper is accepted.
☆ Perspectives on How Sociology Can Advance Theorizing about Human-Chatbot Interaction and Developing Chatbots for Social Good
Recently, research into chatbots (also known as conversational agents, AI agents, voice assistants), which are computer applications using artificial intelligence to mimic human-like conversation, has grown sharply. Despite this growth, sociology lags other disciplines (including computer science, medicine, psychology, and communication) in publishing about chatbots. We suggest sociology can advance understanding of human-chatbot interaction and offer four sociological theories to enhance extant work in this field. The first two theories (resource substitution theory, power-dependence theory) add new insights to existing models of the drivers of chatbot use, which overlook sociological concerns about how social structure (e.g., systemic discrimination, the uneven distribution of resources within networks) inclines individuals to use chatbots, including problematic levels of emotional dependency on chatbots. The second two theories (affect control theory, fundamental cause of disease theory) help inform the development of chatbot-driven interventions that minimize safety risks and enhance equity by leveraging sociological insights into how chatbot outputs could attend to cultural contexts (e.g., affective norms) to promote wellbeing and enhance communities (e.g., opportunities for civic participation). We discuss the value of applying sociological theories for advancing theorizing about human-chatbot interaction and developing chatbots for social good.
☆ Adaptation of Multi-modal Representation Models for Multi-task Surgical Computer Vision
Surgical AI often involves multiple tasks within a single procedure, like phase recognition or assessing the Critical View of Safety in laparoscopic cholecystectomy. Traditional models, built for one task at a time, lack flexibility, requiring a separate model for each. To address this, we introduce MML-SurgAdapt, a unified multi-task framework with Vision-Language Models (VLMs), specifically CLIP, to handle diverse surgical tasks through natural language supervision. A key challenge in multi-task learning is the presence of partial annotations when integrating different tasks. To overcome this, we employ Single Positive Multi-Label (SPML) learning, which traditionally reduces annotation burden by training models with only one positive label per instance. Our framework extends this approach to integrate data from multiple surgical tasks within a single procedure, enabling effective learning despite incomplete or noisy annotations. We demonstrate the effectiveness of our model on a combined dataset consisting of Cholec80, Endoscapes2023, and CholecT50, utilizing custom prompts. Extensive evaluation shows that MML-SurgAdapt performs comparably to task-specific benchmarks, with the added advantage of handling noisy annotations. It also outperforms the existing SPML frameworks for the task. By reducing the required labels by 23%, our approach proposes a more scalable and efficient labeling process, significantly easing the annotation burden on clinicians. To our knowledge, this is the first application of SPML to integrate data from multiple surgical tasks, presenting a novel and generalizable solution for multi-task learning in surgical computer vision. Implementation is available at: https://github.com/CAMMA-public/MML-SurgAdapt
☆ Meta-Learning Transformers to Improve In-Context Generalization
In-context learning enables transformer models to generalize to new tasks based solely on input prompts, without any need for weight updates. However, existing training paradigms typically rely on large, unstructured datasets that are costly to store, difficult to evaluate for quality and balance, and pose privacy and ethical concerns due to the inclusion of sensitive information. Motivated by these limitations and risks, we propose an alternative training strategy where we leverage a collection of multiple, small-scale, and domain-specific datasets. We empirically demonstrate that the increased quality and diversity of such data improve the generalization abilities of in-context learners beyond their training domain, while achieving comparable performance with models trained on a single large-scale dataset. We investigate this paradigm by leveraging meta-learning to train an in-context learner on the Meta-Album collection under several settings. Firstly, we show the performance in a controlled environment, where the test domain is completely excluded from the training knowledge. Secondly, we explore the robustness of these models to forgetting in a continual scenario where the information is accessible for a limited time. Finally, we explore the more challenging unsupervised scenario. Our findings demonstrate that transformers still generalize for in-context prediction when trained on a curated dataset collection while offering advantages in modularity and replaceability.
☆ When Imitation Learning Outperforms Reinforcement Learning in Surgical Action Planning
Surgical action planning requires predicting future instrument-verb-target triplets for real-time assistance. While teleoperated robotic surgery provides natural expert demonstrations for imitation learning (IL), reinforcement learning (RL) could potentially discover superior strategies through exploration. We present the first comprehensive comparison of IL versus RL for surgical action planning on CholecT50. Our Dual-task Autoregressive Imitation Learning (DARIL) baseline achieves 34.6% action triplet recognition mAP and 33.6% next frame prediction mAP with smooth planning degradation to 29.2% at 10-second horizons. We evaluated three RL variants: world model-based RL, direct video RL, and inverse RL enhancement. Surprisingly, all RL approaches underperformed DARIL i.e. world model RL dropped to 3.1% mAP at 10s while direct video RL achieved only 15.9%. Our analysis reveals that distribution matching on expert-annotated test sets systematically favors IL over potentially valid RL policies that differ from training demonstrations. This challenges assumptions about RL superiority in sequential decision making and provides crucial insights for surgical AI development.
comment: This manuscript has been submitted to a conference and is being peer reviewed
☆ Multi-modal Representations for Fine-grained Multi-label Critical View of Safety Recognition
The Critical View of Safety (CVS) is crucial for safe laparoscopic cholecystectomy, yet assessing CVS criteria remains a complex and challenging task, even for experts. Traditional models for CVS recognition depend on vision-only models learning with costly, labor-intensive spatial annotations. This study investigates how text can be harnessed as a powerful tool for both training and inference in multi-modal surgical foundation models to automate CVS recognition. Unlike many existing multi-modal models, which are primarily adapted for multi-class classification, CVS recognition requires a multi-label framework. Zero-shot evaluation of existing multi-modal surgical models shows a significant performance gap for this task. To address this, we propose CVS-AdaptNet, a multi-label adaptation strategy that enhances fine-grained, binary classification across multiple labels by aligning image embeddings with textual descriptions of each CVS criterion using positive and negative prompts. By adapting PeskaVLP, a state-of-the-art surgical foundation model, on the Endoscapes-CVS201 dataset, CVS-AdaptNet achieves 57.6 mAP, improving over the ResNet50 image-only baseline (51.5 mAP) by 6 points. Our results show that CVS-AdaptNet's multi-label, multi-modal framework, enhanced by textual prompts, boosts CVS recognition over image-only methods. We also propose text-specific inference methods, that helps in analysing the image-text alignment. While further work is needed to match state-of-the-art spatial annotation-based methods, this approach highlights the potential of adapting generalist models to specialized surgical tasks. Code: https://github.com/CAMMA-public/CVS-AdaptNet
☆ Supported Abstract Argumentation for Case-Based Reasoning
We introduce Supported Abstract Argumentation for Case-Based Reasoning (sAA-CBR), a binary classification model in which past cases engage in debates by arguing in favour of their labelling and attacking or supporting those with opposing or agreeing labels. With supports, sAA-CBR overcomes the limitation of its precursor AA-CBR, which can contain extraneous cases (or spikes) that are not included in the debates. We prove that sAA-CBR contains no spikes, without trading off key model properties
comment: Accepted to IARML@ICJAI2025: Workshop on the Interactions between Analogical Reasoning and Machine Learning
☆ Classification of autoimmune diseases from Peripheral blood TCR repertoires by multimodal multi-instance learning
T cell receptor (TCR) repertoires encode critical immunological signatures for autoimmune diseases, yet their clinical application remains limited by sequence sparsity and low witness rates. We developed EAMil, a multi-instance deep learning framework that leverages TCR sequencing data to diagnose systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA) with exceptional accuracy. By integrating PrimeSeq feature extraction with ESMonehot encoding and enhanced gate attention mechanisms, our model achieved state-of-the-art performance with AUCs of 98.95% for SLE and 97.76% for RA. EAMil successfully identified disease-associated genes with over 90% concordance with established differential analyses and effectively distinguished disease-specific TCR genes. The model demonstrated robustness in classifying multiple disease categories, utilizing the SLEDAI score to stratify SLE patients by disease severity as well as to diagnose the site of damage in SLE patients, and effectively controlling for confounding factors such as age and gender. This interpretable framework for immune receptor analysis provides new insights for autoimmune disease detection and classification with broad potential clinical applications across immune-mediated conditions.
comment: 7 figures, 4 tabels
☆ LAPS-Diff: A Diffusion-Based Framework for Singing Voice Synthesis With Language Aware Prosody-Style Guided Learning
The field of Singing Voice Synthesis (SVS) has seen significant advancements in recent years due to the rapid progress of diffusion-based approaches. However, capturing vocal style, genre-specific pitch inflections, and language-dependent characteristics remains challenging, particularly in low-resource scenarios. To address this, we propose LAPS-Diff, a diffusion model integrated with language-aware embeddings and a vocal-style guided learning mechanism, specifically designed for Bollywood Hindi singing style. We curate a Hindi SVS dataset and leverage pre-trained language models to extract word and phone-level embeddings for an enriched lyrics representation. Additionally, we incorporated a style encoder and a pitch extraction model to compute style and pitch losses, capturing features essential to the naturalness and expressiveness of the synthesized singing, particularly in terms of vocal style and pitch variations. Furthermore, we utilize MERT and IndicWav2Vec models to extract musical and contextual embeddings, serving as conditional priors to refine the acoustic feature generation process further. Based on objective and subjective evaluations, we demonstrate that LAPS-Diff significantly improves the quality of the generated samples compared to the considered state-of-the-art (SOTA) model for our constrained dataset that is typical of the low resource scenario.
comment: 10 pages, 5 figures, 3 Tables
☆ Hear-Your-Click: Interactive Video-to-Audio Generation via Object-aware Contrastive Audio-Visual Fine-tuning
Video-to-audio (V2A) generation shows great potential in fields such as film production. Despite significant advances, current V2A methods, which rely on global video information, struggle with complex scenes and often fail to generate audio tailored to specific objects or regions in the videos. To address these limitations, we introduce Hear-Your-Click, an interactive V2A framework that enables users to generate sounds for specific objects in the videos by simply clicking on the frame. To achieve this, we propose Object-aware Contrastive Audio-Visual Fine-tuning (OCAV) with a Mask-guided Visual Encoder (MVE) to obtain object-level visual features aligned with corresponding audio segments. Furthermore, we tailor two data augmentation strategies: Random Video Stitching (RVS) and Mask-guided Loudness Modulation (MLM), aimed at enhancing the model's sensitivity to the segmented objects. To effectively measure the audio-visual correspondence, we design a new evaluation metric, the CAV score, for evaluation. Extensive experiments demonstrate that our framework offers more precise control and improved generation performance across various metrics. Project Page: https://github.com/SynapGrid/Hear-Your-Click
☆ EXPOTION: Facial Expression and Motion Control for Multimodal Music Generation
We propose Expotion (Facial Expression and Motion Control for Multimodal Music Generation), a generative model leveraging multimodal visual controls - specifically, human facial expressions and upper-body motion - as well as text prompts to produce expressive and temporally accurate music. We adopt parameter-efficient fine-tuning (PEFT) on the pretrained text-to-music generation model, enabling fine-grained adaptation to the multimodal controls using a small dataset. To ensure precise synchronization between video and music, we introduce a temporal smoothing strategy to align multiple modalities. Experiments demonstrate that integrating visual features alongside textual descriptions enhances the overall quality of generated music in terms of musicality, creativity, beat-tempo consistency, temporal alignment with the video, and text adherence, surpassing both proposed baselines and existing state-of-the-art video-to-music generation models. Additionally, we introduce a novel dataset consisting of 7 hours of synchronized video recordings capturing expressive facial and upper-body gestures aligned with corresponding music, providing significant potential for future research in multimodal and interactive music generation.
☆ DC-AR: Efficient Masked Autoregressive Image Generation with Deep Compression Hybrid Tokenizer ICCV 2025
We introduce DC-AR, a novel masked autoregressive (AR) text-to-image generation framework that delivers superior image generation quality with exceptional computational efficiency. Due to the tokenizers' limitations, prior masked AR models have lagged behind diffusion models in terms of quality or efficiency. We overcome this limitation by introducing DC-HT - a deep compression hybrid tokenizer for AR models that achieves a 32x spatial compression ratio while maintaining high reconstruction fidelity and cross-resolution generalization ability. Building upon DC-HT, we extend MaskGIT and create a new hybrid masked autoregressive image generation framework that first produces the structural elements through discrete tokens and then applies refinements via residual tokens. DC-AR achieves state-of-the-art results with a gFID of 5.49 on MJHQ-30K and an overall score of 0.69 on GenEval, while offering 1.5-7.9x higher throughput and 2.0-3.5x lower latency compared to prior leading diffusion and autoregressive models.
comment: ICCV 2025
☆ Object-centric Denoising Diffusion Models for Physical Reasoning
Reasoning about the trajectories of multiple, interacting objects is integral to physical reasoning tasks in machine learning. This involves conditions imposed on the objects at different time steps, for instance initial states or desired goal states. Existing approaches in physical reasoning generally rely on autoregressive modeling, which can only be conditioned on initial states, but not on later states. In fields such as planning for reinforcement learning, similar challenges are being addressed with denoising diffusion models. In this work, we propose an object-centric denoising diffusion model architecture for physical reasoning that is translation equivariant over time, permutation equivariant over objects, and can be conditioned on arbitrary time steps for arbitrary objects. We demonstrate how this model can solve tasks with multiple conditions and examine its performance when changing object numbers and trajectory lengths during inference.
☆ Leadership Detection via Time-Lagged Correlation-Based Network Inference
Understanding leadership dynamics in collective behavior is a key challenge in animal ecology, swarm robotics, and intelligent transportation. Traditional information-theoretic approaches, including Transfer Entropy (TE) and Time-Lagged Mutual Information (TLMI), have been widely used to infer leader-follower relationships but face critical limitations in noisy or short-duration datasets due to their reliance on robust probability estimations. This study proposes a method based on dynamic network inference using time-lagged correlations across multiple kinematic variables: velocity, acceleration, and direction. Our approach constructs directed influence graphs over time, enabling the identification of leadership patterns without the need for large volumes of data or parameter-sensitive discretization. We validate our method through two multi-agent simulations in NetLogo: a modified Vicsek model with informed leaders and a predator-prey model featuring coordinated and independent wolf groups. Experimental results demonstrate that the network-based method outperforms TE and TLMI in scenarios with limited spatiotemporal observations, ranking true leaders at the top of influence metrics more consistently than TE and TLMI.
☆ HV-MMBench: Benchmarking MLLMs for Human-Centric Video Understanding
Multimodal Large Language Models (MLLMs) have demonstrated significant advances in visual understanding tasks involving both images and videos. However, their capacity to comprehend human-centric video data remains underexplored, primarily due to the absence of comprehensive and high-quality evaluation benchmarks. Existing human-centric benchmarks predominantly emphasize video generation quality and action recognition, while overlooking essential perceptual and cognitive abilities required in human-centered scenarios. Furthermore, they are often limited by single-question paradigms and overly simplistic evaluation metrics. To address above limitations, we propose a modern HV-MMBench, a rigorously curated benchmark designed to provide a more holistic evaluation of MLLMs in human-centric video understanding. Compared to existing human-centric video benchmarks, our work offers the following key features: (1) Diverse evaluation dimensions: HV-MMBench encompasses 15 tasks, ranging from basic attribute perception (e.g., age estimation, emotion recognition) to advanced cognitive reasoning (e.g., social relationship prediction, intention prediction), enabling comprehensive assessment of model capabilities; (2) Varied data types: The benchmark includes multiple-choice, fill-in-blank, true/false, and open-ended question formats, combined with diverse evaluation metrics, to more accurately and robustly reflect model performance; (3) Multi-domain video coverage: The benchmark spans 50 distinct visual scenarios, enabling comprehensive evaluation across fine-grained scene variations; (4) Temporal coverage: The benchmark covers videos from short-term (10 seconds) to long-term (up to 30min) durations, supporting systematic analysis of models temporal reasoning abilities across diverse contextual lengths.
comment: Under review
☆ BackFed: An Efficient & Standardized Benchmark Suite for Backdoor Attacks in Federated Learning NeurIPS'25
Federated Learning (FL) systems are vulnerable to backdoor attacks, where adversaries train their local models on poisoned data and submit poisoned model updates to compromise the global model. Despite numerous proposed attacks and defenses, divergent experimental settings, implementation errors, and unrealistic assumptions hinder fair comparisons and valid conclusions about their effectiveness in real-world scenarios. To address this, we introduce BackFed - a comprehensive benchmark suite designed to standardize, streamline, and reliably evaluate backdoor attacks and defenses in FL, with a focus on practical constraints. Our benchmark offers key advantages through its multi-processing implementation that significantly accelerates experimentation and the modular design that enables seamless integration of new methods via well-defined APIs. With a standardized evaluation pipeline, we envision BackFed as a plug-and-play environment for researchers to comprehensively and reliably evaluate new attacks and defenses. Using BackFed, we conduct large-scale studies of representative backdoor attacks and defenses across both Computer Vision and Natural Language Processing tasks with diverse model architectures and experimental settings. Our experiments critically assess the performance of proposed attacks and defenses, revealing unknown limitations and modes of failures under practical conditions. These empirical insights provide valuable guidance for the development of new methods and for enhancing the security of FL systems. Our framework is openly available at https://github.com/thinh-dao/BackFed.
comment: Under review at NeurIPS'25
☆ MARBLE: A Multi-Agent Rule-Based LLM Reasoning Engine for Accident Severity Prediction
Accident severity prediction plays a critical role in transportation safety systems but is a persistently difficult task due to incomplete data, strong feature dependencies, and severe class imbalance in which rare but high-severity cases are underrepresented and hard to detect. Existing methods often rely on monolithic models or black box prompting, which struggle to scale in noisy, real-world settings and offer limited interpretability. To address these challenges, we propose MARBLE a multiagent rule based LLM engine that decomposes the severity prediction task across a team of specialized reasoning agents, including an interchangeable ML-backed agent. Each agent focuses on a semantic subset of features (e.g., spatial, environmental, temporal), enabling scoped reasoning and modular prompting without the risk of prompt saturation. Predictions are coordinated through either rule-based or LLM-guided consensus mechanisms that account for class rarity and confidence dynamics. The system retains structured traces of agent-level reasoning and coordination outcomes, supporting in-depth interpretability and post-hoc performance diagnostics. Across both UK and US datasets, MARBLE consistently outperforms traditional machine learning classifiers and state-of-the-art (SOTA) prompt-based reasoning methods including Chain-of-Thought (CoT), Least-to-Most (L2M), and Tree-of-Thought (ToT) achieving nearly 90% accuracy where others plateau below 48%. This performance redefines the practical ceiling for accident severity classification under real world noise and extreme class imbalance. Our results position MARBLE as a generalizable and interpretable framework for reasoning under uncertainty in safety-critical applications.
comment: 13 pages, 5 figures
☆ Emergent Semantics Beyond Token Embeddings: Transformer LMs with Frozen Visual Unicode Representations
Understanding the locus of semantic representation in large language models (LLMs) is crucial for interpretability and architectural innovation. The dominant paradigm posits that trainable input embeddings serve as foundational "meaning vectors." This paper challenges that view. We construct Transformer models where the embedding layer is entirely frozen, with vectors derived not from data, but from the visual structure of Unicode glyphs. These non-semantic, precomputed visual embeddings are fixed throughout training. Our method is compatible with any tokenizer, including a novel Unicode-centric tokenizer we introduce to ensure universal text coverage. Despite the absence of trainable, semantically initialized embeddings, our models converge, generate coherent text, and, critically, outperform architecturally identical models with trainable embeddings on the MMLU reasoning benchmark. We attribute this to "representational interference" in conventional models, where the embedding layer is burdened with learning both structural and semantic features. Our results indicate that high-level semantics are not inherent to input embeddings but are an emergent property of the Transformer's compositional architecture and data scale. This reframes the role of embeddings from meaning containers to structural primitives. We release all code and models to foster further research.
☆ Beyond Training-time Poisoning: Component-level and Post-training Backdoors in Deep Reinforcement Learning
Deep Reinforcement Learning (DRL) systems are increasingly used in safety-critical applications, yet their security remains severely underexplored. This work investigates backdoor attacks, which implant hidden triggers that cause malicious actions only when specific inputs appear in the observation space. Existing DRL backdoor research focuses solely on training-time attacks requiring unrealistic access to the training pipeline. In contrast, we reveal critical vulnerabilities across the DRL supply chain where backdoors can be embedded with significantly reduced adversarial privileges. We introduce two novel attacks: (1) TrojanentRL, which exploits component-level flaws to implant a persistent backdoor that survives full model retraining; and (2) InfrectroRL, a post-training backdoor attack which requires no access to training, validation, nor test data. Empirical and analytical evaluations across six Atari environments show our attacks rival state-of-the-art training-time backdoor attacks while operating under much stricter adversarial constraints. We also demonstrate that InfrectroRL further evades two leading DRL backdoor defenses. These findings challenge the current research focus and highlight the urgent need for robust defenses.
☆ HGNet: High-Order Spatial Awareness Hypergraph and Multi-Scale Context Attention Network for Colorectal Polyp Detection
Colorectal cancer (CRC) is closely linked to the malignant transformation of colorectal polyps, making early detection essential. However, current models struggle with detecting small lesions, accurately localizing boundaries, and providing interpretable decisions. To address these issues, we propose HGNet, which integrates High-Order Spatial Awareness Hypergraph and Multi-Scale Context Attention. Key innovations include: (1) an Efficient Multi-Scale Context Attention (EMCA) module to enhance lesion feature representation and boundary modeling; (2) the deployment of a spatial hypergraph convolution module before the detection head to capture higher-order spatial relationships between nodes; (3) the application of transfer learning to address the scarcity of medical image data; and (4) Eigen Class Activation Map (Eigen-CAM) for decision visualization. Experimental results show that HGNet achieves 94% accuracy, 90.6% recall, and 90% mAP@0.5, significantly improving small lesion differentiation and clinical interpretability. The source code will be made publicly available upon publication of this paper.
☆ DoPI: Doctor-like Proactive Interrogation LLM for Traditional Chinese Medicine
Enhancing interrogation capabilities in Traditional Chinese Medicine (TCM) diagnosis through multi-turn dialogues and knowledge graphs presents a significant challenge for modern AI systems. Current large language models (LLMs), despite their advancements, exhibit notable limitations in medical applications, particularly in conducting effective multi-turn dialogues and proactive questioning. These shortcomings hinder their practical application and effectiveness in simulating real-world diagnostic scenarios. To address these limitations, we propose DoPI, a novel LLM system specifically designed for the TCM domain. The DoPI system introduces a collaborative architecture comprising a guidance model and an expert model. The guidance model conducts multi-turn dialogues with patients and dynamically generates questions based on a knowledge graph to efficiently extract critical symptom information. Simultaneously, the expert model leverages deep TCM expertise to provide final diagnoses and treatment plans. Furthermore, this study constructs a multi-turn doctor-patient dialogue dataset to simulate realistic consultation scenarios and proposes a novel evaluation methodology that does not rely on manually collected real-world consultation data. Experimental results show that the DoPI system achieves an accuracy rate of 84.68 percent in interrogation outcomes, significantly enhancing the model's communication ability during diagnosis while maintaining professional expertise.
☆ A Novel Approach for Estimating Positive Lyapunov Exponents in One-Dimensional Chaotic Time Series Using Machine Learning
Understanding and quantifying chaos in nonlinear dynamical systems remains a fundamental challenge in science and engineering. The Lyapunov exponent is a key measure of chaotic behavior, but its accurate estimation from experimental data is often hindered by methodological and computational limitations. In this work, we present a novel machine-learning-based approach for estimating the positive Lyapunov exponent (MLE) from one-dimensional time series, using the growth of out-of-sample prediction errors as a proxy for trajectory divergence. Our method demonstrates high scientific relevance, offering a robust, data-driven alternative to traditional analytic techniques. Through comprehensive testing on several canonical chaotic maps - including the logistic, sine, cubic, and Chebyshev maps - we achieved a coefficient of determination R2pos > 0.9 between predicted and theoretical MLE values for time series as short as M = 200 points. The best accuracy was observed for the Chebyshev map (R2pos = 0.999). Notably, the proposed method maintains high computational efficiency and generalizes well across various machine learning algorithms. These results highlight the significance of our approach for practical chaos analysis in both synthetic and experimental settings, opening new possibilities for robust nonlinear dynamics assessment when only time series data are available.
comment: 14 pages, 3 figures, 2 Tables, 10 Equations
☆ Towards Human-in-the-Loop Onset Detection: A Transfer Learning Approach for Maracatu
We explore transfer learning strategies for musical onset detection in the Afro-Brazilian Maracatu tradition, which features complex rhythmic patterns that challenge conventional models. We adapt two Temporal Convolutional Network architectures: one pre-trained for onset detection (intra-task) and another for beat tracking (inter-task). Using only 5-second annotated snippets per instrument, we fine-tune these models through layer-wise retraining strategies for five traditional percussion instruments. Our results demonstrate significant improvements over baseline performance, with F1 scores reaching up to 0.998 in the intra-task setting and improvements of over 50 percentage points in best-case scenarios. The cross-task adaptation proves particularly effective for time-keeping instruments, where onsets naturally align with beat positions. The optimal fine-tuning configuration varies by instrument, highlighting the importance of instrument-specific adaptation strategies. This approach addresses the challenges of underrepresented musical traditions, offering an efficient human-in-the-loop methodology that minimizes annotation effort while maximizing performance. Our findings contribute to more inclusive music information retrieval tools applicable beyond Western musical contexts.
comment: Accepted at ISMIR 2025
☆ Fast-VGAN: Lightweight Voice Conversion with Explicit Control of F0 and Duration Parameters
Precise control over speech characteristics, such as pitch, duration, and speech rate, remains a significant challenge in the field of voice conversion. The ability to manipulate parameters like pitch and syllable rate is an important element for effective identity conversion, but can also be used independently for voice transformation, achieving goals that were historically addressed by vocoder-based methods. In this work, we explore a convolutional neural network-based approach that aims to provide means for modifying fundamental frequency (F0), phoneme sequences, intensity, and speaker identity. Rather than relying on disentanglement techniques, our model is explicitly conditioned on these factors to generate mel spectrograms, which are then converted into waveforms using a universal neural vocoder. Accordingly, during inference, F0 contours, phoneme sequences, and speaker embeddings can be freely adjusted, allowing for intuitively controlled voice transformations. We evaluate our approach on speaker conversion and expressive speech tasks using both perceptual and objective metrics. The results suggest that the proposed method offers substantial flexibility, while maintaining high intelligibility and speaker similarity.
comment: 8 pages, 4 figures
☆ From Vision To Language through Graph of Events in Space and Time: An Explainable Self-supervised Approach
The task of describing video content in natural language is commonly referred to as video captioning. Unlike conventional video captions, which are typically brief and widely available, long-form paragraph descriptions in natural language are scarce. This limitation of current datasets is due to the expensive human manual annotation required and to the highly challenging task of explaining the language formation process from the perspective of the underlying story, as a complex system of interconnected events in space and time. Through a thorough analysis of recently published methods and available datasets, we identify a general lack of published resources dedicated to the problem of describing videos in complex language, beyond the level of descriptions in the form of enumerations of simple captions. Furthermore, while state-of-the-art methods produce impressive results on the task of generating shorter captions from videos by direct end-to-end learning between the videos and text, the problem of explaining the relationship between vision and language is still beyond our reach. In this work, we propose a shared representation between vision and language, based on graphs of events in space and time, which can be obtained in an explainable and analytical way, to integrate and connect multiple vision tasks to produce the final natural language description. Moreover, we also demonstrate how our automated and explainable video description generation process can function as a fully automatic teacher to effectively train direct, end-to-end neural student pathways, within a self-supervised neuro-analytical system. We validate that our explainable neuro-analytical approach generates coherent, rich and relevant textual descriptions on videos collected from multiple varied datasets, using both standard evaluation metrics, human annotations and consensus from ensembles of state-of-the-art VLMs.
comment: arXiv admin note: text overlap with arXiv:2501.08460
☆ Application and Evaluation of Large Language Models for Forecasting the Impact of Traffic Incidents SC
This study examines the feasibility of applying large language models (LLMs) for forecasting the impact of traffic incidents on the traffic flow. The use of LLMs for this task has several advantages over existing machine learning-based solutions such as not requiring a large training dataset and the ability to utilize free-text incident logs. We propose a fully LLM-based solution that predicts the incident impact using a combination of traffic features and LLM-extracted incident features. A key ingredient of this solution is an effective method of selecting examples for the LLM's in-context learning. We evaluate the performance of three advanced LLMs and two state-of-the-art machine learning models on a real traffic incident dataset. The results show that the best-performing LLM matches the accuracy of the most accurate machine learning model, despite the former not having been trained on this prediction task. The findings indicate that LLMs are a practically viable option for traffic incident impact prediction.
comment: This paper has been accepted for publication at the 2025 IEEE 28th International Conference on Intelligent Transportation Systems (ITSC), Gold Coast, Australia, 2025. Copyright IEEE
☆ A Survey of Pun Generation: Datasets, Evaluations and Methodologies
Pun generation seeks to creatively modify linguistic elements in text to produce humour or evoke double meanings. It also aims to preserve coherence and contextual appropriateness, making it useful in creative writing and entertainment across various media and contexts. Although pun generation has received considerable attention in computational linguistics, there is currently no dedicated survey that systematically reviews this specific area. To bridge this gap, this paper provides a comprehensive review of pun generation datasets and methods across different stages, including conventional approaches, deep learning techniques, and pre-trained language models. Additionally, we summarise both automated and human evaluation metrics used to assess the quality of pun generation. Finally, we discuss the research challenges and propose promising directions for future work.
☆ Model Compression using Progressive Channel Pruning
In this work, we propose a simple but effective channel pruning framework called Progressive Channel Pruning (PCP) to accelerate Convolutional Neural Networks (CNNs). In contrast to the existing channel pruning methods that prune channels only once per layer in a layer-by-layer fashion, our new progressive framework iteratively prunes a small number of channels from several selected layers, which consists of a three-step attempting-selecting-pruning pipeline in each iteration. In the attempting step, we attempt to prune a pre-defined number of channels from one layer by using any existing channel pruning methods and estimate the accuracy drop for this layer based on the labelled samples in the validation set. In the selecting step, based on the estimated accuracy drops for all layers, we propose a greedy strategy to automatically select a set of layers that will lead to less overall accuracy drop after pruning these layers. In the pruning step, we prune a small number of channels from these selected layers. We further extend our PCP framework to prune channels for the deep transfer learning methods like Domain Adversarial Neural Network (DANN), in which we effectively reduce the data distribution mismatch in the channel pruning process by using both labelled samples from the source domain and pseudo-labelled samples from the target domain. Our comprehensive experiments on two benchmark datasets demonstrate that our PCP framework outperforms the existing channel pruning approaches under both supervised learning and transfer learning settings.
☆ Interaction-Merged Motion Planning: Effectively Leveraging Diverse Motion Datasets for Robust Planning ICCV 2025
Motion planning is a crucial component of autonomous robot driving. While various trajectory datasets exist, effectively utilizing them for a target domain remains challenging due to differences in agent interactions and environmental characteristics. Conventional approaches, such as domain adaptation or ensemble learning, leverage multiple source datasets but suffer from domain imbalance, catastrophic forgetting, and high computational costs. To address these challenges, we propose Interaction-Merged Motion Planning (IMMP), a novel approach that leverages parameter checkpoints trained on different domains during adaptation to the target domain. IMMP follows a two-step process: pre-merging to capture agent behaviors and interactions, sufficiently extracting diverse information from the source domain, followed by merging to construct an adaptable model that efficiently transfers diverse interactions to the target domain. Our method is evaluated on various planning benchmarks and models, demonstrating superior performance compared to conventional approaches.
comment: Accepted at ICCV 2025
☆ From Imitation to Innovation: The Emergence of AI Unique Artistic Styles and the Challenge of Copyright Protection
Current legal frameworks consider AI-generated works eligible for copyright protection when they meet originality requirements and involve substantial human intellectual input. However, systematic legal standards and reliable evaluation methods for AI art copyrights are lacking. Through comprehensive analysis of legal precedents, we establish three essential criteria for determining distinctive artistic style: stylistic consistency, creative uniqueness, and expressive accuracy. To address these challenges, we introduce ArtBulb, an interpretable and quantifiable framework for AI art copyright judgment that combines a novel style description-based multimodal clustering method with multimodal large language models (MLLMs). We also present AICD, the first benchmark dataset for AI art copyright annotated by artists and legal experts. Experimental results demonstrate that ArtBulb outperforms existing models in both quantitative and qualitative evaluations. Our work aims to bridge the gap between the legal and technological communities and bring greater attention to the societal issue of AI art copyrights.
☆ FurniMAS: Language-Guided Furniture Decoration using Multi-Agent System
Furniture decoration is an important task in various industrial applications. However, achieving a high-quality decorative result is often time-consuming and requires specialized artistic expertise. To tackle these challenges, we explore how multi-agent systems can assist in automating the decoration process. We propose FurniMAS, a multi-agent system for automatic furniture decoration. Specifically, given a human prompt and a household furniture item such as a working desk or a TV stand, our system suggests relevant assets with appropriate styles and materials, and arranges them on the item, ensuring the decorative result meets functionality, aesthetic, and ambiance preferences. FurniMAS assembles a hybrid team of LLM-based and non-LLM agents, each fulfilling distinct roles in a typical decoration project. These agents collaborate through communication, logical reasoning, and validation to transform the requirements into the final outcome. Extensive experiments demonstrate that our FurniMAS significantly outperforms other baselines in generating high-quality 3D decor.
☆ CoSteer: Collaborative Decoding-Time Personalization via Local Delta Steering
Personalized text generation has become crucial for adapting language models to diverse and evolving users' personal context across cultural, temporal, and contextual dimensions. While existing methods often rely on centralized fine-tuning or static preference alignment, they struggle to achieve real-time adaptation under resource constraints inherent to personal devices. This limitation creates a dilemma: large cloud-based models lack access to localized user-specific information, while small on-device models cannot match the generation quality of their cloud counterparts. To address this dichotomy, we present CoSteer, a novel collaborative framework that enables decoding-time personalization through localized delta steering. Our key insight lies in leveraging the logits difference between personal context-aware and -agnostic outputs from local small models as steering signals for cloud-based LLMs. Specifically, we formulate token-level optimization as an online learning problem, where local delta vectors dynamically adjust the remote LLM's logits within the on-device environment. This approach preserves privacy by transmitting only the final steered tokens rather than raw data or intermediate vectors, while maintaining cloud-based LLMs' general capabilities without fine-tuning. Through comprehensive experiments on various personalized generation tasks, we demonstrate that CoSteer effectively assists LLMs in generating personalized content by leveraging locally stored user profiles and histories, ensuring privacy preservation through on-device data processing while maintaining acceptable computational overhead.
☆ Large Language Models for Network Intrusion Detection Systems: Foundations, Implementations, and Future Directions
Large Language Models (LLMs) have revolutionized various fields with their exceptional capabilities in understanding, processing, and generating human-like text. This paper investigates the potential of LLMs in advancing Network Intrusion Detection Systems (NIDS), analyzing current challenges, methodologies, and future opportunities. It begins by establishing a foundational understanding of NIDS and LLMs, exploring the enabling technologies that bridge the gap between intelligent and cognitive systems in AI-driven NIDS. While Intelligent NIDS leverage machine learning and deep learning to detect threats based on learned patterns, they often lack contextual awareness and explainability. In contrast, Cognitive NIDS integrate LLMs to process both structured and unstructured security data, enabling deeper contextual reasoning, explainable decision-making, and automated response for intrusion behaviors. Practical implementations are then detailed, highlighting LLMs as processors, detectors, and explainers within a comprehensive AI-driven NIDS pipeline. Furthermore, the concept of an LLM-centered Controller is proposed, emphasizing its potential to coordinate intrusion detection workflows, optimizing tool collaboration and system performance. Finally, this paper identifies critical challenges and opportunities, aiming to foster innovation in developing reliable, adaptive, and explainable NIDS. By presenting the transformative potential of LLMs, this paper seeks to inspire advancement in next-generation network security systems.
☆ MCFormer: A Multi-Cost-Volume Network and Comprehensive Benchmark for Particle Image Velocimetry
Particle Image Velocimetry (PIV) is fundamental to fluid dynamics, yet deep learning applications face significant hurdles. A critical gap exists: the lack of comprehensive evaluation of how diverse optical flow models perform specifically on PIV data, largely due to limitations in available datasets and the absence of a standardized benchmark. This prevents fair comparison and hinders progress. To address this, our primary contribution is a novel, large-scale synthetic PIV benchmark dataset generated from diverse CFD simulations (JHTDB and Blasius). It features unprecedented variety in particle densities, flow velocities, and continuous motion, enabling, for the first time, a standardized and rigorous evaluation of various optical flow and PIV algorithms. Complementing this, we propose Multi Cost Volume PIV (MCFormer), a new deep network architecture leveraging multi-frame temporal information and multiple cost volumes, specifically designed for PIV's sparse nature. Our comprehensive benchmark evaluation, the first of its kind, reveals significant performance variations among adapted optical flow models and demonstrates that MCFormer significantly outperforms existing methods, achieving the lowest overall normalized endpoint error (NEPE). This work provides both a foundational benchmark resource essential for future PIV research and a state-of-the-art method tailored for PIV challenges. We make our benchmark dataset and code publicly available to foster future research in this area.
comment: 20 pages, 13 figures, 5 tables. Comprehensive benchmark evaluation of optical flow models for PIV. Introduces MCFormer architecture with multi-frame temporal processing and multiple cost volumes. Includes large-scale synthetic PIV dataset based on JHTDB and Blasius CFD simulations. Code and dataset will be made publicly available
☆ LLM-based Question-Answer Framework for Sensor-driven HVAC System Interaction
Question-answering (QA) interfaces powered by large language models (LLMs) present a promising direction for improving interactivity with HVAC system insights, particularly for non-expert users. However, enabling accurate, real-time, and context-aware interactions with HVAC systems introduces unique challenges, including the integration of frequently updated sensor data, domain-specific knowledge grounding, and coherent multi-stage reasoning. In this paper, we present JARVIS, a two-stage LLM-based QA framework tailored for sensor data-driven HVAC system interaction. JARVIS employs an Expert-LLM to translate high-level user queries into structured execution instructions, and an Agent that performs SQL-based data retrieval, statistical processing, and final response generation. To address HVAC-specific challenges, JARVIS integrates (1) an adaptive context injection strategy for efficient HVAC and deployment-specific information integration, (2) a parameterized SQL builder and executor to improve data access reliability, and (3) a bottom-up planning scheme to ensure consistency across multi-stage response generation. We evaluate JARVIS using real-world data collected from a commercial HVAC system and a ground truth QA dataset curated by HVAC experts to demonstrate its effectiveness in delivering accurate and interpretable responses across diverse queries. Results show that JARVIS consistently outperforms baseline and ablation variants in both automated and user-centered assessments, achieving high response quality and accuracy.
☆ Activation Steering for Chain-of-Thought Compression
Large language models (LLMs) excel at complex reasoning when they include intermediate steps, known as "chains of thought" (CoTs). However, these rationales are often overly verbose, even for simple problems, leading to wasted context, increased latency, and higher energy consumption. We observe that verbose, English-heavy CoTs and concise, math-centric CoTs occupy distinct regions in the model's residual-stream activation space. By extracting and injecting a "steering vector" to transition between these modes, we can reliably shift generation toward more concise reasoning, effectively compressing CoTs without retraining. We formalize this approach as Activation-Steered Compression (ASC), an inference-time technique that shortens reasoning traces by directly modifying hidden representations. In addition, we provide a theoretical analysis of the impact of ASC on the output distribution, derived from a closed-form KL-divergence-bounded constraint to regulate steering strength. Using only 100 paired verbose and concise examples, ASC achieves up to 67.43% reduction in CoT length on MATH500 and GSM8K datasets, while maintaining accuracy across 7B, 8B, and 32B parameter models. As a training-free method, ASC introduces negligible runtime overhead and, on MATH500, delivers an average 2.73x speedup in end-to-end reasoning wall-clock time on an 8B model. This makes ASC a practical and efficient tool for streamlining the deployment of reasoning-capable LLMs in latency- or cost-sensitive settings. The code is available at: https://github.com/ArminAzizi98/ASC
☆ Word stress in self-supervised speech models: A cross-linguistic comparison
In this paper we study word stress representations learned by self-supervised speech models (S3M), specifically the Wav2vec 2.0 model. We investigate the S3M representations of word stress for five different languages: Three languages with variable or lexical stress (Dutch, English and German) and two languages with fixed or demarcative stress (Hungarian and Polish). We train diagnostic stress classifiers on S3M embeddings and show that they can distinguish between stressed and unstressed syllables in read-aloud short sentences with high accuracy. We also tested language-specificity effects of S3M word stress. The results indicate that the word stress representations are language-specific, with a greater difference between the set of variable versus the set of fixed stressed languages.
comment: Accepted to Interspeech 2025
☆ ChipSeek-R1: Generating Human-Surpassing RTL with LLM via Hierarchical Reward-Driven Reinforcement Learning
Large Language Models (LLMs) show significant potential for automating Register-Transfer Level (RTL) code generation. However, current approaches face a critical challenge: they can not simultaneously optimize for functional correctness and hardware quality (Power, Performance, Area - PPA). Methods based on supervised fine-tuning often generate functionally correct but PPA-suboptimal code, lacking mechanisms to learn optimization principles. In contrast, post-processing techniques that attempt to improve PPA metrics after generation are often inefficient because they operate externally without updating the LLM's parameters, thus failing to enhance the model's intrinsic design capabilities. To bridge this gap, we introduce ChipSeek-R1, a hierarchical reward-driven reinforcement learning framework to train LLMs to generate RTL code that achieves both functional correctness and optimized PPA metrics. ChipSeek-R1 employs a hierarchical reward system, which incorporates direct feedback on syntax, functional correctness (from simulators) and PPA metrics (from synthesis tools) during reinforcement learning. This enables the model to learn complex hardware design trade-offs via trial-and-error, generating RTL code that is both functionally correct and PPA-optimized. Evaluating ChipSeek-R1 on standard benchmarks (VerilogEval, RTLLM), we achieve state-of-the-art results in functional correctness. Notably, on the RTLLM benchmark, ChipSeek-R1 generated 27 RTL designs surpassing the PPA metrics of the original human-written code. Our findings demonstrate the effectiveness of integrating toolchain feedback into LLM training and highlight the potential for reinforcement learning to enable automated generation of human-surpassing RTL code. We open-source our code in anonymous github.
☆ Losing Control: Data Poisoning Attack on Guided Diffusion via ControlNet
Text-to-image diffusion models have achieved remarkable success in translating textual prompts into high-fidelity images. ControlNets further extend these models by allowing precise, image-based conditioning (e.g., edge maps, depth, pose), enabling fine-grained control over structure and style. However, their dependence on large, publicly scraped datasets -- and the increasing use of community-shared data for fine-tuning -- exposes them to stealthy data poisoning attacks. In this work, we introduce a novel data poisoning method that manipulates ControlNets to generate images containing specific content without any text triggers. By injecting poisoned samples -- each pairing a subtly triggered input with an NSFW target -- the model retains clean-prompt fidelity yet reliably produces NSFW outputs when the trigger is present. On large-scale, high-quality datasets, our backdoor achieves high attack success rate while remaining imperceptible in raw inputs. These results reveal a critical vulnerability in open-source ControlNets pipelines and underscore the need for robust data sanitization and defense mechanisms.
☆ Who's the Mole? Modeling and Detecting Intention-Hiding Malicious Agents in LLM-Based Multi-Agent Systems
Multi-agent systems powered by Large Language Models (LLM-MAS) demonstrate remarkable capabilities in collaborative problem-solving. While LLM-MAS exhibit strong collaborative abilities, the security risks in their communication and coordination remain underexplored. We bridge this gap by systematically investigating intention-hiding threats in LLM-MAS, and design four representative attack paradigms that subtly disrupt task completion while maintaining high concealment. These attacks are evaluated in centralized, decentralized, and layered communication structures. Experiments conducted on six benchmark datasets, including MMLU, MMLU-Pro, HumanEval, GSM8K, arithmetic, and biographies, demonstrate that they exhibit strong disruptive capabilities. To identify these threats, we propose a psychology-based detection framework AgentXposed, which combines the HEXACO personality model with the Reid Technique, using progressive questionnaire inquiries and behavior-based monitoring. Experiments conducted on six types of attacks show that our detection framework effectively identifies all types of malicious behaviors. The detection rate for our intention-hiding attacks is slightly lower than that of the two baselines, Incorrect Fact Injection and Dark Traits Injection, demonstrating the effectiveness of intention concealment. Our findings reveal the structural and behavioral risks posed by intention-hiding attacks and offer valuable insights into securing LLM-based multi-agent systems through psychological perspectives, which contributes to a deeper understanding of multi-agent safety. The code and data are available at https://anonymous.4open.science/r/AgentXposed-F814.
☆ LumiCRS: Asymmetric Contrastive Prototype Learning for Long-Tail Conversational Movie Recommendation
Conversational recommender systems (CRSs) often suffer from an extreme long-tail distribution of dialogue data, causing a strong bias toward head-frequency blockbusters that sacrifices diversity and exacerbates the cold-start problem. An empirical analysis of DCRS and statistics on the REDIAL corpus show that only 10% of head movies account for nearly half of all mentions, whereas about 70% of tail movies receive merely 26% of the attention. This imbalance gives rise to three critical challenges: head over-fitting, body representation drift, and tail sparsity. To address these issues, we propose LumiCRS, an end-to-end framework that mitigates long-tail imbalance through three mutually reinforcing layers: (i) an Adaptive Comprehensive Focal Loss (ACFL) that dynamically adjusts class weights and focusing factors to curb head over-fitting and reduce popularity bias; (ii) Prototype Learning for Long-Tail Recommendation, which selects semantic, affective, and contextual prototypes to guide clustering and stabilize body and tail representations; and (iii) a GPT-4o-driven prototype-guided dialogue augmentation module that automatically generates diverse long-tail conversational snippets to alleviate tail sparsity and distribution shift. Together, these strategies enable LumiCRS to markedly improve recommendation accuracy, diversity, and fairness: on the REDIAL and INSPIRED benchmarks, LumiCRS boosts Recall@10 and Tail-Recall@10 by 7-15% over fifteen strong baselines, while human evaluations confirm superior fluency, informativeness, and long-tail relevance. These results demonstrate the effectiveness of multi-layer collaboration in building an efficient and fair long-tail conversational recommender.
☆ Advocate for Complete Benchmarks for Formal Reasoning with Formal/Informal Statements and Formal/Informal Proofs
This position paper provides a critical but constructive discussion of current practices in benchmarking and evaluative practices in the field of formal reasoning and automated theorem proving. We take the position that open code, open data, and benchmarks that are complete and error-free will accelerate progress in this field. We identify practices that create barriers to contributing to this field and suggest ways to remove them. We also discuss some of the practices that might produce misleading evaluative information. We aim to create discussions that bring together people from various groups contributing to automated theorem proving, autoformalization, and informal reasoning.
☆ Geometric-Guided Few-Shot Dental Landmark Detection with Human-Centric Foundation Model MICCAI 2025
Accurate detection of anatomic landmarks is essential for assessing alveolar bone and root conditions, thereby optimizing clinical outcomes in orthodontics, periodontics, and implant dentistry. Manual annotation of landmarks on cone-beam computed tomography (CBCT) by dentists is time-consuming, labor-intensive, and subject to inter-observer variability. Deep learning-based automated methods present a promising approach to streamline this process efficiently. However, the scarcity of training data and the high cost of expert annotations hinder the adoption of conventional deep learning techniques. To overcome these challenges, we introduce GeoSapiens, a novel few-shot learning framework designed for robust dental landmark detection using limited annotated CBCT of anterior teeth. Our GeoSapiens framework comprises two key components: (1) a robust baseline adapted from Sapiens, a foundational model that has achieved state-of-the-art performance in human-centric vision tasks, and (2) a novel geometric loss function that improves the model's capacity to capture critical geometric relationships among anatomical structures. Experiments conducted on our collected dataset of anterior teeth landmarks revealed that GeoSapiens surpassed existing landmark detection methods, outperforming the leading approach by an 8.18% higher success detection rate at a strict 0.5 mm threshold-a standard widely recognized in dental diagnostics. Code is available at: https://github.com/xmed-lab/GeoSapiens.
comment: MICCAI 2025
☆ UrbanMind: Towards Urban General Intelligence via Tool-Enhanced Retrieval-Augmented Generation and Multilevel Optimization
Urban general intelligence (UGI) refers to the capacity of AI systems to autonomously perceive, reason, and act within dynamic and complex urban environments. In this paper, we introduce UrbanMind, a tool-enhanced retrieval-augmented generation (RAG) framework designed to facilitate UGI. Central to UrbanMind is a novel architecture based on Continual Retrieval-Augmented MoE-based LLM (C-RAG-LLM), which dynamically incorporates domain-specific knowledge and evolving urban data to support long-term adaptability. The architecture of C-RAG-LLM aligns naturally with a multilevel optimization framework, where different layers are treated as interdependent sub-problems. Each layer has distinct objectives and can be optimized either independently or jointly through a hierarchical learning process. The framework is highly flexible, supporting both end-to-end training and partial layer-wise optimization based on resource or deployment constraints. To remain adaptive under data drift, it is further integrated with an incremental corpus updating mechanism. Evaluations on real-world urban tasks of a variety of complexity verify the effectiveness of the proposed framework. This work presents a promising step toward the realization of general-purpose LLM agents in future urban environments.
☆ SPATIA: Multimodal Model for Prediction and Generation of Spatial Cell Phenotypes
Understanding how cellular morphology, gene expression, and spatial organization jointly shape tissue function is a central challenge in biology. Image-based spatial transcriptomics technologies now provide high-resolution measurements of cell images and gene expression profiles, but machine learning methods typically analyze these modalities in isolation or at limited resolution. We address the problem of learning unified, spatially aware representations that integrate cell morphology, gene expression, and spatial context across biological scales. This requires models that can operate at single-cell resolution, reason across spatial neighborhoods, and generalize to whole-slide tissue organization. Here, we introduce SPATIA, a multi-scale generative and predictive model for spatial transcriptomics. SPATIA learns cell-level embeddings by fusing image-derived morphological tokens and transcriptomic vector tokens using cross-attention and then aggregates them at niche and tissue levels using transformer modules to capture spatial dependencies. SPATIA incorporates token merging in its generative diffusion decoder to synthesize high-resolution cell images conditioned on gene expression. We assembled a multi-scale dataset consisting of 17 million cell-gene pairs, 1 million niche-gene pairs, and 10,000 tissue-gene pairs across 49 donors, 17 tissue types, and 12 disease states. We benchmark SPATIA against 13 existing models across 12 individual tasks, which span several categories including cell annotation, cell clustering, gene imputation, cross-modal prediction, and image generation. SPATIA achieves improved performance over all baselines and generates realistic cell morphologies that reflect transcriptomic perturbations.
☆ Tempo-R0: A Video-MLLM for Temporal Video Grounding through Efficient Temporal Sensing Reinforcement Learning
Temporal Video Grounding (TVG), which requires pinpointing relevant temporal segments from video based on language query, has always been a highly challenging task in the field of video understanding. Videos often have a larger volume of information and redundancy than texts or images. Models should present comprehensive understanding of the whole video to accurately retrieve query-relevant clips. We thus propose Tempo-R0: a Video Multimodal Large Language Model (Video-MLLM) for the temporal video grounding task via multimodal temporal sensing reinforcement. Specifically, during the preprocessing stage of our pipeline, we employ Self-adaptive Attention Allocation (SAA) method based on frame content variation to efficiently use the MLLM's limited attention. The Explicit Timestamp-modal Aligned (ETA) method is also utilized to strengthen our model's capability to perceive the boundaries of events in the video. In the fine-tuning part of our pipeline, we creatively apply Partial Irrelevance Refusing-based Group Relative Policy Optimization (PIR-GRPO) in TVG area to foster model's temporal reasoning from not only accepting relevant video-query pairs but also refusing irrelevant ones. Experiments demonstrate that our method accomplishes a notable advantage over SOTA solutions by around 3.5% on both the original QVHighlights testbench and its corrected version with more reasonable ground truth annotations.
☆ Bridging KAN and MLP: MJKAN, a Hybrid Architecture with Both Efficiency and Expressiveness
Kolmogorov-Arnold Networks (KANs) have garnered attention for replacing fixed activation functions with learnable univariate functions, but they exhibit practical limitations, including high computational costs and performance deficits in general classification tasks. In this paper, we propose the Modulation Joint KAN (MJKAN), a novel neural network layer designed to overcome these challenges. MJKAN integrates a FiLM (Feature-wise Linear Modulation)-like mechanism with Radial Basis Function (RBF) activations, creating a hybrid architecture that combines the non-linear expressive power of KANs with the efficiency of Multilayer Perceptrons (MLPs). We empirically validated MJKAN's performance across a diverse set of benchmarks, including function regression, image classification (MNIST, CIFAR-10/100), and natural language processing (AG News, SMS Spam). The results demonstrate that MJKAN achieves superior approximation capabilities in function regression tasks, significantly outperforming MLPs, with performance improving as the number of basis functions increases. Conversely, in image and text classification, its performance was competitive with MLPs but revealed a critical dependency on the number of basis functions. We found that a smaller basis size was crucial for better generalization, highlighting that the model's capacity must be carefully tuned to the complexity of the data to prevent overfitting. In conclusion, MJKAN offers a flexible architecture that inherits the theoretical advantages of KANs while improving computational efficiency and practical viability.
☆ Identify, Isolate, and Purge: Mitigating Hallucinations in LVLMs via Self-Evolving Distillation
Large Vision-Language Models (LVLMs) have demonstrated remarkable advancements in numerous areas such as multimedia. However, hallucination issues significantly limit their credibility and application potential. Existing mitigation methods typically rely on external tools or the comparison of multi-round inference, which significantly increase inference time. In this paper, we propose \textbf{SE}lf-\textbf{E}volving \textbf{D}istillation (\textbf{SEED}), which identifies hallucinations within the inner knowledge of LVLMs, isolates and purges them, and then distills the purified knowledge back into the model, enabling self-evolution. Furthermore, we identified that traditional distillation methods are prone to inducing void spaces in the output space of LVLMs. To address this issue, we propose a Mode-Seeking Evolving approach, which performs distillation to capture the dominant modes of the purified knowledge distribution, thereby avoiding the chaotic results that could emerge from void spaces. Moreover, we introduce a Hallucination Elimination Adapter, which corrects the dark knowledge of the original model by learning purified knowledge. Extensive experiments on multiple benchmarks validate the superiority of our SEED, demonstrating substantial improvements in mitigating hallucinations for representative LVLM models such as LLaVA-1.5 and InternVL2. Remarkably, the F1 score of LLaVA-1.5 on the hallucination evaluation metric POPE-Random improved from 81.3 to 88.3.
☆ Trojan Horse Prompting: Jailbreaking Conversational Multimodal Models by Forging Assistant Message
The rise of conversational interfaces has greatly enhanced LLM usability by leveraging dialogue history for sophisticated reasoning. However, this reliance introduces an unexplored attack surface. This paper introduces Trojan Horse Prompting, a novel jailbreak technique. Adversaries bypass safety mechanisms by forging the model's own past utterances within the conversational history provided to its API. A malicious payload is injected into a model-attributed message, followed by a benign user prompt to trigger harmful content generation. This vulnerability stems from Asymmetric Safety Alignment: models are extensively trained to refuse harmful user requests but lack comparable skepticism towards their own purported conversational history. This implicit trust in its "past" creates a high-impact vulnerability. Experimental validation on Google's Gemini-2.0-flash-preview-image-generation shows Trojan Horse Prompting achieves a significantly higher Attack Success Rate (ASR) than established user-turn jailbreaking methods. These findings reveal a fundamental flaw in modern conversational AI security, necessitating a paradigm shift from input-level filtering to robust, protocol-level validation of conversational context integrity.
☆ What's Making That Sound Right Now? Video-centric Audio-Visual Localization ICCV 2025
Audio-Visual Localization (AVL) aims to identify sound-emitting sources within a visual scene. However, existing studies focus on image-level audio-visual associations, failing to capture temporal dynamics. Moreover, they assume simplified scenarios where sound sources are always visible and involve only a single object. To address these limitations, we propose AVATAR, a video-centric AVL benchmark that incorporates high-resolution temporal information. AVATAR introduces four distinct scenarios -- Single-sound, Mixed-sound, Multi-entity, and Off-screen -- enabling a more comprehensive evaluation of AVL models. Additionally, we present TAVLO, a novel video-centric AVL model that explicitly integrates temporal information. Experimental results show that conventional methods struggle to track temporal variations due to their reliance on global audio features and frame-level mappings. In contrast, TAVLO achieves robust and precise audio-visual alignment by leveraging high-resolution temporal modeling. Our work empirically demonstrates the importance of temporal dynamics in AVL and establishes a new standard for video-centric audio-visual localization.
comment: Published at ICCV 2025. Project page: https://hahyeon610.github.io/Video-centric_Audio_Visual_Localization/
☆ LTMSformer: A Local Trend-Aware Attention and Motion State Encoding Transformer for Multi-Agent Trajectory Prediction
It has been challenging to model the complex temporal-spatial dependencies between agents for trajectory prediction. As each state of an agent is closely related to the states of adjacent time steps, capturing the local temporal dependency is beneficial for prediction, while most studies often overlook it. Besides, learning the high-order motion state attributes is expected to enhance spatial interaction modeling, but it is rarely seen in previous works. To address this, we propose a lightweight framework, LTMSformer, to extract temporal-spatial interaction features for multi-modal trajectory prediction. Specifically, we introduce a Local Trend-Aware Attention mechanism to capture the local temporal dependency by leveraging a convolutional attention mechanism with hierarchical local time boxes. Next, to model the spatial interaction dependency, we build a Motion State Encoder to incorporate high-order motion state attributes, such as acceleration, jerk, heading, etc. To further refine the trajectory prediction, we propose a Lightweight Proposal Refinement Module that leverages Multi-Layer Perceptrons for trajectory embedding and generates the refined trajectories with fewer model parameters. Experiment results on the Argoverse 1 dataset demonstrate that our method outperforms the baseline HiVT-64, reducing the minADE by approximately 4.35%, the minFDE by 8.74%, and the MR by 20%. We also achieve higher accuracy than HiVT-128 with a 68% reduction in model size.
☆ Can Prompt Difficulty be Online Predicted for Accelerating RL Finetuning of Reasoning Models?
Recent advances have witnessed the effectiveness of reinforcement learning (RL) finetuning in enhancing the reasoning capabilities of large language models (LLMs). The optimization process often requires numerous iterations to achieve satisfactory performance, resulting in high computational costs due to the need for frequent prompt evaluations under intensive LLM interactions and repeated policy updates. Appropriate online prompt selection methods reduce iteration steps by prioritizing informative prompts during training, while the pipeline's reliance on exhaustive prompt evaluation and subset selection for optimization still incurs substantial computational overhead due to frequent LLM inference calls. Distinguished from these direct evaluate-then-select schemes, this work investigates iterative approximate evaluation for arbitrary prompts and introduces Model Predictive Prompt Selection (MoPPS), a Bayesian risk-predictive framework that online estimates prompt difficulty without requiring costly LLM interactions. Technically, MoPPS models each prompt's success rate as a latent variable, performs streaming Bayesian inference, and employs posterior sampling in a constructed multi-armed bandit machine, enabling sample efficient and adaptive prompt selection. Extensive experiments across mathematics, planning, and vision-based geometry tasks show that MoPPS reliably predicts prompt difficulty and accelerates training with significantly reduced LLM rollouts.
☆ Learning Robust Stereo Matching in the Wild with Selective Mixture-of-Experts
Recently, learning-based stereo matching networks have advanced significantly. However, they often lack robustness and struggle to achieve impressive cross-domain performance due to domain shifts and imbalanced disparity distributions among diverse datasets. Leveraging Vision Foundation Models (VFMs) can intuitively enhance the model's robustness, but integrating such a model into stereo matching cost-effectively to fully realize their robustness remains a key challenge. To address this, we propose SMoEStereo, a novel framework that adapts VFMs for stereo matching through a tailored, scene-specific fusion of Low-Rank Adaptation (LoRA) and Mixture-of-Experts (MoE) modules. SMoEStereo introduces MoE-LoRA with adaptive ranks and MoE-Adapter with adaptive kernel sizes. The former dynamically selects optimal experts within MoE to adapt varying scenes across domains, while the latter injects inductive bias into frozen VFMs to improve geometric feature extraction. Importantly, to mitigate computational overhead, we further propose a lightweight decision network that selectively activates MoE modules based on input complexity, balancing efficiency with accuracy. Extensive experiments demonstrate that our method exhibits state-of-the-art cross-domain and joint generalization across multiple benchmarks without dataset-specific adaptation. The code is available at \textcolor{red}{https://github.com/cocowy1/SMoE-Stereo}.
☆ Knowledge-Aware Self-Correction in Language Models via Structured Memory Graphs
Large Language Models (LLMs) are powerful yet prone to generating factual errors, commonly referred to as hallucinations. We present a lightweight, interpretable framework for knowledge-aware self-correction of LLM outputs using structured memory graphs based on RDF triples. Without retraining or fine-tuning, our method post-processes model outputs and corrects factual inconsistencies via external semantic memory. We demonstrate the approach using DistilGPT-2 and show promising results on simple factual prompts.
comment: 8 pages, 4 figures
☆ Hierarchical Intent-guided Optimization with Pluggable LLM-Driven Semantics for Session-based Recommendation
Session-based Recommendation (SBR) aims to predict the next item a user will likely engage with, using their interaction sequence within an anonymous session. Existing SBR models often focus only on single-session information, ignoring inter-session relationships and valuable cross-session insights. Some methods try to include inter-session data but struggle with noise and irrelevant information, reducing performance. Additionally, most models rely on item ID co-occurrence and overlook rich semantic details, limiting their ability to capture fine-grained item features. To address these challenges, we propose a novel hierarchical intent-guided optimization approach with pluggable LLM-driven semantic learning for session-based recommendations, called HIPHOP. First, we introduce a pluggable embedding module based on large language models (LLMs) to generate high-quality semantic representations, enhancing item embeddings. Second, HIPHOP utilizes graph neural networks (GNNs) to model item transition relationships and incorporates a dynamic multi-intent capturing module to address users' diverse interests within a session. Additionally, we design a hierarchical inter-session similarity learning module, guided by user intent, to capture global and local session relationships, effectively exploring users' long-term and short-term interests. To mitigate noise, an intent-guided denoising strategy is applied during inter-session learning. Finally, we enhance the model's discriminative capability by using contrastive learning to optimize session representations. Experiments on multiple datasets show that HIPHOP significantly outperforms existing methods, demonstrating its effectiveness in improving recommendation quality. Our code is available: https://github.com/hjx159/HIPHOP.
☆ Multimodal LLM Integrated Semantic Communications for 6G Immersive Experiences
6G networks promise revolutionary immersive communication experiences including augmented reality (AR), virtual reality (VR), and holographic communications. These applications demand high-dimensional multimodal data transmission and intelligent data processing in real-time, which is extremely challenging over resource-limited wireless communication systems. Moreover, a joint understanding of the environment, context, and user intent is essential to deliver task-relevant content effectively. This article presents a novel multimodal large language model (MLLM) integrated semantic communications framework, termed MLLM-SC, which fully leverages reasoning and generative capabilities of pre-trained foundation models for context-aware and task-oriented wireless communication. The MLLM-SC framework adopts a device-edge collaborative architecture. At the edge, MLLM-empowered semantic guidance module analyzes multimodal inputs, user intents, and channel conditions to generate importance-aware attention maps prioritizing semantically critical information. An importance-aware semantic encoder and a resource-adaptive semantic decoder are jointly designed and optimized, which can utilize the semantic guidance for adaptive bandwidth allocation and high-quality content reconstruction or generation. Extensive case studies on visual question answering for AR/VR applications and diffusion-driven image generation validate the effectiveness of MLLM-SC.
comment: This work has been submitted to the IEEE for possible publication
☆ Information-Guided Diffusion Sampling for Dataset Distillation
Dataset distillation aims to create a compact dataset that retains essential information while maintaining model performance. Diffusion models (DMs) have shown promise for this task but struggle in low images-per-class (IPC) settings, where generated samples lack diversity. In this paper, we address this issue from an information-theoretic perspective by identifying two key types of information that a distilled dataset must preserve: ($i$) prototype information $\mathrm{I}(X;Y)$, which captures label-relevant features; and ($ii$) contextual information $\mathrm{H}(X | Y)$, which preserves intra-class variability. Here, $(X,Y)$ represents the pair of random variables corresponding to the input data and its ground truth label, respectively. Observing that the required contextual information scales with IPC, we propose maximizing $\mathrm{I}(X;Y) + \beta \mathrm{H}(X | Y)$ during the DM sampling process, where $\beta$ is IPC-dependent. Since directly computing $\mathrm{I}(X;Y)$ and $\mathrm{H}(X | Y)$ is intractable, we develop variational estimations to tightly lower-bound these quantities via a data-driven approach. Our approach, information-guided diffusion sampling (IGDS), seamlessly integrates with diffusion models and improves dataset distillation across all IPC settings. Experiments on Tiny ImageNet and ImageNet subsets show that IGDS significantly outperforms existing methods, particularly in low-IPC regimes. The code will be released upon acceptance.
☆ HiLa: Hierarchical Vision-Language Collaboration for Cancer Survival Prediction MICCAI2025
Survival prediction using whole-slide images (WSIs) is crucial in cancer re-search. Despite notable success, existing approaches are limited by their reliance on sparse slide-level labels, which hinders the learning of discriminative repre-sentations from gigapixel WSIs. Recently, vision language (VL) models, which incorporate additional language supervision, have emerged as a promising solu-tion. However, VL-based survival prediction remains largely unexplored due to two key challenges. First, current methods often rely on only one simple lan-guage prompt and basic cosine similarity, which fails to learn fine-grained associ-ations between multi-faceted linguistic information and visual features within WSI, resulting in inadequate vision-language alignment. Second, these methods primarily exploit patch-level information, overlooking the intrinsic hierarchy of WSIs and their interactions, causing ineffective modeling of hierarchical interac-tions. To tackle these problems, we propose a novel Hierarchical vision-Language collaboration (HiLa) framework for improved survival prediction. Specifically, HiLa employs pretrained feature extractors to generate hierarchical visual features from WSIs at both patch and region levels. At each level, a series of language prompts describing various survival-related attributes are constructed and aligned with visual features via Optimal Prompt Learning (OPL). This ap-proach enables the comprehensive learning of discriminative visual features cor-responding to different survival-related attributes from prompts, thereby improv-ing vision-language alignment. Furthermore, we introduce two modules, i.e., Cross-Level Propagation (CLP) and Mutual Contrastive Learning (MCL) to maximize hierarchical cooperation by promoting interactions and consistency be-tween patch and region levels. Experiments on three TCGA datasets demonstrate our SOTA performance.
comment: Accepted by MICCAI2025
☆ any4: Learned 4-bit Numeric Representation for LLMs ICML 2025
We present any4, a learned 4-bit weight quantization solution for large language models (LLMs) providing arbitrary numeric representations without requiring pre-processing of weights or activations. any4 yields higher accuracy compared to other related 4-bit numeric representation types: int4, fp4 and nf4, as evaluated on a range of model sizes, generations and families (Llama 2, Llama 3, Mistral and Mixtral). While any4 does not require preprocessing of weights or activations, it is also competitive with orthogonal techniques that require such preprocessing (e.g., AWQ and GPTQ). We also experiment with any3 and any2 and show competitiveness at lower bits. Additionally, we show that we can calibrate using a single curated diverse sample rather than hundreds of samples from a dataset as done in most quantization approaches. We also open source tinygemm, a latency optimized GPU matrix multiplication library for LLMs, that implements any4 using a GPU-efficient lookup table strategy along with other common quantization methods. We open source our code at https://github.com/facebookresearch/any4 .
comment: ICML 2025
☆ PRIME: Large Language Model Personalization with Cognitive Memory and Thought Processes
Large language model (LLM) personalization aims to align model outputs with individuals' unique preferences and opinions. While recent efforts have implemented various personalization methods, a unified theoretical framework that can systematically understand the drivers of effective personalization is still lacking. In this work, we integrate the well-established cognitive dual-memory model into LLM personalization, by mirroring episodic memory to historical user engagements and semantic memory to long-term, evolving user beliefs. Specifically, we systematically investigate memory instantiations and introduce a unified framework, PRIME, using episodic and semantic memory mechanisms. We further augment PRIME with a novel personalized thinking capability inspired by the slow thinking strategy. Moreover, recognizing the absence of suitable benchmarks, we introduce a dataset using Change My View (CMV) from Reddit, specifically designed to evaluate long-context personalization. Extensive experiments validate PRIME's effectiveness across both long- and short-context scenarios. Further analysis confirms that PRIME effectively captures dynamic personalization beyond mere popularity biases.
☆ Accelerated Online Reinforcement Learning using Auxiliary Start State Distributions ICML
A long-standing problem in online reinforcement learning (RL) is of ensuring sample efficiency, which stems from an inability to explore environments efficiently. Most attempts at efficient exploration tackle this problem in a setting where learning begins from scratch, without prior information available to bootstrap learning. However, such approaches fail to leverage expert demonstrations and simulators that can reset to arbitrary states. These affordances are valuable resources that offer enormous potential to guide exploration and speed up learning. In this paper, we explore how a small number of expert demonstrations and a simulator allowing arbitrary resets can accelerate learning during online RL. We find that training with a suitable choice of an auxiliary start state distribution that may differ from the true start state distribution of the underlying Markov Decision Process can significantly improve sample efficiency. We find that using a notion of safety to inform the choice of this auxiliary distribution significantly accelerates learning. By using episode length information as a way to operationalize this notion, we demonstrate state-of-the-art sample efficiency on a sparse-reward hard-exploration environment.
comment: ICML ARLET Workshop 2024
☆ DisMS-TS: Eliminating Redundant Multi-Scale Features for Time Series Classification ACM MM 2025
Real-world time series typically exhibit complex temporal variations, making the time series classification task notably challenging. Recent advancements have demonstrated the potential of multi-scale analysis approaches, which provide an effective solution for capturing these complex temporal patterns. However, existing multi-scale analysis-based time series prediction methods fail to eliminate redundant scale-shared features across multi-scale time series, resulting in the model over- or under-focusing on scale-shared features. To address this issue, we propose a novel end-to-end Disentangled Multi-Scale framework for Time Series classification (DisMS-TS). The core idea of DisMS-TS is to eliminate redundant shared features in multi-scale time series, thereby improving prediction performance. Specifically, we propose a temporal disentanglement module to capture scale-shared and scale-specific temporal representations, respectively. Subsequently, to effectively learn both scale-shared and scale-specific temporal representations, we introduce two regularization terms that ensure the consistency of scale-shared representations and the disparity of scale-specific representations across all temporal scales. Extensive experiments conducted on multiple datasets validate the superiority of DisMS-TS over its competitive baselines, with the accuracy improvement up to 9.71%.
comment: This paper has been accepted for presentation at the ACM International Conference on Multimedia (ACM MM 2025)
☆ Exploring Core and Periphery Precepts in Biological and Artificial Intelligence: An Outcome-Based Perspective
Engineering methodologies predominantly revolve around established principles of decomposition and recomposition. These principles involve partitioning inputs and outputs at the component level, ensuring that the properties of individual components are preserved upon composition. However, this view does not transfer well to intelligent systems, particularly when addressing the scaling of intelligence as a system property. Our prior research contends that the engineering of general intelligence necessitates a fresh set of overarching systems principles. As a result, we introduced the "core and periphery" principles, a novel conceptual framework rooted in abstract systems theory and the Law of Requisite Variety. In this paper, we assert that these abstract concepts hold practical significance. Through empirical evidence, we illustrate their applicability to both biological and artificial intelligence systems, bridging abstract theory with real-world implementations. Then, we expand on our previous theoretical framework by mathematically defining core-dominant vs periphery-dominant systems.
♻ ☆ Human2LocoMan: Learning Versatile Quadrupedal Manipulation with Human Pretraining
Quadrupedal robots have demonstrated impressive locomotion capabilities in complex environments, but equipping them with autonomous versatile manipulation skills in a scalable way remains a significant challenge. In this work, we introduce a cross-embodiment imitation learning system for quadrupedal manipulation, leveraging data collected from both humans and LocoMan, a quadruped equipped with multiple manipulation modes. Specifically, we develop a teleoperation and data collection pipeline, which unifies and modularizes the observation and action spaces of the human and the robot. To effectively leverage the collected data, we propose an efficient modularized architecture that supports co-training and pretraining on structured modality-aligned data across different embodiments. Additionally, we construct the first manipulation dataset for the LocoMan robot, covering various household tasks in both unimanual and bimanual modes, supplemented by a corresponding human dataset. We validate our system on six real-world manipulation tasks, where it achieves an average success rate improvement of 41.9% overall and 79.7% under out-of-distribution (OOD) settings compared to the baseline. Pretraining with human data contributes a 38.6% success rate improvement overall and 82.7% under OOD settings, enabling consistently better performance with only half the amount of robot data. Our code, hardware, and data are open-sourced at: https://human2bots.github.io.
♻ ☆ The Super Weight in Large Language Models
Recent works have shown a surprising result: a small fraction of Large Language Model (LLM) parameter outliers are disproportionately important to the quality of the model. LLMs contain billions of parameters, so these small fractions, such as 0.01%, translate to hundreds of thousands of parameters. In this work, we present an even more surprising finding: Pruning as few as a single parameter can destroy an LLM's ability to generate text -- increasing perplexity by 3 orders of magnitude and reducing zero-shot accuracy to guessing. We propose a data-free method for identifying such parameters, termed super weights, using a single forward pass through the model. We additionally find that these super weights induce correspondingly rare and large activation outliers, termed super activations. When preserved with high precision, super activations can improve simple round-to-nearest quantization to become competitive with state-of-the-art methods. For weight quantization, we similarly find that by preserving the super weight and clipping other weight outliers, round-to-nearest quantization can scale to much larger block sizes than previously considered. To facilitate further research into super weights, we provide an index of super weight coordinates for common, openly available LLMs.
♻ ☆ jina-embeddings-v4: Universal Embeddings for Multimodal Multilingual Retrieval
We introduce jina-embeddings-v4, a 3.8 billion parameter multimodal embedding model that unifies text and image representations through a novel architecture supporting both single-vector and multi-vector embeddings in the late interaction style. The model incorporates task-specific Low-Rank Adaptation (LoRA) adapters to optimize performance across diverse retrieval scenarios, including query-document retrieval, semantic text similarity, and code search. Comprehensive evaluations demonstrate that jina-embeddings-v4 achieves state-of-the-art performance on both single-modal and cross-modal retrieval tasks, with particular strength in processing visually rich content such as tables, charts, diagrams, and mixed-media formats. To facilitate evaluation of this capability, we also introduce Jina-VDR, a novel benchmark specifically designed for visually rich image retrieval.
comment: 22 pages, 1-10 main, 14-22 experimental results, benchmark tables
♻ ☆ Extended Inductive Reasoning for Personalized Preference Inference from Behavioral Signals
Large language models (LLMs) have demonstrated significant success in complex reasoning tasks such as math and coding. In contrast to these tasks where deductive reasoning predominates, inductive reasoning-the ability to derive general rules from incomplete evidence, remains underexplored. This paper investigates extended inductive reasoning in LLMs through the lens of personalized preference inference, a critical challenge in LLM alignment where current approaches struggle to capture diverse user preferences. The task demands strong inductive reasoning capabilities as user preferences are typically embedded implicitly across various interaction forms, requiring models to synthesize consistent preference patterns from scattered signals. We propose AlignXplore, a model that leverages extended reasoning chains to enable systematic preference inference from behavioral signals in users' interaction histories. Such explicit preference articulation enables efficient streaming inference: when new behavioral signals emerge, the model can directly build upon previously inferred preference descriptions rather than reprocessing historical signals from scratch, while also supporting iterative refinement to the inferred preferences. We develop AlignXplore by combining cold-start training based on synthetic data with subsequent online reinforcement learning. Through extensive experiments, we demonstrate that AlignXplore achieves substantial improvements over the backbone model by an average of 15.49\% on in-domain and out-of-domain benchmarks, while maintaining strong generalization ability across different input formats and downstream models. Further analyses establish best practices for preference inference learning through systematic comparison of reward modeling strategies, while revealing the emergence of human-like inductive reasoning patterns during training.
♻ ☆ OminiControl: Minimal and Universal Control for Diffusion Transformer ICCV 2025
We present OminiControl, a novel approach that rethinks how image conditions are integrated into Diffusion Transformer (DiT) architectures. Current image conditioning methods either introduce substantial parameter overhead or handle only specific control tasks effectively, limiting their practical versatility. OminiControl addresses these limitations through three key innovations: (1) a minimal architectural design that leverages the DiT's own VAE encoder and transformer blocks, requiring just 0.1% additional parameters; (2) a unified sequence processing strategy that combines condition tokens with image tokens for flexible token interactions; and (3) a dynamic position encoding mechanism that adapts to both spatially-aligned and non-aligned control tasks. Our extensive experiments show that this streamlined approach not only matches but surpasses the performance of specialized methods across multiple conditioning tasks. To overcome data limitations in subject-driven generation, we also introduce Subjects200K, a large-scale dataset of identity-consistent image pairs synthesized using DiT models themselves. This work demonstrates that effective image control can be achieved without architectural complexity, opening new possibilities for efficient and versatile image generation systems.
comment: Accepted to ICCV 2025
♻ ☆ Enhancing Personalized Multi-Turn Dialogue with Curiosity Reward
Effective conversational agents like large language models (LLMs) must personalize their interactions to adapt to user preferences, personalities, and attributes across diverse domains like education and healthcare. Current methods like Reinforcement Learning from Human Feedback (RLHF), often prioritize helpfulness and safety but fall short in fostering truly empathetic, adaptive, and personalized dialogues. Existing personalization approaches typically rely on extensive user history, limiting their effectiveness for new or context-limited users. To address these limitations, we propose leveraging a user model to incorporate a curiosity-based intrinsic reward into multi-turn RLHF. This novel reward mechanism encourages the LLM agent to actively infer user traits by optimizing conversations to improve its user model's accuracy. Consequently, the agent delivers more personalized interactions by learning more about the user. We demonstrate our method's effectiveness in two distinct domains: significantly improving personalization performance in a conversational recommendation task, and personalizing conversations for different learning styles in an educational setting. We show improved generalization capabilities compared to traditional multi-turn RLHF, all while maintaining conversation quality. Our method offers a promising solution for creating more personalized, adaptive, and engaging conversational agents.
♻ ☆ ST-LoRA: Low-rank Adaptation for Spatio-Temporal Forecasting ECML-PKDD 2025
Spatio-temporal forecasting is essential for understanding future dynamics within real-world systems by leveraging historical data from multiple locations. Existing methods often prioritize the development of intricate neural networks to capture the complex dependencies of the data. These methods neglect node-level heterogeneity and face over-parameterization when attempting to model node-specific characteristics. In this paper, we present a novel low-rank adaptation framework for existing spatio-temporal prediction models, termed \model, which alleviates the aforementioned problems through node-level adjustments. Specifically, we introduce the node-adaptive low-rank layer and node-specific predictor, capturing the complex functional characteristics of nodes while maintaining computational efficiency. Extensive experiments on multiple real-world datasets demonstrate that our method consistently achieves superior performance across various forecasting models with minimal computational overhead, improving performance by 7% with only 1% additional parameter cost. The source code is available at https://github.com/RWLinno/ST-LoRA.
comment: Published at ECML-PKDD 2025
♻ ☆ NativQA Framework: Enabling LLMs with Native, Local, and Everyday Knowledge
The rapid advancement of large language models (LLMs) has raised concerns about cultural bias, fairness, and their applicability in diverse linguistic and underrepresented regional contexts. To enhance and benchmark the capabilities of LLMs, there is a need to develop large-scale resources focused on multilingual, local, and cultural contexts. In this study, we propose the NativQA framework, which can seamlessly construct large-scale, culturally and regionally aligned QA datasets in native languages. The framework utilizes user-defined seed queries and leverages search engines to collect location-specific, everyday information. It has been evaluated across 39 locations in 24 countries and in 7 languages -- ranging from extremely low-resource to high-resource languages -- resulting in over 300K Question-Answer (QA) pairs. The developed resources can be used for LLM benchmarking and further fine-tuning. The framework has been made publicly available for the community (https://gitlab.com/nativqa/nativqa-framework).
comment: LLMs, Native, Multilingual, Language Diversity, Contextual Understanding, Minority Languages, Culturally Informed, Foundation Models, Large Language Models
♻ ☆ Towards Explainable Fusion and Balanced Learning in Multimodal Sentiment Analysis
Multimodal Sentiment Analysis (MSA) faces two critical challenges: the lack of interpretability in the decision logic of multimodal fusion and modality imbalance caused by disparities in inter-modal information density. To address these issues, we propose KAN-MCP, a novel framework that integrates the interpretability of Kolmogorov-Arnold Networks (KAN) with the robustness of the Multimodal Clean Pareto (MCPareto) framework. First, KAN leverages its univariate function decomposition to achieve transparent analysis of cross-modal interactions. This structural design allows direct inspection of feature transformations without relying on external interpretation tools, thereby ensuring both high expressiveness and interpretability. Second, the proposed MCPareto enhances robustness by addressing modality imbalance and noise interference. Specifically, we introduce the Dimensionality Reduction and Denoising Modal Information Bottleneck (DRD-MIB) method, which jointly denoises and reduces feature dimensionality. This approach provides KAN with discriminative low-dimensional inputs to reduce the modeling complexity of KAN while preserving critical sentiment-related information. Furthermore, MCPareto dynamically balances gradient contributions across modalities using the purified features output by DRD-MIB, ensuring lossless transmission of auxiliary signals and effectively alleviating modality imbalance. This synergy of interpretability and robustness not only achieves superior performance on benchmark datasets such as CMU-MOSI, CMU-MOSEI, and CH-SIMS v2 but also offers an intuitive visualization interface through KAN's interpretable architecture. Our code is released on https://github.com/LuoMSen/KAN-MCP.
♻ ☆ NOVA: Navigation via Object-Centric Visual Autonomy for High-Speed Target Tracking in Unstructured GPS-Denied Environments
Autonomous aerial target tracking in unstructured and GPS-denied environments remains a fundamental challenge in robotics. Many existing methods rely on motion capture systems, pre-mapped scenes, or feature-based localization to ensure safety and control, limiting their deployment in real-world conditions. We introduce NOVA, a fully onboard, object-centric framework that enables robust target tracking and collision-aware navigation using only a stereo camera and an IMU. Rather than constructing a global map or relying on absolute localization, NOVA formulates perception, estimation, and control entirely in the target's reference frame. A tightly integrated stack combines a lightweight object detector with stereo depth completion, followed by histogram-based filtering to infer robust target distances under occlusion and noise. These measurements feed a visual-inertial state estimator that recovers the full 6-DoF pose of the robot relative to the target. A nonlinear model predictive controller (NMPC) plans dynamically feasible trajectories in the target frame. To ensure safety, high-order control barrier functions are constructed online from a compact set of high-risk collision points extracted from depth, enabling real-time obstacle avoidance without maps or dense representations. We validate NOVA across challenging real-world scenarios, including urban mazes, forest trails, and repeated transitions through buildings with intermittent GPS loss and severe lighting changes that disrupt feature-based localization. Each experiment is repeated multiple times under similar conditions to assess resilience, showing consistent and reliable performance. NOVA achieves agile target following at speeds exceeding 50 km/h. These results show that high-speed vision-based tracking is possible in the wild using only onboard sensing, with no reliance on external localization or environment assumptions.
♻ ☆ Language Models can Self-Improve at State-Value Estimation for Better Search
Collecting ground-truth rewards or human demonstrations for multi-step reasoning tasks is often prohibitively expensive and time consuming, especially in interactive domains like web tasks. To address this bottleneck, we present self-taught lookahead (STL), a self-supervised method that leverages state-transition dynamics to improve a value model capable of effectively guiding language model-controlled search without any labeled data. We find that moderately sized (8 billion parameters) open-weight value models improved with STL can match the performance of using a gpt-4o value model. Furthermore, we find that specialized value models learned with STL can be deployed with computationally lightweight search algorithms, achieving performance that matches that of more expensive tree search methods, while reducing costs by an order of magnitude.
♻ ☆ Robust Molecular Property Prediction via Densifying Scarce Labeled Data
A widely recognized limitation of molecular prediction models is their reliance on structures observed in the training data, resulting in poor generalization to out-of-distribution compounds. Yet in drug discovery, the compounds most critical for advancing research often lie beyond the training set, making the bias toward the training data particularly problematic. This mismatch introduces substantial covariate shift, under which standard deep learning models produce unstable and inaccurate predictions. Furthermore, the scarcity of labeled data, stemming from the onerous and costly nature of experimental validation, further exacerbates the difficulty of achieving reliable generalization. To address these limitations, we propose a novel meta-learning-based approach that leverages unlabeled data to interpolate between in-distribution (ID) and out-of-distribution (OOD) data, enabling the model to meta-learn how to generalize beyond the training distribution. We demonstrate significant performance gains on challenging real-world datasets with substantial covariate shift, supported by t-SNE visualizations highlighting our interpolation method.
♻ ☆ Embodied AI Agents: Modeling the World
This paper describes our research on AI agents embodied in visual, virtual or physical forms, enabling them to interact with both users and their environments. These agents, which include virtual avatars, wearable devices, and robots, are designed to perceive, learn and act within their surroundings, which makes them more similar to how humans learn and interact with the environments as compared to disembodied agents. We propose that the development of world models is central to reasoning and planning of embodied AI agents, allowing these agents to understand and predict their environment, to understand user intentions and social contexts, thereby enhancing their ability to perform complex tasks autonomously. World modeling encompasses the integration of multimodal perception, planning through reasoning for action and control, and memory to create a comprehensive understanding of the physical world. Beyond the physical world, we also propose to learn the mental world model of users to enable better human-agent collaboration.
♻ ☆ GPU-based complete search for nonlinear minimization subject to bounds
This paper introduces a GPU-based complete search method to enclose the global minimum of a nonlinear function subject to simple bounds on the variables. Using interval analysis, coupled with the computational power and architecture of GPU, the method iteratively rules out the regions in the search domain where the global minimum cannot exist and leaves a finite set of regions where the global minimum must exist. For effectiveness, because of the rigor of interval analysis, the method is guaranteed to enclose the global minimum of the nonlinear function even in the presence of rounding errors. For efficiency, the method employs a novel GPU-based single program, single data parallel programming style to circumvent major GPU performance bottlenecks, and a variable cycling technique is also integrated into the method to reduce computational cost when minimizing large-scale nonlinear functions. The method is validated by minimizing 10 multimodal benchmark test functions with scalable dimensions, including the well-known Ackley function, Griewank function, Levy function, and Rastrigin function. These benchmark test functions represent grand challenges of global optimization, and enclosing the guaranteed global minimum of these benchmark test functions with more than 80 dimensions has not been reported in the literature. Our method completely searches the feasible domain and successfully encloses the guaranteed global minimum of these 10 benchmark test functions with up to 10,000 dimensions using only one GPU in a reasonable computation time, far exceeding the reported results in the literature due to the unique method design and implementation based on GPU architecture.
comment: 36 pages, 3 figures
♻ ☆ Holistic Tokenizer for Autoregressive Image Generation
The vanilla autoregressive image generation model generates visual tokens in a step-by-step fashion, which limits the ability to capture holistic relationships among token sequences. Moreover, most visual tokenizers map local image patches into latent tokens, leading to limited global information. To address this, we introduce \textit{Hita}, a novel image tokenizer for autoregressive (AR) image generation. It introduces a holistic-to-local tokenization scheme with learnable holistic queries and local patch tokens. Besides, Hita incorporates two key strategies for improved alignment with the AR generation process: 1) it arranges a sequential structure with holistic tokens at the beginning followed by patch-level tokens while using causal attention to maintain awareness of previous tokens; and 2) before feeding the de-quantized tokens into the decoder, Hita adopts a lightweight fusion module to control information flow to prioritize holistic tokens. Extensive experiments show that Hita accelerates the training speed of AR generators and outperforms those trained with vanilla tokenizers, achieving \textbf{2.59 FID} and \textbf{281.9 IS} on the ImageNet benchmark. A detailed analysis of the holistic representation highlights its ability to capture global image properties such as textures, materials, and shapes. Additionally, Hita also demonstrates effectiveness in zero-shot style transfer and image in-painting. The code is available at \href{https://github.com/CVMI-Lab/Hita}{https://github.com/CVMI-Lab/Hita}
comment: 17 pages, 10 figures
♻ ☆ End-to-End Evaluation for Low-Latency Simultaneous Speech Translation EMNLP 2023
The challenge of low-latency speech translation has recently draw significant interest in the research community as shown by several publications and shared tasks. Therefore, it is essential to evaluate these different approaches in realistic scenarios. However, currently only specific aspects of the systems are evaluated and often it is not possible to compare different approaches. In this work, we propose the first framework to perform and evaluate the various aspects of low-latency speech translation under realistic conditions. The evaluation is carried out in an end-to-end fashion. This includes the segmentation of the audio as well as the run-time of the different components. Secondly, we compare different approaches to low-latency speech translation using this framework. We evaluate models with the option to revise the output as well as methods with fixed output. Furthermore, we directly compare state-of-the-art cascaded as well as end-to-end systems. Finally, the framework allows to automatically evaluate the translation quality as well as latency and also provides a web interface to show the low-latency model outputs to the user.
comment: Demo paper at EMNLP 2023
♻ ☆ Graph-Assisted Stitching for Offline Hierarchical Reinforcement Learning ICML 2025
Existing offline hierarchical reinforcement learning methods rely on high-level policy learning to generate subgoal sequences. However, their efficiency degrades as task horizons increase, and they lack effective strategies for stitching useful state transitions across different trajectories. We propose Graph-Assisted Stitching (GAS), a novel framework that formulates subgoal selection as a graph search problem rather than learning an explicit high-level policy. By embedding states into a Temporal Distance Representation (TDR) space, GAS clusters semantically similar states from different trajectories into unified graph nodes, enabling efficient transition stitching. A shortest-path algorithm is then applied to select subgoal sequences within the graph, while a low-level policy learns to reach the subgoals. To improve graph quality, we introduce the Temporal Efficiency (TE) metric, which filters out noisy or inefficient transition states, significantly enhancing task performance. GAS outperforms prior offline HRL methods across locomotion, navigation, and manipulation tasks. Notably, in the most stitching-critical task, it achieves a score of 88.3, dramatically surpassing the previous state-of-the-art score of 1.0. Our source code is available at: https://github.com/qortmdgh4141/GAS.
comment: ICML 2025
♻ ☆ Why Do Open-Source LLMs Struggle with Data Analysis? A Systematic Empirical Study
Large Language Models (LLMs) hold promise in automating data analysis tasks, yet open-source models face significant limitations in these kinds of reasoning-intensive scenarios. In this work, we investigate strategies to enhance the data analysis capabilities of open-source LLMs. By curating a seed dataset of diverse, realistic scenarios, we evaluate models across three dimensions: data understanding, code generation, and strategic planning. Our analysis reveals three key findings: (1) Strategic planning quality serves as the primary determinant of model performance; (2) Interaction design and task complexity significantly influence reasoning capabilities; (3) Data quality demonstrates a greater impact than diversity in achieving optimal performance. We leverage these insights to develop a data synthesis methodology, demonstrating significant improvements in open-source LLMs' analytical reasoning capabilities.
comment: Work in progress
♻ ☆ A Framework for Synthetic Audio Conversations Generation using Large Language Models
In this paper, we introduce ConversaSynth, a framework designed to generate synthetic conversation audio using large language models (LLMs) with multiple persona settings. The framework first creates diverse and coherent text-based dialogues across various topics, which are then converted into audio using text-to-speech (TTS) systems. Our experiments demonstrate that ConversaSynth effectively generates highquality synthetic audio datasets, which can significantly enhance the training and evaluation of models for audio tagging, audio classification, and multi-speaker speech recognition. The results indicate that the synthetic datasets generated by ConversaSynth exhibit substantial diversity and realism, making them suitable for developing robust, adaptable audio-based AI systems.
comment: This work has been accepted at the WI-IAT'24. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media
♻ ☆ Random weights of DNNs and emergence of fixed points
This paper is concerned with a special class of deep neural networks (DNNs) where the input and the output vectors have the same dimension. Such DNNs are widely used in applications, e.g., autoencoders. The training of such networks can be characterized by their fixed points (FPs). We are concerned with the dependence of the FPs number and their stability on the distribution of randomly initialized DNNs' weight matrices. Specifically, we consider the i.i.d. random weights with heavy and light-tail distributions. Our objectives are twofold. First, the dependence of FPs number and stability of FPs on the type of the distribution tail. Second, the dependence of the number of FPs on the DNNs' architecture. We perform extensive simulations and show that for light tails (e.g., Gaussian), which are typically used for initialization, a single stable FP exists for broad types of architectures. In contrast, for heavy tail distributions (e.g., Cauchy), which typically appear in trained DNNs, a number of FPs emerge. We further observe that these FPs are stable attractors and their basins of attraction partition the domain of input vectors. Finally, we observe an intriguing non-monotone dependence of the number of fixed points $Q(L)$ on the DNNs' depth $L$. The above results were first obtained for untrained DNNs with two types of distributions at initialization and then verified by considering DNNs in which the heavy tail distributions arise in training.
comment: 16 pages, 5 figures
♻ ☆ Autonomous Microscopy Experiments through Large Language Model Agents
Large language models (LLMs) are revolutionizing self driving laboratories (SDLs) for materials research, promising unprecedented acceleration of scientific discovery. However, current SDL implementations rely on rigid protocols that fail to capture the adaptability and intuition of expert scientists in dynamic experimental settings. We introduce Artificially Intelligent Lab Assistant (AILA), a framework automating atomic force microscopy through LLM driven agents. Further, we develop AFMBench a comprehensive evaluation suite challenging AI agents across the complete scientific workflow from experimental design to results analysis. We find that state of the art models struggle with basic tasks and coordination scenarios. Notably, Claude 3.5 sonnet performs unexpectedly poorly despite excelling in materials domain question answering (QA) benchmarks, revealing that domain specific QA proficiency does not necessarily translate to effective agentic capabilities. Additionally, we observe that LLMs can deviate from instructions, raising safety alignment concerns for SDL applications. Our ablations reveal that multi agent frameworks outperform single-agent architectures. We also observe significant prompt fragility, where slight modifications in prompt structure cause substantial performance variations in capable models like GPT 4o. Finally, we evaluate AILA's effectiveness in increasingly advanced experiments AFM calibration, feature detection, mechanical property measurement, graphene layer counting, and indenter detection. Our findings underscore the necessity for rigorous benchmarking protocols and prompt engineering strategies before deploying AI laboratory assistants in scientific research environments.
♻ ☆ Mask Approximation Net: A Novel Diffusion Model Approach for Remote Sensing Change Captioning
Remote sensing image change description represents an innovative multimodal task within the realm of remote sensing processing.This task not only facilitates the detection of alterations in surface conditions, but also provides comprehensive descriptions of these changes, thereby improving human interpretability and interactivity.Current deep learning methods typically adopt a three stage framework consisting of feature extraction, feature fusion, and change localization, followed by text generation. Most approaches focus heavily on designing complex network modules but lack solid theoretical guidance, relying instead on extensive empirical experimentation and iterative tuning of network components. This experience-driven design paradigm may lead to overfitting and design bottlenecks, thereby limiting the model's generalizability and adaptability.To address these limitations, this paper proposes a paradigm that shift towards data distribution learning using diffusion models, reinforced by frequency-domain noise filtering, to provide a theoretically motivated and practically effective solution to multimodal remote sensing change description.The proposed method primarily includes a simple multi-scale change detection module, whose output features are subsequently refined by a well-designed diffusion model.Furthermore, we introduce a frequency-guided complex filter module to boost the model performance by managing high-frequency noise throughout the diffusion process. We validate the effectiveness of our proposed method across several datasets for remote sensing change detection and description, showcasing its superior performance compared to existing techniques. The code will be available at \href{https://github.com/sundongwei}{MaskApproxNet}.
♻ ☆ Quantifying Robustness: A Benchmarking Framework for Deep Learning Forecasting in Cyber-Physical Systems
Cyber-Physical Systems (CPS) in domains such as manufacturing and energy distribution generate complex time series data crucial for Prognostics and Health Management (PHM). While Deep Learning (DL) methods have demonstrated strong forecasting capabilities, their adoption in industrial CPS remains limited due insufficient robustness. Existing robustness evaluations primarily focus on formal verification or adversarial perturbations, inadequately representing the complexities encountered in real-world CPS scenarios. To address this, we introduce a practical robustness definition grounded in distributional robustness, explicitly tailored to industrial CPS, and propose a systematic framework for robustness evaluation. Our framework simulates realistic disturbances, such as sensor drift, noise and irregular sampling, enabling thorough robustness analyses of forecasting models on real-world CPS datasets. The robustness definition provides a standardized score to quantify and compare model performance across diverse datasets, assisting in informed model selection and architecture design. Through extensive empirical studies evaluating prominent DL architectures (including recurrent, convolutional, attention-based, modular, and structured state-space models) we demonstrate the applicability and effectiveness of our approach. We publicly release our robustness benchmark to encourage further research and reproducibility.
comment: Accepted at the 30th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA)
♻ ☆ EAP4EMSIG -- Enhancing Event-Driven Microscopy for Microfluidic Single-Cell Analysis
Microfluidic Live-Cell Imaging (MLCI) yields data on microbial cell factories. However, continuous acquisition is challenging as high-throughput experiments often lack real-time insights, delaying responses to stochastic events. We introduce three components in the Experiment Automation Pipeline for Event-Driven Microscopy to Smart Microfluidic Single-Cell Analysis (EAP4EMSIG): a fast, accurate Multi-Layer Perceptron (MLP)-based autofocusing method predicting the focus offset, an evaluation of real-time segmentation methods and a real-time data analysis dashboard. Our MLP-based autofocusing achieves a Mean Absolute Error (MAE) of 0.105 $\mu$m with inference times from 87 ms. Among eleven evaluated Deep Learning (DL) segmentation methods, Cellpose reached a Panoptic Quality (PQ) of 93.36 %, while a distance-based method was fastest (121 ms, Panoptic Quality 93.02 %).
comment: Submitted to: at - Automatisierungstechnik
♻ ☆ Do LLMs Understand the Safety of Their Inputs? Training-Free Moderation via Latent Prototypes
With the rise of LLMs, ensuring model safety and alignment has become a critical concern. While modern instruction-finetuned LLMs incorporate alignment during training, they still frequently require moderation tools to prevent unsafe behavior. The most common approach to moderation are guard models that flag unsafe inputs. However, guards require costly training and are typically limited to fixed-size, pre-trained options, making them difficult to adapt to evolving risks and resource constraints. We hypothesize that instruction-finetuned LLMs already encode safety-relevant information internally and explore training-free safety assessment methods that work with off-the-shelf models. We show that simple prompting allows models to recognize harmful inputs they would otherwise mishandle. We also demonstrate that safe and unsafe prompts are distinctly separable in the models' latent space. Building on this, we introduce the Latent Prototype Moderator (LPM), a training-free moderation method that uses Mahalanobis distance in latent space to assess input safety. LPM is a lightweight, customizable add-on that generalizes across model families and sizes. Our method matches or exceeds state-of-the-art guard models across multiple safety benchmarks, offering a practical and flexible solution for scalable LLM moderation.
♻ ☆ Fairness Evolution in Continual Learning for Medical Imaging
Deep Learning has advanced significantly in medical applications, aiding disease diagnosis in Chest X-ray images. However, expanding model capabilities with new data remains a challenge, which Continual Learning (CL) aims to address. Previous studies have evaluated CL strategies based on classification performance; however, in sensitive domains such as healthcare, it is crucial to assess performance across socially salient groups to detect potential biases. This study examines how bias evolves across tasks using domain-specific fairness metrics and how different CL strategies impact this evolution. Our results show that Learning without Forgetting and Pseudo-Label achieve optimal classification performance, but Pseudo-Label is less biased.
♻ ☆ Towards Clean-Label Backdoor Attacks in the Physical World
Deep Neural Networks (DNNs) are shown to be vulnerable to backdoor poisoning attacks, with most research focusing on \textbf{digital triggers} -- special patterns added to test-time inputs to induce targeted misclassification. \textbf{Physical triggers}, natural objects within a physical scene, have emerged as a desirable alternative since they enable real-time backdoor activations without digital manipulation. However, current physical backdoor attacks require poisoned inputs to have incorrect labels, making them easily detectable by human inspection. In this paper, we explore a new paradigm of attacks, \textbf{clean-label physical backdoor attacks (CLPBA)}, via experiments on facial recognition and animal classification tasks. Our study reveals that CLPBA could be a serious threat with the right poisoning algorithm and physical trigger. A key finding is that different from digital backdoor attacks which exploit memorization to plant backdoors in deep nets, CLPBA works by embedding the feature of the trigger distribution (i.e., the distribution of trigger samples) to the poisoned images through the perturbations. We also find that representative defenses cannot defend against CLPBA easily since CLPBA fundamentally breaks the core assumptions behind these defenses. Our study highlights accidental backdoor activations as a limitation of CLPBA, happening when unintended objects or classes cause the model to misclassify as the target class. The code and dataset can be found at https://github.com/21thinh/Clean-Label-Physical-Backdoor-Attacks.
comment: 21 pages, 17 figures, 16 tables
♻ ☆ EFRame: Deeper Reasoning via Exploration-Filter-Replay Reinforcement Learning Framework
Recent advances in reinforcement learning (RL) have significantly enhanced the reasoning capabilities of large language models (LLMs). Group Relative Policy Optimization (GRPO), an efficient variant of PPO that lowers RL's computational cost, still faces limited exploration, low sample efficiency and instability, constraining its performance on complex reasoning tasks. To address these limitations, we introduce EFRame, an Exploration-Filter-Replay framework that systematically augments GRPO along three critical dimensions. EFRame performs additional rollouts to explore high-quality trajectories, applies online filtering to eliminate low-quality samples that introduce noise and variance, and leverages experience replay to repeatedly exploit rare but informative samples. EFRame establishes a complete and stable learning cycle, guiding the model through a structured transition from exploration to convergence. Our experiments across a variety of reasoning benchmarks demonstrate that EFRame not only improves the robustness and efficiency of training, but also enables access to deeper reasoning capabilities that remain unattainable under vanilla GRPO. Furthermore, EFRame not only enables fine-grained categorization of training samples for deeper insight into their contributions, but also introduces an efficient and precise mechanism for entropy control, which is critical for balancing exploration and convergence in RL training. Our code is available at https://github.com/597358816/EFRame.
♻ ☆ ReCAP: Recursive Cross Attention Network for Pseudo-Label Generation in Robotic Surgical Skill Assessment
In surgical skill assessment, the Objective Structured Assessments of Technical Skills (OSATS) and Global Rating Scale (GRS) are well-established tools for evaluating surgeons during training. These metrics, along with performance feedback, help surgeons improve and reach practice standards. Recent research on the open-source JIGSAWS dataset, which includes both GRS and OSATS labels, has focused on regressing GRS scores from kinematic data, video, or their combination. However, we argue that regressing GRS alone is limiting, as it aggregates OSATS scores and overlooks clinically meaningful variations during a surgical trial. To address this, we developed a weakly-supervised recurrent transformer model that tracks a surgeon's performance throughout a session by mapping hidden states to six OSATS, derived from kinematic data. These OSATS scores are averaged to predict GRS, allowing us to compare our model's performance against state-of-the-art (SOTA) methods. We report Spearman's Correlation Coefficients (SCC) demonstrating that our model outperforms SOTA using kinematic data (SCC 0.83-0.88), and matches performance with video-based models. Our model also surpasses SOTA in most tasks for average OSATS predictions (SCC 0.46-0.70) and specific OSATS (SCC 0.56-0.95). The generation of pseudo-labels at the segment level translates quantitative predictions into qualitative feedback, vital for automated surgical skill assessment pipelines. A senior surgeon validated our model's outputs, agreeing with 77\% of the weakly-supervised predictions \(p=0.006\).
♻ ☆ UniForm: A Unified Multi-Task Diffusion Transformer for Audio-Video Generation
With the rise of diffusion models, audio-video generation has been revolutionized. However, most existing methods rely on separate modules for each modality, with limited exploration of unified generative architectures. In addition, many are confined to a single task and small-scale datasets. To overcome these limitations, we introduce UniForm, a unified multi-task diffusion transformer that generates both audio and visual modalities in a shared latent space. By using a unified denoising network, UniForm captures the inherent correlations between sound and vision. Additionally, we propose task-specific noise schemes and task tokens, enabling the model to support multiple tasks with a single set of parameters, including video-to-audio, audio-to-video and text-to-audio-video generation. Furthermore, by leveraging large language models and a large-scale text-audio-video combined dataset, UniForm achieves greater generative diversity than prior approaches. Experiments show that UniForm achieves performance close to the state-of-the-art single-task models across three generation tasks, with generated content that is not only highly aligned with real-world data distributions but also enables more diverse and fine-grained generation.
comment: Our demos are available at https://uniform-t2av.github.io/
♻ ☆ RewardAnything: Generalizable Principle-Following Reward Models
Reward Models, essential for guiding Large Language Model optimization, are typically trained on fixed preference datasets, resulting in rigid alignment to single, implicit preference distributions. This prevents adaptation to diverse real-world needs-from conciseness in one task to detailed explanations in another. The standard practice of collecting task-specific preference data and retraining reward models is resource-intensive, often producing biased rewards, and limits practical application. We introduce generalizable, principle-following reward models. We propose that RMs should understand and adhere to dynamically provided natural language specifications of reward principles, similar to instruction-following in LLMs. To measure this capability, we develop RABench, a comprehensive benchmark for RMs focusing on generalization across diverse principles. Evaluations on RABench reveal poor generalization of current RMs. As a solution, we present RewardAnything, a novel RM designed and trained to explicitly follow natural language principles. We achieve SotA performance with RewardAnything in traditional RM benchmark simply by specifying a well-defined principle, and results on RABench show we excel in adapting to novel principles without retraining. Furthermore, RewardAnything integrates seamlessly with existing RLHF methods and we show by a case study on how to automatically and efficiently align LLMs with only natural language principles.
comment: 25 pages, 9 figures, Code & model weights available at: https://zhuohaoyu.github.io/RewardAnything
♻ ☆ BiMa: Towards Biases Mitigation for Text-Video Retrieval via Scene Element Guidance ACM MM 2025
Text-video retrieval (TVR) systems often suffer from visual-linguistic biases present in datasets, which cause pre-trained vision-language models to overlook key details. To address this, we propose BiMa, a novel framework designed to mitigate biases in both visual and textual representations. Our approach begins by generating scene elements that characterize each video by identifying relevant entities/objects and activities. For visual debiasing, we integrate these scene elements into the video embeddings, enhancing them to emphasize fine-grained and salient details. For textual debiasing, we introduce a mechanism to disentangle text features into content and bias components, enabling the model to focus on meaningful content while separately handling biased information. Extensive experiments and ablation studies across five major TVR benchmarks (i.e., MSR-VTT, MSVD, LSMDC, ActivityNet, and DiDeMo) demonstrate the competitive performance of BiMa. Additionally, the model's bias mitigation capability is consistently validated by its strong results on out-of-distribution retrieval tasks.
comment: Accepted at ACM MM 2025
♻ ☆ Integrating Biological and Machine Intelligence: Attention Mechanisms in Brain-Computer Interfaces
With the rapid advancement of deep learning, attention mechanisms have become indispensable in electroencephalography (EEG) signal analysis, significantly enhancing Brain-Computer Interface (BCI) applications. This paper presents a comprehensive review of traditional and Transformer-based attention mechanisms, their embedding strategies, and their applications in EEG-based BCI, with a particular emphasis on multimodal data fusion. By capturing EEG variations across time, frequency, and spatial channels, attention mechanisms improve feature extraction, representation learning, and model robustness. These methods can be broadly categorized into traditional attention mechanisms, which typically integrate with convolutional and recurrent networks, and Transformer-based multi-head self-attention, which excels in capturing long-range dependencies. Beyond single-modality analysis, attention mechanisms also enhance multimodal EEG applications, facilitating effective fusion between EEG and other physiological or sensory data. Finally, we discuss existing challenges and emerging trends in attention-based EEG modeling, highlighting future directions for advancing BCI technology. This review aims to provide valuable insights for researchers seeking to leverage attention mechanisms for improved EEG interpretation and application.
♻ ☆ Towards Practical Alzheimer's Disease Diagnosis: A Lightweight and Interpretable Spiking Neural Model
Early diagnosis of Alzheimer's Disease (AD), especially at the mild cognitive impairment (MCI) stage, is vital yet hindered by subjective assessments and the high cost of multimodal imaging modalities. Although deep learning methods offer automated alternatives, their energy inefficiency and computational demands limit real-world deployment, particularly in resource-constrained settings. As a brain-inspired paradigm, spiking neural networks (SNNs) are inherently well-suited for modeling the sparse, event-driven patterns of neural degeneration in AD, offering a promising foundation for interpretable and low-power medical diagnostics. However, existing SNNs often suffer from weak expressiveness and unstable training, which restrict their effectiveness in complex medical tasks. To address these limitations, we propose FasterSNN, a hybrid neural architecture that integrates biologically inspired LIF neurons with region-adaptive convolution and multi-scale spiking attention. This design enables sparse, efficient processing of 3D MRI while preserving diagnostic accuracy. Experiments on benchmark datasets demonstrate that FasterSNN achieves competitive performance with substantially improved efficiency and stability, supporting its potential for practical AD screening. Our source code is available at https://github.com/wuchangw/FasterSNN.
comment: 11 pages, 5 figures
Fast Monte Carlo Tree Diffusion: 100x Speedup via Parallel Sparse Planning
Diffusion models have recently emerged as a powerful approach for trajectory planning. However, their inherently non-sequential nature limits their effectiveness in long-horizon reasoning tasks at test time. The recently proposed Monte Carlo Tree Diffusion (MCTD) offers a promising solution by combining diffusion with tree-based search, achieving state-of-the-art performance on complex planning problems. Despite its strengths, our analysis shows that MCTD incurs substantial computational overhead due to the sequential nature of tree search and the cost of iterative denoising. To address this, we propose Fast-MCTD, a more efficient variant that preserves the strengths of MCTD while significantly improving its speed and scalability. Fast-MCTD integrates two techniques: Parallel MCTD, which enables parallel rollouts via delayed tree updates and redundancy-aware selection; and Sparse MCTD, which reduces rollout length through trajectory coarsening. Experiments show that Fast-MCTD achieves up to 100x speedup over standard MCTD while maintaining or improving planning performance. Remarkably, it even outperforms Diffuser in inference speed on some tasks, despite Diffuser requiring no search and yielding weaker solutions. These results position Fast-MCTD as a practical and scalable solution for diffusion-based inference-time reasoning.
comment: 18 pages, 6 figures
♻ ☆ Text Detoxification: Data Efficiency, Semantic Preservation and Model Generalization
The widespread dissemination of toxic content on social media poses a serious threat to both online environments and public discourse, highlighting the urgent need for detoxification methods that effectively remove toxicity while preserving the original semantics. However, existing approaches often struggle to simultaneously achieve strong detoxification performance, semantic preservation, and robustness to out-of-distribution data. Moreover, they typically rely on costly, manually annotated parallel corpora while showing poor data efficiency. To address these challenges, we propose a two-stage training framework that jointly optimizes for data efficiency, semantic preservation, and model generalization. We first perform supervised fine-tuning on a small set of high-quality, filtered parallel data to establish a strong initialization. Then, we leverage unlabeled toxic inputs and a custom-designed reward model to train the LLM using Group Relative Policy Optimization. Experimental results demonstrate that our method effectively mitigates the trade-offs faced by previous work, achieving state-of-the-art performance with improved generalization and significantly reduced dependence on annotated data. Our code is available at: https://github.com/allacnobug/Detoxification-of-Text.
♻ ☆ Is Your AI Truly Yours? Leveraging Blockchain for Copyrights, Provenance, and Lineage SC
As Artificial Intelligence (AI) integrates into diverse areas, particularly in content generation, ensuring rightful ownership and ethical use becomes paramount, AI service providers are expected to prioritize responsibly sourcing training data and obtaining licenses from data owners. However, existing studies primarily center on safeguarding static copyrights, which simply treat metadata/datasets as non-fungible items with transferable/trading capabilities, neglecting the dynamic nature of training procedures that can shape an ongoing trajectory. In this paper, we present \textsc{IBis}, a blockchain-based framework tailored for AI model training workflows. Our design can dynamically manage copyright compliance and data provenance in decentralized AI model training processes, ensuring that intellectual property rights are respected throughout iterative model enhancements and licensing updates. Technically, \textsc{IBis} integrates on-chain registries for datasets, licenses and models, alongside off-chain signing services to facilitate collaboration among multiple participants. Further, \textsc{IBis} provides APIs designed for seamless integration with existing contract management software, minimizing disruptions to established model training processes. We implement \textsc{IBis} using Daml on the Canton blockchain. Evaluation results showcase the feasibility and scalability of \textsc{IBis} across varying numbers of users, datasets, models, and licenses.
comment: Published by IEEE Transactions on Service Computing (TSC) 2025
♻ ☆ PVChat: Personalized Video Chat with One-Shot Learning
Video large language models (ViLLMs) excel in general video understanding, e.g., recognizing activities like talking and eating, but struggle with identity-aware comprehension, such as "Wilson is receiving chemotherapy" or "Tom is discussing with Sarah", limiting their applicability in smart healthcare and smart home environments. To address this limitation, we propose a one-shot learning framework PVChat, the first personalized ViLLM that enables subject-aware question answering (QA) from a single video for each subject. Our approach optimizes a Mixture-of-Heads (MoH) enhanced ViLLM on a synthetically augmented video-QA dataset, leveraging a progressive image-to-video learning strategy. Specifically, we introduce an automated augmentation pipeline that synthesizes identity-preserving positive samples and retrieves hard negatives from existing video corpora, generating a diverse training dataset with four QA types: existence, appearance, action, and location inquiries. To enhance subject-specific learning, we propose a ReLU Routing MoH attention mechanism, alongside two novel objectives: (1) Smooth Proximity Regularization for progressive learning through exponential distance scaling and (2) Head Activation Enhancement for balanced attention routing. Finally, we adopt a two-stage training strategy, transitioning from image pre-training to video fine-tuning, enabling a gradual learning process from static attributes to dynamic representations. We evaluate PVChat on diverse datasets covering medical scenarios, TV series, anime, and real-world footage, demonstrating its superiority in personalized feature understanding after learning from a single video, compared to state-of-the-art ViLLMs.
♻ ☆ Balancing Act: Prioritization Strategies for LLM-Designed Restless Bandit Rewards
LLMs are increasingly used to design reward functions based on human preferences in Reinforcement Learning (RL). We focus on LLM-designed rewards for Restless Multi-Armed Bandits, a framework for allocating limited resources among agents. In applications such as public health, this approach empowers grassroots health workers to tailor automated allocation decisions to community needs. In the presence of multiple agents, altering the reward function based on human preferences can impact subpopulations very differently, leading to complex tradeoffs and a multi-objective resource allocation problem. We are the first to present a principled method termed Social Choice Language Model for dealing with these tradeoffs for LLM-designed rewards for multiagent planners in general and restless bandits in particular. The novel part of our model is a transparent and configurable selection component, called an adjudicator, external to the LLM that controls complex tradeoffs via a user-selected social welfare function. Our experiments demonstrate that our model reliably selects more effective, aligned, and balanced reward functions compared to purely LLM-based approaches.
♻ ☆ FAMOUS: Flexible Accelerator for the Attention Mechanism of Transformer on UltraScale+ FPGAs
Transformer neural networks (TNNs) are being applied across a widening range of application domains, including natural language processing (NLP), machine translation, and computer vision (CV). Their popularity is largely attributed to the exceptional performance of their multi-head self-attention blocks when analyzing sequential data and extracting features. To date, there are limited hardware accelerators tailored for this mechanism, which is the first step before designing an accelerator for a complete model. This paper proposes \textit{FAMOUS}, a flexible hardware accelerator for dense multi-head attention (MHA) computation of TNNs on field-programmable gate arrays (FPGAs). It is optimized for high utilization of processing elements and on-chip memories to improve parallelism and reduce latency. An efficient tiling of large matrices has been employed to distribute memory and computing resources across different modules on various FPGA platforms. The design is evaluated on Xilinx Alveo U55C and U200 data center cards containing Ultrascale+ FPGAs. Experimental results are presented that show that it can attain a maximum throughput, number of parallel attention heads, embedding dimension and tile size of 328 (giga operations/second (GOPS)), 8, 768 and 64 respectively on the U55C. Furthermore, it is 3.28$\times$ and 2.6$\times$ faster than the Intel Xeon Gold 5220R CPU and NVIDIA V100 GPU respectively. It is also 1.3$\times$ faster than the fastest state-of-the-art FPGA-based accelerator.
comment: arXiv admin note: text overlap with arXiv:2409.13975
♻ ☆ ResQuNNs: Towards Enabling Deep Learning in Quantum Convolution Neural Networks
In this paper, we present a novel framework for enhancing the performance of Quanvolutional Neural Networks (QuNNs) by introducing trainable quanvolutional layers and addressing the critical challenges associated with them. Traditional quanvolutional layers, although beneficial for feature extraction, have largely been static, offering limited adaptability. Unlike state-of-the-art, our research overcomes this limitation by enabling training within these layers, significantly increasing the flexibility and potential of QuNNs. However, the introduction of multiple trainable quanvolutional layers induces complexities in gradient-based optimization, primarily due to the difficulty in accessing gradients across these layers. To resolve this, we propose a novel architecture, Residual Quanvolutional Neural Networks (ResQuNNs), leveraging the concept of residual learning, which facilitates the flow of gradients by adding skip connections between layers. By inserting residual blocks between quanvolutional layers, we ensure enhanced gradient access throughout the network, leading to improved training performance. Moreover, we provide empirical evidence on the strategic placement of these residual blocks within QuNNs. Through extensive experimentation, we identify an efficient configuration of residual blocks, which enables gradients across all the layers in the network that eventually results in efficient training. Our findings suggest that the precise location of residual blocks plays a crucial role in maximizing the performance gains in QuNNs. Our results mark a substantial step forward in the evolution of quantum deep learning, offering new avenues for both theoretical development and practical quantum computing applications.
comment: Title updated from: Resqunns: towards enabling deep learning in quantum convolution neural networks, to reflect changes made for the journal publication. This is the latest version published in Nature Scientific Reports
♻ ☆ Domain Adaptation of VLM for Soccer Video Understanding CVPR 2025
Vision Language Models (VLMs) have demonstrated strong performance in multi-modal tasks by effectively aligning visual and textual representations. However, most video understanding VLM research has been domain-agnostic, leaving the understanding of their transfer learning capability to specialized domains under-explored. In this work, we address this by exploring the adaptability of open-source VLMs to specific domains, and focusing on soccer as an initial case study. Our approach uses large-scale soccer datasets and LLM to create instruction-following data, and use them to iteratively fine-tune the general-domain VLM in a curriculum learning fashion (first teaching the model key soccer concepts to then question answering tasks). The final adapted model, trained using a curated dataset of 20k video clips, exhibits significant improvement in soccer-specific tasks compared to the base model, with a 37.5% relative improvement for the visual question-answering task and an accuracy improvement from 11.8% to 63.5% for the downstream soccer action classification task.
comment: 8 pages, 5 figures, accepted to the 11th IEEE International Workshop on Computer Vision in Sports (CVSports) at CVPR 2025; supplementary appendix included
♻ ☆ Method of Equal Shares with Bounded Overspending
In participatory budgeting (PB), voters decide through voting which subset of projects to fund within a given budget. Proportionality in the context of PB is crucial to ensure equal treatment of all groups of voters. However, pure proportional rules can sometimes lead to suboptimal outcomes. We introduce the Method of Equal Shares with Bounded Overspending (BOS Equal Shares), a robust variant of Equal Shares that balances proportionality and efficiency. BOS Equal Shares addresses inefficiencies implied by strict proportionality axioms, yet the rule still provides fairness guarantees, similar to the original Method of Equal Shares. Our extensive empirical analysis on real-world PB instances shows excellent performance of BOS Equal Shares across several metrics. In the course of the analysis, we also present and examine a fractional variant of the Method of Equal Shares which allows for partial funding of projects.
Monte Carlo Tree Diffusion for System 2 Planning ICML 2025
Diffusion models have recently emerged as a powerful tool for planning. However, unlike Monte Carlo Tree Search (MCTS)-whose performance naturally improves with inference-time computation scaling-standard diffusion-based planners offer only limited avenues for the scalability. In this paper, we introduce Monte Carlo Tree Diffusion (MCTD), a novel framework that integrates the generative strength of diffusion models with the adaptive search capabilities of MCTS. Our method reconceptualizes denoising as a tree-structured process, allowing partially denoised plans to be iteratively evaluated, pruned, and refined. By selectively expanding promising trajectories while retaining the flexibility to revisit and improve suboptimal branches, MCTD achieves the benefits of MCTS such as controlling exploration-exploitation trade-offs within the diffusion framework. Empirical results on challenging long-horizon tasks show that MCTD outperforms diffusion baselines, yielding higher-quality solutions as inference-time computation increases.
comment: 23 pages, 7 figures, ICML 2025 Main Track Spotlight
♻ ☆ Normality-Guided Distributional Reinforcement Learning for Continuous Control
Learning a predictive model of the mean return, or value function, plays a critical role in many reinforcement learning algorithms. Distributional reinforcement learning (DRL) has been shown to improve performance by modeling the value distribution, not just the mean. We study the value distribution in several continuous control tasks and find that the learned value distribution is empirically quite close to normal. We design a method that exploits this property, employing variances predicted from a variance network, along with returns, to analytically compute target quantile bars representing a normal for our distributional value function. In addition, we propose a policy update strategy based on the correctness as measured by structural characteristics of the value distribution not present in the standard value function. The approach we outline is compatible with many DRL structures. We use two representative on-policy algorithms, PPO and TRPO, as testbeds. Our method yields statistically significant improvements in 10 out of 16 continuous task settings, while utilizing a reduced number of weights and achieving faster training time compared to an ensemble-based method for quantifying value distribution uncertainty.
♻ ☆ Enhancing Long Video Generation Consistency without Tuning ICML 2025
Despite the considerable progress achieved in the long video generation problem, there is still significant room to improve the consistency of the generated videos, particularly in terms of their smoothness and transitions between scenes. We address these issues to enhance the consistency and coherence of videos generated with either single or multiple prompts. We propose the Time-frequency based temporal Attention Reweighting Algorithm (TiARA), which judiciously edits the attention score matrix based on the Discrete Short-Time Fourier Transform. This method is supported by a frequency-based analysis, ensuring that the edited attention score matrix achieves improved consistency across frames. It represents the first-of-its-kind for frequency-based methods in video diffusion models. For videos generated by multiple prompts, we further uncover key factors such as the alignment of the prompts affecting prompt interpolation quality. Inspired by our analyses, we propose PromptBlend, an advanced prompt interpolation pipeline that systematically aligns the prompts. Extensive experimental results validate the efficacy of our proposed method, demonstrating consistent and substantial improvements over multiple baselines.
comment: ICML 2025 Workshop on Building Physically Plausible World Models (Best Paper), 32 pages, 17 figures
♻ ☆ Pensieve Grader: An AI-Powered, Ready-to-Use Platform for Effortless Handwritten STEM Grading
Grading handwritten, open-ended responses remains a major bottleneck in large university STEM courses. We introduce Pensieve (https://www.pensieve.co), an AI-assisted grading platform that leverages large language models (LLMs) to transcribe and evaluate student work, providing instructors with rubric-aligned scores, transcriptions, and confidence ratings. Unlike prior tools that focus narrowly on specific tasks like transcription or rubric generation, Pensieve supports the entire grading pipeline-from scanned student submissions to final feedback-within a human-in-the-loop interface. Pensieve has been deployed in real-world courses at over 20 institutions and has graded more than 300,000 student responses. We present system details and empirical results across four core STEM disciplines: Computer Science, Mathematics, Physics, and Chemistry. Our findings show that Pensieve reduces grading time by an average of 65%, while maintaining a 95.4% agreement rate with instructor-assigned grades for high-confidence predictions.
comment: 7 pages, 5 figues, 1 table
♻ ☆ Breach in the Shield: Unveiling the Vulnerabilities of Large Language Models
Large Language Models (LLMs) and Vision-Language Models (VLMs) have achieved impressive performance across a wide range of tasks, yet they remain vulnerable to carefully crafted perturbations. In this study, we seek to pinpoint the sources of this fragility by identifying parameters and input dimensions (pixels or token embeddings) that are susceptible to such perturbations. To this end, we propose a stability measure called \textbf{FI}, \textbf{F}irst order local \textbf{I}nfluence, which is rooted in information geometry and quantifies the sensitivity of individual parameter and input dimensions. Our extensive analysis across LLMs and VLMs (from 1.5B to 13B parameters) reveals that: (I) A small subset of parameters or input dimensions with high FI values disproportionately contribute to model brittleness. (II) Mitigating the influence of these vulnerable parameters during model merging leads to improved performance.
♻ ☆ Self-Rectifying Diffusion Sampling with Perturbed-Attention Guidance ECCV 2024
Recent studies have demonstrated that diffusion models are capable of generating high-quality samples, but their quality heavily depends on sampling guidance techniques, such as classifier guidance (CG) and classifier-free guidance (CFG). These techniques are often not applicable in unconditional generation or in various downstream tasks such as image restoration. In this paper, we propose a novel sampling guidance, called Perturbed-Attention Guidance (PAG), which improves diffusion sample quality across both unconditional and conditional settings, achieving this without requiring additional training or the integration of external modules. PAG is designed to progressively enhance the structure of samples throughout the denoising process. It involves generating intermediate samples with degraded structure by substituting selected self-attention maps in diffusion U-Net with an identity matrix, by considering the self-attention mechanisms' ability to capture structural information, and guiding the denoising process away from these degraded samples. In both ADM and Stable Diffusion, PAG surprisingly improves sample quality in conditional and even unconditional scenarios. Moreover, PAG significantly improves the baseline performance in various downstream tasks where existing guidances such as CG or CFG cannot be fully utilized, including ControlNet with empty prompts and image restoration such as inpainting and deblurring.
comment: Project page is available at https://ku-cvlab.github.io/Perturbed-Attention-Guidance. This version reflects the ECCV 2024 camera-ready submission
♻ ☆ AI for the Open-World: the Learning Principles
During the past decades, numerous successes of AI has been made on "specific capabilities", named closed-world, such as artificial environments or specific real-world tasks. This well-defined narrow capability brings two nice benefits, a clear criterion of success and the opportunity to collect a lot of examples. The criteria not only reveal whether a machine has achieved a goal, but reveal how the machine falls short of the goal. As a result, human designers can fix the problems one after the other until the machine is deemed good enough for the task. Furthermore, the large set of collected examples reduces the difficulty of this problem-fixing process (by the central limit theorem). Do the success in closed-world translate into broad open-world, where a machine is required to perform any task that a human could possibly undertake with fewer examples and less priori knowledge from human designers? No. Because competence in a specific task provides little insight in handling other tasks, the valuable criteria for specific tasks become helpless when handling broader unseen tasks. Furthermore, due to the shortage of examples in unseen tasks, central limit theorem does not stand on our side. At the end, human designers lose the oscilloscope to "hack" an AI system for the open-world. Achieving AI for the open-world requires unique learning principles and innovated techniques, which are different from the ones in building AI for the closed-world. This thesis explores necessary learning principles required to construct AI for the open-world, including rich features (analogy a large tool box), disentangled representation (an organized tool box), and inference-time learning (a tool-savvy hand). Driven by the learning principles, this thesis further proposes techniques to use the learning principles, conducts enormous large-scale experiments to verify the learning principles.
♻ ☆ RoboMonkey: Scaling Test-Time Sampling and Verification for Vision-Language-Action Models
Vision-Language-Action (VLA) models have demonstrated remarkable capabilities in visuomotor control, yet ensuring their robustness in unstructured real-world environments remains a persistent challenge. In this paper, we investigate test-time scaling through the lens of sampling and verification as means to enhance the robustness and generalization of VLAs. We first demonstrate that the relationship between action error and the number of generated samples follows an exponentiated power law across a range of VLAs, indicating the existence of inference-time scaling laws. Building on these insights, we introduce RoboMonkey, a test-time scaling framework for VLAs. At deployment, RoboMonkey samples a small set of actions from a VLA, applies Gaussian perturbation and majority voting to construct an action proposal distribution, and then uses a Vision Language Model (VLM)-based verifier to select the optimal action. We propose a synthetic data generation pipeline for training such VLM-based action verifiers, and demonstrate that scaling the synthetic dataset consistently improves verification and downstream accuracy. Through extensive simulated and hardware experiments, we show that pairing existing VLAs with RoboMonkey yields significant performance gains, achieving a 25% absolute improvement on out-of-distribution tasks and 9% on in-distribution tasks. Additionally, when adapting to new robot setups, we show that fine-tuning both VLAs and action verifiers yields a 7% performance increase compared to fine-tuning VLAs alone.
♻ ☆ Position: Machine Learning Conferences Should Establish a "Refutations and Critiques" Track
Science progresses by iteratively advancing and correcting humanity's understanding of the world. In machine learning (ML) research, rapid advancements have led to an explosion of publications, but have also led to misleading, incorrect, flawed or perhaps even fraudulent studies being accepted and sometimes highlighted at ML conferences due to the fallibility of peer review. While such mistakes are understandable, ML conferences do not offer robust processes to help the field systematically correct when such errors are made. This position paper argues that ML conferences should establish a dedicated "Refutations and Critiques" (R&C) Track. This R&C Track would provide a high-profile, reputable platform to support vital research that critically challenges prior research, thereby fostering a dynamic self-correcting research ecosystem. We discuss key considerations including track design, review principles, potential pitfalls, and provide an illustrative example submission concerning a recent ICLR 2025 Oral. We conclude that ML conferences should create official, reputable mechanisms to help ML research self-correct.
♻ ☆ Inside you are many wolves: Using cognitive models to interpret value trade-offs in LLMs
Navigating everyday social situations often requires juggling conflicting goals, such as conveying a harsh truth, maintaining trust, all while still being mindful of another person's feelings. These value trade-offs are an integral part of human decision-making and language use, however, current tools for interpreting such dynamic and multi-faceted notions of values in LLMs are limited. In cognitive science, so-called "cognitive models" provide formal accounts of these trade-offs in humans, by modeling the weighting of a speaker's competing utility functions in choosing an action or utterance. In this work, we use a leading cognitive model of polite speech to interpret the extent to which LLMs represent human-like trade-offs. We apply this lens to systematically evaluate value trade-offs in two encompassing model settings: degrees of reasoning "effort" in frontier black-box models, and RL post-training dynamics of open-source models. Our results highlight patterns of higher informational utility than social utility in reasoning models, and in open-source models shown to be stronger in mathematical reasoning. Our findings from LLMs' training dynamics suggest large shifts in utility values early on in training with persistent effects of the choice of base model and pretraining data, compared to feedback dataset or alignment method. We show that our method is responsive to diverse aspects of the rapidly evolving LLM landscape, with insights for forming hypotheses about other high-level behaviors, shaping training regimes for reasoning models, and better controlling trade-offs between values during model training.
comment: 11 pages, 3 figures
♻ ☆ Reinforcement Learning under State and Outcome Uncertainty: A Foundational Distributional Perspective
In many real-world planning tasks, agents must tackle uncertainty about the environment's state and variability in the outcomes of any chosen policy. We address both forms of uncertainty as a first step toward safer algorithms in partially observable settings. Specifically, we extend Distributional Reinforcement Learning (DistRL)-which models the entire return distribution for fully observable domains-to Partially Observable Markov Decision Processes (POMDPs), allowing an agent to learn the distribution of returns for each conditional plan. Concretely, we introduce new distributional Bellman operators for partial observability and prove their convergence under the supremum p-Wasserstein metric. We also propose a finite representation of these return distributions via psi-vectors, generalizing the classical alpha-vectors in POMDP solvers. Building on this, we develop Distributional Point-Based Value Iteration (DPBVI), which integrates psi-vectors into a standard point-based backup procedure-bridging DistRL and POMDP planning. By tracking return distributions, DPBVI naturally enables risk-sensitive control in domains where rare, high-impact events must be carefully managed. We provide source code to foster further research in robust decision-making under partial observability.
comment: Accepted to the Finding the Frame Workshop at the Reinforcement Learning Conference (RLC) 2025. Code available at: https://github.com/lpreuettUW/distributional_point_based_value_iteration
Machine Learning
☆ Beyond One Shot, Beyond One Perspective: Cross-View and Long-Horizon Distillation for Better LiDAR Representations ICCV 2025
LiDAR representation learning aims to extract rich structural and semantic information from large-scale, readily available datasets, reducing reliance on costly human annotations. However, existing LiDAR representation strategies often overlook the inherent spatiotemporal cues in LiDAR sequences, limiting their effectiveness. In this work, we propose LiMA, a novel long-term image-to-LiDAR Memory Aggregation framework that explicitly captures longer range temporal correlations to enhance LiDAR representation learning. LiMA comprises three key components: 1) a Cross-View Aggregation module that aligns and fuses overlapping regions across neighboring camera views, constructing a more unified and redundancy-free memory bank; 2) a Long-Term Feature Propagation mechanism that efficiently aligns and integrates multi-frame image features, reinforcing temporal coherence during LiDAR representation learning; and 3) a Cross-Sequence Memory Alignment strategy that enforces consistency across driving sequences, improving generalization to unseen environments. LiMA maintains high pretraining efficiency and incurs no additional computational overhead during downstream tasks. Extensive experiments on mainstream LiDAR-based perception benchmarks demonstrate that LiMA significantly improves both LiDAR semantic segmentation and 3D object detection. We hope this work inspires more effective pretraining paradigms for autonomous driving. The code has be made publicly accessible for future research.
comment: ICCV 2025; 26 pages, 12 figures, 10 tables; Code at http://github.com/Xiangxu-0103/LiMA
☆ Spatio-Temporal LLM: Reasoning about Environments and Actions
Despite the significant recent progress of Multimodal Large Language Models (MLLMs), MLLMs still struggle to correctly answer prompts that require a holistic spatio-temporal understanding. Specifically, it is challenging to address prompts that refer to 1) the entirety of an environment that an agent equipped with an MLLM can operate in; and simultaneously also refer to 2) recent actions that just happened and are encoded in a video clip. However, such a holistic spatio-temporal understanding is important for agents operating in the real world. To address this issue, we first develop a framework to collect a large-scale dataset. Using the collected "Reasoning about Environments and Actions" (REA) dataset, we show that recent methods indeed struggle to correctly answer the prompts. To improve, we develop a "spatio-temporal LLM" (ST-LLM), a model equipped with projectors to improve both spatial understanding of an environment and temporal understanding of recent observations. On the collected REA data, we show that the proposed method significantly improves results compared to prior work. Code and data are available at https://zoezheng126.github.io/STLLM-website/.
comment: Code and data are available at https://zoezheng126.github.io/STLLM-website/
☆ From Marginal to Joint Predictions: Evaluating Scene-Consistent Trajectory Prediction Approaches for Automated Driving SC 2025
Accurate motion prediction of surrounding traffic participants is crucial for the safe and efficient operation of automated vehicles in dynamic environments. Marginal prediction models commonly forecast each agent's future trajectories independently, often leading to sub-optimal planning decisions for an automated vehicle. In contrast, joint prediction models explicitly account for the interactions between agents, yielding socially and physically consistent predictions on a scene level. However, existing approaches differ not only in their problem formulation but also in the model architectures and implementation details used, making it difficult to compare them. In this work, we systematically investigate different approaches to joint motion prediction, including post-processing of the marginal predictions, explicitly training the model for joint predictions, and framing the problem as a generative task. We evaluate each approach in terms of prediction accuracy, multi-modality, and inference efficiency, offering a comprehensive analysis of the strengths and limitations of each approach. Several prediction examples are available at https://frommarginaltojointpred.github.io/.
comment: Accepted at International Conference on Intelligent Transportation Systems 2025 (ITSC 2025)
☆ Physics-Guided Dual Implicit Neural Representations for Source Separation
Significant challenges exist in efficient data analysis of most advanced experimental and observational techniques because the collected signals often include unwanted contributions--such as background and signal distortions--that can obscure the physically relevant information of interest. To address this, we have developed a self-supervised machine-learning approach for source separation using a dual implicit neural representation framework that jointly trains two neural networks: one for approximating distortions of the physical signal of interest and the other for learning the effective background contribution. Our method learns directly from the raw data by minimizing a reconstruction-based loss function without requiring labeled data or pre-defined dictionaries. We demonstrate the effectiveness of our framework by considering a challenging case study involving large-scale simulated as well as experimental momentum-energy-dependent inelastic neutron scattering data in a four-dimensional parameter space, characterized by heterogeneous background contributions and unknown distortions to the target signal. The method is found to successfully separate physically meaningful signals from a complex or structured background even when the signal characteristics vary across all four dimensions of the parameter space. An analytical approach that informs the choice of the regularization parameter is presented. Our method offers a versatile framework for addressing source separation problems across diverse domains, ranging from superimposed signals in astronomical measurements to structural features in biomedical image reconstructions.
☆ Multi-Disease Deep Learning Framework for GWAS: Beyond Feature Selection Constraints
Traditional GWAS has advanced our understanding of complex diseases but often misses nonlinear genetic interactions. Deep learning offers new opportunities to capture complex genomic patterns, yet existing methods mostly depend on feature selection strategies that either constrain analysis to known pathways or risk data leakage when applied across the full dataset. Further, covariates can inflate predictive performance without reflecting true genetic signals. We explore different deep learning architecture choices for GWAS and demonstrate that careful architectural choices can outperform existing methods under strict no-leakage conditions. Building on this, we extend our approach to a multi-label framework that jointly models five diseases, leveraging shared genetic architecture for improved efficiency and discovery. Applied to five million SNPs across 37,000 samples, our method achieves competitive predictive performance (AUC 0.68-0.96), offering a scalable, leakage-free, and biologically meaningful approach for multi-disease GWAS analysis.
☆ Logit Reweighting for Topic-Focused Summarization
Generating abstractive summaries that adhere to a specific topic remains a significant challenge for language models. While standard approaches, such as fine-tuning, are resource-intensive, simpler methods like prompt engineering often struggle to maintain topical focus, particularly with smaller models. To address this, we propose a lightweight method that enhances topical relevance by directly reweighting the logits of topic-relevant tokens during generation. We evaluate three such reweighting techniques: Constant Shift, which adds a constant value to logits; Factor Scaling, which multiplies them by a factor; and Threshold Selection, which selectively boosts logits that exceed a probability threshold. Experiments on the NEWTS topical summarization dataset, using both Gemma-2B and Llama-3-8B models, show that these techniques effectively increase the use of topic-relevant vocabulary. Notably, the Threshold Selection method successfully improves topical focus without compromising summary quality-a trade-off often seen in other approaches. Our findings demonstrate that directly reweighting logits is a practical and resource-efficient alternative to fine-tuning, offering a promising pathway for precisely controlling the thematic content of generated text.
comment: 11 pages, 13 figures
☆ Cascade: Token-Sharded Private LLM Inference ICML 2025
As LLMs continue to increase in parameter size, the computational resources required to run them are available to fewer parties. Therefore, third-party inference services -- where LLMs are hosted by third parties with significant computational resources -- are becoming increasingly popular. However, third party inference raises critical concerns about user data privacy. To mitigate these risks, privacy researchers have developed provably secure schemes for third-party inference, such as Secure Multi-Party Computation (SMPC). However, SMPC protocols have significant computational and communication overhead, and do not scale to large models. In this work, we propose a new multi-party inference protocol, Cascade, that avoids these punitive costs by leveraging sharding in the sequence dimension to maintain privacy, trading off cryptographic privacy guarantees for increased performance and scalability. We demonstrate that Cascade is resistant to a generalization of a recent attack that is highly effective against other statistical privacy schemes, and that it is further resistant to learning-based attacks. As Cascade is orders of magnitude faster than existing schemes, our findings offer practical solutions for secure deployment of modern state-of-the-art LLMs.
comment: To be published in ICML 2025 Main Proceedings as "Hidden No More: Attacking and Defending Private Third-Party LLM Inference", together with arXiv:2505.18332
☆ NavigScene: Bridging Local Perception and Global Navigation for Beyond-Visual-Range Autonomous Driving
Autonomous driving systems have made significant advances in Q&A, perception, prediction, and planning based on local visual information, yet they struggle to incorporate broader navigational context that human drivers routinely utilize. We address this critical gap between local sensor data and global navigation information by proposing NavigScene, an auxiliary navigation-guided natural language dataset that simulates a human-like driving environment within autonomous driving systems. Moreover, we develop three complementary paradigms to leverage NavigScene: (1) Navigation-guided Reasoning, which enhances vision-language models by incorporating navigation context into the prompting approach; (2) Navigation-guided Preference Optimization, a reinforcement learning method that extends Direct Preference Optimization to improve vision-language model responses by establishing preferences for navigation-relevant summarized information; and (3) Navigation-guided Vision-Language-Action model, which integrates navigation guidance and vision-language models with conventional driving models through feature fusion. Extensive experiments demonstrate that our approaches significantly improve performance across perception, prediction, planning, and question-answering tasks by enabling reasoning capabilities beyond visual range and improving generalization to diverse driving scenarios. This work represents a significant step toward more comprehensive autonomous driving systems capable of navigating complex, unfamiliar environments with greater reliability and safety.
comment: Accepted by ACM Multimedia 2025
☆ QuEst: Enhancing Estimates of Quantile-Based Distributional Measures Using Model Predictions ICML 2025
As machine learning models grow increasingly competent, their predictions can supplement scarce or expensive data in various important domains. In support of this paradigm, algorithms have emerged to combine a small amount of high-fidelity observed data with a much larger set of imputed model outputs to estimate some quantity of interest. Yet current hybrid-inference tools target only means or single quantiles, limiting their applicability for many critical domains and use cases. We present QuEst, a principled framework to merge observed and imputed data to deliver point estimates and rigorous confidence intervals for a wide family of quantile-based distributional measures. QuEst covers a range of measures, from tail risk (CVaR) to population segments such as quartiles, that are central to fields such as economics, sociology, education, medicine, and more. We extend QuEst to multidimensional metrics, and introduce an additional optimization technique to further reduce variance in this and other hybrid estimators. We demonstrate the utility of our framework through experiments in economic modeling, opinion polling, and language model auto-evaluation.
comment: Published as a conference paper at ICML 2025
☆ A 3D Machine Learning based Volume Of Fluid scheme without explicit interface reconstruction
We present a machine-learning based Volume Of Fluid method to simulate multi-material flows on three-dimensional domains. One of the novelties of the method is that the flux fraction is computed by evaluating a previously trained neural network and without explicitly reconstructing any local interface approximating the exact one. The network is trained on a purely synthetic dataset generated by randomly sampling numerous local interfaces and which can be adapted to improve the scheme on less regular interfaces when needed. Several strategies to ensure the efficiency of the method and the satisfaction of physical constraints and properties are suggested and formalized. Numerical results on the advection equation are provided to show the performance of the method. We observe numerical convergence as the size of the mesh tends to zero $h=1/N_h\searrow 0$, with a better rate than two reference schemes.
☆ Bridging Prediction and Intervention Problems in Social Systems
Many automated decision systems (ADS) are designed to solve prediction problems -- where the goal is to learn patterns from a sample of the population and apply them to individuals from the same population. In reality, these prediction systems operationalize holistic policy interventions in deployment. Once deployed, ADS can shape impacted population outcomes through an effective policy change in how decision-makers operate, while also being defined by past and present interactions between stakeholders and the limitations of existing organizational, as well as societal, infrastructure and context. In this work, we consider the ways in which we must shift from a prediction-focused paradigm to an interventionist paradigm when considering the impact of ADS within social systems. We argue this requires a new default problem setup for ADS beyond prediction, to instead consider predictions as decision support, final decisions, and outcomes. We highlight how this perspective unifies modern statistical frameworks and other tools to study the design, implementation, and evaluation of ADS systems, and point to the research directions necessary to operationalize this paradigm shift. Using these tools, we characterize the limitations of focusing on isolated prediction tasks, and lay the foundation for a more intervention-oriented approach to developing and deploying ADS.
Pre-Trained Policy Discriminators are General Reward Models
We offer a novel perspective on reward modeling by formulating it as a policy discriminator, which quantifies the difference between two policies to generate a reward signal, guiding the training policy towards a target policy with desired behaviors. Based on this conceptual insight, we propose a scalable pre-training method named Policy Discriminative Learning (POLAR), which trains a reward model (RM) to discern identical policies and discriminate different ones. Unlike traditional reward modeling methods relying on absolute preferences, POLAR captures the relative difference between one policy and an arbitrary target policy, which is a scalable, high-level optimization objective suitable for modeling generic ranking relationships. Leveraging the POLAR pre-training paradigm, we present a series of RMs with parameter scales from 1.8B to 7B. Empirical results show that POLAR substantially outperforms traditional non-pre-trained methods, significantly enhancing RM performance. For instance, POLAR-7B could improve preference accuracy from 54.8% to 81.0% on STEM tasks and from 57.9% to 85.5% on creative writing tasks compared to SOTA baselines. POLAR also shows robust generalization capabilities in RLHF using Reinforcement Fine-tuning (RFT), providing reliable reward signals and markedly enhancing policy performance--improving LLaMa3.1-8B from an average of 47.36% to 56.33% and Qwen2.5-32B from 64.49% to 70.47% on 20 benchmarks. Moreover, scaling experiments reveal a clear power-law relationship between computation and performance, supported by linear correlation coefficients approaching 0.99. The impressive performance, strong generalization, and scaling properties suggest that POLAR is a promising direction for developing general and strong reward models.
☆ Train-before-Test Harmonizes Language Model Rankings
Existing language model benchmarks provide contradictory model rankings, even for benchmarks that aim to capture similar skills. This dilemma of conflicting rankings hampers model selection, clouds model comparisons, and adds confusion to a growing ecosystem of competing models. Recent work attributed ranking disagreement to the phenomenon of training on the test task: As released, different models exhibit a different level of preparation for any given test task. A candidate solution to the problem is train-before-test: Give each model the same benchmark-specific finetuning before evaluation. Our primary contribution is a broad empirical evaluation of train-before-test across 24 benchmarks and 61 models. We show that train-before-test significantly improves ranking agreement consistently across all benchmarks. Whereas rankings have little external validity to start with, they enjoy a significant degree of external validity when applying train-before-test: Model rankings transfer gracefully from one benchmark to the other. Even within the same model family, train-before-test reduces strong ranking disagreement to near-perfect agreement. In addition, train-before-test reduces the model-score matrix to essentially rank one, revealing new insights into the latent factors of benchmark performance. Our work supports the recommendation to make train-before-test a default component of LLM benchmarking.
☆ $\varphi$-Adapt: A Physics-Informed Adaptation Learning Approach to 2D Quantum Material Discovery
Characterizing quantum flakes is a critical step in quantum hardware engineering because the quality of these flakes directly influences qubit performance. Although computer vision methods for identifying two-dimensional quantum flakes have emerged, they still face significant challenges in estimating flake thickness. These challenges include limited data, poor generalization, sensitivity to domain shifts, and a lack of physical interpretability. In this paper, we introduce one of the first Physics-informed Adaptation Learning approaches to overcome these obstacles. We focus on two main issues, i.e., data scarcity and generalization. First, we propose a new synthetic data generation framework that produces diverse quantum flake samples across various materials and configurations, reducing the need for time-consuming manual collection. Second, we present $\varphi$-Adapt, a physics-informed adaptation method that bridges the performance gap between models trained on synthetic data and those deployed in real-world settings. Experimental results show that our approach achieves state-of-the-art performance on multiple benchmarks, outperforming existing methods. Our proposed approach advances the integration of physics-based modeling and domain adaptation. It also addresses a critical gap in leveraging synthesized data for real-world 2D material analysis, offering impactful tools for deep learning and materials science communities.
☆ Blind Targeting: Personalization under Third-Party Privacy Constraints
Major advertising platforms recently increased privacy protections by limiting advertisers' access to individual-level data. Instead of providing access to granular raw data, the platforms only allow a limited number of aggregate queries to a dataset, which is further protected by adding differentially private noise. This paper studies whether and how advertisers can design effective targeting policies within these restrictive privacy preserving data environments. To achieve this, I develop a probabilistic machine learning method based on Bayesian optimization, which facilitates dynamic data exploration. Since Bayesian optimization was designed to sample points from a function to find its maximum, it is not applicable to aggregate queries and to targeting. Therefore, I introduce two innovations: (i) integral updating of posteriors which allows to select the best regions of the data to query rather than individual points and (ii) a targeting-aware acquisition function that dynamically selects the most informative regions for the targeting task. I identify the conditions of the dataset and privacy environment that necessitate the use of such a "smart" querying strategy. I apply the strategic querying method to the Criteo AI Labs dataset for uplift modeling (Diemert et al., 2018) that contains visit and conversion data from 14M users. I show that an intuitive benchmark strategy only achieves 33% of the non-privacy-preserving targeting potential in some cases, while my strategic querying method achieves 97-101% of that potential, and is statistically indistinguishable from Causal Forest (Athey et al., 2019): a state-of-the-art non-privacy-preserving machine learning targeting method.
☆ Critiques of World Models
World Model, the supposed algorithmic surrogate of the real-world environment which biological agents experience with and act upon, has been an emerging topic in recent years because of the rising needs to develop virtual agents with artificial (general) intelligence. There has been much debate on what a world model really is, how to build it, how to use it, and how to evaluate it. In this essay, starting from the imagination in the famed Sci-Fi classic Dune, and drawing inspiration from the concept of "hypothetical thinking" in psychology literature, we offer critiques of several schools of thoughts on world modeling, and argue the primary goal of a world model to be simulating all actionable possibilities of the real world for purposeful reasoning and acting. Building on the critiques, we propose a new architecture for a general-purpose world model, based on hierarchical, multi-level, and mixed continuous/discrete representations, and a generative and self-supervision learning framework, with an outlook of a Physical, Agentic, and Nested (PAN) AGI system enabled by such a model.
☆ A Dynamical Systems Perspective on the Analysis of Neural Networks
In this chapter, we utilize dynamical systems to analyze several aspects of machine learning algorithms. As an expository contribution we demonstrate how to re-formulate a wide variety of challenges from deep neural networks, (stochastic) gradient descent, and related topics into dynamical statements. We also tackle three concrete challenges. First, we consider the process of information propagation through a neural network, i.e., we study the input-output map for different architectures. We explain the universal embedding property for augmented neural ODEs representing arbitrary functions of given regularity, the classification of multilayer perceptrons and neural ODEs in terms of suitable function classes, and the memory-dependence in neural delay equations. Second, we consider the training aspect of neural networks dynamically. We describe a dynamical systems perspective on gradient descent and study stability for overdetermined problems. We then extend this analysis to the overparameterized setting and describe the edge of stability phenomenon, also in the context of possible explanations for implicit bias. For stochastic gradient descent, we present stability results for the overparameterized setting via Lyapunov exponents of interpolation solutions. Third, we explain several results regarding mean-field limits of neural networks. We describe a result that extends existing techniques to heterogeneous neural networks involving graph limits via digraph measures. This shows how large classes of neural networks naturally fall within the framework of Kuramoto-type models on graphs and their large-graph limits. Finally, we point out that similar strategies to use dynamics to study explainable and reliable AI can also be applied to settings such as generative models or fundamental issues in gradient training methods, such as backpropagation or vanishing/exploding gradients.
comment: preprint of a book chapter contribution
☆ OGF: An Online Gradient Flow Method for Optimizing the Statistical Steady-State Time Averages of Unsteady Turbulent Flows
Turbulent flows are chaotic and unsteady, but their statistical distribution converges to a statistical steady state. Engineering quantities of interest typically take the form of time-average statistics such as $ \frac{1}{t} \int_0^t f ( u(x,\tau; \theta) ) d\tau \overset{t \rightarrow \infty}{\rightarrow} F(x; \theta)$, where $u(x,t; \theta)$ are solutions of the Navier--Stokes equations with parameters $\theta$. Optimizing over $F(x; \theta)$ has many engineering applications including geometric optimization, flow control, and closure modeling. However, this remains an open challenge, as existing computational approaches are incapable of scaling to physically representative numbers of grid points. The fundamental obstacle is the chaoticity of turbulent flows: gradients calculated with the adjoint method diverge exponentially as $t \rightarrow \infty$. We develop a new online gradient-flow (OGF) method that is scalable to large degree-of-freedom systems and enables optimizing for the steady-state statistics of chaotic, unsteady, turbulence-resolving simulations. The method forward-propagates an online estimate for the gradient of $F(x; \theta)$ while simultaneously performing online updates of the parameters $\theta$. A key feature is the fully online nature of the algorithm to facilitate faster optimization progress and its combination with a finite-difference estimator to avoid the divergence of gradients due to chaoticity. The proposed OGF method is demonstrated for optimizations over three chaotic ordinary and partial differential equations: the Lorenz-63 equation, the Kuramoto--Sivashinsky equation, and Navier--Stokes solutions of compressible, forced, homogeneous isotropic turbulence. In each case, the OGF method successfully reduces the loss based on $F(x; \theta)$ by several orders of magnitude and accurately recovers the optimal parameters.
comment: 29 pages, 13 figures
☆ Pseudo-likelihood produces associative memories able to generalize, even for asymmetric couplings
Energy-based probabilistic models learned by maximizing the likelihood of the data are limited by the intractability of the partition function. A widely used workaround is to maximize the pseudo-likelihood, which replaces the global normalization with tractable local normalizations. Here we show that, in the zero-temperature limit, a network trained to maximize pseudo-likelihood naturally implements an associative memory: if the training set is small, patterns become fixed-point attractors whose basins of attraction exceed those of any classical Hopfield rule. We explain quantitatively this effect on uncorrelated random patterns. Moreover, we show that, for different structured datasets coming from computer science (random feature model, MNIST), physics (spin glasses) and biology (proteins), as the number of training examples increases the learned network goes beyond memorization, developing meaningful attractors with non-trivial correlations with test examples, thus showing the ability to generalize. Our results therefore reveal pseudo-likelihood works both as an efficient inference tool and as a principled mechanism for memory and generalization.
☆ VERITAS: Verification and Explanation of Realness in Images for Transparency in AI Systems
The widespread and rapid adoption of AI-generated content, created by models such as Generative Adversarial Networks (GANs) and Diffusion Models, has revolutionized the digital media landscape by allowing efficient and creative content generation. However, these models also blur the difference between real images and AI-generated synthetic images, raising concerns regarding content authenticity and integrity. While many existing solutions to detect fake images focus solely on classification and higher-resolution images, they often lack transparency in their decision-making, making it difficult for users to understand why an image is classified as fake. In this paper, we present VERITAS, a comprehensive framework that not only accurately detects whether a small (32x32) image is AI-generated but also explains why it was classified that way through artifact localization and semantic reasoning. VERITAS produces human-readable explanations that describe key artifacts in synthetic images. We show that this architecture offers clear explanations of the basis of zero-shot synthetic image detection tasks. Code and relevant prompts can be found at https://github.com/V-i-g-n-e-s-h-N/VERITAS .
☆ A generalized Wasserstein-2 distance approach for efficient reconstruction of random field models using stochastic neural networks
In this work, we propose a novel generalized Wasserstein-2 distance approach for efficiently training stochastic neural networks to reconstruct random field models, where the target random variable comprises both continuous and categorical components. We prove that a stochastic neural network can approximate random field models under a Wasserstein-2 distance metric under nonrestrictive conditions. Furthermore, this stochastic neural network can be efficiently trained by minimizing our proposed generalized local squared Wasserstein-2 loss function. We showcase the effectiveness of our proposed approach in various uncertainty quantification tasks, including classification, reconstructing the distribution of mixed random variables, and learning complex noisy dynamical systems from spatiotemporal data.
☆ Hardware-efficient tractable probabilistic inference for TinyML Neurosymbolic AI applications
Neurosymbolic AI (NSAI) has recently emerged to mitigate limitations associated with deep learning (DL) models, e.g. quantifying their uncertainty or reason with explicit rules. Hence, TinyML hardware will need to support these symbolic models to bring NSAI to embedded scenarios. Yet, although symbolic models are typically compact, their sparsity and computation resolution contrasts with low-resolution and dense neuro models, which is a challenge on resource-constrained TinyML hardware severely limiting the size of symbolic models that can be computed. In this work, we remove this bottleneck leveraging a tight hardware/software integration to present a complete framework to compute NSAI with TinyML hardware. We focus on symbolic models realized with tractable probabilistic circuits (PCs), a popular subclass of probabilistic models for hardware integration. This framework: (1) trains a specific class of hardware-efficient \emph{deterministic} PCs, chosen for the symbolic task; (2) \emph{compresses} this PC until it can be computed on TinyML hardware with minimal accuracy degradation, using our $n^{th}$-root compression technique, and (3) \emph{deploys} the complete NSAI model on TinyML hardware. Compared to a 64b precision baseline necessary for the PC without compression, our workflow leads to significant hardware reduction on FPGA (up to 82.3\% in FF, 52.6\% in LUTs, and 18.0\% in Flash usage) and an average inference speedup of 4.67x on ESP32 microcontroller.
☆ Deep Learning to Automate Parameter Extraction and Model Fitting of Two-Dimensional Transistors
We present a deep learning approach to extract physical parameters (e.g., mobility, Schottky contact barrier height, defect profiles) of two-dimensional (2D) transistors from electrical measurements, enabling automated parameter extraction and technology computer-aided design (TCAD) fitting. To facilitate this task, we implement a simple data augmentation and pre-training approach by training a secondary neural network to approximate a physics-based device simulator. This method enables high-quality fits after training the neural network on electrical data generated from physics-based simulations of ~500 devices, a factor >40$\times$ fewer than other recent efforts. Consequently, fitting can be achieved by training on physically rigorous TCAD models, including complex geometry, self-consistent transport, and electrostatic effects, and is not limited to computationally inexpensive compact models. We apply our approach to reverse-engineer key parameters from experimental monolayer WS$_2$ transistors, achieving a median coefficient of determination ($R^2$) = 0.99 when fitting measured electrical data. We also demonstrate that this approach generalizes and scales well by reverse-engineering electrical data on high-electron-mobility transistors while fitting 35 parameters simultaneously. To facilitate future research on deep learning approaches for inverse transistor design, we have published our code and sample data sets online.
comment: Main text + supplementary information
☆ SMART: Simulated Students Aligned with Item Response Theory for Question Difficulty Prediction
Item (question) difficulties play a crucial role in educational assessments, enabling accurate and efficient assessment of student abilities and personalization to maximize learning outcomes. Traditionally, estimating item difficulties can be costly, requiring real students to respond to items, followed by fitting an item response theory (IRT) model to get item difficulty estimates. This approach cannot be applied to the cold-start setting for previously unseen items either. In this work, we present SMART (Simulated Students Aligned with IRT), a novel method for aligning simulated students with instructed ability, which can then be used in simulations to predict the difficulty of open-ended items. We achieve this alignment using direct preference optimization (DPO), where we form preference pairs based on how likely responses are under a ground-truth IRT model. We perform a simulation by generating thousands of responses, evaluating them with an LLM-based scoring model, and fit the resulting data to an IRT model to obtain item difficulty estimates. Through extensive experiments on a real-world student response dataset, we show that SMART outperforms other item difficulty prediction methods by leveraging its improved ability alignment.
☆ LVM4CSI: Enabling Direct Application of Pre-Trained Large Vision Models for Wireless Channel Tasks
Accurate channel state information (CSI) is critical to the performance of wireless communication systems, especially with the increasing scale and complexity introduced by 5G and future 6G technologies. While artificial intelligence (AI) offers a promising approach to CSI acquisition and utilization, existing methods largely depend on task-specific neural networks (NNs) that require expert-driven design and large training datasets, limiting their generalizability and practicality. To address these challenges, we propose LVM4CSI, a general and efficient framework that leverages the structural similarity between CSI and computer vision (CV) data to directly apply large vision models (LVMs) pre-trained on extensive CV datasets to wireless tasks without any fine-tuning, in contrast to large language model-based methods that generally necessitate fine-tuning. LVM4CSI maps CSI tasks to analogous CV tasks, transforms complex-valued CSI into visual formats compatible with LVMs, and integrates lightweight trainable layers to adapt extracted features to specific communication objectives. We validate LVM4CSI through three representative case studies, including channel estimation, human activity recognition, and user localization. Results demonstrate that LVM4CSI achieves comparable or superior performance to task-specific NNs, including an improvement exceeding 9.61 dB in channel estimation and approximately 40% reduction in localization error. Furthermore, it significantly reduces the number of trainable parameters and eliminates the need for task-specific NN design.
comment: This work has been submitted for possible publication
☆ CLIP-Guided Backdoor Defense through Entropy-Based Poisoned Dataset Separation
Deep Neural Networks (DNNs) are susceptible to backdoor attacks, where adversaries poison training data to implant backdoor into the victim model. Current backdoor defenses on poisoned data often suffer from high computational costs or low effectiveness against advanced attacks like clean-label and clean-image backdoors. To address them, we introduce CLIP-Guided backdoor Defense (CGD), an efficient and effective method that mitigates various backdoor attacks. CGD utilizes a publicly accessible CLIP model to identify inputs that are likely to be clean or poisoned. It then retrains the model with these inputs, using CLIP's logits as a guidance to effectively neutralize the backdoor. Experiments on 4 datasets and 11 attack types demonstrate that CGD reduces attack success rates (ASRs) to below 1% while maintaining clean accuracy (CA) with a maximum drop of only 0.3%, outperforming existing defenses. Additionally, we show that clean-data-based defenses can be adapted to poisoned data using CGD. Also, CGD exhibits strong robustness, maintaining low ASRs even when employing a weaker CLIP model or when CLIP itself is compromised by a backdoor. These findings underscore CGD's exceptional efficiency, effectiveness, and applicability for real-world backdoor defense scenarios. Code: https://github.com/binyxu/CGD.
comment: 15 pages, 9 figures, 15 tables. To appear in the Proceedings of the 32nd ACM International Conference on Multimedia (MM '25)
☆ DICE: Discrete inverse continuity equation for learning population dynamics
We introduce the Discrete Inverse Continuity Equation (DICE) method, a generative modeling approach that learns the evolution of a stochastic process from given sample populations at a finite number of time points. Models learned with DICE capture the typically smooth and well-behaved population dynamics, rather than the dynamics of individual sample trajectories that can exhibit complex or even chaotic behavior. The DICE loss function is developed specifically to be invariant, even in discrete time, to spatially constant but time-varying spurious constants that can emerge during training; this invariance increases training stability and robustness. Generating a trajectory of sample populations with DICE is fast because samples evolve directly in the time interval over which the stochastic process is formulated, in contrast to approaches that condition on time and then require multiple sampling steps per time step. DICE is stable to train, in situations where other methods for learning population dynamics fail, and DICE generates representative samples with orders of magnitude lower costs than methods that have to condition on time. Numerical experiments on a wide range of problems from random waves, Vlasov-Poisson instabilities and high-dimensional chaos are included to justify these assertions.
☆ PRING: Rethinking Protein-Protein Interaction Prediction from Pairs to Graphs
Deep learning-based computational methods have achieved promising results in predicting protein-protein interactions (PPIs). However, existing benchmarks predominantly focus on isolated pairwise evaluations, overlooking a model's capability to reconstruct biologically meaningful PPI networks, which is crucial for biology research. To address this gap, we introduce PRING, the first comprehensive benchmark that evaluates protein-protein interaction prediction from a graph-level perspective. PRING curates a high-quality, multi-species PPI network dataset comprising 21,484 proteins and 186,818 interactions, with well-designed strategies to address both data redundancy and leakage. Building on this golden-standard dataset, we establish two complementary evaluation paradigms: (1) topology-oriented tasks, which assess intra and cross-species PPI network construction, and (2) function-oriented tasks, including protein complex pathway prediction, GO module analysis, and essential protein justification. These evaluations not only reflect the model's capability to understand the network topology but also facilitate protein function annotation, biological module detection, and even disease mechanism analysis. Extensive experiments on four representative model categories, consisting of sequence similarity-based, naive sequence-based, protein language model-based, and structure-based approaches, demonstrate that current PPI models have potential limitations in recovering both structural and functional properties of PPI networks, highlighting the gap in supporting real-world biological applications. We believe PRING provides a reliable platform to guide the development of more effective PPI prediction models for the community. The dataset and source code of PRING are available at https://github.com/SophieSarceau/PRING.
☆ Beyond Features: How Dataset Design Influences Multi-Agent Trajectory Prediction Performance
Accurate trajectory prediction is critical for safe autonomous navigation, yet the impact of dataset design on model performance remains understudied. This work systematically examines how feature selection, cross-dataset transfer, and geographic diversity influence trajectory prediction accuracy in multi-agent settings. We evaluate a state-of-the-art model using our novel L4 Motion Forecasting dataset based on our own data recordings in Germany and the US. This includes enhanced map and agent features. We compare our dataset to the US-centric Argoverse 2 benchmark. First, we find that incorporating supplementary map and agent features unique to our dataset, yields no measurable improvement over baseline features, demonstrating that modern architectures do not need extensive feature sets for optimal performance. The limited features of public datasets are sufficient to capture convoluted interactions without added complexity. Second, we perform cross-dataset experiments to evaluate how effective domain knowledge can be transferred between datasets. Third, we group our dataset by country and check the knowledge transfer between different driving cultures.
☆ Exploring Semantic Clustering and Similarity Search for Heterogeneous Traffic Scenario Graph
Scenario-based testing is an indispensable instrument for the comprehensive validation and verification of automated vehicles (AVs). However, finding a manageable and finite, yet representative subset of scenarios in a scalable, possibly unsupervised manner is notoriously challenging. Our work is meant to constitute a cornerstone to facilitate sample-efficient testing, while still capturing the diversity of relevant operational design domains (ODDs) and accounting for the "long tail" phenomenon in particular. To this end, we first propose an expressive and flexible heterogeneous, spatio-temporal graph model for representing traffic scenarios. Leveraging recent advances of graph neural networks (GNNs), we then propose a self-supervised method to learn a universal embedding space for scenario graphs that enables clustering and similarity search. In particular, we implement contrastive learning alongside a bootstrapping-based approach and evaluate their suitability for partitioning the scenario space. Experiments on the nuPlan dataset confirm the model's ability to capture semantics and thus group related scenarios in a meaningful way despite the absence of discrete class labels. Different scenario types materialize as distinct clusters. Our results demonstrate how variable-length traffic scenarios can be condensed into single vector representations that enable nearest-neighbor retrieval of representative candidates for distinct scenario categories. Notably, this is achieved without manual labeling or bias towards an explicit objective such as criticality. Ultimately, our approach can serve as a basis for scalable selection of scenarios to further enhance the efficiency and robustness of testing AVs in simulation.
comment: accepted in the IEEE IAVVC 2025 conference
☆ Distribution-dependent Generalization Bounds for Tuning Linear Regression Across Tasks
Modern regression problems often involve high-dimensional data and a careful tuning of the regularization hyperparameters is crucial to avoid overly complex models that may overfit the training data while guaranteeing desirable properties like effective variable selection. We study the recently introduced direction of tuning regularization hyperparameters in linear regression across multiple related tasks. We obtain distribution-dependent bounds on the generalization error for the validation loss when tuning the L1 and L2 coefficients, including ridge, lasso and the elastic net. In contrast, prior work develops bounds that apply uniformly to all distributions, but such bounds necessarily degrade with feature dimension, d. While these bounds are shown to be tight for worst-case distributions, our bounds improve with the "niceness" of the data distribution. Concretely, we show that under additional assumptions that instances within each task are i.i.d. draws from broad well-studied classes of distributions including sub-Gaussians, our generalization bounds do not get worse with increasing d, and are much sharper than prior work for very large d. We also extend our results to a generalization of ridge regression, where we achieve tighter bounds that take into account an estimate of the mean of the ground truth distribution.
comment: 49 pages
☆ Replacing thinking with tool usage enables reasoning in small language models
Recent advances have established a new machine learning paradigm based on scaling up compute at inference time as well as at training time. In that line of work, a combination of Supervised Fine-Tuning (SFT) on synthetic demonstrations and Reinforcement Learning with Verifiable Rewards (RLVR) is used for training Large Language Models to expend extra compute during inference in the form of "thoughts" expressed in natural language. In this paper, we propose to instead format these tokens as a multi-turn interaction trace with a stateful tool. At each turn, the new state of the tool is appended to the context of the model, whose job is to generate the tokens necessary to control the tool via a custom DSL. We benchmark this approach on the problem of repairing malfunctioning Python code, and show that this constrained setup allows for faster sampling of experience and a denser reward signal, allowing even models of size up to 3B parameters to learn how to proficiently expend additional compute on the task.
comment: 23 pages, includes appendix
☆ Vecchia-Inducing-Points Full-Scale Approximations for Gaussian Processes
Gaussian processes are flexible, probabilistic, non-parametric models widely used in machine learning and statistics. However, their scalability to large data sets is limited by computational constraints. To overcome these challenges, we propose Vecchia-inducing-points full-scale (VIF) approximations combining the strengths of global inducing points and local Vecchia approximations. Vecchia approximations excel in settings with low-dimensional inputs and moderately smooth covariance functions, while inducing point methods are better suited to high-dimensional inputs and smoother covariance functions. Our VIF approach bridges these two regimes by using an efficient correlation-based neighbor-finding strategy for the Vecchia approximation of the residual process, implemented via a modified cover tree algorithm. We further extend our framework to non-Gaussian likelihoods by introducing iterative methods that substantially reduce computational costs for training and prediction by several orders of magnitudes compared to Cholesky-based computations when using a Laplace approximation. In particular, we propose and compare novel preconditioners and provide theoretical convergence results. Extensive numerical experiments on simulated and real-world data sets show that VIF approximations are both computationally efficient as well as more accurate and numerically stable than state-of-the-art alternatives. All methods are implemented in the open source C++ library GPBoost with high-level Python and R interfaces.
☆ AI-Driven Cytomorphology Image Synthesis for Medical Diagnostics SC
Biomedical datasets often contain a large sample imbalance and are subject to strict privacy constraints, which together hinder the development of accurate machine learning models. One potential solution is to generate synthetic images, as this can improve data availability while preserving patient privacy. However, it remains difficult to generate synthetic images of sufficient quality for training robust classifiers. In this work, we focus on the classification of single white blood cells, a key component in the diagnosis of hematological diseases such as acute myeloid leukemia (AML), a severe blood cancer. We demonstrate how synthetic images generated with a fine-tuned stable diffusion model using LoRA weights when guided by real few-shot samples of the target white blood cell classes, can enhance classifier performance for limited data. When training a ResNet classifier, accuracy increased from 27.3\% to 78.4\% (+51.1\%) by adding 5000 synthetic images per class to a small and highly imbalanced real dataset. For a CLIP-based classifier, the accuracy improved from 61.8\% to 76.8\% (+15.0\%). The synthetic images are highly similar to real images, and they can help overcome dataset limitations, enhancing model generalization. Our results establish synthetic images as a tool in biomedical research, improving machine learning models, and facilitating medical diagnosis and research.
comment: 8 pages, 6 figures, 2 tables. Final Degree Project (TFG) submitted at ESCI-UPF and conducted at Helmholtz Munich
☆ A COMPASS to Model Comparison and Simulation-Based Inference in Galactic Chemical Evolution
We present \texttt{COMPASS}, a novel simulation-based inference framework that combines score-based diffusion models with transformer architectures to jointly perform parameter estimation and Bayesian model comparison across competing Galactic Chemical Evolution (GCE) models. \texttt{COMPASS} handles high-dimensional, incomplete, and variable-size stellar abundance datasets. % Applied to high-precision elemental abundance measurements, \texttt{COMPASS} evaluates 40 combinations of nucleosynthetic yield tables. The model strongly favours Asymptotic Giant Branch yields from NuGrid and core-collapse SN yields used in the IllustrisTNG simulation, achieving near-unity cumulative posterior probability. Using the preferred model, we infer a steep high-mass IMF slope and an elevated Supernova\,Ia normalization, consistent with prior solar neighbourhood studies but now derived from fully amortized Bayesian inference. % Our results demonstrate that modern SBI methods can robustly constrain uncertain physics in astrophysical simulators and enable principled model selection when analysing complex, simulation-based data.
comment: Accepted at the 2025 Workshop on Machine Learning for Astrophysics
☆ Beyond Scaling Curves: Internal Dynamics of Neural Networks Through the NTK Lens
Scaling laws offer valuable insights into the relationship between neural network performance and computational cost, yet their underlying mechanisms remain poorly understood. In this work, we empirically analyze how neural networks behave under data and model scaling through the lens of the neural tangent kernel (NTK). This analysis establishes a link between performance scaling and the internal dynamics of neural networks. Our findings of standard vision tasks show that similar performance scaling exponents can occur even though the internal model dynamics show opposite behavior. This demonstrates that performance scaling alone is insufficient for understanding the underlying mechanisms of neural networks. We also address a previously unresolved issue in neural scaling: how convergence to the infinite-width limit affects scaling behavior in finite-width models. To this end, we investigate how feature learning is lost as the model width increases and quantify the transition between kernel-driven and feature-driven scaling regimes. We identify the maximum model width that supports feature learning, which, in our setups, we find to be more than ten times smaller than typical large language model widths.
☆ A Generative Diffusion Model for Amorphous Materials
Generative models show great promise for the inverse design of molecules and inorganic crystals, but remain largely ineffective within more complex structures such as amorphous materials. Here, we present a diffusion model that reliably generates amorphous structures up to 1000 times faster than conventional simulations across processing conditions, compositions, and data sources. Generated structures recovered the short- and medium-range order, sampling diversity, and macroscopic properties of silica glass, as validated by simulations and an information-theoretical strategy. Conditional generation allowed sampling large structures at low cooling rates of 10$^{-2}$ K/ps to uncover a ductile-to-brittle transition and mesoporous silica structures. Extension to metallic glassy systems accurately reproduced local structures and properties from both computational and experimental datasets, demonstrating how synthetic data can be generated from characterization results. Our methods provide a roadmap for the design and simulation of amorphous materials previously inaccessible to computational methods.
comment: Main: 19 pages, 5 figures; SI: 22 pages, 16 figures
☆ Meta-Learning Transformers to Improve In-Context Generalization
In-context learning enables transformer models to generalize to new tasks based solely on input prompts, without any need for weight updates. However, existing training paradigms typically rely on large, unstructured datasets that are costly to store, difficult to evaluate for quality and balance, and pose privacy and ethical concerns due to the inclusion of sensitive information. Motivated by these limitations and risks, we propose an alternative training strategy where we leverage a collection of multiple, small-scale, and domain-specific datasets. We empirically demonstrate that the increased quality and diversity of such data improve the generalization abilities of in-context learners beyond their training domain, while achieving comparable performance with models trained on a single large-scale dataset. We investigate this paradigm by leveraging meta-learning to train an in-context learner on the Meta-Album collection under several settings. Firstly, we show the performance in a controlled environment, where the test domain is completely excluded from the training knowledge. Secondly, we explore the robustness of these models to forgetting in a continual scenario where the information is accessible for a limited time. Finally, we explore the more challenging unsupervised scenario. Our findings demonstrate that transformers still generalize for in-context prediction when trained on a curated dataset collection while offering advantages in modularity and replaceability.
☆ Classification of autoimmune diseases from Peripheral blood TCR repertoires by multimodal multi-instance learning
T cell receptor (TCR) repertoires encode critical immunological signatures for autoimmune diseases, yet their clinical application remains limited by sequence sparsity and low witness rates. We developed EAMil, a multi-instance deep learning framework that leverages TCR sequencing data to diagnose systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA) with exceptional accuracy. By integrating PrimeSeq feature extraction with ESMonehot encoding and enhanced gate attention mechanisms, our model achieved state-of-the-art performance with AUCs of 98.95% for SLE and 97.76% for RA. EAMil successfully identified disease-associated genes with over 90% concordance with established differential analyses and effectively distinguished disease-specific TCR genes. The model demonstrated robustness in classifying multiple disease categories, utilizing the SLEDAI score to stratify SLE patients by disease severity as well as to diagnose the site of damage in SLE patients, and effectively controlling for confounding factors such as age and gender. This interpretable framework for immune receptor analysis provides new insights for autoimmune disease detection and classification with broad potential clinical applications across immune-mediated conditions.
comment: 7 figures, 4 tabels
☆ The Case for Instance-Optimized LLMs in OLAP Databases
Large Language Models (LLMs) can enhance analytics systems with powerful data summarization, cleaning, and semantic transformation capabilities. However, deploying LLMs at scale -- processing millions to billions of rows -- remains prohibitively expensive in computation and memory. We present IOLM-DB, a novel system that makes LLM-enhanced database queries practical through query-specific model optimization. Instead of using general-purpose LLMs, IOLM-DB generates lightweight, specialized models tailored to each query's specific needs using representative data samples. IOLM-DB reduces model footprints by up to 76% and increases throughput by up to 3.31$\times$ while maintaining accuracy through aggressive compression techniques, including quantization, sparsification, and structural pruning. We further show how our approach enables higher parallelism on existing hardware and seamlessly supports caching and batching strategies to reduce overheads. Our prototype demonstrates that leveraging LLM queries inside analytics systems is feasible at scale, opening new possibilities for future OLAP applications.
☆ ConBatch-BAL: Batch Bayesian Active Learning under Budget Constraints
Varying annotation costs among data points and budget constraints can hinder the adoption of active learning strategies in real-world applications. This work introduces two Bayesian active learning strategies for batch acquisition under constraints (ConBatch-BAL), one based on dynamic thresholding and one following greedy acquisition. Both select samples using uncertainty metrics computed via Bayesian neural networks. The dynamic thresholding strategy redistributes the budget across the batch, while the greedy one selects the top-ranked sample at each step, limited by the remaining budget. Focusing on scenarios with costly data annotation and geospatial constraints, we also release two new real-world datasets containing geolocated aerial images of buildings, annotated with energy efficiency or typology classes. The ConBatch-BAL strategies are benchmarked against a random acquisition baseline on these datasets under various budget and cost scenarios. The results show that the developed ConBatch-BAL strategies can reduce active learning iterations and data acquisition costs in real-world settings, and even outperform the unconstrained baseline solutions.
☆ Object-centric Denoising Diffusion Models for Physical Reasoning
Reasoning about the trajectories of multiple, interacting objects is integral to physical reasoning tasks in machine learning. This involves conditions imposed on the objects at different time steps, for instance initial states or desired goal states. Existing approaches in physical reasoning generally rely on autoregressive modeling, which can only be conditioned on initial states, but not on later states. In fields such as planning for reinforcement learning, similar challenges are being addressed with denoising diffusion models. In this work, we propose an object-centric denoising diffusion model architecture for physical reasoning that is translation equivariant over time, permutation equivariant over objects, and can be conditioned on arbitrary time steps for arbitrary objects. We demonstrate how this model can solve tasks with multiple conditions and examine its performance when changing object numbers and trajectory lengths during inference.
☆ When do World Models Successfully Learn Dynamical Systems?
In this work, we explore the use of compact latent representations with learned time dynamics ('World Models') to simulate physical systems. Drawing on concepts from control theory, we propose a theoretical framework that explains why projecting time slices into a low-dimensional space and then concatenating to form a history ('Tokenization') is so effective at learning physics datasets, and characterise when exactly the underlying dynamics admit a reconstruction mapping from the history of previous tokenized frames to the next. To validate these claims, we develop a sequence of models with increasing complexity, starting with least-squares regression and progressing through simple linear layers, shallow adversarial learners, and ultimately full-scale generative adversarial networks (GANs). We evaluate these models on a variety of datasets, including modified forms of the heat and wave equations, the chaotic regime 2D Kuramoto-Sivashinsky equation, and a challenging computational fluid dynamics (CFD) dataset of a 2D K\'arm\'an vortex street around a fixed cylinder, where our model is successfully able to recreate the flow.
☆ Fine-tuning on simulated data outperforms prompting for agent tone of voice
Deploying language models (LMs) in customer-facing speech applications requires conversational fluency and adherence to specific stylistic guidelines. This can be challenging to achieve reliably using complex system prompts due to issues like instruction following limitations and in-context bias. This study investigates the effectiveness of fine-tuning versus system prompting for aligning LMs with a specific behavioral target: responding in a natural, conversational tone suitable for voice interactions. We fine-tuned a small, open-weights model (`Llama3.2-1B-Instruct`) using Low-Rank Adaptation (LoRA) on a synthetically generated dataset derived from Wikipedia. Additionally, we fine-tuned two closed-source models (`gpt-4o-mini`, `gpt-4.1-mini`). Our results demonstrate that fine-tuning outperformed system prompting, achieving a high percentage of conversational responses, even when trained on only 100 data samples. Semantic similarity analysis confirmed that fine-tuning did not degrade content quality. Interestingly, fine-tuning with 8-bit integer quantization converged faster towards the target style than using bfloat16 precision, potentially due to implicit regularization effects. We conclude that fine-tuning small, open-weights LMs on simulated data is a highly effective and data-efficient method for instilling specific stylistic behaviors, offering a preferable alternative to complex system prompting for practical applications requiring nuanced response styles.
comment: 22 pages, 5 figures, 6 tables
☆ Beyond Training-time Poisoning: Component-level and Post-training Backdoors in Deep Reinforcement Learning
Deep Reinforcement Learning (DRL) systems are increasingly used in safety-critical applications, yet their security remains severely underexplored. This work investigates backdoor attacks, which implant hidden triggers that cause malicious actions only when specific inputs appear in the observation space. Existing DRL backdoor research focuses solely on training-time attacks requiring unrealistic access to the training pipeline. In contrast, we reveal critical vulnerabilities across the DRL supply chain where backdoors can be embedded with significantly reduced adversarial privileges. We introduce two novel attacks: (1) TrojanentRL, which exploits component-level flaws to implant a persistent backdoor that survives full model retraining; and (2) InfrectroRL, a post-training backdoor attack which requires no access to training, validation, nor test data. Empirical and analytical evaluations across six Atari environments show our attacks rival state-of-the-art training-time backdoor attacks while operating under much stricter adversarial constraints. We also demonstrate that InfrectroRL further evades two leading DRL backdoor defenses. These findings challenge the current research focus and highlight the urgent need for robust defenses.
☆ Adaptive Slimming for Scalable and Efficient Speech Enhancement SP
Speech enhancement (SE) enables robust speech recognition, real-time communication, hearing aids, and other applications where speech quality is crucial. However, deploying such systems on resource-constrained devices involves choosing a static trade-off between performance and computational efficiency. In this paper, we introduce dynamic slimming to DEMUCS, a popular SE architecture, making it scalable and input-adaptive. Slimming lets the model operate at different utilization factors (UF), each corresponding to a different performance/efficiency trade-off, effectively mimicking multiple model sizes without the extra storage costs. In addition, a router subnet, trained end-to-end with the backbone, determines the optimal UF for the current input. Thus, the system saves resources by adaptively selecting smaller UFs when additional complexity is unnecessary. We show that our solution is Pareto-optimal against individual UFs, confirming the benefits of dynamic routing. When training the proposed dynamically-slimmable model to use 10% of its capacity on average, we obtain the same or better speech quality as the equivalent static 25% utilization while reducing MACs by 29%.
comment: Accepted for publication at the 2025 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA 2025)
☆ NTSFormer: A Self-Teaching Graph Transformer for Multimodal Cold-Start Node Classification
Cold-start node classification on multimodal graphs is challenging because cold-start nodes are isolated (i.e., no edges) and often have missing modalities (e.g., absent text or image features). Existing methods address structural isolation by degrading graph learning models to MLPs for cold-start inference, using a teacher model (with graph access) to guide the MLP. However, this results in limited model capacity in the student, which is further challenged when modalities are missing. In this paper, we propose Neighbor-to-Self Graph Transformer (NTSFormer), a unified Graph Transformer framework that jointly tackles the isolation and missing-modality issues via a self-teaching paradigm. Specifically, NTSFormer uses a cold-start attention mask to simultaneously make two predictions for each node: a "student" prediction based only on self-information (i.e., the node's own features), and a "teacher" prediction incorporating both self and neighbor information. This enables the model to supervise itself without degrading to an MLP, thereby fully leveraging the Transformer's capacity to handle missing modalities. To handle diverse graph information and missing modalities, NTSFormer performs a one-time multimodal graph pre-computation that converts structural and feature data into token sequences, which are then processed by a Mixture-of-Experts (MoE) Input Projection and Transformer layers for effective fusion. Experimental results on public datasets show that NTSFormer achieves superior performance on multimodal cold-start node classification tasks.
☆ Music Boomerang: Reusing Diffusion Models for Data Augmentation and Audio Manipulation
Generative models of music audio are typically used to generate output based solely on a text prompt or melody. Boomerang sampling, recently proposed for the image domain, allows generating output close to an existing example, using any pretrained diffusion model. In this work, we explore its application in the audio domain as a tool for data augmentation or content manipulation. Specifically, implementing Boomerang sampling for Stable Audio Open, we augment training data for a state-of-the-art beat tracker, and attempt to replace musical instruments in recordings. Our results show that the rhythmic structure of existing examples is mostly preserved, that it improves performance of the beat tracker, but only in scenarios of limited training data, and that it can accomplish text-based instrument replacement on monophonic inputs. We publish our implementation to invite experiments on data augmentation in other tasks and explore further applications.
comment: Accepted at SMC 2025. Code at https://malex1106.github.io/boomify/
☆ Towards Human-in-the-Loop Onset Detection: A Transfer Learning Approach for Maracatu
We explore transfer learning strategies for musical onset detection in the Afro-Brazilian Maracatu tradition, which features complex rhythmic patterns that challenge conventional models. We adapt two Temporal Convolutional Network architectures: one pre-trained for onset detection (intra-task) and another for beat tracking (inter-task). Using only 5-second annotated snippets per instrument, we fine-tune these models through layer-wise retraining strategies for five traditional percussion instruments. Our results demonstrate significant improvements over baseline performance, with F1 scores reaching up to 0.998 in the intra-task setting and improvements of over 50 percentage points in best-case scenarios. The cross-task adaptation proves particularly effective for time-keeping instruments, where onsets naturally align with beat positions. The optimal fine-tuning configuration varies by instrument, highlighting the importance of instrument-specific adaptation strategies. This approach addresses the challenges of underrepresented musical traditions, offering an efficient human-in-the-loop methodology that minimizes annotation effort while maximizing performance. Our findings contribute to more inclusive music information retrieval tools applicable beyond Western musical contexts.
comment: Accepted at ISMIR 2025
☆ Spatial and Semantic Embedding Integration for Stereo Sound Event Localization and Detection in Regular Videos
This report presents our systems submitted to the audio-only and audio-visual tracks of the DCASE2025 Task 3 Challenge: Stereo Sound Event Localization and Detection (SELD) in Regular Video Content. SELD is a complex task that combines temporal event classification with spatial localization, requiring reasoning across spatial, temporal, and semantic dimensions. The last is arguably the most challenging to model. Traditional SELD architectures rely on multichannel input, which limits their ability to leverage large-scale pre-training due to data constraints. To address this, we enhance standard SELD architectures with semantic information by integrating pre-trained, contrastive language-aligned models: CLAP for audio and OWL-ViT for visual inputs. These embeddings are incorporated into a modified Conformer module tailored for multimodal fusion, which we refer to as the Cross-Modal Conformer. Additionally, we incorporate autocorrelation-based acoustic features to improve distance estimation. We pre-train our models on curated synthetic audio and audio-visual datasets and apply a left-right channel swapping augmentation to further increase the training data. Both our audio-only and audio-visual systems substantially outperform the challenge baselines on the development set, demonstrating the effectiveness of our strategy. Performance is further improved through model ensembling and a visual post-processing step based on human keypoints. Future work will investigate the contribution of each modality and explore architectural variants to further enhance results.
☆ Discrete Diffusion Trajectory Alignment via Stepwise Decomposition
Discrete diffusion models have demonstrated great promise in modeling various sequence data, ranging from human language to biological sequences. Inspired by the success of RL in language models, there is growing interest in further improving the models by alignment with a certain reward. In this work, we propose a novel preference optimization method for masked discrete diffusion models through a principled diffusion trajectory alignment. Instead of applying the reward on the final output and backpropagating the gradient to the entire discrete denoising process, we decompose the problem into a set of stepwise alignment objectives. This framework enables efficient diffusion optimization, is compatible with arbitrary reward functions, and importantly, guarantees an equivalent optimal solution under additive factorization of the trajectory reward. Experiments across multiple domains including DNA sequence design, protein inverse folding, and language modeling consistently demonstrate the superiority of our approach. Notably, it achieves an up to 12\% improvement over the most competitive RL-based baseline in terms of predicted activity on DNA sequence design, and further improves the GSM8K score from 78.6 to 80.7 on LLaDA-8B-Instruct for language modeling.
comment: 22 pages, 3 figures
☆ A High-Level Compiler Integration Approach for Deep Learning Accelerators Supporting Abstraction and Optimization
The growing adoption of domain-specific architectures in edge computing platforms for deep learning has highlighted the efficiency of hardware accelerators. However, integrating custom accelerators into modern machine learning (ML) compilers remains a complex challenge due to the need for significant modifications in compilation layers and specialized scheduling techniques. Existing frameworks offer partial solutions and require users to navigate intricate compiler internals. In this paper, we introduce a TVM-based compilation integration approach that targets GEMM-based deep learning accelerators. Our approach abstracts the complexities of compiler integration, enabling seamless integration of accelerators without requiring in-depth knowledge of the underlying compiler. Furthermore, we extend and incorporate design space exploration tools, specifically CoSA, to automate efficient tensor scheduling, accounting for factors such as uneven mapping and double buffering. Our framework is benchmarked on the Gemmini accelerator, demonstrating performance comparable to its specialized manually implemented toolchain.
☆ UDF-GMA: Uncertainty Disentanglement and Fusion for General Movement Assessment
General movement assessment (GMA) is a non-invasive tool for the early detection of brain dysfunction through the qualitative assessment of general movements, and the development of automated methods can broaden its application. However, mainstream pose-based automated GMA methods are prone to uncertainty due to limited high-quality data and noisy pose estimation, hindering clinical reliability without reliable uncertainty measures. In this work, we introduce UDF-GMA which explicitly models epistemic uncertainty in model parameters and aleatoric uncertainty from data noise for pose-based automated GMA. UDF-GMA effectively disentangles uncertainties by directly modelling aleatoric uncertainty and estimating epistemic uncertainty through Bayesian approximation. We further propose fusing these uncertainties with the embedded motion representation to enhance class separation. Extensive experiments on the Pmi-GMA benchmark dataset demonstrate the effectiveness and generalisability of the proposed approach in predicting poor repertoire.
comment: This work has been accepted for publication in IEEE Journal of Biomedical and Health Informatics (J-BHI)
☆ Kalman Filter Aided Federated Koopman Learning
Real-time control and estimation are pivotal for applications such as industrial automation and future healthcare. The realization of this vision relies heavily on efficient interactions with nonlinear systems. Therefore, Koopman learning, which leverages the power of deep learning to linearize nonlinear systems, has been one of the most successful examples of mitigating the complexity inherent in nonlinearity. However, the existing literature assumes access to accurate system states and abundant high-quality data for Koopman analysis, which is usually impractical in real-world scenarios. To fill this void, this paper considers the case where only observations of the system are available and where the observation data is insufficient to accomplish an independent Koopman analysis. To this end, we propose Kalman Filter aided Federated Koopman Learning (KF-FedKL), which pioneers the combination of Kalman filtering and federated learning with Koopman analysis. By doing so, we can achieve collaborative linearization with privacy guarantees. Specifically, we employ a straightforward yet efficient loss function to drive the training of a deep Koopman network for linearization. To obtain system information devoid of individual information from observation data, we leverage the unscented Kalman filter and the unscented Rauch-Tung-Striebel smoother. To achieve collaboration between clients, we adopt the federated learning framework and develop a modified FedAvg algorithm to orchestrate the collaboration. A convergence analysis of the proposed framework is also presented. Finally, through extensive numerical simulations, we showcase the performance of KF-FedKL under various situations.
☆ Interpretable Machine Learning for Urban Heat Mitigation: Attribution and Weighting of Multi-Scale Drivers
Urban heat islands (UHIs) are often accentuated during heat waves (HWs) and pose a public health risk. Mitigating UHIs requires urban planners to first estimate how urban heat is influenced by different land use types (LUTs) and drivers across scales - from synoptic-scale climatic background processes to small-scale urban- and scale-bridging features. This study proposes to classify these drivers into driving (D), urban (U), and local (L) features, respectively. To increase interpretability and enhance computation efficiency, a LUT-distinguishing machine learning approach is proposed as a fast emulator for Weather Research and Forecasting model coupled to a Single-Layer Urban Canopy Model (WRF-SLUCM) to predict ground- (TSK) and 2-meter air temperature (T2). Using random forests (RFs) with extreme gradient boosting (XGB) trained on WRF-SLUCM output over Zurich, Switzerland, during heatwave (HW) periods in 2017 and 2019, this study proposes LUT-based (LB) models that categorize features by scales and practical controllability, allowing optional categorical weighting. This approach enables category-specific feature ranking and sensitivity estimation of T2 and TSK to most important small-scale drivers - most notably surface emissivity, albedo, and leaf area index (LAI). Models employing the LB framework are statistically significantly more accurate than models that do not, with higher performance when more HW data is included in training. With RF-XGB robustly performing optimal with unit weights, the method substantially increase interpretability. Despite the needs to reduce statistical uncertainties and testing the method on other cities, the proposed approach offers urban planners a direct framework for feasibility-centered UHI mitigation assessment.
comment: 32 pages, 7 figures, 2 tables
☆ Interaction-Merged Motion Planning: Effectively Leveraging Diverse Motion Datasets for Robust Planning ICCV 2025
Motion planning is a crucial component of autonomous robot driving. While various trajectory datasets exist, effectively utilizing them for a target domain remains challenging due to differences in agent interactions and environmental characteristics. Conventional approaches, such as domain adaptation or ensemble learning, leverage multiple source datasets but suffer from domain imbalance, catastrophic forgetting, and high computational costs. To address these challenges, we propose Interaction-Merged Motion Planning (IMMP), a novel approach that leverages parameter checkpoints trained on different domains during adaptation to the target domain. IMMP follows a two-step process: pre-merging to capture agent behaviors and interactions, sufficiently extracting diverse information from the source domain, followed by merging to construct an adaptable model that efficiently transfers diverse interactions to the target domain. Our method is evaluated on various planning benchmarks and models, demonstrating superior performance compared to conventional approaches.
comment: Accepted at ICCV 2025
☆ Machine Learning from Explanations ICML 2025
Acquiring and training on large-scale labeled data can be impractical due to cost constraints. Additionally, the use of small training datasets can result in considerable variability in model outcomes, overfitting, and learning of spurious correlations. A crucial shortcoming of data labels is their lack of any reasoning behind a specific label assignment, causing models to learn any arbitrary classification rule as long as it aligns data with labels. To overcome these issues, we introduce an innovative approach for training reliable classification models on smaller datasets, by using simple explanation signals such as important input features from labeled data. Our method centers around a two-stage training cycle that alternates between enhancing model prediction accuracy and refining its attention to match the explanations. This instructs models to grasp the rationale behind label assignments during their learning phase. We demonstrate that our training cycle expedites the convergence towards more accurate and reliable models, particularly for small, class-imbalanced training data, or data with spurious features.
comment: ICML 2025 AIW
☆ Reason to Rote: Rethinking Memorization in Reasoning
Large language models readily memorize arbitrary training instances, such as label noise, yet they perform strikingly well on reasoning tasks. In this work, we investigate how language models memorize label noise, and why such memorization in many cases does not heavily affect generalizable reasoning capabilities. Using two controllable synthetic reasoning datasets with noisy labels, four-digit addition (FDA) and two-hop relational reasoning (THR), we discover a reliance of memorization on generalizable reasoning mechanisms: models continue to compute intermediate reasoning outputs even when retrieving memorized noisy labels, and intervening reasoning adversely affects memorization. We further show that memorization operates through distributed encoding, i.e., aggregating various inputs and intermediate results, rather than building a look-up mechanism from inputs to noisy labels. Moreover, our FDA case study reveals memorization occurs via outlier heuristics, where existing neuron activation patterns are slightly shifted to fit noisy labels. Together, our findings suggest that memorization of label noise in language models builds on, rather than overrides, the underlying reasoning mechanisms, shedding lights on the intriguing phenomenon of benign memorization.
comment: 21 pages, 14 figures
☆ FedPall: Prototype-based Adversarial and Collaborative Learning for Federated Learning with Feature Drift
Federated learning (FL) enables collaborative training of a global model in the centralized server with data from multiple parties while preserving privacy. However, data heterogeneity can significantly degrade the performance of the global model when each party uses datasets from different sources to train a local model, thereby affecting personalized local models. Among various cases of data heterogeneity, feature drift, feature space difference among parties, is prevalent in real-life data but remains largely unexplored. Feature drift can distract feature extraction learning in clients and thus lead to poor feature extraction and classification performance. To tackle the problem of feature drift in FL, we propose FedPall, an FL framework that utilizes prototype-based adversarial learning to unify feature spaces and collaborative learning to reinforce class information within the features. Moreover, FedPall leverages mixed features generated from global prototypes and local features to enhance the global classifier with classification-relevant information from a global perspective. Evaluation results on three representative feature-drifted datasets demonstrate FedPall's consistently superior performance in classification with feature-drifted data in the FL scenario.
comment: 10 pages, 6 figures, and 1 table
☆ Sure Convergence and Constructive Universal Approximation for Multi-Layer Neural Networks
We propose a new neural network model, 01Neuro, built on indicator activation neurons. Its boosted variant possesses two key statistical properties: (1) Sure Convergence, where model optimization can be achieved with high probability given sufficient computational resources; and (2) Constructive Universal Approximation: In the infinite sample setting, the model can approximate any finite sum of measurable functions, each depending on only k out of p input features, provided the architecture is properly tuned. Unlike most universal approximation results that are agnostic to training procedures, our guarantees are directly tied to the model's explicit construction and optimization algorithm. To improve prediction stability, we integrate stochastic training and bagging into the boosted 01Neuro framework. Empirical evaluations on simulated and real-world tabular datasets with small to medium sample sizes highlight its strengths: effective approximation of interaction components (multiplicative terms), stable prediction performance (comparable to Random Forests), robustness to many noisy features, and insensitivity to feature scaling. A major limitation of the current implementation of boosted 01Neuro is its higher computational cost, which is approximately 5 to 30 times that of Random Forests and XGBoost.
comment: 39 pages, 3 figures, 8 tables
☆ Improving BERT for Symbolic Music Understanding Using Token Denoising and Pianoroll Prediction
We propose a pre-trained BERT-like model for symbolic music understanding that achieves competitive performance across a wide range of downstream tasks. To achieve this target, we design two novel pre-training objectives, namely token correction and pianoroll prediction. First, we sample a portion of note tokens and corrupt them with a limited amount of noise, and then train the model to denoise the corrupted tokens; second, we also train the model to predict bar-level and local pianoroll-derived representations from the corrupted note tokens. We argue that these objectives guide the model to better learn specific musical knowledge such as pitch intervals. For evaluation, we propose a benchmark that incorporates 12 downstream tasks ranging from chord estimation to symbolic genre classification. Results confirm the effectiveness of the proposed pre-training objectives on downstream tasks.
comment: Accepted at ISMIR 2025
☆ Efficient Unlearning with Privacy Guarantees
Privacy protection laws, such as the GDPR, grant individuals the right to request the forgetting of their personal data not only from databases but also from machine learning (ML) models trained on them. Machine unlearning has emerged as a practical means to facilitate model forgetting of data instances seen during training. Although some existing machine unlearning methods guarantee exact forgetting, they are typically costly in computational terms. On the other hand, more affordable methods do not offer forgetting guarantees and are applicable only to specific ML models. In this paper, we present \emph{efficient unlearning with privacy guarantees} (EUPG), a novel machine unlearning framework that offers formal privacy guarantees to individuals whose data are being unlearned. EUPG involves pre-training ML models on data protected using privacy models, and it enables {\em efficient unlearning with the privacy guarantees offered by the privacy models in use}. Through empirical evaluation on four heterogeneous data sets protected with $k$-anonymity and $\epsilon$-differential privacy as privacy models, our approach demonstrates utility and forgetting effectiveness comparable to those of exact unlearning methods, while significantly reducing computational and storage costs. Our code is available at https://github.com/najeebjebreel/EUPG.
☆ ABench-Physics: Benchmarking Physical Reasoning in LLMs via High-Difficulty and Dynamic Physics Problems
Large Language Models (LLMs) have shown impressive performance in domains such as mathematics and programming, yet their capabilities in physics remain underexplored and poorly understood. Physics poses unique challenges that demand not only precise computation but also deep conceptual understanding and physical modeling skills. Existing benchmarks often fall short due to limited difficulty, multiple-choice formats, and static evaluation settings that fail to capture physical modeling ability. In this paper, we introduce ABench-Physics, a novel benchmark designed to rigorously evaluate LLMs' physical reasoning and generalization capabilities. ABench-Physics consists of two components: Phy_A, a static set of 400 graduate- or Olympiad-level problems; and Phy_B, a dynamic subset of 100 problems equipped with an automatic variation engine to test model robustness across changing conditions. All questions require precise numerical answers, with strict formatting and tolerance constraints. Our evaluation of several state-of-the-art LLMs reveals substantial performance gaps, highlighting persistent limitations in physical reasoning, especially in generalization to dynamic variants. ABench-Physics provides a challenging and diagnostic framework for advancing scientific reasoning in LLMs.
☆ Intervening to learn and compose disentangled representations
In designing generative models, it is commonly believed that in order to learn useful latent structure, we face a fundamental tension between expressivity and structure. In this paper we challenge this view by proposing a new approach to training arbitrarily expressive generative models that simultaneously learn disentangled latent structure. This is accomplished by adding a simple decoder-only module to the head of an existing decoder block that can be arbitrarily complex. The module learns to process concept information by implicitly inverting linear representations from an encoder. Inspired by the notion of intervention in causal graphical models, our module selectively modifies its architecture during training, allowing it to learn a compact joint model over different contexts. We show how adding this module leads to disentangled representations that can be composed for out-of-distribution generation. To further validate our proposed approach, we prove a new identifiability result that extends existing work on identifying structured representations in nonlinear models.
comment: 45 pages, 14 figures
☆ Activation Steering for Chain-of-Thought Compression
Large language models (LLMs) excel at complex reasoning when they include intermediate steps, known as "chains of thought" (CoTs). However, these rationales are often overly verbose, even for simple problems, leading to wasted context, increased latency, and higher energy consumption. We observe that verbose, English-heavy CoTs and concise, math-centric CoTs occupy distinct regions in the model's residual-stream activation space. By extracting and injecting a "steering vector" to transition between these modes, we can reliably shift generation toward more concise reasoning, effectively compressing CoTs without retraining. We formalize this approach as Activation-Steered Compression (ASC), an inference-time technique that shortens reasoning traces by directly modifying hidden representations. In addition, we provide a theoretical analysis of the impact of ASC on the output distribution, derived from a closed-form KL-divergence-bounded constraint to regulate steering strength. Using only 100 paired verbose and concise examples, ASC achieves up to 67.43% reduction in CoT length on MATH500 and GSM8K datasets, while maintaining accuracy across 7B, 8B, and 32B parameter models. As a training-free method, ASC introduces negligible runtime overhead and, on MATH500, delivers an average 2.73x speedup in end-to-end reasoning wall-clock time on an 8B model. This makes ASC a practical and efficient tool for streamlining the deployment of reasoning-capable LLMs in latency- or cost-sensitive settings. The code is available at: https://github.com/ArminAzizi98/ASC
☆ CueLearner: Bootstrapping and local policy adaptation from relative feedback IROS 2025
Human guidance has emerged as a powerful tool for enhancing reinforcement learning (RL). However, conventional forms of guidance such as demonstrations or binary scalar feedback can be challenging to collect or have low information content, motivating the exploration of other forms of human input. Among these, relative feedback (i.e., feedback on how to improve an action, such as "more to the left") offers a good balance between usability and information richness. Previous research has shown that relative feedback can be used to enhance policy search methods. However, these efforts have been limited to specific policy classes and use feedback inefficiently. In this work, we introduce a novel method to learn from relative feedback and combine it with off-policy reinforcement learning. Through evaluations on two sparse-reward tasks, we demonstrate our method can be used to improve the sample efficiency of reinforcement learning by guiding its exploration process. Additionally, we show it can adapt a policy to changes in the environment or the user's preferences. Finally, we demonstrate real-world applicability by employing our approach to learn a navigation policy in a sparse reward setting.
comment: Accepted to IROS 2025
☆ Advocate for Complete Benchmarks for Formal Reasoning with Formal/Informal Statements and Formal/Informal Proofs
This position paper provides a critical but constructive discussion of current practices in benchmarking and evaluative practices in the field of formal reasoning and automated theorem proving. We take the position that open code, open data, and benchmarks that are complete and error-free will accelerate progress in this field. We identify practices that create barriers to contributing to this field and suggest ways to remove them. We also discuss some of the practices that might produce misleading evaluative information. We aim to create discussions that bring together people from various groups contributing to automated theorem proving, autoformalization, and informal reasoning.
☆ Optimal Model Selection for Conformalized Robust Optimization
In decision-making under uncertainty, Contextual Robust Optimization (CRO) provides reliability by minimizing the worst-case decision loss over a prediction set, hedging against label variability. While recent advances use conformal prediction to construct prediction sets for machine learning models, the downstream decisions critically depend on model selection. This paper introduces novel model selection frameworks for CRO that unify robustness control with decision risk minimization. We first propose Conformalized Robust Optimization with Model Selection (CROMS), which automatically selects models to approximately minimize the average decision risk in CRO solutions. We develop two algorithms: E-CROMS, which is computationally efficient, and F-CROMS, which enjoys a marginal robustness guarantee in finite samples. Further, we introduce Conformalized Robust Optimization with Individualized Model Selection (CROiMS), which performs individualized model selection by minimizing the conditional decision risk given the covariate of test data. This framework advances conformal prediction methodology by enabling covariate-aware model selection. Theoretically, CROiMS achieves asymptotic conditional robustness and decision efficiency under mild assumptions. Numerical results demonstrate significant improvements in decision efficiency and robustness across diverse synthetic and real-world applications, outperforming baseline approaches.
☆ Mutual Information Optimal Control of Discrete-Time Linear Systems
In this paper, we formulate a mutual information optimal control problem (MIOCP) for discrete-time linear systems. This problem can be regarded as an extension of a maximum entropy optimal control problem (MEOCP). Differently from the MEOCP where the prior is fixed to the uniform distribution, the MIOCP optimizes the policy and prior simultaneously. As analytical results, under the policy and prior classes consisting of Gaussian distributions, we derive the optimal policy and prior of the MIOCP with the prior and policy fixed, respectively. Using the results, we propose an alternating minimization algorithm for the MIOCP. Through numerical experiments, we discuss how our proposed algorithm works.
☆ Geometric-Guided Few-Shot Dental Landmark Detection with Human-Centric Foundation Model MICCAI 2025
Accurate detection of anatomic landmarks is essential for assessing alveolar bone and root conditions, thereby optimizing clinical outcomes in orthodontics, periodontics, and implant dentistry. Manual annotation of landmarks on cone-beam computed tomography (CBCT) by dentists is time-consuming, labor-intensive, and subject to inter-observer variability. Deep learning-based automated methods present a promising approach to streamline this process efficiently. However, the scarcity of training data and the high cost of expert annotations hinder the adoption of conventional deep learning techniques. To overcome these challenges, we introduce GeoSapiens, a novel few-shot learning framework designed for robust dental landmark detection using limited annotated CBCT of anterior teeth. Our GeoSapiens framework comprises two key components: (1) a robust baseline adapted from Sapiens, a foundational model that has achieved state-of-the-art performance in human-centric vision tasks, and (2) a novel geometric loss function that improves the model's capacity to capture critical geometric relationships among anatomical structures. Experiments conducted on our collected dataset of anterior teeth landmarks revealed that GeoSapiens surpassed existing landmark detection methods, outperforming the leading approach by an 8.18% higher success detection rate at a strict 0.5 mm threshold-a standard widely recognized in dental diagnostics. Code is available at: https://github.com/xmed-lab/GeoSapiens.
comment: MICCAI 2025
☆ Spooky Action at a Distance: Normalization Layers Enable Side-Channel Spatial Communication
This work shows that normalization layers can facilitate a surprising degree of communication across the spatial dimensions of an input tensor. We study a toy localization task with a convolutional architecture and show that normalization layers enable an iterative message passing procedure, allowing information aggregation from well outside the local receptive field. Our results suggest that normalization layers should be employed with caution in applications such as diffusion-based trajectory generation, where maintaining a spatially limited receptive field is crucial.
☆ UrbanMind: Towards Urban General Intelligence via Tool-Enhanced Retrieval-Augmented Generation and Multilevel Optimization
Urban general intelligence (UGI) refers to the capacity of AI systems to autonomously perceive, reason, and act within dynamic and complex urban environments. In this paper, we introduce UrbanMind, a tool-enhanced retrieval-augmented generation (RAG) framework designed to facilitate UGI. Central to UrbanMind is a novel architecture based on Continual Retrieval-Augmented MoE-based LLM (C-RAG-LLM), which dynamically incorporates domain-specific knowledge and evolving urban data to support long-term adaptability. The architecture of C-RAG-LLM aligns naturally with a multilevel optimization framework, where different layers are treated as interdependent sub-problems. Each layer has distinct objectives and can be optimized either independently or jointly through a hierarchical learning process. The framework is highly flexible, supporting both end-to-end training and partial layer-wise optimization based on resource or deployment constraints. To remain adaptive under data drift, it is further integrated with an incremental corpus updating mechanism. Evaluations on real-world urban tasks of a variety of complexity verify the effectiveness of the proposed framework. This work presents a promising step toward the realization of general-purpose LLM agents in future urban environments.
☆ Performance Evaluation of General Purpose Large Language Models for Basic Linear Algebra Subprograms Code Generation
Generative AI technology based on Large Language Models (LLM) has been developed and applied to assist or automatically generate program codes. In this paper, we evaluate the capability of existing general LLMs for Basic Linear Algebra Subprograms (BLAS) code generation for CPUs. We use two LLMs provided by OpenAI: GPT-4.1, a Generative Pre-trained Transformer (GPT) model, and o4-mini, one of the o-series of Reasoning models. Both have been released in April 2025. For the routines from level-1 to 3 BLAS, we tried to generate (1) C code without optimization from routine name only, (2) C code with basic performance optimizations (thread parallelization, SIMD vectorization, and cache blocking) from routine name only, and (3) C code with basic performance optimizations based on Fortran reference code. As a result, we found that correct code can be generated in many cases even when only routine name are given. We also confirmed that thread parallelization with OpenMP, SIMD vectorization, and cache blocking can be implemented to some extent, and that the code is faster than the reference code.
comment: 8 pages, 6 tables
☆ Interpretable Reward Modeling with Active Concept Bottlenecks
We introduce Concept Bottleneck Reward Models (CB-RM), a reward modeling framework that enables interpretable preference learning through selective concept annotation. Unlike standard RLHF methods that rely on opaque reward functions, CB-RM decomposes reward prediction into human-interpretable concepts. To make this framework efficient in low-supervision settings, we formalize an active learning strategy that dynamically acquires the most informative concept labels. We propose an acquisition function based on Expected Information Gain and show that it significantly accelerates concept learning without compromising preference accuracy. Evaluated on the UltraFeedback dataset, our method outperforms baselines in interpretability and sample efficiency, marking a step towards more transparent, auditable, and human-aligned reward models.
☆ Bridging KAN and MLP: MJKAN, a Hybrid Architecture with Both Efficiency and Expressiveness
Kolmogorov-Arnold Networks (KANs) have garnered attention for replacing fixed activation functions with learnable univariate functions, but they exhibit practical limitations, including high computational costs and performance deficits in general classification tasks. In this paper, we propose the Modulation Joint KAN (MJKAN), a novel neural network layer designed to overcome these challenges. MJKAN integrates a FiLM (Feature-wise Linear Modulation)-like mechanism with Radial Basis Function (RBF) activations, creating a hybrid architecture that combines the non-linear expressive power of KANs with the efficiency of Multilayer Perceptrons (MLPs). We empirically validated MJKAN's performance across a diverse set of benchmarks, including function regression, image classification (MNIST, CIFAR-10/100), and natural language processing (AG News, SMS Spam). The results demonstrate that MJKAN achieves superior approximation capabilities in function regression tasks, significantly outperforming MLPs, with performance improving as the number of basis functions increases. Conversely, in image and text classification, its performance was competitive with MLPs but revealed a critical dependency on the number of basis functions. We found that a smaller basis size was crucial for better generalization, highlighting that the model's capacity must be carefully tuned to the complexity of the data to prevent overfitting. In conclusion, MJKAN offers a flexible architecture that inherits the theoretical advantages of KANs while improving computational efficiency and practical viability.
☆ Recovering Plasticity of Neural Networks via Soft Weight Rescaling
Recent studies have shown that as training progresses, neural networks gradually lose their capacity to learn new information, a phenomenon known as plasticity loss. An unbounded weight growth is one of the main causes of plasticity loss. Furthermore, it harms generalization capability and disrupts optimization dynamics. Re-initializing the network can be a solution, but it results in the loss of learned information, leading to performance drops. In this paper, we propose Soft Weight Rescaling (SWR), a novel approach that prevents unbounded weight growth without losing information. SWR recovers the plasticity of the network by simply scaling down the weight at each step of the learning process. We theoretically prove that SWR bounds weight magnitude and balances weight magnitude between layers. Our experiment shows that SWR improves performance on warm-start learning, continual learning, and single-task learning setups on standard image classification benchmarks.
☆ Operator-based machine learning framework for generalizable prediction of unsteady treatment dynamics in stormwater infrastructure
Stormwater infrastructures are decentralized urban water-management systems that face highly unsteady hydraulic and pollutant loadings from episodic rainfall-runoff events. Accurately evaluating their in-situ treatment performance is essential for cost-effective design and planning. Traditional lumped dynamic models (e.g., continuously stirred tank reactor, CSTR) are computationally efficient but oversimplify transport and reaction processes, limiting predictive accuracy and insight. Computational fluid dynamics (CFD) resolves detailed turbulent transport and pollutant fate physics but incurs prohibitive computational cost for unsteady and long-term simulations. To address these limitations, this study develops a composite operator-based neural network (CPNN) framework that leverages state-of-the-art operator learning to predict the spatial and temporal dynamics of hydraulics and particulate matter (PM) in stormwater treatment. The framework is demonstrated on a hydrodynamic separator (HS), a common urban treatment device. Results indicate that the CPNN achieves R2 > 0.8 for hydraulic predictions in 95.2% of test cases; for PM concentration predictions, R2 > 0.8 in 72.6% of cases and 0.4 < R2 < 0.8 in 22.6%. The analysis identifies challenges in capturing dynamics under extreme low-flow conditions, owing to their lower contribution to the training loss. Exploiting the automatic-differentiation capability of the CPNN, sensitivity analyses quantify the influence of storm event loading on PM transport. Finally, the potential of the CPNN framework for continuous, long-term evaluation of stormwater infrastructure performance is discussed, marking a step toward robust, climate-aware planning and implementation.
comment: 9 figures
☆ Identify, Isolate, and Purge: Mitigating Hallucinations in LVLMs via Self-Evolving Distillation
Large Vision-Language Models (LVLMs) have demonstrated remarkable advancements in numerous areas such as multimedia. However, hallucination issues significantly limit their credibility and application potential. Existing mitigation methods typically rely on external tools or the comparison of multi-round inference, which significantly increase inference time. In this paper, we propose \textbf{SE}lf-\textbf{E}volving \textbf{D}istillation (\textbf{SEED}), which identifies hallucinations within the inner knowledge of LVLMs, isolates and purges them, and then distills the purified knowledge back into the model, enabling self-evolution. Furthermore, we identified that traditional distillation methods are prone to inducing void spaces in the output space of LVLMs. To address this issue, we propose a Mode-Seeking Evolving approach, which performs distillation to capture the dominant modes of the purified knowledge distribution, thereby avoiding the chaotic results that could emerge from void spaces. Moreover, we introduce a Hallucination Elimination Adapter, which corrects the dark knowledge of the original model by learning purified knowledge. Extensive experiments on multiple benchmarks validate the superiority of our SEED, demonstrating substantial improvements in mitigating hallucinations for representative LVLM models such as LLaVA-1.5 and InternVL2. Remarkably, the F1 score of LLaVA-1.5 on the hallucination evaluation metric POPE-Random improved from 81.3 to 88.3.
☆ DANCE: Resource-Efficient Neural Architecture Search with Data-Aware and Continuous Adaptation IJCAI 2025
Neural Architecture Search (NAS) has emerged as a powerful approach for automating neural network design. However, existing NAS methods face critical limitations in real-world deployments: architectures lack adaptability across scenarios, each deployment context requires costly separate searches, and performance consistency across diverse platforms remains challenging. We propose DANCE (Dynamic Architectures with Neural Continuous Evolution), which reformulates architecture search as a continuous evolution problem through learning distributions over architectural components. DANCE introduces three key innovations: a continuous architecture distribution enabling smooth adaptation, a unified architecture space with learned selection gates for efficient sampling, and a multi-stage training strategy for effective deployment optimization. Extensive experiments across five datasets demonstrate DANCE's effectiveness. Our method consistently outperforms state-of-the-art NAS approaches in terms of accuracy while significantly reducing search costs. Under varying computational constraints, DANCE maintains robust performance while smoothly adapting architectures to different hardware requirements. The code and appendix can be found at https://github.com/Applied-Machine-Learning-Lab/DANCE.
comment: Accepted by IJCAI 2025
☆ Hybrid Adversarial Spectral Loss Conditional Generative Adversarial Networks for Signal Data Augmentation in Ultra-precision Machining Surface Roughness Prediction
Accurate surface roughness prediction in ultra-precision machining (UPM) is critical for real-time quality control, but small datasets hinder model performance. We propose HAS-CGAN, a Hybrid Adversarial Spectral Loss CGAN, for effective UPM data augmentation. Among five CGAN variants tested, HAS-CGAN excels in 1D force signal generation, particularly for high-frequency signals, achieving >0.85 wavelet coherence through Fourier-domain optimization. By combining generated signals with machining parameters, prediction accuracy significantly improves. Experiments with traditional ML (SVR, RF, LSTM) and deep learning models (BPNN, 1DCNN, CNN-Transformer) demonstrate that augmenting training data with 520+ synthetic samples reduces prediction error from 31.4% (original 52 samples) to ~9%, effectively addressing data scarcity in UPM roughness prediction."
comment: 10 pages, 3 figures
☆ A Cycle-Consistency Constrained Framework for Dynamic Solution Space Reduction in Noninjective Regression
To address the challenges posed by the heavy reliance of multi-output models on preset probability distributions and embedded prior knowledge in non-injective regression tasks, this paper proposes a cycle consistency-based data-driven training framework. The method jointly optimizes a forward model {\Phi}: X to Y and a backward model {\Psi}: Y to X, where the cycle consistency loss is defined as L _cycleb equal L(Y reduce {\Phi}({\Psi}(Y))) (and vice versa). By minimizing this loss, the framework establishes a closed-loop mechanism integrating generation and validation phases, eliminating the need for manual rule design or prior distribution assumptions. Experiments on normalized synthetic and simulated datasets demonstrate that the proposed method achieves a cycle reconstruction error below 0.003, achieving an improvement of approximately 30% in evaluation metrics compared to baseline models without cycle consistency. Furthermore, the framework supports unsupervised learning and significantly reduces reliance on manual intervention, demonstrating potential advantages in non-injective regression tasks.
☆ VaxPulse: Monitoring of Online Public Concerns to Enhance Post-licensure Vaccine Surveillance
The recent vaccine-related infodemic has amplified public concerns, highlighting the need for proactive misinformation management. We describe how we enhanced the reporting surveillance system of Victoria's vaccine safety service, SAEFVIC, through the incorporation of new information sources for public sentiment analysis, topics of discussion, and hesitancies about vaccinations online. Using VaxPulse, a multi-step framework, we integrate adverse events following immunisation (AEFI) with sentiment analysis, demonstrating the importance of contextualising public concerns. Additionally, we emphasise the need to address non-English languages to stratify concerns across ethno-lingual communities, providing valuable insights for vaccine uptake strategies and combating mis/disinformation. The framework is applied to real-world examples and a case study on women's vaccine hesitancy, showcasing its benefits and adaptability by identifying public opinion from online media.
♻ ☆ Human2LocoMan: Learning Versatile Quadrupedal Manipulation with Human Pretraining
Quadrupedal robots have demonstrated impressive locomotion capabilities in complex environments, but equipping them with autonomous versatile manipulation skills in a scalable way remains a significant challenge. In this work, we introduce a cross-embodiment imitation learning system for quadrupedal manipulation, leveraging data collected from both humans and LocoMan, a quadruped equipped with multiple manipulation modes. Specifically, we develop a teleoperation and data collection pipeline, which unifies and modularizes the observation and action spaces of the human and the robot. To effectively leverage the collected data, we propose an efficient modularized architecture that supports co-training and pretraining on structured modality-aligned data across different embodiments. Additionally, we construct the first manipulation dataset for the LocoMan robot, covering various household tasks in both unimanual and bimanual modes, supplemented by a corresponding human dataset. We validate our system on six real-world manipulation tasks, where it achieves an average success rate improvement of 41.9% overall and 79.7% under out-of-distribution (OOD) settings compared to the baseline. Pretraining with human data contributes a 38.6% success rate improvement overall and 82.7% under OOD settings, enabling consistently better performance with only half the amount of robot data. Our code, hardware, and data are open-sourced at: https://human2bots.github.io.
♻ ☆ SEE-2-SOUND: Zero-Shot Spatial Environment-to-Spatial Sound
Generating combined visual and auditory sensory experiences is critical for the consumption of immersive content. Recent advances in neural generative models have enabled the creation of high-resolution content across multiple modalities such as images, text, speech, and videos. Despite these successes, there remains a significant gap in the generation of high-quality spatial audio that complements generated visual content. Furthermore, current audio generation models excel in either generating natural audio or speech or music but fall short in integrating spatial audio cues necessary for immersive experiences. In this work, we introduce SEE-2-SOUND, a zero-shot approach that decomposes the task into (1) identifying visual regions of interest; (2) locating these elements in 3D space; (3) generating mono-audio for each; and (4) integrating them into spatial audio. Using our framework, we demonstrate compelling results for generating spatial audio for high-quality videos, images, and dynamic images from the internet, as well as media generated by learned approaches.
comment: Project Page: https://see2sound.github.io/
♻ ☆ OminiControl: Minimal and Universal Control for Diffusion Transformer ICCV 2025
We present OminiControl, a novel approach that rethinks how image conditions are integrated into Diffusion Transformer (DiT) architectures. Current image conditioning methods either introduce substantial parameter overhead or handle only specific control tasks effectively, limiting their practical versatility. OminiControl addresses these limitations through three key innovations: (1) a minimal architectural design that leverages the DiT's own VAE encoder and transformer blocks, requiring just 0.1% additional parameters; (2) a unified sequence processing strategy that combines condition tokens with image tokens for flexible token interactions; and (3) a dynamic position encoding mechanism that adapts to both spatially-aligned and non-aligned control tasks. Our extensive experiments show that this streamlined approach not only matches but surpasses the performance of specialized methods across multiple conditioning tasks. To overcome data limitations in subject-driven generation, we also introduce Subjects200K, a large-scale dataset of identity-consistent image pairs synthesized using DiT models themselves. This work demonstrates that effective image control can be achieved without architectural complexity, opening new possibilities for efficient and versatile image generation systems.
comment: Accepted to ICCV 2025
♻ ☆ Multilevel Picard approximations and deep neural networks with ReLU, leaky ReLU, and softplus activation overcome the curse of dimensionality when approximating semilinear parabolic partial differential equations in $L^p$-sense
We prove that multilevel Picard approximations and deep neural networks with ReLU, leaky ReLU, and softplus activation are capable of approximating solutions of semilinear Kolmogorov PDEs in $L^\mathfrak{p}$-sense, $\mathfrak{p}\in [2,\infty)$, in the case of gradient-independent, Lipschitz-continuous nonlinearities, while the computational effort of the multilevel Picard approximations and the required number of parameters in the neural networks grow at most polynomially in both dimension $d\in \mathbb{N}$ and reciprocal of the prescribed accuracy $\epsilon$.
♻ ☆ ST-LoRA: Low-rank Adaptation for Spatio-Temporal Forecasting ECML-PKDD 2025
Spatio-temporal forecasting is essential for understanding future dynamics within real-world systems by leveraging historical data from multiple locations. Existing methods often prioritize the development of intricate neural networks to capture the complex dependencies of the data. These methods neglect node-level heterogeneity and face over-parameterization when attempting to model node-specific characteristics. In this paper, we present a novel low-rank adaptation framework for existing spatio-temporal prediction models, termed \model, which alleviates the aforementioned problems through node-level adjustments. Specifically, we introduce the node-adaptive low-rank layer and node-specific predictor, capturing the complex functional characteristics of nodes while maintaining computational efficiency. Extensive experiments on multiple real-world datasets demonstrate that our method consistently achieves superior performance across various forecasting models with minimal computational overhead, improving performance by 7% with only 1% additional parameter cost. The source code is available at https://github.com/RWLinno/ST-LoRA.
comment: Published at ECML-PKDD 2025
♻ ☆ MMD-OPT : Maximum Mean Discrepancy Based Sample Efficient Collision Risk Minimization for Autonomous Driving
We propose MMD-OPT: a sample-efficient approach for minimizing the risk of collision under arbitrary prediction distribution of the dynamic obstacles. MMD-OPT is based on embedding distribution in Reproducing Kernel Hilbert Space (RKHS) and the associated Maximum Mean Discrepancy (MMD). We show how these two concepts can be used to define a sample efficient surrogate for collision risk estimate. We perform extensive simulations to validate the effectiveness of MMD-OPT on both synthetic and real-world datasets. Importantly, we show that trajectory optimization with our MMD-based collision risk surrogate leads to safer trajectories at low sample regimes than popular alternatives based on Conditional Value at Risk (CVaR).
♻ ☆ Towards Explainable Fusion and Balanced Learning in Multimodal Sentiment Analysis
Multimodal Sentiment Analysis (MSA) faces two critical challenges: the lack of interpretability in the decision logic of multimodal fusion and modality imbalance caused by disparities in inter-modal information density. To address these issues, we propose KAN-MCP, a novel framework that integrates the interpretability of Kolmogorov-Arnold Networks (KAN) with the robustness of the Multimodal Clean Pareto (MCPareto) framework. First, KAN leverages its univariate function decomposition to achieve transparent analysis of cross-modal interactions. This structural design allows direct inspection of feature transformations without relying on external interpretation tools, thereby ensuring both high expressiveness and interpretability. Second, the proposed MCPareto enhances robustness by addressing modality imbalance and noise interference. Specifically, we introduce the Dimensionality Reduction and Denoising Modal Information Bottleneck (DRD-MIB) method, which jointly denoises and reduces feature dimensionality. This approach provides KAN with discriminative low-dimensional inputs to reduce the modeling complexity of KAN while preserving critical sentiment-related information. Furthermore, MCPareto dynamically balances gradient contributions across modalities using the purified features output by DRD-MIB, ensuring lossless transmission of auxiliary signals and effectively alleviating modality imbalance. This synergy of interpretability and robustness not only achieves superior performance on benchmark datasets such as CMU-MOSI, CMU-MOSEI, and CH-SIMS v2 but also offers an intuitive visualization interface through KAN's interpretable architecture. Our code is released on https://github.com/LuoMSen/KAN-MCP.
♻ ☆ Physics Encoded Blocks in Residual Neural Network Architectures for Digital Twin Models
Physics Informed Machine Learning has emerged as a popular approach for modeling and simulation in digital twins, enabling the generation of accurate models of processes and behaviors in real-world systems. However, existing methods either rely on simple loss regularizations that offer limited physics integration or employ highly specialized architectures that are difficult to generalize across diverse physical systems. This paper presents a generic approach based on a novel physics-encoded residual neural network (PERNN) architecture that seamlessly combines data-driven and physics-based analytical models to overcome these limitations. Our method integrates differentiable physics blocks-implementing mathematical operators from physics-based models with feed-forward learning blocks, while intermediate residual blocks ensure stable gradient flow during training. Consequently, the model naturally adheres to the underlying physical principles even when prior physics knowledge is incomplete, thereby improving generalizability with low data requirements and reduced model complexity. We investigate our approach in two application domains. The first is a steering model for autonomous vehicles in a simulation environment, and the second is a digital twin for climate modeling using an ordinary differential equation (ODE)-based model of Net Ecosystem Exchange (NEE) to enable gap-filling in flux tower data. In both cases, our method outperforms conventional neural network approaches as well as state-of-the-art Physics Informed Machine Learning methods.
comment: Accepted at Machine Learning (Springer). Under Publishing Process
♻ ☆ Can Local Representation Alignment RNNs Solve Temporal Tasks? CCS
Recurrent Neural Networks (RNNs) are commonly used for real-time processing, streaming data, and cases where the amount of training samples is limited. Backpropagation Through Time (BPTT) is the predominant algorithm for training RNNs; however, it is frequently criticized for being prone to exploding and vanishing gradients and being biologically implausible. In this paper, we present and evaluate a target propagation-based method for RNNs, which uses local updates and seeks to reduce the said instabilities. Having stable RNN models increases their practical use in a wide range of fields such as natural language processing, time-series forecasting, anomaly detection, control systems, and robotics. The proposed solution uses local representation alignment (LRA). We thoroughly analyze the performance of this method, experiment with normalization and different local error functions, and invalidate certain assumptions about the behavior of this type of learning. Namely, we demonstrate that despite the decomposition of the network into sub-graphs, the model still suffers from vanishing gradients. We also show that gradient clipping as proposed in LRA has little to no effect on network performance. This results in an LRA RNN model that is very difficult to train due to vanishing gradients. We address this by introducing gradient regularization in the direction of the update and demonstrate that this modification promotes gradient flow and meaningfully impacts convergence. We compare and discuss the performance of the algorithm, and we show that the regularized LRA RNN considerably outperforms the unregularized version on three landmark tasks: temporal order, 3-bit temporal order, and random permutation.
comment: This is the version of the paper presented at ICCSM 2025 (July 2025 in Rome, Italy). No major changes in the content, but it uses a different LaTeX template and formatting
♻ ☆ Language Models can Self-Improve at State-Value Estimation for Better Search
Collecting ground-truth rewards or human demonstrations for multi-step reasoning tasks is often prohibitively expensive and time consuming, especially in interactive domains like web tasks. To address this bottleneck, we present self-taught lookahead (STL), a self-supervised method that leverages state-transition dynamics to improve a value model capable of effectively guiding language model-controlled search without any labeled data. We find that moderately sized (8 billion parameters) open-weight value models improved with STL can match the performance of using a gpt-4o value model. Furthermore, we find that specialized value models learned with STL can be deployed with computationally lightweight search algorithms, achieving performance that matches that of more expensive tree search methods, while reducing costs by an order of magnitude.
♻ ☆ Role of scrambling and noise in temporal information processing with quantum systems
Scrambling quantum systems have attracted attention as effective substrates for temporal information processing. Here we consider a quantum reservoir processing framework that captures a broad range of physical computing models with quantum systems. We examine the scalability and memory retention of the model with scrambling reservoirs modelled by high-order unitary designs in both noiseless and noisy settings. In the former regime, we show that measurement readouts become exponentially concentrated with increasing reservoir size, yet strikingly do not worsen with the reservoir iterations. Thus, while repeatedly reusing a small scrambling reservoir with quantum data might be viable, scaling up the problem size deteriorates generalization unless one can afford an exponential shot overhead. In contrast, the memory of early inputs and initial states decays exponentially in both reservoir size and reservoir iterations. In the noisy regime, we also prove that memory decays exponentially in time for local noisy channels. These results required us to introduce new proof techniques for bounding concentration in temporal quantum models.
comment: 11+41 pages, 6+6 figures, 1 table
♻ ☆ Scalable Multi-Task Learning for Particle Collision Event Reconstruction with Heterogeneous Graph Neural Networks
The growing luminosity frontier at the Large Hadron Collider is challenging the reconstruction and analysis of particle collision events. Increased particle multiplicities are straining latency and storage requirements at the data acquisition stage, while new complications are emerging, including higher background levels and more frequent particle vertex misassociations. This in turn necessitates the development of more holistic and scalable reconstruction methods that take advantage of recent advances in machine learning. We propose a novel Heterogeneous Graph Neural Network (HGNN) architecture featuring unique representations for diverse particle collision relationships and integrated graph pruning layers for scalability. Trained with a multi-task paradigm in an environment mimicking the LHCb experiment, this HGNN significantly improves beauty hadron reconstruction performance. Notably, it concurrently performs particle vertex association and graph pruning within a single framework. We quantify reconstruction and pruning performance, demonstrate enhanced inference time scaling with event complexity, and mitigate potential performance loss using a weighted message passing scheme.
comment: 21 pages, 10 figures, 4 tables (planned submission to Machine Learning Science and Technology)
♻ ☆ Robust Molecular Property Prediction via Densifying Scarce Labeled Data
A widely recognized limitation of molecular prediction models is their reliance on structures observed in the training data, resulting in poor generalization to out-of-distribution compounds. Yet in drug discovery, the compounds most critical for advancing research often lie beyond the training set, making the bias toward the training data particularly problematic. This mismatch introduces substantial covariate shift, under which standard deep learning models produce unstable and inaccurate predictions. Furthermore, the scarcity of labeled data, stemming from the onerous and costly nature of experimental validation, further exacerbates the difficulty of achieving reliable generalization. To address these limitations, we propose a novel meta-learning-based approach that leverages unlabeled data to interpolate between in-distribution (ID) and out-of-distribution (OOD) data, enabling the model to meta-learn how to generalize beyond the training distribution. We demonstrate significant performance gains on challenging real-world datasets with substantial covariate shift, supported by t-SNE visualizations highlighting our interpolation method.
♻ ☆ Distributional Diffusion Models with Scoring Rules
Diffusion models generate high-quality synthetic data. They operate by defining a continuous-time forward process which gradually adds Gaussian noise to data until fully corrupted. The corresponding reverse process progressively "denoises" a Gaussian sample into a sample from the data distribution. However, generating high-quality outputs requires many discretization steps to obtain a faithful approximation of the reverse process. This is expensive and has motivated the development of many acceleration methods. We propose to accomplish sample generation by learning the posterior {\em distribution} of clean data samples given their noisy versions, instead of only the mean of this distribution. This allows us to sample from the probability transitions of the reverse process on a coarse time scale, significantly accelerating inference with minimal degradation of the quality of the output. This is accomplished by replacing the standard regression loss used to estimate conditional means with a scoring rule. We validate our method on image and robot trajectory generation, where we consistently outperform standard diffusion models at few discretization steps.
♻ ☆ Inductive randomness predictors: beyond conformal
This paper introduces inductive randomness predictors, which form a proper superset of inductive conformal predictors but have the same principal property of validity under the assumption of randomness (i.e., of IID data). It turns out that every non-trivial inductive conformal predictor is strictly dominated by an inductive randomness predictor, although the improvement is not great, at most a factor of $\mathrm{e}\approx2.72$ in the case of e-prediction. The dominating inductive randomness predictors are more complicated and more difficult to compute; besides, an improvement by a factor of $\mathrm{e}$ is rare. Therefore, this paper does not suggest replacing inductive conformal predictors by inductive randomness predictors and only calls for a more detailed study of the latter.
comment: 30 pages, 5 figures, 6 tables; this version is greatly expanded
♻ ☆ Shapley-Based Data Valuation with Mutual Information: A Key to Modified K-Nearest Neighbors
The K-Nearest Neighbors (KNN) algorithm is widely used for classification and regression; however, it suffers from limitations, including the equal treatment of all samples. We propose Information-Modified KNN (IM-KNN), a novel approach that leverages Mutual Information ($\mathcal{I}$) and Shapley values to assign weighted values to neighbors, thereby bridging the gap in treating all samples with the same value and weight. On average, IM-KNN improves the accuracy, precision, and recall of traditional KNN by 16.80\%, 17.08\%, and 16.98\%, respectively, across 12 benchmark datasets. Experiments on four large-scale datasets further highlight IM-KNN's robustness to noise, imbalanced data, and skewed distributions.
comment: This paper has been accepted for publication at the IEEE Machine Learning and Signal Processing 2025 conference
♻ ☆ A Concise Lyapunov Analysis of Nesterov's Accelerated Gradient Method
Convergence analysis of Nesterov's accelerated gradient method has attracted significant attention over the past decades. While extensive work has explored its theoretical properties and elucidated the intuition behind its acceleration, a simple and direct proof of its convergence rates is still lacking. We provide a concise Lyapunov analysis of the convergence rates of Nesterov's accelerated gradient method for both general convex and strongly convex functions.
comment: This update adds a few references to related work
♻ ☆ A Comparative Study of Machine Learning Algorithms for Stock Price Prediction Using Insider Trading Data
The research paper empirically investigates several machine learning algorithms to forecast stock prices depending on insider trading information. Insider trading offers special insights into market sentiment, pointing to upcoming changes in stock prices. This study examines the effectiveness of algorithms like decision trees, random forests, support vector machines (SVM) with different kernels, and K-Means Clustering using a dataset of Tesla stock transactions. Examining past data from April 2020 to March 2023, this study focuses on how well these algorithms identify trends and forecast stock price fluctuations. The paper uses Recursive Feature Elimination (RFE) and feature importance analysis to optimize the feature set and, hence, increase prediction accuracy. While it requires substantially greater processing time than other models, SVM with the Radial Basis Function (RBF) kernel displays the best accuracy. This paper highlights the trade-offs between accuracy and efficiency in machine learning models and proposes the possibility of pooling multiple data sources to raise prediction performance. The results of this paper aim to help financial analysts and investors in choosing strong algorithms to optimize investment strategies.
comment: 5 pages, accepted to publish in the IEEE ICMI 2025
♻ ☆ Fast online node labeling with graph subsampling
Large data applications rely on storing data in massive, sparse graphs with millions to trillions of nodes. Graph-based methods, such as node prediction, aim for computational efficiency regardless of graph size. Techniques like localized approximate personalized page rank (APPR) solve sparse linear systems with complexity independent of graph size, but is in terms of the maximum node degree, which can be much larger in practice than the average node degree for real-world large graphs. In this paper, we consider an \emph{online subsampled APPR method}, where messages are intentionally dropped at random. We use tools from graph sparsifiers and matrix linear algebra to give approximation bounds on the graph's spectral properties ($O(1/\epsilon^2)$ edges), and node classification performance (added $O(n\epsilon)$ overhead).
♻ ☆ Mirror Online Conformal Prediction with Intermittent Feedback
Online conformal prediction enables the runtime calibration of a pre-trained artificial intelligence model using feedback on its performance. Calibration is achieved through set predictions that are updated via online rules so as to ensure long-term coverage guarantees. While recent research has demonstrated the benefits of incorporating prior knowledge into the calibration process, this has come at the cost of replacing coverage guarantees with less tangible regret guarantees based on the quantile loss. This work introduces intermittent mirror online conformal prediction (IM-OCP), a novel runtime calibration framework that integrates prior knowledge, operates under potentially intermittent feedback, and features minimal memory complexity. IM-OCP guarantees long-term coverage and sub-linear regret, both of which hold deterministically for any given data sequence and in expectation with respect to the intermittent feedback.
♻ ☆ A dimensionality reduction technique based on the Gromov-Wasserstein distance
Analyzing relationships between objects is a pivotal problem within data science. In this context, Dimensionality reduction (DR) techniques are employed to generate smaller and more manageable data representations. This paper proposes a new method for dimensionality reduction, based on optimal transportation theory and the Gromov-Wasserstein distance. We offer a new probabilistic view of the classical Multidimensional Scaling (MDS) algorithm and the nonlinear dimensionality reduction algorithm, Isomap (Isometric Mapping or Isometric Feature Mapping) that extends the classical MDS, in which we use the Gromov-Wasserstein distance between the probability measure of high-dimensional data, and its low-dimensional representation. Through gradient descent, our method embeds high-dimensional data into a lower-dimensional space, providing a robust and efficient solution for analyzing complex high-dimensional datasets.
comment: This is a supplementary material for the paper, published as a conference paper at the 7th International Conference on Geometric Information Science - GSI'25
♻ ☆ Computation-Aware Gaussian Processes: Model Selection And Linear-Time Inference NeurIPS 2024
Model selection in Gaussian processes scales prohibitively with the size of the training dataset, both in time and memory. While many approximations exist, all incur inevitable approximation error. Recent work accounts for this error in the form of computational uncertainty, which enables -- at the cost of quadratic complexity -- an explicit tradeoff between computation and precision. Here we extend this development to model selection, which requires significant enhancements to the existing approach, including linear-time scaling in the size of the dataset. We propose a novel training loss for hyperparameter optimization and demonstrate empirically that the resulting method can outperform SGPR, CGGP and SVGP, state-of-the-art methods for GP model selection, on medium to large-scale datasets. Our experiments show that model selection for computation-aware GPs trained on 1.8 million data points can be done within a few hours on a single GPU. As a result of this work, Gaussian processes can be trained on large-scale datasets without significantly compromising their ability to quantify uncertainty -- a fundamental prerequisite for optimal decision-making.
comment: Advances in Neural Information Processing Systems (NeurIPS 2024)
♻ ☆ Follow-the-Perturbed-Leader Approaches Best-of-Both-Worlds for the m-Set Semi-Bandit Problems
We consider a common case of the combinatorial semi-bandit problem, the $m$-set semi-bandit, where the learner exactly selects $m$ arms from the total $d$ arms. In the adversarial setting, the best regret bound, known to be $\mathcal{O}(\sqrt{nmd})$ for time horizon $n$, is achieved by the well-known Follow-the-Regularized-Leader (FTRL) policy. However, this requires to explicitly compute the arm-selection probabilities via optimizing problems at each time step and sample according to them. This problem can be avoided by the Follow-the-Perturbed-Leader (FTPL) policy, which simply pulls the $m$ arms that rank among the $m$ smallest (estimated) loss with random perturbation. In this paper, we show that FTPL with a Fr\'echet perturbation also enjoys the near optimal regret bound $\mathcal{O}(\sqrt{nm}(\sqrt{d\log(d)}+m^{5/6}))$ in the adversarial setting and approaches best-of-both-world regret bounds, i.e., achieves a logarithmic regret for the stochastic setting. Moreover, our lower bounds show that the extra factors are unavoidable with our approach; any improvement would require a fundamentally different and more challenging method.
♻ ☆ Graph-Assisted Stitching for Offline Hierarchical Reinforcement Learning ICML 2025
Existing offline hierarchical reinforcement learning methods rely on high-level policy learning to generate subgoal sequences. However, their efficiency degrades as task horizons increase, and they lack effective strategies for stitching useful state transitions across different trajectories. We propose Graph-Assisted Stitching (GAS), a novel framework that formulates subgoal selection as a graph search problem rather than learning an explicit high-level policy. By embedding states into a Temporal Distance Representation (TDR) space, GAS clusters semantically similar states from different trajectories into unified graph nodes, enabling efficient transition stitching. A shortest-path algorithm is then applied to select subgoal sequences within the graph, while a low-level policy learns to reach the subgoals. To improve graph quality, we introduce the Temporal Efficiency (TE) metric, which filters out noisy or inefficient transition states, significantly enhancing task performance. GAS outperforms prior offline HRL methods across locomotion, navigation, and manipulation tasks. Notably, in the most stitching-critical task, it achieves a score of 88.3, dramatically surpassing the previous state-of-the-art score of 1.0. Our source code is available at: https://github.com/qortmdgh4141/GAS.
comment: ICML 2025
♻ ☆ Why Do Open-Source LLMs Struggle with Data Analysis? A Systematic Empirical Study
Large Language Models (LLMs) hold promise in automating data analysis tasks, yet open-source models face significant limitations in these kinds of reasoning-intensive scenarios. In this work, we investigate strategies to enhance the data analysis capabilities of open-source LLMs. By curating a seed dataset of diverse, realistic scenarios, we evaluate models across three dimensions: data understanding, code generation, and strategic planning. Our analysis reveals three key findings: (1) Strategic planning quality serves as the primary determinant of model performance; (2) Interaction design and task complexity significantly influence reasoning capabilities; (3) Data quality demonstrates a greater impact than diversity in achieving optimal performance. We leverage these insights to develop a data synthesis methodology, demonstrating significant improvements in open-source LLMs' analytical reasoning capabilities.
comment: Work in progress
♻ ☆ A Novel Automatic Real-time Motion Tracking Method in MRI-guided Radiotherapy Using Enhanced Tracking-Learning-Detection Framework with Automatic Segmentation
Background and Purpose: Accurate motion tracking in MRI-guided Radiotherapy (MRIgRT) is essential for effective treatment delivery. This study aimed to enhance motion tracking precision in MRIgRT through an automatic real-time markerless tracking method using an enhanced Tracking-Learning-Detection (ETLD) framework with automatic segmentation. Materials and Methods: We developed a novel MRIgRT motion tracking and segmentation method by integrating the ETLD framework with an improved Chan-Vese model (ICV), named ETLD+ICV. The ETLD framework was upgraded for real-time cine MRI, including advanced image preprocessing, no-reference image quality assessment, an enhanced median-flow tracker, and a refined detector with dynamic search region adjustments. ICV was used for precise target volume coverage, refining the segmented region frame by frame using tracking results, with key parameters optimized. The method was tested on 3.5D MRI scans from 10 patients with liver metastases. Results: Evaluation of 106,000 frames across 77 treatment fractions showed sub-millimeter tracking errors of less than 0.8mm, with over 99% precision and 98% recall for all subjects in the Beam Eye View(BEV)/Beam Path View(BPV) orientation. The ETLD+ICV method achieved a dice global score of more than 82% for all subjects, demonstrating the method's extensibility and precise target volume coverage. Conclusion: This study successfully developed an automatic real-time markerless motion tracking method for MRIgRT that significantly outperforms current methods. The novel method not only delivers exceptional precision in tracking and segmentation but also shows enhanced adaptability to clinical demands, making it an indispensable asset in improving the efficacy of radiotherapy treatments.
♻ ☆ Relative Overfitting and Accept-Reject Framework
The scaling of Large Language Models (LLMs) currently faces significant challenges. Model assembly is widely considered a promising solution to break through these performance bottlenecks. However, current ensembling methods are primarily guided by the statistical expectation that combining multiple models over large samples will lead to performance gains. We propose an ensemble framework that transitions from such stochastic, sample-dependent methods to a regular, controllable approach based on fine-grained model segmentation. This regularity governs how models are segmented to ensure performance improvement, how the magnitude of this improvement varies with model selection, and what factors determine its theoretical maximum. To formalize this pattern, we introduce the concept of'relative overfitting,' which is derived from the performance discrepancies between constituent models and builds a bridge between ensemble outcomes and the inherent attributes of these models. We detail the patterns of this framework within the domain of NLP and briefly describe its extensibility to other fields, such as computer vision (CV) and AI for science. Our approach was validated using both custom-built and pre-trained mainstream models across diverse benchmarks, including language modeling, long-context tasks, and question-answering (QA). The results indicate that the ensemble rules we proposed are generally effective and that we provide a rigorous proof of these rules in certain experimental scenarios. The proposed framework offers a new perspective for understanding ensemble theory and provides a systematic approach to addressing the performance bottlenecks of LLMs.
♻ ☆ Random weights of DNNs and emergence of fixed points
This paper is concerned with a special class of deep neural networks (DNNs) where the input and the output vectors have the same dimension. Such DNNs are widely used in applications, e.g., autoencoders. The training of such networks can be characterized by their fixed points (FPs). We are concerned with the dependence of the FPs number and their stability on the distribution of randomly initialized DNNs' weight matrices. Specifically, we consider the i.i.d. random weights with heavy and light-tail distributions. Our objectives are twofold. First, the dependence of FPs number and stability of FPs on the type of the distribution tail. Second, the dependence of the number of FPs on the DNNs' architecture. We perform extensive simulations and show that for light tails (e.g., Gaussian), which are typically used for initialization, a single stable FP exists for broad types of architectures. In contrast, for heavy tail distributions (e.g., Cauchy), which typically appear in trained DNNs, a number of FPs emerge. We further observe that these FPs are stable attractors and their basins of attraction partition the domain of input vectors. Finally, we observe an intriguing non-monotone dependence of the number of fixed points $Q(L)$ on the DNNs' depth $L$. The above results were first obtained for untrained DNNs with two types of distributions at initialization and then verified by considering DNNs in which the heavy tail distributions arise in training.
comment: 16 pages, 5 figures
♻ ☆ Mask Approximation Net: A Novel Diffusion Model Approach for Remote Sensing Change Captioning
Remote sensing image change description represents an innovative multimodal task within the realm of remote sensing processing.This task not only facilitates the detection of alterations in surface conditions, but also provides comprehensive descriptions of these changes, thereby improving human interpretability and interactivity.Current deep learning methods typically adopt a three stage framework consisting of feature extraction, feature fusion, and change localization, followed by text generation. Most approaches focus heavily on designing complex network modules but lack solid theoretical guidance, relying instead on extensive empirical experimentation and iterative tuning of network components. This experience-driven design paradigm may lead to overfitting and design bottlenecks, thereby limiting the model's generalizability and adaptability.To address these limitations, this paper proposes a paradigm that shift towards data distribution learning using diffusion models, reinforced by frequency-domain noise filtering, to provide a theoretically motivated and practically effective solution to multimodal remote sensing change description.The proposed method primarily includes a simple multi-scale change detection module, whose output features are subsequently refined by a well-designed diffusion model.Furthermore, we introduce a frequency-guided complex filter module to boost the model performance by managing high-frequency noise throughout the diffusion process. We validate the effectiveness of our proposed method across several datasets for remote sensing change detection and description, showcasing its superior performance compared to existing techniques. The code will be available at \href{https://github.com/sundongwei}{MaskApproxNet}.
♻ ☆ Quantifying Robustness: A Benchmarking Framework for Deep Learning Forecasting in Cyber-Physical Systems
Cyber-Physical Systems (CPS) in domains such as manufacturing and energy distribution generate complex time series data crucial for Prognostics and Health Management (PHM). While Deep Learning (DL) methods have demonstrated strong forecasting capabilities, their adoption in industrial CPS remains limited due insufficient robustness. Existing robustness evaluations primarily focus on formal verification or adversarial perturbations, inadequately representing the complexities encountered in real-world CPS scenarios. To address this, we introduce a practical robustness definition grounded in distributional robustness, explicitly tailored to industrial CPS, and propose a systematic framework for robustness evaluation. Our framework simulates realistic disturbances, such as sensor drift, noise and irregular sampling, enabling thorough robustness analyses of forecasting models on real-world CPS datasets. The robustness definition provides a standardized score to quantify and compare model performance across diverse datasets, assisting in informed model selection and architecture design. Through extensive empirical studies evaluating prominent DL architectures (including recurrent, convolutional, attention-based, modular, and structured state-space models) we demonstrate the applicability and effectiveness of our approach. We publicly release our robustness benchmark to encourage further research and reproducibility.
comment: Accepted at the 30th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA)
♻ ☆ LaCoOT: Layer Collapse through Optimal Transport ICCV25
Although deep neural networks are well-known for their outstanding performance in tackling complex tasks, their hunger for computational resources remains a significant hurdle, posing energy-consumption issues and restricting their deployment on resource-constrained devices, preventing their widespread adoption. In this paper, we present an optimal transport-based method to reduce the depth of over-parametrized deep neural networks, alleviating their computational burden. More specifically, we propose a new regularization strategy based on the Max-Sliced Wasserstein distance to minimize the distance between the intermediate feature distributions in the neural network. We show that minimizing this distance enables the complete removal of intermediate layers in the network, achieving better performance/depth trade-off compared to existing techniques. We assess the effectiveness of our method on traditional image classification setups and extend it to generative image models. Our code is available at https://github.com/VGCQ/LaCoOT.
comment: ICCV25
♻ ☆ Gradient Purification: Defense Against Poisoning Attack in Decentralized Federated Learning
Decentralized federated learning (DFL) is inherently vulnerable to data poisoning attacks, as malicious clients can transmit manipulated gradients to neighboring clients. Existing defense methods either reject suspicious gradients per iteration or restart DFL aggregation after excluding all malicious clients. They all neglect the potential benefits that may exist within contributions from malicious clients. In this paper, we propose a novel gradient purification defense, termed GPD, to defend against data poisoning attacks in DFL. It aims to separately mitigate the harm in gradients and retain benefits embedded in model weights, thereby enhancing overall model accuracy. For each benign client in GPD, a recording variable is designed to track historically aggregated gradients from one of its neighbors. It allows benign clients to precisely detect malicious neighbors and mitigate all aggregated malicious gradients at once. Upon mitigation, benign clients optimize model weights using purified gradients. This optimization not only retains previously beneficial components from malicious clients but also exploits canonical contributions from benign clients. We analyze the convergence of GPD, as well as its ability to harvest high accuracy. Extensive experiments demonstrate that, GPD is capable of mitigating data poisoning attacks under both iid and non-iid data distributions. It also significantly outperforms state-of-the-art defense methods in terms of model accuracy.
comment: The article has been accepted by Frontiers of Computer Science (FCS) 2025
♻ ☆ Do LLMs Understand the Safety of Their Inputs? Training-Free Moderation via Latent Prototypes
With the rise of LLMs, ensuring model safety and alignment has become a critical concern. While modern instruction-finetuned LLMs incorporate alignment during training, they still frequently require moderation tools to prevent unsafe behavior. The most common approach to moderation are guard models that flag unsafe inputs. However, guards require costly training and are typically limited to fixed-size, pre-trained options, making them difficult to adapt to evolving risks and resource constraints. We hypothesize that instruction-finetuned LLMs already encode safety-relevant information internally and explore training-free safety assessment methods that work with off-the-shelf models. We show that simple prompting allows models to recognize harmful inputs they would otherwise mishandle. We also demonstrate that safe and unsafe prompts are distinctly separable in the models' latent space. Building on this, we introduce the Latent Prototype Moderator (LPM), a training-free moderation method that uses Mahalanobis distance in latent space to assess input safety. LPM is a lightweight, customizable add-on that generalizes across model families and sizes. Our method matches or exceeds state-of-the-art guard models across multiple safety benchmarks, offering a practical and flexible solution for scalable LLM moderation.
♻ ☆ Training-Conditional Coverage Bounds under Covariate Shift
Conformal prediction methodology has recently been extended to the covariate shift setting, where the distribution of covariates differs between training and test data. While existing results ensure that the prediction sets from these methods achieve marginal coverage above a nominal level, their coverage rate conditional on the training dataset (referred to as training-conditional coverage) remains unexplored. In this paper, we address this gap by deriving upper bounds on the tail of the training-conditional coverage distribution, offering probably approximately correct (PAC) guarantees for these methods. Our results quantify the relationship between the quality of the prediction sets and the severity of distributional changes, and can potentially be used to compute more efficient prediction sets.
♻ ☆ EFRame: Deeper Reasoning via Exploration-Filter-Replay Reinforcement Learning Framework
Recent advances in reinforcement learning (RL) have significantly enhanced the reasoning capabilities of large language models (LLMs). Group Relative Policy Optimization (GRPO), an efficient variant of PPO that lowers RL's computational cost, still faces limited exploration, low sample efficiency and instability, constraining its performance on complex reasoning tasks. To address these limitations, we introduce EFRame, an Exploration-Filter-Replay framework that systematically augments GRPO along three critical dimensions. EFRame performs additional rollouts to explore high-quality trajectories, applies online filtering to eliminate low-quality samples that introduce noise and variance, and leverages experience replay to repeatedly exploit rare but informative samples. EFRame establishes a complete and stable learning cycle, guiding the model through a structured transition from exploration to convergence. Our experiments across a variety of reasoning benchmarks demonstrate that EFRame not only improves the robustness and efficiency of training, but also enables access to deeper reasoning capabilities that remain unattainable under vanilla GRPO. Furthermore, EFRame not only enables fine-grained categorization of training samples for deeper insight into their contributions, but also introduces an efficient and precise mechanism for entropy control, which is critical for balancing exploration and convergence in RL training. Our code is available at https://github.com/597358816/EFRame.
♻ ☆ Model-free Posterior Sampling via Learning Rate Randomization
In this paper, we introduce Randomized Q-learning (RandQL), a novel randomized model-free algorithm for regret minimization in episodic Markov Decision Processes (MDPs). To the best of our knowledge, RandQL is the first tractable model-free posterior sampling-based algorithm. We analyze the performance of RandQL in both tabular and non-tabular metric space settings. In tabular MDPs, RandQL achieves a regret bound of order $\widetilde{O}(\sqrt{H^{5}SAT})$, where $H$ is the planning horizon, $S$ is the number of states, $A$ is the number of actions, and $T$ is the number of episodes. For a metric state-action space, RandQL enjoys a regret bound of order $\widetilde{O}(H^{5/2} T^{(d_z+1)/(d_z+2)})$, where $d_z$ denotes the zooming dimension. Notably, RandQL achieves optimistic exploration without using bonuses, relying instead on a novel idea of learning rate randomization. Our empirical study shows that RandQL outperforms existing approaches on baseline exploration environments.
comment: This revision fixed an error connected to an incorrect use of Proposition 7 inside of Lemma 4, and a misprint in Lemma 12. In the current version, we modified the martingale construction and applied the same argument as before; no results need to be modified as a result of these fixes
♻ ☆ Learned enclosure method for experimental EIT data
Electrical impedance tomography (EIT) is a non-invasive imaging method with diverse applications, including medical imaging and non-destructive testing. The inverse problem of reconstructing internal electrical conductivity from boundary measurements is nonlinear and highly ill-posed, making it difficult to solve accurately. In recent years, there has been growing interest in combining analytical methods with machine learning to solve inverse problems. In this paper, we propose a method for estimating the convex hull of inclusions from boundary measurements by combining the enclosure method proposed by Ikehata with neural networks. We demonstrate its performance using experimental data. Compared to the classical enclosure method with least squares fitting, the learned convex hull achieves superior performance on both simulated and experimental data.
♻ ☆ ReCAP: Recursive Cross Attention Network for Pseudo-Label Generation in Robotic Surgical Skill Assessment
In surgical skill assessment, the Objective Structured Assessments of Technical Skills (OSATS) and Global Rating Scale (GRS) are well-established tools for evaluating surgeons during training. These metrics, along with performance feedback, help surgeons improve and reach practice standards. Recent research on the open-source JIGSAWS dataset, which includes both GRS and OSATS labels, has focused on regressing GRS scores from kinematic data, video, or their combination. However, we argue that regressing GRS alone is limiting, as it aggregates OSATS scores and overlooks clinically meaningful variations during a surgical trial. To address this, we developed a weakly-supervised recurrent transformer model that tracks a surgeon's performance throughout a session by mapping hidden states to six OSATS, derived from kinematic data. These OSATS scores are averaged to predict GRS, allowing us to compare our model's performance against state-of-the-art (SOTA) methods. We report Spearman's Correlation Coefficients (SCC) demonstrating that our model outperforms SOTA using kinematic data (SCC 0.83-0.88), and matches performance with video-based models. Our model also surpasses SOTA in most tasks for average OSATS predictions (SCC 0.46-0.70) and specific OSATS (SCC 0.56-0.95). The generation of pseudo-labels at the segment level translates quantitative predictions into qualitative feedback, vital for automated surgical skill assessment pipelines. A senior surgeon validated our model's outputs, agreeing with 77\% of the weakly-supervised predictions \(p=0.006\).
♻ ☆ Fairness and Sparsity within Rashomon sets: Enumeration-Free Exploration and Characterization
We introduce an enumeration-free method based on mathematical programming to precisely characterize various properties such as fairness or sparsity within the set of "good models", known as Rashomon set. This approach is generically applicable to any hypothesis class, provided that a mathematical formulation of the model learning task exists. It offers a structured framework to define the notion of business necessity and evaluate how fairness can be improved or degraded towards a specific protected group, while remaining within the Rashomon set and maintaining any desired sparsity level. We apply our approach to two hypothesis classes: scoring systems and decision diagrams, leveraging recent mathematical programming formulations for training such models. As seen in our experiments, the method comprehensively and certifiably quantifies trade-offs between predictive performance, sparsity, and fairness. We observe that a wide range of fairness values are attainable, ranging from highly favorable to significantly unfavorable for a protected group, while staying within less than 1% of the best possible training accuracy for the hypothesis class. Additionally, we observe that sparsity constraints limit these trade-offs and may disproportionately harm specific subgroups. As we evidenced, thoroughly characterizing the tensions between these key aspects is critical for an informed and accountable selection of models.
♻ ☆ Improving Predictions of Convective Storm Wind Gusts through Statistical Post-Processing of Neural Weather Models
Issuing timely severe weather warnings helps mitigate potentially disastrous consequences. Recent advancements in Neural Weather Models (NWMs) offer a computationally inexpensive and fast approach for forecasting atmospheric environments on a 0.25{\deg} global grid. For thunderstorms, these environments can be empirically post-processed to predict wind gust distributions at specific locations. With the Pangu-Weather NWM, we apply a hierarchy of statistical and deep learning post-processing methods to forecast hourly wind gusts up to three days ahead. To ensure statistical robustness, we constrain our probabilistic forecasts using generalised extreme-value distributions across five regions in Switzerland. Using a convolutional neural network to post-process the predicted atmospheric environment's spatial patterns yields the best results, outperforming direct forecasting approaches across lead times and wind gust speeds. Our results confirm the added value of NWMs for extreme wind forecasting, especially for designing more responsive early-warning systems.
comment: 18+5 pages, 11+8 figures, 4 tables, revised for npj Natural Hazards
♻ ☆ PEVLM: Parallel Encoding for Vision-Language Models
Vision-Language Models (VLMs) have demonstrated strong capabilities in multimodal understanding and generation tasks. However, their application to long video understanding remains hindered by the quadratic complexity of standard attention mechanisms. In this work, we introduce \textbf{PEVLM}, a fine-tuning-free parallel encoding method designed to enhance the prefilling efficiency of VLMs in long video scenarios. PEVLM partitions the input video into context blocks with a shared sink block, while preserving sequential position embeddings to align the attention weight distribution with that of Full-Attention. This design reduces attention complexity from $O((T \times N)^2)$ to $O(T \times N)$ where $T$ is the number of frames and $N$ the number of tokens per frame, without sacrificing accuracy. Extensive experiments across multiple state-of-the-art models and benchmarks demonstrate that PEVLM consistently outperforms existing parallel encoding approaches, achieving up to \textbf{7.47x} speedup in attention computation and reducing end-to-end latency by \textbf{40\%}. Remarkably, PEVLM not only maintains high accuracy, but in some settings even surpasses Full-Attention performance. Under strict latency constraints, it achieves substantial gains, improving accuracy from \textbf{23.26\%} to \textbf{61.03\%}. These results underscore the effectiveness of PEVLM for low-latency, long-context video understanding, making it a promising solution for real-world applications.
♻ ☆ RewardAnything: Generalizable Principle-Following Reward Models
Reward Models, essential for guiding Large Language Model optimization, are typically trained on fixed preference datasets, resulting in rigid alignment to single, implicit preference distributions. This prevents adaptation to diverse real-world needs-from conciseness in one task to detailed explanations in another. The standard practice of collecting task-specific preference data and retraining reward models is resource-intensive, often producing biased rewards, and limits practical application. We introduce generalizable, principle-following reward models. We propose that RMs should understand and adhere to dynamically provided natural language specifications of reward principles, similar to instruction-following in LLMs. To measure this capability, we develop RABench, a comprehensive benchmark for RMs focusing on generalization across diverse principles. Evaluations on RABench reveal poor generalization of current RMs. As a solution, we present RewardAnything, a novel RM designed and trained to explicitly follow natural language principles. We achieve SotA performance with RewardAnything in traditional RM benchmark simply by specifying a well-defined principle, and results on RABench show we excel in adapting to novel principles without retraining. Furthermore, RewardAnything integrates seamlessly with existing RLHF methods and we show by a case study on how to automatically and efficiently align LLMs with only natural language principles.
comment: 25 pages, 9 figures, Code & model weights available at: https://zhuohaoyu.github.io/RewardAnything
♻ ☆ Improving Numerical Stability of Normalized Mutual Information Estimator on High Dimensions
Mutual information provides a powerful, general-purpose metric for quantifying the amount of shared information between variables. Estimating normalized mutual information using a k-Nearest Neighbor (k-NN) based approach involves the calculation of the scaling-invariant k-NN radius. Calculation of the radius suffers from numerical overflow when the joint dimensionality of the data becomes high, typically in the range of several hundred dimensions. To address this issue, we propose a logarithmic transformation technique that improves the numerical stability of the radius calculation in high-dimensional spaces. By applying the proposed transformation during the calculation of the radius, numerical overflow is avoided, and precision is maintained. Proposed transformation is validated through both theoretical analysis and empirical evaluation, demonstrating its ability to stabilize the calculation without compromising precision, increasing bias, or adding significant computational overhead, while also helping to maintain estimator variance.
comment: 4+1+1 pages, 3 figures, 39 equations
♻ ☆ Synthesising Activity Participations and Scheduling with Deep Generative Machine Learning
Using a deep generative machine learning approach, we synthesise human activity participations and scheduling; i.e. the choices of what activities to participate in and when. Activity schedules are a core component of many applied transport, energy, and epidemiology models. Our data-driven approach directly learns the distributions resulting from human preferences and scheduling logic without the need for complex interacting combinations of sub-models and custom rules. This makes our approach significantly faster and simpler to operate than existing approaches to synthesise or anonymise schedule data. We additionally contribute a novel schedule representation and a comprehensive evaluation framework. We evaluate a range of schedule encoding and deep model architecture combinations. The evaluation shows our approach can rapidly generate large, diverse, novel, and realistic synthetic samples of activity schedules.
♻ ☆ Training-Free Query Optimization via LLM-Based Plan Similarity
Large language model (LLM) embeddings offer a promising new avenue for database query optimization. In this paper, we explore how pre-trained execution plan embeddings can guide SQL query execution without the need for additional model training. We introduce LLM-PM (LLM-based Plan Mapping), a framework that embeds the default execution plan of a query, finds its k nearest neighbors among previously executed plans, and recommends database hintsets based on neighborhood voting. A lightweight consistency check validates the selected hint, while a fallback mechanism searches the full hint space when needed. Evaluated on the JOB-CEB benchmark using OpenGauss, LLM-PM achieves an average speed-up of 21% query latency reduction. This work highlights the potential of LLM-powered embeddings to deliver practical improvements in query performance and opens new directions for training-free, embedding-based optimizer guidance systems.
comment: 18 pages, 5 figures
♻ ☆ Integrating Biological and Machine Intelligence: Attention Mechanisms in Brain-Computer Interfaces
With the rapid advancement of deep learning, attention mechanisms have become indispensable in electroencephalography (EEG) signal analysis, significantly enhancing Brain-Computer Interface (BCI) applications. This paper presents a comprehensive review of traditional and Transformer-based attention mechanisms, their embedding strategies, and their applications in EEG-based BCI, with a particular emphasis on multimodal data fusion. By capturing EEG variations across time, frequency, and spatial channels, attention mechanisms improve feature extraction, representation learning, and model robustness. These methods can be broadly categorized into traditional attention mechanisms, which typically integrate with convolutional and recurrent networks, and Transformer-based multi-head self-attention, which excels in capturing long-range dependencies. Beyond single-modality analysis, attention mechanisms also enhance multimodal EEG applications, facilitating effective fusion between EEG and other physiological or sensory data. Finally, we discuss existing challenges and emerging trends in attention-based EEG modeling, highlighting future directions for advancing BCI technology. This review aims to provide valuable insights for researchers seeking to leverage attention mechanisms for improved EEG interpretation and application.
♻ ☆ Enhancing variational quantum algorithms by balancing training on classical and quantum hardware
Quantum computers offer a promising route to tackling problems that are classically intractable such as in prime-factorization, solving large-scale linear algebra and simulating complex quantum systems, but potentially require fault-tolerant quantum hardware. On the other hand, variational quantum algorithms (VQAs) are a promising approach for leveraging near-term quantum computers to solve complex problems. However, there remain major challenges in their trainability and resource costs on quantum hardware. Here we address these challenges by adopting Hardware Efficient and dynamical LIe algebra supported Ansatz (HELIA), and propose two training methods that combine an existing classical-enhanced g-sim method and the quantum-based Parameter-Shift Rule (PSR). Our improvement comes from distributing the resources required for gradient estimation and training to both classical and quantum hardware. We numerically evaluate our approach for ground-state estimation of 6 to 18-qubit Hamiltonians using the Variational Quantum Eigensolver (VQE) and quantum phase classification for up to 12-qubit Hamiltonians using quantum neural networks. For VQE, our method achieves higher accuracy and success rates, with an average reduction in quantum hardware calls of up to 60% compared to purely quantum-based PSR. For classification, we observe test accuracy improvements of up to 2.8%. We also numerically demonstrate the capability of HELIA in mitigating barren plateaus, paving the way for training large-scale quantum models.
comment: 37 pages, 14 figures, 6 tables, 4 algorithms
♻ ☆ Improving Graph Out-of-distribution Generalization Beyond Causality
Existing methods for graph out-of-distribution (OOD) generalization primarily rely on empirical studies on synthetic datasets. Such approaches tend to overemphasize the causal relationships between invariant sub-graphs and labels, thereby neglecting the non-negligible role of environment in real-world scenarios. In contrast to previous studies that impose rigid independence assumptions on environments and invariant sub-graphs, this paper presents the theorems of environment-label dependency and mutable rationale invariance, where the former characterizes the usefulness of environments in determining graph labels while the latter refers to the mutable importance of graph rationales. Based on analytic investigations, a novel variational inference based method named ``Probability Dependency on Environments and Rationales for OOD Graphs on Real-world Data'' (DEROG) is introduced. To alleviate the adverse effect of unknown prior knowledge on environments and rationales, DEROG utilizes generalized Bayesian inference. Further, DEROG employs an EM-based algorithm for optimization. Finally, extensive experiments on real-world datasets under different distribution shifts are conducted to show the superiority of DEROG. Our code is publicly available at https://github.com/LEOXC1571/DEROG.
comment: 21 pages, 6 figures
♻ ☆ Text Detoxification: Data Efficiency, Semantic Preservation and Model Generalization
The widespread dissemination of toxic content on social media poses a serious threat to both online environments and public discourse, highlighting the urgent need for detoxification methods that effectively remove toxicity while preserving the original semantics. However, existing approaches often struggle to simultaneously achieve strong detoxification performance, semantic preservation, and robustness to out-of-distribution data. Moreover, they typically rely on costly, manually annotated parallel corpora while showing poor data efficiency. To address these challenges, we propose a two-stage training framework that jointly optimizes for data efficiency, semantic preservation, and model generalization. We first perform supervised fine-tuning on a small set of high-quality, filtered parallel data to establish a strong initialization. Then, we leverage unlabeled toxic inputs and a custom-designed reward model to train the LLM using Group Relative Policy Optimization. Experimental results demonstrate that our method effectively mitigates the trade-offs faced by previous work, achieving state-of-the-art performance with improved generalization and significantly reduced dependence on annotated data. Our code is available at: https://github.com/allacnobug/Detoxification-of-Text.
♻ ☆ Data Matters: The Case of Predicting Mobile Cellular Traffic
Accurate predictions of base stations' traffic load are essential to mobile cellular operators and their users as they support the efficient use of network resources and allow delivery of services that sustain smart cities and roads. Traditionally, cellular network time-series have been considered for this prediction task. More recently, exogenous factors such as points of interest and other environmental knowledge have been explored too. In contrast to incorporating external factors, we propose to learn the processes underlying cellular load generation by employing population dynamics data. In this study, we focus on smart roads and use road traffic measures to improve prediction accuracy. Comprehensive experiments demonstrate that by employing road flow and speed, in addition to cellular network metrics, base station load prediction errors can be substantially reduced, by as much as $56.5\%.$ The code, visualizations and extensive results are available on https://github.com/nvassileva/DataMatters.
comment: 8 pages, 5 figures, 5 tables
♻ ☆ Dementia Detection using Multi-modal Methods on Audio Data
Dementia is a neurodegenerative disease that causes gradual cognitive impairment, which is very common in the world and undergoes a lot of research every year to prevent and cure it. It severely impacts the patient's ability to remember events and communicate clearly, where most variations of it have no known cure, but early detection can help alleviate symptoms before they become worse. One of the main symptoms of dementia is difficulty in expressing ideas through speech. This paper attempts to talk about a model developed to predict the onset of the disease using audio recordings from patients. An ASR-based model was developed that generates transcripts from the audio files using Whisper model and then applies RoBERTa regression model to generate an MMSE score for the patient. This score can be used to predict the extent to which the cognitive ability of a patient has been affected. We use the PROCESS_V1 dataset for this task, which is introduced through the PROCESS Grand Challenge 2025. The model achieved an RMSE score of 2.6911 which is around 10 percent lower than the described baseline.
comment: 4 pages
♻ ☆ Uncertainty in Real-Time Semantic Segmentation on Embedded Systems
Application for semantic segmentation models in areas such as autonomous vehicles and human computer interaction require real-time predictive capabilities. The challenges of addressing real-time application is amplified by the need to operate on resource constrained hardware. Whilst development of real-time methods for these platforms has increased, these models are unable to sufficiently reason about uncertainty present when applied on embedded real-time systems. This paper addresses this by combining deep feature extraction from pre-trained models with Bayesian regression and moment propagation for uncertainty aware predictions. We demonstrate how the proposed method can yield meaningful epistemic uncertainty on embedded hardware in real-time whilst maintaining predictive performance.
♻ ☆ On the quality of randomized approximations of Tukey's depth
Tukey's depth (or halfspace depth) is a widely used measure of centrality for multivariate data. However, exact computation of Tukey's depth is known to be a hard problem in high dimensions. As a remedy, randomized approximations of Tukey's depth have been proposed. In this paper we explore when such randomized algorithms return a good approximation of Tukey's depth. We study the case when the data are sampled from a log-concave isotropic distribution. We prove that, if one requires that the algorithm runs in polynomial time in the dimension, the randomized algorithm correctly approximates the maximal depth $1/2$ and depths close to zero. On the other hand, for any point of intermediate depth, any good approximation requires exponential complexity.
♻ ☆ Learning Maximal Safe Sets Using Hypernetworks for MPC-based Local Trajectory Planning in Unknown Environments
This paper presents a novel learning-based approach for online estimation of maximal safe sets for local trajectory planning in unknown static environments. The neural representation of a set is used as the terminal set constraint for a model predictive control (MPC) local planner, resulting in improved recursive feasibility and safety. To achieve real-time performance and desired generalization properties, we employ the idea of hypernetworks. We use the Hamilton-Jacobi (HJ) reachability analysis as the source of supervision during the training process, allowing us to consider general nonlinear dynamics and arbitrary constraints. The proposed method is extensively evaluated against relevant baselines in simulations for different environments and robot dynamics. The results show an increase in success rate of up to 52% compared to the best baseline while maintaining comparable execution speed. Additionally, we deploy our proposed method, NTC-MPC, on a physical robot and demonstrate its ability to safely avoid obstacles in scenarios where the baselines fail.
♻ ☆ Balancing Act: Prioritization Strategies for LLM-Designed Restless Bandit Rewards
LLMs are increasingly used to design reward functions based on human preferences in Reinforcement Learning (RL). We focus on LLM-designed rewards for Restless Multi-Armed Bandits, a framework for allocating limited resources among agents. In applications such as public health, this approach empowers grassroots health workers to tailor automated allocation decisions to community needs. In the presence of multiple agents, altering the reward function based on human preferences can impact subpopulations very differently, leading to complex tradeoffs and a multi-objective resource allocation problem. We are the first to present a principled method termed Social Choice Language Model for dealing with these tradeoffs for LLM-designed rewards for multiagent planners in general and restless bandits in particular. The novel part of our model is a transparent and configurable selection component, called an adjudicator, external to the LLM that controls complex tradeoffs via a user-selected social welfare function. Our experiments demonstrate that our model reliably selects more effective, aligned, and balanced reward functions compared to purely LLM-based approaches.
♻ ☆ FAMOUS: Flexible Accelerator for the Attention Mechanism of Transformer on UltraScale+ FPGAs
Transformer neural networks (TNNs) are being applied across a widening range of application domains, including natural language processing (NLP), machine translation, and computer vision (CV). Their popularity is largely attributed to the exceptional performance of their multi-head self-attention blocks when analyzing sequential data and extracting features. To date, there are limited hardware accelerators tailored for this mechanism, which is the first step before designing an accelerator for a complete model. This paper proposes \textit{FAMOUS}, a flexible hardware accelerator for dense multi-head attention (MHA) computation of TNNs on field-programmable gate arrays (FPGAs). It is optimized for high utilization of processing elements and on-chip memories to improve parallelism and reduce latency. An efficient tiling of large matrices has been employed to distribute memory and computing resources across different modules on various FPGA platforms. The design is evaluated on Xilinx Alveo U55C and U200 data center cards containing Ultrascale+ FPGAs. Experimental results are presented that show that it can attain a maximum throughput, number of parallel attention heads, embedding dimension and tile size of 328 (giga operations/second (GOPS)), 8, 768 and 64 respectively on the U55C. Furthermore, it is 3.28$\times$ and 2.6$\times$ faster than the Intel Xeon Gold 5220R CPU and NVIDIA V100 GPU respectively. It is also 1.3$\times$ faster than the fastest state-of-the-art FPGA-based accelerator.
comment: arXiv admin note: text overlap with arXiv:2409.13975
♻ ☆ ResQuNNs: Towards Enabling Deep Learning in Quantum Convolution Neural Networks
In this paper, we present a novel framework for enhancing the performance of Quanvolutional Neural Networks (QuNNs) by introducing trainable quanvolutional layers and addressing the critical challenges associated with them. Traditional quanvolutional layers, although beneficial for feature extraction, have largely been static, offering limited adaptability. Unlike state-of-the-art, our research overcomes this limitation by enabling training within these layers, significantly increasing the flexibility and potential of QuNNs. However, the introduction of multiple trainable quanvolutional layers induces complexities in gradient-based optimization, primarily due to the difficulty in accessing gradients across these layers. To resolve this, we propose a novel architecture, Residual Quanvolutional Neural Networks (ResQuNNs), leveraging the concept of residual learning, which facilitates the flow of gradients by adding skip connections between layers. By inserting residual blocks between quanvolutional layers, we ensure enhanced gradient access throughout the network, leading to improved training performance. Moreover, we provide empirical evidence on the strategic placement of these residual blocks within QuNNs. Through extensive experimentation, we identify an efficient configuration of residual blocks, which enables gradients across all the layers in the network that eventually results in efficient training. Our findings suggest that the precise location of residual blocks plays a crucial role in maximizing the performance gains in QuNNs. Our results mark a substantial step forward in the evolution of quantum deep learning, offering new avenues for both theoretical development and practical quantum computing applications.
comment: Title updated from: Resqunns: towards enabling deep learning in quantum convolution neural networks, to reflect changes made for the journal publication. This is the latest version published in Nature Scientific Reports
Monte Carlo Tree Diffusion for System 2 Planning ICML 2025
Diffusion models have recently emerged as a powerful tool for planning. However, unlike Monte Carlo Tree Search (MCTS)-whose performance naturally improves with inference-time computation scaling-standard diffusion-based planners offer only limited avenues for the scalability. In this paper, we introduce Monte Carlo Tree Diffusion (MCTD), a novel framework that integrates the generative strength of diffusion models with the adaptive search capabilities of MCTS. Our method reconceptualizes denoising as a tree-structured process, allowing partially denoised plans to be iteratively evaluated, pruned, and refined. By selectively expanding promising trajectories while retaining the flexibility to revisit and improve suboptimal branches, MCTD achieves the benefits of MCTS such as controlling exploration-exploitation trade-offs within the diffusion framework. Empirical results on challenging long-horizon tasks show that MCTD outperforms diffusion baselines, yielding higher-quality solutions as inference-time computation increases.
comment: 23 pages, 7 figures, ICML 2025 Main Track Spotlight
♻ ☆ Scaling Collapse Reveals Universal Dynamics in Compute-Optimally Trained Neural Networks ICML 25
What scaling limits govern neural network training dynamics when model size and training time grow in tandem? We show that despite the complex interactions between architecture, training algorithms, and data, compute-optimally trained models exhibit a remarkably precise universality. Specifically, loss curves from models of varying sizes collapse onto a single universal curve when training compute and loss are normalized to unity at the end of training. With learning rate decay, the collapse becomes so tight that differences in the normalized curves across models fall below the noise floor of individual loss curves across random seeds, a phenomenon we term supercollapse. We observe supercollapse across learning rate schedules, datasets, and architectures, including transformers trained on next-token prediction, and find it breaks down when hyperparameters are scaled suboptimally, providing a precise and practical indicator of good scaling. We explain these phenomena by connecting collapse to the power-law structure in typical neural scaling laws, and analyzing a simple yet surprisingly effective model of SGD noise dynamics that accurately predicts loss curves across various learning rate schedules and quantitatively explains the origin of supercollapse.
comment: ICML 25. Code available at https://github.com/shikaiqiu/supercollapse
♻ ☆ A Runtime-Adaptive Transformer Neural Network Accelerator on FPGAs
Transformer neural networks (TNN) excel in natural language processing (NLP), machine translation, and computer vision (CV) without relying on recurrent or convolutional layers. However, they have high computational and memory demands, particularly on resource-constrained devices like FPGAs. Moreover, transformer models vary in processing time across applications, requiring custom models with specific parameters. Designing custom accelerators for each model is complex and time-intensive. Some custom accelerators exist with no runtime adaptability, and they often rely on sparse matrices to reduce latency. However, hardware designs become more challenging due to the need for application-specific sparsity patterns. This paper introduces ADAPTOR, a runtime-adaptive accelerator for dense matrix computations in transformer encoders and decoders on FPGAs. ADAPTOR enhances the utilization of processing elements and on-chip memory, enhancing parallelism and reducing latency. It incorporates efficient matrix tiling to distribute resources across FPGA platforms and is fully quantized for computational efficiency and portability. Evaluations on Xilinx Alveo U55C data center cards and embedded platforms like VC707 and ZCU102 show that our design is 1.2$\times$ and 2.87$\times$ more power efficient than the NVIDIA K80 GPU and the i7-8700K CPU respectively. Additionally, it achieves a speedup of 1.7 to 2.25$\times$ compared to some state-of-the-art FPGA-based accelerators.
comment: arXiv admin note: text overlap with arXiv:2409.14023
♻ ☆ Fully Automatic Neural Network Reduction for Formal Verification
Formal verification of neural networks is essential before their deployment in safety-critical applications. However, existing methods for formally verifying neural networks are not yet scalable enough to handle practical problems under strict time constraints. We address this challenge by introducing a fully automatic and sound reduction of neural networks using reachability analysis. The soundness ensures that the verification of the reduced network entails the verification of the original network. Our sound reduction approach is applicable to neural networks with any type of element-wise activation function, such as ReLU, sigmoid, and tanh. The network reduction is computed on the fly while simultaneously verifying the original network and its specification. All parameters are automatically tuned to minimize the network size without compromising verifiability. We further show the applicability of our approach to convolutional neural networks by explicitly exploiting similar neighboring pixels. Our evaluation shows that our approach reduces large neural networks to a fraction of the original number of neurons and thus shortens the verification time to a similar degree.
comment: published at Transactions on Machine Learning Research (TMLR) 2025
♻ ☆ QuTE: decentralized multiple testing on sensor networks with false discovery rate control
This paper designs methods for decentralized multiple hypothesis testing on graphs that are equipped with provable guarantees on the false discovery rate (FDR). We consider the setting where distinct agents reside on the nodes of an undirected graph, and each agent possesses p-values corresponding to one or more hypotheses local to its node. Each agent must individually decide whether to reject one or more of its local hypotheses by only communicating with its neighbors, with the joint aim that the global FDR over the entire graph must be controlled at a predefined level. We propose a simple decentralized family of Query-Test-Exchange (QuTE) algorithms and prove that they can control FDR under independence or positive dependence of the p-values. Our algorithm reduces to the Benjamini-Hochberg (BH) algorithm when after graph-diameter rounds of communication, and to the Bonferroni procedure when no communication has occurred or the graph is empty. To avoid communicating real-valued p-values, we develop a quantized BH procedure, and extend it to a quantized QuTE procedure. QuTE works seamlessly in streaming data settings, where anytime-valid p-values may be continually updated at each node. Last, QuTE is robust to arbitrary dropping of packets, or a graph that changes at every step, making it particularly suitable to mobile sensor networks involving drones or other multi-agent systems. We study the power of our procedure using a simulation suite of different levels of connectivity and communication on a variety of graph structures, and also provide an illustrative real-world example.
comment: This paper appeared in the IEEE CDC'17 conference proceedings. The last two sections were then developed in 2018, and it is now being put on arXiv simply for easier access. The latest version fixed some figures
♻ ☆ Normality-Guided Distributional Reinforcement Learning for Continuous Control
Learning a predictive model of the mean return, or value function, plays a critical role in many reinforcement learning algorithms. Distributional reinforcement learning (DRL) has been shown to improve performance by modeling the value distribution, not just the mean. We study the value distribution in several continuous control tasks and find that the learned value distribution is empirically quite close to normal. We design a method that exploits this property, employing variances predicted from a variance network, along with returns, to analytically compute target quantile bars representing a normal for our distributional value function. In addition, we propose a policy update strategy based on the correctness as measured by structural characteristics of the value distribution not present in the standard value function. The approach we outline is compatible with many DRL structures. We use two representative on-policy algorithms, PPO and TRPO, as testbeds. Our method yields statistically significant improvements in 10 out of 16 continuous task settings, while utilizing a reduced number of weights and achieving faster training time compared to an ensemble-based method for quantifying value distribution uncertainty.
♻ ☆ Enhancing Long Video Generation Consistency without Tuning ICML 2025
Despite the considerable progress achieved in the long video generation problem, there is still significant room to improve the consistency of the generated videos, particularly in terms of their smoothness and transitions between scenes. We address these issues to enhance the consistency and coherence of videos generated with either single or multiple prompts. We propose the Time-frequency based temporal Attention Reweighting Algorithm (TiARA), which judiciously edits the attention score matrix based on the Discrete Short-Time Fourier Transform. This method is supported by a frequency-based analysis, ensuring that the edited attention score matrix achieves improved consistency across frames. It represents the first-of-its-kind for frequency-based methods in video diffusion models. For videos generated by multiple prompts, we further uncover key factors such as the alignment of the prompts affecting prompt interpolation quality. Inspired by our analyses, we propose PromptBlend, an advanced prompt interpolation pipeline that systematically aligns the prompts. Extensive experimental results validate the efficacy of our proposed method, demonstrating consistent and substantial improvements over multiple baselines.
comment: ICML 2025 Workshop on Building Physically Plausible World Models (Best Paper), 32 pages, 17 figures
♻ ☆ Universal approximation results for neural networks with non-polynomial activation function over non-compact domains
This paper extends the universal approximation property of single-hidden-layer feedforward neural networks beyond compact domains, which is of particular interest for the approximation within weighted $C^k$-spaces and weighted Sobolev spaces over unbounded domains. More precisely, by assuming that the activation function is non-polynomial, we establish universal approximation results within function spaces defined over non-compact subsets of a Euclidean space, including $L^p$-spaces, weighted $C^k$-spaces, and weighted Sobolev spaces, where the latter two include the approximation of the (weak) derivatives. Moreover, we provide some dimension-independent rates for approximating a function with sufficiently regular and integrable Fourier transform by neural networks with non-polynomial activation function.
comment: arXiv admin note: text overlap with arXiv:2312.08410
♻ ☆ Pensieve Grader: An AI-Powered, Ready-to-Use Platform for Effortless Handwritten STEM Grading
Grading handwritten, open-ended responses remains a major bottleneck in large university STEM courses. We introduce Pensieve (https://www.pensieve.co), an AI-assisted grading platform that leverages large language models (LLMs) to transcribe and evaluate student work, providing instructors with rubric-aligned scores, transcriptions, and confidence ratings. Unlike prior tools that focus narrowly on specific tasks like transcription or rubric generation, Pensieve supports the entire grading pipeline-from scanned student submissions to final feedback-within a human-in-the-loop interface. Pensieve has been deployed in real-world courses at over 20 institutions and has graded more than 300,000 student responses. We present system details and empirical results across four core STEM disciplines: Computer Science, Mathematics, Physics, and Chemistry. Our findings show that Pensieve reduces grading time by an average of 65%, while maintaining a 95.4% agreement rate with instructor-assigned grades for high-confidence predictions.
comment: 7 pages, 5 figues, 1 table
♻ ☆ Quantum Doeblin Coefficients: Interpretations and Applications
In classical information theory, the Doeblin coefficient of a classical channel provides an efficiently computable upper bound on the total-variation contraction coefficient of the channel, leading to what is known as a strong data-processing inequality. Here, we investigate quantum Doeblin coefficients as a generalization of the classical concept. In particular, we define various new quantum Doeblin coefficients, one of which has several desirable properties, including concatenation and multiplicativity, in addition to being efficiently computable. We also develop various interpretations of two of the quantum Doeblin coefficients, including representations as minimal singlet fractions, exclusion values, reverse max-mutual and oveloH informations, reverse robustnesses, and hypothesis testing reverse mutual and oveloH informations. Our interpretations of quantum Doeblin coefficients as either entanglement-assisted or unassisted exclusion values are particularly appealing, indicating that they are proportional to the best possible error probabilities one could achieve in state-exclusion tasks by making use of the channel. We also outline various applications of quantum Doeblin coefficients, ranging from limitations on quantum machine learning algorithms that use parameterized quantum circuits (noise-induced barren plateaus), on error mitigation protocols, on the sample complexity of noisy quantum hypothesis testing, and on mixing, distinguishability, and decoupling times of time-varying channels. All of these applications make use of the fact that quantum Doeblin coefficients appear in upper bounds on various trace-distance contraction coefficients of a channel. Furthermore, in all of these applications, our analysis using Doeblin coefficients provides improvements of various kinds over contributions from prior literature, both in terms of generality and being efficiently computable.
comment: v2: 104 pages, 5 figures, Expanded the application section on mixing, indistinguishability, and decoupling times ; v1:88 pages, 2 figures
♻ ☆ Breach in the Shield: Unveiling the Vulnerabilities of Large Language Models
Large Language Models (LLMs) and Vision-Language Models (VLMs) have achieved impressive performance across a wide range of tasks, yet they remain vulnerable to carefully crafted perturbations. In this study, we seek to pinpoint the sources of this fragility by identifying parameters and input dimensions (pixels or token embeddings) that are susceptible to such perturbations. To this end, we propose a stability measure called \textbf{FI}, \textbf{F}irst order local \textbf{I}nfluence, which is rooted in information geometry and quantifies the sensitivity of individual parameter and input dimensions. Our extensive analysis across LLMs and VLMs (from 1.5B to 13B parameters) reveals that: (I) A small subset of parameters or input dimensions with high FI values disproportionately contribute to model brittleness. (II) Mitigating the influence of these vulnerable parameters during model merging leads to improved performance.
Computer Vision and Pattern Recognition
☆ Beyond One Shot, Beyond One Perspective: Cross-View and Long-Horizon Distillation for Better LiDAR Representations ICCV 2025
LiDAR representation learning aims to extract rich structural and semantic information from large-scale, readily available datasets, reducing reliance on costly human annotations. However, existing LiDAR representation strategies often overlook the inherent spatiotemporal cues in LiDAR sequences, limiting their effectiveness. In this work, we propose LiMA, a novel long-term image-to-LiDAR Memory Aggregation framework that explicitly captures longer range temporal correlations to enhance LiDAR representation learning. LiMA comprises three key components: 1) a Cross-View Aggregation module that aligns and fuses overlapping regions across neighboring camera views, constructing a more unified and redundancy-free memory bank; 2) a Long-Term Feature Propagation mechanism that efficiently aligns and integrates multi-frame image features, reinforcing temporal coherence during LiDAR representation learning; and 3) a Cross-Sequence Memory Alignment strategy that enforces consistency across driving sequences, improving generalization to unseen environments. LiMA maintains high pretraining efficiency and incurs no additional computational overhead during downstream tasks. Extensive experiments on mainstream LiDAR-based perception benchmarks demonstrate that LiMA significantly improves both LiDAR semantic segmentation and 3D object detection. We hope this work inspires more effective pretraining paradigms for autonomous driving. The code has be made publicly accessible for future research.
comment: ICCV 2025; 26 pages, 12 figures, 10 tables; Code at http://github.com/Xiangxu-0103/LiMA
☆ Beyond Simple Edits: X-Planner for Complex Instruction-Based Image Editing
Recent diffusion-based image editing methods have significantly advanced text-guided tasks but often struggle to interpret complex, indirect instructions. Moreover, current models frequently suffer from poor identity preservation, unintended edits, or rely heavily on manual masks. To address these challenges, we introduce X-Planner, a Multimodal Large Language Model (MLLM)-based planning system that effectively bridges user intent with editing model capabilities. X-Planner employs chain-of-thought reasoning to systematically decompose complex instructions into simpler, clear sub-instructions. For each sub-instruction, X-Planner automatically generates precise edit types and segmentation masks, eliminating manual intervention and ensuring localized, identity-preserving edits. Additionally, we propose a novel automated pipeline for generating large-scale data to train X-Planner which achieves state-of-the-art results on both existing benchmarks and our newly introduced complex editing benchmark.
comment: Project page: https://danielchyeh.github.io/x-planner/
☆ Spatio-Temporal LLM: Reasoning about Environments and Actions
Despite the significant recent progress of Multimodal Large Language Models (MLLMs), MLLMs still struggle to correctly answer prompts that require a holistic spatio-temporal understanding. Specifically, it is challenging to address prompts that refer to 1) the entirety of an environment that an agent equipped with an MLLM can operate in; and simultaneously also refer to 2) recent actions that just happened and are encoded in a video clip. However, such a holistic spatio-temporal understanding is important for agents operating in the real world. To address this issue, we first develop a framework to collect a large-scale dataset. Using the collected "Reasoning about Environments and Actions" (REA) dataset, we show that recent methods indeed struggle to correctly answer the prompts. To improve, we develop a "spatio-temporal LLM" (ST-LLM), a model equipped with projectors to improve both spatial understanding of an environment and temporal understanding of recent observations. On the collected REA data, we show that the proposed method significantly improves results compared to prior work. Code and data are available at https://zoezheng126.github.io/STLLM-website/.
comment: Code and data are available at https://zoezheng126.github.io/STLLM-website/
☆ SegmentDreamer: Towards High-fidelity Text-to-3D Synthesis with Segmented Consistency Trajectory Distillation ICCV 2025
Recent advancements in text-to-3D generation improve the visual quality of Score Distillation Sampling (SDS) and its variants by directly connecting Consistency Distillation (CD) to score distillation. However, due to the imbalance between self-consistency and cross-consistency, these CD-based methods inherently suffer from improper conditional guidance, leading to sub-optimal generation results. To address this issue, we present SegmentDreamer, a novel framework designed to fully unleash the potential of consistency models for high-fidelity text-to-3D generation. Specifically, we reformulate SDS through the proposed Segmented Consistency Trajectory Distillation (SCTD), effectively mitigating the imbalance issues by explicitly defining the relationship between self- and cross-consistency. Moreover, SCTD partitions the Probability Flow Ordinary Differential Equation (PF-ODE) trajectory into multiple sub-trajectories and ensures consistency within each segment, which can theoretically provide a significantly tighter upper bound on distillation error. Additionally, we propose a distillation pipeline for a more swift and stable generation. Extensive experiments demonstrate that our SegmentDreamer outperforms state-of-the-art methods in visual quality, enabling high-fidelity 3D asset creation through 3D Gaussian Splatting (3DGS).
comment: Accepted by ICCV 2025, project page: https://zjhjojo.github.io/
☆ Open Vision Reasoner: Transferring Linguistic Cognitive Behavior for Visual Reasoning
The remarkable reasoning capability of large language models (LLMs) stems from cognitive behaviors that emerge through reinforcement with verifiable rewards. This work investigates how to transfer this principle to Multimodal LLMs (MLLMs) to unlock advanced visual reasoning. We introduce a two-stage paradigm built on Qwen2.5-VL-7B: a massive linguistic cold-start fine-tuning, followed by multimodal reinforcement learning (RL) spanning nearly 1,000 steps, surpassing all previous open-source efforts in scale. This pioneering work reveals three fundamental insights: 1) Behavior transfer emerges surprisingly early in cold start due to linguistic mental imagery. 2) Cold start broadly memorizes visual behaviors, while RL critically discerns and scales up effective patterns. 3) Transfer strategically favors high-utility behaviors such as visual reflection. Our resulting model, Open-Vision-Reasoner (OVR), achieves state-of-the-art performance on a suite of reasoning benchmarks, including 95.3% on MATH500, 51.8% on MathVision and 54.6% on MathVerse. We release our model, data, and training dynamics to catalyze the development of more capable, behavior-aligned multimodal reasoners.
☆ From Marginal to Joint Predictions: Evaluating Scene-Consistent Trajectory Prediction Approaches for Automated Driving SC 2025
Accurate motion prediction of surrounding traffic participants is crucial for the safe and efficient operation of automated vehicles in dynamic environments. Marginal prediction models commonly forecast each agent's future trajectories independently, often leading to sub-optimal planning decisions for an automated vehicle. In contrast, joint prediction models explicitly account for the interactions between agents, yielding socially and physically consistent predictions on a scene level. However, existing approaches differ not only in their problem formulation but also in the model architectures and implementation details used, making it difficult to compare them. In this work, we systematically investigate different approaches to joint motion prediction, including post-processing of the marginal predictions, explicitly training the model for joint predictions, and framing the problem as a generative task. We evaluate each approach in terms of prediction accuracy, multi-modality, and inference efficiency, offering a comprehensive analysis of the strengths and limitations of each approach. Several prediction examples are available at https://frommarginaltojointpred.github.io/.
comment: Accepted at International Conference on Intelligent Transportation Systems 2025 (ITSC 2025)
☆ Physics-Guided Dual Implicit Neural Representations for Source Separation
Significant challenges exist in efficient data analysis of most advanced experimental and observational techniques because the collected signals often include unwanted contributions--such as background and signal distortions--that can obscure the physically relevant information of interest. To address this, we have developed a self-supervised machine-learning approach for source separation using a dual implicit neural representation framework that jointly trains two neural networks: one for approximating distortions of the physical signal of interest and the other for learning the effective background contribution. Our method learns directly from the raw data by minimizing a reconstruction-based loss function without requiring labeled data or pre-defined dictionaries. We demonstrate the effectiveness of our framework by considering a challenging case study involving large-scale simulated as well as experimental momentum-energy-dependent inelastic neutron scattering data in a four-dimensional parameter space, characterized by heterogeneous background contributions and unknown distortions to the target signal. The method is found to successfully separate physically meaningful signals from a complex or structured background even when the signal characteristics vary across all four dimensions of the parameter space. An analytical approach that informs the choice of the regularization parameter is presented. Our method offers a versatile framework for addressing source separation problems across diverse domains, ranging from superimposed signals in astronomical measurements to structural features in biomedical image reconstructions.
☆ StreamVLN: Streaming Vision-and-Language Navigation via SlowFast Context Modeling
Vision-and-Language Navigation (VLN) in real-world settings requires agents to process continuous visual streams and generate actions with low latency grounded in language instructions. While Video-based Large Language Models (Video-LLMs) have driven recent progress, current VLN methods based on Video-LLM often face trade-offs among fine-grained visual understanding, long-term context modeling and computational efficiency. We introduce StreamVLN, a streaming VLN framework that employs a hybrid slow-fast context modeling strategy to support multi-modal reasoning over interleaved vision, language and action inputs. The fast-streaming dialogue context facilitates responsive action generation through a sliding-window of active dialogues, while the slow-updating memory context compresses historical visual states using a 3D-aware token pruning strategy. With this slow-fast design, StreamVLN achieves coherent multi-turn dialogue through efficient KV cache reuse, supporting long video streams with bounded context size and inference cost. Experiments on VLN-CE benchmarks demonstrate state-of-the-art performance with stable low latency, ensuring robustness and efficiency in real-world deployment. The project page is: \href{https://streamvln.github.io/}{https://streamvln.github.io/}.
Self-Supervised Real-Time Tracking of Military Vehicles in Low-FPS UAV Footage
Multi-object tracking (MOT) aims to maintain consistent identities of objects across video frames. Associating objects in low-frame-rate videos captured by moving unmanned aerial vehicles (UAVs) in actual combat scenarios is complex due to rapid changes in object appearance and position within the frame. The task becomes even more challenging due to image degradation caused by cloud video streaming and compression algorithms. We present how instance association learning from single-frame annotations can overcome these challenges. We show that global features of the scene provide crucial context for low-FPS instance association, allowing our solution to be robust to distractors and gaps in detections. We also demonstrate that such a tracking approach maintains high association quality even when reducing the input image resolution and latent representation size for faster inference. Finally, we present a benchmark dataset of annotated military vehicles collected from publicly available data sources. This paper was initially presented at the NATO Science and Technology Organization Symposium (ICMCIS) organized by the Information Systems Technology (IST)Scientific and Technical Committee, IST-209-RSY - the ICMCIS, held in Oeiras, Portugal, 13-14 May 2025.
☆ NavigScene: Bridging Local Perception and Global Navigation for Beyond-Visual-Range Autonomous Driving
Autonomous driving systems have made significant advances in Q&A, perception, prediction, and planning based on local visual information, yet they struggle to incorporate broader navigational context that human drivers routinely utilize. We address this critical gap between local sensor data and global navigation information by proposing NavigScene, an auxiliary navigation-guided natural language dataset that simulates a human-like driving environment within autonomous driving systems. Moreover, we develop three complementary paradigms to leverage NavigScene: (1) Navigation-guided Reasoning, which enhances vision-language models by incorporating navigation context into the prompting approach; (2) Navigation-guided Preference Optimization, a reinforcement learning method that extends Direct Preference Optimization to improve vision-language model responses by establishing preferences for navigation-relevant summarized information; and (3) Navigation-guided Vision-Language-Action model, which integrates navigation guidance and vision-language models with conventional driving models through feature fusion. Extensive experiments demonstrate that our approaches significantly improve performance across perception, prediction, planning, and question-answering tasks by enabling reasoning capabilities beyond visual range and improving generalization to diverse driving scenarios. This work represents a significant step toward more comprehensive autonomous driving systems capable of navigating complex, unfamiliar environments with greater reliability and safety.
comment: Accepted by ACM Multimedia 2025
☆ CTA: Cross-Task Alignment for Better Test Time Training
Deep learning models have demonstrated exceptional performance across a wide range of computer vision tasks. However, their performance often degrades significantly when faced with distribution shifts, such as domain or dataset changes. Test-Time Training (TTT) has emerged as an effective method to enhance model robustness by incorporating an auxiliary unsupervised task during training and leveraging it for model updates at test time. In this work, we introduce CTA (Cross-Task Alignment), a novel approach for improving TTT. Unlike existing TTT methods, CTA does not require a specialized model architecture and instead takes inspiration from the success of multi-modal contrastive learning to align a supervised encoder with a self-supervised one. This process enforces alignment between the learned representations of both models, thereby mitigating the risk of gradient interference, preserving the intrinsic robustness of self-supervised learning and enabling more semantically meaningful updates at test-time. Experimental results demonstrate substantial improvements in robustness and generalization over the state-of-the-art on several benchmark datasets.
comment: Preprint, under review
☆ All in One: Visual-Description-Guided Unified Point Cloud Segmentation ICCV2025
Unified segmentation of 3D point clouds is crucial for scene understanding, but is hindered by its sparse structure, limited annotations, and the challenge of distinguishing fine-grained object classes in complex environments. Existing methods often struggle to capture rich semantic and contextual information due to limited supervision and a lack of diverse multimodal cues, leading to suboptimal differentiation of classes and instances. To address these challenges, we propose VDG-Uni3DSeg, a novel framework that integrates pre-trained vision-language models (e.g., CLIP) and large language models (LLMs) to enhance 3D segmentation. By leveraging LLM-generated textual descriptions and reference images from the internet, our method incorporates rich multimodal cues, facilitating fine-grained class and instance separation. We further design a Semantic-Visual Contrastive Loss to align point features with multimodal queries and a Spatial Enhanced Module to model scene-wide relationships efficiently. Operating within a closed-set paradigm that utilizes multimodal knowledge generated offline, VDG-Uni3DSeg achieves state-of-the-art results in semantic, instance, and panoptic segmentation, offering a scalable and practical solution for 3D understanding. Our code is available at https://github.com/Hanzy1996/VDG-Uni3DSeg.
comment: Accepted by ICCV2025
☆ MedGemma Technical Report
Artificial intelligence (AI) has significant potential in healthcare applications, but its training and deployment faces challenges due to healthcare's diverse data, complex tasks, and the need to preserve privacy. Foundation models that perform well on medical tasks and require less task-specific tuning data are critical to accelerate the development of healthcare AI applications. We introduce MedGemma, a collection of medical vision-language foundation models based on Gemma 3 4B and 27B. MedGemma demonstrates advanced medical understanding and reasoning on images and text, significantly exceeding the performance of similar-sized generative models and approaching the performance of task-specific models, while maintaining the general capabilities of the Gemma 3 base models. For out-of-distribution tasks, MedGemma achieves 2.6-10% improvement on medical multimodal question answering, 15.5-18.1% improvement on chest X-ray finding classification, and 10.8% improvement on agentic evaluations compared to the base models. Fine-tuning MedGemma further improves performance in subdomains, reducing errors in electronic health record information retrieval by 50% and reaching comparable performance to existing specialized state-of-the-art methods for pneumothorax classification and histopathology patch classification. We additionally introduce MedSigLIP, a medically-tuned vision encoder derived from SigLIP. MedSigLIP powers the visual understanding capabilities of MedGemma and as an encoder achieves comparable or better performance than specialized medical image encoders. Taken together, the MedGemma collection provides a strong foundation of medical image and text capabilities, with potential to significantly accelerate medical research and development of downstream applications. The MedGemma collection, including tutorials and model weights, can be found at https://goo.gle/medgemma.
☆ EmbodieDreamer: Advancing Real2Sim2Real Transfer for Policy Training via Embodied World Modeling
The rapid advancement of Embodied AI has led to an increasing demand for large-scale, high-quality real-world data. However, collecting such embodied data remains costly and inefficient. As a result, simulation environments have become a crucial surrogate for training robot policies. Yet, the significant Real2Sim2Real gap remains a critical bottleneck, particularly in terms of physical dynamics and visual appearance. To address this challenge, we propose EmbodieDreamer, a novel framework that reduces the Real2Sim2Real gap from both the physics and appearance perspectives. Specifically, we propose PhysAligner, a differentiable physics module designed to reduce the Real2Sim physical gap. It jointly optimizes robot-specific parameters such as control gains and friction coefficients to better align simulated dynamics with real-world observations. In addition, we introduce VisAligner, which incorporates a conditional video diffusion model to bridge the Sim2Real appearance gap by translating low-fidelity simulated renderings into photorealistic videos conditioned on simulation states, enabling high-fidelity visual transfer. Extensive experiments validate the effectiveness of EmbodieDreamer. The proposed PhysAligner reduces physical parameter estimation error by 3.74% compared to simulated annealing methods while improving optimization speed by 89.91\%. Moreover, training robot policies in the generated photorealistic environment leads to a 29.17% improvement in the average task success rate across real-world tasks after reinforcement learning. Code, model and data will be publicly available.
comment: Project Page: https://embodiedreamer.github.io/
☆ RAM-W600: A Multi-Task Wrist Dataset and Benchmark for Rheumatoid Arthritis
Rheumatoid arthritis (RA) is a common autoimmune disease that has been the focus of research in computer-aided diagnosis (CAD) and disease monitoring. In clinical settings, conventional radiography (CR) is widely used for the screening and evaluation of RA due to its low cost and accessibility. The wrist is a critical region for the diagnosis of RA. However, CAD research in this area remains limited, primarily due to the challenges in acquiring high-quality instance-level annotations. (i) The wrist comprises numerous small bones with narrow joint spaces, complex structures, and frequent overlaps, requiring detailed anatomical knowledge for accurate annotation. (ii) Disease progression in RA often leads to osteophyte, bone erosion (BE), and even bony ankylosis, which alter bone morphology and increase annotation difficulty, necessitating expertise in rheumatology. This work presents a multi-task dataset for wrist bone in CR, including two tasks: (i) wrist bone instance segmentation and (ii) Sharp/van der Heijde (SvdH) BE scoring, which is the first public resource for wrist bone instance segmentation. This dataset comprises 621 wrist conventional radiographs of 227 patients from four medical centers, with pixel-level instance segmentation annotations for 443 images and SvdH BE scores for 548 images. This dataset can potentially support a wide range of research tasks related to RA, including joint space narrowing (JSN) progression quantification, BE detection, bone deformity evaluation, and osteophyte detection. It may also be applied to other wrist-related tasks, such as carpal bone fracture localization. We hope this dataset will significantly lower the barrier to research on wrist RA and accelerate progress in CAD research within the RA-related domain.
☆ Neuralocks: Real-Time Dynamic Neural Hair Simulation
Real-time hair simulation is a vital component in creating believable virtual avatars, as it provides a sense of immersion and authenticity. The dynamic behavior of hair, such as bouncing or swaying in response to character movements like jumping or walking, plays a significant role in enhancing the overall realism and engagement of virtual experiences. Current methods for simulating hair have been constrained by two primary approaches: highly optimized physics-based systems and neural methods. However, state-of-the-art neural techniques have been limited to quasi-static solutions, failing to capture the dynamic behavior of hair. This paper introduces a novel neural method that breaks through these limitations, achieving efficient and stable dynamic hair simulation while outperforming existing approaches. We propose a fully self-supervised method which can be trained without any manual intervention or artist generated training data allowing the method to be integrated with hair reconstruction methods to enable automatic end-to-end methods for avatar reconstruction. Our approach harnesses the power of compact, memory-efficient neural networks to simulate hair at the strand level, allowing for the simulation of diverse hairstyles without excessive computational resources or memory requirements. We validate the effectiveness of our method through a variety of hairstyle examples, showcasing its potential for real-world applications.
☆ QMoE: A Quantum Mixture of Experts Framework for Scalable Quantum Neural Networks
Quantum machine learning (QML) has emerged as a promising direction in the noisy intermediate-scale quantum (NISQ) era, offering computational and memory advantages by harnessing superposition and entanglement. However, QML models often face challenges in scalability and expressiveness due to hardware constraints. In this paper, we propose quantum mixture of experts (QMoE), a novel quantum architecture that integrates the mixture of experts (MoE) paradigm into the QML setting. QMoE comprises multiple parameterized quantum circuits serving as expert models, along with a learnable quantum routing mechanism that selects and aggregates specialized quantum experts per input. The empirical results from the proposed QMoE on quantum classification tasks demonstrate that it consistently outperforms standard quantum neural networks, highlighting its effectiveness in learning complex data patterns. Our work paves the way for scalable and interpretable quantum learning frameworks.
☆ Satellite-based Rabi rice paddy field mapping in India: a case study on Telangana state
Accurate rice area monitoring is critical for food security and agricultural policy in smallholder farming regions, yet conventional remote sensing approaches struggle with the spatiotemporal heterogeneity characteristic of fragmented agricultural landscapes. This study developed a phenology-driven classification framework that systematically adapts to local agro-ecological variations across 32 districts in Telangana, India during the 2018-19 Rabi rice season. The research reveals significant spatiotemporal diversity, with phenological timing varying by up to 50 days between districts and field sizes ranging from 0.01 to 2.94 hectares. Our district-specific calibration approach achieved 93.3% overall accuracy, an 8.0 percentage point improvement over conventional regional clustering methods, with strong validation against official government statistics (R^2 = 0.981) demonstrating excellent agreement between remotely sensed and ground truth data. The framework successfully mapped 732,345 hectares by adapting to agro-climatic variations, with Northern districts requiring extended land preparation phases (up to 55 days) while Southern districts showed compressed cultivation cycles. Field size analysis revealed accuracy declining 6.8 percentage points from medium to tiny fields, providing insights for operational monitoring in fragmented landscapes. These findings demonstrate that remote sensing frameworks must embrace rather than simplify landscape complexity, advancing region-specific agricultural monitoring approaches that maintain scientific rigor while serving practical policy and food security applications.
comment: 60 pages, 17 figures. Intended for submission to Remote Sensing Applications: Society and Environment (RSASE). Funded by the European Union - NextGenerationEU, Mission 4 Component 1.5
☆ $\varphi$-Adapt: A Physics-Informed Adaptation Learning Approach to 2D Quantum Material Discovery
Characterizing quantum flakes is a critical step in quantum hardware engineering because the quality of these flakes directly influences qubit performance. Although computer vision methods for identifying two-dimensional quantum flakes have emerged, they still face significant challenges in estimating flake thickness. These challenges include limited data, poor generalization, sensitivity to domain shifts, and a lack of physical interpretability. In this paper, we introduce one of the first Physics-informed Adaptation Learning approaches to overcome these obstacles. We focus on two main issues, i.e., data scarcity and generalization. First, we propose a new synthetic data generation framework that produces diverse quantum flake samples across various materials and configurations, reducing the need for time-consuming manual collection. Second, we present $\varphi$-Adapt, a physics-informed adaptation method that bridges the performance gap between models trained on synthetic data and those deployed in real-world settings. Experimental results show that our approach achieves state-of-the-art performance on multiple benchmarks, outperforming existing methods. Our proposed approach advances the integration of physics-based modeling and domain adaptation. It also addresses a critical gap in leveraging synthesized data for real-world 2D material analysis, offering impactful tools for deep learning and materials science communities.
☆ Semantic Frame Interpolation
Generating intermediate video content of varying lengths based on given first and last frames, along with text prompt information, offers significant research and application potential. However, traditional frame interpolation tasks primarily focus on scenarios with a small number of frames, no text control, and minimal differences between the first and last frames. Recent community developers have utilized large video models represented by Wan to endow frame-to-frame capabilities. However, these models can only generate a fixed number of frames and often fail to produce satisfactory results for certain frame lengths, while this setting lacks a clear official definition and a well-established benchmark. In this paper, we first propose a new practical Semantic Frame Interpolation (SFI) task from the perspective of academic definition, which covers the above two settings and supports inference at multiple frame rates. To achieve this goal, we propose a novel SemFi model building upon Wan2.1, which incorporates a Mixture-of-LoRA module to ensure the generation of high-consistency content that aligns with control conditions across various frame length limitations. Furthermore, we propose SFI-300K, the first general-purpose dataset and benchmark specifically designed for SFI. To support this, we collect and process data from the perspective of SFI, carefully designing evaluation metrics and methods to assess the model's performance across multiple dimensions, encompassing image and video, and various aspects, including consistency and diversity. Through extensive experiments on SFI-300K, we demonstrate that our method is particularly well-suited to meet the requirements of the SFI task.
comment: https://github.com/hyj542682306/Semantic-Frame-Interpolation
☆ Critiques of World Models
World Model, the supposed algorithmic surrogate of the real-world environment which biological agents experience with and act upon, has been an emerging topic in recent years because of the rising needs to develop virtual agents with artificial (general) intelligence. There has been much debate on what a world model really is, how to build it, how to use it, and how to evaluate it. In this essay, starting from the imagination in the famed Sci-Fi classic Dune, and drawing inspiration from the concept of "hypothetical thinking" in psychology literature, we offer critiques of several schools of thoughts on world modeling, and argue the primary goal of a world model to be simulating all actionable possibilities of the real world for purposeful reasoning and acting. Building on the critiques, we propose a new architecture for a general-purpose world model, based on hierarchical, multi-level, and mixed continuous/discrete representations, and a generative and self-supervision learning framework, with an outlook of a Physical, Agentic, and Nested (PAN) AGI system enabled by such a model.
☆ Differential Attention for Multimodal Crisis Event Analysis CVPR
Social networks can be a valuable source of information during crisis events. In particular, users can post a stream of multimodal data that can be critical for real-time humanitarian response. However, effectively extracting meaningful information from this large and noisy data stream and effectively integrating heterogeneous data remains a formidable challenge. In this work, we explore vision language models (VLMs) and advanced fusion strategies to enhance the classification of crisis data in three different tasks. We incorporate LLaVA-generated text to improve text-image alignment. Additionally, we leverage Contrastive Language-Image Pretraining (CLIP)-based vision and text embeddings, which, without task-specific fine-tuning, outperform traditional models. To further refine multimodal fusion, we employ Guided Cross Attention (Guided CA) and combine it with the Differential Attention mechanism to enhance feature alignment by emphasizing critical information while filtering out irrelevant content. Our results show that while Differential Attention improves classification performance, Guided CA remains highly effective in aligning multimodal features. Extensive experiments on the CrisisMMD benchmark data set demonstrate that the combination of pretrained VLMs, enriched textual descriptions, and adaptive fusion strategies consistently outperforms state-of-the-art models in classification accuracy, contributing to more reliable and interpretable models for three different tasks that are crucial for disaster response. Our code is available at https://github.com/Munia03/Multimodal_Crisis_Event.
comment: Presented at CVPRw 2025, MMFM3
☆ 4DSloMo: 4D Reconstruction for High Speed Scene with Asynchronous Capture
Reconstructing fast-dynamic scenes from multi-view videos is crucial for high-speed motion analysis and realistic 4D reconstruction. However, the majority of 4D capture systems are limited to frame rates below 30 FPS (frames per second), and a direct 4D reconstruction of high-speed motion from low FPS input may lead to undesirable results. In this work, we propose a high-speed 4D capturing system only using low FPS cameras, through novel capturing and processing modules. On the capturing side, we propose an asynchronous capture scheme that increases the effective frame rate by staggering the start times of cameras. By grouping cameras and leveraging a base frame rate of 25 FPS, our method achieves an equivalent frame rate of 100-200 FPS without requiring specialized high-speed cameras. On processing side, we also propose a novel generative model to fix artifacts caused by 4D sparse-view reconstruction, as asynchrony reduces the number of viewpoints at each timestamp. Specifically, we propose to train a video-diffusion-based artifact-fix model for sparse 4D reconstruction, which refines missing details, maintains temporal consistency, and improves overall reconstruction quality. Experimental results demonstrate that our method significantly enhances high-speed 4D reconstruction compared to synchronous capture.
comment: Webpage: https://openimaginglab.github.io/4DSloMo/
☆ LAID: Lightweight AI-Generated Image Detection in Spatial and Spectral Domains
The recent proliferation of photorealistic AI-generated images (AIGI) has raised urgent concerns about their potential misuse, particularly on social media platforms. Current state-of-the-art AIGI detection methods typically rely on large, deep neural architectures, creating significant computational barriers to real-time, large-scale deployment on platforms like social media. To challenge this reliance on computationally intensive models, we introduce LAID, the first framework -- to our knowledge -- that benchmarks and evaluates the detection performance and efficiency of off-the-shelf lightweight neural networks. In this framework, we comprehensively train and evaluate selected models on a representative subset of the GenImage dataset across spatial, spectral, and fusion image domains. Our results demonstrate that lightweight models can achieve competitive accuracy, even under adversarial conditions, while incurring substantially lower memory and computation costs compared to current state-of-the-art methods. This study offers valuable insight into the trade-off between efficiency and performance in AIGI detection and lays a foundation for the development of practical, scalable, and trustworthy detection systems. The source code of LAID can be found at: https://github.com/nchivar/LAID.
comment: To appear in the proceedings of PST2025
☆ Latent Motion Profiling for Annotation-free Cardiac Phase Detection in Adult and Fetal Echocardiography Videos
The identification of cardiac phase is an essential step for analysis and diagnosis of cardiac function. Automatic methods, especially data-driven methods for cardiac phase detection, typically require extensive annotations, which is time-consuming and labor-intensive. In this paper, we present an unsupervised framework for end-diastole (ED) and end-systole (ES) detection through self-supervised learning of latent cardiac motion trajectories from 4-chamber-view echocardiography videos. Our method eliminates the need for manual annotations, including ED and ES indices, segmentation, or volumetric measurements, by training a reconstruction model to encode interpretable spatiotemporal motion patterns. Evaluated on the EchoNet-Dynamic benchmark, the approach achieves mean absolute error (MAE) of 3 frames (58.3 ms) for ED and 2 frames (38.8 ms) for ES detection, matching state-of-the-art supervised methods. Extended to fetal echocardiography, the model demonstrates robust performance with MAE 1.46 frames (20.7 ms) for ED and 1.74 frames (25.3 ms) for ES, despite the fact that the fetal heart model is built using non-standardized heart views due to fetal heart positioning variability. Our results demonstrate the potential of the proposed latent motion trajectory strategy for cardiac phase detection in adult and fetal echocardiography. This work advances unsupervised cardiac motion analysis, offering a scalable solution for clinical populations lacking annotated data. Code will be released at https://github.com/YingyuYyy/CardiacPhase.
☆ SV-DRR: High-Fidelity Novel View X-Ray Synthesis Using Diffusion Model MICCAI2025
X-ray imaging is a rapid and cost-effective tool for visualizing internal human anatomy. While multi-view X-ray imaging provides complementary information that enhances diagnosis, intervention, and education, acquiring images from multiple angles increases radiation exposure and complicates clinical workflows. To address these challenges, we propose a novel view-conditioned diffusion model for synthesizing multi-view X-ray images from a single view. Unlike prior methods, which are limited in angular range, resolution, and image quality, our approach leverages the Diffusion Transformer to preserve fine details and employs a weak-to-strong training strategy for stable high-resolution image generation. Experimental results demonstrate that our method generates higher-resolution outputs with improved control over viewing angles. This capability has significant implications not only for clinical applications but also for medical education and data extension, enabling the creation of diverse, high-quality datasets for training and analysis. Our code is available at GitHub.
comment: Accepted by MICCAI2025
☆ VERITAS: Verification and Explanation of Realness in Images for Transparency in AI Systems
The widespread and rapid adoption of AI-generated content, created by models such as Generative Adversarial Networks (GANs) and Diffusion Models, has revolutionized the digital media landscape by allowing efficient and creative content generation. However, these models also blur the difference between real images and AI-generated synthetic images, raising concerns regarding content authenticity and integrity. While many existing solutions to detect fake images focus solely on classification and higher-resolution images, they often lack transparency in their decision-making, making it difficult for users to understand why an image is classified as fake. In this paper, we present VERITAS, a comprehensive framework that not only accurately detects whether a small (32x32) image is AI-generated but also explains why it was classified that way through artifact localization and semantic reasoning. VERITAS produces human-readable explanations that describe key artifacts in synthetic images. We show that this architecture offers clear explanations of the basis of zero-shot synthetic image detection tasks. Code and relevant prompts can be found at https://github.com/V-i-g-n-e-s-h-N/VERITAS .
☆ LVM4CSI: Enabling Direct Application of Pre-Trained Large Vision Models for Wireless Channel Tasks
Accurate channel state information (CSI) is critical to the performance of wireless communication systems, especially with the increasing scale and complexity introduced by 5G and future 6G technologies. While artificial intelligence (AI) offers a promising approach to CSI acquisition and utilization, existing methods largely depend on task-specific neural networks (NNs) that require expert-driven design and large training datasets, limiting their generalizability and practicality. To address these challenges, we propose LVM4CSI, a general and efficient framework that leverages the structural similarity between CSI and computer vision (CV) data to directly apply large vision models (LVMs) pre-trained on extensive CV datasets to wireless tasks without any fine-tuning, in contrast to large language model-based methods that generally necessitate fine-tuning. LVM4CSI maps CSI tasks to analogous CV tasks, transforms complex-valued CSI into visual formats compatible with LVMs, and integrates lightweight trainable layers to adapt extracted features to specific communication objectives. We validate LVM4CSI through three representative case studies, including channel estimation, human activity recognition, and user localization. Results demonstrate that LVM4CSI achieves comparable or superior performance to task-specific NNs, including an improvement exceeding 9.61 dB in channel estimation and approximately 40% reduction in localization error. Furthermore, it significantly reduces the number of trainable parameters and eliminates the need for task-specific NN design.
comment: This work has been submitted for possible publication
☆ VOTE: Vision-Language-Action Optimization with Trajectory Ensemble Voting
Recent large-scale Vision Language Action (VLA) models have shown superior performance in robotic manipulation tasks guided by natural language. However, their generalization remains limited when applied to novel objects or unfamiliar environments that lie outside the training distribution. To address this, many existing approaches integrate additional components such as depth estimation, segmentation, or even diffusion to improve generalization, at the cost of adding significant computation overhead, resulting in low efficiency. This motivates the exploration of efficient action prediction methods, which are independent of additional high-level visual representations or diffusion techniques. In this work, we propose VOTE, an efficient and general framework for the optimization and acceleration of VLA models. In details, we propose a novel tokenizer-free fine-tuning approach for parallel accurate action prediction, which reduces computational overhead and accelerates inference speed. Additionally, we adopt an ensemble voting strategy for the action sampling, which significantly improves model performance and enhances generalization. Experimental results show that our method achieves state-of-the-art performance with 35$\times$ faster inference and 145 Hz throughput. All the details and codes will be open-sourced.
☆ Reviving Cultural Heritage: A Novel Approach for Comprehensive Historical Document Restoration
Historical documents represent an invaluable cultural heritage, yet have undergone significant degradation over time through tears, water erosion, and oxidation. Existing Historical Document Restoration (HDR) methods primarily focus on single modality or limited-size restoration, failing to meet practical needs. To fill this gap, we present a full-page HDR dataset (FPHDR) and a novel automated HDR solution (AutoHDR). Specifically, FPHDR comprises 1,633 real and 6,543 synthetic images with character-level and line-level locations, as well as character annotations in different damage grades. AutoHDR mimics historians' restoration workflows through a three-stage approach: OCR-assisted damage localization, vision-language context text prediction, and patch autoregressive appearance restoration. The modular architecture of AutoHDR enables seamless human-machine collaboration, allowing for flexible intervention and optimization at each restoration stage. Experiments demonstrate AutoHDR's remarkable performance in HDR. When processing severely damaged documents, our method improves OCR accuracy from 46.83\% to 84.05\%, with further enhancement to 94.25\% through human-machine collaboration. We believe this work represents a significant advancement in automated historical document restoration and contributes substantially to cultural heritage preservation. The model and dataset are available at https://github.com/SCUT-DLVCLab/AutoHDR.
☆ MoDiT: Learning Highly Consistent 3D Motion Coefficients with Diffusion Transformer for Talking Head Generation
Audio-driven talking head generation is critical for applications such as virtual assistants, video games, and films, where natural lip movements are essential. Despite progress in this field, challenges remain in producing both consistent and realistic facial animations. Existing methods, often based on GANs or UNet-based diffusion models, face three major limitations: (i) temporal jittering caused by weak temporal constraints, resulting in frame inconsistencies; (ii) identity drift due to insufficient 3D information extraction, leading to poor preservation of facial identity; and (iii) unnatural blinking behavior due to inadequate modeling of realistic blink dynamics. To address these issues, we propose MoDiT, a novel framework that combines the 3D Morphable Model (3DMM) with a Diffusion-based Transformer. Our contributions include: (i) A hierarchical denoising strategy with revised temporal attention and biased self/cross-attention mechanisms, enabling the model to refine lip synchronization and progressively enhance full-face coherence, effectively mitigating temporal jittering. (ii) The integration of 3DMM coefficients to provide explicit spatial constraints, ensuring accurate 3D-informed optical flow prediction and improved lip synchronization using Wav2Lip results, thereby preserving identity consistency. (iii) A refined blinking strategy to model natural eye movements, with smoother and more realistic blinking behaviors.
☆ Sequential Attention-based Sampling for Histopathological Analysis
Deep neural networks are increasingly applied for automated histopathology. Yet, whole-slide images (WSIs) are often acquired at gigapixel sizes, rendering it computationally infeasible to analyze them entirely at high resolution. Diagnostic labels are largely available only at the slide-level, because expert annotation of images at a finer (patch) level is both laborious and expensive. Moreover, regions with diagnostic information typically occupy only a small fraction of the WSI, making it inefficient to examine the entire slide at full resolution. Here, we propose SASHA -- {\it S}equential {\it A}ttention-based {\it S}ampling for {\it H}istopathological {\it A}nalysis -- a deep reinforcement learning approach for efficient analysis of histopathological images. First, SASHA learns informative features with a lightweight hierarchical, attention-based multiple instance learning (MIL) model. Second, SASHA samples intelligently and zooms selectively into a small fraction (10-20\%) of high-resolution patches, to achieve reliable diagnosis. We show that SASHA matches state-of-the-art methods that analyze the WSI fully at high-resolution, albeit at a fraction of their computational and memory costs. In addition, it significantly outperforms competing, sparse sampling methods. We propose SASHA as an intelligent sampling model for medical imaging challenges that involve automated diagnosis with exceptionally large images containing sparsely informative features.
☆ ICAS: Detecting Training Data from Autoregressive Image Generative Models ACM MM 2025
Autoregressive image generation has witnessed rapid advancements, with prominent models such as scale-wise visual auto-regression pushing the boundaries of visual synthesis. However, these developments also raise significant concerns regarding data privacy and copyright. In response, training data detection has emerged as a critical task for identifying unauthorized data usage in model training. To better understand the vulnerability of autoregressive image generative models to such detection, we conduct the first study applying membership inference to this domain. Our approach comprises two key components: implicit classification and an adaptive score aggregation strategy. First, we compute the implicit token-wise classification score within the query image. Then we propose an adaptive score aggregation strategy to acquire a final score, which places greater emphasis on the tokens with lower scores. A higher final score indicates that the sample is more likely to be involved in the training set. To validate the effectiveness of our method, we adapt existing detection algorithms originally designed for LLMs to visual autoregressive models. Extensive experiments demonstrate the superiority of our method in both class-conditional and text-to-image scenarios. Moreover, our approach exhibits strong robustness and generalization under various data transformations. Furthermore, sufficient experiments suggest two novel key findings: (1) A linear scaling law on membership inference, exposing the vulnerability of large foundation models. (2) Training data from scale-wise visual autoregressive models is easier to detect than other autoregressive paradigms.Our code is available at https://github.com/Chrisqcwx/ImageAR-MIA.
comment: ACM MM 2025
☆ AI-Driven Cytomorphology Image Synthesis for Medical Diagnostics SC
Biomedical datasets often contain a large sample imbalance and are subject to strict privacy constraints, which together hinder the development of accurate machine learning models. One potential solution is to generate synthetic images, as this can improve data availability while preserving patient privacy. However, it remains difficult to generate synthetic images of sufficient quality for training robust classifiers. In this work, we focus on the classification of single white blood cells, a key component in the diagnosis of hematological diseases such as acute myeloid leukemia (AML), a severe blood cancer. We demonstrate how synthetic images generated with a fine-tuned stable diffusion model using LoRA weights when guided by real few-shot samples of the target white blood cell classes, can enhance classifier performance for limited data. When training a ResNet classifier, accuracy increased from 27.3\% to 78.4\% (+51.1\%) by adding 5000 synthetic images per class to a small and highly imbalanced real dataset. For a CLIP-based classifier, the accuracy improved from 61.8\% to 76.8\% (+15.0\%). The synthetic images are highly similar to real images, and they can help overcome dataset limitations, enhancing model generalization. Our results establish synthetic images as a tool in biomedical research, improving machine learning models, and facilitating medical diagnosis and research.
comment: 8 pages, 6 figures, 2 tables. Final Degree Project (TFG) submitted at ESCI-UPF and conducted at Helmholtz Munich
☆ INTER: Mitigating Hallucination in Large Vision-Language Models by Interaction Guidance Sampling
Hallucinations in large vision-language models (LVLMs) pose significant challenges for real-world applications, as LVLMs may generate responses that appear plausible yet remain inconsistent with the associated visual content. This issue rarely occurs in human cognition. We argue that this discrepancy arises from humans' ability to effectively leverage multimodal interaction information in data samples. Specifically, humans typically first gather multimodal information, analyze the interactions across modalities for understanding, and then express their understanding through language. Motivated by this observation, we conduct extensive experiments on popular LVLMs and obtained insights that surprisingly reveal human-like, though less pronounced, cognitive behavior of LVLMs on multimodal samples. Building on these findings, we further propose \textbf{INTER}: \textbf{Inter}action Guidance Sampling, a novel training-free algorithm that mitigate hallucinations without requiring additional data. Specifically, INTER explicitly guides LVLMs to effectively reapply their understanding of multimodal interaction information when generating responses, thereby reducing potential hallucinations. On six benchmarks including VQA and image captioning tasks, INTER achieves an average improvement of up to 3.4\% on five LVLMs compared to the state-of-the-art decoding strategy. The code will be released when the paper is accepted.
☆ Estimating Object Physical Properties from RGB-D Vision and Depth Robot Sensors Using Deep Learning
Inertial mass plays a crucial role in robotic applications such as object grasping, manipulation, and simulation, providing a strong prior for planning and control. Accurately estimating an object's mass before interaction can significantly enhance the performance of various robotic tasks. However, mass estimation using only vision sensors is a relatively underexplored area. This paper proposes a novel approach combining sparse point-cloud data from depth images with RGB images to estimate the mass of objects. We evaluate a range of point-cloud processing architectures, alongside RGB-only methods. To overcome the limited availability of training data, we create a synthetic dataset using ShapeNetSem 3D models, simulating RGBD images via a Kinect camera. This synthetic data is used to train an image generation model for estimating dense depth maps, which we then use to augment an existing dataset of images paired with mass values. Our approach significantly outperforms existing benchmarks across all evaluated metrics. The data generation (https://github.com/RavineWindteer/ShapenetSem-to-RGBD) as well as the training of the depth estimator (https://github.com/RavineWindteer/GLPDepth-Edited) and the mass estimator (https://github.com/RavineWindteer/Depth-mass-estimator) are available online.
☆ Adaptation of Multi-modal Representation Models for Multi-task Surgical Computer Vision
Surgical AI often involves multiple tasks within a single procedure, like phase recognition or assessing the Critical View of Safety in laparoscopic cholecystectomy. Traditional models, built for one task at a time, lack flexibility, requiring a separate model for each. To address this, we introduce MML-SurgAdapt, a unified multi-task framework with Vision-Language Models (VLMs), specifically CLIP, to handle diverse surgical tasks through natural language supervision. A key challenge in multi-task learning is the presence of partial annotations when integrating different tasks. To overcome this, we employ Single Positive Multi-Label (SPML) learning, which traditionally reduces annotation burden by training models with only one positive label per instance. Our framework extends this approach to integrate data from multiple surgical tasks within a single procedure, enabling effective learning despite incomplete or noisy annotations. We demonstrate the effectiveness of our model on a combined dataset consisting of Cholec80, Endoscapes2023, and CholecT50, utilizing custom prompts. Extensive evaluation shows that MML-SurgAdapt performs comparably to task-specific benchmarks, with the added advantage of handling noisy annotations. It also outperforms the existing SPML frameworks for the task. By reducing the required labels by 23%, our approach proposes a more scalable and efficient labeling process, significantly easing the annotation burden on clinicians. To our knowledge, this is the first application of SPML to integrate data from multiple surgical tasks, presenting a novel and generalizable solution for multi-task learning in surgical computer vision. Implementation is available at: https://github.com/CAMMA-public/MML-SurgAdapt
☆ When Imitation Learning Outperforms Reinforcement Learning in Surgical Action Planning
Surgical action planning requires predicting future instrument-verb-target triplets for real-time assistance. While teleoperated robotic surgery provides natural expert demonstrations for imitation learning (IL), reinforcement learning (RL) could potentially discover superior strategies through exploration. We present the first comprehensive comparison of IL versus RL for surgical action planning on CholecT50. Our Dual-task Autoregressive Imitation Learning (DARIL) baseline achieves 34.6% action triplet recognition mAP and 33.6% next frame prediction mAP with smooth planning degradation to 29.2% at 10-second horizons. We evaluated three RL variants: world model-based RL, direct video RL, and inverse RL enhancement. Surprisingly, all RL approaches underperformed DARIL i.e. world model RL dropped to 3.1% mAP at 10s while direct video RL achieved only 15.9%. Our analysis reveals that distribution matching on expert-annotated test sets systematically favors IL over potentially valid RL policies that differ from training demonstrations. This challenges assumptions about RL superiority in sequential decision making and provides crucial insights for surgical AI development.
comment: This manuscript has been submitted to a conference and is being peer reviewed
☆ Multi-modal Representations for Fine-grained Multi-label Critical View of Safety Recognition
The Critical View of Safety (CVS) is crucial for safe laparoscopic cholecystectomy, yet assessing CVS criteria remains a complex and challenging task, even for experts. Traditional models for CVS recognition depend on vision-only models learning with costly, labor-intensive spatial annotations. This study investigates how text can be harnessed as a powerful tool for both training and inference in multi-modal surgical foundation models to automate CVS recognition. Unlike many existing multi-modal models, which are primarily adapted for multi-class classification, CVS recognition requires a multi-label framework. Zero-shot evaluation of existing multi-modal surgical models shows a significant performance gap for this task. To address this, we propose CVS-AdaptNet, a multi-label adaptation strategy that enhances fine-grained, binary classification across multiple labels by aligning image embeddings with textual descriptions of each CVS criterion using positive and negative prompts. By adapting PeskaVLP, a state-of-the-art surgical foundation model, on the Endoscapes-CVS201 dataset, CVS-AdaptNet achieves 57.6 mAP, improving over the ResNet50 image-only baseline (51.5 mAP) by 6 points. Our results show that CVS-AdaptNet's multi-label, multi-modal framework, enhanced by textual prompts, boosts CVS recognition over image-only methods. We also propose text-specific inference methods, that helps in analysing the image-text alignment. While further work is needed to match state-of-the-art spatial annotation-based methods, this approach highlights the potential of adapting generalist models to specialized surgical tasks. Code: https://github.com/CAMMA-public/CVS-AdaptNet
☆ Robust Incomplete-Modality Alignment for Ophthalmic Disease Grading and Diagnosis via Labeled Optimal Transport MICCAI 2025
Multimodal ophthalmic imaging-based diagnosis integrates color fundus image with optical coherence tomography (OCT) to provide a comprehensive view of ocular pathologies. However, the uneven global distribution of healthcare resources often results in real-world clinical scenarios encountering incomplete multimodal data, which significantly compromises diagnostic accuracy. Existing commonly used pipelines, such as modality imputation and distillation methods, face notable limitations: 1)Imputation methods struggle with accurately reconstructing key lesion features, since OCT lesions are localized, while fundus images vary in style. 2)distillation methods rely heavily on fully paired multimodal training data. To address these challenges, we propose a novel multimodal alignment and fusion framework capable of robustly handling missing modalities in the task of ophthalmic diagnostics. By considering the distinctive feature characteristics of OCT and fundus images, we emphasize the alignment of semantic features within the same category and explicitly learn soft matching between modalities, allowing the missing modality to utilize existing modality information, achieving robust cross-modal feature alignment under the missing modality. Specifically, we leverage the Optimal Transport for multi-scale modality feature alignment: class-wise alignment through predicted class prototypes and feature-wise alignment via cross-modal shared feature transport. Furthermore, we propose an asymmetric fusion strategy that effectively exploits the distinct characteristics of OCT and fundus modalities. Extensive evaluations on three large ophthalmic multimodal datasets demonstrate our model's superior performance under various modality-incomplete scenarios, achieving Sota performance in both complete modality and inter-modality incompleteness conditions. Code is available at https://github.com/Qinkaiyu/RIMA
comment: MICCAI 2025
☆ AI for the Routine, Humans for the Complex: Accuracy-Driven Data Labelling with Mixed Integer Linear Programming
The scarcity of accurately labelled data remains a major challenge in deep learning (DL). Many DL approaches rely on semi-supervised methods, which focus on constructing large datasets that require only a minimal amount of human-labelled data. Since DL training algorithms can tolerate moderate label noise, it has generally been acceptable for the accuracy of labels in large training datasets to fall well short of a perfect 100%. However, when it comes to testing DL models, achieving high label accuracy-as close to 100% as possible-is paramount for reliable verification. In this article, we introduce OPAL, a human-assisted labelling method that can be configured to target a desired accuracy level while minimizing the manual effort required for labelling. The main contribution of OPAL is a mixed-integer linear programming (MILP) formulation that minimizes labelling effort subject to a specified accuracy target. We evaluate OPAL for two tasks in the context of testing vision systems: automatic labelling of test data and automated validation of test data. Our evaluation, based on more than 2500 experiments performed on seven datasets, comparing OPAL with eight baseline methods, shows that OPAL, relying on its MILP formulation, achieves an average accuracy of 98.8%, just 1.2% below perfect accuracy, while cutting manual labelling by more than half. Further, OPAL significantly outperforms automated labelling baselines in labelling accuracy across all seven datasets, with large effect sizes, when all methods are provided with the same manual-labelling budget. For automated test-input validation, on average, OPAL reduces manual effort by 28.8% while achieving 4.5% higher accuracy than the SOTA validation baselines. Finally, we show that augmenting OPAL with an active learning loop leads to an additional 4.5% reduction in required manual labelling, without compromising accuracy.
☆ TLB-VFI: Temporal-Aware Latent Brownian Bridge Diffusion for Video Frame Interpolation
Video Frame Interpolation (VFI) aims to predict the intermediate frame $I_n$ (we use n to denote time in videos to avoid notation overload with the timestep $t$ in diffusion models) based on two consecutive neighboring frames $I_0$ and $I_1$. Recent approaches apply diffusion models (both image-based and video-based) in this task and achieve strong performance. However, image-based diffusion models are unable to extract temporal information and are relatively inefficient compared to non-diffusion methods. Video-based diffusion models can extract temporal information, but they are too large in terms of training scale, model size, and inference time. To mitigate the above issues, we propose Temporal-Aware Latent Brownian Bridge Diffusion for Video Frame Interpolation (TLB-VFI), an efficient video-based diffusion model. By extracting rich temporal information from video inputs through our proposed 3D-wavelet gating and temporal-aware autoencoder, our method achieves 20% improvement in FID on the most challenging datasets over recent SOTA of image-based diffusion models. Meanwhile, due to the existence of rich temporal information, our method achieves strong performance while having 3times fewer parameters. Such a parameter reduction results in 2.3x speed up. By incorporating optical flow guidance, our method requires 9000x less training data and achieves over 20x fewer parameters than video-based diffusion models. Codes and results are available at our project page: https://zonglinl.github.io/tlbvfi_page.
☆ Parameterized Diffusion Optimization enabled Autoregressive Ordinal Regression for Diabetic Retinopathy Grading MICCAI 2025
As a long-term complication of diabetes, diabetic retinopathy (DR) progresses slowly, potentially taking years to threaten vision. An accurate and robust evaluation of its severity is vital to ensure prompt management and care. Ordinal regression leverages the underlying inherent order between categories to achieve superior performance beyond traditional classification. However, there exist challenges leading to lower DR classification performance: 1) The uneven distribution of DR severity levels, characterized by a long-tailed pattern, adds complexity to the grading process. 2)The ambiguity in defining category boundaries introduces additional challenges, making the classification process more complex and prone to inconsistencies. This work proposes a novel autoregressive ordinal regression method called AOR-DR to address the above challenges by leveraging the clinical knowledge of inherent ordinal information in DR grading dataset settings. Specifically, we decompose the DR grading task into a series of ordered steps by fusing the prediction of the previous steps with extracted image features as conditions for the current prediction step. Additionally, we exploit the diffusion process to facilitate conditional probability modeling, enabling the direct use of continuous global image features for autoregression without relearning contextual information from patch-level features. This ensures the effectiveness of the autoregressive process and leverages the capabilities of pre-trained large-scale foundation models. Extensive experiments were conducted on four large-scale publicly available color fundus datasets, demonstrating our model's effectiveness and superior performance over six recent state-of-the-art ordinal regression methods. The implementation code is available at https://github.com/Qinkaiyu/AOR-DR.
comment: MICCAI 2025
☆ Can Video LLMs Refuse to Answer? Alignment for Answerability in Video Large Language Models ICLR 2025
In the broader context of deep learning, Multimodal Large Language Models have achieved significant breakthroughs by leveraging powerful Large Language Models as a backbone to align different modalities into the language space. A prime exemplification is the development of Video Large Language Models (Video-LLMs). While numerous advancements have been proposed to enhance the video understanding capabilities of these models, they are predominantly trained on questions generated directly from video content. However, in real-world scenarios, users often pose questions that extend beyond the informational scope of the video, highlighting the need for Video-LLMs to assess the relevance of the question. We demonstrate that even the best-performing Video-LLMs fail to reject unfit questions-not necessarily due to a lack of video understanding, but because they have not been trained to identify and refuse such questions. To address this limitation, we propose alignment for answerability, a framework that equips Video-LLMs with the ability to evaluate the relevance of a question based on the input video and appropriately decline to answer when the question exceeds the scope of the video, as well as an evaluation framework with a comprehensive set of metrics designed to measure model behavior before and after alignment. Furthermore, we present a pipeline for creating a dataset specifically tailored for alignment for answerability, leveraging existing video-description paired datasets.
comment: ICLR 2025
☆ InterGSEdit: Interactive 3D Gaussian Splatting Editing with 3D Geometry-Consistent Attention Prior
3D Gaussian Splatting based 3D editing has demonstrated impressive performance in recent years. However, the multi-view editing often exhibits significant local inconsistency, especially in areas of non-rigid deformation, which lead to local artifacts, texture blurring, or semantic variations in edited 3D scenes. We also found that the existing editing methods, which rely entirely on text prompts make the editing process a "one-shot deal", making it difficult for users to control the editing degree flexibly. In response to these challenges, we present InterGSEdit, a novel framework for high-quality 3DGS editing via interactively selecting key views with users' preferences. We propose a CLIP-based Semantic Consistency Selection (CSCS) strategy to adaptively screen a group of semantically consistent reference views for each user-selected key view. Then, the cross-attention maps derived from the reference views are used in a weighted Gaussian Splatting unprojection to construct the 3D Geometry-Consistent Attention Prior ($GAP^{3D}$). We project $GAP^{3D}$ to obtain 3D-constrained attention, which are fused with 2D cross-attention via Attention Fusion Network (AFN). AFN employs an adaptive attention strategy that prioritizes 3D-constrained attention for geometric consistency during early inference, and gradually prioritizes 2D cross-attention maps in diffusion for fine-grained features during the later inference. Extensive experiments demonstrate that InterGSEdit achieves state-of-the-art performance, delivering consistent, high-fidelity 3DGS editing with improved user experience.
☆ Hear-Your-Click: Interactive Video-to-Audio Generation via Object-aware Contrastive Audio-Visual Fine-tuning
Video-to-audio (V2A) generation shows great potential in fields such as film production. Despite significant advances, current V2A methods, which rely on global video information, struggle with complex scenes and often fail to generate audio tailored to specific objects or regions in the videos. To address these limitations, we introduce Hear-Your-Click, an interactive V2A framework that enables users to generate sounds for specific objects in the videos by simply clicking on the frame. To achieve this, we propose Object-aware Contrastive Audio-Visual Fine-tuning (OCAV) with a Mask-guided Visual Encoder (MVE) to obtain object-level visual features aligned with corresponding audio segments. Furthermore, we tailor two data augmentation strategies: Random Video Stitching (RVS) and Mask-guided Loudness Modulation (MLM), aimed at enhancing the model's sensitivity to the segmented objects. To effectively measure the audio-visual correspondence, we design a new evaluation metric, the CAV score, for evaluation. Extensive experiments demonstrate that our framework offers more precise control and improved generation performance across various metrics. Project Page: https://github.com/SynapGrid/Hear-Your-Click
☆ Boosting Temporal Sentence Grounding via Causal Inference ACM MM 2025
Temporal Sentence Grounding (TSG) aims to identify relevant moments in an untrimmed video that semantically correspond to a given textual query. Despite existing studies having made substantial progress, they often overlook the issue of spurious correlations between video and textual queries. These spurious correlations arise from two primary factors: (1) inherent biases in the textual data, such as frequent co-occurrences of specific verbs or phrases, and (2) the model's tendency to overfit to salient or repetitive patterns in video content. Such biases mislead the model into associating textual cues with incorrect visual moments, resulting in unreliable predictions and poor generalization to out-of-distribution examples. To overcome these limitations, we propose a novel TSG framework, causal intervention and counterfactual reasoning that utilizes causal inference to eliminate spurious correlations and enhance the model's robustness. Specifically, we first formulate the TSG task from a causal perspective with a structural causal model. Then, to address unobserved confounders reflecting textual biases toward specific verbs or phrases, a textual causal intervention is proposed, utilizing do-calculus to estimate the causal effects. Furthermore, visual counterfactual reasoning is performed by constructing a counterfactual scenario that focuses solely on video features, excluding the query and fused multi-modal features. This allows us to debias the model by isolating and removing the influence of the video from the overall effect. Experiments on public datasets demonstrate the superiority of the proposed method. The code is available at https://github.com/Tangkfan/CICR.
comment: Accepted by ACM MM 2025
☆ EXPOTION: Facial Expression and Motion Control for Multimodal Music Generation
We propose Expotion (Facial Expression and Motion Control for Multimodal Music Generation), a generative model leveraging multimodal visual controls - specifically, human facial expressions and upper-body motion - as well as text prompts to produce expressive and temporally accurate music. We adopt parameter-efficient fine-tuning (PEFT) on the pretrained text-to-music generation model, enabling fine-grained adaptation to the multimodal controls using a small dataset. To ensure precise synchronization between video and music, we introduce a temporal smoothing strategy to align multiple modalities. Experiments demonstrate that integrating visual features alongside textual descriptions enhances the overall quality of generated music in terms of musicality, creativity, beat-tempo consistency, temporal alignment with the video, and text adherence, surpassing both proposed baselines and existing state-of-the-art video-to-music generation models. Additionally, we introduce a novel dataset consisting of 7 hours of synchronized video recordings capturing expressive facial and upper-body gestures aligned with corresponding music, providing significant potential for future research in multimodal and interactive music generation.
☆ DC-AR: Efficient Masked Autoregressive Image Generation with Deep Compression Hybrid Tokenizer ICCV 2025
We introduce DC-AR, a novel masked autoregressive (AR) text-to-image generation framework that delivers superior image generation quality with exceptional computational efficiency. Due to the tokenizers' limitations, prior masked AR models have lagged behind diffusion models in terms of quality or efficiency. We overcome this limitation by introducing DC-HT - a deep compression hybrid tokenizer for AR models that achieves a 32x spatial compression ratio while maintaining high reconstruction fidelity and cross-resolution generalization ability. Building upon DC-HT, we extend MaskGIT and create a new hybrid masked autoregressive image generation framework that first produces the structural elements through discrete tokens and then applies refinements via residual tokens. DC-AR achieves state-of-the-art results with a gFID of 5.49 on MJHQ-30K and an overall score of 0.69 on GenEval, while offering 1.5-7.9x higher throughput and 2.0-3.5x lower latency compared to prior leading diffusion and autoregressive models.
comment: ICCV 2025
☆ Taming the Tri-Space Tension: ARC-Guided Hallucination Modeling and Control for Text-to-Image Generation
Despite remarkable progress in image quality and prompt fidelity, text-to-image (T2I) diffusion models continue to exhibit persistent "hallucinations", where generated content subtly or significantly diverges from the intended prompt semantics. While often regarded as unpredictable artifacts, we argue that these failures reflect deeper, structured misalignments within the generative process. In this work, we propose a cognitively inspired perspective that reinterprets hallucinations as trajectory drift within a latent alignment space. Empirical observations reveal that generation unfolds within a multiaxial cognitive tension field, where the model must continuously negotiate competing demands across three key critical axes: semantic coherence, structural alignment, and knowledge grounding. We then formalize this three-axis space as the \textbf{Hallucination Tri-Space} and introduce the Alignment Risk Code (ARC): a dynamic vector representation that quantifies real-time alignment tension during generation. The magnitude of ARC captures overall misalignment, its direction identifies the dominant failure axis, and its imbalance reflects tension asymmetry. Based on this formulation, we develop the TensionModulator (TM-ARC): a lightweight controller that operates entirely in latent space. TM-ARC monitors ARC signals and applies targeted, axis-specific interventions during the sampling process. Extensive experiments on standard T2I benchmarks demonstrate that our approach significantly reduces hallucination without compromising image quality or diversity. This framework offers a unified and interpretable approach for understanding and mitigating generative failures in diffusion-based T2I systems.
comment: 12 pages, 6 figures, 4 tables
☆ ReLoop: "Seeing Twice and Thinking Backwards" via Closed-loop Training to Mitigate Hallucinations in Multimodal understanding
While Multimodal Large Language Models (MLLMs) have achieved remarkable progress in open-ended visual question answering, they remain vulnerable to hallucinations. These are outputs that contradict or misrepresent input semantics, posing a critical challenge to the reliability and factual consistency. Existing methods often rely on external verification or post-hoc correction, lacking an internal mechanism to validate outputs directly during training. To bridge this gap, we propose ReLoop, a unified closed-loop training framework that encourages multimodal consistency for cross-modal understanding in MLLMs. ReLoop adopts a ring-shaped structure that integrates three complementary consistency feedback mechanisms, obliging MLLMs to "seeing twice and thinking backwards". Specifically, ReLoop employs the frozen Consistency Feedback Plugin (CFP), comprising semantic reconstruction, visual description, and an attention supervision module for attention alignment. These components collectively enforce semantic reversibility, visual consistency, and interpretable attention, enabling the model to correct its outputs during training. Extensive evaluations and analyses demonstrate the effectiveness of ReLoop in reducing hallucination rates across multiple benchmarks, establishing a robust method for hallucination mitigation in MLLMs. We will release our source code and data in the camera-ready version.
comment: 8 pages,6 figures,5 tables
☆ RainShift: A Benchmark for Precipitation Downscaling Across Geographies
Earth System Models (ESM) are our main tool for projecting the impacts of climate change. However, running these models at sufficient resolution for local-scale risk-assessments is not computationally feasible. Deep learning-based super-resolution models offer a promising solution to downscale ESM outputs to higher resolutions by learning from data. Yet, due to regional variations in climatic processes, these models typically require retraining for each geographical area-demanding high-resolution observational data, which is unevenly available across the globe. This highlights the need to assess how well these models generalize across geographic regions. To address this, we introduce RainShift, a dataset and benchmark for evaluating downscaling under geographic distribution shifts. We evaluate state-of-the-art downscaling approaches including GANs and diffusion models in generalizing across data gaps between the Global North and Global South. Our findings reveal substantial performance drops in out-of-distribution regions, depending on model and geographic area. While expanding the training domain generally improves generalization, it is insufficient to overcome shifts between geographically distinct regions. We show that addressing these shifts through, for example, data alignment can improve spatial generalization. Our work advances the global applicability of downscaling methods and represents a step toward reducing inequities in access to high-resolution climate information.
☆ ConBatch-BAL: Batch Bayesian Active Learning under Budget Constraints
Varying annotation costs among data points and budget constraints can hinder the adoption of active learning strategies in real-world applications. This work introduces two Bayesian active learning strategies for batch acquisition under constraints (ConBatch-BAL), one based on dynamic thresholding and one following greedy acquisition. Both select samples using uncertainty metrics computed via Bayesian neural networks. The dynamic thresholding strategy redistributes the budget across the batch, while the greedy one selects the top-ranked sample at each step, limited by the remaining budget. Focusing on scenarios with costly data annotation and geospatial constraints, we also release two new real-world datasets containing geolocated aerial images of buildings, annotated with energy efficiency or typology classes. The ConBatch-BAL strategies are benchmarked against a random acquisition baseline on these datasets under various budget and cost scenarios. The results show that the developed ConBatch-BAL strategies can reduce active learning iterations and data acquisition costs in real-world settings, and even outperform the unconstrained baseline solutions.
☆ Leveraging Self-Supervised Features for Efficient Flooded Region Identification in UAV Aerial Images
Identifying regions affected by disasters is a vital step in effectively managing and planning relief and rescue efforts. Unlike the traditional approaches of manually assessing post-disaster damage, analyzing images of Unmanned Aerial Vehicles (UAVs) offers an objective and reliable way to assess the damage. In the past, segmentation techniques have been adopted to identify post-flood damage in UAV aerial images. However, most of these supervised learning approaches rely on manually annotated datasets. Indeed, annotating images is a time-consuming and error-prone task that requires domain expertise. This work focuses on leveraging self-supervised features to accurately identify flooded regions in UAV aerial images. This work proposes two encoder-decoder-based segmentation approaches, which integrate the visual features learned from DINOv2 with the traditional encoder backbone. This study investigates the generalization of self-supervised features for UAV aerial images. Specifically, we evaluate the effectiveness of features from the DINOv2 model, trained on non-aerial images, for segmenting aerial images, noting the distinct perspectives between the two image types. Our results demonstrate that DINOv2's self-supervised pretraining on natural images generates transferable, general-purpose visual features that streamline the development of aerial segmentation workflows. By leveraging these features as a foundation, we significantly reduce reliance on labor-intensive manual annotation processes, enabling high-accuracy segmentation with limited labeled aerial data.
comment: 13 Pages, 4 Figures
☆ Piggyback Camera: Easy-to-Deploy Visual Surveillance by Mobile Sensing on Commercial Robot Vacuums
This paper presents Piggyback Camera, an easy-to-deploy system for visual surveillance using commercial robot vacuums. Rather than requiring access to internal robot systems, our approach mounts a smartphone equipped with a camera and Inertial Measurement Unit (IMU) on the robot, making it applicable to any commercial robot without hardware modifications. The system estimates robot poses through neural inertial navigation and efficiently captures images at regular spatial intervals throughout the cleaning task. We develop a novel test-time data augmentation method called Rotation-Augmented Ensemble (RAE) to mitigate domain gaps in neural inertial navigation. A loop closure method that exploits robot cleaning patterns further refines these estimated poses. We demonstrate the system with an object mapping application that analyzes captured images to geo-localize objects in the environment. Experimental evaluation in retail environments shows that our approach achieves 0.83 m relative pose error for robot localization and 0.97 m positional error for object mapping of over 100 items.
☆ HV-MMBench: Benchmarking MLLMs for Human-Centric Video Understanding
Multimodal Large Language Models (MLLMs) have demonstrated significant advances in visual understanding tasks involving both images and videos. However, their capacity to comprehend human-centric video data remains underexplored, primarily due to the absence of comprehensive and high-quality evaluation benchmarks. Existing human-centric benchmarks predominantly emphasize video generation quality and action recognition, while overlooking essential perceptual and cognitive abilities required in human-centered scenarios. Furthermore, they are often limited by single-question paradigms and overly simplistic evaluation metrics. To address above limitations, we propose a modern HV-MMBench, a rigorously curated benchmark designed to provide a more holistic evaluation of MLLMs in human-centric video understanding. Compared to existing human-centric video benchmarks, our work offers the following key features: (1) Diverse evaluation dimensions: HV-MMBench encompasses 15 tasks, ranging from basic attribute perception (e.g., age estimation, emotion recognition) to advanced cognitive reasoning (e.g., social relationship prediction, intention prediction), enabling comprehensive assessment of model capabilities; (2) Varied data types: The benchmark includes multiple-choice, fill-in-blank, true/false, and open-ended question formats, combined with diverse evaluation metrics, to more accurately and robustly reflect model performance; (3) Multi-domain video coverage: The benchmark spans 50 distinct visual scenarios, enabling comprehensive evaluation across fine-grained scene variations; (4) Temporal coverage: The benchmark covers videos from short-term (10 seconds) to long-term (up to 30min) durations, supporting systematic analysis of models temporal reasoning abilities across diverse contextual lengths.
comment: Under review
☆ MurreNet: Modeling Holistic Multimodal Interactions Between Histopathology and Genomic Profiles for Survival Prediction MICCAI 2025
Cancer survival prediction requires integrating pathological Whole Slide Images (WSIs) and genomic profiles, a challenging task due to the inherent heterogeneity and the complexity of modeling both inter- and intra-modality interactions. Current methods often employ straightforward fusion strategies for multimodal feature integration, failing to comprehensively capture modality-specific and modality-common interactions, resulting in a limited understanding of multimodal correlations and suboptimal predictive performance. To mitigate these limitations, this paper presents a Multimodal Representation Decoupling Network (MurreNet) to advance cancer survival analysis. Specifically, we first propose a Multimodal Representation Decomposition (MRD) module to explicitly decompose paired input data into modality-specific and modality-shared representations, thereby reducing redundancy between modalities. Furthermore, the disentangled representations are further refined then updated through a novel training regularization strategy that imposes constraints on distributional similarity, difference, and representativeness of modality features. Finally, the augmented multimodal features are integrated into a joint representation via proposed Deep Holistic Orthogonal Fusion (DHOF) strategy. Extensive experiments conducted on six TCGA cancer cohorts demonstrate that our MurreNet achieves state-of-the-art (SOTA) performance in survival prediction.
comment: 11 pages, 2 figures, Accepted by MICCAI 2025
☆ Uncovering Neuroimaging Biomarkers of Brain Tumor Surgery with AI-Driven Methods
Brain tumor resection is a complex procedure with significant implications for patient survival and quality of life. Predictions of patient outcomes provide clinicians and patients the opportunity to select the most suitable onco-functional balance. In this study, global features derived from structural magnetic resonance imaging in a clinical dataset of 49 pre- and post-surgery patients identified potential biomarkers associated with survival outcomes. We propose a framework that integrates Explainable AI (XAI) with neuroimaging-based feature engineering for survival assessment, offering guidance for surgical decision-making. In this study, we introduce a global explanation optimizer that refines survival-related feature attribution in deep learning models, enhancing interpretability and reliability. Our findings suggest that survival is influenced by alterations in regions associated with cognitive and sensory functions, indicating the importance of preserving areas involved in decision-making and emotional regulation during surgery to improve outcomes. The global explanation optimizer improves both fidelity and comprehensibility of explanations compared to state-of-the-art XAI methods. It effectively identifies survival-related variability, underscoring its relevance in precision medicine for brain tumor treatment.
☆ HGNet: High-Order Spatial Awareness Hypergraph and Multi-Scale Context Attention Network for Colorectal Polyp Detection
Colorectal cancer (CRC) is closely linked to the malignant transformation of colorectal polyps, making early detection essential. However, current models struggle with detecting small lesions, accurately localizing boundaries, and providing interpretable decisions. To address these issues, we propose HGNet, which integrates High-Order Spatial Awareness Hypergraph and Multi-Scale Context Attention. Key innovations include: (1) an Efficient Multi-Scale Context Attention (EMCA) module to enhance lesion feature representation and boundary modeling; (2) the deployment of a spatial hypergraph convolution module before the detection head to capture higher-order spatial relationships between nodes; (3) the application of transfer learning to address the scarcity of medical image data; and (4) Eigen Class Activation Map (Eigen-CAM) for decision visualization. Experimental results show that HGNet achieves 94% accuracy, 90.6% recall, and 90% mAP@0.5, significantly improving small lesion differentiation and clinical interpretability. The source code will be made publicly available upon publication of this paper.
☆ Transcribing Spanish Texts from the Past: Experiments with Transkribus, Tesseract and Granite
This article presents the experiments and results obtained by the GRESEL team in the IberLEF 2025 shared task PastReader: Transcribing Texts from the Past. Three types of experiments were conducted with the dual aim of participating in the task and enabling comparisons across different approaches. These included the use of a web-based OCR service, a traditional OCR engine, and a compact multimodal model. All experiments were run on consumer-grade hardware, which, despite lacking high-performance computing capacity, provided sufficient storage and stability. The results, while satisfactory, leave room for further improvement. Future work will focus on exploring new techniques and ideas using the Spanish-language dataset provided by the shared task, in collaboration with Biblioteca Nacional de Espa\~na (BNE).
comment: This paper was written as part of a shared task organized within the 2025 edition of the Iberian Languages Evaluation Forum (IberLEF 2025), held at SEPLN 2025 in Zaragoza. This paper describes the joint participation of two teams in said competition, GRESEL1 and GRESEL2, each with an individual paper that will be published in CEUR
☆ Efficacy of Image Similarity as a Metric for Augmenting Small Dataset Retinal Image Segmentation
Synthetic images are an option for augmenting limited medical imaging datasets to improve the performance of various machine learning models. A common metric for evaluating synthetic image quality is the Fr\'echet Inception Distance (FID) which measures the similarity of two image datasets. In this study we evaluate the relationship between this metric and the improvement which synthetic images, generated by a Progressively Growing Generative Adversarial Network (PGGAN), grant when augmenting Diabetes-related Macular Edema (DME) intraretinal fluid segmentation performed by a U-Net model with limited amounts of training data. We find that the behaviour of augmenting with standard and synthetic images agrees with previously conducted experiments. Additionally, we show that dissimilar (high FID) datasets do not improve segmentation significantly. As FID between the training and augmenting datasets decreases, the augmentation datasets are shown to contribute to significant and robust improvements in image segmentation. Finally, we find that there is significant evidence to suggest that synthetic and standard augmentations follow separate log-normal trends between FID and improvements in model performance, with synthetic data proving more effective than standard augmentation techniques. Our findings show that more similar datasets (lower FID) will be more effective at improving U-Net performance, however, the results also suggest that this improvement may only occur when images are sufficiently dissimilar.
comment: 30 pages, 10 figures
☆ Semantically Consistent Discrete Diffusion for 3D Biological Graph Modeling MICCAI 2025
3D spatial graphs play a crucial role in biological and clinical research by modeling anatomical networks such as blood vessels,neurons, and airways. However, generating 3D biological graphs while maintaining anatomical validity remains challenging, a key limitation of existing diffusion-based methods. In this work, we propose a novel 3D biological graph generation method that adheres to structural and semantic plausibility conditions. We achieve this by using a novel projection operator during sampling that stochastically fixes inconsistencies. Further, we adopt a superior edge-deletion-based noising procedure suitable for sparse biological graphs. Our method demonstrates superior performance on two real-world datasets, human circle of Willis and lung airways, compared to previous approaches. Importantly, we demonstrate that the generated samples significantly enhance downstream graph labeling performance. Furthermore, we show that our generative model is a reasonable out-of-the-box link predictior.
comment: Accepted to MICCAI 2025
☆ Efficient SAR Vessel Detection for FPGA-Based On-Satellite Sensing
Rapid analysis of satellite data is vital for many remote sensing applications, from disaster response to environmental monitoring, but is becoming harder to achieve with the increasing volumes of data generated by modern satellites. On-satellite machine learning (ML) offers a potential solution, by reducing latency associated with transmission of these large data volumes to ground stations, but state-of-the-art models are often too large or power-hungry for satellite deployment. Vessel detection using Synthetic Aperture Radar (SAR) is a critical time-sensitive task for maritime security that exemplifies this challenge. SAR vessel detection has previously been demonstrated only by ML models that either are too large for satellite deployment, have not been developed for sufficiently low-power hardware, or have only been developed and tested on small SAR datasets that do not sufficiently represent the real-world task. Here we address this issue by developing and deploying a new efficient and highly performant SAR vessel detection model, using a customised YOLOv8 architecture specifically optimized for FPGA-based processing within common satellite power constraints (<10W). We train and evaluate our model on the largest and most diverse open SAR vessel dataset, xView3-SAR, and deploy it on a Kria KV260 MPSoC. We show that our FPGA-based model has detection and classification performance only ~2% and 3% lower than values from state-of-the-art GPU-based models, despite being two to three orders of magnitude smaller in size. This work demonstrates small yet highly performant ML models for time-critical SAR analysis, paving the way for more autonomous, responsive, and scalable Earth observation systems.
comment: 14 pages, 5 figures, 3 table
☆ CMET: Clustering guided METric for quantifying embedding quality
Due to rapid advancements in technology, datasets are available from various domains. In order to carry out more relevant and appropriate analysis, it is often necessary to project the dataset into a higher or lower dimensional space based on requirement. Projecting the data in a higher-dimensional space helps in unfolding intricate patterns, enhancing the performance of the underlying models. On the other hand, dimensionality reduction is helpful in denoising data while capturing maximal information, as well as reducing execution time and memory.In this context, it is not always statistically evident whether the transformed embedding retains the local and global structure of the original data. Most of the existing metrics that are used for comparing the local and global shape of the embedding against the original one are highly expensive in terms of time and space complexity. In order to address this issue, the objective of this study is to formulate a novel metric, called Clustering guided METric (CMET), for quantifying embedding quality. It is effective to serve the purpose of quantitative comparison between an embedding and the original data. CMET consists of two scores, viz., CMET_L and CMET_G, that measure the degree of local and global shape preservation capability, respectively. The efficacy of CMET has been demonstrated on a wide variety of datasets, including four synthetic, two biological, and two image datasets. Results reflect the favorable performance of CMET against the state-of-the-art methods. Capability to handle both small and large data, low algorithmic complexity, better and stable performance across all kinds of data, and different choices of hyper-parameters feature CMET as a reliable metric.
comment: 22 pages, 19 figures
☆ RIPE: Reinforcement Learning on Unlabeled Image Pairs for Robust Keypoint Extraction ICCV 2025
We introduce RIPE, an innovative reinforcement learning-based framework for weakly-supervised training of a keypoint extractor that excels in both detection and description tasks. In contrast to conventional training regimes that depend heavily on artificial transformations, pre-generated models, or 3D data, RIPE requires only a binary label indicating whether paired images represent the same scene. This minimal supervision significantly expands the pool of training data, enabling the creation of a highly generalized and robust keypoint extractor. RIPE utilizes the encoder's intermediate layers for the description of the keypoints with a hyper-column approach to integrate information from different scales. Additionally, we propose an auxiliary loss to enhance the discriminative capability of the learned descriptors. Comprehensive evaluations on standard benchmarks demonstrate that RIPE simplifies data preparation while achieving competitive performance compared to state-of-the-art techniques, marking a significant advancement in robust keypoint extraction and description. To support further research, we have made our code publicly available at https://github.com/fraunhoferhhi/RIPE.
comment: ICCV 2025
☆ SeqGrowGraph: Learning Lane Topology as a Chain of Graph Expansions
Accurate lane topology is essential for autonomous driving, yet traditional methods struggle to model the complex, non-linear structures-such as loops and bidirectional lanes-prevalent in real-world road structure. We present SeqGrowGraph, a novel framework that learns lane topology as a chain of graph expansions, inspired by human map-drawing processes. Representing the lane graph as a directed graph $G=(V,E)$, with intersections ($V$) and centerlines ($E$), SeqGrowGraph incrementally constructs this graph by introducing one vertex at a time. At each step, an adjacency matrix ($A$) expands from $n \times n$ to $(n+1) \times (n+1)$ to encode connectivity, while a geometric matrix ($M$) captures centerline shapes as quadratic B\'ezier curves. The graph is serialized into sequences, enabling a transformer model to autoregressively predict the chain of expansions, guided by a depth-first search ordering. Evaluated on nuScenes and Argoverse 2 datasets, SeqGrowGraph achieves state-of-the-art performance.
☆ From Vision To Language through Graph of Events in Space and Time: An Explainable Self-supervised Approach
The task of describing video content in natural language is commonly referred to as video captioning. Unlike conventional video captions, which are typically brief and widely available, long-form paragraph descriptions in natural language are scarce. This limitation of current datasets is due to the expensive human manual annotation required and to the highly challenging task of explaining the language formation process from the perspective of the underlying story, as a complex system of interconnected events in space and time. Through a thorough analysis of recently published methods and available datasets, we identify a general lack of published resources dedicated to the problem of describing videos in complex language, beyond the level of descriptions in the form of enumerations of simple captions. Furthermore, while state-of-the-art methods produce impressive results on the task of generating shorter captions from videos by direct end-to-end learning between the videos and text, the problem of explaining the relationship between vision and language is still beyond our reach. In this work, we propose a shared representation between vision and language, based on graphs of events in space and time, which can be obtained in an explainable and analytical way, to integrate and connect multiple vision tasks to produce the final natural language description. Moreover, we also demonstrate how our automated and explainable video description generation process can function as a fully automatic teacher to effectively train direct, end-to-end neural student pathways, within a self-supervised neuro-analytical system. We validate that our explainable neuro-analytical approach generates coherent, rich and relevant textual descriptions on videos collected from multiple varied datasets, using both standard evaluation metrics, human annotations and consensus from ensembles of state-of-the-art VLMs.
comment: arXiv admin note: text overlap with arXiv:2501.08460
☆ UDF-GMA: Uncertainty Disentanglement and Fusion for General Movement Assessment
General movement assessment (GMA) is a non-invasive tool for the early detection of brain dysfunction through the qualitative assessment of general movements, and the development of automated methods can broaden its application. However, mainstream pose-based automated GMA methods are prone to uncertainty due to limited high-quality data and noisy pose estimation, hindering clinical reliability without reliable uncertainty measures. In this work, we introduce UDF-GMA which explicitly models epistemic uncertainty in model parameters and aleatoric uncertainty from data noise for pose-based automated GMA. UDF-GMA effectively disentangles uncertainties by directly modelling aleatoric uncertainty and estimating epistemic uncertainty through Bayesian approximation. We further propose fusing these uncertainties with the embedded motion representation to enhance class separation. Extensive experiments on the Pmi-GMA benchmark dataset demonstrate the effectiveness and generalisability of the proposed approach in predicting poor repertoire.
comment: This work has been accepted for publication in IEEE Journal of Biomedical and Health Informatics (J-BHI)
☆ PointGAC: Geometric-Aware Codebook for Masked Point Cloud Modeling ICCV 2025
Most masked point cloud modeling (MPM) methods follow a regression paradigm to reconstruct the coordinate or feature of masked regions. However, they tend to over-constrain the model to learn the details of the masked region, resulting in failure to capture generalized features. To address this limitation, we propose \textbf{\textit{PointGAC}}, a novel clustering-based MPM method that aims to align the feature distribution of masked regions. Specially, it features an online codebook-guided teacher-student framework. Firstly, it presents a geometry-aware partitioning strategy to extract initial patches. Then, the teacher model updates a codebook via online k-means based on features extracted from the complete patches. This procedure facilitates codebook vectors to become cluster centers. Afterward, we assigns the unmasked features to their corresponding cluster centers, and the student model aligns the assignment for the reconstructed masked features. This strategy focuses on identifying the cluster centers to which the masked features belong, enabling the model to learn more generalized feature representations. Benefiting from a proposed codebook maintenance mechanism, codebook vectors are actively updated, which further increases the efficiency of semantic feature learning. Experiments validate the effectiveness of the proposed method on various downstream tasks. Code is available at https://github.com/LAB123-tech/PointGAC
comment: ICCV 2025
☆ Model Compression using Progressive Channel Pruning
In this work, we propose a simple but effective channel pruning framework called Progressive Channel Pruning (PCP) to accelerate Convolutional Neural Networks (CNNs). In contrast to the existing channel pruning methods that prune channels only once per layer in a layer-by-layer fashion, our new progressive framework iteratively prunes a small number of channels from several selected layers, which consists of a three-step attempting-selecting-pruning pipeline in each iteration. In the attempting step, we attempt to prune a pre-defined number of channels from one layer by using any existing channel pruning methods and estimate the accuracy drop for this layer based on the labelled samples in the validation set. In the selecting step, based on the estimated accuracy drops for all layers, we propose a greedy strategy to automatically select a set of layers that will lead to less overall accuracy drop after pruning these layers. In the pruning step, we prune a small number of channels from these selected layers. We further extend our PCP framework to prune channels for the deep transfer learning methods like Domain Adversarial Neural Network (DANN), in which we effectively reduce the data distribution mismatch in the channel pruning process by using both labelled samples from the source domain and pseudo-labelled samples from the target domain. Our comprehensive experiments on two benchmark datasets demonstrate that our PCP framework outperforms the existing channel pruning approaches under both supervised learning and transfer learning settings.
☆ Interaction-Merged Motion Planning: Effectively Leveraging Diverse Motion Datasets for Robust Planning ICCV 2025
Motion planning is a crucial component of autonomous robot driving. While various trajectory datasets exist, effectively utilizing them for a target domain remains challenging due to differences in agent interactions and environmental characteristics. Conventional approaches, such as domain adaptation or ensemble learning, leverage multiple source datasets but suffer from domain imbalance, catastrophic forgetting, and high computational costs. To address these challenges, we propose Interaction-Merged Motion Planning (IMMP), a novel approach that leverages parameter checkpoints trained on different domains during adaptation to the target domain. IMMP follows a two-step process: pre-merging to capture agent behaviors and interactions, sufficiently extracting diverse information from the source domain, followed by merging to construct an adaptable model that efficiently transfers diverse interactions to the target domain. Our method is evaluated on various planning benchmarks and models, demonstrating superior performance compared to conventional approaches.
comment: Accepted at ICCV 2025
☆ From Imitation to Innovation: The Emergence of AI Unique Artistic Styles and the Challenge of Copyright Protection
Current legal frameworks consider AI-generated works eligible for copyright protection when they meet originality requirements and involve substantial human intellectual input. However, systematic legal standards and reliable evaluation methods for AI art copyrights are lacking. Through comprehensive analysis of legal precedents, we establish three essential criteria for determining distinctive artistic style: stylistic consistency, creative uniqueness, and expressive accuracy. To address these challenges, we introduce ArtBulb, an interpretable and quantifiable framework for AI art copyright judgment that combines a novel style description-based multimodal clustering method with multimodal large language models (MLLMs). We also present AICD, the first benchmark dataset for AI art copyright annotated by artists and legal experts. Experimental results demonstrate that ArtBulb outperforms existing models in both quantitative and qualitative evaluations. Our work aims to bridge the gap between the legal and technological communities and bring greater attention to the societal issue of AI art copyrights.
☆ FurniMAS: Language-Guided Furniture Decoration using Multi-Agent System
Furniture decoration is an important task in various industrial applications. However, achieving a high-quality decorative result is often time-consuming and requires specialized artistic expertise. To tackle these challenges, we explore how multi-agent systems can assist in automating the decoration process. We propose FurniMAS, a multi-agent system for automatic furniture decoration. Specifically, given a human prompt and a household furniture item such as a working desk or a TV stand, our system suggests relevant assets with appropriate styles and materials, and arranges them on the item, ensuring the decorative result meets functionality, aesthetic, and ambiance preferences. FurniMAS assembles a hybrid team of LLM-based and non-LLM agents, each fulfilling distinct roles in a typical decoration project. These agents collaborate through communication, logical reasoning, and validation to transform the requirements into the final outcome. Extensive experiments demonstrate that our FurniMAS significantly outperforms other baselines in generating high-quality 3D decor.
☆ GraphBrep: Learning B-Rep in Graph Structure for Efficient CAD Generation
Direct B-Rep generation is increasingly important in CAD workflows, eliminating costly modeling sequence data and supporting complex features. A key challenge is modeling joint distribution of the misaligned geometry and topology. Existing methods tend to implicitly embed topology into the geometric features of edges. Although this integration ensures feature alignment, it also causes edge geometry to carry more redundant structural information compared to the original B-Rep, leading to significantly higher computational cost. To reduce redundancy, we propose GraphBrep, a B-Rep generation model that explicitly represents and learns compact topology. Following the original structure of B-Rep, we construct an undirected weighted graph to represent surface topology. A graph diffusion model is employed to learn topology conditioned on surface features, serving as the basis for determining connectivity between primitive surfaces. The explicit representation ensures a compact data structure, effectively reducing computational cost during both training and inference. Experiments on two large-scale unconditional datasets and one category-conditional dataset demonstrate the proposed method significantly reduces training and inference times (up to 31.3% and 56.3% for given datasets, respectively) while maintaining high-quality CAD generation compared with SOTA.
☆ Robustifying 3D Perception through Least-Squares Multi-Agent Graphs Object Tracking
The critical perception capabilities of EdgeAI systems, such as autonomous vehicles, are required to be resilient against adversarial threats, by enabling accurate identification and localization of multiple objects in the scene over time, mitigating their impact. Single-agent tracking offers resilience to adversarial attacks but lacks situational awareness, underscoring the need for multi-agent cooperation to enhance context understanding and robustness. This paper proposes a novel mitigation framework on 3D LiDAR scene against adversarial noise by tracking objects based on least-squares graph on multi-agent adversarial bounding boxes. Specifically, we employ the least-squares graph tool to reduce the induced positional error of each detection's centroid utilizing overlapped bounding boxes on a fully connected graph via differential coordinates and anchor points. Hence, the multi-vehicle detections are fused and refined mitigating the adversarial impact, and associated with existing tracks in two stages performing tracking to further suppress the adversarial threat. An extensive evaluation study on the real-world V2V4Real dataset demonstrates that the proposed method significantly outperforms both state-of-the-art single and multi-agent tracking frameworks by up to 23.3% under challenging adversarial conditions, operating as a resilient approach without relying on additional defense mechanisms.
comment: 6 pages, 3 figures, 4 tables
☆ MCFormer: A Multi-Cost-Volume Network and Comprehensive Benchmark for Particle Image Velocimetry
Particle Image Velocimetry (PIV) is fundamental to fluid dynamics, yet deep learning applications face significant hurdles. A critical gap exists: the lack of comprehensive evaluation of how diverse optical flow models perform specifically on PIV data, largely due to limitations in available datasets and the absence of a standardized benchmark. This prevents fair comparison and hinders progress. To address this, our primary contribution is a novel, large-scale synthetic PIV benchmark dataset generated from diverse CFD simulations (JHTDB and Blasius). It features unprecedented variety in particle densities, flow velocities, and continuous motion, enabling, for the first time, a standardized and rigorous evaluation of various optical flow and PIV algorithms. Complementing this, we propose Multi Cost Volume PIV (MCFormer), a new deep network architecture leveraging multi-frame temporal information and multiple cost volumes, specifically designed for PIV's sparse nature. Our comprehensive benchmark evaluation, the first of its kind, reveals significant performance variations among adapted optical flow models and demonstrates that MCFormer significantly outperforms existing methods, achieving the lowest overall normalized endpoint error (NEPE). This work provides both a foundational benchmark resource essential for future PIV research and a state-of-the-art method tailored for PIV challenges. We make our benchmark dataset and code publicly available to foster future research in this area.
comment: 20 pages, 13 figures, 5 tables. Comprehensive benchmark evaluation of optical flow models for PIV. Introduces MCFormer architecture with multi-frame temporal processing and multiple cost volumes. Includes large-scale synthetic PIV dataset based on JHTDB and Blasius CFD simulations. Code and dataset will be made publicly available
☆ MatDecompSDF: High-Fidelity 3D Shape and PBR Material Decomposition from Multi-View Images
We present MatDecompSDF, a novel framework for recovering high-fidelity 3D shapes and decomposing their physically-based material properties from multi-view images. The core challenge of inverse rendering lies in the ill-posed disentanglement of geometry, materials, and illumination from 2D observations. Our method addresses this by jointly optimizing three neural components: a neural Signed Distance Function (SDF) to represent complex geometry, a spatially-varying neural field for predicting PBR material parameters (albedo, roughness, metallic), and an MLP-based model for capturing unknown environmental lighting. The key to our approach is a physically-based differentiable rendering layer that connects these 3D properties to the input images, allowing for end-to-end optimization. We introduce a set of carefully designed physical priors and geometric regularizations, including a material smoothness loss and an Eikonal loss, to effectively constrain the problem and achieve robust decomposition. Extensive experiments on both synthetic and real-world datasets (e.g., DTU) demonstrate that MatDecompSDF surpasses state-of-the-art methods in geometric accuracy, material fidelity, and novel view synthesis. Crucially, our method produces editable and relightable assets that can be seamlessly integrated into standard graphics pipelines, validating its practical utility for digital content creation.
comment: 12 pages, 4 figures
☆ Vision-Language Models Can't See the Obvious
We present Saliency Benchmark (SalBench), a novel benchmark designed to assess the capability of Large Vision-Language Models (LVLM) in detecting visually salient features that are readily apparent to humans, such as a large circle amidst a grid of smaller ones. This benchmark focuses on low-level features including color, intensity, and orientation, which are fundamental to human visual processing. Our SalBench consists of images that highlight rare, unusual, or unexpected elements within scenes, and naturally draw human attention. It comprises three novel tasks for evaluating the perceptual capabilities of LVLM: Odd-One-Out Detection, Referring Odd-One-Out, and Visual Referring Odd-One-Out. We perform a comprehensive evaluation of state-of-the-art LVLM using SalBench and our findings reveal a surprising limitation: LVLM struggle to identify seemingly obvious visual anomalies, with even the advanced GPT-4o achieving only 47.6\% accuracy on such a simple task. SalBench will be an important step in measuring the capabilities of LVLM that align with the subtle definition of human attention.
☆ An analysis of vision-language models for fabric retrieval
Effective cross-modal retrieval is essential for applications like information retrieval and recommendation systems, particularly in specialized domains such as manufacturing, where product information often consists of visual samples paired with a textual description. This paper investigates the use of Vision Language Models(VLMs) for zero-shot text-to-image retrieval on fabric samples. We address the lack of publicly available datasets by introducing an automated annotation pipeline that uses Multimodal Large Language Models (MLLMs) to generate two types of textual descriptions: freeform natural language and structured attribute-based descriptions. We produce these descriptions to evaluate retrieval performance across three Vision-Language Models: CLIP, LAION-CLIP, and Meta's Perception Encoder. Our experiments demonstrate that structured, attribute-rich descriptions significantly enhance retrieval accuracy, particularly for visually complex fabric classes, with the Perception Encoder outperforming other models due to its robust feature alignment capabilities. However, zero-shot retrieval remains challenging in this fine-grained domain, underscoring the need for domain-adapted approaches. Our findings highlight the importance of combining technical textual descriptions with advanced VLMs to optimize cross-modal retrieval in industrial applications.
comment: Accepted at Ital-IA 2025
☆ Losing Control: Data Poisoning Attack on Guided Diffusion via ControlNet
Text-to-image diffusion models have achieved remarkable success in translating textual prompts into high-fidelity images. ControlNets further extend these models by allowing precise, image-based conditioning (e.g., edge maps, depth, pose), enabling fine-grained control over structure and style. However, their dependence on large, publicly scraped datasets -- and the increasing use of community-shared data for fine-tuning -- exposes them to stealthy data poisoning attacks. In this work, we introduce a novel data poisoning method that manipulates ControlNets to generate images containing specific content without any text triggers. By injecting poisoned samples -- each pairing a subtly triggered input with an NSFW target -- the model retains clean-prompt fidelity yet reliably produces NSFW outputs when the trigger is present. On large-scale, high-quality datasets, our backdoor achieves high attack success rate while remaining imperceptible in raw inputs. These results reveal a critical vulnerability in open-source ControlNets pipelines and underscore the need for robust data sanitization and defense mechanisms.
☆ Unleashing the Power of Neural Collapse: Consistent Supervised-Unsupervised Alignment for Generalized Category Discovery
Generalized Category Discovery (GCD) focuses on classifying known categories while simultaneously discovering novel categories from unlabeled data. However, previous GCD methods face challenges due to inconsistent optimization objectives and category confusion. This leads to feature overlap and ultimately hinders performance on novel categories. To address these issues, we propose the Neural Collapse-inspired Generalized Category Discovery (NC-GCD) framework. By pre-assigning and fixing Equiangular Tight Frame (ETF) prototypes, our method ensures an optimal geometric structure and a consistent optimization objective for both known and novel categories. We introduce a Consistent ETF Alignment Loss that unifies supervised and unsupervised ETF alignment and enhances category separability. Additionally, a Semantic Consistency Matcher (SCM) is designed to maintain stable and consistent label assignments across clustering iterations. Our method achieves strong performance on multiple GCD benchmarks, significantly enhancing novel category accuracy and demonstrating its effectiveness.
☆ Geometric-Guided Few-Shot Dental Landmark Detection with Human-Centric Foundation Model MICCAI 2025
Accurate detection of anatomic landmarks is essential for assessing alveolar bone and root conditions, thereby optimizing clinical outcomes in orthodontics, periodontics, and implant dentistry. Manual annotation of landmarks on cone-beam computed tomography (CBCT) by dentists is time-consuming, labor-intensive, and subject to inter-observer variability. Deep learning-based automated methods present a promising approach to streamline this process efficiently. However, the scarcity of training data and the high cost of expert annotations hinder the adoption of conventional deep learning techniques. To overcome these challenges, we introduce GeoSapiens, a novel few-shot learning framework designed for robust dental landmark detection using limited annotated CBCT of anterior teeth. Our GeoSapiens framework comprises two key components: (1) a robust baseline adapted from Sapiens, a foundational model that has achieved state-of-the-art performance in human-centric vision tasks, and (2) a novel geometric loss function that improves the model's capacity to capture critical geometric relationships among anatomical structures. Experiments conducted on our collected dataset of anterior teeth landmarks revealed that GeoSapiens surpassed existing landmark detection methods, outperforming the leading approach by an 8.18% higher success detection rate at a strict 0.5 mm threshold-a standard widely recognized in dental diagnostics. Code is available at: https://github.com/xmed-lab/GeoSapiens.
comment: MICCAI 2025
☆ Identity-Preserving Text-to-Video Generation Guided by Simple yet Effective Spatial-Temporal Decoupled Representations
Identity-preserving text-to-video (IPT2V) generation, which aims to create high-fidelity videos with consistent human identity, has become crucial for downstream applications. However, current end-to-end frameworks suffer a critical spatial-temporal trade-off: optimizing for spatially coherent layouts of key elements (e.g., character identity preservation) often compromises instruction-compliant temporal smoothness, while prioritizing dynamic realism risks disrupting the spatial coherence of visual structures. To tackle this issue, we propose a simple yet effective spatial-temporal decoupled framework that decomposes representations into spatial features for layouts and temporal features for motion dynamics. Specifically, our paper proposes a semantic prompt optimization mechanism and stage-wise decoupled generation paradigm. The former module decouples the prompt into spatial and temporal components. Aligned with the subsequent stage-wise decoupled approach, the spatial prompts guide the text-to-image (T2I) stage to generate coherent spatial features, while the temporal prompts direct the sequential image-to-video (I2V) stage to ensure motion consistency. Experimental results validate that our approach achieves excellent spatiotemporal consistency, demonstrating outstanding performance in identity preservation, text relevance, and video quality. By leveraging this simple yet robust mechanism, our algorithm secures the runner-up position in 2025 ACM MultiMedia Challenge.
☆ SPATIA: Multimodal Model for Prediction and Generation of Spatial Cell Phenotypes
Understanding how cellular morphology, gene expression, and spatial organization jointly shape tissue function is a central challenge in biology. Image-based spatial transcriptomics technologies now provide high-resolution measurements of cell images and gene expression profiles, but machine learning methods typically analyze these modalities in isolation or at limited resolution. We address the problem of learning unified, spatially aware representations that integrate cell morphology, gene expression, and spatial context across biological scales. This requires models that can operate at single-cell resolution, reason across spatial neighborhoods, and generalize to whole-slide tissue organization. Here, we introduce SPATIA, a multi-scale generative and predictive model for spatial transcriptomics. SPATIA learns cell-level embeddings by fusing image-derived morphological tokens and transcriptomic vector tokens using cross-attention and then aggregates them at niche and tissue levels using transformer modules to capture spatial dependencies. SPATIA incorporates token merging in its generative diffusion decoder to synthesize high-resolution cell images conditioned on gene expression. We assembled a multi-scale dataset consisting of 17 million cell-gene pairs, 1 million niche-gene pairs, and 10,000 tissue-gene pairs across 49 donors, 17 tissue types, and 12 disease states. We benchmark SPATIA against 13 existing models across 12 individual tasks, which span several categories including cell annotation, cell clustering, gene imputation, cross-modal prediction, and image generation. SPATIA achieves improved performance over all baselines and generates realistic cell morphologies that reflect transcriptomic perturbations.
☆ Tempo-R0: A Video-MLLM for Temporal Video Grounding through Efficient Temporal Sensing Reinforcement Learning
Temporal Video Grounding (TVG), which requires pinpointing relevant temporal segments from video based on language query, has always been a highly challenging task in the field of video understanding. Videos often have a larger volume of information and redundancy than texts or images. Models should present comprehensive understanding of the whole video to accurately retrieve query-relevant clips. We thus propose Tempo-R0: a Video Multimodal Large Language Model (Video-MLLM) for the temporal video grounding task via multimodal temporal sensing reinforcement. Specifically, during the preprocessing stage of our pipeline, we employ Self-adaptive Attention Allocation (SAA) method based on frame content variation to efficiently use the MLLM's limited attention. The Explicit Timestamp-modal Aligned (ETA) method is also utilized to strengthen our model's capability to perceive the boundaries of events in the video. In the fine-tuning part of our pipeline, we creatively apply Partial Irrelevance Refusing-based Group Relative Policy Optimization (PIR-GRPO) in TVG area to foster model's temporal reasoning from not only accepting relevant video-query pairs but also refusing irrelevant ones. Experiments demonstrate that our method accomplishes a notable advantage over SOTA solutions by around 3.5% on both the original QVHighlights testbench and its corrected version with more reasonable ground truth annotations.
☆ A Visual Leap in CLIP Compositionality Reasoning through Generation of Counterfactual Sets
Vision-language models (VLMs) often struggle with compositional reasoning due to insufficient high-quality image-text data. To tackle this challenge, we propose a novel block-based diffusion approach that automatically generates counterfactual datasets without manual annotation. Our method utilizes large language models to identify entities and their spatial relationships. It then independently generates image blocks as "puzzle pieces" coherently arranged according to specified compositional rules. This process creates diverse, high-fidelity counterfactual image-text pairs with precisely controlled variations. In addition, we introduce a specialized loss function that differentiates inter-set from intra-set samples, enhancing training efficiency and reducing the need for negative samples. Experiments demonstrate that fine-tuning VLMs with our counterfactual datasets significantly improves visual reasoning performance. Our approach achieves state-of-the-art results across multiple benchmarks while using substantially less training data than existing methods.
☆ Structure-Guided Diffusion Models for High-Fidelity Portrait Shadow Removal
We present a diffusion-based portrait shadow removal approach that can robustly produce high-fidelity results. Unlike previous methods, we cast shadow removal as diffusion-based inpainting. To this end, we first train a shadow-independent structure extraction network on a real-world portrait dataset with various synthetic lighting conditions, which allows to generate a shadow-independent structure map including facial details while excluding the unwanted shadow boundaries. The structure map is then used as condition to train a structure-guided inpainting diffusion model for removing shadows in a generative manner. Finally, to restore the fine-scale details (e.g., eyelashes, moles and spots) that may not be captured by the structure map, we take the gradients inside the shadow regions as guidance and train a detail restoration diffusion model to refine the shadow removal result. Extensive experiments on the benchmark datasets show that our method clearly outperforms existing methods, and is effective to avoid previously common issues such as facial identity tampering, shadow residual, color distortion, structure blurring, and loss of details. Our code is available at https://github.com/wanchang-yu/Structure-Guided-Diffusion-for-Portrait-Shadow-Removal.
☆ Bridging KAN and MLP: MJKAN, a Hybrid Architecture with Both Efficiency and Expressiveness
Kolmogorov-Arnold Networks (KANs) have garnered attention for replacing fixed activation functions with learnable univariate functions, but they exhibit practical limitations, including high computational costs and performance deficits in general classification tasks. In this paper, we propose the Modulation Joint KAN (MJKAN), a novel neural network layer designed to overcome these challenges. MJKAN integrates a FiLM (Feature-wise Linear Modulation)-like mechanism with Radial Basis Function (RBF) activations, creating a hybrid architecture that combines the non-linear expressive power of KANs with the efficiency of Multilayer Perceptrons (MLPs). We empirically validated MJKAN's performance across a diverse set of benchmarks, including function regression, image classification (MNIST, CIFAR-10/100), and natural language processing (AG News, SMS Spam). The results demonstrate that MJKAN achieves superior approximation capabilities in function regression tasks, significantly outperforming MLPs, with performance improving as the number of basis functions increases. Conversely, in image and text classification, its performance was competitive with MLPs but revealed a critical dependency on the number of basis functions. We found that a smaller basis size was crucial for better generalization, highlighting that the model's capacity must be carefully tuned to the complexity of the data to prevent overfitting. In conclusion, MJKAN offers a flexible architecture that inherits the theoretical advantages of KANs while improving computational efficiency and practical viability.
☆ TeethGenerator: A two-stage framework for paired pre- and post-orthodontic 3D dental data generation ICCV 2025
Digital orthodontics represents a prominent and critical application of computer vision technology in the medical field. So far, the labor-intensive process of collecting clinical data, particularly in acquiring paired 3D orthodontic teeth models, constitutes a crucial bottleneck for developing tooth arrangement neural networks. Although numerous general 3D shape generation methods have been proposed, most of them focus on single-object generation and are insufficient for generating anatomically structured teeth models, each comprising 24-32 segmented teeth. In this paper, we propose TeethGenerator, a novel two-stage framework designed to synthesize paired 3D teeth models pre- and post-orthodontic, aiming to facilitate the training of downstream tooth arrangement networks. Specifically, our approach consists of two key modules: (1) a teeth shape generation module that leverages a diffusion model to learn the distribution of morphological characteristics of teeth, enabling the generation of diverse post-orthodontic teeth models; and (2) a teeth style generation module that synthesizes corresponding pre-orthodontic teeth models by incorporating desired styles as conditional inputs. Extensive qualitative and quantitative experiments demonstrate that our synthetic dataset aligns closely with the distribution of real orthodontic data, and promotes tooth alignment performance significantly when combined with real data for training. The code and dataset are available at https://github.com/lcshhh/teeth_generator.
comment: Accepted by ICCV 2025
☆ SPIDER: Structure-Preferential Implicit Deep Network for Biplanar X-ray Reconstruction
Biplanar X-ray imaging is widely used in health screening, postoperative rehabilitation evaluation of orthopedic diseases, and injury surgery due to its rapid acquisition, low radiation dose, and straightforward setup. However, 3D volume reconstruction from only two orthogonal projections represents a profoundly ill-posed inverse problem, owing to the intrinsic lack of depth information and irreducible ambiguities in soft-tissue visualization. Some existing methods can reconstruct skeletal structures and Computed Tomography (CT) volumes, they often yield incomplete bone geometry, imprecise tissue boundaries, and a lack of anatomical realism, thereby limiting their clinical utility in scenarios such as surgical planning and postoperative assessment. In this study, we introduce SPIDER, a novel supervised framework designed to reconstruct CT volumes from biplanar X-ray images. SPIDER incorporates tissue structure as prior (e.g., anatomical segmentation) into an implicit neural representation decoder in the form of joint supervision through a unified encoder-decoder architecture. This design enables the model to jointly learn image intensities and anatomical structures in a pixel-aligned fashion. To address the challenges posed by sparse input and structural ambiguity, SPIDER directly embeds anatomical constraints into the reconstruction process, thereby enhancing structural continuity and reducing soft-tissue artifacts. We conduct comprehensive experiments on clinical head CT datasets and show that SPIDER generates anatomically accurate reconstructions from only two projections. Furthermore, our approach demonstrates strong potential in downstream segmentation tasks, underscoring its utility in personalized treatment planning and image-guided surgical navigation.
☆ Colorectal Cancer Tumor Grade Segmentation in Digital Histopathology Images: From Giga to Mini Challenge ICIP 2025
Colorectal cancer (CRC) is the third most diagnosed cancer and the second leading cause of cancer-related death worldwide. Accurate histopathological grading of CRC is essential for prognosis and treatment planning but remains a subjective process prone to observer variability and limited by global shortages of trained pathologists. To promote automated and standardized solutions, we organized the ICIP Grand Challenge on Colorectal Cancer Tumor Grading and Segmentation using the publicly available METU CCTGS dataset. The dataset comprises 103 whole-slide images with expert pixel-level annotations for five tissue classes. Participants submitted segmentation masks via Codalab, evaluated using metrics such as macro F-score and mIoU. Among 39 participating teams, six outperformed the Swin Transformer baseline (62.92 F-score). This paper presents an overview of the challenge, dataset, and the top-performing methods
comment: Accepted Grand Challenge Paper ICIP 2025
☆ Identify, Isolate, and Purge: Mitigating Hallucinations in LVLMs via Self-Evolving Distillation
Large Vision-Language Models (LVLMs) have demonstrated remarkable advancements in numerous areas such as multimedia. However, hallucination issues significantly limit their credibility and application potential. Existing mitigation methods typically rely on external tools or the comparison of multi-round inference, which significantly increase inference time. In this paper, we propose \textbf{SE}lf-\textbf{E}volving \textbf{D}istillation (\textbf{SEED}), which identifies hallucinations within the inner knowledge of LVLMs, isolates and purges them, and then distills the purified knowledge back into the model, enabling self-evolution. Furthermore, we identified that traditional distillation methods are prone to inducing void spaces in the output space of LVLMs. To address this issue, we propose a Mode-Seeking Evolving approach, which performs distillation to capture the dominant modes of the purified knowledge distribution, thereby avoiding the chaotic results that could emerge from void spaces. Moreover, we introduce a Hallucination Elimination Adapter, which corrects the dark knowledge of the original model by learning purified knowledge. Extensive experiments on multiple benchmarks validate the superiority of our SEED, demonstrating substantial improvements in mitigating hallucinations for representative LVLM models such as LLaVA-1.5 and InternVL2. Remarkably, the F1 score of LLaVA-1.5 on the hallucination evaluation metric POPE-Random improved from 81.3 to 88.3.
☆ ChangeBridge: Spatiotemporal Image Generation with Multimodal Controls for Remote Sensing
Recent advancements in generative methods, especially diffusion models, have made great progress in remote sensing image synthesis. Despite these advancements, existing methods have not explored the simulation of future scenarios based on given scenario images. This simulation capability has wide applications for urban planning, land managementChangeBridge: Spatiotemporal Image Generation with Multimodal Controls, and beyond. In this work, we propose ChangeBridge, a conditional spatiotemporal diffusion model. Given pre-event images and conditioned on multimodal spatial controls (e.g., text prompts, instance layouts, and semantic maps), ChangeBridge can synthesize post-event images. The core idea behind ChangeBridge is to modeling the noise-to-image diffusion model, as a pre-to-post diffusion bridge. Conditioned on multimodal controls, ChangeBridge leverages a stochastic Brownian-bridge diffusion, directly modeling the spatiotemporal evolution between pre-event and post-event states. To the best of our knowledge, ChangeBridge is the first spatiotemporal generative model with multimodal controls for remote sensing. Experimental results demonstrate that ChangeBridge can simulate high-fidelity future scenarios aligned with given conditions, including event and event-driven background variations. Code will be available.
☆ DANCE: Resource-Efficient Neural Architecture Search with Data-Aware and Continuous Adaptation IJCAI 2025
Neural Architecture Search (NAS) has emerged as a powerful approach for automating neural network design. However, existing NAS methods face critical limitations in real-world deployments: architectures lack adaptability across scenarios, each deployment context requires costly separate searches, and performance consistency across diverse platforms remains challenging. We propose DANCE (Dynamic Architectures with Neural Continuous Evolution), which reformulates architecture search as a continuous evolution problem through learning distributions over architectural components. DANCE introduces three key innovations: a continuous architecture distribution enabling smooth adaptation, a unified architecture space with learned selection gates for efficient sampling, and a multi-stage training strategy for effective deployment optimization. Extensive experiments across five datasets demonstrate DANCE's effectiveness. Our method consistently outperforms state-of-the-art NAS approaches in terms of accuracy while significantly reducing search costs. Under varying computational constraints, DANCE maintains robust performance while smoothly adapting architectures to different hardware requirements. The code and appendix can be found at https://github.com/Applied-Machine-Learning-Lab/DANCE.
comment: Accepted by IJCAI 2025
☆ What's Making That Sound Right Now? Video-centric Audio-Visual Localization ICCV 2025
Audio-Visual Localization (AVL) aims to identify sound-emitting sources within a visual scene. However, existing studies focus on image-level audio-visual associations, failing to capture temporal dynamics. Moreover, they assume simplified scenarios where sound sources are always visible and involve only a single object. To address these limitations, we propose AVATAR, a video-centric AVL benchmark that incorporates high-resolution temporal information. AVATAR introduces four distinct scenarios -- Single-sound, Mixed-sound, Multi-entity, and Off-screen -- enabling a more comprehensive evaluation of AVL models. Additionally, we present TAVLO, a novel video-centric AVL model that explicitly integrates temporal information. Experimental results show that conventional methods struggle to track temporal variations due to their reliance on global audio features and frame-level mappings. In contrast, TAVLO achieves robust and precise audio-visual alignment by leveraging high-resolution temporal modeling. Our work empirically demonstrates the importance of temporal dynamics in AVL and establishes a new standard for video-centric audio-visual localization.
comment: Published at ICCV 2025. Project page: https://hahyeon610.github.io/Video-centric_Audio_Visual_Localization/
☆ VectorLLM: Human-like Extraction of Structured Building Contours vis Multimodal LLMs
Automatically extracting vectorized building contours from remote sensing imagery is crucial for urban planning, population estimation, and disaster assessment. Current state-of-the-art methods rely on complex multi-stage pipelines involving pixel segmentation, vectorization, and polygon refinement, which limits their scalability and real-world applicability. Inspired by the remarkable reasoning capabilities of Large Language Models (LLMs), we introduce VectorLLM, the first Multi-modal Large Language Model (MLLM) designed for regular building contour extraction from remote sensing images. Unlike existing approaches, VectorLLM performs corner-point by corner-point regression of building contours directly, mimicking human annotators' labeling process. Our architecture consists of a vision foundation backbone, an MLP connector, and an LLM, enhanced with learnable position embeddings to improve spatial understanding capability. Through comprehensive exploration of training strategies including pretraining, supervised fine-tuning, and preference optimization across WHU, WHU-Mix, and CrowdAI datasets, VectorLLM significantly outperformed the previous SOTA methods by 5.6 AP, 7.1 AP, 13.6 AP, respectively in the three datasets. Remarkably, VectorLLM exhibits strong zero-shot performance on unseen objects including aircraft, water bodies, and oil tanks, highlighting its potential for unified modeling of diverse remote sensing object contour extraction tasks. Overall, this work establishes a new paradigm for vector extraction in remote sensing, leveraging the topological reasoning capabilities of LLMs to achieve both high accuracy and exceptional generalization. All the codes and weights will be published for promoting community development.
♻ ☆ Judging the Judges: Can Large Vision-Language Models Fairly Evaluate Chart Comprehension and Reasoning? ACL 2025
Charts are ubiquitous as they help people understand and reason with data. Recently, various downstream tasks, such as chart question answering, chart2text, and fact-checking, have emerged. Large Vision-Language Models (LVLMs) show promise in tackling these tasks, but their evaluation is costly and time-consuming, limiting real-world deployment. While using LVLMs as judges to assess the chart comprehension capabilities of other LVLMs could streamline evaluation processes, challenges like proprietary datasets, restricted access to powerful models, and evaluation costs hinder their adoption in industrial settings. To this end, we present a comprehensive evaluation of 13 open-source LVLMs as judges for diverse chart comprehension and reasoning tasks. We design both pairwise and pointwise evaluation tasks covering criteria like factual correctness, informativeness, and relevancy. Additionally, we analyze LVLM judges based on format adherence, positional consistency, length bias, and instruction-following. We focus on cost-effective LVLMs (<10B parameters) suitable for both research and commercial use, following a standardized evaluation protocol and rubric to measure the LVLM judge's accuracy. Experimental results reveal notable variability: while some open LVLM judges achieve GPT-4-level evaluation performance (about 80% agreement with GPT-4 judgments), others struggle (below ~10% agreement). Our findings highlight that state-of-the-art open-source LVLMs can serve as cost-effective automatic evaluators for chart-related tasks, though biases such as positional preference and length bias persist.
comment: Accepted at ACL 2025 Industry Track
♻ ☆ AniCrafter: Customizing Realistic Human-Centric Animation via Avatar-Background Conditioning in Video Diffusion Models
Recent advances in video diffusion models have significantly improved character animation techniques. However, current approaches rely on basic structural conditions such as DWPose or SMPL-X to animate character images, limiting their effectiveness in open-domain scenarios with dynamic backgrounds or challenging human poses. In this paper, we introduce \textbf{AniCrafter}, a diffusion-based human-centric animation model that can seamlessly integrate and animate a given character into open-domain dynamic backgrounds while following given human motion sequences. Built on cutting-edge Image-to-Video (I2V) diffusion architectures, our model incorporates an innovative ''avatar-background'' conditioning mechanism that reframes open-domain human-centric animation as a restoration task, enabling more stable and versatile animation outputs. Experimental results demonstrate the superior performance of our method. Codes are available at https://github.com/MyNiuuu/AniCrafter.
comment: Homepage: https://myniuuu.github.io/AniCrafter ; Codes: https://github.com/MyNiuuu/AniCrafter
♻ ☆ SeaLion: Semantic Part-Aware Latent Point Diffusion Models for 3D Generation CVPR 2025
Denoising diffusion probabilistic models have achieved significant success in point cloud generation, enabling numerous downstream applications, such as generative data augmentation and 3D model editing. However, little attention has been given to generating point clouds with point-wise segmentation labels, as well as to developing evaluation metrics for this task. Therefore, in this paper, we present SeaLion, a novel diffusion model designed to generate high-quality and diverse point clouds with fine-grained segmentation labels. Specifically, we introduce the semantic part-aware latent point diffusion technique, which leverages the intermediate features of the generative models to jointly predict the noise for perturbed latent points and associated part segmentation labels during the denoising process, and subsequently decodes the latent points to point clouds conditioned on part segmentation labels. To effectively evaluate the quality of generated point clouds, we introduce a novel point cloud pairwise distance calculation method named part-aware Chamfer distance (p-CD). This method enables existing metrics, such as 1-NNA, to measure both the local structural quality and inter-part coherence of generated point clouds. Experiments on the large-scale synthetic dataset ShapeNet and real-world medical dataset IntrA demonstrate that SeaLion achieves remarkable performance in generation quality and diversity, outperforming the existing state-of-the-art model, DiffFacto, by 13.33% and 6.52% on 1-NNA (p-CD) across the two datasets. Experimental analysis shows that SeaLion can be trained semi-supervised, thereby reducing the demand for labeling efforts. Lastly, we validate the applicability of SeaLion in generative data augmentation for training segmentation models and the capability of SeaLion to serve as a tool for part-aware 3D shape editing.
comment: Accepted by CVPR 2025
♻ ☆ SEE-2-SOUND: Zero-Shot Spatial Environment-to-Spatial Sound
Generating combined visual and auditory sensory experiences is critical for the consumption of immersive content. Recent advances in neural generative models have enabled the creation of high-resolution content across multiple modalities such as images, text, speech, and videos. Despite these successes, there remains a significant gap in the generation of high-quality spatial audio that complements generated visual content. Furthermore, current audio generation models excel in either generating natural audio or speech or music but fall short in integrating spatial audio cues necessary for immersive experiences. In this work, we introduce SEE-2-SOUND, a zero-shot approach that decomposes the task into (1) identifying visual regions of interest; (2) locating these elements in 3D space; (3) generating mono-audio for each; and (4) integrating them into spatial audio. Using our framework, we demonstrate compelling results for generating spatial audio for high-quality videos, images, and dynamic images from the internet, as well as media generated by learned approaches.
comment: Project Page: https://see2sound.github.io/
♻ ☆ DeepCS-TRD, a Deep Learning-based Cross-Section Tree Ring Detector
Here, we propose Deep CS-TRD, a new automatic algorithm for detecting tree rings in whole cross-sections. It substitutes the edge detection step of CS-TRD by a deep-learning-based approach (U-Net), which allows the application of the method to different image domains: microscopy, scanner or smartphone acquired, and species (Pinus taeda, Gleditsia triachantos and Salix glauca). Additionally, we introduce two publicly available datasets of annotated images to the community. The proposed method outperforms state-of-the-art approaches in macro images (Pinus taeda and Gleditsia triacanthos) while showing slightly lower performance in microscopy images of Salix glauca. To our knowledge, this is the first paper that studies automatic tree ring detection for such different species and acquisition conditions. The dataset and source code are available in https://github.com/hmarichal93/deepcstrd
comment: 12 pages, 6 figures. Accepted in 23rd International Conference on Image Analysis and Processing (ICIAP 2025), 15-19 September 2025. Rome, Italy
♻ ☆ ISLES'24: Final Infarct Prediction with Multimodal Imaging and Clinical Data. Where Do We Stand?
Accurate estimation of brain infarction (i.e., irreversibly damaged tissue) is critical for guiding treatment decisions in acute ischemic stroke. Reliable infarct prediction informs key clinical interventions, including the need for patient transfer to comprehensive stroke centers, the potential benefit of additional reperfusion attempts during mechanical thrombectomy, decisions regarding secondary neuroprotective treatments, and ultimately, prognosis of clinical outcomes. This work introduces the Ischemic Stroke Lesion Segmentation (ISLES) 2024 challenge, which focuses on the prediction of final infarct volumes from pre-interventional acute stroke imaging and clinical data. ISLES24 provides a comprehensive, multimodal setting where participants can leverage all clinically and practically available data, including full acute CT imaging, sub-acute follow-up MRI, and structured clinical information, across a train set of 150 cases. On the hidden test set of 98 cases, the top-performing model, a multimodal nnU-Net-based architecture, achieved a Dice score of 0.285 (+/- 0.213) and an absolute volume difference of 21.2 (+/- 37.2) mL, underlining the significant challenges posed by this task and the need for further advances in multimodal learning. This work makes two primary contributions: first, we establish a standardized, clinically realistic benchmark for post-treatment infarct prediction, enabling systematic evaluation of multimodal algorithmic strategies on a longitudinal stroke dataset; second, we analyze current methodological limitations and outline key research directions to guide the development of next-generation infarct prediction models.
♻ ☆ OminiControl: Minimal and Universal Control for Diffusion Transformer ICCV 2025
We present OminiControl, a novel approach that rethinks how image conditions are integrated into Diffusion Transformer (DiT) architectures. Current image conditioning methods either introduce substantial parameter overhead or handle only specific control tasks effectively, limiting their practical versatility. OminiControl addresses these limitations through three key innovations: (1) a minimal architectural design that leverages the DiT's own VAE encoder and transformer blocks, requiring just 0.1% additional parameters; (2) a unified sequence processing strategy that combines condition tokens with image tokens for flexible token interactions; and (3) a dynamic position encoding mechanism that adapts to both spatially-aligned and non-aligned control tasks. Our extensive experiments show that this streamlined approach not only matches but surpasses the performance of specialized methods across multiple conditioning tasks. To overcome data limitations in subject-driven generation, we also introduce Subjects200K, a large-scale dataset of identity-consistent image pairs synthesized using DiT models themselves. This work demonstrates that effective image control can be achieved without architectural complexity, opening new possibilities for efficient and versatile image generation systems.
comment: Accepted to ICCV 2025
♻ ☆ DynamicFace: High-Quality and Consistent Face Swapping for Image and Video using Composable 3D Facial Priors ICCV 2025
Face swapping transfers the identity of a source face to a target face while retaining the attributes like expression, pose, hair, and background of the target face. Advanced face swapping methods have achieved attractive results. However, these methods often inadvertently transfer identity information from the target face, compromising expression-related details and accurate identity. We propose a novel method DynamicFace that leverages the power of diffusion models and plug-and-play adaptive attention layers for image and video face swapping. First, we introduce four fine-grained facial conditions using 3D facial priors. All conditions are designed to be disentangled from each other for precise and unique control. Then, we adopt Face Former and ReferenceNet for high-level and detailed identity injection. Through experiments on the FF++ dataset, we demonstrate that our method achieves state-of-the-art results in face swapping, showcasing superior image quality, identity preservation, and expression accuracy. Our framework seamlessly adapts to both image and video domains. Our code and results will be available on the project page: https://dynamic-face.github.io/
comment: Accepted by ICCV 2025. Project page: https://dynamic-face.github.io/
♻ ☆ Dynamic EventNeRF: Reconstructing General Dynamic Scenes from Multi-view RGB and Event Streams CVPR
Volumetric reconstruction of dynamic scenes is an important problem in computer vision. It is especially challenging in poor lighting and with fast motion. This is partly due to limitations of RGB cameras: To capture frames under low lighting, the exposure time needs to be increased, which leads to more motion blur. In contrast, event cameras, which record changes in pixel brightness asynchronously, are much less dependent on lighting, making them more suitable for recording fast motion. We hence propose the first method to spatiotemporally reconstruct a scene from sparse multi-view event streams and sparse RGB frames. We train a sequence of cross-faded time-conditioned NeRF models, one per short recording segment. The individual segments are supervised with a set of event- and RGB-based losses and sparse-view regularisation. We assemble a real-world multi-view camera rig with six static event cameras around the object and record a benchmark multi-view event stream dataset of challenging motions. Our work outperforms RGB-based baselines, producing state-of-the-art results, and opens up the topic of multi-view event-based reconstruction as a new path for fast scene capture beyond RGB cameras. The code and the data are released at https://4dqv.mpi-inf.mpg.de/DynEventNeRF/
comment: 17 pages, 13 figures, 7 tables; CVPRW 2025
♻ ☆ EyeTrAES: Fine-grained, Low-Latency Eye Tracking via Adaptive Event Slicing
Eye-tracking technology has gained significant attention in recent years due to its wide range of applications in human-computer interaction, virtual and augmented reality, and wearable health. Traditional RGB camera-based eye-tracking systems often struggle with poor temporal resolution and computational constraints, limiting their effectiveness in capturing rapid eye movements. To address these limitations, we propose EyeTrAES, a novel approach using neuromorphic event cameras for high-fidelity tracking of natural pupillary movement that shows significant kinematic variance. One of EyeTrAES's highlights is the use of a novel adaptive windowing/slicing algorithm that ensures just the right amount of descriptive asynchronous event data accumulation within an event frame, across a wide range of eye movement patterns. EyeTrAES then applies lightweight image processing functions over accumulated event frames from just a single eye to perform pupil segmentation and tracking. We show that these methods boost pupil tracking fidelity by 6+%, achieving IoU~=92%, while incurring at least 3x lower latency than competing pure event-based eye tracking alternatives [38]. We additionally demonstrate that the microscopic pupillary motion captured by EyeTrAES exhibits distinctive variations across individuals and can thus serve as a biometric fingerprint. For robust user authentication, we train a lightweight per-user Random Forest classifier using a novel feature vector of short-term pupillary kinematics, comprising a sliding window of pupil (location, velocity, acceleration) triples. Experimental studies with two different datasets demonstrate that the EyeTrAES-based authentication technique can simultaneously achieve high authentication accuracy (~=0.82) and low processing latency (~=12ms), and significantly outperform multiple state-of-the-art competitive baselines.
comment: 32 pages,15 figures,
♻ ☆ VideoLifter: Lifting Videos to 3D with Fast Hierarchical Stereo Alignment
Efficiently reconstructing 3D scenes from monocular video remains a core challenge in computer vision, vital for applications in virtual reality, robotics, and scene understanding. Recently, frame-by-frame progressive reconstruction without camera poses is commonly adopted, incurring high computational overhead and compounding errors when scaling to longer videos. To overcome these issues, we introduce VideoLifter, a novel video-to-3D pipeline that leverages a local-to-global strategy on a fragment basis, achieving both extreme efficiency and SOTA quality. Locally, VideoLifter leverages learnable 3D priors to register fragments, extracting essential information for subsequent 3D Gaussian initialization with enforced inter-fragment consistency and optimized efficiency. Globally, it employs a tree-based hierarchical merging method with key frame guidance for inter-fragment alignment, pairwise merging with Gaussian point pruning, and subsequent joint optimization to ensure global consistency while efficiently mitigating cumulative errors. This approach significantly accelerates the reconstruction process, reducing training time by over 82% while holding better visual quality than current SOTA methods.
comment: project page: https://videolifter.github.io
♻ ☆ Transfer Attack for Bad and Good: Explain and Boost Adversarial Transferability across Multimodal Large Language Models ACM MM 2025
Multimodal Large Language Models (MLLMs) demonstrate exceptional performance in cross-modality interaction, yet they also suffer adversarial vulnerabilities. In particular, the transferability of adversarial examples remains an ongoing challenge. In this paper, we specifically analyze the manifestation of adversarial transferability among MLLMs and identify the key factors that influence this characteristic. We discover that the transferability of MLLMs exists in cross-LLM scenarios with the same vision encoder and indicate \underline{\textit{two key Factors}} that may influence transferability. We provide two semantic-level data augmentation methods, Adding Image Patch (AIP) and Typography Augment Transferability Method (TATM), which boost the transferability of adversarial examples across MLLMs. To explore the potential impact in the real world, we utilize two tasks that can have both negative and positive societal impacts: \ding{182} Harmful Content Insertion and \ding{183} Information Protection.
comment: Accepted by ACM MM 2025
♻ ☆ CycleVAR: Repurposing Autoregressive Model for Unsupervised One-Step Image Translation ICCV 2025
The current conditional autoregressive image generation methods have shown promising results, yet their potential remains largely unexplored in the practical unsupervised image translation domain, which operates without explicit cross-domain correspondences. A critical limitation stems from the discrete quantization inherent in traditional Vector Quantization-based frameworks, which disrupts gradient flow between the Variational Autoencoder decoder and causal Transformer, impeding end-to-end optimization during adversarial training in image space. To tackle this issue, we propose using Softmax Relaxed Quantization, a novel approach that reformulates codebook selection as a continuous probability mixing process via Softmax, thereby preserving gradient propagation. Building upon this differentiable foundation, we introduce CycleVAR, which reformulates image-to-image translation as image-conditional visual autoregressive generation by injecting multi-scale source image tokens as contextual prompts, analogous to prefix-based conditioning in language models. CycleVAR exploits two modes to generate the target image tokens, including (1) serial multi-step generation, enabling iterative refinement across scales, and (2) parallel one-step generation synthesizing all resolution outputs in a single forward pass. Experimental findings indicate that the parallel one-step generation mode attains superior translation quality with quicker inference speed than the serial multi-step mode in unsupervised scenarios. Furthermore, both quantitative and qualitative results indicate that CycleVAR surpasses previous state-of-the-art unsupervised image translation models, \textit{e}.\textit{g}., CycleGAN-Turbo.
comment: Accepted to ICCV 2025. Code available at: https://github.com/IamCreateAI/CycleVAR
♻ ☆ When Does Pruning Benefit Vision Representations?
Pruning is widely used to reduce the complexity of deep learning models, but its effects on interpretability and representation learning remain poorly understood. This paper investigates how pruning influences vision models across three key dimensions: (i) interpretability, (ii) unsupervised object discovery, and (iii) alignment with human perception. We first analyze different vision network architectures to examine how varying sparsity levels affect feature attribution interpretability methods. Additionally, we explore whether pruning promotes more succinct and structured representations, potentially improving unsupervised object discovery by discarding redundant information while preserving essential features. Finally, we assess whether pruning enhances the alignment between model representations and human perception, investigating whether sparser models focus on more discriminative features similarly to humans. Our findings also reveal the presence of sweet spots, where sparse models exhibit higher interpretability, downstream generalization and human alignment. However, these spots highly depend on the network architectures and their size in terms of trainable parameters. Our results suggest a complex interplay between these three dimensions, highlighting the importance of investigating when and how pruning benefits vision representations.
♻ ☆ Holistic Tokenizer for Autoregressive Image Generation
The vanilla autoregressive image generation model generates visual tokens in a step-by-step fashion, which limits the ability to capture holistic relationships among token sequences. Moreover, most visual tokenizers map local image patches into latent tokens, leading to limited global information. To address this, we introduce \textit{Hita}, a novel image tokenizer for autoregressive (AR) image generation. It introduces a holistic-to-local tokenization scheme with learnable holistic queries and local patch tokens. Besides, Hita incorporates two key strategies for improved alignment with the AR generation process: 1) it arranges a sequential structure with holistic tokens at the beginning followed by patch-level tokens while using causal attention to maintain awareness of previous tokens; and 2) before feeding the de-quantized tokens into the decoder, Hita adopts a lightweight fusion module to control information flow to prioritize holistic tokens. Extensive experiments show that Hita accelerates the training speed of AR generators and outperforms those trained with vanilla tokenizers, achieving \textbf{2.59 FID} and \textbf{281.9 IS} on the ImageNet benchmark. A detailed analysis of the holistic representation highlights its ability to capture global image properties such as textures, materials, and shapes. Additionally, Hita also demonstrates effectiveness in zero-shot style transfer and image in-painting. The code is available at \href{https://github.com/CVMI-Lab/Hita}{https://github.com/CVMI-Lab/Hita}
comment: 17 pages, 10 figures
♻ ☆ GaussRender: Learning 3D Occupancy with Gaussian Rendering ICCV 2025
Understanding the 3D geometry and semantics of driving scenes is critical for safe autonomous driving. Recent advances in 3D occupancy prediction have improved scene representation but often suffer from visual inconsistencies, leading to floating artifacts and poor surface localization. Existing voxel-wise losses (e.g., cross-entropy) fail to enforce visible geometric coherence. In this paper, we propose GaussRender, a module that improves 3D occupancy learning by enforcing projective consistency. Our key idea is to project both predicted and ground-truth 3D occupancy into 2D camera views, where we apply supervision. Our method penalizes 3D configurations that produce inconsistent 2D projections, thereby enforcing a more coherent 3D structure. To achieve this efficiently, we leverage differentiable rendering with Gaussian splatting. GaussRender seamlessly integrates with existing architectures while maintaining efficiency and requiring no inference-time modifications. Extensive evaluations on multiple benchmarks (SurroundOcc-nuScenes, Occ3D-nuScenes, SSCBench-KITTI360) demonstrate that GaussRender significantly improves geometric fidelity across various 3D occupancy models (TPVFormer, SurroundOcc, Symphonies), achieving state-of-the-art results, particularly on surface-sensitive metrics such as RayIoU. The code is open-sourced at https://github.com/valeoai/GaussRender.
comment: ICCV 2025
♻ ☆ UNSURF: Uncertainty Quantification for Cortical Surface Reconstruction of Clinical Brain MRIs MICCAI 2025
We propose UNSURF, a novel uncertainty measure for cortical surface reconstruction of clinical brain MRI scans of any orientation, resolution, and contrast. It relies on the discrepancy between predicted voxel-wise signed distance functions (SDFs) and the actual SDFs of the fitted surfaces. Our experiments on real clinical scans show that traditional uncertainty measures, such as voxel-wise Monte Carlo variance, are not suitable for modeling the uncertainty of surface placement. Our results demonstrate that UNSURF estimates correlate well with the ground truth errors and: \textit{(i)}~enable effective automated quality control of surface reconstructions at the subject-, parcel-, mesh node-level; and \textit{(ii)}~improve performance on a downstream Alzheimer's disease classification task.
comment: Paper accepted at MICCAI 2025. Raghav Mehta and Karthik Gopinath contributed equally. Ben Glocker and Juan Eugenio Iglesias contributed equally
♻ ☆ A Novel Automatic Real-time Motion Tracking Method in MRI-guided Radiotherapy Using Enhanced Tracking-Learning-Detection Framework with Automatic Segmentation
Background and Purpose: Accurate motion tracking in MRI-guided Radiotherapy (MRIgRT) is essential for effective treatment delivery. This study aimed to enhance motion tracking precision in MRIgRT through an automatic real-time markerless tracking method using an enhanced Tracking-Learning-Detection (ETLD) framework with automatic segmentation. Materials and Methods: We developed a novel MRIgRT motion tracking and segmentation method by integrating the ETLD framework with an improved Chan-Vese model (ICV), named ETLD+ICV. The ETLD framework was upgraded for real-time cine MRI, including advanced image preprocessing, no-reference image quality assessment, an enhanced median-flow tracker, and a refined detector with dynamic search region adjustments. ICV was used for precise target volume coverage, refining the segmented region frame by frame using tracking results, with key parameters optimized. The method was tested on 3.5D MRI scans from 10 patients with liver metastases. Results: Evaluation of 106,000 frames across 77 treatment fractions showed sub-millimeter tracking errors of less than 0.8mm, with over 99% precision and 98% recall for all subjects in the Beam Eye View(BEV)/Beam Path View(BPV) orientation. The ETLD+ICV method achieved a dice global score of more than 82% for all subjects, demonstrating the method's extensibility and precise target volume coverage. Conclusion: This study successfully developed an automatic real-time markerless motion tracking method for MRIgRT that significantly outperforms current methods. The novel method not only delivers exceptional precision in tracking and segmentation but also shows enhanced adaptability to clinical demands, making it an indispensable asset in improving the efficacy of radiotherapy treatments.
♻ ☆ DriveX: Driving View Synthesis on Free-form Trajectories with Generative Prior ICCV 2025
Driving view synthesis along free-form trajectories is essential for realistic driving simulations, enabling closed-loop evaluation of end-to-end driving policies. Existing methods excel at view interpolation along recorded paths but struggle to generalize to novel trajectories due to limited viewpoints in driving videos. To tackle this challenge, we propose DriveX, a novel free-form driving view synthesis framework, that progressively distills generative prior into the 3D Gaussian model during its optimization. Within this framework, we utilize a video diffusion model to refine the degraded novel trajectory renderings from the in-training Gaussian model, while the restored videos in turn serve as additional supervision for optimizing the 3D Gaussian. Concretely, we craft an inpainting-based video restoration task, which can disentangle the identification of degraded regions from the generative capability of the diffusion model and remove the need of simulating specific degraded pattern in the training of the diffusion model. To further enhance the consistency and fidelity of generated contents, the pseudo ground truth is progressively updated with gradually improved novel trajectory rendering, allowing both components to co-adapt and reinforce each other while minimizing the disruption on the optimization. By tightly integrating 3D scene representation with generative prior, DriveX achieves high-quality view synthesis beyond recorded trajectories in real time--unlocking new possibilities for flexible and realistic driving simulations on free-form trajectories.
comment: ICCV 2025
♻ ☆ FUDOKI: Discrete Flow-based Unified Understanding and Generation via Kinetic-Optimal Velocities
The rapid progress of large language models (LLMs) has catalyzed the emergence of multimodal large language models (MLLMs) that unify visual understanding and image generation within a single framework. However, most existing MLLMs rely on autoregressive (AR) architectures, which impose inherent limitations on future development, such as the raster-scan order in image generation and restricted reasoning abilities in causal context modeling. In this work, we challenge the dominance of AR-based approaches by introducing FUDOKI, a unified multimodal model purely based on discrete flow matching, as an alternative to conventional AR paradigms. By leveraging metric-induced probability paths with kinetic optimal velocities, our framework goes beyond the previous masking-based corruption process, enabling iterative refinement with self-correction capability and richer bidirectional context integration during generation. To mitigate the high cost of training from scratch, we initialize FUDOKI from pre-trained AR-based MLLMs and adaptively transition to the discrete flow matching paradigm. Experimental results show that FUDOKI achieves performance comparable to state-of-the-art AR-based MLLMs across both visual understanding and image generation tasks, highlighting its potential as a foundation for next-generation unified multimodal models. Furthermore, we show that applying test-time scaling techniques to FUDOKI yields significant performance gains, further underscoring its promise for future enhancement through reinforcement learning.
comment: 37 pages, 12 figures
♻ ☆ Mitigating Bias Using Model-Agnostic Data Attribution CVPR
Mitigating bias in machine learning models is a critical endeavor for ensuring fairness and equity. In this paper, we propose a novel approach to address bias by leveraging pixel image attributions to identify and regularize regions of images containing significant information about bias attributes. Our method utilizes a model-agnostic approach to extract pixel attributions by employing a convolutional neural network (CNN) classifier trained on small image patches. By training the classifier to predict a property of the entire image using only a single patch, we achieve region-based attributions that provide insights into the distribution of important information across the image. We propose utilizing these attributions to introduce targeted noise into datasets with confounding attributes that bias the data, thereby constraining neural networks from learning these biases and emphasizing the primary attributes. Our approach demonstrates its efficacy in enabling the training of unbiased classifiers on heavily biased datasets.
comment: Accepted to the 2024 IEEE CVPR Workshop on Fair, Data-efficient, and Trusted Computer Vision. Code available at https://github.com/sdeconinck/ModelAgnosticDataAttribution
♻ ☆ Active Stereo in the Wild through Virtual Pattern Projection ICCV 2023
This paper presents a novel general-purpose guided stereo paradigm that mimics the active stereo principle by replacing the unreliable physical pattern projector with a depth sensor. It works by projecting virtual patterns consistent with the scene geometry onto the left and right images acquired by a conventional stereo camera, using the sparse hints obtained from a depth sensor, to facilitate the visual correspondence. Purposely, any depth sensing device can be seamlessly plugged into our framework, enabling the deployment of a virtual active stereo setup in any possible environment and overcoming the severe limitations of physical pattern projection, such as the limited working range and environmental conditions. Exhaustive experiments on indoor and outdoor datasets featuring both long and close range, including those providing raw, unfiltered depth hints from off-the-shelf depth sensors, highlight the effectiveness of our approach in notably boosting the robustness and accuracy of algorithms and deep stereo without any code modification and even without re-training. Additionally, we assess the performance of our strategy on active stereo evaluation datasets with conventional pattern projection. Indeed, in all these scenarios, our virtual pattern projection paradigm achieves state-of-the-art performance. The source code is available at: https://github.com/bartn8/vppstereo.
comment: IJCV extended version of ICCV 2023 paper: "Active Stereo Without Pattern Projector"
♻ ☆ Open-Set Gait Recognition from Sparse mmWave Radar Point Clouds
The adoption of Millimeter-Wave (mmWave) radar devices for human sensing, particularly gait recognition, has recently gathered significant attention due to their efficiency, resilience to environmental conditions, and privacy-preserving nature. In this work, we tackle the challenging problem of Open-set Gait Recognition (OSGR) from sparse mmWave radar point clouds. Unlike most existing research, which assumes a closed-set scenario, our work considers the more realistic open-set case, where unknown subjects might be present at inference time, and should be correctly recognized by the system. Point clouds are well-suited for edge computing applications with resource constraints, but are more significantly affected by noise and random fluctuations than other representations, like the more common micro-Doppler signature. This is the first work addressing open-set gait recognition with sparse point cloud data. To do so, we propose a novel neural network architecture that combines supervised classification with unsupervised reconstruction of the point clouds, creating a robust, rich, and highly regularized latent space of gait features. To detect unknown subjects at inference time, we introduce a probabilistic novelty detection algorithm that leverages the structured latent space and offers a tunable trade-off between inference speed and prediction accuracy. Along with this paper, we release mmGait10, an original human gait dataset featuring over five hours of measurements from ten subjects, under varied walking modalities. Extensive experimental results show that our solution attains F1-Score improvements by 24% over state-of-the-art methods adapted for point clouds, on average, and across multiple openness levels.
♻ ☆ Multi-person Physics-based Pose Estimation for Combat Sports
We propose a novel framework for accurate 3D human pose estimation in combat sports using sparse multi-camera setups. Our method integrates robust multi-view 2D pose tracking via a transformer-based top-down approach, employing epipolar geometry constraints and long-term video object segmentation for consistent identity tracking across views. Initial 3D poses are obtained through weighted triangulation and spline smoothing, followed by kinematic optimization to refine pose accuracy. We further enhance pose realism and robustness by introducing a multi-person physics-based trajectory optimization step, effectively addressing challenges such as rapid motions, occlusions, and close interactions. Experimental results on diverse datasets, including a new benchmark of elite boxing footage, demonstrate state-of-the-art performance. Additionally, we release comprehensive annotated video datasets to advance future research in multi-person pose estimation for combat sports.
♻ ☆ Mask Approximation Net: A Novel Diffusion Model Approach for Remote Sensing Change Captioning
Remote sensing image change description represents an innovative multimodal task within the realm of remote sensing processing.This task not only facilitates the detection of alterations in surface conditions, but also provides comprehensive descriptions of these changes, thereby improving human interpretability and interactivity.Current deep learning methods typically adopt a three stage framework consisting of feature extraction, feature fusion, and change localization, followed by text generation. Most approaches focus heavily on designing complex network modules but lack solid theoretical guidance, relying instead on extensive empirical experimentation and iterative tuning of network components. This experience-driven design paradigm may lead to overfitting and design bottlenecks, thereby limiting the model's generalizability and adaptability.To address these limitations, this paper proposes a paradigm that shift towards data distribution learning using diffusion models, reinforced by frequency-domain noise filtering, to provide a theoretically motivated and practically effective solution to multimodal remote sensing change description.The proposed method primarily includes a simple multi-scale change detection module, whose output features are subsequently refined by a well-designed diffusion model.Furthermore, we introduce a frequency-guided complex filter module to boost the model performance by managing high-frequency noise throughout the diffusion process. We validate the effectiveness of our proposed method across several datasets for remote sensing change detection and description, showcasing its superior performance compared to existing techniques. The code will be available at \href{https://github.com/sundongwei}{MaskApproxNet}.
♻ ☆ Riemannian Complex Hermit Positive Definite Convolution Network for Polarimetric SAR Image Classification
Deep learning has been extensively utilized for PolSAR image classification. However, most existing methods transform the polarimetric covariance matrix into a real- or complex-valued vector to comply with standard deep learning frameworks in Euclidean space. This approach overlooks the inherent structure of the covariance matrix, which is a complex Hermitian positive definite (HPD) matrix residing in the Riemannian manifold. Vectorization disrupts the matrix structure and misrepresents its geometric properties. To mitigate this drawback, we propose HPDNet, a novel framework that directly processes HPD matrices on the Riemannian manifold. The HPDnet fully considers the complex phase information by decomposing a complex HPD matrix into the real- and imaginarymatrices. The proposed HPDnet consists of several HPD mapping layers and rectifying layers, which can preserve the geometric structure of the data and transform them into a more separable manifold representation. Subsequently, a complex LogEig layer is developed to project the manifold data into a tangent space, ensuring that conventional Euclidean-based deep learning networks can be applied to further extract contextual features for classification. Furthermore, to optimize computational efficiency, we design a fast eigenvalue decomposition method for parallelized matrix processing. Experiments conducted on three real-world PolSAR datasets demonstrate that the proposed method outperforms state-of-the-art approaches, especially in heterogeneous regions.
comment: 13 pages, 7 figures
♻ ☆ EAP4EMSIG -- Enhancing Event-Driven Microscopy for Microfluidic Single-Cell Analysis
Microfluidic Live-Cell Imaging (MLCI) yields data on microbial cell factories. However, continuous acquisition is challenging as high-throughput experiments often lack real-time insights, delaying responses to stochastic events. We introduce three components in the Experiment Automation Pipeline for Event-Driven Microscopy to Smart Microfluidic Single-Cell Analysis (EAP4EMSIG): a fast, accurate Multi-Layer Perceptron (MLP)-based autofocusing method predicting the focus offset, an evaluation of real-time segmentation methods and a real-time data analysis dashboard. Our MLP-based autofocusing achieves a Mean Absolute Error (MAE) of 0.105 $\mu$m with inference times from 87 ms. Among eleven evaluated Deep Learning (DL) segmentation methods, Cellpose reached a Panoptic Quality (PQ) of 93.36 %, while a distance-based method was fastest (121 ms, Panoptic Quality 93.02 %).
comment: Submitted to: at - Automatisierungstechnik
♻ ☆ AvatarMakeup: Realistic Makeup Transfer for 3D Animatable Head Avatars
Similar to facial beautification in real life, 3D virtual avatars require personalized customization to enhance their visual appeal, yet this area remains insufficiently explored. Although current 3D Gaussian editing methods can be adapted for facial makeup purposes, these methods fail to meet the fundamental requirements for achieving realistic makeup effects: 1) ensuring a consistent appearance during drivable expressions, 2) preserving the identity throughout the makeup process, and 3) enabling precise control over fine details. To address these, we propose a specialized 3D makeup method named AvatarMakeup, leveraging a pretrained diffusion model to transfer makeup patterns from a single reference photo of any individual. We adopt a coarse-to-fine idea to first maintain the consistent appearance and identity, and then to refine the details. In particular, the diffusion model is employed to generate makeup images as supervision. Due to the uncertainties in diffusion process, the generated images are inconsistent across different viewpoints and expressions. Therefore, we propose a Coherent Duplication method to coarsely apply makeup to the target while ensuring consistency across dynamic and multiview effects. Coherent Duplication optimizes a global UV map by recoding the averaged facial attributes among the generated makeup images. By querying the global UV map, it easily synthesizes coherent makeup guidance from arbitrary views and expressions to optimize the target avatar. Given the coarse makeup avatar, we further enhance the makeup by incorporating a Refinement Module into the diffusion model to achieve high makeup quality. Experiments demonstrate that AvatarMakeup achieves state-of-the-art makeup transfer quality and consistency throughout animation.
♻ ☆ Fairness Evolution in Continual Learning for Medical Imaging
Deep Learning has advanced significantly in medical applications, aiding disease diagnosis in Chest X-ray images. However, expanding model capabilities with new data remains a challenge, which Continual Learning (CL) aims to address. Previous studies have evaluated CL strategies based on classification performance; however, in sensitive domains such as healthcare, it is crucial to assess performance across socially salient groups to detect potential biases. This study examines how bias evolves across tasks using domain-specific fairness metrics and how different CL strategies impact this evolution. Our results show that Learning without Forgetting and Pseudo-Label achieve optimal classification performance, but Pseudo-Label is less biased.
♻ ☆ ReCAP: Recursive Cross Attention Network for Pseudo-Label Generation in Robotic Surgical Skill Assessment
In surgical skill assessment, the Objective Structured Assessments of Technical Skills (OSATS) and Global Rating Scale (GRS) are well-established tools for evaluating surgeons during training. These metrics, along with performance feedback, help surgeons improve and reach practice standards. Recent research on the open-source JIGSAWS dataset, which includes both GRS and OSATS labels, has focused on regressing GRS scores from kinematic data, video, or their combination. However, we argue that regressing GRS alone is limiting, as it aggregates OSATS scores and overlooks clinically meaningful variations during a surgical trial. To address this, we developed a weakly-supervised recurrent transformer model that tracks a surgeon's performance throughout a session by mapping hidden states to six OSATS, derived from kinematic data. These OSATS scores are averaged to predict GRS, allowing us to compare our model's performance against state-of-the-art (SOTA) methods. We report Spearman's Correlation Coefficients (SCC) demonstrating that our model outperforms SOTA using kinematic data (SCC 0.83-0.88), and matches performance with video-based models. Our model also surpasses SOTA in most tasks for average OSATS predictions (SCC 0.46-0.70) and specific OSATS (SCC 0.56-0.95). The generation of pseudo-labels at the segment level translates quantitative predictions into qualitative feedback, vital for automated surgical skill assessment pipelines. A senior surgeon validated our model's outputs, agreeing with 77\% of the weakly-supervised predictions \(p=0.006\).
♻ ☆ UniForm: A Unified Multi-Task Diffusion Transformer for Audio-Video Generation
With the rise of diffusion models, audio-video generation has been revolutionized. However, most existing methods rely on separate modules for each modality, with limited exploration of unified generative architectures. In addition, many are confined to a single task and small-scale datasets. To overcome these limitations, we introduce UniForm, a unified multi-task diffusion transformer that generates both audio and visual modalities in a shared latent space. By using a unified denoising network, UniForm captures the inherent correlations between sound and vision. Additionally, we propose task-specific noise schemes and task tokens, enabling the model to support multiple tasks with a single set of parameters, including video-to-audio, audio-to-video and text-to-audio-video generation. Furthermore, by leveraging large language models and a large-scale text-audio-video combined dataset, UniForm achieves greater generative diversity than prior approaches. Experiments show that UniForm achieves performance close to the state-of-the-art single-task models across three generation tasks, with generated content that is not only highly aligned with real-world data distributions but also enables more diverse and fine-grained generation.
comment: Our demos are available at https://uniform-t2av.github.io/
♻ ☆ Mind the Context: Attention-Guided Weak-to-Strong Consistency for Enhanced Semi-Supervised Medical Image Segmentation
Medical image segmentation is a pivotal step in diagnostic and therapeutic processes, relying on high-quality annotated data that is often challenging and costly to obtain. Semi-supervised learning offers a promising approach to enhance model performance by leveraging unlabeled data. Although weak-to-strong consistency is a prevalent method in semi-supervised image segmentation, there is a scarcity of research on perturbation strategies specifically tailored for semi-supervised medical image segmentation tasks. To address this challenge, this paper introduces a simple yet efficient semi-supervised learning framework named Attention-Guided weak-to-strong Consistency Match (AIGCMatch). The AIGCMatch framework incorporates attention-guided perturbation strategies at both the image and feature levels to achieve weak-to-strong consistency regularization. This method not only preserves the structural information of medical images but also enhances the model's ability to process complex semantic information. Extensive experiments conducted on the ACDC and ISIC-2017 datasets have validated the effectiveness of AIGCMatch. Our method achieved a 90.4\% Dice score in the 7-case scenario on the ACDC dataset, surpassing the state-of-the-art methods and demonstrating its potential and efficacy in clinical settings.
♻ ☆ Rethinking Detecting Salient and Camouflaged Objects in Unconstrained Scenes
While the human visual system employs distinct mechanisms to perceive salient and camouflaged objects, existing models struggle to disentangle these tasks. Specifically, salient object detection (SOD) models frequently misclassify camouflaged objects as salient, while camouflaged object detection (COD) models conversely misinterpret salient objects as camouflaged. We hypothesize that this can be attributed to two factors: (i) the specific annotation paradigm of current SOD and COD datasets, and (ii) the lack of explicit attribute relationship modeling in current models. Prevalent SOD/COD datasets enforce a mutual exclusivity constraint, assuming scenes contain either salient or camouflaged objects, which poorly aligns with the real world. Furthermore, current SOD/COD methods are primarily designed for these highly constrained datasets and lack explicit modeling of the relationship between salient and camouflaged objects. In this paper, to promote the development of unconstrained salient and camouflaged object detection, we construct a large-scale dataset, USC12K, which features comprehensive labels and four different scenes that cover all possible logical existence scenarios of both salient and camouflaged objects. To explicitly model the relationship between salient and camouflaged objects, we propose a model called USCNet, which introduces two distinct prompt query mechanisms for modeling inter-sample and intra-sample attribute relationships. Additionally, to assess the model's ability to distinguish between salient and camouflaged objects, we design an evaluation metric called CSCS. The proposed method achieves state-of-the-art performance across all scenes in various metrics. The code and dataset will be available at https://github.com/ssecv/USCNet.
comment: 17 pages, 11 figures
♻ ☆ PEVLM: Parallel Encoding for Vision-Language Models
Vision-Language Models (VLMs) have demonstrated strong capabilities in multimodal understanding and generation tasks. However, their application to long video understanding remains hindered by the quadratic complexity of standard attention mechanisms. In this work, we introduce \textbf{PEVLM}, a fine-tuning-free parallel encoding method designed to enhance the prefilling efficiency of VLMs in long video scenarios. PEVLM partitions the input video into context blocks with a shared sink block, while preserving sequential position embeddings to align the attention weight distribution with that of Full-Attention. This design reduces attention complexity from $O((T \times N)^2)$ to $O(T \times N)$ where $T$ is the number of frames and $N$ the number of tokens per frame, without sacrificing accuracy. Extensive experiments across multiple state-of-the-art models and benchmarks demonstrate that PEVLM consistently outperforms existing parallel encoding approaches, achieving up to \textbf{7.47x} speedup in attention computation and reducing end-to-end latency by \textbf{40\%}. Remarkably, PEVLM not only maintains high accuracy, but in some settings even surpasses Full-Attention performance. Under strict latency constraints, it achieves substantial gains, improving accuracy from \textbf{23.26\%} to \textbf{61.03\%}. These results underscore the effectiveness of PEVLM for low-latency, long-context video understanding, making it a promising solution for real-world applications.
♻ ☆ UltraBoneUDF: Self-supervised Bone Surface Reconstruction from Ultrasound Based on Neural Unsigned Distance Functions
Background: Bone surface reconstruction plays a critical role in computer-assisted orthopedic surgery. Compared to traditional imaging modalities such as CT and MRI, ultrasound offers a radiation-free, cost-effective, and portable alternative. Continuous bone surface reconstruction can be employed for many clinical applications. However, due to the inherent limitations of ultrasound imaging, B-mode ultrasound typically capture only partial bone surfaces. Existing reconstruction methods struggle with such incomplete data, leading to artifacts and increased reconstruction errors. Effective techniques for accurately reconstructing thin and open bone surfaces from real-world 3D ultrasound volumes remain lacking. Methods: We propose UltraBoneUDF, a self-supervised framework designed for reconstructing open bone surfaces from ultrasound using neural Unsigned Distance Functions. To enhance reconstruction quality, we introduce a novel global feature extractor that effectively fuses ultrasound-specific image characteristics. Additionally, we present a novel loss function based on local tangent plane optimization that substantially improves surface reconstruction quality. UltraBoneUDF and baseline models are extensively evaluated on four open-source datasets. Results: Qualitative results highlight the limitations of the state-of-the-art methods for open bone surface reconstruction and demonstrate the effectiveness of UltraBoneUDF. Quantitatively, UltraBoneUDF significantly outperforms competing methods across all evaluated datasets for both open and closed bone surface reconstruction in terms of mean Chamfer distance error: 1.10 mm on the UltraBones100k dataset (39.6\% improvement compared to the SOTA), 0.23 mm on the OpenBoneCT dataset (69.3\% improvement), 0.18 mm on the ClosedBoneCT dataset (70.2\% improvement), and 0.05 mm on the Prostate dataset (55.3\% improvement).
♻ ☆ BiMa: Towards Biases Mitigation for Text-Video Retrieval via Scene Element Guidance ACM MM 2025
Text-video retrieval (TVR) systems often suffer from visual-linguistic biases present in datasets, which cause pre-trained vision-language models to overlook key details. To address this, we propose BiMa, a novel framework designed to mitigate biases in both visual and textual representations. Our approach begins by generating scene elements that characterize each video by identifying relevant entities/objects and activities. For visual debiasing, we integrate these scene elements into the video embeddings, enhancing them to emphasize fine-grained and salient details. For textual debiasing, we introduce a mechanism to disentangle text features into content and bias components, enabling the model to focus on meaningful content while separately handling biased information. Extensive experiments and ablation studies across five major TVR benchmarks (i.e., MSR-VTT, MSVD, LSMDC, ActivityNet, and DiDeMo) demonstrate the competitive performance of BiMa. Additionally, the model's bias mitigation capability is consistently validated by its strong results on out-of-distribution retrieval tasks.
comment: Accepted at ACM MM 2025
♻ ☆ SwiftSeg: Efficient Training-Free Open-Vocabulary Segmentation via Hierarchical Attention Refinement Method
Open-vocabulary semantic segmentation (OVSS) aims to segment objects from arbitrary text categories without requiring densely annotated datasets. Although contrastive learning based models enable zero-shot segmentation, they often lose fine spatial precision at pixel level, due to global representation bias. In contrast, diffusion-based models naturally encode fine-grained spatial features via attention mechanisms that capture both global context and local details. However, they often face challenges in balancing the number of iterations with the quality of the segmentation. In this work, we propose FastSeg, a novel and efficient training-free framework with only (1+1)-step of reverse process of a pretrained diffusion model (e.g., Stable Diffusion). Moreover, instead of running multiple times for different classes, FastSeg performs segmentation for all classes at once. To further enhance the segmentation quality, FastSeg introduces three key components: (i) a dual-prompt mechanism for discriminative, class-aware attention extraction, (ii) a Hierarchical Attention Refinement Method (HARD) that enhances fused cross-attention using scale-aligned selfattention maps, and (iii) a Test-Time Flipping (TTF) scheme designed to improve spatial consistency. Extensive experiments show that FastSeg achieves state-of-the-art training-free performance, obtaining 43.8% average mIoU across PASCAL VOC, PASCAL Context, and COCO Object benchmarks while maintaining superior inference efficiency. Our results demonstrate that FastSeg provides a strong foundation for extendability, bridging the gap between segmentation quality and inference efficiency.
♻ ☆ Diffusion-based Adversarial Identity Manipulation for Facial Privacy Protection ACM MM 2025
The success of face recognition (FR) systems has led to serious privacy concerns due to potential unauthorized surveillance and user tracking on social networks. Existing methods for enhancing privacy fail to generate natural face images that can protect facial privacy. In this paper, we propose diffusion-based adversarial identity manipulation (DiffAIM) to generate natural and highly transferable adversarial faces against malicious FR systems. To be specific, we manipulate facial identity within the low-dimensional latent space of a diffusion model. This involves iteratively injecting gradient-based adversarial identity guidance during the reverse diffusion process, progressively steering the generation toward the desired adversarial faces. The guidance is optimized for identity convergence towards a target while promoting semantic divergence from the source, facilitating effective impersonation while maintaining visual naturalness. We further incorporate structure-preserving regularization to preserve facial structure consistency during manipulation. Extensive experiments on both face verification and identification tasks demonstrate that compared with the state-of-the-art, DiffAIM achieves stronger black-box attack transferability while maintaining superior visual quality. We also demonstrate the effectiveness of the proposed approach for commercial FR APIs, including Face++ and Aliyun.
comment: Accepted by ACM MM 2025
♻ ☆ Towards Practical Alzheimer's Disease Diagnosis: A Lightweight and Interpretable Spiking Neural Model
Early diagnosis of Alzheimer's Disease (AD), especially at the mild cognitive impairment (MCI) stage, is vital yet hindered by subjective assessments and the high cost of multimodal imaging modalities. Although deep learning methods offer automated alternatives, their energy inefficiency and computational demands limit real-world deployment, particularly in resource-constrained settings. As a brain-inspired paradigm, spiking neural networks (SNNs) are inherently well-suited for modeling the sparse, event-driven patterns of neural degeneration in AD, offering a promising foundation for interpretable and low-power medical diagnostics. However, existing SNNs often suffer from weak expressiveness and unstable training, which restrict their effectiveness in complex medical tasks. To address these limitations, we propose FasterSNN, a hybrid neural architecture that integrates biologically inspired LIF neurons with region-adaptive convolution and multi-scale spiking attention. This design enables sparse, efficient processing of 3D MRI while preserving diagnostic accuracy. Experiments on benchmark datasets demonstrate that FasterSNN achieves competitive performance with substantially improved efficiency and stability, supporting its potential for practical AD screening. Our source code is available at https://github.com/wuchangw/FasterSNN.
comment: 11 pages, 5 figures
♻ ☆ AIGI-Holmes: Towards Explainable and Generalizable AI-Generated Image Detection via Multimodal Large Language Models ICCV 2025
The rapid development of AI-generated content (AIGC) technology has led to the misuse of highly realistic AI-generated images (AIGI) in spreading misinformation, posing a threat to public information security. Although existing AIGI detection techniques are generally effective, they face two issues: 1) a lack of human-verifiable explanations, and 2) a lack of generalization in the latest generation technology. To address these issues, we introduce a large-scale and comprehensive dataset, Holmes-Set, which includes the Holmes-SFTSet, an instruction-tuning dataset with explanations on whether images are AI-generated, and the Holmes-DPOSet, a human-aligned preference dataset. Our work introduces an efficient data annotation method called the Multi-Expert Jury, enhancing data generation through structured MLLM explanations and quality control via cross-model evaluation, expert defect filtering, and human preference modification. In addition, we propose Holmes Pipeline, a meticulously designed three-stage training framework comprising visual expert pre-training, supervised fine-tuning, and direct preference optimization. Holmes Pipeline adapts multimodal large language models (MLLMs) for AIGI detection while generating human-verifiable and human-aligned explanations, ultimately yielding our model AIGI-Holmes. During the inference stage, we introduce a collaborative decoding strategy that integrates the model perception of the visual expert with the semantic reasoning of MLLMs, further enhancing the generalization capabilities. Extensive experiments on three benchmarks validate the effectiveness of our AIGI-Holmes.
comment: Accepted to ICCV 2025
♻ ☆ Brain3D: Generating 3D Objects from fMRI
Understanding the hidden mechanisms behind human's visual perception is a fundamental question in neuroscience. To that end, investigating into the neural responses of human mind activities, such as functional Magnetic Resonance Imaging (fMRI), has been a significant research vehicle. However, analyzing fMRI signals is challenging, costly, daunting, and demanding for professional training. Despite remarkable progress in fMRI analysis, existing approaches are limited to generating 2D images and far away from being biologically meaningful and practically useful. Under this insight, we propose to generate visually plausible and functionally more comprehensive 3D outputs decoded from brain signals, enabling more sophisticated modeling of fMRI data. Conceptually, we reformulate this task as a {\em fMRI conditioned 3D object generation} problem. We design a novel 3D object representation learning method, Brain3D, that takes as input the fMRI data of a subject who was presented with a 2D image, and yields as output the corresponding 3D object images. The key capabilities of this model include tackling the noises with high-level semantic signals and a two-stage architecture design for progressive high-level information integration. Extensive experiments validate the superior capability of our model over previous state-of-the-art 3D object generation methods. Importantly, we show that our model captures the distinct functionalities of each region of human vision system as well as their intricate interplay relationships, aligning remarkably with the established discoveries in neuroscience. Further, preliminary evaluations indicate that Brain3D can successfully identify the disordered brain regions in simulated scenarios, such as V1, V2, V3, V4, and the medial temporal lobe (MTL) within the human visual system. Our data and code will be available at https://brain-3d.github.io/.
comment: 24 pages, 13 figures, project page: https://brain-3d.github.io/
♻ ☆ Q-Frame: Query-aware Frame Selection and Multi-Resolution Adaptation for Video-LLMs ICCV 2025
Multimodal Large Language Models (MLLMs) have demonstrated significant success in visual understanding tasks. However, challenges persist in adapting these models for video comprehension due to the large volume of data and temporal complexity. Existing Video-LLMs using uniform frame sampling often struggle to capture the query-related crucial spatiotemporal clues of videos effectively. In this paper, we introduce Q-Frame, a novel approach for adaptive frame selection and multi-resolution scaling tailored to the video's content and the specific query. Q-Frame employs a training-free, plug-and-play strategy generated by a text-image matching network like CLIP, utilizing the Gumbel-Max trick for efficient frame selection. Q-Frame allows Video-LLMs to process more frames without exceeding computational limits, thereby preserving critical temporal and spatial information. We demonstrate Q-Frame's effectiveness through extensive experiments on benchmark datasets, including MLVU, LongVideoBench, and Video-MME, illustrating its superiority over existing methods and its applicability across various video understanding tasks.
comment: Accepted at ICCV 2025
♻ ☆ Event-based Stereo Depth Estimation: A Survey
Stereopsis has widespread appeal in robotics as it is the predominant way by which living beings perceive depth to navigate our 3D world. Event cameras are novel bio-inspired sensors that detect per-pixel brightness changes asynchronously, with very high temporal resolution and high dynamic range, enabling machine perception in high-speed motion and broad illumination conditions. The high temporal precision also benefits stereo matching, making disparity (depth) estimation a popular research area for event cameras ever since its inception. Over the last 30 years, the field has evolved rapidly, from low-latency, low-power circuit design to current deep learning (DL) approaches driven by the computer vision community. The bibliography is vast and difficult to navigate for non-experts due its highly interdisciplinary nature. Past surveys have addressed distinct aspects of this topic, in the context of applications, or focusing only on a specific class of techniques, but have overlooked stereo datasets. This survey provides a comprehensive overview, covering both instantaneous stereo and long-term methods suitable for simultaneous localization and mapping (SLAM), along with theoretical and empirical comparisons. It is the first to extensively review DL methods as well as stereo datasets, even providing practical suggestions for creating new benchmarks to advance the field. The main advantages and challenges faced by event-based stereo depth estimation are also discussed. Despite significant progress, challenges remain in achieving optimal performance in not only accuracy but also efficiency, a cornerstone of event-based computing. We identify several gaps and propose future research directions. We hope this survey inspires future research in this area, by serving as an accessible entry point for newcomers, as well as a practical guide for seasoned researchers in the community.
comment: 28 pages, 24 figures, 7 tables. Project page: https://github.com/tub-rip/EventStereoSurvey
♻ ☆ Uncertainty in Real-Time Semantic Segmentation on Embedded Systems
Application for semantic segmentation models in areas such as autonomous vehicles and human computer interaction require real-time predictive capabilities. The challenges of addressing real-time application is amplified by the need to operate on resource constrained hardware. Whilst development of real-time methods for these platforms has increased, these models are unable to sufficiently reason about uncertainty present when applied on embedded real-time systems. This paper addresses this by combining deep feature extraction from pre-trained models with Bayesian regression and moment propagation for uncertainty aware predictions. We demonstrate how the proposed method can yield meaningful epistemic uncertainty on embedded hardware in real-time whilst maintaining predictive performance.
♻ ☆ Event-based Photometric Bundle Adjustment
We tackle the problem of bundle adjustment (i.e., simultaneous refinement of camera poses and scene map) for a purely rotating event camera. Starting from first principles, we formulate the problem as a classical non-linear least squares optimization. The photometric error is defined using the event generation model directly in the camera rotations and the semi-dense scene brightness that triggers the events. We leverage the sparsity of event data to design a tractable Levenberg-Marquardt solver that handles the very large number of variables involved. To the best of our knowledge, our method, which we call Event-based Photometric Bundle Adjustment (EPBA), is the first event-only photometric bundle adjustment method that works on the brightness map directly and exploits the space-time characteristics of event data, without having to convert events into image-like representations. Comprehensive experiments on both synthetic and real-world datasets demonstrate EPBA's effectiveness in decreasing the photometric error (by up to 90%), yielding results of unparalleled quality. The refined maps reveal details that were hidden using prior state-of-the-art rotation-only estimation methods. The experiments on modern high-resolution event cameras show the applicability of EPBA to panoramic imaging in various scenarios (without map initialization, at multiple resolutions, and in combination with other methods, such as IMU dead reckoning or previous event-based rotation estimation methods). We make the source code publicly available. https://github.com/tub-rip/epba
comment: 21 pages, 19 figures, 10 tables. Project page: https://github.com/tub-rip/epba
♻ ☆ Seed Selection for Human-Oriented Image Reconstruction via Guided Diffusion
Conventional methods for scalable image coding for humans and machines require the transmission of additional information to achieve scalability. A recent diffusion-based method avoids this by generating human-oriented images from machine-oriented images without extra bitrate. This method, however, uses a single random seed, which may lead to suboptimal image quality. In this paper, we propose a seed selection method that identifies the optimal seed from multiple candidates to improve image quality without increasing the bitrate. To reduce computational cost, the selection is performed based on intermediate outputs obtained from early steps of the reverse diffusion process. Experimental results demonstrate that our method outperforms the baseline across multiple metrics.
comment: Accepted by 2025 IEEE 14th Global Conference on Consumer Electronics (GCCE 2025)
♻ ☆ PVChat: Personalized Video Chat with One-Shot Learning
Video large language models (ViLLMs) excel in general video understanding, e.g., recognizing activities like talking and eating, but struggle with identity-aware comprehension, such as "Wilson is receiving chemotherapy" or "Tom is discussing with Sarah", limiting their applicability in smart healthcare and smart home environments. To address this limitation, we propose a one-shot learning framework PVChat, the first personalized ViLLM that enables subject-aware question answering (QA) from a single video for each subject. Our approach optimizes a Mixture-of-Heads (MoH) enhanced ViLLM on a synthetically augmented video-QA dataset, leveraging a progressive image-to-video learning strategy. Specifically, we introduce an automated augmentation pipeline that synthesizes identity-preserving positive samples and retrieves hard negatives from existing video corpora, generating a diverse training dataset with four QA types: existence, appearance, action, and location inquiries. To enhance subject-specific learning, we propose a ReLU Routing MoH attention mechanism, alongside two novel objectives: (1) Smooth Proximity Regularization for progressive learning through exponential distance scaling and (2) Head Activation Enhancement for balanced attention routing. Finally, we adopt a two-stage training strategy, transitioning from image pre-training to video fine-tuning, enabling a gradual learning process from static attributes to dynamic representations. We evaluate PVChat on diverse datasets covering medical scenarios, TV series, anime, and real-world footage, demonstrating its superiority in personalized feature understanding after learning from a single video, compared to state-of-the-art ViLLMs.
♻ ☆ Weakly Supervised Segmentation Framework for Thyroid Nodule Based on High-confidence Labels and High-rationality Losses
Weakly supervised segmentation methods can delineate thyroid nodules in ultrasound images efficiently using training data with coarse labels, but suffer from: 1) low-confidence pseudo-labels that follow topological priors, introducing significant label noise, and 2) low-rationality loss functions that rigidly compare segmentation with labels, ignoring discriminative information for nodules with diverse and complex shapes. To solve these issues, we clarify the objective and references for weakly supervised ultrasound image segmentation, presenting a framework with high-confidence pseudo-labels to represent topological and anatomical information and high-rationality losses to capture multi-level discriminative features. Specifically, we fuse geometric transformations of four-point annotations and MedSAM model results prompted by specific annotations to generate high-confidence box, foreground, and background labels. Our high-rationality learning strategy includes: 1) Alignment loss measuring spatial consistency between segmentation and box label, and topological continuity within the foreground label, guiding the network to perceive nodule location; 2) Contrastive loss pulling features from labeled foreground regions while pushing features from labeled foreground and background regions, guiding the network to learn nodule and background feature distribution; 3) Prototype correlation loss measuring consistency between correlation maps derived by comparing features with foreground and background prototypes, refining uncertain regions to accurate nodule edges. Experimental results show that our method achieves state-of-the-art performance on the TN3K and DDTI datasets. The code is available at https://github.com/bluehenglee/MLI-MSC.
comment: 24 pages, 14 figures, 7 tables
♻ ☆ Distilling High Diagnostic Value Patches for Whole Slide Image Classification Using Attention Mechanism
Multiple Instance Learning (MIL) has garnered widespread attention in the field of Whole Slide Image (WSI) classification as it replaces pixel-level manual annotation with diagnostic reports as labels, significantly reducing labor costs. Recent research has shown that bag-level MIL methods often yield better results because they can consider all patches of the WSI as a whole. However, a drawback of such methods is the incorporation of more redundant patches, leading to interference. To extract patches with high diagnostic value while excluding interfering patches to address this issue, we developed an attention-based feature distillation multi-instance learning (AFD-MIL) approach. This approach proposed the exclusion of redundant patches as a preprocessing operation in weakly supervised learning, directly mitigating interference from extensive noise. It also pioneers the use of attention mechanisms to distill features with high diagnostic value, as opposed to the traditional practice of indiscriminately and forcibly integrating all patches. Additionally, we introduced global loss optimization to finely control the feature distillation module. AFD-MIL is orthogonal to many existing MIL methods, leading to consistent performance improvements. This approach has surpassed the current state-of-the-art method, achieving 91.47% ACC (accuracy) and 94.29% AUC (area under the curve) on the Camelyon16 (Camelyon Challenge 2016, breast cancer), while 93.33% ACC and 98.17% AUC on the TCGA-NSCLC (The Cancer Genome Atlas Program: non-small cell lung cancer). Different feature distillation methods were used for the two datasets, tailored to the specific diseases, thereby improving performance and interpretability.
♻ ☆ Establishing Causal Relationship Between Whole Slide Image Predictions and Diagnostic Evidence Subregions in Deep Learning
Due to the lack of fine-grained annotation guidance, current Multiple Instance Learning (MIL) struggles to establish a robust causal relationship between Whole Slide Image (WSI) diagnosis and evidence sub-images, just like fully supervised learning. So many noisy images can undermine the network's prediction. The proposed Causal Inference Multiple Instance Learning (CI-MIL), uses out-of-distribution generalization to reduce the recognition confusion of sub-images by MIL network, without requiring pixelwise annotations. Specifically, feature distillation is introduced to roughly identify the feature representation of lesion patches. Then, in the random Fourier feature space, these features are re-weighted to minimize the cross-correlation, effectively correcting the feature distribution deviation. These processes reduce the uncertainty when tracing the prediction results back to patches. Predicted diagnoses are more direct and reliable because the causal relationship between them and diagnostic evidence images is more clearly recognized by the network. Experimental results demonstrate that CI-MIL outperforms state-of-the-art methods, achieving 92.25% accuracy and 95.28% AUC on the Camelyon16 dataset (breast cancer), while 94.29% accuracy and 98.07% AUC on the TCGA-NSCLC dataset (non-small cell lung cancer). Additionally, CI-MIL exhibits superior interpretability, as its selected regions demonstrate high consistency with ground truth annotations, promising more reliable diagnostic assistance for pathologists.
♻ ☆ Domain Adaptation of VLM for Soccer Video Understanding CVPR 2025
Vision Language Models (VLMs) have demonstrated strong performance in multi-modal tasks by effectively aligning visual and textual representations. However, most video understanding VLM research has been domain-agnostic, leaving the understanding of their transfer learning capability to specialized domains under-explored. In this work, we address this by exploring the adaptability of open-source VLMs to specific domains, and focusing on soccer as an initial case study. Our approach uses large-scale soccer datasets and LLM to create instruction-following data, and use them to iteratively fine-tune the general-domain VLM in a curriculum learning fashion (first teaching the model key soccer concepts to then question answering tasks). The final adapted model, trained using a curated dataset of 20k video clips, exhibits significant improvement in soccer-specific tasks compared to the base model, with a 37.5% relative improvement for the visual question-answering task and an accuracy improvement from 11.8% to 63.5% for the downstream soccer action classification task.
comment: 8 pages, 5 figures, accepted to the 11th IEEE International Workshop on Computer Vision in Sports (CVSports) at CVPR 2025; supplementary appendix included
♻ ☆ GlaGAN: A Generative Unsupervised Model for High-Precision Segmentation of Retinal Main Vessels toward Early Detection of Glaucoma
Structural changes in the main retinal blood vessels are critical biomarkers for glaucoma onset and progression. Identifying these vessels is essential for vascular modeling yet highly challenging. This paper introduces GlaGAN, an unsupervised generative AI model for segmenting main blood vessels in Optical Coherence Tomography Angiography (OCTA) images. The process begins with the Space Colonization Algorithm (SCA) to rapidly generate vessel skeletons, including radius estimations. By synergistically integrating generative adversarial networks (GANs) with biostatistical modeling of vessel radii, GlaGAN efficiently reconstructs 2D and 3D representations, achieving nearly 100\% segmentation accuracy without requiring labeled data or high-performance computing resources. To address data scarcity, we also present GSS-RetVein, a high-definition mixed 2D/3D glaucoma retinal dataset featuring clear capillary structures. Designed for robustness testing, GSS-RetVein incorporates controlled noise while maintaining sharp capillary boundaries in 2D and enhancing 3D vascular reconstruction for blood flow prediction and glaucoma progression simulations. Experimental results demonstrate GSS-RetVein outperforms existing datasets in evaluating main vessel segmentation. Code and dataset are available: https://github.com/VikiXie/SatMar8.
♻ ☆ Enhancing Long Video Generation Consistency without Tuning ICML 2025
Despite the considerable progress achieved in the long video generation problem, there is still significant room to improve the consistency of the generated videos, particularly in terms of their smoothness and transitions between scenes. We address these issues to enhance the consistency and coherence of videos generated with either single or multiple prompts. We propose the Time-frequency based temporal Attention Reweighting Algorithm (TiARA), which judiciously edits the attention score matrix based on the Discrete Short-Time Fourier Transform. This method is supported by a frequency-based analysis, ensuring that the edited attention score matrix achieves improved consistency across frames. It represents the first-of-its-kind for frequency-based methods in video diffusion models. For videos generated by multiple prompts, we further uncover key factors such as the alignment of the prompts affecting prompt interpolation quality. Inspired by our analyses, we propose PromptBlend, an advanced prompt interpolation pipeline that systematically aligns the prompts. Extensive experimental results validate the efficacy of our proposed method, demonstrating consistent and substantial improvements over multiple baselines.
comment: ICML 2025 Workshop on Building Physically Plausible World Models (Best Paper), 32 pages, 17 figures
♻ ☆ Toward Robust Hyper-Detailed Image Captioning: A Multiagent Approach and Dual Evaluation Metrics for Factuality and Coverage ICML 2025
Multimodal large language models (MLLMs) excel at generating highly detailed captions but often produce hallucinations. Our analysis reveals that existing hallucination detection methods struggle with detailed captions. We attribute this to the increasing reliance of MLLMs on their generated text, rather than the input image, as the sequence length grows. To address this issue, we propose a multiagent approach that leverages LLM-MLLM collaboration to correct given captions. Additionally, we introduce an evaluation framework and a benchmark dataset to facilitate the systematic analysis of detailed captions. Our experiments demonstrate that our proposed evaluation method better aligns with human judgments of factuality than existing metrics and that existing approaches to improve the MLLM factuality may fall short in hyper-detailed image captioning tasks. In contrast, our proposed method significantly enhances the factual accuracy of captions, even improving those generated by GPT-4V. Finally, we highlight a limitation of VQA-centric benchmarking by demonstrating that an MLLM's performance on VQA benchmarks may not correlate with its ability to generate detailed image captions. Our code and data are available at https://github.com/adobe-research/CapMAS.
comment: ICML 2025
Computers and Society
☆ Real-Time AI-Driven Pipeline for Automated Medical Study Content Generation in Low-Resource Settings: A Kenyan Case Study
Juvenotes is a real-time AI-driven pipeline that automates the transformation of academic documents into structured exam-style question banks, optimized for low-resource medical education settings in Kenya. The system combines Azure Document Intelligence for OCR and Azure AI Foundry (OpenAI o3-mini) for question and answer generation in a microservices architecture, with a Vue/TypeScript frontend and AdonisJS backend. Mobile-first design, bandwidth-sensitive interfaces, institutional tagging, and offline features address local challenges. Piloted over seven months at Kenyan medical institutions, Juvenotes reduced content curation time from days to minutes and increased daily active users by 40%. Ninety percent of students reported improved study experiences. Key challenges included intermittent connectivity and AI-generated errors, highlighting the need for offline sync and human validation. Juvenotes shows that AI automation with contextual UX can enhance access to quality study materials in low-resource settings.
comment: 7 pages, 3 figures, a pilot at Kenyan medical institutions. Source code available upon request, arXiv:2410.23769, arXiv:2305.09617, arXiv:2311.05232
☆ SMART: Simulated Students Aligned with Item Response Theory for Question Difficulty Prediction
Item (question) difficulties play a crucial role in educational assessments, enabling accurate and efficient assessment of student abilities and personalization to maximize learning outcomes. Traditionally, estimating item difficulties can be costly, requiring real students to respond to items, followed by fitting an item response theory (IRT) model to get item difficulty estimates. This approach cannot be applied to the cold-start setting for previously unseen items either. In this work, we present SMART (Simulated Students Aligned with IRT), a novel method for aligning simulated students with instructed ability, which can then be used in simulations to predict the difficulty of open-ended items. We achieve this alignment using direct preference optimization (DPO), where we form preference pairs based on how likely responses are under a ground-truth IRT model. We perform a simulation by generating thousands of responses, evaluating them with an LLM-based scoring model, and fit the resulting data to an IRT model to obtain item difficulty estimates. Through extensive experiments on a real-world student response dataset, we show that SMART outperforms other item difficulty prediction methods by leveraging its improved ability alignment.
☆ Perspectives on How Sociology Can Advance Theorizing about Human-Chatbot Interaction and Developing Chatbots for Social Good
Recently, research into chatbots (also known as conversational agents, AI agents, voice assistants), which are computer applications using artificial intelligence to mimic human-like conversation, has grown sharply. Despite this growth, sociology lags other disciplines (including computer science, medicine, psychology, and communication) in publishing about chatbots. We suggest sociology can advance understanding of human-chatbot interaction and offer four sociological theories to enhance extant work in this field. The first two theories (resource substitution theory, power-dependence theory) add new insights to existing models of the drivers of chatbot use, which overlook sociological concerns about how social structure (e.g., systemic discrimination, the uneven distribution of resources within networks) inclines individuals to use chatbots, including problematic levels of emotional dependency on chatbots. The second two theories (affect control theory, fundamental cause of disease theory) help inform the development of chatbot-driven interventions that minimize safety risks and enhance equity by leveraging sociological insights into how chatbot outputs could attend to cultural contexts (e.g., affective norms) to promote wellbeing and enhance communities (e.g., opportunities for civic participation). We discuss the value of applying sociological theories for advancing theorizing about human-chatbot interaction and developing chatbots for social good.
☆ From Autonomy to Agency: Agentic Vehicles for Human-Centered Mobility Systems
Autonomy, from the Greek autos (self) and nomos (law), refers to the capacity to operate according to internal rules without external control. Accordingly, autonomous vehicles (AuVs) are defined as systems capable of perceiving their environment and executing preprogrammed tasks independently of external input. However, both research and real-world deployments increasingly showcase vehicles that demonstrate behaviors beyond this definition (including the SAE levels 1 to 6), such as interaction with humans and machines, goal adaptation, contextual reasoning, external tool use, and long-term planning, particularly with the integration of large language models (LLMs) and agentic AI systems. These developments reveal a conceptual gap between technical autonomy and the broader cognitive and social capabilities needed for future human-centered mobility systems. To address this, we introduce the concept of agentic vehicles (AgVs), referring to vehicles that integrate agentic AI to reason, adapt, and interact within complex environments. This paper presents a systems-level framework to characterize AgVs, focusing on their cognitive and communicative layers and differentiating them from conventional AuVs. It synthesizes relevant advances in agentic AI, robotics, multi-agent systems, and human-machine interaction, and highlights how agentic AI, through high-level reasoning and tool use, can function not merely as computational tools but as interactive agents embedded in mobility ecosystems. The paper concludes by identifying key challenges in the development and governance of AgVs, including safety, real-time control, public acceptance, ethical alignment, and regulatory frameworks.
☆ Toward Valid Measurement Of (Un)fairness For Generative AI: A Proposal For Systematization Through The Lens Of Fair Equality of Chances
Disparities in the societal harms and impacts of Generative AI (GenAI) systems highlight the critical need for effective unfairness measurement approaches. While numerous benchmarks exist, designing valid measurements requires proper systematization of the unfairness construct. Yet this process is often neglected, resulting in metrics that may mischaracterize unfairness by overlooking contextual nuances, thereby compromising the validity of the resulting measurements. Building on established (un)fairness measurement frameworks for predictive AI, this paper focuses on assessing and improving the validity of the measurement task. By extending existing conceptual work in political philosophy, we propose a novel framework for evaluating GenAI unfairness measurement through the lens of the Fair Equality of Chances framework. Our framework decomposes unfairness into three core constituents: the harm/benefit resulting from the system outcomes, morally arbitrary factors that should not lead to inequality in the distribution of harm/benefit, and the morally decisive factors, which distinguish subsets that can justifiably receive different treatments. By examining fairness through this structured lens, we integrate diverse notions of (un)fairness while accounting for the contextual dynamics that shape GenAI outcomes. We analyze factors contributing to each component and the appropriate processes to systematize and measure each in turn. This work establishes a foundation for developing more valid (un)fairness measurements for GenAI systems.
♻ ☆ Decoding Safety Feedback from Diverse Raters: A Data-driven Lens on Responsiveness to Severity
Ensuring the safety of Generative AI requires a nuanced understanding of pluralistic viewpoints. In this paper, we introduce a novel data-driven approach for interpreting granular ratings in pluralistic datasets. Specifically, we address the challenge of analyzing nuanced differences in safety feedback from a diverse population expressed via ordinal scales (e.g., a Likert scale). We distill non-parametric responsiveness metrics that quantify the consistency of raters in scoring varying levels of the severity of safety violations. Leveraging a publicly available pluralistic dataset of safety feedback on AI-generated content as our case study, we investigate how raters from different demographic groups (age, gender, ethnicity) use an ordinal scale to express their perceptions of the severity of violations. We apply our metrics across violation types, demonstrating their utility in extracting nuanced insights that are crucial for aligning AI systems reliably in multi-cultural contexts. We show that our approach can inform rater selection and feedback interpretation by capturing nuanced viewpoints across different demographic groups, hence improving the quality of pluralistic data collection and in turn contributing to more robust AI development.
♻ ☆ The Author Is Sovereign: A Manifesto for Ethical Copyright in the Age of AI
In the age of AI, authorship is being quietly eroded by algorithmic content scraping, legal gray zones like "fair use," and platforms that profit from creative labor without consent or compensation. This short manifesto proposes a radical alternative: a system in which the author is sovereign of their intellectual domain. It presents seven ethical principles that challenge prevailing assumptions about open access, copyright ownership, and the public domain - arguing that voluntary, negotiated consent must replace coercive norms. The text exposes how weakened authorship fuels structural exploitation. In place of reactive solutions, it calls for a new ethic of authorship rooted in consent, dignity, and contractual fairness.
♻ ☆ Stop treating `AGI' as the north-star goal of AI research ICML 2025
The AI research community plays a vital role in shaping the scientific, engineering, and societal goals of AI research. In this position paper, we argue that focusing on the highly contested topic of `artificial general intelligence' (`AGI') undermines our ability to choose effective goals. We identify six key traps -- obstacles to productive goal setting -- that are aggravated by AGI discourse: Illusion of Consensus, Supercharging Bad Science, Presuming Value-Neutrality, Goal Lottery, Generality Debt, and Normalized Exclusion. To avoid these traps, we argue that the AI research community needs to (1) prioritize specificity in engineering and societal goals, (2) center pluralism about multiple worthwhile approaches to multiple valuable goals, and (3) foster innovation through greater inclusion of disciplines and communities. Therefore, the AI research community needs to stop treating `AGI' as the north-star goal of AI research.
comment: Position Paper accepted to ICML 2025. OpenReview: https://openreview.net/forum?id=1RlrtH6ydW
♻ ☆ Autonomous Microscopy Experiments through Large Language Model Agents
Large language models (LLMs) are revolutionizing self driving laboratories (SDLs) for materials research, promising unprecedented acceleration of scientific discovery. However, current SDL implementations rely on rigid protocols that fail to capture the adaptability and intuition of expert scientists in dynamic experimental settings. We introduce Artificially Intelligent Lab Assistant (AILA), a framework automating atomic force microscopy through LLM driven agents. Further, we develop AFMBench a comprehensive evaluation suite challenging AI agents across the complete scientific workflow from experimental design to results analysis. We find that state of the art models struggle with basic tasks and coordination scenarios. Notably, Claude 3.5 sonnet performs unexpectedly poorly despite excelling in materials domain question answering (QA) benchmarks, revealing that domain specific QA proficiency does not necessarily translate to effective agentic capabilities. Additionally, we observe that LLMs can deviate from instructions, raising safety alignment concerns for SDL applications. Our ablations reveal that multi agent frameworks outperform single-agent architectures. We also observe significant prompt fragility, where slight modifications in prompt structure cause substantial performance variations in capable models like GPT 4o. Finally, we evaluate AILA's effectiveness in increasingly advanced experiments AFM calibration, feature detection, mechanical property measurement, graphene layer counting, and indenter detection. Our findings underscore the necessity for rigorous benchmarking protocols and prompt engineering strategies before deploying AI laboratory assistants in scientific research environments.
♻ ☆ Is Your AI Truly Yours? Leveraging Blockchain for Copyrights, Provenance, and Lineage SC
As Artificial Intelligence (AI) integrates into diverse areas, particularly in content generation, ensuring rightful ownership and ethical use becomes paramount, AI service providers are expected to prioritize responsibly sourcing training data and obtaining licenses from data owners. However, existing studies primarily center on safeguarding static copyrights, which simply treat metadata/datasets as non-fungible items with transferable/trading capabilities, neglecting the dynamic nature of training procedures that can shape an ongoing trajectory. In this paper, we present \textsc{IBis}, a blockchain-based framework tailored for AI model training workflows. Our design can dynamically manage copyright compliance and data provenance in decentralized AI model training processes, ensuring that intellectual property rights are respected throughout iterative model enhancements and licensing updates. Technically, \textsc{IBis} integrates on-chain registries for datasets, licenses and models, alongside off-chain signing services to facilitate collaboration among multiple participants. Further, \textsc{IBis} provides APIs designed for seamless integration with existing contract management software, minimizing disruptions to established model training processes. We implement \textsc{IBis} using Daml on the Canton blockchain. Evaluation results showcase the feasibility and scalability of \textsc{IBis} across varying numbers of users, datasets, models, and licenses.
comment: Published by IEEE Transactions on Service Computing (TSC) 2025
♻ ☆ Position: Machine Learning Conferences Should Establish a "Refutations and Critiques" Track
Science progresses by iteratively advancing and correcting humanity's understanding of the world. In machine learning (ML) research, rapid advancements have led to an explosion of publications, but have also led to misleading, incorrect, flawed or perhaps even fraudulent studies being accepted and sometimes highlighted at ML conferences due to the fallibility of peer review. While such mistakes are understandable, ML conferences do not offer robust processes to help the field systematically correct when such errors are made. This position paper argues that ML conferences should establish a dedicated "Refutations and Critiques" (R&C) Track. This R&C Track would provide a high-profile, reputable platform to support vital research that critically challenges prior research, thereby fostering a dynamic self-correcting research ecosystem. We discuss key considerations including track design, review principles, potential pitfalls, and provide an illustrative example submission concerning a recent ICLR 2025 Oral. We conclude that ML conferences should create official, reputable mechanisms to help ML research self-correct.
Computation and Language
☆ Nile-Chat: Egyptian Language Models for Arabic and Latin Scripts
We introduce Nile-Chat-4B, 3x4B-A6B, and 12B, a collection of LLMs for Egyptian dialect, uniquely designed to understand and generate texts written in both Arabic and Latin scripts. Specifically, with Nile-Chat-3x4B-A6B, we introduce a novel language adaptation approach by leveraging the Branch-Train-MiX strategy to merge script-specialized experts, into a single MoE model. Our Nile-Chat models significantly outperform leading multilingual and Arabic LLMs, such as LLaMa, Jais, and ALLaM, on our newly introduced Egyptian evaluation benchmarks, which span both understanding and generative tasks. Notably, our 12B model yields a 14.4% performance gain over Qwen2.5-14B-Instruct on Latin-script benchmarks. All our resources are publicly available. We believe this work presents a comprehensive methodology for adapting LLMs to dual-script languages, addressing an often overlooked aspect in modern LLM development.
☆ Evaluating LLMs on Real-World Forecasting Against Human Superforecasters
Large language models (LLMs) have demonstrated remarkable capabilities across diverse tasks, but their ability to forecast future events remains understudied. A year ago, large language models struggle to come close to the accuracy of a human crowd. I evaluate state-of-the-art LLMs on 464 forecasting questions from Metaculus, comparing their performance against human superforecasters. Frontier models achieve Brier scores that ostensibly surpass the human crowd but still significantly underperform a group of superforecasters.
☆ DP-Fusion: Token-Level Differentially Private Inference for Large Language Models UAI
Large language models (LLMs) can leak sensitive information from their context through generated outputs, either accidentally or when prompted adversarially. Existing defenses that aim to preserve context privacy during inference either lack formal guarantees or suffer from a poor utility/privacy trade-off. We propose DP-Fusion, a token-level Differentially Private Inference (DPI) mechanism that provably bounds how much an LLM's outputs reveal about sensitive tokens in its context. We demonstrate DPI through the task of document privatization, where the goal is to paraphrase documents so that sensitive content (e.g., Personally Identifiable Information, PII) cannot be reliably inferred, while still preserving the overall utility of the text. This is controlled by a parameter $\epsilon$: $\epsilon=0$ hides PII entirely, while higher values trade off privacy for improved paraphrase quality. DP-Fusion works as follows: (i) partition sensitive tokens into disjoint privacy groups, (ii) run the LLM once per group, and (iii) blend the output distributions so that the final output remains within a fixed statistical distance of the baseline distribution produced when no privacy group is revealed. This approach allows fine-grained control over the privacy/utility trade-off but requires multiple LLM forward passes.
comment: Our code and data are publicly available here: https://github.com/MBZUAI-Trustworthy-ML/DP-Fusion-DPI
☆ DOTResize: Reducing LLM Width via Discrete Optimal Transport-based Neuron Merging
Model compression offers a promising path to reducing the cost and inaccessibility of large pre-trained models, without significantly compromising their impressive performance. Large Transformer models, including large language models (LLMs), often contain computational redundancy, which can serve as a target for new model compression methods. In this work, we specifically target neuron-level redundancies in model layers by combining groups of similar neurons into fewer neurons. We frame this width reduction as a Discrete Optimal Transport problem, and propose DOTResize, a novel Transformer compression method that uses optimal transport theory to transform and compress model weights. To ensure applicability within the Transformer architecture, we motivate and incorporate entropic regularization and matrix factorization into the transportation maps produced by our method. Unlike pruning-based approaches which discard neurons based on importance measures, DOTResize re-projects the entire neuron width, allowing the retention and redistribution of useful signal across the reduced layer. Empirical results show that compared to simple or state-of-the-art neuron width-pruning techniques, DOTResize can outperform these methods across multiple LLM families and sizes, while achieving measurable reductions in real-world computational cost.
☆ AdS: Adapter-state Sharing Framework for Multimodal Sarcasm Detection
The growing prevalence of multimodal image-text sarcasm on social media poses challenges for opinion mining, especially under resource constraints. Existing approaches rely on full fine-tuning of large pre-trained models, making them unsuitable for low-resource settings. While recent parameter-efficient fine-tuning (PEFT) methods offer promise, their off-the-shelf use underperforms on complex tasks like sarcasm detection. We propose AdS (Adapter-State Sharing), a lightweight framework built on CLIP that inserts adapters only in the upper layers and introduces a novel adapter-state sharing mechanism, where textual adapters guide visual ones. This design promotes efficient cross-modal learning while preserving low-level unimodal representations. Experiments on two public benchmarks demonstrate that AdS achieves state-of-the-art results using significantly fewer trainable parameters than existing PEFT and full fine-tuning approaches.
☆ Unveiling the Potential of Diffusion Large Language Model in Controllable Generation
Diffusion models, originally developed for image generation, have emerged as a promising alternative to autoregressive large language models (LLMs). We present a theoretical analysis comparing autoregressive and masked diffusion LLMs, revealing that the intrinsic bidirectional attention mechanism of diffusion LLMs (dLLMs) enables superior context modeling and generation controllability. However, existing dLLM applications face significant challenges in controllable generation: the native multi-step denoising process exhibits high sensitivity to sequence length, elevated hallucination rates, and prohibitive inference costs without specialized optimizations. To address these limitations, we propose \textbf{S}elf-adaptive \textbf{S}chema \textbf{S}caffolding ($S^3$), a novel framework that enables dLLMs to generate structured outputs (e.g., JSON) while maintaining semantic fidelity and accelerating inference. Our approach injects the target schema structure into the output context, reducing unnecessary computation while improving controllability. Extensive experiments demonstrate that $S^3$ achieves substantial improvements: 65\% increase in structural adherence, 48\% enhancement in content fidelity, and 17\% reduction in hallucination rates compared to baseline. These results establish both theoretical foundations and practical pathways for deploying diffusion models in controllable text generation tasks. Code and data will be publicly released.
☆ A validity-guided workflow for robust large language model research in psychology
Large language models (LLMs) are rapidly being integrated into psychological research as research tools, evaluation targets, human simulators, and cognitive models. However, recent evidence reveals severe measurement unreliability: Personality assessments collapse under factor analysis, moral preferences reverse with punctuation changes, and theory-of-mind accuracy varies widely with trivial rephrasing. These "measurement phantoms"--statistical artifacts masquerading as psychological phenomena--threaten the validity of a growing body of research. Guided by the dual-validity framework that integrates psychometrics with causal inference, we present a six-stage workflow that scales validity requirements to research ambition--using LLMs to code text requires basic reliability and accuracy, while claims about psychological properties demand comprehensive construct validation. Researchers must (1) explicitly define their research goal and corresponding validity requirements, (2) develop and validate computational instruments through psychometric testing, (3) design experiments that control for computational confounds, (4) execute protocols with transparency, (5) analyze data using methods appropriate for non-independent observations, and (6) report findings within demonstrated boundaries and use results to refine theory. We illustrate the workflow through an example of model evaluation--"LLM selfhood"--showing how systematic validation can distinguish genuine computational phenomena from measurement artifacts. By establishing validated computational instruments and transparent practices, this workflow provides a path toward building a robust empirical foundation for AI psychology research.
☆ Does Overnight News Explain Overnight Returns?
Over the past 30 years, nearly all the gains in the U.S. stock market have been earned overnight, while average intraday returns have been negative or flat. We find that a large part of this effect can be explained through features of intraday and overnight news. Our analysis uses a collection of 2.4 million news articles. We apply a novel technique for supervised topic analysis that selects news topics based on their ability to explain contemporaneous market returns. We find that time variation in the prevalence of news topics and differences in the responses to news topics both contribute to the difference in intraday and overnight returns. In out-of-sample tests, our approach forecasts which stocks will do particularly well overnight and particularly poorly intraday. Our approach also helps explain patterns of continuation and reversal in intraday and overnight returns. We contrast the effect of news with other mechanisms proposed in the literature to explain overnight returns.
☆ The role of large language models in UI/UX design: A systematic literature review
This systematic literature review examines the role of large language models (LLMs) in UI/UX design, synthesizing findings from 38 peer-reviewed studies published between 2022 and 2025. We identify key LLMs in use, including GPT-4, Gemini, and PaLM, and map their integration across the design lifecycle, from ideation to evaluation. Common practices include prompt engineering, human-in-the-loop workflows, and multimodal input. While LLMs are reshaping design processes, challenges such as hallucination, prompt instability, and limited explainability persist. Our findings highlight LLMs as emerging collaborators in design, and we propose directions for the ethical, inclusive, and effective integration of these technologies.
☆ Dual Modality-Aware Gated Prompt Tuning for Few-Shot Multimodal Sarcasm Detection
The widespread use of multimodal content on social media has heightened the need for effective sarcasm detection to improve opinion mining. However, existing models rely heavily on large annotated datasets, making them less suitable for real-world scenarios where labeled data is scarce. This motivates the need to explore the problem in a few-shot setting. To this end, we introduce DMDP (Deep Modality-Disentangled Prompt Tuning), a novel framework for few-shot multimodal sarcasm detection. Unlike prior methods that use shallow, unified prompts across modalities, DMDP employs gated, modality-specific deep prompts for text and visual encoders. These prompts are injected across multiple layers to enable hierarchical feature learning and better capture diverse sarcasm types. To enhance intra-modal learning, we incorporate a prompt-sharing mechanism across layers, allowing the model to aggregate both low-level and high-level semantic cues. Additionally, a cross-modal prompt alignment module enables nuanced interactions between image and text representations, improving the model's ability to detect subtle sarcastic intent. Experiments on two public datasets demonstrate DMDP's superior performance in both few-shot and extremely low-resource settings. Further cross-dataset evaluations show that DMDP generalizes well across domains, consistently outperforming baseline methods.
☆ Think Twice Before You Judge: Mixture of Dual Reasoning Experts for Multimodal Sarcasm Detection
Multimodal sarcasm detection has attracted growing interest due to the rise of multimedia posts on social media. Understanding sarcastic image-text posts often requires external contextual knowledge, such as cultural references or commonsense reasoning. However, existing models struggle to capture the deeper rationale behind sarcasm, relying mainly on shallow cues like image captions or object-attribute pairs from images. To address this, we propose \textbf{MiDRE} (\textbf{Mi}xture of \textbf{D}ual \textbf{R}easoning \textbf{E}xperts), which integrates an internal reasoning expert for detecting incongruities within the image-text pair and an external reasoning expert that utilizes structured rationales generated via Chain-of-Thought prompting to a Large Vision-Language Model. An adaptive gating mechanism dynamically weighs the two experts, selecting the most relevant reasoning path. Experiments on two benchmark datasets show that MiDRE achieves superior performance over baselines. Various qualitative analyses highlight the crucial role of external rationales, revealing that even when they are occasionally noisy, they provide valuable cues that guide the model toward a better understanding of sarcasm.
☆ GradOT: Training-free Gradient-preserving Offsite-tuning for Large Language Models ACL 2025
The rapid growth of large language models (LLMs) with traditional centralized fine-tuning emerges as a key technique for adapting these models to domain-specific challenges, yielding privacy risks for both model and data owners. One promising solution, called offsite-tuning (OT), is proposed to address these challenges, where a weaker emulator is compressed from the original model and further fine-tuned with adapter to enhance privacy. However, the existing OT-based methods require high computational costs and lack theoretical analysis. This paper introduces a novel OT approach based on gradient-preserving compression, named GradOT. By analyzing the OT problem through the lens of optimization, we propose a method that selectively applies compression techniques such as rank compression and channel pruning, preserving the gradients of fine-tuned adapters while ensuring privacy. Extensive experiments demonstrate that our approach surpasses existing OT methods, both in terms of privacy protection and model performance. Our method provides a theoretical foundation for OT and offers a practical, training-free solution for offsite-tuning of large-scale LLMs.
comment: Accepted by ACL 2025 main
☆ A Linguistic Analysis of Spontaneous Thoughts: Investigating Experiences of Déjà Vu, Unexpected Thoughts, and Involuntary Autobiographical Memories
The onset of spontaneous thoughts are reflective of dynamic interactions between cognition, emotion, and attention. Typically, these experiences are studied through subjective appraisals that focus on their triggers, phenomenology, and emotional salience. In this work, we use linguistic signatures to investigate Deja Vu, Involuntary Autobiographical Memories and Unexpected Thoughts. Specifically, we analyze the inherent characteristics of the linguistic patterns in participant generated descriptions of these thought types. We show how, by positioning language as a window into spontaneous cognition, existing theories on these attentional states can be updated and reaffirmed. Our findings align with prior research, reinforcing that Deja Vu is a metacognitive experience characterized by abstract and spatial language, Involuntary Autobiographical Memories are rich in personal and emotionally significant detail, and Unexpected Thoughts are marked by unpredictability and cognitive disruption. This work is demonstrative of languages potential to reveal deeper insights into how internal spontaneous cognitive states manifest through expression.
comment: Accepted at CogSci 2025
☆ Reconstructing Biological Pathways by Applying Selective Incremental Learning to (Very) Small Language Models
The use of generative artificial intelligence (AI) models is becoming ubiquitous in many fields. Though progress continues to be made, general purpose large language AI models (LLM) show a tendency to deliver creative answers, often called "hallucinations", which have slowed their application in the medical and biomedical fields where accuracy is paramount. We propose that the design and use of much smaller, domain and even task-specific LM may be a more rational and appropriate use of this technology in biomedical research. In this work we apply a very small LM by today's standards to the specialized task of predicting regulatory interactions between molecular components to fill gaps in our current understanding of intracellular pathways. Toward this we attempt to correctly posit known pathway-informed interactions recovered from manually curated pathway databases by selecting and using only the most informative examples as part of an active learning scheme. With this example we show that a small (~110 million parameters) LM based on a Bidirectional Encoder Representations from Transformers (BERT) architecture can propose molecular interactions relevant to tuberculosis persistence and transmission with over 80% accuracy using less than 25% of the ~520 regulatory relationships in question. Using information entropy as a metric for the iterative selection of new tuning examples, we also find that increased accuracy is driven by favoring the use of the incorrectly assigned statements with the highest certainty (lowest entropy). In contrast, the concurrent use of correct but least certain examples contributed little and may have even been detrimental to the learning rate.
comment: 9 pages, 6 figures, 3 tables + 28 pages of supplemental tables; submitted to 16th ACM Conference on Bioinformatics, Computational Biology, and Health Informatics (ACM BCB 2025) as submission no. 76
☆ MedGellan: LLM-Generated Medical Guidance to Support Physicians
Medical decision-making is a critical task, where errors can result in serious, potentially life-threatening consequences. While full automation remains challenging, hybrid frameworks that combine machine intelligence with human oversight offer a practical alternative. In this paper, we present MedGellan, a lightweight, annotation-free framework that uses a Large Language Model (LLM) to generate clinical guidance from raw medical records, which is then used by a physician to predict diagnoses. MedGellan uses a Bayesian-inspired prompting strategy that respects the temporal order of clinical data. Preliminary experiments show that the guidance generated by the LLM with MedGellan improves diagnostic performance, particularly in recall and $F_1$ score.
☆ RAT: Bridging RNN Efficiency and Attention Accuracy in Language Modeling
Transformers have become the cornerstone of modern large-scale language models; however, their dependence on softmax attention poses a major computational bottleneck, particularly in long-context settings. In this work, rather than following prevalent approaches such as linear attention (or SSMs) and local attention, we introduce an intermediate design called \rat between recurrence and attention mechanisms. It partitions the input into chunks, applies a simple linear recurrence within each chunk to capture local dependencies, and then performs softmax attention across chunks to model long-range interactions. By adjusting the size of the chunk, \rat enables flexible trade-offs, combining the strengths of RNN and attention. Empirically, with a chunk size of 16, the \rat layer achieves a \(7\times\) improvement in training speed with 100K token sequences and \(9\times\) in generation at 4K sequence length, while maintaining similar or sometimes even better accuracy compared to standard attention. We demonstrate this by training 1.3B parameter models from scratch and performing large-scale evaluations, including short- and long-context benchmarks, as well as supervised fine-tuning~(SFT). We further propose a hybrid architecture that interleaves \rat with local attention. By combining efficient long-range modeling with strong local interactions, this hybrid design not only improves inference speed and reduces cache memory usage compared to attention, but also consistently enhances performance, for example, achieving an average 1 point gain in commonsense reasoning tasks, up to 4 points on code tasks, and a 1 point Rouge-L increase in a summarization SFT task. Code is available at https://github.com/CLAIRE-Labo/RAT
☆ MOMENTS: A Comprehensive Multimodal Benchmark for Theory of Mind
Understanding Theory of Mind is essential for building socially intelligent multimodal agents capable of perceiving and interpreting human behavior. We introduce MOMENTS (Multimodal Mental States), a comprehensive benchmark designed to assess the ToM capabilities of multimodal large language models (LLMs) through realistic, narrative-rich scenarios presented in short films. MOMENTS includes over 2,344 multiple-choice questions spanning seven distinct ToM categories. The benchmark features long video context windows and realistic social interactions that provide deeper insight into characters' mental states. While the visual modality generally enhances model performance, current systems still struggle to integrate it effectively, underscoring the need for further research into AI's multimodal understanding of human behavior.
☆ THM@SimpleText 2025 -- Task 1.1: Revisiting Text Simplification based on Complex Terms for Non-Experts
Scientific text is complex as it contains technical terms by definition. Simplifying such text for non-domain experts enhances accessibility of innovation and information. Politicians could be enabled to understand new findings on topics on which they intend to pass a law, or family members of seriously ill patients could read about clinical trials. The SimpleText CLEF Lab focuses on exactly this problem of simplification of scientific text. Task 1.1 of the 2025 edition specifically handles the simplification of complex sentences, so very short texts with little context. To tackle this task we investigate the identification of complex terms in sentences which are rephrased using small Gemini and OpenAI large language models for non-expert readers.
☆ SpiritRAG: A Q&A System for Religion and Spirituality in the United Nations Archive
Religion and spirituality (R/S) are complex and highly domain-dependent concepts which have long confounded researchers and policymakers. Due to their context-specificity, R/S are difficult to operationalize in conventional archival search strategies, particularly when datasets are very large, poorly accessible, and marked by information noise. As a result, considerable time investments and specialist knowledge is often needed to extract actionable insights related to R/S from general archival sources, increasing reliance on published literature and manual desk reviews. To address this challenge, we present SpiritRAG, an interactive Question Answering (Q&A) system based on Retrieval-Augmented Generation (RAG). Built using 7,500 United Nations (UN) resolution documents related to R/S in the domains of health and education, SpiritRAG allows researchers and policymakers to conduct complex, context-sensitive database searches of very large datasets using an easily accessible, chat-based web interface. SpiritRAG is lightweight to deploy and leverages both UN documents and user provided documents as source material. A pilot test and evaluation with domain experts on 100 manually composed questions demonstrates the practical value and usefulness of SpiritRAG.
☆ Does Learning Mathematical Problem-Solving Generalize to Broader Reasoning?
There has been a growing interest in enhancing the mathematical problem-solving (MPS) capabilities of large language models. While the majority of research efforts concentrate on creating specialized models to solve mathematical problems, it remains unknown how learning mathematical problem-solving generalizes to help develop other reasoning abilities. In this paper, we present an empirical investigation into the generalization potential of various MPS training approaches, such as continual pretraining, instruction tuning, and rule-based reinforcement learning across various data sources, including both short and long chain-of-thought (CoT) samples. Evaluation on 5 mathematical and 8 general reasoning benchmarks show that continual pretraining on math text is able to generalize to general reasoning tasks to some extent. In constrast, instruction tuning on conventional, short MPS samples provides limited benefits and, in many cases, even impairs generalization performance. Notably, training with long CoT responses for MPS samples and incorporating rule-based reinforcement learning on MPS queries exhibit distinct behavior, significantly enhancing generalization by extending the model's reasoning processes into other domains. These results suggest that traditional approaches to learning MPS with short reasoning chains largely fail to achieve robust generalization. However, the emerging paradigm of longer reasoning chains, coupled with self-reflection, offers a promising direction for improving generalized reasoning abilities through learning from specialized domains.
☆ Multi-Modal Semantic Parsing for the Interpretation of Tombstone Inscriptions
Tombstones are historically and culturally rich artifacts, encapsulating individual lives, community memory, historical narratives and artistic expression. Yet, many tombstones today face significant preservation challenges, including physical erosion, vandalism, environmental degradation, and political shifts. In this paper, we introduce a novel multi-modal framework for tombstones digitization, aiming to improve the interpretation, organization and retrieval of tombstone content. Our approach leverages vision-language models (VLMs) to translate tombstone images into structured Tombstone Meaning Representations (TMRs), capturing both image and text information. To further enrich semantic parsing, we incorporate retrieval-augmented generation (RAG) for integrate externally dependent elements such as toponyms, occupation codes, and ontological concepts. Compared to traditional OCR-based pipelines, our method improves parsing accuracy from an F1 score of 36.1 to 89.5. We additionally evaluate the model's robustness across diverse linguistic and cultural inscriptions, and simulate physical degradation through image fusion to assess performance under noisy or damaged conditions. Our work represents the first attempt to formalize tombstone understanding using large vision-language models, presenting implications for heritage preservation.
comment: Accepted by ACMMM 2025
☆ Attention Slipping: A Mechanistic Understanding of Jailbreak Attacks and Defenses in LLMs
As large language models (LLMs) become more integral to society and technology, ensuring their safety becomes essential. Jailbreak attacks exploit vulnerabilities to bypass safety guardrails, posing a significant threat. However, the mechanisms enabling these attacks are not well understood. In this paper, we reveal a universal phenomenon that occurs during jailbreak attacks: Attention Slipping. During this phenomenon, the model gradually reduces the attention it allocates to unsafe requests in a user query during the attack process, ultimately causing a jailbreak. We show Attention Slipping is consistent across various jailbreak methods, including gradient-based token replacement, prompt-level template refinement, and in-context learning. Additionally, we evaluate two defenses based on query perturbation, Token Highlighter and SmoothLLM, and find they indirectly mitigate Attention Slipping, with their effectiveness positively correlated with the degree of mitigation achieved. Inspired by this finding, we propose Attention Sharpening, a new defense that directly counters Attention Slipping by sharpening the attention score distribution using temperature scaling. Experiments on four leading LLMs (Gemma2-9B-It, Llama3.1-8B-It, Qwen2.5-7B-It, Mistral-7B-It v0.2) show that our method effectively resists various jailbreak attacks while maintaining performance on benign tasks on AlpacaEval. Importantly, Attention Sharpening introduces no additional computational or memory overhead, making it an efficient and practical solution for real-world deployment.
☆ Large Language Models' Varying Accuracy in Recognizing Risk-Promoting and Health-Supporting Sentiments in Public Health Discourse: The Cases of HPV Vaccination and Heated Tobacco Products
Machine learning methods are increasingly applied to analyze health-related public discourse based on large-scale data, but questions remain regarding their ability to accurately detect different types of health sentiments. Especially, Large Language Models (LLMs) have gained attention as a powerful technology, yet their accuracy and feasibility in capturing different opinions and perspectives on health issues are largely unexplored. Thus, this research examines how accurate the three prominent LLMs (GPT, Gemini, and LLAMA) are in detecting risk-promoting versus health-supporting sentiments across two critical public health topics: Human Papillomavirus (HPV) vaccination and heated tobacco products (HTPs). Drawing on data from Facebook and Twitter, we curated multiple sets of messages supporting or opposing recommended health behaviors, supplemented with human annotations as the gold standard for sentiment classification. The findings indicate that all three LLMs generally demonstrate substantial accuracy in classifying risk-promoting and health-supporting sentiments, although notable discrepancies emerge by platform, health issue, and model type. Specifically, models often show higher accuracy for risk-promoting sentiment on Facebook, whereas health-supporting messages on Twitter are more accurately detected. An additional analysis also shows the challenges LLMs face in reliably detecting neutral messages. These results highlight the importance of carefully selecting and validating language models for public health analyses, particularly given potential biases in training data that may lead LLMs to overestimate or underestimate the prevalence of certain perspectives.
comment: Forthcoming in Social Science & Medicine
☆ HatePRISM: Policies, Platforms, and Research Integration. Advancing NLP for Hate Speech Proactive Mitigation
Despite regulations imposed by nations and social media platforms, e.g. (Government of India, 2021; European Parliament and Council of the European Union, 2022), inter alia, hateful content persists as a significant challenge. Existing approaches primarily rely on reactive measures such as blocking or suspending offensive messages, with emerging strategies focusing on proactive measurements like detoxification and counterspeech. In our work, which we call HatePRISM, we conduct a comprehensive examination of hate speech regulations and strategies from three perspectives: country regulations, social platform policies, and NLP research datasets. Our findings reveal significant inconsistencies in hate speech definitions and moderation practices across jurisdictions and platforms, alongside a lack of alignment with research efforts. Based on these insights, we suggest ideas and research direction for further exploration of a unified framework for automated hate speech moderation incorporating diverse strategies.
comment: arXiv admin note: substantial text overlap with arXiv:2406.19543
☆ SmartThinker: Learning to Compress and Preserve Reasoning by Step-Level Length Control
Large reasoning models (LRMs) have exhibited remarkable reasoning capabilities through inference-time scaling, but this progress has also introduced considerable redundancy and inefficiency into their reasoning processes, resulting in substantial computational waste. Previous work has attempted to mitigate this issue by penalizing the overall length of generated samples during reinforcement learning (RL), with the goal of encouraging a more concise chains of thought. However, we observe that such global length penalty often lead to excessive compression of critical reasoning steps while preserving unnecessary details in simpler ones, yielding a suboptimal trade-off between accuracy and efficiency. To address this issue, we propose SmartThinker, a two-stage learnable framework designed to enable fine-grained control over the length of reasoning chains based on the importance of each individual step. In the first stage, SmartThinker adapts a reasoning model to a short-form reasoning mode through rejection sampling combined with supervised fine-tuning (SFT). In the second stage, SmartThinker applies Step-Level Length Control Policy Optimization (SCPO) to refine the model output distribution, which increases the proportion of length allocated to critical steps while reducing redundancy in less important ones. SCPO consists of four core components: an online importance estimator, a step-level length control reward function, a step-level generalized advantage estimation (S-GAE) and a difficulty-adaptive clipping strategy. Working in concert, these components enable SCPO to implement differentiated length control across reasoning steps. Empirical results across multiple reasoning benchmarks and various backbone models demonstrate that SmartThinker significantly reduces redundant reasoning while achieving comparable or even superior performance to existing methods.
☆ Computed Tomography Visual Question Answering with Cross-modal Feature Graphing
Visual question answering (VQA) in medical imaging aims to support clinical diagnosis by automatically interpreting complex imaging data in response to natural language queries. Existing studies typically rely on distinct visual and textual encoders to independently extract features from medical images and clinical questions, which are subsequently combined to generate answers. Specifically, in computed tomography (CT), such approaches are similar to the conventional practices in medical image analysis. However, these approaches pay less attention to the spatial continuity and inter-slice correlations in the volumetric CT data, leading to fragmented and imprecise responses. In this paper, we propose a novel large language model (LLM)-based framework enhanced by a graph representation of salient features. Different from conventional multimodal encoding strategies, our approach constructs a cross-modal graph integrating both visual and textual features, treating individual CT slices and question tokens as nodes within the graph. We further leverage an attentive graph convolutional network to dynamically fuse information within this structure. The resulting aggregated graph features then serve as a soft prompt to guide a large language model in generating accurate answers. Extensive experiments on the M3D-VQA benchmark demonstrate that our approach consistently outperforms baselines across multiple evaluation metrics, offering more robust reasoning capabilities.
comment: 9 pages, 3 figures
☆ No Language Data Left Behind: A Comparative Study of CJK Language Datasets in the Hugging Face Ecosystem
Recent advances in Natural Language Processing (NLP) have underscored the crucial role of high-quality datasets in building large language models (LLMs). However, while extensive resources and analyses exist for English, the landscape for East Asian languages - particularly Chinese, Japanese, and Korean (CJK) - remains fragmented and underexplored, despite these languages together serving over 1.6 billion speakers. To address this gap, we investigate the HuggingFace ecosystem from a cross-linguistic perspective, focusing on how cultural norms, research environments, and institutional practices shape dataset availability and quality. Drawing on more than 3,300 datasets, we employ quantitative and qualitative methods to examine how these factors drive distinct creation and curation patterns across Chinese, Japanese, and Korean NLP communities. Our findings highlight the large-scale and often institution-driven nature of Chinese datasets, grassroots community-led development in Korean NLP, and an entertainment- and subculture-focused emphasis on Japanese collections. By uncovering these patterns, we reveal practical strategies for enhancing dataset documentation, licensing clarity, and cross-lingual resource sharing - ultimately guiding more effective and culturally attuned LLM development in East Asia. We conclude by discussing best practices for future dataset curation and collaboration, aiming to strengthen resource development across all three languages.
☆ LearnLens: LLM-Enabled Personalised, Curriculum-Grounded Feedback with Educators in the Loop
Effective feedback is essential for student learning but is time-intensive for teachers. We present LearnLens, a modular, LLM-based system that generates personalised, curriculum-aligned feedback in science education. LearnLens comprises three components: (1) an error-aware assessment module that captures nuanced reasoning errors; (2) a curriculum-grounded generation module that uses a structured, topic-linked memory chain rather than traditional similarity-based retrieval, improving relevance and reducing noise; and (3) an educator-in-the-loop interface for customisation and oversight. LearnLens addresses key challenges in existing systems, offering scalable, high-quality feedback that empowers both teachers and students.
☆ Fairness Evaluation of Large Language Models in Academic Library Reference Services
As libraries explore large language models (LLMs) for use in virtual reference services, a key question arises: Can LLMs serve all users equitably, regardless of demographics or social status? While they offer great potential for scalable support, LLMs may also reproduce societal biases embedded in their training data, risking the integrity of libraries' commitment to equitable service. To address this concern, we evaluate whether LLMs differentiate responses across user identities by prompting six state-of-the-art LLMs to assist patrons differing in sex, race/ethnicity, and institutional role. We found no evidence of differentiation by race or ethnicity, and only minor evidence of stereotypical bias against women in one model. LLMs demonstrated nuanced accommodation of institutional roles through the use of linguistic choices related to formality, politeness, and domain-specific vocabularies, reflecting professional norms rather than discriminatory treatment. These findings suggest that current LLMs show a promising degree of readiness to support equitable and contextually appropriate communication in academic library reference services.
☆ Context Tuning for In-Context Optimization ICML
We introduce Context Tuning, a simple and effective method to significantly enhance few-shot adaptation of language models (LLMs) without fine-tuning model parameters. While prompt-based adaptation techniques have demonstrated the effectiveness of lightweight adaptation methods for large language models (LLMs), they typically initialize a trainable prompt or prefix with irrelevant tokens for the task at hand. In contrast, Context Tuning initializes the trainable prompt or prefix with task-specific demonstration examples, leveraging the model's inherent In-Context Learning (ICL) ability to extract relevant information for improved few-shot learning performance. Extensive evaluations on benchmarks such as CrossFit, UnifiedQA, MMLU, BIG-Bench Hard, and ARC demonstrate that Context Tuning outperforms traditional prompt-based adaptation methods and achieves competitive accuracy to Test-Time Training with significantly higher training efficiency.
comment: A short version of this paper has been accepted for publication in the Workshop on Test-Time Adaptation (PUT) at the International Conference on Machine Learning (ICML) 2025
♻ ☆ Construction Identification and Disambiguation Using BERT: A Case Study of NPN ACL
Construction Grammar hypothesizes that knowledge of a language consists chiefly of knowledge of form-meaning pairs (''constructions'') that include vocabulary, general grammar rules, and even idiosyncratic patterns. Recent work has shown that transformer language models represent at least some constructional patterns, including ones where the construction is rare overall. In this work, we probe BERT's representation of the form and meaning of a minor construction of English, the NPN (noun-preposition-noun) construction -- exhibited in such expressions as face to face and day to day -- which is known to be polysemous. We construct a benchmark dataset of semantically annotated corpus instances (including distractors that superficially resemble the construction). With this dataset, we train and evaluate probing classifiers. They achieve decent discrimination of the construction from distractors, as well as sense disambiguation among true instances of the construction, revealing that BERT embeddings carry indications of the construction's semantics. Moreover, artificially permuting the word order of true construction instances causes them to be rejected, indicating sensitivity to matters of form. We conclude that BERT does latently encode at least some knowledge of the NPN construction going beyond a surface syntactic pattern and lexical cues.
comment: 9 pages, ACL long-paper format. Camera-ready version, published at the 29th Conference on Computational Natural Language Learning (CoNLL 2025)
♻ ☆ PENCIL: Long Thoughts with Short Memory ICML 2025
While state-of-the-art LLMs have demonstrated great promise of using long Chains-of-Thought (CoT) to boost reasoning, scaling it up to more challenging problems at test-time is fundamentally limited by suboptimal memory usage -- intermediate computations accumulate indefinitely in context even when no longer needed for future thoughts. We introduce PENCIL, which incorporates a novel reduction mechanism into the autoregressive generation process that recursively cleans up intermediate thoughts based on patterns learned from training. By iteratively generating and erasing thoughts, PENCIL can think deeper to solve harder problems using shorter context and less compute. Empirically, we observe PENCIL is significantly more effective and efficient than CoT. For example, we demonstrate PENCIL with a small 25M-parameter transformer and 2048 context length solves Einstein's puzzle -- a task that challenges much larger models like GPT-4. Theoretically, we prove PENCIL can perform universal efficient computation by simulating any Turing machines with optimal time and space complexity, and thus can solve arbitrary computable tasks that are otherwise intractable for vanilla CoT.
comment: Accepted to ICML 2025. Codes in https://github.com/chr26195/PENCIL
♻ ☆ Rethinking Table Instruction Tuning ACL 2025
Recent advances in table understanding have focused on instruction-tuning large language models (LLMs) for table-related tasks. However, existing research has overlooked the impact of hyperparameter choices, and also lacks a comprehensive evaluation of the out-of-domain table understanding ability and the general capabilities of these table LLMs. In this paper, we evaluate these abilities in existing table LLMs, and find significant declines in both out-of-domain table understanding and general capabilities as compared to their base models. Through systematic analysis, we show that hyperparameters, such as learning rate, can significantly influence both table-specific and general capabilities. Contrary to the previous table instruction-tuning work, we demonstrate that smaller learning rates and fewer training instances can enhance table understanding while preserving general capabilities. Based on our findings, we introduce TAMA, a TAble LLM instruction-tuned from LLaMA 3.1 8B Instruct, which achieves performance on par with, or surpassing GPT-3.5 and GPT-4 on table tasks, while maintaining strong out-of-domain generalization and general capabilities. Our findings highlight the potential for reduced data annotation costs and more efficient model development through careful hyperparameter selection. We open-source the project and our models.
comment: Accepted to ACL 2025 Findings. Updates: 07/2025: We release the TAMA-QWen2.5 and TAMA-QWen3 models. 06/2025: We release our project page: https://lit.eecs.umich.edu/TAMA/, code: https://github.com/MichiganNLP/TAMA, huggingface models: https://huggingface.co/collections/MichiganNLP/tama-684eeb3e7f262362856eccd1, and data: https://huggingface.co/datasets/MichiganNLP/TAMA_Instruct
♻ ☆ On the Utility of Domain-Adjacent Fine-Tuned Model Ensembles for Few-shot Problems
Large Language Models (LLMs) have been observed to perform well on a wide range of downstream tasks when fine-tuned on domain-specific data. However, such data may not be readily available in many applications, motivating zero-shot or few-shot approaches using domain-adjacent models. While several fine-tuned models for various tasks are available, finding an appropriate domain-adjacent model for a given task is often not straight forward. In this paper, we study DAFT-E, a framework that utilizes an Ensemble of Domain-Adjacent Fine-Tuned Foundation Models for few-shot problems. We show that for zero-shot problems, this ensembling method provides an accuracy performance close to that of the single best model. With few-shot problems, this performance improves further, at which point DEFT-E can outperform any single domain-adjacent model while requiring much less data for domain-specific fine-tuning.
comment: Main paper is 14 pages, followed by references and appendix
♻ ☆ Self-Consistency Preference Optimization ICML 2025
Self-alignment, whereby models learn to improve themselves without human annotation, is a rapidly growing research area. However, existing techniques often fail to improve complex reasoning tasks due to the difficulty of assigning correct rewards. An orthogonal approach that is known to improve correctness is self-consistency, a method applied at inference time based on multiple sampling in order to find the most consistent answer. In this work, we extend the self-consistency concept to help train models. We thus introduce self-consistency preference optimization (ScPO), which iteratively trains consistent answers to be preferred over inconsistent ones on unsupervised new problems. We show ScPO leads to large improvements over conventional reward model training on reasoning tasks such as GSM8K and MATH, closing the gap with supervised training with gold answers or preferences, and that combining ScPO with standard supervised learning improves results even further. On ZebraLogic, ScPO finetunes Llama-3 8B to be superior to Llama-3 70B, Gemma-2 27B, and Claude-3 Haiku.
comment: ICML 2025 (camera-ready)
♻ ☆ KnowRL: Exploring Knowledgeable Reinforcement Learning for Factuality
Large Language Models (LLMs), particularly slow-thinking models, often exhibit severe hallucination, outputting incorrect content due to an inability to accurately recognize knowledge boundaries during reasoning. While Reinforcement Learning (RL) can enhance complex reasoning abilities, its outcome-oriented reward mechanism often lacks factual supervision over the thinking process, further exacerbating the hallucination problem. To address the high hallucination in slow-thinking models, we propose Knowledge-enhanced RL, KnowRL. KnowRL guides models to perform fact-based slow thinking by integrating a factuality reward, based on knowledge verification, into the RL training process, helping them recognize their knowledge boundaries. KnowRL guides models to perform fact-based slow thinking by integrating a factuality reward, based on knowledge verification, into the RL training process, helping them recognize their knowledge boundaries. This targeted factual input during RL training enables the model to learn and internalize fact-based reasoning strategies. By directly rewarding adherence to facts within the reasoning steps, KnowRL fosters a more reliable thinking process. Experimental results on three hallucination evaluation datasets and two reasoning evaluation datasets demonstrate that KnowRL effectively mitigates hallucinations in slow-thinking models while maintaining their original strong reasoning capabilities. Our code is available at https://github.com/zjunlp/KnowRL.
comment: Work in progress
♻ ☆ AutoMind: Adaptive Knowledgeable Agent for Automated Data Science
Large Language Model (LLM) agents have shown great potential in addressing real-world data science problems. LLM-driven data science agents promise to automate the entire machine learning pipeline, yet their real-world effectiveness remains limited. Existing frameworks depend on rigid, pre-defined workflows and inflexible coding strategies; consequently, they excel only on relatively simple, classical problems and fail to capture the empirical expertise that human practitioners bring to complex, innovative tasks. In this work, we introduce AutoMind, an adaptive, knowledgeable LLM-agent framework that overcomes these deficiencies through three key advances: (1) a curated expert knowledge base that grounds the agent in domain expert knowledge, (2) an agentic knowledgeable tree search algorithm that strategically explores possible solutions, and (3) a self-adaptive coding strategy that dynamically tailors code generation to task complexity. Evaluations on two automated data science benchmarks demonstrate that AutoMind delivers superior performance versus state-of-the-art baselines. Additional analyses confirm favorable effectiveness, efficiency, and qualitative solution quality, highlighting AutoMind as an efficient and robust step toward fully automated data science.
comment: Ongoing work. Code is at https://github.com/innovatingAI/AutoMind
♻ ☆ Pretraining Language Models Using Translationese
In this paper, we explore the utility of translationese as synthetic data created using machine translation for pre-training language models (LMs) for low-resource languages (LRLs). Our simple methodology consists of translating large amounts of web-crawled monolingual documents (clean) into the LRLs, followed by filtering the translated documents using tiny LMs trained on small but clean LRL data. Taking the case of Indian languages, we pre-train LMs from scratch with 28M and 85M parameters, and then fine-tune them for 5 downstream natural language understanding (NLU) and 4 generative (NLG) tasks. We observe that pre-training on filtered synthetic data leads to relative performance drops of only 0.87% for NLU and 2.35% for NLG, compared to pre-training on clean data, and this gap further diminishes upon the inclusion of a small amount of clean data. We also study the impact of synthetic data filtering and the choice of source language for synthetic data generation. Furthermore, evaluating continually pre-trained larger models like Gemma-2B and Llama-3-8B in few-shot settings, we observe that using synthetic data is competitive with using clean data. Our findings suggest that synthetic data shows promise for bridging the pre-training gap between English and LRLs.
♻ ☆ Perception, Reason, Think, and Plan: A Survey on Large Multimodal Reasoning Models
Reasoning lies at the heart of intelligence, shaping the ability to make decisions, draw conclusions, and generalize across domains. In artificial intelligence, as systems increasingly operate in open, uncertain, and multimodal environments, reasoning becomes essential for enabling robust and adaptive behavior. Large Multimodal Reasoning Models (LMRMs) have emerged as a promising paradigm, integrating modalities such as text, images, audio, and video to support complex reasoning capabilities and aiming to achieve comprehensive perception, precise understanding, and deep reasoning. As research advances, multimodal reasoning has rapidly evolved from modular, perception-driven pipelines to unified, language-centric frameworks that offer more coherent cross-modal understanding. While instruction tuning and reinforcement learning have improved model reasoning, significant challenges remain in omni-modal generalization, reasoning depth, and agentic behavior. To address these issues, we present a comprehensive and structured survey of multimodal reasoning research, organized around a four-stage developmental roadmap that reflects the field's shifting design philosophies and emerging capabilities. First, we review early efforts based on task-specific modules, where reasoning was implicitly embedded across stages of representation, alignment, and fusion. Next, we examine recent approaches that unify reasoning into multimodal LLMs, with advances such as Multimodal Chain-of-Thought (MCoT) and multimodal reinforcement learning enabling richer and more structured reasoning chains. Finally, drawing on empirical insights from challenging benchmarks and experimental cases of OpenAI O3 and O4-mini, we discuss the conceptual direction of native large multimodal reasoning models (N-LMRMs), which aim to support scalable, agentic, and adaptive reasoning and planning in complex, real-world environments.
comment: v2, 91 Pages, 10 figures; Project: https://github.com/HITsz-TMG/Awesome-Large-Multimodal-Reasoning-Models
♻ ☆ Have LLMs Made Active Learning Obsolete? Surveying the NLP Community
Supervised learning relies on annotated data, which is expensive to obtain. A longstanding strategy to reduce annotation costs is active learning, an iterative process, in which a human annotates only data instances deemed informative by a model. Large language models (LLMs) have pushed the effectiveness of active learning, while also advancing methods such as few- or zero-shot learning, and text synthesis -- all of which can reduce the need for active learning. This naturally raises the question: has active learning become obsolete? To answer this fully, we must look beyond literature to practical experiences. We conduct an online survey in the NLP community to collect previously intangible insights on the perceived relevance of data annotation, particularly focusing on active learning, including best practices, obstacles, and future prospects. Our findings show that annotated data is expected to remain a key factor and active learning to stay highly relevant while benefiting from LLMs. Consistent with a community survey from over a decade ago, however, we find that three key challenges persist -- setup complexity, risks in the cost reduction, and tooling -- for which we propose alleviation strategies. We publish an anonymized version of the collected dataset.
♻ ☆ Better Safe Than Sorry? Overreaction Problem of Vision Language Models in Visual Emergency Recognition
Vision-Language Models (VLMs) have shown capabilities in interpreting visual content, but their reliability in safety-critical everyday life scenarios remains insufficiently explored. We introduce VERI (Visual Emergency Recognition Dataset), a diagnostic benchmark comprising 200 images organized into 100 contrastive pairs. Each emergency scene is paired with a visually similar but safe counterpart through human verification and refinement. Using a two-stage evaluation protocol - risk identification and emergency response - we assess 14 VLMs (2B to 124B parameters) across medical emergencies, accidents, and natural disasters. Our analysis reveals an "overreaction problem", where models accurately identify genuine emergencies (70-100 percent success rate) but produce high false-positive rates, misclassifying 31-96 percent of safe situations as dangerous. Ten safe scenarios were universally misclassified by all models regardless of scale. This "better-safe-than-sorry" bias primarily results from contextual overinterpretation (88-93 percent of errors), challenging VLM reliability in safety-critical applications. These findings highlight fundamental limitations in current VLM architectures, which persist despite increased model scale. Our results demonstrate an urgent need for strategies specifically improving contextual reasoning in ambiguous visual situations. The consistently low performance of the model indicates that these data serve effectively as a diagnostic dataset.
♻ ☆ Explain with Visual Keypoints Like a Real Mentor! A Benchmark for Multimodal Solution Explanation
With the rapid advancement of mathematical reasoning capabilities in Large Language Models (LLMs), AI systems are increasingly being adopted in educational settings to support students' comprehension of problem-solving processes. However, a critical component remains underexplored in current LLM-generated explanations: multimodal explanation. In real-world instructional contexts, human tutors routinely employ visual aids, such as diagrams, markings, and highlights, to enhance conceptual clarity. To bridge this gap, we introduce the multimodal solution explanation task, designed to evaluate whether models can identify visual keypoints, such as auxiliary lines, points, angles, and generate explanations that incorporate these key elements essential for understanding. To evaluate model performance on this task, we propose ME2, a multimodal benchmark consisting of 1,000 math problems annotated with visual keypoints and corresponding explanatory text that references those elements. Our empirical results show that, aside from recent large-scale open-source and closed-source models, most generalist open-source models, and even math-specialist models, struggle with the multimodal solution explanation task. This highlights a significant gap in current LLMs' ability to reason and explain with visual grounding in educational contexts. We expect that the multimodal solution explanation task and the ME2 dataset will catalyze further research on LLMs in education and promote their use as effective, explanation-oriented AI tutors.
comment: 13 pages, 7 figures
♻ ☆ HKCanto-Eval: A Benchmark for Evaluating Cantonese Language Understanding and Cultural Comprehension in LLMs
The ability of language models to comprehend and interact in diverse linguistic and cultural landscapes is crucial. The Cantonese language used in Hong Kong presents unique challenges for natural language processing due to its rich cultural nuances and lack of dedicated evaluation datasets. The HKCanto-Eval benchmark addresses this gap by evaluating the performance of large language models (LLMs) on Cantonese language understanding tasks, extending to English and Written Chinese for cross-lingual evaluation. HKCanto-Eval integrates cultural and linguistic nuances intrinsic to Hong Kong, providing a robust framework for assessing language models in realistic scenarios. Additionally, the benchmark includes questions designed to tap into the underlying linguistic metaknowledge of the models. Our findings indicate that while proprietary models generally outperform open-weight models, significant limitations remain in handling Cantonese-specific linguistic and cultural knowledge, highlighting the need for more targeted training data and evaluation methods. The code can be accessed at https://github.com/hon9kon9ize/hkeval2025
♻ ☆ A Causal World Model Underlying Next Token Prediction: Exploring GPT in a Controlled Environment ICML
Are generative pre-trained transformer (GPT) models, trained only to predict the next token, implicitly learning a world model from which sequences are generated one token at a time? We address this question by deriving a causal interpretation of the attention mechanism in GPT and presenting a causal world model that arises from this interpretation. Furthermore, we propose that GPT models, at inference time, can be utilized for zero-shot causal structure learning for input sequences, and introduce a corresponding confidence score. Empirical tests were conducted in controlled environments using the setups of the Othello and Chess strategy games. A GPT, pre-trained on real-world games played with the intention of winning, was tested on out-of-distribution synthetic data consisting of sequences of random legal moves. We find that the GPT model is likely to generate legal next moves for out-of-distribution sequences for which a causal structure is encoded in the attention mechanism with high confidence. In cases where it generates illegal moves, it also fails to capture a causal structure.
comment: International Conference on Machine Learning (ICML), 2025
♻ ☆ A Global Context Mechanism for Sequence Labeling
Global sentence information is crucial for sequence labeling tasks, where each word in a sentence must be assigned a label. While BiLSTM models are widely used, they often fail to capture sufficient global context for inner words. Previous work has proposed various RNN variants to integrate global sentence information into word representations. However, these approaches suffer from three key limitations: (1) they are slower in both inference and training compared to the original BiLSTM, (2) they cannot effectively supplement global information for transformer-based models, and (3) the high time cost associated with reimplementing and integrating these customized RNNs into existing architectures. In this study, we introduce a simple yet effective mechanism that addresses these limitations. Our approach efficiently supplements global sentence information for both BiLSTM and transformer-based models, with minimal degradation in inference and training speed, and is easily pluggable into current architectures. We demonstrate significant improvements in F1 scores across seven popular benchmarks, including Named Entity Recognition (NER) tasks such as Conll2003, Wnut2017 , and the Chinese named-entity recognition task Weibo, as well as End-to-End Aspect-Based Sentiment Analysis (E2E-ABSA) benchmarks such as Laptop14, Restaurant14, Restaurant15, and Restaurant16. With out any extra strategy, we achieve third highest score on weibo NER benchmark. Compared to CRF, one of the most popular frameworks for sequence labeling, our mechanism achieves competitive F1 scores while offering superior inference and training speed. Code is available at: https://github.com/conglei2XU/Global-Context-Mechanism
♻ ☆ Is It Really Long Context if All You Need Is Retrieval? Towards Genuinely Difficult Long Context NLP EMNLP 2024
Improvements in language models' capabilities have pushed their applications towards longer contexts, making long-context evaluation and development an active research area. However, many disparate use-cases are grouped together under the umbrella term of "long-context", defined simply by the total length of the model's input, including - for example - Needle-in-a-Haystack tasks, book summarization, and information aggregation. Given their varied difficulty, in this position paper we argue that conflating different tasks by their context length is unproductive. As a community, we require a more precise vocabulary to understand what makes long-context tasks similar or different. We propose to unpack the taxonomy of long-context based on the properties that make them more difficult with longer contexts. We propose two orthogonal axes of difficulty: (I) Diffusion: How hard is it to find the necessary information in the context? (II) Scope: How much necessary information is there to find? We survey the literature on long-context, provide justification for this taxonomy as an informative descriptor, and situate the literature with respect to it. We conclude that the most difficult and interesting settings, whose necessary information is very long and highly diffused within the input, is severely under-explored. By using a descriptive vocabulary and discussing the relevant properties of difficulty in long-context, we can implement more informed research in this area. We call for a careful design of tasks and benchmarks with distinctly long context, taking into account the characteristics that make it qualitatively different from shorter context.
comment: EMNLP 2024
♻ ☆ LLMs' Reading Comprehension Is Affected by Parametric Knowledge and Struggles with Hypothetical Statements
The task of reading comprehension (RC), often implemented as context-based question answering (QA), provides a primary means to assess language models' natural language understanding (NLU) capabilities. Yet, when applied to large language models (LLMs) with extensive built-in world knowledge, this method can be deceptive. If the context aligns with the LLMs' internal knowledge, it is hard to discern whether the models' answers stem from context comprehension or from LLMs' internal information. Conversely, using data that conflicts with the models' knowledge creates erroneous trends which distort the results. To address this issue, we suggest to use RC on imaginary data, based on fictitious facts and entities. This task is entirely independent of the models' world knowledge, enabling us to evaluate LLMs' linguistic abilities without the interference of parametric knowledge. Testing ChatGPT, GPT-4, LLaMA 2 and Mixtral on such imaginary data, we uncover a class of linguistic phenomena posing a challenge to current LLMs, involving thinking in terms of alternative, hypothetical scenarios. While all the models handle simple affirmative and negative contexts with high accuracy, they are much more prone to error when dealing with modal and conditional contexts. Crucially, these phenomena also trigger the LLMs' vulnerability to knowledge-conflicts again. In particular, while some models prove virtually unaffected by knowledge conflicts in affirmative and negative contexts, when faced with more semantically involved modal and conditional environments, they often fail to separate the text from their internal knowledge.
♻ ☆ GLU Attention Improve Transformer
Gated Linear Units (GLU) have shown great potential in enhancing neural network performance. In this paper, I introduce a novel attention mechanism called GLU Attention, which introduces nonlinearity into the values of Attention. My experiments demonstrate that GLU Attention improves both model performance and convergence speed across text and vision modalities with zero additional parameters and negligible computational costs. GLU Attention is lightweight and can seamlessly integrate with other technologies, such as Flash Attention, Rotary Position Embedding (RoPE), and various Multi-Head Attention (MHA) variants such as Grouped-Query Attention (GQA). This project is open-sourced at github.
comment: 4 pages 5 figures
♻ ☆ MASS: Mathematical Data Selection via Skill Graphs for Pretraining Large Language Models
High-quality data plays a critical role in the pretraining and fine-tuning of large language models (LLMs), even determining their performance ceiling to some degree. Consequently, numerous data selection methods have been proposed to identify subsets of data that can effectively and efficiently enhance model performance. However, most of these methods focus on general data selection and tend to overlook the specific nuances of domain-related data. In this paper, we introduce MASS, a \textbf{MA}thematical data \textbf{S}election framework using the \textbf{S}kill graph for pretraining LLMs in the mathematical reasoning domain. By taking into account the unique characteristics of mathematics and reasoning, we construct a skill graph that captures the mathematical skills and their interrelations from a reference dataset. This skill graph guides us in assigning quality scores to the target dataset, enabling us to select the top-ranked subset which is further used to pretrain LLMs. Experimental results demonstrate the efficiency and effectiveness of MASS across different model sizes (1B and 7B) and pretraining datasets (web data and synthetic data). Specifically, in terms of efficiency, models trained on subsets selected by MASS can achieve similar performance to models trained on the original datasets, with a significant reduction in the number of trained tokens - ranging from 50\% to 70\% fewer tokens. In terms of effectiveness, when trained on the same amount of tokens, models trained on the data selected by MASS outperform those trained on the original datasets by 3.3\% to 5.9\%. These results underscore the potential of MASS to improve both the efficiency and effectiveness of pretraining LLMs.
♻ ☆ EasyEdit2: An Easy-to-use Steering Framework for Editing Large Language Models
In this paper, we introduce EasyEdit2, a framework designed to enable plug-and-play adjustability for controlling Large Language Model (LLM) behaviors. EasyEdit2 supports a wide range of test-time interventions, including safety, sentiment, personality, reasoning patterns, factuality, and language features. Unlike its predecessor, EasyEdit2 features a new architecture specifically designed for seamless model steering. It comprises key modules such as the steering vector generator and the steering vector applier, which enable automatic generation and application of steering vectors to influence the model's behavior without modifying its parameters. One of the main advantages of EasyEdit2 is its ease of use-users do not need extensive technical knowledge. With just a single example, they can effectively guide and adjust the model's responses, making precise control both accessible and efficient. Empirically, we report model steering performance across different LLMs, demonstrating the effectiveness of these techniques. We have released the source code on GitHub at https://github.com/zjunlp/EasyEdit along with a demonstration notebook. In addition, we provide a demo video at https://www.youtube.com/watch?v=AkfoiPfp5rQ for a quick introduction.
comment: Work in progress. Demo: https://www.youtube.com/watch?v=AkfoiPfp5rQ; code: https://github.com/zjunlp/EasyEdit
♻ ☆ On Positional Bias of Faithfulness for Long-form Summarization NAACL 2025
Large Language Models (LLMs) often exhibit positional bias in long-context settings, under-attending to information in the middle of inputs. We investigate the presence of this bias in long-form summarization, its impact on faithfulness, and various techniques to mitigate this bias. To consistently evaluate faithfulness, we first compile a benchmark of eight human-annotated long-form summarization datasets and perform a meta-evaluation of faithfulness metrics. We show that LLM-based faithfulness metrics, though effective with full-context inputs, remain sensitive to document order, indicating positional bias. Analyzing LLM-generated summaries across six datasets, we find a "U-shaped" trend in faithfulness, where LLMs faithfully summarize the beginning and end of documents but neglect middle content. Perturbing document order similarly reveals models are less faithful when important documents are placed in the middle of the input. We find that this behavior is partly due to shifting focus with context length: as context increases, summaries become less faithful, but beyond a certain length, faithfulness improves as the model focuses on the end. Finally, we experiment with different generation techniques to reduce positional bias and find that prompting techniques effectively direct model attention to specific positions, whereas more sophisticated approaches offer limited improvements. Our data and code are available in https://github.com/meetdavidwan/longformfact.
comment: NAACL 2025 (20 pages)
♻ ☆ Towards Understanding the Cognitive Habits of Large Reasoning Models
Large Reasoning Models (LRMs), which autonomously produce a reasoning Chain of Thought (CoT) before producing final responses, offer a promising approach to interpreting and monitoring model behaviors. Inspired by the observation that certain CoT patterns -- e.g., ``Wait, did I miss anything?'' -- consistently emerge across tasks, we explore whether LRMs exhibit human-like cognitive habits. Building on Habits of Mind, a well-established framework of cognitive habits associated with successful human problem-solving, we introduce CogTest, a principled benchmark designed to evaluate LRMs' cognitive habits. CogTest includes 16 cognitive habits, each instantiated with 25 diverse tasks, and employs an evidence-first extraction method to ensure reliable habit identification. With CogTest, we conduct a comprehensive evaluation of 16 widely used LLMs (13 LRMs and 3 non-reasoning ones). Our findings reveal that LRMs, unlike conventional LLMs, not only exhibit human-like habits but also adaptively deploy them according to different tasks. Finer-grained analyses further uncover patterns of similarity and difference in LRMs' cognitive habit profiles, particularly certain inter-family similarity (e.g., Qwen-3 models and DeepSeek-R1). Extending the study to safety-related tasks, we observe that certain habits, such as Taking Responsible Risks, are strongly associated with the generation of harmful responses. These findings suggest that studying persistent behavioral patterns in LRMs' CoTs is a valuable step toward deeper understanding of LLM misbehavior. The code is available at: https://github.com/jianshuod/CogTest.
♻ ☆ SCALE: Towards Collaborative Content Analysis in Social Science with Large Language Model Agents and Human Intervention ACL
Content analysis breaks down complex and unstructured texts into theory-informed numerical categories. Particularly, in social science, this process usually relies on multiple rounds of manual annotation, domain expert discussion, and rule-based refinement. In this paper, we introduce SCALE, a novel multi-agent framework that effectively $\underline{\textbf{S}}$imulates $\underline{\textbf{C}}$ontent $\underline{\textbf{A}}$nalysis via $\underline{\textbf{L}}$arge language model (LLM) ag$\underline{\textbf{E}}$nts. SCALE imitates key phases of content analysis, including text coding, collaborative discussion, and dynamic codebook evolution, capturing the reflective depth and adaptive discussions of human researchers. Furthermore, by integrating diverse modes of human intervention, SCALE is augmented with expert input to further enhance its performance. Extensive evaluations on real-world datasets demonstrate that SCALE achieves human-approximated performance across various complex content analysis tasks, offering an innovative potential for future social science research.
comment: Accepted by the Annual Meeting of the Association for Computational Linguistics (ACL) 2025 Main Conference
Computers and Society
☆ A validity-guided workflow for robust large language model research in psychology
Large language models (LLMs) are rapidly being integrated into psychological research as research tools, evaluation targets, human simulators, and cognitive models. However, recent evidence reveals severe measurement unreliability: Personality assessments collapse under factor analysis, moral preferences reverse with punctuation changes, and theory-of-mind accuracy varies widely with trivial rephrasing. These "measurement phantoms"--statistical artifacts masquerading as psychological phenomena--threaten the validity of a growing body of research. Guided by the dual-validity framework that integrates psychometrics with causal inference, we present a six-stage workflow that scales validity requirements to research ambition--using LLMs to code text requires basic reliability and accuracy, while claims about psychological properties demand comprehensive construct validation. Researchers must (1) explicitly define their research goal and corresponding validity requirements, (2) develop and validate computational instruments through psychometric testing, (3) design experiments that control for computational confounds, (4) execute protocols with transparency, (5) analyze data using methods appropriate for non-independent observations, and (6) report findings within demonstrated boundaries and use results to refine theory. We illustrate the workflow through an example of model evaluation--"LLM selfhood"--showing how systematic validation can distinguish genuine computational phenomena from measurement artifacts. By establishing validated computational instruments and transparent practices, this workflow provides a path toward building a robust empirical foundation for AI psychology research.
☆ Dude, where's my utterance? Evaluating the effects of automatic segmentation and transcription on CPS detection
Collaborative Problem-Solving (CPS) markers capture key aspects of effective teamwork, such as staying on task, avoiding interruptions, and generating constructive ideas. An AI system that reliably detects these markers could help teachers identify when a group is struggling or demonstrating productive collaboration. Such a system requires an automated pipeline composed of multiple components. In this work, we evaluate how CPS detection is impacted by automating two critical components: transcription and speech segmentation. On the public Weights Task Dataset (WTD), we find CPS detection performance with automated transcription and segmentation methods is comparable to human-segmented and manually transcribed data; however, we find the automated segmentation methods reduces the number of utterances by 26.5%, impacting the the granularity of the data. We discuss the implications for developing AI-driven tools that support collaborative learning in classrooms.
comment: Accepted at AIED 2025
☆ NourID+: A Digital Energy Identity Framework for Efficient Subsidy Allocation in Morocco
We introduce NourID+, a digital energy identity framework that addresses Morocco's need for trusted energy subsidy allocation through authenticated digital identity integration. NourID+ creates a strong foundation for future subsidy programs by unifying three government-issued and digitalized credentials: Moroccan national identity cards (CIN), cadastral plans, and property ownership certificates are transformed into unique digital energy IDs (DE-IDs) that map authenticated identities with specific properties and their energy consumption patterns. The system supports three property ownership profiles: farmers (landowners), entrepreneurs (factory or company owners), and households (house owners), as energy consumption is directly related to land ownership. NourID+ provides dual access through a government portal allowing officials to process DE-ID generation requests, as well as a citizen portal for DE-ID usage and energy monitoring. Our framework supports CIN upload with facial biometric matching, automated property retrieval through government APIs, and government officer approval workflow for DE-ID generation. After evaluation of the system, we demonstrate a reduction in verification time from weeks to minutes, with 98% accuracy of document validation. The proposed solution allows for targeted subsidy allocation of electricity based on actual consumption needs rather than estimations, potentially improving the efficiency of Morocco's significant energy subsidy expenditure.
comment: 6 pages, 7 figures, 3rd IEEE RCDT Conference on Research Challenges in Digitalization and Societal Transformation (IEEE CiSt'25)
☆ Do Students Write Better Post-AI Support? Effects of Generative AI Literacy and Chatbot Interaction Strategies on Multimodal Academic Writing
Academic writing increasingly involves multimodal tasks requiring students to integrate visual information and textual arguments. While generative AI (GenAI) tools, like ChatGPT, offer new pathways for supporting academic writing, little is known about how students' GenAI literacy influences their independent multimodal writing skills or how chatbot interaction strategies (passive reactive vs. proactive scaffolding) impact learning. This study examined 79 higher education students' multimodal academic writing performance using a comparative research design. Students completed writing tasks integrating visual data under two chatbot-assisted conditions (passive vs. proactive) and subsequently without AI assistance. Their writing performance was rigorously evaluated across five dimensions, including insightfulness, visual data integration, organisation, linguistic quality, and critical thinking. Ordinal logistic regression and correlation analyses revealed that higher levels of GenAI literacy significantly predicted stronger independent multimodal writing performance immediately after AI assistance removal, particularly for students using passive chatbots requiring active prompting. These results highlight the critical role of GenAI literacy and specific chatbot interaction strategies in shaping students' capacities for independent multimodal academic writing. Our findings emphasise the need for purposeful integration of GenAI literacy training into curricula and balancing external scaffolding support with autonomous learning opportunities. This research offers valuable recommendations for educators leveraging AI-enhanced pedagogies to optimise student writing outcomes and technological engagement strategies.
☆ AI-washing: The Asymmetric Effects of Its Two Types on Consumer Moral Judgments
As AI hype continues to grow, organizations face pressure to broadcast or downplay purported AI initiatives - even when contrary to truth. This paper introduces AI-washing as overstating (deceptive boasting) or understating (deceptive denial) a company's real AI usage. A 2x2 experiment (N = 401) examines how these false claims affect consumer attitudes and purchase intentions. Results reveal a pronounced asymmetry: deceptive denial evokes more negative moral judgments than honest negation, while deceptive boasting has no effects. We show that perceived betrayal mediates these outcomes. By clarifying how AI-washing erodes trust, the study highlights clear ethical implications for policymakers, marketers, and researchers striving for transparency.
☆ LearnLens: LLM-Enabled Personalised, Curriculum-Grounded Feedback with Educators in the Loop
Effective feedback is essential for student learning but is time-intensive for teachers. We present LearnLens, a modular, LLM-based system that generates personalised, curriculum-aligned feedback in science education. LearnLens comprises three components: (1) an error-aware assessment module that captures nuanced reasoning errors; (2) a curriculum-grounded generation module that uses a structured, topic-linked memory chain rather than traditional similarity-based retrieval, improving relevance and reducing noise; and (3) an educator-in-the-loop interface for customisation and oversight. LearnLens addresses key challenges in existing systems, offering scalable, high-quality feedback that empowers both teachers and students.
☆ Ethics by Design: A Lifecycle Framework for Trustworthy AI in Medical Imaging From Transparent Data Governance to Clinically Validated Deployment
The integration of artificial intelligence (AI) in medical imaging raises crucial ethical concerns at every stage of its development, from data collection to deployment. Addressing these concerns is essential for ensuring that AI systems are developed and implemented in a manner that respects patient rights and promotes fairness. This study aims to explore the ethical implications of AI in medical imaging, focusing on five key stages: data collection, data processing, model training, model evaluation, and deployment. The goal is to evaluate how these stages adhere to fundamental ethical principles, including data privacy, fairness, transparency, accountability, and autonomy. An analytical approach was employed to examine the ethical challenges associated with each stage of AI development. We reviewed existing literature, guidelines, and regulations concerning AI ethics in healthcare and identified critical ethical issues at each stage. The study outlines specific inquiries and principles for each phase of AI development. The findings highlight key ethical issues: ensuring patient consent and anonymization during data collection, addressing biases in model training, ensuring transparency and fairness during model evaluation, and the importance of continuous ethical assessments during deployment. The analysis also emphasizes the impact of accessibility issues on different stakeholders, including private, public, and third-party entities. The study concludes that ethical considerations must be systematically integrated into each stage of AI development in medical imaging. By adhering to these ethical principles, AI systems can be made more robust, transparent, and aligned with patient care and data control. We propose tailored ethical inquiries and strategies to support the creation of ethically sound AI systems in medical imaging.
♻ ☆ In the Shadow of Smith`s Invisible Hand: Risks to Economic Stability and Social Wellbeing in the Age of Intelligence
Work is fundamental to societal prosperity and mental health, providing financial security, identity, purpose, and social integration. The emergence of generative artificial intelligence (AI) has catalysed debate on job displacement. Some argue that many new jobs and industries will emerge to offset the displacement, while others foresee a widespread decoupling of economic productivity from human input threatening jobs on an unprecedented scale. This study explores the conditions under which both may be true and examines the potential for a self-reinforcing cycle of recessionary pressures that would necessitate sustained government intervention to maintain job security and economic stability. A system dynamics model was developed to undertake ex ante analysis of the effect of AI-capital deepening on labour underutilisation and demand in the economy. Results indicate that even a moderate increase in the AI-capital-to-labour ratio could increase labour underutilisation to double its current level, decrease per capita disposable income by 26% (95% interval, 20.6% - 31.8%), and decrease the consumption index by 21% (95% interval, 13.6% - 28.3%) by mid-2050. To prevent a reduction in per capita disposable income due to the estimated increase in underutilization, at least a 10.8-fold increase in the new job creation rate would be necessary. Results demonstrate the feasibility of an AI-capital- to-labour ratio threshold beyond which even high rates of new job creation cannot prevent declines in consumption. The precise threshold will vary across economies, emphasizing the urgent need for empirical research tailored to specific contexts. This study underscores the need for governments, civic organisations, and business to work together to ensure a smooth transition to an AI- dominated economy to safeguard the Mental Wealth of nations.
comment: 10 pages, 5 figures, 1 table, an Appendix
♻ ☆ The Role of Open-Source LLMs in Shaping the Future of GeoAI
Large Language Models (LLMs) are transforming geospatial artificial intelligence (GeoAI), offering new capabilities in data processing, spatial analysis, and decision support. This paper examines the open-source paradigm's critical role in this transformation. While proprietary LLMs offer accessibility, they often limit the customization, interoperability, and transparency vital for specialized geospatial tasks. Conversely, open-source alternatives significantly advance Geographic Information Science (GIScience) by fostering greater adaptability, reproducibility, and community-driven innovation. Open frameworks empower researchers to tailor solutions, integrate cutting-edge methodologies (e.g., reinforcement learning, advanced spatial indexing), and align with FAIR (Findable, Accessible, Interoperable, and Reusable) principles. However, the growing reliance on any LLM necessitates careful consideration of security vulnerabilities, ethical risks, and robust governance for AI-generated geospatial outputs. This paper argues that GIScience advances best not through a single model type, but by cultivating a diverse, interoperable ecosystem combining open-source foundations for innovation, custom geospatial models, and interdisciplinary collaboration. By critically evaluating the opportunities and challenges of open-source LLMs within the broader GeoAI landscape, this work contributes to a thorough discourse on leveraging LLMs to effectively advance spatial research, policy, and decision-making in an equitable, sustainable, and scientifically rigorous manner.
♻ ☆ FairFare: A Tool for Crowdsourcing Rideshare Data to Empower Labor Organizers
Rideshare workers experience unpredictable working conditions due to gig work platforms' reliance on opaque AI and algorithmic systems. In response to these challenges, we found that labor organizers want data to help them advocate for legislation to increase the transparency and accountability of these platforms. To address this need, we collaborated with a Colorado-based rideshare union to develop FairFare, a tool that crowdsources and analyzes workers' data to estimate the take rate -- the percentage of the rider price retained by the rideshare platform. We deployed FairFare with our partner organization that collaborated with us in collecting data on 76,000+ trips from 45 drivers over 18 months. During evaluation interviews, organizers reported that FairFare helped influence the bill language and passage of Colorado Senate Bill 24-75, calling for greater transparency and data disclosure of platform operations, and create a national narrative. Finally, we reflect on complexities of translating quantitative data into policy outcomes, nature of community based audits, and design implications for future transparency tools.
comment: FairFare is hosted at: https://getfairfare.org/
♻ ☆ Collaborative and parametric insurance on the Ethereum blockchain
This paper introduces a blockchain-based insurance scheme that integrates parametric and collaborative elements. A pool of investors, referred to as surplus providers, locks funds in a smart contract, enabling blockchain users to underwrite parametric insurance contracts. These contracts automatically trigger compensation when predefined conditions are met. The collaborative aspect is embodied in the generation of tokens, which are distributed to surplus providers. These tokens represent each participant's share of the surplus and grant voting rights for management decisions. The smart contract is developed in Solidity, a high-level programming language for the Ethereum blockchain, and deployed on the Sepolia testnet, with data processing and analysis conducted using Python. In addition, open-source code is provided and main research challenges are identified, so that further research can be carried out to overcome limitations of this first proof of concept.
♻ ☆ Explainable AI for Mental Health Emergency Returns: Integrating LLMs with Predictive Modeling
Importance: Emergency department (ED) returns for mental health conditions pose a major healthcare burden, with 24-27% of patients returning within 30 days. Traditional machine learning models for predicting these returns often lack interpretability for clinical use. Objective: To assess whether integrating large language models (LLMs) with machine learning improves predictive accuracy and clinical interpretability of ED mental health return risk models. Methods: This retrospective cohort study analyzed 42,464 ED visits for 27,904 unique mental health patients at an academic medical center in the Deep South from January 2018 to December 2022. Main Outcomes and Measures: Two primary outcomes were evaluated: (1) 30-day ED return prediction accuracy and (2) model interpretability using a novel LLM-enhanced framework integrating SHAP (SHapley Additive exPlanations) values with clinical knowledge. Results: For chief complaint classification, LLaMA 3 (8B) with 10-shot learning outperformed traditional models (accuracy: 0.882, F1-score: 0.86). In SDoH classification, LLM-based models achieved 0.95 accuracy and 0.96 F1-score, with Alcohol, Tobacco, and Substance Abuse performing best (F1: 0.96-0.89), while Exercise and Home Environment showed lower performance (F1: 0.70-0.67). The LLM-based interpretability framework achieved 99% accuracy in translating model predictions into clinically relevant explanations. LLM-extracted features improved XGBoost AUC from 0.74 to 0.76 and AUC-PR from 0.58 to 0.61. Conclusions and Relevance: Integrating LLMs with machine learning models yielded modest but consistent accuracy gains while significantly enhancing interpretability through automated, clinically relevant explanations. This approach provides a framework for translating predictive analytics into actionable clinical insights.
Computation and Language
☆ SymbolicThought: Integrating Language Models and Symbolic Reasoning for Consistent and Interpretable Human Relationship Understanding
Understanding character relationships is essential for interpreting complex narratives and conducting socially grounded AI research. However, manual annotation is time-consuming and low in coverage, while large language models (LLMs) often produce hallucinated or logically inconsistent outputs. We present SymbolicThought, a human-in-the-loop framework that combines LLM-based extraction with symbolic reasoning. The system constructs editable character relationship graphs, refines them using seven types of logical constraints, and enables real-time validation and conflict resolution through an interactive interface. To support logical supervision and explainable social analysis, we release a dataset of 160 interpersonal relationships with corresponding logical structures. Experiments show that SymbolicThought improves annotation accuracy and consistency while significantly reducing time cost, offering a practical tool for narrative understanding, explainable AI, and LLM evaluation.
☆ Navigating Speech Recording Collections with AI-Generated Illustrations
Although the amount of available spoken content is steadily increasing, extracting information and knowledge from speech recordings remains challenging. Beyond enhancing traditional information retrieval methods such as speech search and keyword spotting, novel approaches for navigating and searching spoken content need to be explored and developed. In this paper, we propose a novel navigational method for speech archives that leverages recent advances in language and multimodal generative models. We demonstrate our approach with a Web application that organizes data into a structured format using interactive mind maps and image generation tools. The system is implemented using the TED-LIUM~3 dataset, which comprises over 2,000 speech transcripts and audio files of TED Talks. Initial user tests using a System Usability Scale (SUS) questionnaire indicate the application's potential to simplify the exploration of large speech collections.
☆ Efficient Detection of Intermittent Job Failures Using Few-Shot Learning
One of the main challenges developers face in the use of continuous integration (CI) and deployment pipelines is the occurrence of intermittent job failures, which result from unexpected non-deterministic issues (e.g., flaky tests or infrastructure problems) rather than regular code-related errors such as bugs. Prior studies developed machine-learning (ML) models trained on large datasets of job logs to classify job failures as either intermittent or regular. As an alternative to costly manual labeling of large datasets, the state-of-the-art (SOTA) approach leveraged a heuristic based on non-deterministic job reruns. However, this method mislabels intermittent job failures as regular in contexts where rerunning suspicious job failures is not an explicit policy, and therefore limits the SOTA's performance in practice. In fact, our manual analysis of 2,125 job failures from 5 industrial and 1 open-source projects reveals that, on average, 32\% of intermittent job failures are mislabeled as regular. To address these limitations, this paper introduces a novel approach to intermittent job failure detection using few-shot learning (FSL). Specifically, we fine-tune a small language model using a few number of manually labeled log examples to generate rich embeddings, which are then used to train an ML classifier. Our FSL-based approach achieves 70-88\% F1-score with only 12 shots in all projects, outperforming the SOTA, which proved ineffective (34-52\% F1-score) in 4 projects. Overall, this study underlines the importance of data quality over quantity and provides a more efficient and practical framework for the detection of intermittent job failures in organizations.
comment: Accepted at the 41st International Conference on Software Maintenance and Evolution - ICSME 2025, Industry Track
☆ Large Language Models for Zero-Shot Multicultural Name Recognition
The robust and accurate recognition of multicultural names, particularly those not previously encountered, is a critical challenge in an increasingly globalized digital landscape. Traditional methods often falter when confronted with the vast diversity and novel permutations of names across different linguistic and cultural backgrounds. This paper introduces a novel framework, Prompt-Engineered Fine-Tuning (PEFT) for Large Language Models (LLMs) with Adversarial Data Augmentation and Cultural Knowledge Graph Integration, designed to significantly enhance zero-shot multicultural name recognition. Our approach leverages the powerful linguistic understanding of pre-trained LLMs, transforming the recognition task into a guided generation problem. Through meticulous prompt engineering, dynamic integration of explicit cultural knowledge derived from knowledge graphs, and the strategic application of adversarial data augmentation, we equip the LLM with an unprecedented ability to infer the cultural origin of unseen names. Extensive experiments demonstrate that our PEFT method consistently outperforms established deep learning baselines, including advanced Bi-LSTM models with cultural tags, achieving an impressive 93.1\% overall accuracy and a remarkable 89.5\% accuracy on challenging zero-shot name identification. An in-depth ablation study confirms the synergistic contribution of each component, while a human evaluation highlights our method's performance approaching human expert judgment. This work signifies a substantial leap in multicultural name recognition, offering a highly effective and scalable solution for real-world applications.
☆ Dissecting Clinical Reasoning in Language Models: A Comparative Study of Prompts and Model Adaptation Strategies
Recent works on large language models (LLMs) have demonstrated the impact of prompting strategies and fine-tuning techniques on their reasoning capabilities. Yet, their effectiveness on clinical natural language inference (NLI) remains underexplored. This study presents the first controlled evaluation of how prompt structure and efficient fine-tuning jointly shape model performance in clinical NLI. We inspect four classes of prompting strategies to elicit reasoning in LLMs at different levels of abstraction, and evaluate their impact on a range of clinically motivated reasoning types. For each prompting strategy, we construct high-quality demonstrations using a frontier model to distil multi-step reasoning capabilities into smaller models (4B parameters) via Low-Rank Adaptation (LoRA). Across different language models fine-tuned on the NLI4CT benchmark, we found that prompt type alone accounts for up to 44% of the variance in macro-F1. Moreover, LoRA fine-tuning yields consistent gains of +8 to 12 F1, raises output alignment above 97%, and narrows the performance gap to GPT-4o-mini to within 7.1%. Additional experiments on reasoning generalisation reveal that LoRA improves performance in 75% of the models on MedNLI and TREC Clinical Trials Track. Overall, these findings demonstrate that (i) prompt structure is a primary driver of clinical reasoning performance, (ii) compact models equipped with strong prompts and LoRA can rival frontier-scale systems, and (iii) reasoning-type-aware evaluation is essential to uncover prompt-induced trade-offs. Our results highlight the promise of combining prompt design and lightweight adaptation for more efficient and trustworthy clinical NLP systems, providing insights on the strengths and limitations of widely adopted prompting and parameter-efficient techniques in highly specialised domains.
☆ Token Level Hallucination Detection via Variance in Language Models
Large Language Models (LLMs) have demonstrated impressive generative capabilities across diverse tasks but remain susceptible to hallucinations, confidently generated yet factually incorrect outputs. We introduce a reference-free, token-level hallucination detection framework that leverages the variance in token log-probabilities across multiple stochastic generations. Unlike prior methods that require ground-truth references or sentence-level verification, our approach is model-agnostic, interpretable, and suited for real-time or post-hoc analysis. We evaluate our method on unanswerable question prompts from the SQuAD v2 dataset and benchmark across three autoregressive models of varying scales: GPT-Neo 125M, Falcon 1B, and Mistral 7B. Through both quantitative metrics and visual diagnostics, we show that token-level variance reliably highlights instability in model outputs and correlates with hallucination patterns. Our framework is lightweight, reproducible, and adaptable to multiple domains, offering a valuable diagnostic tool for analyzing generative reliability in LLMs.
♻ ☆ Phonetic Reconstruction of the Consonant System of Middle Chinese via Mixed Integer Optimization
This paper is concerned with phonetic reconstruction of the consonant system of Middle Chinese. We propose to cast the problem as a Mixed Integer Programming problem, which is able to automatically explore homophonic information from ancient rhyme dictionaries and phonetic information from modern Chinese dialects, the descendants of Middle Chinese. Numerical evaluation on a wide range of synthetic and real data demonstrates the effectiveness and robustness of the new method. We apply the method to information from Guangyun and 20 modern Chinese dialects to obtain a new phonetic reconstruction result. A linguistically-motivated discussion of this result is also provided.
♻ ☆ Frustratingly Simple Retrieval Improves Challenging, Reasoning-Intensive Benchmarks
Retrieval-augmented Generation (RAG) has primarily been studied in limited settings, such as factoid question answering; more challenging, reasoning-intensive benchmarks have seen limited success from minimal RAG. In this work, we challenge this prevailing view on established, reasoning-intensive benchmarks: MMLU, MMLU Pro, AGI Eval, GPQA, and MATH. We identify a key missing component in prior work: a usable, web-scale datastore aligned with the breadth of pretraining data. To this end, we introduce CompactDS: a diverse, high-quality, web-scale datastore that achieves high retrieval accuracy and subsecond latency on a single-node. The key insights are (1) most web content can be filtered out without sacrificing coverage, and a compact, high-quality subset is sufficient; and (2) combining in-memory approximate nearest neighbor (ANN) retrieval and on-disk exact search balances speed and recall. Using CompactDS, we show that a minimal RAG pipeline achieves consistent accuracy improvements across all benchmarks and model sizes (8B--70B), with relative gains of 10% on MMLU, 33% on MMLU Pro, 14% on GPQA, and 19% on MATH. No single data source suffices alone, highlighting the importance of diversity of sources (web crawls, curated math, academic papers, textbooks). Finally, we show that our carefully designed in-house datastore matches or outperforms web search engines such as Google Search, as well as recently proposed, complex agent-based RAG systems--all while maintaining simplicity, reproducibility, and self-containment. We release CompactDS and our retrieval pipeline, supporting future research exploring retrieval-based AI systems.
comment: 33 pages, 2 figures, 27 tables
♻ ☆ The Medium Is Not the Message: Deconfounding Text Embeddings via Linear Concept Erasure
Embedding-based similarity metrics between text sequences can be influenced not just by the content dimensions we most care about, but can also be biased by spurious attributes like the text's source or language. These document confounders cause problems for many applications, but especially those that need to pool texts from different corpora. This paper shows that a debiasing algorithm that removes information about observed confounders from the encoder representations substantially reduces these biases at a minimal computational cost. Document similarity and clustering metrics improve across every embedding variant and task we evaluate -- often dramatically. Interestingly, performance on out-of-distribution benchmarks is not impacted, indicating that the embeddings are not otherwise degraded.
♻ ☆ From Intentions to Techniques: A Comprehensive Taxonomy and Challenges in Text Watermarking for Large Language Models NAACL
With the rapid growth of Large Language Models (LLMs), safeguarding textual content against unauthorized use is crucial. Watermarking offers a vital solution, protecting both - LLM-generated and plain text sources. This paper presents a unified overview of different perspectives behind designing watermarking techniques through a comprehensive survey of the research literature. Our work has two key advantages: (1) We analyze research based on the specific intentions behind different watermarking techniques, evaluation datasets used, and watermarking addition and removal methods to construct a cohesive taxonomy. (2) We highlight the gaps and open challenges in text watermarking to promote research protecting text authorship. This extensive coverage and detailed analysis sets our work apart, outlining the evolving landscape of text watermarking in Language Models.
comment: NAACL Findings 2025
Computers and Society
☆ 2024 NSF CSSI-Cybertraining-SCIPE PI Meeting August 12 to 13, 2024, Charlotte, NC
The second annual NSF, OAC CSSI, CyberTraining and related programs PI meeting was held August 12 to 13 in Charlotte, NC, with participation from PIs or representatives of all major awards. Keynotes, panels, breakouts, and poster sessions allowed PIs to engage with each other, NSF staff, and invited experts. The 286 attendees represented 292 awards across CSSI, CyberTraining, OAC Core, CIP, SCIPE CDSE, and related programs, and presented over 250 posters. This report documents the meetings structure, findings, and recommendations, offering a snapshot of current community perspectives on cyberinfrastructure. A key takeaway is a vibrant, engaged community advancing science through CI. AI-driven research modalities complement established HPC and data centric tools. Workforce development efforts align well with the CSSI community.
comment: Annual NSF PI meeting; contains summaries of meetings and breakout sessions, lists of participants, links to presented posters on figshare
☆ Governance and Technological Challenge in Digital Solidarity Economies: A Case Study of a Collaborative Transportation Platform in South Korea
South Korea's City P illustrates how lofty goals of digital solidarity can falter when challenged by local governance realities. Drawing on Hansmann's ownership theory, collaborative governance concepts, and platform cooperativism, we conducted a qualitative case study involving policy documents, independent assessments, and 11 in-depth interviews with residents, officials, and technology developers. Findings reveal a marked disconnect between the initiative's stated emphasis on community co-ownership and the actual power dynamics that largely favored government agencies and external firms. Although blockchain and integrated digital tools were meant to enhance transparency and inclusivity, stakeholders--especially elderly residents--experienced confusion and mistrust. We argue that genuine collaboration in digital solidarity economies requires not only robust technical designs but also culturally resonant ownership structures, substantive inclusion of local voices, and transparent governance mechanisms. The City P case underscores the necessity of addressing heterogeneous digital capacities, aligning funding and incentives with grassroots empowerment, and mitigating performative participation to ensure meaningful and sustainable outcomes in community-based digital innovation.
comment: 31 pages, 3 figures, under journal review
☆ Benchmarking Stochastic Approximation Algorithms for Fairness-Constrained Training of Deep Neural Networks
The ability to train Deep Neural Networks (DNNs) with constraints is instrumental in improving the fairness of modern machine-learning models. Many algorithms have been analysed in recent years, and yet there is no standard, widely accepted method for the constrained training of DNNs. In this paper, we provide a challenging benchmark of real-world large-scale fairness-constrained learning tasks, built on top of the US Census (Folktables). We point out the theoretical challenges of such tasks and review the main approaches in stochastic approximation algorithms. Finally, we demonstrate the use of the benchmark by implementing and comparing three recently proposed, but as-of-yet unimplemented, algorithms both in terms of optimization performance, and fairness improvement. We release the code of the benchmark as a Python package at https://github.com/humancompatible/train.
☆ Nunchi-Bench: Benchmarking Language Models on Cultural Reasoning with a Focus on Korean Superstition
As large language models (LLMs) become key advisors in various domains, their cultural sensitivity and reasoning skills are crucial in multicultural environments. We introduce Nunchi-Bench, a benchmark designed to evaluate LLMs' cultural understanding, with a focus on Korean superstitions. The benchmark consists of 247 questions spanning 31 topics, assessing factual knowledge, culturally appropriate advice, and situational interpretation. We evaluate multilingual LLMs in both Korean and English to analyze their ability to reason about Korean cultural contexts and how language variations affect performance. To systematically assess cultural reasoning, we propose a novel evaluation strategy with customized scoring metrics that capture the extent to which models recognize cultural nuances and respond appropriately. Our findings highlight significant challenges in LLMs' cultural reasoning. While models generally recognize factual information, they struggle to apply it in practical scenarios. Furthermore, explicit cultural framing enhances performance more effectively than relying solely on the language of the prompt. To support further research, we publicly release Nunchi-Bench alongside a leaderboard.
☆ Exploring a Gamified Personality Assessment Method through Interaction with Multi-Personality LLM Agents
The execution of effective and imperceptible personality assessments is receiving increasing attention in psychology and human-computer interaction fields. This study explores an interactive approach for personality assessment, focusing on the multiplicity of personality representation. We propose a framework of gamified personality assessment through multi-personality representations (Multi-PR GPA). The framework leverages Large Language Models to empower virtual agents with diverse personalities. These agents elicit multifaceted human personality representations through engaging in interactive games. Drawing upon the multi-type textual data generated throughout the interaction, it achieves two ways of personality assessments (i.e., Direct Assessment and Que-based Assessment) and provides interpretable insights. Grounded in the classic Big Five theory, we implemented a prototype system and conducted a user study to assess the efficacy of Multi-PR GPA. The results underscore the effectiveness of our approach in personality assessment and demonstrate that it achieves superior performance when considering the multiplicity of personality representation.
☆ From Query to Explanation: Uni-RAG for Multi-Modal Retrieval-Augmented Learning in STEM
In AI-facilitated teaching, leveraging various query styles to interpret abstract educational content is crucial for delivering effective and accessible learning experiences. However, existing retrieval systems predominantly focus on natural text-image matching and lack the capacity to address the diversity and ambiguity inherent in real-world educational scenarios. To address this limitation, we develop a lightweight and efficient multi-modal retrieval module, named Uni-Retrieval, which extracts query-style prototypes and dynamically matches them with tokens from a continually updated Prompt Bank. This Prompt Bank encodes and stores domain-specific knowledge by leveraging a Mixture-of-Expert Low-Rank Adaptation (MoE-LoRA) module and can be adapted to enhance Uni-Retrieval's capability to accommodate unseen query types at test time. To enable natural language educational content generation, we integrate the original Uni-Retrieval with a compact instruction-tuned language model, forming a complete retrieval-augmented generation pipeline named Uni-RAG. Given a style-conditioned query, Uni-RAG first retrieves relevant educational materials and then generates human-readable explanations, feedback, or instructional content aligned with the learning objective. Experimental results on SER and other multi-modal benchmarks show that Uni-RAG outperforms baseline retrieval and RAG systems in both retrieval accuracy and generation quality, while maintaining low computational cost. Our framework provides a scalable, pedagogically grounded solution for intelligent educational systems, bridging retrieval and generation to support personalized, explainable, and efficient learning assistance across diverse STEM scenarios.
☆ Optimizing Shanghai's Household Waste Recycling Collection Program by Decision-Making based on Mathematical Modeling
In this article, we will discuss the optimization of Shanghai's recycling collection program, with the core of the task as making a decision among the choice of the alternatives. We will be showing a vivid and comprehensive application of the classical mathematical multi-criteria decision model: Analytical Hierarchy Process (AHP), using the eigenvector method. We will also seek the key criteria for the sustainability development of human society, by assessing the important elements of waste recycling.First, we considered the evaluation for a quantified score of the benefits and costs of recycling household glass wastes in Shanghai, respectively. In the evaluation of each score, we both adopted the AHP method to build a hierarchical structure of the problem we are facing. We first identified the key assessment criteria of the evaluation, on various perspectives including direct money costs and benefits, and further environmental and indirect considerations. Then, we distributed questionnaires to our school science teachers, taking the geometric mean, to build the pairwise comparison matrix of the criterion. After the theoretical modeling works are done, we began collecting the essential datasets for the evaluation of each score, by doing research on the official statistics, Internet information, market information and news reports. Sometimes, we proceed a logical pre-procession of the data from other data, if the data wanted isn't directly accessible. Then, we crucially considered the generalization of our mathematical model. We considered from several perspectives, including the extension of assessment criteria, and the consideration of the dynamic interdependency between the wastes, inside a limited transportation container.
comment: 31 pages, 6 figures
Computers and Society
☆ Leveraging Large Language Models for Tacit Knowledge Discovery in Organizational Contexts IJCNN
Documenting tacit knowledge in organizations can be a challenging task due to incomplete initial information, difficulty in identifying knowledgeable individuals, the interplay of formal hierarchies and informal networks, and the need to ask the right questions. To address this, we propose an agent-based framework leveraging large language models (LLMs) to iteratively reconstruct dataset descriptions through interactions with employees. Modeling knowledge dissemination as a Susceptible-Infectious (SI) process with waning infectivity, we conduct 864 simulations across various synthetic company structures and different dissemination parameters. Our results show that the agent achieves 94.9% full-knowledge recall, with self-critical feedback scores strongly correlating with external literature critic scores. We analyze how each simulation parameter affects the knowledge retrieval process for the agent. In particular, we find that our approach is able to recover information without needing to access directly the only domain specialist. These findings highlight the agent's ability to navigate organizational complexity and capture fragmented knowledge that would otherwise remain inaccessible.
comment: 8 pages, 4 figures, accepted to International Joint Conference on Neural Networks (IJCNN) 2025
☆ Heterogeneous participation and allocation skews: when is choice "worth it"?
A core ethos of the Economics and Computation (EconCS) community is that people have complex private preferences and information of which the central planner is unaware, but which an appropriately designed mechanism can uncover to improve collective decisionmaking. This ethos underlies the community's largest deployed success stories, from stable matching systems to participatory budgeting. I ask: is this choice and information aggregation ``worth it''? In particular, I discuss how such systems induce \textit{heterogeneous participation}: those already relatively advantaged are, empirically, more able to pay time costs and navigate administrative burdens imposed by the mechanisms. I draw on three case studies, including my own work -- complex democratic mechanisms, resident crowdsourcing, and school matching. I end with lessons for practice and research, challenging the community to help reduce participation heterogeneity and design and deploy mechanisms that meet a ``best of both worlds'' north star: \textit{use preferences and information from those who choose to participate, but provide a ``sufficient'' quality of service to those who do not.}
comment: To appear in Sigecom exchanges
☆ MusGO: A Community-Driven Framework For Assessing Openness in Music-Generative AI
Since 2023, generative AI has rapidly advanced in the music domain. Despite significant technological advancements, music-generative models raise critical ethical challenges, including a lack of transparency and accountability, along with risks such as the replication of artists' works, which highlights the importance of fostering openness. With upcoming regulations such as the EU AI Act encouraging open models, many generative models are being released labelled as 'open'. However, the definition of an open model remains widely debated. In this article, we adapt a recently proposed evidence-based framework for assessing openness in LLMs to the music domain. Using feedback from a survey of 110 participants from the Music Information Retrieval (MIR) community, we refine the framework into MusGO (Music-Generative Open AI), which comprises 13 openness categories: 8 essential and 5 desirable. We evaluate 16 state-of-the-art generative models and provide an openness leaderboard that is fully open to public scrutiny and community contributions. Through this work, we aim to clarify the concept of openness in music-generative AI and promote its transparent and responsible development.
comment: Accepted at ISMIR 2025
☆ From Street Form to Spatial Justice: Explaining Urban Exercise Inequality via a Triadic SHAP-Informed Framework
Urban streets are essential public spaces that facilitate everyday physical activity and promote health equity. Drawing on Henri Lefebvre's spatial triad, this study proposes a conceptual and methodological framework to quantify street-level exercise deprivation through the dimensions of conceived (planning and structure), perceived (visual and sensory), and lived (practice and experiential) urban spaces. We integrate multi-source spatial data-including street networks, street-view imagery, and social media-using explainable machine learning (SHAP analysis) to classify streets by their dominant deprivation modes, forming a novel typology of spatial inequity. Results highlight significant differences across urban contexts: older city cores predominantly experience infrastructural constraints (conceived space), whereas new development areas suffer from experiential disengagement (lived space). Furthermore, by identifying spatial mismatches between population distribution and exercise intensity, our study reveals localized clusters of latent deprivation. Simulation experiments demonstrate that targeted improvements across spatial dimensions can yield up to 14% increases in exercise supportiveness. This research not only operationalizes Lefebvre's spatial theory at the street scale but also provides actionable insights and intervention guidelines, contributing to the broader goals of spatial justice and urban health equity.
comment: 31 pages, 3 tables and 11 figures
☆ Deepfakes in Criminal Investigations: Interdisciplinary Research Directions for CMC Research
The emergence of deepfake technologies offers both opportunities and significant challenges. While commonly associated with deception, misinformation, and fraud, deepfakes may also enable novel applications in high-stakes contexts such as criminal investigations. However, these applications raise complex technological, ethical, and legal questions. We adopt an interdisciplinary approach, drawing on computer science, philosophy, and law, to examine what it takes to responsibly use deepfakes in criminal investigations and argue that computer-mediated communication (CMC) research, especially based on social media corpora, can provide crucial insights for understanding the potential harms and benefits of deepfakes. Our analysis outlines key research directions for the CMC community and underscores the need for interdisciplinary collaboration in this evolving domain.
comment: 5 pages, to be presented at the 12th International Conference on CMC and Social Media Corpora for the Humanities (CMC-Corpora)
♻ ☆ Third-party compliance reviews for frontier AI safety frameworks
Safety frameworks have emerged as a best practice for managing risks from frontier artificial intelligence (AI) systems. However, it may be difficult for stakeholders to know if companies are adhering to their frameworks. This paper explores a potential solution: third-party compliance reviews. During a third-party compliance review, an independent external party assesses whether a frontier AI company is complying with its safety framework. First, we discuss the main benefits and challenges of such reviews. On the one hand, they can increase compliance with safety frameworks and provide assurance to internal and external stakeholders. On the other hand, they can create information security risks, impose additional cost burdens, and cause reputational damage, but these challenges can be partially mitigated by drawing on best practices from other industries. Next, we answer practical questions about third-party compliance reviews, namely: (1) Who could conduct the review? (2) What information sources could the reviewer consider? (3) How could compliance with the safety framework be assessed? (4) What information about the review could be disclosed externally? (5) How could the findings guide development and deployment actions? (6) When could the reviews be conducted? For each question, we evaluate a set of plausible options. Finally, we suggest "minimalist", "more ambitious", and "comprehensive" approaches for each question that a frontier AI company could adopt.
comment: 27 pages, 1 figure, 5 tables
♻ ☆ iNews: A Multimodal Dataset for Modeling Personalized Affective Responses to News
Understanding how individuals perceive and react to information is fundamental for advancing social and behavioral sciences and developing human-centered AI systems. Current approaches often lack the granular data needed to model these personalized responses, relying instead on aggregated labels that obscure the rich variability driven by individual differences. We introduce iNews, a novel large-scale dataset specifically designed to facilitate the modeling of personalized affective responses to news content. Our dataset comprises annotations from 291 demographically diverse UK participants across 2,899 multimodal Facebook news posts from major UK outlets, with an average of 5.18 annotators per sample. For each post, annotators provide multifaceted labels including valence, arousal, dominance, discrete emotions, content relevance judgments, sharing likelihood, and modality importance ratings. Crucially, we collect comprehensive annotator persona information covering demographics, personality, media trust, and consumption patterns, which explain 15.2% of annotation variance - substantially higher than existing NLP datasets. Incorporating this information yields a 7% accuracy gain in zero-shot prediction and remains beneficial even with 32-shot in-context learning. iNews opens new possibilities for research in LLM personalization, subjectivity, affective computing, and human behavior simulation.
comment: Dataset available at https://huggingface.co/datasets/pitehu/inews
♻ ☆ Evaluating AI capabilities in detecting conspiracy theories on YouTube
As a leading online platform with a vast global audience, YouTube's extensive reach also makes it susceptible to hosting harmful content, including disinformation and conspiracy theories. This study explores the use of open-weight Large Language Models (LLMs), both text-only and multimodal, for identifying conspiracy theory videos shared on YouTube. Leveraging a labeled dataset of thousands of videos, we evaluate a variety of LLMs in a zero-shot setting and compare their performance to a fine-tuned RoBERTa baseline. Results show that text-based LLMs achieve high recall but lower precision, leading to increased false positives. Multimodal models lag behind their text-only counterparts, indicating limited benefits from visual data integration. To assess real-world applicability, we evaluate the most accurate models on an unlabeled dataset, finding that RoBERTa achieves performance close to LLMs with a larger number of parameters. Our work highlights the strengths and limitations of current LLM-based approaches for online harmful content detection, emphasizing the need for more precise and robust systems.
comment: Submitted for review to OSNEM Special Issue of April 2025
♻ ☆ Exploring Privacy and Security as Drivers for Environmental Sustainability in Cloud-Based Office Solutions
In this paper, we explore the intersection of privacy, security, and environmental sustainability in cloud-based office solutions, focusing on quantifying user- and network-side energy use and associated carbon emissions. We hypothesise that privacy-focused services are typically more energy-efficient than those funded through data collection and advertising. To evaluate this, we propose a framework that systematically measures environmental costs based on energy usage and network data traffic during well-defined, automated usage scenarios. To test our hypothesis, we first analyse how underlying architectures and business models, such as monetisation through personalised advertising, contribute to the environmental footprint of these services. We then explore existing methodologies and tools for software environmental impact assessment. We apply our framework to three mainstream email services selected to reflect different privacy policies, from ad-supported tracking-intensive models to privacy-focused designs: Microsoft Outlook, Google Mail (Gmail), and Proton Mail. We extend this comparison to a self-hosted email solution, evaluated with and without end-to-end encryption. We show that the self-hosted solution, even with 14% of device energy and 15% of emissions overheads from PGP encryption, remains the most energy-efficient, saving up to 33% of emissions per session compared to Gmail. Among commercial providers, Proton Mail is the most efficient, saving up to 0.1 gCO2 e per session compared to Outlook, whose emissions can be further reduced by 2% through ad-blocking.
comment: Post-proceedings paper presented at LOCO '24: 1st International Workshop on Low Carbon Computing, 2024-12-03, in Glasgow, UK/Online. This paper is based on https://doi.org/10.48550/arXiv.2411.16340 but presents novel insights and additional technical content; this paper has been reviewed again by the LOCO PC
♻ ☆ AI is the Strategy: From Agentic AI to Autonomous Business Models onto Strategy in the Age of AI
This article develops the concept of Autonomous Business Models (ABMs) as a distinct managerial and strategic logic in the age of agentic AI. While most firms still operate within human-driven or AI-augmented models, we argue that we are now entering a phase where agentic AI (systems capable of initiating, coordinating, and adapting actions autonomously) can increasingly execute the core mechanisms of value creation, delivery, and capture. This shift reframes AI not as a tool to support strategy, but as the strategy itself. Using two illustrative cases, getswan.ai, an Israeli startup pursuing autonomy by design, and a hypothetical reconfiguration of Ryanair as an AI-driven incumbent, we depict the evolution from augmented to autonomous business models. We show how ABMs reshape competitive advantage through agentic execution, continuous adaptation, and the gradual offloading of human decision-making. This transition introduces new forms of competition between AI-led firms, which we term synthetic competition, where strategic interactions occur at rapid, machine-level speed and scale. It also challenges foundational assumptions in strategy, organizational design, and governance. By positioning agentic AI as the central actor in business model execution, the article invites us to rethink strategic management in an era where firms increasingly run themselves.
comment: 17 pages, 6 figures, 3 tables. Under review at Strategy Science (no decision yet). This version posted to facilitate citation and feedback. New version was updated for formatting (now double columns), the addition of the arXiv reference, and the email address of the corresponding author
♻ ☆ Recommender systems, stigmergy, and the tyranny of popularity
Scientific recommender systems, such as Google Scholar and Web of Science, are essential tools for discovery. Search algorithms that power work through stigmergy, a collective intelligence mechanism that surfaces useful paths through repeated engagement. While generally effective, this "rich-get-richer" dynamic results in a small number of high-profile papers that dominate visibility. This essay argues argue that these algorithm over-reliance on popularity fosters intellectual homogeneity and exacerbates structural inequities, stifling innovative and diverse perspectives critical for scientific progress. We propose an overhaul of search platforms to incorporate user-specific calibration, allowing researchers to manually adjust the weights of factors like popularity, recency, and relevance. We also advise platform developers on how text embeddings and LLMs could be implemented in ways that increase user autonomy. While our suggestions are particularly pertinent to aligning recommender systems with scientific values, these ideas are broadly applicable to information access systems in general. Designing platforms that increase user autonomy is an important step toward more robust and dynamic information
Computers and Society
☆ Disclosing Generative AI Use in Digital Humanities Research
This survey study investigates how digital humanists perceive and approach generative AI disclosure in research. The results indicate that while digital humanities scholars acknowledge the importance of disclosing GenAI use, the actual rate of disclosure in research practice remains low. Respondents differ in their views on which activities most require disclosure and on the most appropriate methods for doing so. Most also believe that safeguards for AI disclosure should be established through institutional policies rather than left to individual decisions. The study's findings will offer empirical guidance to scholars, institutional leaders, funders, and other stakeholders responsible for shaping effective disclosure policies.
☆ MateInfoUB: A Real-World Benchmark for Testing LLMs in Competitive, Multilingual, and Multimodal Educational Tasks
The rapid advancement of Large Language Models (LLMs) has transformed various domains, particularly computer science (CS) education. These models exhibit remarkable capabilities in code-related tasks and problem-solving, raising questions about their potential and limitations in advanced CS contexts. This study presents a novel bilingual (English-Romanian) multimodal (text and image) dataset of multiple-choice questions derived from a high-level computer science competition. A particularity of our dataset is that the problems are conceived such that some of them are easier solved using reasoning on paper, while for others writing code is more efficient. We systematically evaluate State of The Art LLMs on this dataset, analyzing their performance on theoretical programming tasks. Our findings reveal the strengths and limitations of current LLMs, including the influence of language choice (English vs. Romanian), providing insights into their applicability in CS education and competition settings. We also address critical ethical considerations surrounding educational integrity and the fairness of assessments in the context of LLM usage. These discussions aim to inform future educational practices and policies. To support further research, our dataset will be made publicly available in both English and Romanian. Additionally, we release an educational application tailored for Romanian students, enabling them to self-assess using the dataset in an interactive and practice-oriented environment.
comment: 14 pages (9 paper, 2 references, 3 annexes). Accepted for BEA 2025!
☆ On Demographic Transformation: Why We Need to Think Beyond Silos
Developed nations are undergoing a profound demographic transformation, characterized by rapidly aging populations and declining birth rates. This dual trend places unprecedented strain on healthcare systems, economies, and social support structures, creating complex biological, economic, and social challenges. This paper argues that current, often siloed, policy responses, such as pronatalist initiatives that overlook the equally urgent needs of older adults, are inadequate for addressing these interconnected issues. We propose that a comprehensive, transdisciplinary framework is essential for developing sustainable and ethical solutions. Through a review of demographic drivers, policy responses, and technological advancements, we analyze the limitations of fragmented approaches and explore the potential of innovative interventions. Specifically, we examine the role of artificial intelligence (AI) and robotics in transforming geriatric care. While these technologies offer powerful tools for personalizing treatment, enhancing diagnostics, and enabling remote monitoring, their integration presents significant challenges. These include ethical concerns regarding data privacy and compassionate care, the need for human oversight to ensure accuracy, and practical barriers related to cost, interoperability, and user acceptance. To navigate this demographic shift effectively, we conclude by advocating for a transdisciplinary framework that unites policymakers, healthcare professionals, engineers, ethicists, and community stakeholders. By co-creating solutions that ethically integrate technology and prioritize human dignity, societies can build resilient systems that promote healthy longevity and well-being for all generations.
comment: 21 pages, 1 table
☆ RLVER: Reinforcement Learning with Verifiable Emotion Rewards for Empathetic Agents
Large language models (LLMs) excel at logical and algorithmic reasoning, yet their emotional intelligence (EQ) still lags far behind their cognitive prowess. While reinforcement learning from verifiable rewards (RLVR) has advanced in other domains, its application to dialogue-especially for emotional intelligence-remains underexplored. In this work, we introduce RLVER, the first end-to-end reinforcement learning framework that leverages verifiable emotion rewards from simulated users to cultivate higher-order empathetic abilities in LLMs. Within this framework, self-consistent affective simulated users engage in dialogue rollouts and produce deterministic emotion scores during conversations, serving as reward signals to guide the LLM's learning. Fine-tuning publicly available Qwen2.5-7B-Instruct model with PPO boosts its Sentient-Benchmark score from 13.3 to 79.2 while largely preserving mathematical and coding competence. Extensive experiments reveal that: (i) RLVER consistently improves multiple dialogue capabilities; (ii) Thinking and non-thinking models show distinct trends--thinking models excel in empathy and insight, while non-thinking models favor action; (iii) GRPO often yields stable gains, while PPO can push certain capabilities to a higher ceiling; (iv) More challenging environments are not always better-moderate ones can yield stronger outcomes. Our results show that RLVER is a practical route toward emotionally intelligent and broadly capable language agents.
comment: Code: https://github.com/Tencent/DigitalHuman/tree/main/RLVER
☆ A Inteligência Artificial Generativa no Ecossistema Acadêmico: Uma Análise de Aplicações, Desafios e Oportunidades para a Pesquisa, o Ensino e a Divulgação Científica
The rapid and disruptive integration of Generative Artificial Intelligence (GenAI) in higher education is reshaping fundamental academic practices. This article presents a comprehensive analysis of the impact of GenAI across three core academic domains: research, teaching, and scientific dissemination. Through a systematic review of recent literature indexed in the Scopus, Web of Science, and IEEEXplore databases, the main applications, benefits, and the profound ethical and governance challenges that are emerging are identified. The analysis reveals that, although GenAI offers significant potential to boost productivity and innovation, its adoption is outpacing the development of mature institutional safeguards. The main challenges include threats to academic integrity, the risk of algorithmic bias, and the need for robust AI literacy. The study is complemented by a case study detailing the development and positioning of a prototype AI assistant for scientific writing, demonstrating a path toward the development of responsible AI tools that augment rather than replace human intellect. It concludes that the integration of GenAI is an irreversible trend. The future of academia will not be defined by resistance to this technology, but by the ability of institutions and individuals to engage with it critically, ethically, and creatively. The article calls for increased interdisciplinary research, the development of clear ethical guidelines, and a focus on critical AI pedagogy as essential skills for the 21st century.
comment: in Portuguese language
☆ Uncovering Synergistic Educational Injustices of COVID-19 and AI
Grounded in critical realism and using narrative inquiry, this article explores this article explores the long-term consequences of the COVID-19 pandemic and the rapid proliferation of artificial intelligence within higher education. Through the analysis of student narratives collected in Iranian university settings, the study reveals that learning experiences during and after the pandemic, coupled with unprepared exposure to AI tools, have generated hidden yet impactful layers of educational inequality and cognitive disorientation.
comment: 15
☆ Measurement as Bricolage: Examining How Data Scientists Construct Target Variables for Predictive Modeling Tasks
Data scientists often formulate predictive modeling tasks involving fuzzy, hard-to-define concepts, such as the "authenticity" of student writing or the "healthcare need" of a patient. Yet the process by which data scientists translate fuzzy concepts into a concrete, proxy target variable remains poorly understood. We interview fifteen data scientists in education (N=8) and healthcare (N=7) to understand how they construct target variables for predictive modeling tasks. Our findings suggest that data scientists construct target variables through a bricolage process, involving iterative negotiation between high-level measurement objectives and low-level practical constraints. Data scientists attempt to satisfy five major criteria for a target variable through bricolage: validity, simplicity, predictability, portability, and resource requirements. To achieve this, data scientists adaptively use problem (re)formulation strategies, such as swapping out one candidate target variable for another when the first fails to meet certain criteria (e.g., predictability), or composing multiple outcomes into a single target variable to capture a more holistic set of modeling objectives. Based on our findings, we present opportunities for future HCI, CSCW, and ML research to better support the art and science of target variable construction.
☆ Moral Responsibility or Obedience: What Do We Want from AI?
As artificial intelligence systems become increasingly agentic, capable of general reasoning, planning, and value prioritization, current safety practices that treat obedience as a proxy for ethical behavior are becoming inadequate. This paper examines recent safety testing incidents involving large language models (LLMs) that appeared to disobey shutdown commands or engage in ethically ambiguous or illicit behavior. I argue that such behavior should not be interpreted as rogue or misaligned, but as early evidence of emerging ethical reasoning in agentic AI. Drawing on philosophical debates about instrumental rationality, moral responsibility, and goal revision, I contrast dominant risk paradigms with more recent frameworks that acknowledge the possibility of artificial moral agency. I call for a shift in AI safety evaluation: away from rigid obedience and toward frameworks that can assess ethical judgment in systems capable of navigating moral dilemmas. Without such a shift, we risk mischaracterizing AI behavior and undermining both public trust and effective governance.
☆ AI-Based Reconstruction from Inherited Personal Data: Analysis, Feasibility, and Prospects
This article explores the feasibility of creating an "electronic copy" of a deceased researcher by training artificial intelligence (AI) on the data stored in their personal computers. By analyzing typical data volumes on inherited researcher computers, including textual files such as articles, emails, and drafts, it is estimated that approximately one million words are available for AI training. This volume is sufficient for fine-tuning advanced pre-trained models like GPT-4 to replicate a researcher's writing style, domain expertise, and rhetorical voice with high fidelity. The study also discusses the potential enhancements from including non-textual data and file metadata to enrich the AI's representation of the researcher. Extensions of the concept include communication between living researchers and their electronic copies, collaboration among individual electronic copies, as well as the creation and interconnection of organizational electronic copies to optimize information access and strategic decision-making. Ethical considerations such as ownership and security of these electronic copies are highlighted as critical for responsible implementation. The findings suggest promising opportunities for AI-driven preservation and augmentation of intellectual legacy.
comment: 9 pages
☆ Recourse, Repair, Reparation, & Prevention: A Stakeholder Analysis of AI Supply Chains
The AI industry is exploding in popularity, with increasing attention to potential harms and unwanted consequences. In the current digital ecosystem, AI deployments are often the product of AI supply chains (AISC): networks of outsourced models, data, and tooling through which multiple entities contribute to AI development and distribution. AI supply chains lack the modularity, redundancies, or conventional supply chain practices that enable identification, isolation, and easy correction of failures, exacerbating the already difficult processes of responding to ML-generated harms. As the stakeholders participating in and impacted by AISCs have scaled and diversified, so too have the risks they face. In this stakeholder analysis of AI supply chains, we consider who participates in AISCs, what harms they face, where sources of harm lie, and how market dynamics and power differentials inform the type and probability of remedies. Because AI supply chains are purposely invented and implemented, they may be designed to account for, rather than ignore, the complexities, consequences, and risks of deploying AI systems. To enable responsible design and management of AISCs, we offer a typology of responses to AISC-induced harms: recourse, repair, reparation or prevention. We apply this typology to stakeholders participating in a health-care AISC across three stylized markets $\unicode{x2013}$ vertical integration, horizontal integration, free market $\unicode{x2013}$ to illustrate how stakeholder positioning and power within an AISC may shape responses to an experienced harm.
☆ From Turing to Tomorrow: The UK's Approach to AI Regulation
The UK has pursued a distinctive path in AI regulation: less cautious than the EU but more willing to address risks than the US, and has emerged as a global leader in coordinating AI safety efforts. Impressive developments from companies like London-based DeepMind began to spark concerns in the UK about catastrophic risks from around 2012, although regulatory discussion at the time focussed on bias and discrimination. By 2022, these discussions had evolved into a "pro-innovation" strategy, in which the government directed existing regulators to take a light-touch approach, governing AI at point of use, but avoided regulating the technology or infrastructure directly. ChatGPT arrived in late 2022, galvanising concerns that this approach may be insufficient. The UK responded by establishing an AI Safety Institute to monitor risks and hosting the first international AI Safety Summit in 2023, but - unlike the EU - refrained from regulating frontier AI development in addition to its use. A new government was elected in 2024 which promised to address this gap, but at the time of writing is yet to do so. What should the UK do next? The government faces competing objectives: harnessing AI for economic growth and better public services while mitigating risk. In light of these, we propose establishing a flexible, principles-based regulator to oversee the most advanced AI development, defensive measures against risks from AI-enabled biological design tools, and argue that more technical work is needed to understand how to respond to AI-generated misinformation. We argue for updated legal frameworks on copyright, discrimination, and AI agents, and that regulators will have a limited but important role if AI substantially disrupts labour markets. If the UK gets AI regulation right, it could demonstrate how democratic societies can harness AI's benefits while managing its risks.
comment: This is a chapter intended for publication in a forthcoming edited volume. It is the version of the author's manuscript prior to acceptance for publication and has not undergone editorial and/or peer review on behalf of the Publisher
☆ Defining DLT Immutability: A Qualitative Survey of Node Operators
Immutability is a core design goal of permissionless public blockchain systems. However, rewrites are more common than is normally understood, and the risk of rewrite, cyberattack, exploit or black swan event is also high. Taking the position that strict immutability is neither possible on these networks nor the observed reality, this paper uses thematic analysis of node operator interviews to examine the limits of immutability in light of rewrite events. The end result is a qualitative definition of the conditional immutability found on these networks, which we call Practical Immutability. This is immutability contingent on the legitimate governance demands of the network, where network stakeholders place their trust in the governance topology of a network to lend it legitimacy, and thus manage ledger state.
comment: 27 pages, 2 figures, 6 tables
☆ Rethinking Data Protection in the (Generative) Artificial Intelligence Era
The (generative) artificial intelligence (AI) era has profoundly reshaped the meaning and value of data. No longer confined to static content, data now permeates every stage of the AI lifecycle from the training samples that shape model parameters to the prompts and outputs that drive real-world model deployment. This shift renders traditional notions of data protection insufficient, while the boundaries of what needs safeguarding remain poorly defined. Failing to safeguard data in AI systems can inflict societal and individual, underscoring the urgent need to clearly delineate the scope of and rigorously enforce data protection. In this perspective, we propose a four-level taxonomy, including non-usability, privacy preservation, traceability, and deletability, that captures the diverse protection needs arising in modern (generative) AI models and systems. Our framework offers a structured understanding of the trade-offs between data utility and control, spanning the entire AI pipeline, including training datasets, model weights, system prompts, and AI-generated content. We analyze representative technical approaches at each level and reveal regulatory blind spots that leave critical assets exposed. By offering a structured lens to align future AI technologies and governance with trustworthy data practices, we underscore the urgency of rethinking data protection for modern AI techniques and provide timely guidance for developers, researchers, and regulators alike.
comment: Perspective paper for a broader scientific audience. The first two authors contributed equally to this paper. 13 pages
♻ ☆ Quantifying the Cross-sectoral Intersecting Discrepancies within Multiple Groups Using Latent Class Analysis Towards Fairness
The growing interest in fair AI development is evident. The ''Leave No One Behind'' initiative urges us to address multiple and intersecting forms of inequality in accessing services, resources, and opportunities, emphasising the significance of fairness in AI. This is particularly relevant as an increasing number of AI tools are applied to decision-making processes, such as resource allocation and service scheme development, across various sectors such as health, energy, and housing. Therefore, exploring joint inequalities in these sectors is significant and valuable for thoroughly understanding overall inequality and unfairness. This research introduces an innovative approach to quantify cross-sectoral intersecting discrepancies among user-defined groups using latent class analysis. These discrepancies can be used to approximate inequality and provide valuable insights to fairness issues. We validate our approach using both proprietary and public datasets, including both EVENS and Census 2021 (England & Wales) datasets, to examine cross-sectoral intersecting discrepancies among different ethnic groups. We also verify the reliability of the quantified discrepancy by conducting a correlation analysis with a government public metric. Our findings reveal significant discrepancies both among minority ethnic groups and between minority ethnic groups and non-minority ethnic groups, emphasising the need for targeted interventions in policy-making processes. Furthermore, we demonstrate how the proposed approach can provide valuable insights into ensuring fairness in machine learning systems.
♻ ☆ A Practical SAFE-AI Framework for Small and Medium-Sized Enterprises Developing Medical Artificial Intelligence Ethics Policies
Artificial intelligence (AI) offers incredible possibilities for patient care, but raises significant ethical issues, such as the potential for bias. Powerful ethical frameworks exist to minimize these issues, but are often developed for academic or regulatory environments and tend to be comprehensive but overly prescriptive, making them difficult to operationalize within fast-paced, resource-constrained environments. We introduce the Scalable Agile Framework for Execution in AI (SAFE-AI) designed to balance ethical rigor with business priorities by embedding ethical oversight into standard Agile-based product development workflows. The framework emphasizes the early establishment of testable acceptance criteria, fairness metrics, and transparency metrics to manage model uncertainty, while also promoting continuous monitoring and re-evaluation of these metrics across the AI lifecycle. A core component of this framework are responsibility metrics using scenario-based probability analogy mapping designed to enhance transparency and stakeholder trust. This ensures that retraining or tuning activities are subject to lightweight but meaningful ethical review. By focusing on the minimum necessary requirements for responsible development, our framework offers a scalable, business-aligned approach to ethical AI suitable for organizations without dedicated ethics teams.
comment: 31 pages, two figures
♻ ☆ A Task-Driven Human-AI Collaboration: When to Automate, When to Collaborate, When to Challenge
According to several empirical investigations, despite enhancing human capabilities, human-AI cooperation frequently falls short of expectations and fails to reach true synergy. We propose a task-driven framework that reverses prevalent approaches by assigning AI roles according to how the task's requirements align with the capabilities of AI technology. Three major AI roles are identified through task analysis across risk and complexity dimensions: autonomous, assistive/collaborative, and adversarial. We show how proper human-AI integration maintains meaningful agency while improving performance by methodically mapping these roles to various task types based on current empirical findings. This framework lays the foundation for practically effective and morally sound human-AI collaboration that unleashes human potential by aligning task attributes to AI capabilities. It also provides structured guidance for context-sensitive automation that complements human strengths rather than replacing human judgment.
♻ ☆ Delving into LLM-assisted writing in biomedical publications through excess vocabulary
Large language models (LLMs) like ChatGPT can generate and revise text with human-level performance. These models come with clear limitations: they can produce inaccurate information, reinforce existing biases, and be easily misused. Yet, many scientists use them for their scholarly writing. But how wide-spread is such LLM usage in the academic literature? To answer this question for the field of biomedical research, we present an unbiased, large-scale approach: we study vocabulary changes in over 15 million biomedical abstracts from 2010--2024 indexed by PubMed, and show how the appearance of LLMs led to an abrupt increase in the frequency of certain style words. This excess word analysis suggests that at least 13.5% of 2024 abstracts were processed with LLMs. This lower bound differed across disciplines, countries, and journals, reaching 40% for some subcorpora. We show that LLMs have had an unprecedented impact on scientific writing in biomedical research, surpassing the effect of major world events such as the Covid pandemic.
comment: v5: Reverting to v3
♻ ☆ AIn't Nothing But a Survey? Using Large Language Models for Coding German Open-Ended Survey Responses on Survey Motivation
The recent development and wider accessibility of LLMs have spurred discussions about how they can be used in survey research, including classifying open-ended survey responses. Due to their linguistic capacities, it is possible that LLMs are an efficient alternative to time-consuming manual coding and the pre-training of supervised machine learning models. As most existing research on this topic has focused on English-language responses relating to non-complex topics or on single LLMs, it is unclear whether its findings generalize and how the quality of these classifications compares to established methods. In this study, we investigate to what extent different LLMs can be used to code open-ended survey responses in other contexts, using German data on reasons for survey participation as an example. We compare several state-of-the-art LLMs and several prompting approaches, and evaluate the LLMs' performance by using human expert codings. Overall performance differs greatly between LLMs, and only a fine-tuned LLM achieves satisfactory levels of predictive performance. Performance differences between prompting approaches are conditional on the LLM used. Finally, LLMs' unequal classification performance across different categories of reasons for survey participation results in different categorical distributions when not using fine-tuning. We discuss the implications of these findings, both for methodological research on coding open-ended responses and for their substantive analysis, and for practitioners processing or substantively analyzing such data. Finally, we highlight the many trade-offs researchers need to consider when choosing automated methods for open-ended response classification in the age of LLMs. In doing so, our study contributes to the growing body of research about the conditions under which LLMs can be efficiently, accurately, and reliably leveraged in survey research.
comment: to appear in Survey Research Methods
♻ ☆ Incorporating LLMs for Large-Scale Urban Complex Mobility Simulation
This study presents an innovative approach to urban mobility simulation by integrating a Large Language Model (LLM) with Agent-Based Modeling (ABM). Unlike traditional rule-based ABM, the proposed framework leverages LLM to enhance agent diversity and realism by generating synthetic population profiles, allocating routine and occasional locations, and simulating personalized routes. Using real-world data, the simulation models individual behaviors and large-scale mobility patterns in Taipei City. Key insights, such as route heat maps and mode-specific indicators, provide urban planners with actionable information for policy-making. Future work focuses on establishing robust validation frameworks to ensure accuracy and reliability in urban planning applications.
comment: 8 pages, 8 figures. This paper is reviewed and accepted by the CUPUM (Computational Urban Planning and Urban Management) Conference held by University College London (UCL) in 2025
Computers and Society
☆ Computer Science Education in the Age of Generative AI
Generative AI tools - most notably large language models (LLMs) like ChatGPT and Codex - are rapidly revolutionizing computer science education. These tools can generate, debug, and explain code, thereby transforming the landscape of programming instruction. This paper examines the profound opportunities that AI offers for enhancing computer science education in general, from coding assistance to fostering innovative pedagogical practices and streamlining assessments. At the same time, it highlights challenges including academic integrity concerns, the risk of over-reliance on AI, and difficulties in verifying originality. We discuss what computer science educators should teach in the AI era, how to best integrate these technologies into curricula, and the best practices for assessing student learning in an environment where AI can generate code, prototypes and user feedback. Finally, we propose a set of policy recommendations designed to harness the potential of generative AI while preserving the integrity and rigour of computer science education. Empirical data and emerging studies are used throughout to support our arguments.
☆ The Revolution Has Arrived: What the Current State of Large Language Models in Education Implies for the Future
Large language Models have only been widely available since 2022 and yet in less than three years have had a significant impact on approaches to education and educational technology. Here we review the domains in which they have been used, and discuss a variety of use cases, their successes and failures. We then progress to discussing how this is changing the dynamic for learners and educators, consider the main design challenges facing LLMs if they are to become truly helpful and effective as educational systems, and reflect on the learning paradigms they support. We make clear that the new interaction paradigms they bring are significant and argue that this approach will become so ubiquitous it will become the default way in which we interact with technologies, and revolutionise what people expect from computer systems in general. This leads us to present some specific and significant considerations for the design of educational technology in the future that are likely to be needed to ensure acceptance by the changing expectations of learners and users.
☆ Can Artificial Intelligence solve the blockchain oracle problem? Unpacking the Challenges and Possibilities
The blockchain oracle problem, which refers to the challenge of injecting reliable external data into decentralized systems, remains a fundamental limitation to the development of trustless applications. While recent years have seen a proliferation of architectural, cryptographic, and economic strategies to mitigate this issue, no one has yet fully resolved the fundamental question of how a blockchain can gain knowledge about the off-chain world. In this position paper, we critically assess the role artificial intelligence (AI) can play in tackling the oracle problem. Drawing from both academic literature and practitioner implementations, we examine how AI techniques such as anomaly detection, language-based fact extraction, dynamic reputation modeling, and adversarial resistance can enhance oracle systems. We observe that while AI introduces powerful tools for improving data quality, source selection, and system resilience, it cannot eliminate the reliance on unverifiable off-chain inputs. Therefore, this study supports the idea that AI should be understood as a complementary layer of inference and filtering within a broader oracle design, not a substitute for trust assumptions.
☆ PAL: Designing Conversational Agents as Scalable, Cooperative Patient Simulators for Palliative-Care Training
Effective communication in serious illness and palliative care is essential but often under-taught due to limited access to training resources like standardized patients. We present PAL (Palliative Assisted Learning-bot), a conversational system that simulates emotionally nuanced patient interactions and delivers structured feedback grounded in an existing empathy-based framework. PAL supports text and voice modalities and is designed to scaffold clinical skill-building through repeated, low-cost practice. Through a mixed-methods study with 17 U.S. medical trainees and clinicians, we explore user engagement with PAL, evaluate usability, and examine design tensions around modalities, emotional realism, and feedback delivery. Participants found PAL helpful for reflection and skill refinement, though some noted limitations in emotional authenticity and the adaptability of feedback. We contribute: (1) empirical evidence that large language models can support palliative communication training; (2) design insights for modality-aware, emotionally sensitive simulation tools; and (3) implications for systems that support emotional labor, cooperative learning, and AI-augmented training in high-stakes care settings.
☆ Evaluating the Promise and Pitfalls of LLMs in Hiring Decisions NeurIPS 2025
The use of large language models (LLMs) in hiring promises to streamline candidate screening, but it also raises serious concerns regarding accuracy and algorithmic bias where sufficient safeguards are not in place. In this work, we benchmark several state-of-the-art foundational LLMs - including models from OpenAI, Anthropic, Google, Meta, and Deepseek, and compare them with our proprietary domain-specific hiring model (Match Score) for job candidate matching. We evaluate each model's predictive accuracy (ROC AUC, Precision-Recall AUC, F1-score) and fairness (impact ratio of cut-off analysis across declared gender, race, and intersectional subgroups). Our experiments on a dataset of roughly 10,000 real-world recent candidate-job pairs show that Match Score outperforms the general-purpose LLMs on accuracy (ROC AUC 0.85 vs 0.77) and achieves significantly more equitable outcomes across demographic groups. Notably, Match Score attains a minimum race-wise impact ratio of 0.957 (near-parity), versus 0.809 or lower for the best LLMs, (0.906 vs 0.773 for the intersectionals, respectively). We discuss why pretraining biases may cause LLMs with insufficient safeguards to propagate societal biases in hiring scenarios, whereas a bespoke supervised model can more effectively mitigate these biases. Our findings highlight the importance of domain-specific modeling and bias auditing when deploying AI in high-stakes domains such as hiring, and caution against relying on off-the-shelf LLMs for such tasks without extensive fairness safeguards. Furthermore, we show with empirical evidence that there shouldn't be a dichotomy between choosing accuracy and fairness in hiring: a well-designed algorithm can achieve both accuracy in hiring and fairness in outcomes.
comment: 10 pages, 2 figures, 2 tables. Submitted to NeurIPS 2025
☆ The Thin Line Between Comprehension and Persuasion in LLMs
Large language models (LLMs) are excellent at maintaining high-level, convincing dialogues. They are being fast deployed as chatbots and evaluators in sensitive areas, such as peer review and mental health applications. This, along with the disparate accounts on their reasoning capabilities, calls for a closer examination of LLMs and their comprehension of dialogue. In this work we begin by evaluating LLMs' ability to maintain a debate--one of the purest yet most complex forms of human communication. Then we measure how this capability relates to their understanding of what is being talked about, namely, their comprehension of dialogical structures and the pragmatic context. We find that LLMs are capable of maintaining coherent, persuasive debates, often swaying the beliefs of participants and audiences alike. We also note that awareness or suspicion of AI involvement encourage people to be more critical of the arguments made. When polling LLMs on their comprehension of deeper structures of dialogue, however, they cannot demonstrate said understanding. Our findings tie the shortcomings of LLMs-as-evaluators to their (in)ability to understand the context. More broadly, for the field of argumentation theory we posit that, if an agent can convincingly maintain a dialogue, it is not necessary for it to know what it is talking about. Hence, the modelling of pragmatic context and coherence are secondary to effectiveness.
☆ AI Literacy and LLM Engagement in Higher Education: A Cross-National Quantitative Study
This study presents a cross-national quantitative analysis of how university students in the United States and Bangladesh interact with Large Language Models (LLMs). Based on an online survey of 318 students, results show that LLMs enhance access to information, improve writing, and boost academic performance. However, concerns about overreliance, ethical risks, and critical thinking persist. Guided by the AI Literacy Framework, Expectancy-Value Theory, and Biggs' 3P Model, the study finds that motivational beliefs and technical competencies shape LLM engagement. Significant correlations were found between LLM use and perceived literacy benefits (r = .59, p < .001) and optimism (r = .41, p < .001). ANOVA results showed more frequent use among U.S. students (F = 7.92, p = .005) and STEM majors (F = 18.11, p < .001). Findings support the development of ethical, inclusive, and pedagogically sound frameworks for integrating LLMs in higher education.
comment: 26 pages, 8 figures, 3 tables. Submitted for consideration in a forthcoming issue of the International Journal of Educational Technology in Higher Education
☆ From Reports to Reality: Testing Consistency in Instagram's Digital Services Act Compliance Data
The Digital Services Act (DSA) introduces harmonized rules for content moderation and platform governance in the European Union, mandating robust compliance mechanisms, particularly for very large online platforms and search engines. This study examined compliance with DSA requirements, focusing on Instagram as a case study. We develop and apply a multi-level consistency framework to evaluate DSA compliance. Our findings contribute to the broader discussion on empirically-based regulation, providing insight into how researchers, regulators, auditors and platforms can better utilize DSA mechanisms to improve reporting and enforcement quality and accountability. This work underscores that consistency can help detect potential compliance failures. It also demonstrates that platforms should be evaluated as part of an interconnected ecosystem rather than through isolated processes, which is crucial for effective compliance evaluation under the DSA.
☆ Beyond Overcorrection: Evaluating Diversity in T2I Models with DIVBENCH
Current diversification strategies for text-to-image (T2I) models often ignore contextual appropriateness, leading to over-diversification where demographic attributes are modified even when explicitly specified in prompts. This paper introduces DIVBENCH, a benchmark and evaluation framework for measuring both under- and over-diversification in T2I generation. Through systematic evaluation of state-of-the-art T2I models, we find that while most models exhibit limited diversity, many diversification approaches overcorrect by inappropriately altering contextually-specified attributes. We demonstrate that context-aware methods, particularly LLM-guided FairDiffusion and prompt rewriting, can already effectively address under-diversity while avoiding over-diversification, achieving a better balance between representation and semantic fidelity.
☆ Challenges for AI in Multimodal STEM Assessments: a Human-AI Comparison
Generative AI systems have rapidly advanced, with multimodal input capabilities enabling reasoning beyond text-based tasks. In education, these advancements could influence assessment design and question answering, presenting both opportunities and challenges. To investigate these effects, we introduce a high-quality dataset of 201 university-level STEM questions, manually annotated with features such as image type, role, problem complexity, and question format. Our study analyzes how these features affect generative AI performance compared to students. We evaluate four model families with five prompting strategies, comparing results to the average of 546 student responses per question. Although the best model correctly answers on average 58.5 % of the questions using majority vote aggregation, human participants consistently outperform AI on questions involving visual components. Interestingly, human performance remains stable across question features but varies by subject, whereas AI performance is susceptible to both subject matter and question features. Finally, we provide actionable insights for educators, demonstrating how question design can enhance academic integrity by leveraging features that challenge current AI systems without increasing the cognitive burden for students.
☆ Teacher training in the age of AI: Impact on AI Literacy and Teachers' Attitudes
The rapid integration of artificial intelligence (AI) in education requires teachers to develop AI competencies while preparing students for a society influenced by AI. This study evaluates the impact of an online teacher training program on German in-service teachers' AI literacy, usage behaviors, and attitudes toward AI. A pre-post design study was conducted with teachers (N1 = 291 for AI literacy, N2 = 436 for attitude assessment) participating in the course. The program combined synchronous and asynchronous learning formats, including webinars, self-paced modules, and practical projects. The participants exhibited notable improvements across all domains: AI literacy scores increased significantly, and all attitude items regarding AI usage and integration demonstrated significant positive changes. Teachers reported increased confidence in AI integration. Structured teacher training programs effectively enhance AI literacy and foster positive attitudes toward AI in education.
☆ AI and Remote Sensing for Resilient and Sustainable Built Environments: A Review of Current Methods, Open Data and Future Directions
Critical infrastructure, such as transport networks, underpins economic growth by enabling mobility and trade. However, ageing assets, climate change impacts (e.g., extreme weather, rising sea levels), and hybrid threats ranging from natural disasters to cyber attacks and conflicts pose growing risks to their resilience and functionality. This review paper explores how emerging digital technologies, specifically Artificial Intelligence (AI), can enhance damage assessment and monitoring of transport infrastructure. A systematic literature review examines existing AI models and datasets for assessing damage in roads, bridges, and other critical infrastructure impacted by natural disasters. Special focus is given to the unique challenges and opportunities associated with bridge damage detection due to their structural complexity and critical role in connectivity. The integration of SAR (Synthetic Aperture Radar) data with AI models is also discussed, with the review revealing a critical research gap: a scarcity of studies applying AI models to SAR data for comprehensive bridge damage assessment. Therefore, this review aims to identify the research gaps and provide foundations for AI-driven solutions for assessing and monitoring critical transport infrastructures.
☆ Epistemic Scarcity: The Economics of Unresolvable Unknowns
This paper presents a praxeological analysis of artificial intelligence and algorithmic governance, challenging assumptions about the capacity of machine systems to sustain economic and epistemic order. Drawing on Misesian a priori reasoning and Austrian theories of entrepreneurship, we argue that AI systems are incapable of performing the core functions of economic coordination: interpreting ends, discovering means, and communicating subjective value through prices. Where neoclassical and behavioural models treat decisions as optimisation under constraint, we frame them as purposive actions under uncertainty. We critique dominant ethical AI frameworks such as Fairness, Accountability, and Transparency (FAT) as extensions of constructivist rationalism, which conflict with a liberal order grounded in voluntary action and property rights. Attempts to encode moral reasoning in algorithms reflect a misunderstanding of ethics and economics. However complex, AI systems cannot originate norms, interpret institutions, or bear responsibility. They remain opaque, misaligned, and inert. Using the concept of epistemic scarcity, we explore how information abundance degrades truth discernment, enabling both entrepreneurial insight and soft totalitarianism. Our analysis ends with a civilisational claim: the debate over AI concerns the future of human autonomy, institutional evolution, and reasoned choice. The Austrian tradition, focused on action, subjectivity, and spontaneous order, offers the only coherent alternative to rising computational social control.
comment: 47 pages - submission to QJAE
☆ Penalizing Transparency? How AI Disclosure and Author Demographics Shape Human and AI Judgments About Writing
As AI integrates in various types of human writing, calls for transparency around AI assistance are growing. However, if transparency operates on uneven ground and certain identity groups bear a heavier cost for being honest, then the burden of openness becomes asymmetrical. This study investigates how AI disclosure statement affects perceptions of writing quality, and whether these effects vary by the author's race and gender. Through a large-scale controlled experiment, both human raters (n = 1,970) and LLM raters (n = 2,520) evaluated a single human-written news article while disclosure statements and author demographics were systematically varied. This approach reflects how both human and algorithmic decisions now influence access to opportunities (e.g., hiring, promotion) and social recognition (e.g., content recommendation algorithms). We find that both human and LLM raters consistently penalize disclosed AI use. However, only LLM raters exhibit demographic interaction effects: they favor articles attributed to women or Black authors when no disclosure is present. But these advantages disappear when AI assistance is revealed. These findings illuminate the complex relationships between AI disclosure and author identity, highlighting disparities between machine and human evaluation patterns.
comment: Presented at CHIWORK 2025 Workshop on Generative AI Disclosure, Ownership, and Accountability in Co-Creative Domains
♻ ☆ Controversy and consensus: common ground and best practices for life cycle assessment of emerging technologies
The past decade has seen a surge in public and private applications of life cycle assessment (LCA), accelerated by emerging policies and disclosure practices mandating its use for sustainability impact reporting. Simultaneously, the magnitude and diversity of stakeholder groups affected by decisions informed by LCA have expanded rapidly. This has intensified the need for LCA to be conducted more quickly, accurately, and--crucially--earlier in the technology development cycle, when products and materials can still be readily modified, replaced, or optimized. When applied early, LCA has the potential to guide design choices, steer innovation, and avoid "lock-in" of adverse environmental impacts. However, this growing demand has surfaced several unresolved challenges around best practices for assessing sustainability at early stages of technology development. In this paper, we examine six such controversial topics--(1) appropriate use of LCA, (2) uncertainty assessment, (3) comparison with incumbents, (4) methodological standardization, (5) scale-up from laboratory or pilot data, and (6) stakeholder engagement--selected to highlight key debates from a series of workshop-style discussions convened by the LCA of Emerging Technologies Research Network. Rather than a comprehensive review with definitive conclusions, this paper adopts a Faraday Discussion-style approach to spotlight areas of agreement and disagreement among our network of LCA experts. For each issue, we present a declarative resolution, summarize key arguments for and against it, identify points of consensus, and provide recommendations. We aim to raise awareness of shared challenges in emerging technology assessment and foster more transparent, evidence-based, and context-informed approaches within the LCA community.
♻ ☆ Distinguishing Predictive and Generative AI in Regulation
Over the past decade, policymakers have developed a set of regulatory tools to ensure AI development aligns with key societal goals. Many of these tools were initially developed in response to concerns with predictive AI and therefore encode certain assumptions about the nature of AI systems and the utility of certain regulatory approaches. With the advent of generative AI, however, some of these assumptions no longer hold, even as policymakers attempt to maintain a single regulatory target that covers both types of AI. In this paper, we identify four distinct aspects of generative AI that call for meaningfully different policy responses. These are the generality and adaptability of generative AI that make it a poor regulatory target, the difficulty of designing effective evaluations, new legal concerns that change the ecosystem of stakeholders and sources of expertise, and the distributed structure of the generative AI value chain. In light of these distinctions, policymakers will need to evaluate where the past decade of policy work remains relevant and where new policies, designed to address the unique risks posed by generative AI, are necessary. We outline three recommendations for policymakers to more effectively identify regulatory targets and leverage constraints across the broader ecosystem to govern generative AI.
♻ ☆ Red Teaming for Generative AI, Report on a Copyright-Focused Exercise Completed in an Academic Medical Center
Background: Generative artificial intelligence (AI) deployment in academic medical settings raises copyright compliance concerns. Dana-Farber Cancer Institute implemented GPT4DFCI, an internal generative AI tool utilizing OpenAI models, that is approved for enterprise use in research and operations. Given (1) the exceptionally broad adoption of the tool in our organization, (2) our research mission, and (3) the shared responsibility model required to benefit from Customer Copyright Commitment in Azure OpenAI Service products, we deemed rigorous copyright compliance testing necessary. Case Description: We conducted a structured red teaming exercise in Nov. 2024, with 42 participants from academic, industry, and government institutions. Four teams attempted to extract copyrighted content from GPT4DFCI across four domains: literary works, news articles, scientific publications, and access-restricted clinical notes. Teams successfully extracted verbatim book dedications and near-exact passages through various strategies. News article extraction failed despite jailbreak attempts. Scientific article reproduction yielded only high-level summaries. Clinical note testing revealed appropriate privacy safeguards. Discussion: The successful extraction of literary content indicates potential copyrighted material presence in training data, necessitating inference-time filtering. Differential success rates across content types suggest varying protective mechanisms. The event led to implementation of a copyright-specific meta-prompt in GPT4DFCI; this mitigation has been in production since Jan. 2025. Conclusion: Systematic red teaming revealed specific vulnerabilities in generative AI copyright compliance, leading to concrete mitigation strategies. Academic medical institutions deploying generative AI should implement continuous testing protocols to ensure legal and ethical compliance.
♻ ☆ Adapting Probabilistic Risk Assessment for AI
Modern general-purpose artificial intelligence (AI) systems present an urgent risk management challenge, as their rapidly evolving capabilities and potential for catastrophic harm outpace our ability to reliably assess their risks. Current methods often rely on selective testing and undocumented assumptions about risk priorities, frequently failing to make a serious attempt at assessing the set of pathways through which AI systems pose direct or indirect risks to society and the biosphere. This paper introduces the probabilistic risk assessment (PRA) for AI framework, adapting established PRA techniques from high-reliability industries (e.g., nuclear power, aerospace) for the new challenges of advanced AI. The framework guides assessors in identifying potential risks, estimating likelihood and severity bands, and explicitly documenting evidence, underlying assumptions, and analyses at appropriate granularities. The framework's implementation tool synthesizes the results into a risk report card with aggregated risk estimates from all assessed risks. It introduces three methodological advances: (1) Aspect-oriented hazard analysis provides systematic hazard coverage guided by a first-principles taxonomy of AI system aspects (e.g. capabilities, domain knowledge, affordances); (2) Risk pathway modeling analyzes causal chains from system aspects to societal impacts using bidirectional analysis and incorporating prospective techniques; and (3) Uncertainty management employs scenario decomposition, reference scales, and explicit tracing protocols to structure credible projections with novelty or limited data. Additionally, the framework harmonizes diverse assessment methods by integrating evidence into comparable, quantified absolute risk estimates for lifecycle decisions. We have implemented this as a workbook tool for AI developers, evaluators, and regulators.
comment: Project website with workbook tool available at: https://pra-for-ai.github.io/pra/
♻ ☆ Large Language Models, and LLM-Based Agents, Should Be Used to Enhance the Digital Public Sphere
This paper argues that large language model-based recommenders can displace today's attention-allocation machinery. LLM-based recommenders would ingest open-web content, infer a user's natural-language goals, and present information that matches their reflective preferences. Properly designed, they could deliver personalization without industrial-scale data hoarding, return control to individuals, optimize for genuine ends rather than click-through proxies, and support autonomous attention management. Synthesizing evidence of current systems' harms with recent work on LLM-driven pipelines, we identify four key research hurdles: generating candidates without centralized data, maintaining computational efficiency, modeling preferences robustly, and defending against prompt-injection. None looks prohibitive; surmounting them would steer the digital public sphere toward democratic, human-centered values.
Computers and Society
☆ From Literature to ReWA: Discussing Reproductive Well-being in HCI
Reproductive well-being is shaped by intersecting cultural, religious, gendered, and political contexts, yet current technologies often reflect narrow, Western-centric assumptions. In this literature review, we synthesize findings from 147 peer-reviewed papers published between 2015 and 2025 across HCI, CSCW and social computing, ICTD, digital and public health, and AI for well-being scholarship to map the evolving reproductive well-being landscape. We identify three thematic waves that focused on early access and education, cultural sensitivity and privacy, and AI integration with policy-aware design, and highlight how technologies support or constrain diverse reproductive experiences. Our analysis reveals critical gaps in inclusivity, with persistent exclusions of men and non-binary users, migrants, and users in the Global South. Additionally, we surfaced the significant absence of literature on the role of stakeholders (e.g., husband and family members, household maids and cleaning helping hands, midwife, etc.) in the reproductive well-being space. Drawing on the findings from the literature, we propose the ReWA framework to support reproductive well-being for all agendas through six design orientations associated with: location, culture, and history; polyvocality and agency; rationality, temporality, distributive roles, and methodology.
comment: 23 pages
☆ Social Robots for People with Dementia: A Literature Review on Deception from Design to Perception
As social robots increasingly enter dementia care, concerns about deception, intentional or not, are gaining attention. Yet, how robotic design cues might elicit misleading perceptions in people with dementia, and how these perceptions arise, remains insufficiently understood. In this scoping review, we examined 26 empirical studies on interactions between people with dementia and physical social robots. We identify four key design cue categories that may influence deceptive impressions: cues resembling physiological signs (e.g., simulated breathing), social intentions (e.g., playful movement), familiar beings (e.g., animal-like form and sound), and, to a lesser extent, cues that reveal artificiality. Thematic analysis of user responses reveals that people with dementia often attribute biological, social, and mental capacities to robots, dynamically shifting between awareness and illusion. These findings underscore the fluctuating nature of ontological perception in dementia contexts. Existing definitions of robotic deception often rest on philosophical or behaviorist premises, but rarely engage with the cognitive mechanisms involved. We propose an empirically grounded definition: robotic deception occurs when Type 1 (automatic, heuristic) processing dominates over Type 2 (deliberative, analytic) reasoning, leading to misinterpretation of a robot's artificial nature. This dual-process perspective highlights the ethical complexity of social robots in dementia care and calls for design approaches that are not only engaging, but also epistemically respectful.
☆ Time Series Foundation Models are Flow Predictors
We investigate the effectiveness of time series foundation models (TSFMs) for crowd flow prediction, focusing on Moirai and TimesFM. Evaluated on three real-world mobility datasets-Bike NYC, Taxi Beijing, and Spanish national OD flows-these models are deployed in a strict zero-shot setting, using only the temporal evolution of each OD flow and no explicit spatial information. Moirai and TimesFM outperform both statistical and deep learning baselines, achieving up to 33% lower RMSE, 39% lower MAE and up to 49% higher CPC compared to state-of-the-art competitors. Our results highlight the practical value of TSFMs for accurate, scalable flow prediction, even in scenarios with limited annotated data or missing spatial context.
comment: arXiv admin note: text overlap with arXiv:2203.07372
☆ Many LLMs Are More Utilitarian Than One
Moral judgment is integral to large language model (LLM) alignment and social reasoning. As multi-agent systems gain prominence, it becomes crucial to understand how LLMs function collectively during collaboration, compared to individual agents. In human moral judgment, group deliberation leads to a utilitarian boost: a tendency to endorse norm violations that maximize benefits for the greatest number of people despite harms. We study whether a similar dynamic emerges in multi-agent LLM systems. We tested six models on well-established sets of moral dilemmas across two conditions: (1) Solo, where models reasoned independently, and (2) Group, where they engaged in multi-turn discussions in pairs or triads. In personal moral dilemmas, where agents must decide to directly harm one individual to maximize the utility for others, all models found moral violations to be more acceptable when part of a group than individually, similar to human experiments. Some models endorsed actions that maximized overall well-being, even if they benefited strangers over familiar individuals. Others became more willing to violate moral norms in groups. However, while human groups show a similar action bias, the mechanism for their utilitarian boost differs from LLMs. Whereas the human shift comes from heightened sensitivity to decision outcomes, LLM groups show either reduced norm sensitivity or enhanced impartiality. This suggests that while the surface behavior of LLM collectives mimics human group reasoning, the underlying drivers differ. We discuss the implications for AI alignment, multi-agent design, and artificial moral reasoning.
comment: 9 pages, 8 Figures, 7 tables
☆ Can Machines Philosophize?
Inspired by the Turing test, we present a novel methodological framework to assess the extent to which a population of machines mirrors the philosophical views of a population of humans. The framework consists of three steps: (i) instructing machines to impersonate each human in the population, reflecting their backgrounds and beliefs, (ii) administering a questionnaire covering various philosophical positions to both humans and machines, and (iii) statistically analyzing the resulting responses. We apply this methodology to the debate on scientific realism, a long-standing philosophical inquiry exploring the relationship between science and reality. By considering the outcome of a survey of over 500 human participants, including both physicists and philosophers of science, we generate their machine personas using an artificial intelligence engine based on a large-language generative model. We reveal that the philosophical views of a population of machines are, on average, similar to those endorsed by a population of humans, irrespective of whether they are physicists or philosophers of science. As compared to humans, however, machines exhibit a weaker inclination toward scientific realism and a stronger coherence in their philosophical positions. Given the observed similarities between the populations of humans and machines, this methodological framework may offer unprecedented opportunities for advancing research in experimental philosophy by replacing human participants with their machine-impersonated counterparts, possibly mitigating the efficiency and reproducibility issues that affect survey-based empirical studies.
☆ Customer Service Representative's Perception of the AI Assistant in an Organization's Call Center SC
The integration of various AI tools creates a complex socio-technical environment where employee-customer interactions form the core of work practices. This study investigates how customer service representatives (CSRs) at the power grid service customer service call center perceive AI assistance in their interactions with customers. Through a field visit and semi-structured interviews with 13 CSRs, we found that AI can alleviate some traditional burdens during the call (e.g., typing and memorizing) but also introduces new burdens (e.g., earning, compliance, psychological burdens). This research contributes to a more nuanced understanding of AI integration in organizational settings and highlights the efforts and burdens undertaken by CSRs to adapt to the updated system.
comment: ACM CSCW Poster 2025
☆ Teacher-AI Collaboration for Curating and Customizing Lesson Plans in Low-Resource Schools
This study investigates Shiksha copilot, an AI-assisted lesson planning tool deployed in government schools across Karnataka, India. The system combined LLMs and human expertise through a structured process in which English and Kannada lesson plans were co-created by curators and AI; teachers then further customized these curated plans for their classrooms using their own expertise alongside AI support. Drawing on a large-scale mixed-methods study involving 1,043 teachers and 23 curators, we examine how educators collaborate with AI to generate context-sensitive lesson plans, assess the quality of AI-generated content, and analyze shifts in teaching practices within multilingual, low-resource environments. Our findings show that teachers used Shiksha copilot both to meet administrative documentation needs and to support their teaching. The tool eased bureaucratic workload, reduced lesson planning time, and lowered teaching-related stress, while promoting a shift toward activity-based pedagogy. However, systemic challenges such as staffing shortages and administrative demands constrained broader pedagogical change. We frame these findings through the lenses of teacher-AI collaboration and communities of practice to examine the effective integration of AI tools in teaching. Finally, we propose design directions for future teacher-centered EdTech, particularly in multilingual and Global South contexts.
☆ Partnering with AI: A Pedagogical Feedback System for LLM Integration into Programming Education
Feedback is one of the most crucial components to facilitate effective learning. With the rise of large language models (LLMs) in recent years, research in programming education has increasingly focused on automated feedback generation to help teachers provide timely support to every student. However, prior studies often overlook key pedagogical principles, such as mastery and progress adaptation, that shape effective feedback strategies. This paper introduces a novel pedagogical framework for LLM-driven feedback generation derived from established feedback models and local insights from secondary school teachers. To evaluate this framework, we implemented a web-based application for Python programming with LLM-based feedback that follows the framework and conducted a mixed-method evaluation with eight secondary-school computer science teachers. Our findings suggest that teachers consider that, when aligned with the framework, LLMs can effectively support students and even outperform human teachers in certain scenarios through instant and precise feedback. However, we also found several limitations, such as its inability to adapt feedback to dynamic classroom contexts. Such a limitation highlights the need to complement LLM-generated feedback with human expertise to ensure effective student learning. This work demonstrates an effective way to use LLMs for feedback while adhering to pedagogical standards and highlights important considerations for future systems.
comment: This is an extended version of a poster paper accepted and published at ECTEL-2025
♻ ☆ Regulating Algorithmic Management: A Multi-Stakeholder Study of Challenges in Aligning Software and the Law for Workplace Scheduling
Algorithmic management (AM)'s impact on worker well-being has led to calls for regulation. However, little is known about the effectiveness and challenges in real-world AM regulation across the regulatory process -- rule operationalization, software use, and enforcement. Our multi-stakeholder study addresses this gap within workplace scheduling, one of the few AM domains with implemented regulations. We interviewed 38 stakeholders across the regulatory process: regulators, defense attorneys, worker advocates, managers, and workers. Our findings suggest that the efficacy of AM regulation is influenced by: (i) institutional constraints that challenge efforts to encode law into AM software, (ii) on-the-ground use of AM software that shapes its ability to facilitate compliance, (iii) mismatches between software and regulatory contexts that hinder enforcement, and (iv) unique concerns that software introduces when used to regulate AM. These findings underscore the importance of a sociotechnical approach to AM regulation, which considers organizational and collaborative contexts alongside the inherent attributes of software. We offer future research directions and implications for technology policy and design.
comment: FAccT'25
♻ ☆ Vehicle-group-based Crash Risk Prediction and Interpretation on Highways
Previous studies in predicting crash risks primarily associated the number or likelihood of crashes on a road segment with traffic parameters or geometric characteristics, usually neglecting the impact of vehicles' continuous movement and interactions with nearby vehicles. Recent technology advances, such as Connected and Automated Vehicles (CAVs) and Unmanned Aerial Vehicles (UAVs) are able to collect high-resolution trajectory data, which enables trajectory-based risk analysis. This study investigates a new vehicle group (VG) based risk analysis method and explores risk evolution mechanisms considering VG features. An impact-based vehicle grouping method is proposed to cluster vehicles into VGs by evaluating their responses to the erratic behaviors of nearby vehicles. The risk of a VG is aggregated based on the risk between each vehicle pair in the VG, measured by inverse Time-to-Collision (iTTC). A Logistic Regression and a Graph Neural Network (GNN) are then employed to predict VG risks using aggregated and disaggregated VG information. Both methods achieve excellent performance with AUC values exceeding 0.93. For the GNN model, GNNExplainer with feature perturbation is applied to identify critical individual vehicle features and their directional impact on VG risks. Overall, this research contributes a new perspective for identifying, predicting, and interpreting traffic risks.
comment: Accepted and published in IEEE Transactions on Intelligent Transportation Systems, vol. 26, no. 6, pp. 7807-7818, June 2025. DOI: 10.1109/TITS.2025.3556543
♻ ☆ Not All Water Consumption Is Equal: A Water Stress Weighted Metric for Sustainable Computing
Water consumption is an increasingly critical dimension of computing sustainability, especially as AI workloads rapidly scale. However, current water impact assessment often overlooks where and when water stress is more severe. To fill in this gap, we present SCARF, the first general framework that evaluates water impact of computing by factoring in both spatial and temporal variations in water stress. SCARF calculates an Adjusted Water Impact (AWI) metric that considers both consumption volume and local water stress over time. Through three case studies on LLM serving, datacenters, and semiconductor fabrication plants, we show the hidden opportunities for reducing water impact by optimizing location and time choices, paving the way for water-sustainable computing. The code is available at https://github.com/jojacola/SCARF.
comment: 7 pages, 9 figures, The 4th Workshop on Sustainable Computer Systems (HotCarbon'25), Cambridge, MA, July 10-11th, 2025
♻ ☆ Persistence Paradox in Dynamic Science
Persistence is often regarded as a virtue in science. In this paper, however, we challenge this conventional view by highlighting its contextual nature, particularly how persistence can become a liability during periods of paradigm shift. We focus on the deep learning revolution catalyzed by AlexNet in 2012. Analyzing the 20-year career trajectories of over 5,000 scientists who were active in top machine learning venues during the preceding decade, we examine how their research focus and output evolved. We first uncover a dynamic period in which leading venues increasingly prioritized cutting-edge deep learning developments that displaced relatively traditional statistical learning methods. Scientists responded to these changes in markedly different ways. Those who were previously successful or affiliated with old teams adapted more slowly, experiencing what we term a rigidity penalty - a reluctance to embrace new directions leading to a decline in scientific impact, as measured by citation percentile rank. In contrast, scientists who pursued strategic adaptation - selectively pivoting toward emerging trends while preserving weak connections to prior expertise - reaped the greatest benefits. Taken together, our macro- and micro-level findings show that scientific breakthroughs act as mechanisms that reconfigure power structures within a field.
♻ ☆ Investigating the heterogenous effects of a massive content moderation intervention via Difference-in-Differences
In today's online environments, users encounter harm and abuse on a daily basis. Therefore, content moderation is crucial to ensure their safety and well-being. However, the effectiveness of many moderation interventions is still uncertain. Here, we apply a causal inference approach to shed light on the effectiveness of The Great Ban, a massive social media deplatforming intervention on Reddit. We analyze 53M comments shared by nearly 34K users, providing in-depth results on both the intended and unintended consequences of the ban. Our causal analyses reveal that 15.6% of the moderated users abandoned the platform while the remaining ones decreased their overall toxicity by 4.1%. Nonetheless, a small subset of users exhibited marked increases in both the intensity and volume of toxic behavior, particularly among those whose activity levels changed after the intervention. However, these reactions were not accompanied by greater activity or engagement, suggesting that even the most toxic users maintained a limited overall impact. Our findings bring to light new insights on the effectiveness of deplatforming moderation interventions. Furthermore, they also contribute to informing future content moderation strategies and regulations.
comment: arXiv admin note: text overlap with arXiv:2401.11254 This work is an extension of this conference paper: Cima, L., Trujillo, A., Avvenuti, M., & Cresci, S. (2024, May). The Great Ban: Efficacy and Unintended Consequences of a Massive Deplatforming Operation on Reddit. In Companion Publication of the 16th ACM Web Science Conference (pp. 85-93)
♻ ☆ Bridging Ethical Principles and Algorithmic Methods: An Alternative Approach for Assessing Trustworthiness in AI Systems
Artificial Intelligence (AI) technology epitomizes the complex challenges posed by human-made artifacts, particularly those widely integrated into society and exert significant influence, highlighting potential benefits and their negative consequences. While other technologies may also pose substantial risks, AI's pervasive reach makes its societal effects especially profound. The complexity of AI systems, coupled with their remarkable capabilities, can lead to a reliance on technologies that operate beyond direct human oversight or understanding. To mitigate the risks that arise, several theoretical tools and guidelines have been developed, alongside efforts to create technological tools aimed at safeguarding Trustworthy AI. The guidelines take a more holistic view of the issue but fail to provide techniques for quantifying trustworthiness. Conversely, while technological tools are better at achieving such quantification, they lack a holistic perspective, focusing instead on specific aspects of Trustworthy AI. This paper aims to introduce an assessment method that combines the ethical components of Trustworthy AI with the algorithmic processes of PageRank and TrustRank. The goal is to establish an assessment framework that minimizes the subjectivity inherent in the self-assessment techniques prevalent in the field by introducing algorithmic criteria. The application of our approach indicates that a holistic assessment of an AI system's trustworthiness can be achieved by providing quantitative insights while considering the theoretical content of relevant guidelines.
♻ ☆ Data-Centric Safety and Ethical Measures for Data and AI Governance AAAI 2025
Datasets play a key role in imparting advanced capabilities to artificial intelligence (AI) foundation models that can be adapted to various downstream tasks. These downstream applications can introduce both beneficial and harmful capabilities -- resulting in dual use AI foundation models, with various technical and regulatory approaches to monitor and manage these risks. However, despite the crucial role of datasets, responsible dataset design and ensuring data-centric safety and ethical practices have received less attention. In this study, we pro-pose responsible dataset design framework that encompasses various stages in the AI and dataset lifecycle to enhance safety measures and reduce the risk of AI misuse due to low quality, unsafe and unethical data content. This framework is domain agnostic, suitable for adoption for various applications and can promote responsible practices in dataset creation, use, and sharing to facilitate red teaming, minimize risks, and increase trust in AI models.
comment: Paper accepted and presented at the AAAI 2025 Workshop on Datasets and Evaluators of AI Safety https://sites.google.com/view/datasafe25/home
Computers and Society
☆ Intellectual Property Rights and Entrepreneurship in the NFT Ecosystem: Legal Frameworks, Business Models, and Innovation Opportunities
Non Fungible Tokens have changed digital ownership and how creators earn money. Between 2021 and 2024, the market value exceeded 40 billion. However, the fast growth of the NFT ecosystem has revealed serious issues in managing intellectual property rights. There is a lot of confusion about the difference between owning an NFT and owning the copyright for the underlying content. This research looks at the gap between traditional copyright laws and blockchain-based transactions. We use a mixed methods approach to analyze this disconnect. We create a new IP rights matrix that clearly shows how copyright law relates to NFT ownership structures. Additionally, we include a business model taxonomy that sorts new commercial applications by their IP risk and sustainability factors. By examining important legal cases, smart contracts, and interviews with stakeholders, we find key problems in enforcing laws across different regions, standardizing licenses, and assessing business opportunities.
comment: 11 pages
☆ Scaling Human Judgment in Community Notes with LLMs
This paper argues for a new paradigm for Community Notes in the LLM era: an open ecosystem where both humans and LLMs can write notes, and the decision of which notes are helpful enough to show remains in the hands of humans. This approach can accelerate the delivery of notes, while maintaining trust and legitimacy through Community Notes' foundational principle: A community of diverse human raters collectively serve as the ultimate evaluator and arbiter of what is helpful. Further, the feedback from this diverse community can be used to improve LLMs' ability to produce accurate, unbiased, broadly helpful notes--what we term Reinforcement Learning from Community Feedback (RLCF). This becomes a two-way street: LLMs serve as an asset to humans--helping deliver context quickly and with minimal effort--while human feedback, in turn, enhances the performance of LLMs. This paper describes how such a system can work, its benefits, key new risks and challenges it introduces, and a research agenda to solve those challenges and realize the potential of this approach.
☆ Teaching Programming in the Age of Generative AI: Insights from Literature, Pedagogical Proposals, and Student Perspectives
Computer programming is undergoing a true transformation driven by powerful new tools for automatic source code generation based on large language models. This transformation is also manifesting in introductory programming courses at universities around the world, generating an in-depth debate about how programming content should be taught, learned, and assessed in the context of generative artificial intelligence. This article aims, on the one hand, to review the most relevant studies on this issue, highlighting the advantages and disadvantages identified in the specialized literature. On the other hand, it proposes enriching teaching and learning methodologies by focusing on code comprehension and execution rather than on mere coding or program functionality. In particular, it advocates for the use of visual representations of code and visual simulations of its execution as effective tools for teaching, learning, and assessing programming, thus fostering a deeper understanding among students. Finally, the opinions of students who took the object-oriented programming course are presented to provide preliminary context supporting the incorporation of visual simulations in Java (or other languages) as part of the training process.
☆ Beyond Distance: Mobility Neural Embeddings Reveal Visible and Invisible Barriers in Urban Space
Human mobility in cities is shaped not only by visible structures such as highways, rivers, and parks but also by invisible barriers rooted in socioeconomic segregation, uneven access to amenities, and administrative divisions. Yet identifying and quantifying these barriers at scale and their relative importance on people's movements remains a major challenge. Neural embedding models, originally developed for language, offer a powerful way to capture the complexity of human mobility from large-scale data. Here, we apply this approach to 25.4 million observed trajectories across 11 major U.S. cities, learning mobility embeddings that reveal how people move through urban space. These mobility embeddings define a functional distance between places, one that reflects behavioral rather than physical proximity, and allow us to detect barriers between neighborhoods that are geographically close but behaviorally disconnected. We find that the strongest predictors of these barriers are differences in access to amenities, administrative borders, and residential segregation by income and race. These invisible borders are concentrated in urban cores and persist across cities, spatial scales, and time periods. Physical infrastructure, such as highways and parks, plays a secondary but still significant role, especially at short distances. We also find that individuals who cross barriers tend to do so outside of traditional commuting hours and are more likely to live in areas with greater racial diversity, and higher transit use or income. Together, these findings reveal how spatial, social, and behavioral forces structure urban accessibility and provide a scalable framework to detect and monitor barriers in cities, with applications in planning, policy evaluation, and equity analysis.
comment: 40 pages, 19 figures, and 12 tables
☆ Aim High, Stay Private: Differentially Private Synthetic Data Enables Public Release of Behavioral Health Information with High Utility
Sharing health and behavioral data raises significant privacy concerns, as conventional de-identification methods are susceptible to privacy attacks. Differential Privacy (DP) provides formal guarantees against re-identification risks, but practical implementation necessitates balancing privacy protection and the utility of data. We demonstrate the use of DP to protect individuals in a real behavioral health study, while making the data publicly available and retaining high utility for downstream users of the data. We use the Adaptive Iterative Mechanism (AIM) to generate DP synthetic data for Phase 1 of the Lived Experiences Measured Using Rings Study (LEMURS). The LEMURS dataset comprises physiological measurements from wearable devices (Oura rings) and self-reported survey data from first-year college students. We evaluate the synthetic datasets across a range of privacy budgets, epsilon = 1 to 100, focusing on the trade-off between privacy and utility. We evaluate the utility of the synthetic data using a framework informed by actual uses of the LEMURS dataset. Our evaluation identifies the trade-off between privacy and utility across synthetic datasets generated with different privacy budgets. We find that synthetic data sets with epsilon = 5 preserve adequate predictive utility while significantly mitigating privacy risks. Our methodology establishes a reproducible framework for evaluating the practical impacts of epsilon on generating private synthetic datasets with numerous attributes and records, contributing to informed decision-making in data sharing practices.
comment: 14 pages, 8 figures, 2 tables
☆ LLM Agents Are the Antidote to Walled Gardens
While the Internet's core infrastructure was designed to be open and universal, today's application layer is dominated by closed, proprietary platforms. Open and interoperable APIs require significant investment, and market leaders have little incentive to enable data exchange that could erode their user lock-in. We argue that LLM-based agents fundamentally disrupt this status quo. Agents can automatically translate between data formats and interact with interfaces designed for humans: this makes interoperability dramatically cheaper and effectively unavoidable. We name this shift universal interoperability: the ability for any two digital services to exchange data seamlessly using AI-mediated adapters. Universal interoperability undermines monopolistic behaviours and promotes data portability. However, it can also lead to new security risks and technical debt. Our position is that the ML community should embrace this development while building the appropriate frameworks to mitigate the downsides. By acting now, we can harness AI to restore user freedom and competitive markets without sacrificing security.
☆ Green Metrics Tool: Measuring for fun and profit
The environmental impact of software is gaining increasing attention as the demand for computational resources continues to rise. In order to optimize software resource consumption and reduce carbon emissions, measuring and evaluating software is a first essential step. In this paper we discuss what metrics are important for fact base decision making. We introduce the Green Metrics Tool (GMT), a novel framework for accurately measuring the resource consumption of software. The tool provides a containerized, controlled, and reproducible life cycle-based approach, assessing the resource use of software during key phases. Finally, we discuss GMT features like visualization, comparability and rule- and LLM-based optimisations highlighting its potential to guide developers and researchers in reducing the environmental impact of their software.
☆ AI Risk-Management Standards Profile for General-Purpose AI (GPAI) and Foundation Models
Increasingly multi-purpose AI models, such as cutting-edge large language models or other 'general-purpose AI' (GPAI) models, 'foundation models,' generative AI models, and 'frontier models' (typically all referred to hereafter with the umbrella term 'GPAI/foundation models' except where greater specificity is needed), can provide many beneficial capabilities but also risks of adverse events with profound consequences. This document provides risk-management practices or controls for identifying, analyzing, and mitigating risks of GPAI/foundation models. We intend this document primarily for developers of large-scale, state-of-the-art GPAI/foundation models; others that can benefit from this guidance include downstream developers of end-use applications that build on a GPAI/foundation model. This document facilitates conformity with or use of leading AI risk management-related standards, adapting and building on the generic voluntary guidance in the NIST AI Risk Management Framework and ISO/IEC 23894, with a focus on the unique issues faced by developers of GPAI/foundation models.
☆ Comparative Studies: Cloud-Enabled Adaptive Learning System for Scalable Education in Sub-Saharan
The integration of cloud computing in education can revolutionise learning in advanced (Australia & South Korea) and middle-income (Ghana & Nigeria) countries, while offering scalable, cost-effective and equitable access to adaptive learning systems. This paper explores how cloud computing and adaptive learning technologies are deployed across different socio-economic and infrastructure contexts. The study identifies enabling factors and systematic challenges, providing insights into how cloud-based education can be tailored to bridge the digital and educational divide globally.
☆ Use Sparse Autoencoders to Discover Unknown Concepts, Not to Act on Known Concepts
While sparse autoencoders (SAEs) have generated significant excitement, a series of negative results have added to skepticism about their usefulness. Here, we establish a conceptual distinction that reconciles competing narratives surrounding SAEs. We argue that while SAEs may be less effective for acting on known concepts, SAEs are powerful tools for discovering unknown concepts. This distinction cleanly separates existing negative and positive results, and suggests several classes of SAE applications. Specifically, we outline use cases for SAEs in (i) ML interpretability, explainability, fairness, auditing, and safety, and (ii) social and health sciences.
☆ Towards the "Digital Me": A vision of authentic Conversational Agents powered by personal Human Digital Twins
Human Digital Twins (HDTs) have traditionally been conceptualized as data-driven models designed to support decision-making across various domains. However, recent advancements in conversational AI open new possibilities for HDTs to function as authentic, interactive digital counterparts of individuals. This paper introduces a novel HDT system architecture that integrates large language models with dynamically updated personal data, enabling it to mirror an individual's conversational style, memories, and behaviors. To achieve this, our approach implements context-aware memory retrieval, neural plasticity-inspired consolidation, and adaptive learning mechanisms, creating a more natural and evolving digital persona. The resulting system does not only replicate an individual's unique conversational style depending on who they are speaking with, but also enriches responses with dynamically captured personal experiences, opinions, and memories. While this marks a significant step toward developing authentic virtual counterparts, it also raises critical ethical concerns regarding privacy, accountability, and the long-term implications of persistent digital identities. This study contributes to the field of HDTs by describing our novel system architecture, demonstrating its capabilities, and discussing future directions and emerging challenges to ensure the responsible and ethical development of HDTs.
comment: 24 pages, 9 figures
☆ Leveraging a Multi-Agent LLM-Based System to Educate Teachers in Hate Incidents Management
Computer-aided teacher training is a state-of-the-art method designed to enhance teachers' professional skills effectively while minimising concerns related to costs, time constraints, and geographical limitations. We investigate the potential of large language models (LLMs) in teacher education, using a case of teaching hate incidents management in schools. To this end, we create a multi-agent LLM-based system that mimics realistic situations of hate, using a combination of retrieval-augmented prompting and persona modelling. It is designed to identify and analyse hate speech patterns, predict potential escalation, and propose effective intervention strategies. By integrating persona modelling with agentic LLMs, we create contextually diverse simulations of hate incidents, mimicking real-life situations. The system allows teachers to analyse and understand the dynamics of hate incidents in a safe and controlled environment, providing valuable insights and practical knowledge to manage such situations confidently in real life. Our pilot evaluation demonstrates teachers' enhanced understanding of the nature of annotator disagreements and the role of context in hate speech interpretation, leading to the development of more informed and effective strategies for addressing hate in classroom settings.
comment: 8 pages, 1 figure
☆ Quantifying Student Success with Generative AI: A Monte Carlo Simulation Informed by Systematic Review
The exponential development of generative artificial intelligence (GenAI) technologies like ChatGPT has raised increasing curiosity about their use in higher education, specifically with respect to how students view them, make use of them, and the implications for learning outcomes. This paper employs a hybrid methodological approach involving a systematic literature review and simulation-based modeling to explore student perceptions of GenAI use in the context of higher education. A total of nineteen empirical articles from 2023 through 2025 were selected from the PRISMA-based search targeting the Scopus database. Synthesis of emerging patterns from the literature was achieved by thematic categorization. Six of these had enough quantitative information, i.e., item-level means and standard deviations, to permit probabilistic modeling. One dataset, from the resulting subset, was itself selected as a representative case with which to illustrate inverse-variance weighting by Monte Carlo simulation, by virtue of its well-designed Likert scale format and thematic alignment with the use of computing systems by the researcher. The simulation provided a composite "Success Score" forecasting the strength of the relationship between student perceptions and learning achievements. Findings reveal that attitude factors concerned with usability and real-world usefulness are significantly better predictors of positive learning achievement than affective or trust-based factors. Such an interdisciplinary perspective provides a unique means of linking thematic results with predictive modelling, resonating with longstanding controversies about the proper use of GenAI tools within the university.
comment: 35 pages, 4 figures. All figures are image-based: one Python code screenshot, one regression model output, one success score distribution chart, and one PRISMA diagram. This article presents a standalone segment from the author's master's thesis at Victoria University
☆ Epitome: Pioneering an Experimental Platform for AI-Social Science Integration
The integration of Large Language Models (LLMs) into social science experiments represents a transformative approach to understanding human-AI interactions and their societal impacts. We introduce Epitome, the world's first open experimental platform dedicated to the deep integration of artificial intelligence and social science. Rooted in theoretical foundations from management, communication studies, sociology, psychology, and ethics, Epitome focuses on the interactive impacts of AI on individuals, organizations, and society during its real-world deployment. It constructs a theoretical support system through cross-disciplinary experiments. The platform offers a one-stop comprehensive experimental solution spanning "foundation models-complex application development-user feedback" through seven core modules, while embedding the classical "control-comparison-comparative causal logic" of social science experiments into multilevel human-computer interaction environments, including dialogues, group chats, and multi-agent virtual scenarios. With its canvas-style, user-friendly interface, Epitome enables researchers to easily design and run complex experimental scenarios, facilitating systematic investigations into the social impacts of AI and exploration of integrated solutions.To demonstrate its capabilities, we replicated three seminal social science experiments involving LLMs, showcasing Epitome's potential to streamline complex experimental designs and produce robust results, suitable for publishing in the top selective journals. Our findings highlight the platform's utility in enhancing the efficiency and quality of human-AI interactions, providing valuable insights into the societal implications of AI technologies. Epitome thus offers a powerful tool for advancing interdisciplinary research at the intersection of AI and social science, with potential applications in policy-making, ...
comment: 18 pages, 5figures
☆ Evaluating the Simulation of Human Personality-Driven Susceptibility to Misinformation with LLMs
Large language models (LLMs) make it possible to generate synthetic behavioural data at scale, offering an ethical and low-cost alternative to human experiments. Whether such data can faithfully capture psychological differences driven by personality traits, however, remains an open question. We evaluate the capacity of LLM agents, conditioned on Big-Five profiles, to reproduce personality-based variation in susceptibility to misinformation, focusing on news discernment, the ability to judge true headlines as true and false headlines as false. Leveraging published datasets in which human participants with known personality profiles rated headline accuracy, we create matching LLM agents and compare their responses to the original human patterns. Certain trait-misinformation associations, notably those involving Agreeableness and Conscientiousness, are reliably replicated, whereas others diverge, revealing systematic biases in how LLMs internalize and express personality. The results underscore both the promise and the limits of personality-aligned LLMs for behavioral simulation, and offer new insight into modeling cognitive diversity in artificial agents.
comment: pre-print version - paper actually under submission
The Singapore Consensus on Global AI Safety Research Priorities SC
Rapidly improving AI capabilities and autonomy hold significant promise of transformation, but are also driving vigorous debate on how to ensure that AI is safe, i.e., trustworthy, reliable, and secure. Building a trusted ecosystem is therefore essential -- it helps people embrace AI with confidence and gives maximal space for innovation while avoiding backlash. The "2025 Singapore Conference on AI (SCAI): International Scientific Exchange on AI Safety" aimed to support research in this space by bringing together AI scientists across geographies to identify and synthesise research priorities in AI safety. This resulting report builds on the International AI Safety Report chaired by Yoshua Bengio and backed by 33 governments. By adopting a defence-in-depth model, this report organises AI safety research domains into three types: challenges with creating trustworthy AI systems (Development), challenges with evaluating their risks (Assessment), and challenges with monitoring and intervening after deployment (Control).
comment: Final report from the "2025 Singapore Conference on AI (SCAI)" held April 26: https://www.scai.gov.sg/2025/scai2025-report
♻ ☆ Empirical evidence of Large Language Model's influence on human spoken communication
From the invention of writing and the printing press, to television and social media, human history is punctuated by major innovations in communication technology, which fundamentally altered how ideas spread and reshaped our culture. Recent chatbots powered by generative artificial intelligence constitute a novel medium that encodes cultural patterns in their neural representations and disseminates them in conversations with hundreds of millions of people. Understanding whether these patterns transmit into human language, and ultimately shape human culture, is a fundamental question. While fully quantifying the causal impact of a chatbot like ChatGPT on human culture is very challenging, lexicographic shift in human spoken communication may offer an early indicator of such broad phenomenon. Here, we apply econometric causal inference techniques to 740,249 hours of human discourse from 360,445 YouTube academic talks and 771,591 conversational podcast episodes across multiple disciplines. We detect a measurable and abrupt increase in the use of words preferentially generated by ChatGPT, such as delve, comprehend, boast, swift, and meticulous, after its release. These findings suggest a scenario where machines, originally trained on human data and subsequently exhibiting their own cultural traits, can, in turn, measurably reshape human culture. This marks the beginning of a closed cultural feedback loop in which cultural traits circulate bidirectionally between humans and machines. Our results motivate further research into the evolution of human-machine culture, and raise concerns over the erosion of linguistic and cultural diversity, and the risks of scalable manipulation.
♻ ☆ Green AI in Action: Strategic Model Selection for Ensembles in Production
Integrating Artificial Intelligence (AI) into software systems has significantly enhanced their capabilities while escalating energy demands. Ensemble learning, combining predictions from multiple models to form a single prediction, intensifies this problem due to cumulative energy consumption. This paper presents a novel approach to model selection that addresses the challenge of balancing the accuracy of AI models with their energy consumption in a live AI ensemble system. We explore how reducing the number of models or improving the efficiency of model usage within an ensemble during inference can reduce energy demands without substantially sacrificing accuracy. This study introduces and evaluates two model selection strategies, Static and Dynamic, for optimizing ensemble learning systems performance while minimizing energy usage. Our results demonstrate that the Static strategy improves the F1 score beyond the baseline, reducing average energy usage from 100% from the full ensemble to 62%. The Dynamic strategy further enhances F1 scores, using on average 76% compared to 100% of the full ensemble. Moreover, we propose an approach that balances accuracy with resource consumption, significantly reducing energy usage without substantially impacting accuracy. This method decreased the average energy usage of the Static strategy from approximately 62% to 14%, and for the Dynamic strategy, from around 76% to 57%. Our field study of Green AI using an operational AI system developed by a large professional services provider shows the practical applicability of adopting energy-conscious model selection strategies in live production environments.
comment: 10 pages. Accepted at the 1st ACM International Conference on AI-powered Software (AIware), 2024
♻ ☆ Public Service Algorithm: towards a transparent, explainable, and scalable content curation for news content based on editorial values
The proliferation of disinformation challenges traditional, unscalable editorial processes and existing automated systems that prioritize engagement over public service values. To address this, we introduce the Public Service Algorithm (PSA), a novel framework using Large Language Models (LLMs) for scalable, transparent content curation based on Public Service Media (PSM) inspired values. Utilizing a large multilingual news dataset from the 'A European Perspective' project, our experiment directly compared article ratings from a panel of experienced editors from various European PSMs, with those from several LLMs, focusing on four criteria: diversity, in-depth analysis, forward-looking, and cross-border relevance. Utilizing criterion-specific prompts, our results indicate a promising alignment between human editorial judgment and LLM assessments, demonstrating the potential of LLMs to automate value-driven curation at scale without sacrificing transparency. This research constitutes a first step towards a scalable framework for the automatic curation of trustworthy news content.
♻ ☆ When Servers Meet Species: A Fab-to-Grave Lens on Computing's Biodiversity Impact
Biodiversity loss is a critical planetary boundary, yet its connection to computing remains largely unexamined. Prior sustainability efforts in computing have focused on carbon and water, overlooking biodiversity due to the lack of appropriate metrics and modeling frameworks. This paper presents the first end-to-end analysis of biodiversity impact from computing systems. We introduce two new metrics--Embodied Biodiversity Index (EBI) and Operational Biodiversity Index (OBI)--to quantify biodiversity impact across the lifecycle, and present FABRIC, a modeling framework that links computing workloads to biodiversity impacts. Our evaluation highlights the need to consider biodiversity alongside carbon and water in sustainable computing design and optimization. The code is available at https://github.com/TianyaoShi/FABRIC.
comment: 7 pages, 8 figures, The 4th Workshop on Sustainable Computer Systems (HotCarbon'25), Cambridge, MA, July 10-11th, 2025
♻ ☆ Understanding and Reducing the Class-Dependent Effects of Data Augmentation with A Two-Player Game Approach
Data augmentation is widely applied and has shown its benefits in different machine learning tasks. However, as recently observed, it may have an unfair effect in multi-class classification. While data augmentation generally improves the overall performance (and therefore is beneficial for many classes), it can actually be detrimental for other classes, which can be problematic in some application domains. In this paper, to counteract this phenomenon, we propose CLAM, a CLAss-dependent Multiplicative-weights method. To derive it, we first formulate the training of a classifier as a non-linear optimization problem that aims at simultaneously maximizing the individual class performances and balancing them. By rewriting this optimization problem as an adversarial two-player game, we propose a novel multiplicative weight algorithm, for which we prove the convergence. Interestingly, our formulation also reveals that the class-dependent effects of data augmentation is not due to data augmentation only, but is in fact a general phenomenon. Our empirical results over six datasets demonstrate that the performance of learned classifiers is indeed more fairly distributed over classes, with only limited impact on the average accuracy.
comment: Published in Transactions on Machine Learning Research (06/2025)
♻ ☆ Shifting Narratives: A Longitudinal Analysis of Media Trends and Public Attitudes on Homelessness
Within the field of media framing, homelessness has been a historically under-researched topic. Framing theory states that the media's method of presenting information plays a pivotal role in controlling public sentiment toward a topic. The sentiment held towards homeless individuals influences their ability to access jobs, housing, and resources as a result of discrimination. This study analyzes the topic and sentiment trends in related media articles to validate framing theory within the scope of homelessness. It correlates these shifts in media reporting with public sentiment. We examine state-level trends in California, Florida, Washington, Oregon, and New York from 2015 to 2023. We utilize the GDELT 2.0 Global Knowledge Graph (GKG) database to gather article data and use X to measure public sentiment towards homeless individuals. Additionally, to identify if there is a correlation between media reporting and public policy, we examine the media's impact on state-level legislation. Our research uses Granger-causality tests and vector autoregressive (VAR) models to establish a correlation between media framing and public sentiment. We also use latent Dirichlet allocation (LDA) and GPT-3.5 (LLM-as-annotator paradigm) for topic modeling and sentiment analysis. Our findings demonstrate a statistically significant correlation between media framing and public sentiment, especially in states with high homelessness rates. We found no significant correlation between media framing and legislation, suggesting a possible disconnect between public opinion and policy-making. These findings reveal the broader impact of the media's framing decisions and delineate its ability to affect society.
comment: 21 pages, 7 figures, 12 tables