Computation and Language
☆ Thinking-while-Generating: Interleaving Textual Reasoning throughout Visual Generation
Ziyu Guo, Renrui Zhang, Hongyu Li, Manyuan Zhang, Xinyan Chen, Sifan Wang, Yan Feng, Peng Pei, Pheng-Ann Heng
Recent advances in visual generation have increasingly explored the integration of reasoning capabilities. They incorporate textual reasoning, i.e., think, either before (as pre-planning) or after (as post-refinement) the generation process, yet they lack on-the-fly multimodal interaction during the generation itself. In this preliminary study, we introduce Thinking-while-Generating (TwiG), the first interleaved framework that enables co-evolving textual reasoning throughout the visual generation process. As visual content is progressively generating, textual reasoning is interleaved to both guide upcoming local regions and reflect on previously synthesized ones. This dynamic interplay produces more context-aware and semantically rich visual outputs. To unveil the potential of this framework, we investigate three candidate strategies, zero-shot prompting, supervised fine-tuning (SFT) on our curated TwiG-50K dataset, and reinforcement learning (RL) via a customized TwiG-GRPO strategy, each offering unique insights into the dynamics of interleaved reasoning. We hope this work inspires further research into interleaving textual reasoning for enhanced visual generation. Code will be released at: https://github.com/ZiyuGuo99/Thinking-while-Generating.
comment: Project Page: https://think-while-gen.github.io Code: https://github.com/ZiyuGuo99/Thinking-while-Generating
☆ Nemotron Elastic: Towards Efficient Many-in-One Reasoning LLMs
Ali Taghibakhshi, Sharath Turuvekere Sreenivas, Saurav Muralidharan, Ruisi Cai, Marcin Chochowski, Ameya Sunil Mahabaleshwarkar, Yoshi Suhara, Oluwatobi Olabiyi, Daniel Korzekwa, Mostofa Patwary, Mohammad Shoeybi, Jan Kautz, Bryan Catanzaro, Ashwath Aithal, Nima Tajbakhsh, Pavlo Molchanov
Training a family of large language models targeting multiple scales and deployment objectives is prohibitively expensive, requiring separate training runs for each different size. Recent work on model compression through pruning and knowledge distillation has reduced this cost; however, this process still incurs hundreds of billions of tokens worth of training cost per compressed model. In this paper, we present Nemotron Elastic, a framework for building reasoning-oriented LLMs, including hybrid Mamba-Attention architectures, that embed multiple nested submodels within a single parent model, each optimized for different deployment configurations and budgets. Each of these submodels shares weights with the parent model and can be extracted zero-shot during deployment without additional training or fine-tuning. We enable this functionality through an end-to-end trained router, tightly coupled to a two-stage training curriculum designed specifically for reasoning models. We additionally introduce group-aware SSM elastification that preserves Mamba's structural constraints, heterogeneous MLP elastification, normalized MSE-based layer importance for improved depth selection, and knowledge distillation enabling simultaneous multi-budget optimization. We apply Nemotron Elastic to the Nemotron Nano V2 12B model, simultaneously producing a 9B and a 6B model using only 110B training tokens; this results in over 360x cost reduction compared to training model families from scratch, and around 7x compared to SoTA compression techniques. Each of the nested models performs on par or better than the SoTA in accuracy. Moreover, unlike other compression methods, the nested capability of our approach allows having a many-in-one reasoning model that has constant deployment memory against the number of models in the family.
☆ Comparison of Text-Based and Image-Based Retrieval in Multimodal Retrieval Augmented Generation Large Language Model Systems
Elias Lumer, Alex Cardenas, Matt Melich, Myles Mason, Sara Dieter, Vamse Kumar Subbiah, Pradeep Honaganahalli Basavaraju, Roberto Hernandez
Recent advancements in Retrieval-Augmented Generation (RAG) have enabled Large Language Models (LLMs) to access multimodal knowledge bases containing both text and visual information such as charts, diagrams, and tables in financial documents. However, existing multimodal RAG systems rely on LLM-based summarization to convert images into text during preprocessing, storing only text representations in vector databases, which causes loss of contextual information and visual details critical for downstream retrieval and question answering. To address this limitation, we present a comprehensive comparative analysis of two retrieval approaches for multimodal RAG systems, including text-based chunk retrieval (where images are summarized into text before embedding) and direct multimodal embedding retrieval (where images are stored natively in the vector space). We evaluate all three approaches across 6 LLM models and a two multi-modal embedding models on a newly created financial earnings call benchmark comprising 40 question-answer pairs, each paired with 2 documents (1 image and 1 text chunk). Experimental results demonstrate that direct multimodal embedding retrieval significantly outperforms LLM-summary-based approaches, achieving absolute improvements of 13% in mean average precision (mAP@5) and 11% in normalized discounted cumulative gain. These gains correspond to relative improvements of 32% in mAP@5 and 20% in nDCG@5, providing stronger evidence of their practical impact. We additionally find that direct multimodal retrieval produces more accurate and factually consistent answers as measured by LLM-as-a-judge pairwise comparisons. We demonstrate that LLM summarization introduces information loss during preprocessing, whereas direct multimodal embeddings preserve visual context for retrieval and inference.
☆ Codec2Vec: Self-Supervised Speech Representation Learning Using Neural Speech Codecs
Recent advancements in neural audio codecs have not only enabled superior audio compression but also enhanced speech synthesis techniques. Researchers are now exploring their potential as universal acoustic feature extractors for a broader range of speech processing tasks. Building on this trend, we introduce Codec2Vec, the first speech representation learning framework that relies exclusively on discrete audio codec units. This approach offers several advantages, including improved data storage and transmission efficiency, faster training, and enhanced data privacy. We explore masked prediction with various training target derivation strategies to thoroughly understand the effectiveness of this framework. Evaluated on the SUPERB benchmark, Codec2Vec achieves competitive performance compared to continuous-input models while reducing storage requirements by up to 16.5x and training time by 2.3x, showcasing its scalability and efficiency.
comment: To be presented at ASRU 2025
☆ SurvAgent: Hierarchical CoT-Enhanced Case Banking and Dichotomy-Based Multi-Agent System for Multimodal Survival Prediction
Guolin Huang, Wenting Chen, Jiaqi Yang, Xinheng Lyu, Xiaoling Luo, Sen Yang, Xiaohan Xing, Linlin Shen
Survival analysis is critical for cancer prognosis and treatment planning, yet existing methods lack the transparency essential for clinical adoption. While recent pathology agents have demonstrated explainability in diagnostic tasks, they face three limitations for survival prediction: inability to integrate multimodal data, ineffective region-of-interest exploration, and failure to leverage experiential learning from historical cases. We introduce SurvAgent, the first hierarchical chain-of-thought (CoT)-enhanced multi-agent system for multimodal survival prediction. SurvAgent consists of two stages: (1) WSI-Gene CoT-Enhanced Case Bank Construction employs hierarchical analysis through Low-Magnification Screening, Cross-Modal Similarity-Aware Patch Mining, and Confidence-Aware Patch Mining for pathology images, while Gene-Stratified analysis processes six functional gene categories. Both generate structured reports with CoT reasoning, storing complete analytical processes for experiential learning. (2) Dichotomy-Based Multi-Expert Agent Inference retrieves similar cases via RAG and integrates multimodal reports with expert predictions through progressive interval refinement. Extensive experiments on five TCGA cohorts demonstrate SurvAgent's superority over conventional methods, proprietary MLLMs, and medical agents, establishing a new paradigm for explainable AI-driven survival prediction in precision oncology.
comment: 20 pages
☆ TimeViper: A Hybrid Mamba-Transformer Vision-Language Model for Efficient Long Video Understanding
We introduce TimeViper, a hybrid vision-language model designed to tackle challenges of long video understanding. Processing long videos demands both an efficient model architecture and an effective mechanism for handling extended temporal contexts. To this end, TimeViper adopts a hybrid Mamba-Transformer backbone that combines the efficiency of state-space models with the expressivity of attention mechanisms. Through this hybrid design, we reveal the vision-to-text information aggregation phenomenon, where information progressively flows from vision tokens to text tokens across increasing LLM depth, resulting in severe vision token redundancy. Motivated by this observation, we propose TransV, a token information transfer module that transfers and compresses vision tokens into instruction tokens while maintaining multimodal understanding capabilities. This design enables TimeViper to process hour-long videos exceeding 10,000 frames. Extensive experiments across multiple benchmarks demonstrate that TimeViper competes with state-of-the-art models while extending frame numbers. We further analyze attention behaviors of both Mamba and Transformer layers, offering new insights into hybrid model interpretability. This work represents an initial step towards developing, interpreting, and compressing hybrid Mamba-Transformer architectures.
comment: Project page: https://xuboshen.github.io/TimeViper
☆ D-GARA: A Dynamic Benchmarking Framework for GUI Agent Robustness in Real-World Anomalies AAAI 2026
Developing intelligent agents capable of operating a wide range of Graphical User Interfaces (GUIs) with human-level proficiency is a key milestone on the path toward Artificial General Intelligence. While most existing datasets and benchmarks for training and evaluating GUI agents are static and idealized, failing to reflect the complexity and unpredictability of real-world environments, particularly the presence of anomalies. To bridge this research gap, we propose D-GARA, a dynamic benchmarking framework, to evaluate Android GUI agent robustness in real-world anomalies. D-GARA introduces a diverse set of real-world anomalies that GUI agents commonly face in practice, including interruptions such as permission dialogs, battery warnings, and update prompts. Based on D-GARA framework, we construct and annotate a benchmark featuring commonly used Android applications with embedded anomalies to support broader community research. Comprehensive experiments and results demonstrate substantial performance degradation in state-of-the-art GUI agents when exposed to anomaly-rich environments, highlighting the need for robustness-aware learning. D-GARA is modular and extensible, supporting the seamless integration of new tasks, anomaly types, and interaction scenarios to meet specific evaluation goals.
comment: Accepted to AAAI 2026
☆ Integrating Symbolic Natural Language Understanding and Language Models for Word Sense Disambiguation
Word sense disambiguation is a fundamental challenge in natural language understanding. Current methods are primarily aimed at coarse-grained representations (e.g. WordNet synsets or FrameNet frames) and require hand-annotated training data to construct. This makes it difficult to automatically disambiguate richer representations (e.g. built on OpenCyc) that are needed for sophisticated inference. We propose a method that uses statistical language models as oracles for disambiguation that does not require any hand-annotation of training data. Instead, the multiple candidate meanings generated by a symbolic NLU system are converted into distinguishable natural language alternatives, which are used to query an LLM to select appropriate interpretations given the linguistic context. The selected meanings are propagated back to the symbolic NLU system. We evaluate our method against human-annotated gold answers to demonstrate its effectiveness.
comment: 16 pages
☆ WER is Unaware: Assessing How ASR Errors Distort Clinical Understanding in Patient Facing Dialogue
Zachary Ellis, Jared Joselowitz, Yash Deo, Yajie He, Anna Kalygina, Aisling Higham, Mana Rahimzadeh, Yan Jia, Ibrahim Habli, Ernest Lim
As Automatic Speech Recognition (ASR) is increasingly deployed in clinical dialogue, standard evaluations still rely heavily on Word Error Rate (WER). This paper challenges that standard, investigating whether WER or other common metrics correlate with the clinical impact of transcription errors. We establish a gold-standard benchmark by having expert clinicians compare ground-truth utterances to their ASR-generated counterparts, labeling the clinical impact of any discrepancies found in two distinct doctor-patient dialogue datasets. Our analysis reveals that WER and a comprehensive suite of existing metrics correlate poorly with the clinician-assigned risk labels (No, Minimal, or Significant Impact). To bridge this evaluation gap, we introduce an LLM-as-a-Judge, programmatically optimized using GEPA to replicate expert clinical assessment. The optimized judge (Gemini-2.5-Pro) achieves human-comparable performance, obtaining 90% accuracy and a strong Cohen's $κ$ of 0.816. This work provides a validated, automated framework for moving ASR evaluation beyond simple textual fidelity to a necessary, scalable assessment of safety in clinical dialogue.
☆ The Oracle and The Prism: A Decoupled and Efficient Framework for Generative Recommendation Explanation
The integration of Large Language Models (LLMs) into explainable recommendation systems often leads to a performance-efficiency trade-off in end-to-end architectures, where joint optimization of ranking and explanation can result in suboptimal compromises. To resolve this, we propose Prism, a novel decoupled framework that rigorously separates the recommendation process into a dedicated ranking stage and an explanation generation stage.
Inspired by knowledge distillation, Prism leverages a powerful teacher LLM (e.g., FLAN-T5-XXL) as an Oracle to produce high-fidelity explanatory knowledge. A compact, fine-tuned student model (e.g., BART-Base), the Prism, then specializes in synthesizing this knowledge into personalized explanations. This decomposition ensures that each component is optimized for its specific objective, eliminating inherent conflicts in coupled models.
Extensive experiments on benchmark datasets demonstrate that our 140M-parameter Prism model significantly outperforms its 11B-parameter teacher in human evaluations of faithfulness and personalization, while achieving a 24 times speedup and a 10 times reduction in memory consumption during inference. These results validate that decoupling, coupled with targeted distillation, provides an efficient and effective pathway to high-quality explainable recommendation.
comment: 11 pages,3 figures
☆ Beyond Tokens in Language Models: Interpreting Activations through Text Genre Chunks
Understanding Large Language Models (LLMs) is key to ensure their safe and beneficial deployment. This task is complicated by the difficulty of interpretability of LLM structures, and the inability to have all their outputs human-evaluated. In this paper, we present the first step towards a predictive framework, where the genre of a text used to prompt an LLM, is predicted based on its activations. Using Mistral-7B and two datasets, we show that genre can be extracted with F1-scores of up to 98% and 71% using scikit-learn classifiers. Across both datasets, results consistently outperform the control task, providing a proof of concept that text genres can be inferred from LLMs with shallow learning models.
comment: 13 pages, 5 figures
☆ TurkColBERT: A Benchmark of Dense and Late-Interaction Models for Turkish Information Retrieval
Özay Ezerceli, Mahmoud El Hussieni, Selva Taş, Reyhan Bayraktar, Fatma Betül Terzioğlu, Yusuf Çelebi, Yağız Asker
Neural information retrieval systems excel in high-resource languages but remain underexplored for morphologically rich, lower-resource languages such as Turkish. Dense bi-encoders currently dominate Turkish IR, yet late-interaction models -- which retain token-level representations for fine-grained matching -- have not been systematically evaluated. We introduce TurkColBERT, the first comprehensive benchmark comparing dense encoders and late-interaction models for Turkish retrieval. Our two-stage adaptation pipeline fine-tunes English and multilingual encoders on Turkish NLI/STS tasks, then converts them into ColBERT-style retrievers using PyLate trained on MS MARCO-TR. We evaluate 10 models across five Turkish BEIR datasets covering scientific, financial, and argumentative domains. Results show strong parameter efficiency: the 1.0M-parameter colbert-hash-nano-tr is 600$\times$ smaller than the 600M turkish-e5-large dense encoder while preserving over 71\% of its average mAP. Late-interaction models that are 3--5$\times$ smaller than dense encoders significantly outperform them; ColmmBERT-base-TR yields up to +13.8\% mAP on domain-specific tasks. For production-readiness, we compare indexing algorithms: MUVERA+Rerank is 3.33$\times$ faster than PLAID and offers +1.7\% relative mAP gain. This enables low-latency retrieval, with ColmmBERT-base-TR achieving 0.54 ms query times under MUVERA. We release all checkpoints, configs, and evaluation scripts. Limitations include reliance on moderately sized datasets ($\leq$50K documents) and translated benchmarks, which may not fully reflect real-world Turkish retrieval conditions; larger-scale MUVERA evaluations remain necessary.
☆ MiMo-Embodied: X-Embodied Foundation Model Technical Report
Xiaoshuai Hao, Lei Zhou, Zhijian Huang, Zhiwen Hou, Yingbo Tang, Lingfeng Zhang, Guang Li, Zheng Lu, Shuhuai Ren, Xianhui Meng, Yuchen Zhang, Jing Wu, Jinghui Lu, Chenxu Dang, Jiayi Guan, Jianhua Wu, Zhiyi Hou, Hanbing Li, Shumeng Xia, Mingliang Zhou, Yinan Zheng, Zihao Yue, Shuhao Gu, Hao Tian, Yuannan Shen, Jianwei Cui, Wen Zhang, Shaoqing Xu, Bing Wang, Haiyang Sun, Zeyu Zhu, Yuncheng Jiang, Zibin Guo, Chuhong Gong, Chaofan Zhang, Wenbo Ding, Kun Ma, Guang Chen, Rui Cai, Diyun Xiang, Heng Qu, Fuli Luo, Hangjun Ye, Long Chen
We open-source MiMo-Embodied, the first cross-embodied foundation model to successfully integrate and achieve state-of-the-art performance in both Autonomous Driving and Embodied AI. MiMo-Embodied sets new records across 17 embodied AI benchmarks in Task Planning, Affordance Prediction and Spatial Understanding, while also excelling in 12 autonomous driving benchmarks across Environmental Perception, Status Prediction, and Driving Planning. Across these tasks, MiMo-Embodied significantly outperforms existing open-source, closed-source, and specialized baselines. Our results indicate that through multi-stage learning, curated data construction, and CoT/RL fine-tuning, these two domains exhibit strong positive transfer and mutually reinforce one another. We provide a detailed analysis of our model design and training methodologies to facilitate further research. Code and models are available at https://github.com/XiaomiMiMo/MiMo-Embodied.
comment: Code: https://github.com/XiaomiMiMo/MiMo-Embodied Model: https://huggingface.co/XiaomiMiMo/MiMo-Embodied-7B
☆ Music Recommendation with Large Language Models: Challenges, Opportunities, and Evaluation
Music Recommender Systems (MRS) have long relied on an information-retrieval framing, where progress is measured mainly through accuracy on retrieval-oriented subtasks. While effective, this reductionist paradigm struggles to address the deeper question of what makes a good recommendation, and attempts to broaden evaluation, through user studies or fairness analyses, have had limited impact. The emergence of Large Language Models (LLMs) disrupts this framework: LLMs are generative rather than ranking-based, making standard accuracy metrics questionable. They also introduce challenges such as hallucinations, knowledge cutoffs, non-determinism, and opaque training data, rendering traditional train/test protocols difficult to interpret. At the same time, LLMs create new opportunities, enabling natural-language interaction and even allowing models to act as evaluators.
This work argues that the shift toward LLM-driven MRS requires rethinking evaluation. We first review how LLMs reshape user modeling, item modeling, and natural-language recommendation in music. We then examine evaluation practices from NLP, highlighting methodologies and open challenges relevant to MRS. Finally, we synthesize insights-focusing on how LLM prompting applies to MRS, to outline a structured set of success and risk dimensions. Our goal is to provide the MRS community with an updated, pedagogical, and cross-disciplinary perspective on evaluation.
comment: Under review with the ACM Transactions on Recommender Systems (TORS)
☆ Arctic-Extract Technical Report
Arctic-Extract is a state-of-the-art model designed for extracting structural data (question answering, entities and tables) from scanned or digital-born business documents. Despite its SoTA capabilities, the model is deployable on resource-constrained hardware, weighting only 6.6 GiB, making it suitable for deployment on devices with limited resources, such as A10 GPUs with 24 GB of memory. Arctic-Extract can process up to 125 A4 pages on those GPUs, making suitable for long document processing. This paper highlights Arctic-Extract's training protocols and evaluation results, demonstrating its strong performance in document understanding.
☆ Anatomy of an Idiom: Tracing Non-Compositionality in Language Models
We investigate the processing of idiomatic expressions in transformer-based language models using a novel set of techniques for circuit discovery and analysis. First discovering circuits via a modified path patching algorithm, we find that idiom processing exhibits distinct computational patterns. We identify and investigate ``Idiom Heads,'' attention heads that frequently activate across different idioms, as well as enhanced attention between idiom tokens due to earlier processing, which we term ``augmented reception.'' We analyze these phenomena and the general features of the discovered circuits as mechanisms by which transformers balance computational efficiency and robustness. Finally, these findings provide insights into how transformers handle non-compositional language and suggest pathways for understanding the processing of more complex grammatical constructions.
☆ ESGBench: A Benchmark for Explainable ESG Question Answering in Corporate Sustainability Reports
We present ESGBench, a benchmark dataset and evaluation framework designed to assess explainable ESG question answering systems using corporate sustainability reports. The benchmark consists of domain-grounded questions across multiple ESG themes, paired with human-curated answers and supporting evidence to enable fine-grained evaluation of model reasoning. We analyze the performance of state-of-the-art LLMs on ESGBench, highlighting key challenges in factual consistency, traceability, and domain alignment. ESGBench aims to accelerate research in transparent and accountable ESG-focused AI systems.
comment: Workshop paper accepted at AI4DF 2025 (part of ACM ICAIF 2025). 3 pages including tables and figures
☆ TOFA: Training-Free One-Shot Federated Adaptation for Vision-Language Models AAAI 2026
Li Zhang, Zhongxuan Han, XiaoHua Feng, Jiaming Zhang, Yuyuan Li, Linbo Jiang, Jianan Lin, Chaochao Chen
Efficient and lightweight adaptation of pre-trained Vision-Language Models (VLMs) to downstream tasks through collaborative interactions between local clients and a central server is a rapidly emerging research topic in federated learning. Existing adaptation algorithms are typically trained iteratively, which incur significant communication costs and increase the susceptibility to potential attacks. Motivated by the one-shot federated training techniques that reduce client-server exchanges to a single round, developing a lightweight one-shot federated VLM adaptation method to alleviate these issues is particularly attractive. However, current one-shot approaches face certain challenges in adapting VLMs within federated settings: (1) insufficient exploitation of the rich multimodal information inherent in VLMs; (2) lack of specialized adaptation strategies to systematically handle the severe data heterogeneity; and (3) requiring additional training resource of clients or server. To bridge these gaps, we propose a novel Training-free One-shot Federated Adaptation framework for VLMs, named TOFA. To fully leverage the generalizable multimodal features in pre-trained VLMs, TOFA employs both visual and textual pipelines to extract task-relevant representations. In the visual pipeline, a hierarchical Bayesian model learns personalized, class-specific prototype distributions. For the textual pipeline, TOFA evaluates and globally aligns the generated local text prompts for robustness. An adaptive weight calibration mechanism is also introduced to combine predictions from both modalities, balancing personalization and robustness to handle data heterogeneity. Our method is training-free, not relying on additional training resources on either the client or server side. Extensive experiments across 9 datasets in various federated settings demonstrate the effectiveness of the proposed TOFA method.
comment: Accepted by AAAI 2026
☆ Classification of worldwide news articles by perceived quality, 2018-2024
This study explored whether supervised machine learning and deep learning models can effectively distinguish perceived lower-quality news articles from perceived higher-quality news articles. 3 machine learning classifiers and 3 deep learning models were assessed using a newly created dataset of 1,412,272 English news articles from the Common Crawl over 2018-2024. Expert consensus ratings on 579 source websites were split at the median, creating perceived low and high-quality classes of about 706,000 articles each, with 194 linguistic features per website-level labelled article. Traditional machine learning classifiers such as the Random Forest demonstrated capable performance (0.7355 accuracy, 0.8131 ROC AUC). For deep learning, ModernBERT-large (256 context length) achieved the best performance (0.8744 accuracy; 0.9593 ROC-AUC; 0.8739 F1), followed by DistilBERT-base (512 context length) at 0.8685 accuracy and 0.9554 ROC-AUC. DistilBERT-base (256 context length) reached 0.8478 accuracy and 0.9407 ROC-AUC, while ModernBERT-base (256 context length) attained 0.8569 accuracy and 0.9470 ROC-AUC. These results suggest that the perceived quality of worldwide news articles can be effectively differentiated by traditional CPU-based machine learning classifiers and deep learning classifiers.
☆ AICC: Parse HTML Finer, Make Models Better -- A 7.3T AI-Ready Corpus Built by a Model-Based HTML Parser
Ren Ma, Jiantao Qiu, Chao Xu, Pei Chu, Kaiwen Liu, Pengli Ren, Yuan Qu, Jiahui Peng, Linfeng Hou, Mengjie Liu, Lindong Lu, Wenchang Ning, Jia Yu, Rui Min, Jin Shi, Haojiong Chen, Peng Zhang, Wenjian Zhang, Qian Jiang, Zengjie Hu, Guoqiang Yang, Zhenxiang Li, Fukai Shang, Zhongying Tu, Wentao Zhang, Dahua Lin, Conghui He
While web data quality is crucial for large language models, most curation efforts focus on filtering and deduplication,treating HTML-to-text extraction as a fixed pre-processing step. Existing web corpora rely on heuristic-based extractors like Trafilatura, which struggle to preserve document structure and frequently corrupt structured elements such as formulas, codes, and tables. We hypothesize that improving extraction quality can be as impactful as aggressive filtering strategies for downstream performance. We introduce MinerU-HTML, a novel extraction pipeline that reformulates content extraction as a sequence labeling problem solved by a 0.6B-parameter language model. Unlike text-density heuristics, MinerU-HTML leverages semantic understanding and employs a two-stage formatting pipeline that explicitly categorizes semantic elements before converting to Markdown. Crucially, its model-based approach is inherently scalable, whereas heuristic methods offer limited improvement pathways. On MainWebBench, our benchmark of 7,887 annotated web pages, MinerU-HTML achieves 81.8\% ROUGE-N F1 compared to Trafilatura's 63.6\%, with exceptional structured element preservation (90.9\% for code blocks, 94.0\% for formulas). Using MinerU-HTML, we construct AICC (AI-ready Common Crawl), a 7.3-trillion token multilingual corpus from two Common Crawl snapshots. In controlled pretraining experiments where AICC and Trafilatura-extracted TfCC undergo identical filtering, models trained on AICC (62B tokens) achieve 50.8\% average accuracy across 13 benchmarks, outperforming TfCC by 1.08pp-providing direct evidence that extraction quality significantly impacts model capabilities. AICC also surpasses RefinedWeb and FineWeb on key benchmarks. We publicly release MainWebBench, MinerU-HTML, and AICC, demonstrating that HTML extraction is a critical, often underestimated component of web corpus construction.
☆ Learning from Sufficient Rationales: Analysing the Relationship Between Explanation Faithfulness and Token-level Regularisation Strategies AACL 2025
Human explanations of natural language, rationales, form a tool to assess whether models learn a label for the right reasons or rely on dataset-specific shortcuts. Sufficiency is a common metric for estimating the informativeness of rationales, but it provides limited insight into the effects of rationale information on model performance. We address this limitation by relating sufficiency to two modelling paradigms: the ability of models to identify which tokens are part of the rationale (through token classification) and the ability of improving model performance by incorporating rationales in the input (through attention regularisation). We find that highly informative rationales are not likely to help classify the instance correctly. Sufficiency conversely captures the classification impact of the non-rationalised context, which interferes with rationale information in the same input. We also find that incorporating rationale information in model inputs can boost cross-domain classification, but results are inconsistent per task and model type. Finally, sufficiency and token classification appear to be unrelated. These results exemplify the complexity of rationales, showing that metrics capable of systematically capturing this type of information merit further investigation.
comment: Long paper accepted to the main conference of AACL 2025. Please cite the conference proceedings when available
☆ NLP Datasets for Idiom and Figurative Language Tasks
Idiomatic and figurative language form a large portion of colloquial speech and writing. With social media, this informal language has become more easily observable to people and trainers of large language models (LLMs) alike. While the advantage of large corpora seems like the solution to all machine learning and Natural Language Processing (NLP) problems, idioms and figurative language continue to elude LLMs. Finetuning approaches are proving to be optimal, but better and larger datasets can help narrow this gap even further. The datasets presented in this paper provide one answer, while offering a diverse set of categories on which to build new models and develop new approaches. A selection of recent idiom and figurative language datasets were used to acquire a combined idiom list, which was used to retrieve context sequences from a large corpus. One large-scale dataset of potential idiomatic and figurative language expressions and two additional human-annotated datasets of definite idiomatic and figurative language expressions were created to evaluate the baseline ability of pre-trained language models in handling figurative meaning through idiom recognition (detection) tasks. The resulting datasets were post-processed for model agnostic training compatibility, utilized in training, and evaluated on slot labeling and sequence tagging.
comment: 32 pages, 10 figures
☆ OpenMMReasoner: Pushing the Frontiers for Multimodal Reasoning with an Open and General Recipe
Recent advancements in large reasoning models have fueled growing interest in extending such capabilities to multimodal domains. However, despite notable progress in visual reasoning, the lack of transparent and reproducible data curation and training strategies remains a major barrier to scalable research. In this work, we introduce OpenMMReasoner, a fully transparent two-stage recipe for multimodal reasoning spanning supervised fine-tuning (SFT) and reinforcement learning (RL). In the SFT stage, we construct an 874K-sample cold-start dataset with rigorous step-by-step validation, providing a strong foundation for reasoning capabilities. The subsequent RL stage leverages a 74K-sample dataset across diverse domains to further sharpen and stabilize these abilities, resulting in a more robust and efficient learning process. Extensive evaluations demonstrate that our training recipe not only surpasses strong baselines but also highlights the critical role of data quality and training design in shaping multimodal reasoning performance. Notably, our method achieves a 11.6% improvement over the Qwen2.5-VL-7B-Instruct baseline across nine multimodal reasoning benchmarks, establishing a solid empirical foundation for future large-scale multimodal reasoning research. We open-sourced all our codes, pipeline, and data at https://github.com/EvolvingLMMs-Lab/OpenMMReasoner.
☆ Incorporating Self-Rewriting into Large Language Model Reasoning Reinforcement AAAI 2026
Jiashu Yao, Heyan Huang, Shuang Zeng, Chuwei Luo, WangJie You, Jie Tang, Qingsong Liu, Yuhang Guo, Yangyang Kang
Through reinforcement learning (RL) with outcome correctness rewards, large reasoning models (LRMs) with scaled inference computation have demonstrated substantial success on complex reasoning tasks. However, the one-sided reward, focused solely on final correctness, limits its ability to provide detailed supervision over internal reasoning process. This deficiency leads to suboptimal internal reasoning quality, manifesting as issues like over-thinking, under-thinking, redundant-thinking, and disordered-thinking. Inspired by the recent progress in LRM self-rewarding, we introduce self-rewriting framework, where a model rewrites its own reasoning texts, and subsequently learns from the rewritten reasoning to improve the internal thought process quality. For algorithm design, we propose a selective rewriting approach wherein only "simple" samples, defined by the model's consistent correctness, are rewritten, thereby preserving all original reward signals of GRPO. For practical implementation, we compile rewriting and vanilla generation within one single batch, maintaining the scalability of the RL algorithm and introducing only ~10% overhead. Extensive experiments on diverse tasks with different model sizes validate the effectiveness of self-rewriting. In terms of the accuracy-length tradeoff, the self-rewriting approach achieves improved accuracy (+0.6) with substantially shorter reasoning (-46%) even without explicit instructions in rewriting prompts to reduce reasoning length, outperforming existing strong baselines. In terms of internal reasoning quality, self-rewriting achieves significantly higher scores (+7.2) under the LLM-as-a-judge metric, successfully mitigating internal reasoning flaws.
comment: Accepted to AAAI 2026
☆ SDA: Steering-Driven Distribution Alignment for Open LLMs without Fine-Tuning
With the rapid advancement of large language models (LLMs), their deployment in real-world applications has become increasingly widespread. LLMs are expected to deliver robust performance across diverse tasks, user preferences, and practical scenarios. However, as demands grow, ensuring that LLMs produce responses aligned with human intent remains a foundational challenge. In particular, aligning model behavior effectively and efficiently during inference, without costly retraining or extensive supervision, is both a critical requirement and a non-trivial technical endeavor. To address the challenge, we propose SDA (Steering-Driven Distribution Alignment), a training-free and model-agnostic alignment framework designed for open-source LLMs. SDA dynamically redistributes model output probabilities based on user-defined alignment instructions, enhancing alignment between model behavior and human intents without fine-tuning. The method is lightweight, resource-efficient, and compatible with a wide range of open-source LLMs. It can function independently during inference or be integrated with training-based alignment strategies. Moreover, SDA supports personalized preference alignment, enabling flexible control over the model response behavior. Empirical results demonstrate that SDA consistently improves alignment performance across 8 open-source LLMs with varying scales and diverse origins, evaluated on three key alignment dimensions, helpfulness, harmlessness, and honesty (3H). Specifically, SDA achieves average gains of 64.4% in helpfulness, 30% in honesty and 11.5% in harmlessness across the tested models, indicating its effectiveness and generalization across diverse models and application scenarios.
☆ SeSE: A Structural Information-Guided Uncertainty Quantification Framework for Hallucination Detection in LLMs
Reliable uncertainty quantification (UQ) is essential for deploying large language models (LLMs) in safety-critical scenarios, as it enables them to abstain from responding when uncertain, thereby avoiding hallucinating falsehoods. However, state-of-the-art UQ methods primarily rely on semantic probability distributions or pairwise distances, overlooking latent semantic structural information that could enable more precise uncertainty estimates. This paper presents Semantic Structural Entropy (SeSE), a principled UQ framework that quantifies the inherent semantic uncertainty of LLMs from a structural information perspective for hallucination detection. Specifically, to effectively model semantic spaces, we first develop an adaptively sparsified directed semantic graph construction algorithm that captures directional semantic dependencies while automatically pruning unnecessary connections that introduce negative interference. We then exploit latent semantic structural information through hierarchical abstraction: SeSE is defined as the structural entropy of the optimal semantic encoding tree, formalizing intrinsic uncertainty within semantic spaces after optimal compression. A higher SeSE value corresponds to greater uncertainty, indicating that LLMs are highly likely to generate hallucinations. In addition, to enhance fine-grained UQ in long-form generation -- where existing methods often rely on heuristic sample-and-count techniques -- we extend SeSE to quantify the uncertainty of individual claims by modeling their random semantic interactions, providing theoretically explicable hallucination detection. Extensive experiments across 29 model-dataset combinations show that SeSE significantly outperforms advanced UQ baselines, including strong supervised methods and the recently proposed KLE.
comment: 14 pages of main text and 10 pages of appendices
☆ Can MLLMs Read the Room? A Multimodal Benchmark for Assessing Deception in Multi-Party Social Interactions
Despite their advanced reasoning capabilities, state-of-the-art Multimodal Large Language Models (MLLMs) demonstrably lack a core component of human intelligence: the ability to `read the room' and assess deception in complex social interactions. To rigorously quantify this failure, we introduce a new task, Multimodal Interactive Deception Assessment (MIDA), and present a novel multimodal dataset providing synchronized video and text with verifiable ground-truth labels for every statement. We establish a comprehensive benchmark evaluating 12 state-of-the-art open- and closed-source MLLMs, revealing a significant performance gap: even powerful models like GPT-4o struggle to distinguish truth from falsehood reliably. Our analysis of failure modes indicates that these models fail to effectively ground language in multimodal social cues and lack the ability to model what others know, believe, or intend, highlighting the urgent need for novel approaches to building more perceptive and trustworthy AI systems. To take a step forward, we design a Social Chain-of-Thought (SoCoT) reasoning pipeline and a Dynamic Social Epistemic Memory (DSEM) module. Our framework yields performance improvement on this challenging task, demonstrating a promising new path toward building MLLMs capable of genuine human-like social reasoning.
☆ PSM: Prompt Sensitivity Minimization via LLM-Guided Black-Box Optimization
System prompts are critical for guiding the behavior of Large Language Models (LLMs), yet they often contain proprietary logic or sensitive information, making them a prime target for extraction attacks. Adversarial queries can successfully elicit these hidden instructions, posing significant security and privacy risks. Existing defense mechanisms frequently rely on heuristics, incur substantial computational overhead, or are inapplicable to models accessed via black-box APIs. This paper introduces a novel framework for hardening system prompts through shield appending, a lightweight approach that adds a protective textual layer to the original prompt. Our core contribution is the formalization of prompt hardening as a utility-constrained optimization problem. We leverage an LLM-as-optimizer to search the space of possible SHIELDs, seeking to minimize a leakage metric derived from a suite of adversarial attacks, while simultaneously preserving task utility above a specified threshold, measured by semantic fidelity to baseline outputs. This black-box, optimization-driven methodology is lightweight and practical, requiring only API access to the target and optimizer LLMs. We demonstrate empirically that our optimized SHIELDs significantly reduce prompt leakage against a comprehensive set of extraction attacks, outperforming established baseline defenses without compromising the model's intended functionality. Our work presents a paradigm for developing robust, utility-aware defenses in the escalating landscape of LLM security. The code is made public on the following link: https://github.com/psm-defense/psm
☆ SemanticCite: Citation Verification with AI-Powered Full-Text Analysis and Evidence-Based Reasoning
Effective scientific communication depends on accurate citations that validate sources and guide readers to supporting evidence. Yet academic literature faces mounting challenges: semantic citation errors that misrepresent sources, AI-generated hallucinated references, and traditional citation formats that point to entire papers without indicating which sections substantiate specific claims. We introduce SemanticCite, an AI-powered system that verifies citation accuracy through full-text source analysis while providing rich contextual information via detailed reasoning and relevant text snippets. Our approach combines multiple retrieval methods with a four-class classification system (Supported, Partially Supported, Unsupported, Uncertain) that captures nuanced claim-source relationships and enables appropriate remedial actions for different error types. Our experiments show that fine-tuned lightweight language models achieve performance comparable to large commercial systems with significantly lower computational requirements, making large-scale citation verification practically feasible. The system provides transparent, evidence-based explanations that support user understanding and trust. We contribute a comprehensive dataset of over 1,000 citations with detailed alignments, functional classifications, semantic annotations, and bibliometric metadata across eight disciplines, alongside fine-tuned models and the complete verification framework as open-source software. SemanticCite addresses critical challenges in research integrity through scalable citation verification, streamlined peer review, and quality control for AI-generated content, providing an open-source foundation for maintaining citation accuracy at scale.
comment: 21 pages, 4 figures
☆ TS-PEFT: Token-Selective Parameter-Efficient Fine-Tuning with Learnable Threshold Gating
In the field of large models (LMs) for natural language processing (NLP) and computer vision (CV), Parameter-Efficient Fine-Tuning (PEFT) has emerged as a resource-efficient method that modifies a limited number of parameters while keeping the pretrained weights fixed. This paper investigates the traditional PEFT approach, which applies modifications to all position indices, and questions its necessity. We introduce a new paradigm called Token-Selective PEFT (TS-PEFT), in which a function S selectively applies PEFT modifications to a subset of position indices, potentially enhancing performance on downstream tasks. Our experimental results reveal that the indiscriminate application of PEFT to all indices is not only superfluous, but may also be counterproductive. This study offers a fresh perspective on PEFT, advocating for a more targeted approach to modifications and providing a framework for future research to optimize the fine-tuning process for large models.
comment: 11 pages, 3 figures
☆ ELPO: Ensemble Learning Based Prompt Optimization for Large Language Models
Qing Zhang, Bing Xu, Xudong Zhang, Yifan Shi, Yang Li, Chen Zhang, Yik Chung Wu, Ngai Wong, Yijie Chen, Hong Dai, Xiansen Chen, Mian Zhang
The remarkable performance of Large Language Models (LLMs) highly relies on crafted prompts. However, manual prompt engineering is a laborious process, creating a core bottleneck for practical application of LLMs. This phenomenon has led to the emergence of a new research area known as Automatic Prompt Optimization (APO), which develops rapidly in recent years. Existing APO methods such as those based on evolutionary algorithms or trial-and-error approaches realize an efficient and accurate prompt optimization to some extent. However, those researches focus on a single model or algorithm for the generation strategy and optimization process, which limits their performance when handling complex tasks. To address this, we propose a novel framework called Ensemble Learning based Prompt Optimization (ELPO) to achieve more accurate and robust results. Motivated by the idea of ensemble learning, ELPO conducts voting mechanism and introduces shared generation strategies along with different search methods for searching superior prompts. Moreover, ELPO creatively presents more efficient algorithms for the prompt generation and search process. Experimental results demonstrate that ELPO outperforms state-of-the-art prompt optimization methods across different tasks, e.g., improving F1 score by 7.6 on ArSarcasm dataset.
☆ Early science acceleration experiments with GPT-5
Sébastien Bubeck, Christian Coester, Ronen Eldan, Timothy Gowers, Yin Tat Lee, Alexandru Lupsasca, Mehtaab Sawhney, Robert Scherrer, Mark Sellke, Brian K. Spears, Derya Unutmaz, Kevin Weil, Steven Yin, Nikita Zhivotovskiy
AI models like GPT-5 are an increasingly valuable tool for scientists, but many remain unaware of the capabilities of frontier AI. We present a collection of short case studies in which GPT-5 produced new, concrete steps in ongoing research across mathematics, physics, astronomy, computer science, biology, and materials science. In these examples, the authors highlight how AI accelerated their work, and where it fell short; where expert time was saved, and where human input was still key. We document the interactions of the human authors with GPT-5, as guiding examples of fruitful collaboration with AI. Of note, this paper includes four new results in mathematics (carefully verified by the human authors), underscoring how GPT-5 can help human mathematicians settle previously unsolved problems. These contributions are modest in scope but profound in implication, given the rate at which frontier AI is progressing.
comment: 89 pages
☆ Learning Tractable Distributions Of Language Model Continuations
Controlled language generation conditions text on sequence-level constraints (for example, syntax, style, or safety). These constraints may depend on future tokens, which makes directly conditioning an autoregressive language model (LM) generally intractable. Prior work uses tractable surrogates such as hidden Markov models (HMMs) to approximate the distribution over continuations and adjust the model's next-token logits at decoding time. However, we find that these surrogates are often weakly context aware, which reduces query quality. We propose Learning to Look Ahead (LTLA), a hybrid approach that pairs the same base language model for rich prefix encoding with a fixed tractable surrogate model that computes exact continuation probabilities. Two efficiency pitfalls arise when adding neural context: (i) naively rescoring the prefix with every candidate next token requires a sweep over the entire vocabulary at each step, and (ii) predicting fresh surrogate parameters for each prefix, although tractable at a single step, forces recomputation of future probabilities for every new prefix and eliminates reuse. LTLA avoids both by using a single batched HMM update to account for all next-token candidates at once, and by conditioning only the surrogate's latent state prior on the LM's hidden representations while keeping the surrogate decoder fixed, so computations can be reused across prefixes. Empirically, LTLA attains higher conditional likelihood than an unconditional HMM, approximates continuation distributions for vision-language models where a standalone HMM cannot encode visual context, and improves constraint satisfaction at comparable fluency on controlled-generation tasks, with minimal inference overhead.
☆ Liars' Bench: Evaluating Lie Detectors for Language Models
Prior work has introduced techniques for detecting when large language models (LLMs) lie, that is, generating statements they believe are false. However, these techniques are typically validated in narrow settings that do not capture the diverse lies LLMs can generate. We introduce LIARS' BENCH, a testbed consisting of 72,863 examples of lies and honest responses generated by four open-weight models across seven datasets. Our settings capture qualitatively different types of lies and vary along two dimensions: the model's reason for lying and the object of belief targeted by the lie. Evaluating three black- and white-box lie detection techniques on LIARS' BENCH, we find that existing techniques systematically fail to identify certain types of lies, especially in settings where it's not possible to determine whether the model lied from the transcript alone. Overall, LIARS' BENCH reveals limitations in prior techniques and provides a practical testbed for guiding progress in lie detection.
comment: *Kieron Kretschmar and Walter Laurito contributed equally to this work. 10 pages, 2 figures; plus appendix. Code at https://github.com/Cadenza-Labs/liars-bench and datasets at https://huggingface.co/datasets/Cadenza-Labs/liars-bench Subjects: Computation and Language (cs.CL); Artificial Intelligence (cs.AI)
☆ SpellForger: Prompting Custom Spell Properties In-Game using BERT supervised-trained model
Emanuel C. Silva, Emily S. M. Salum, Gabriel M. Arantes, Matheus P. Pereira, Vinicius F. Oliveira, Alessandro L. Bicho
Introduction: The application of Artificial Intelligence in games has evolved significantly, allowing for dynamic content generation. However, its use as a core gameplay co-creation tool remains underexplored. Objective: This paper proposes SpellForger, a game where players create custom spells by writing natural language prompts, aiming to provide a unique experience of personalization and creativity. Methodology: The system uses a supervisedtrained BERT model to interpret player prompts. This model maps textual descriptions to one of many spell prefabs and balances their parameters (damage, cost, effects) to ensure competitive integrity. The game is developed in the Unity Game Engine, and the AI backend is in Python. Expected Results: We expect to deliver a functional prototype that demonstrates the generation of spells in real time, applied to an engaging gameplay loop, where player creativity is central to the experience, validating the use of AI as a direct gameplay mechanic.
comment: Published in Anais Estendidos do XXIV Simpósio Brasileiro de Jogos e Entretenimento Digital (SBGames 2025)
☆ QueryGym: A Toolkit for Reproducible LLM-Based Query Reformulation
We present QueryGym, a lightweight, extensible Python toolkit that supports large language model (LLM)-based query reformulation. This is an important tool development since recent work on llm-based query reformulation has shown notable increase in retrieval effectiveness. However, while different authors have sporadically shared the implementation of their methods, there is no unified toolkit that provides a consistent implementation of such methods, which hinders fair comparison, rapid experimentation, consistent benchmarking and reliable deployment. QueryGym addresses this gap by providing a unified framework for implementing, executing, and comparing llm-based reformulation methods. The toolkit offers: (1) a Python API for applying diverse LLM-based methods, (2) a retrieval-agnostic interface supporting integration with backends such as Pyserini and PyTerrier, (3) a centralized prompt management system with versioning and metadata tracking, (4) built-in support for benchmarks like BEIR and MS MARCO, and (5) a completely open-source extensible implementation available to all researchers. QueryGym is publicly available at https://github.com/radinhamidi/QueryGym.
comment: 4 pages
☆ CARE-RAG - Clinical Assessment and Reasoning in RAG
Deepthi Potluri, Aby Mammen Mathew, Jeffrey B DeWitt, Alexander L. Rasgon, Yide Hao, Junyuan Hong, Ying Ding
Access to the right evidence does not guarantee that large language models (LLMs) will reason with it correctly. This gap between retrieval and reasoning is especially concerning in clinical settings, where outputs must align with structured protocols. We study this gap using Written Exposure Therapy (WET) guidelines as a testbed. In evaluating model responses to curated clinician-vetted questions, we find that errors persist even when authoritative passages are provided. To address this, we propose an evaluation framework that measures accuracy, consistency, and fidelity of reasoning. Our results highlight both the potential and the risks: retrieval-augmented generation (RAG) can constrain outputs, but safe deployment requires assessing reasoning as rigorously as retrieval.
comment: The Second Workshop on GenAI for Health: Potential, Trust, and Policy Compliance
☆ TOD-ProcBench: Benchmarking Complex Instruction-Following in Task-Oriented Dialogues
Sarik Ghazarian, Abhinav Gullapalli, Swair Shah, Anurag Beniwal, Nanyun Peng, Narayanan Sadagopan, Zhou Yu
In real-world task-oriented dialogue (TOD) settings, agents are required to strictly adhere to complex instructions while conducting multi-turn conversations with customers. These instructions are typically presented in natural language format and include general guidelines and step-by-step procedures with complex constraints. Existing TOD benchmarks often oversimplify the complex nature of these instructions by reducing them to simple schemas composed of intents, slots, and API call configurations. To address this gap and systematically benchmark LLMs' instruction-following capabilities, we propose TOD-ProcBench, a challenging benchmark featuring complex process instructions with intricate, fine-grained constraints that evaluates various LLMs' abilities to understand and follow instructions in multi-turn TODs. Our benchmark dataset comprises instruction documents derived from the high-quality ABCD dataset with corresponding conversations under human quality control. We formulate fine-grained constraints and action procedures as multi-level condition-action instruction statements. We design three tasks to comprehensively benchmark LLMs' complex instruction-following capabilities in multi-turn TODs. Task 1 evaluates how LLMs retrieve the most relevant statement from a complex instruction and predict the corresponding next action. In Task 2, we synthesize instruction-violating responses by injecting inconsistencies and manipulating the original instructions, and then we analyze how effectively LLMs can identify instruction-violating responses. Task 3 investigates LLMs' abilities in conditional generation of instruction-following responses based on the original complex instructions. Additionally, we conduct studies on the impact of multilingual settings and different instruction text formats on compliance performance. We release our benchmark under the Llama 3.3 Community License Agreement.
☆ JudgeBoard: Benchmarking and Enhancing Small Language Models for Reasoning Evaluation
While small language models (SLMs) have shown promise on various reasoning tasks, their ability to judge the correctness of answers remains unclear compared to large language models (LLMs). Prior work on LLM-as-a-judge frameworks typically relies on comparing candidate answers against ground-truth labels or other candidate answers using predefined metrics like entailment. However, this approach is inherently indirect and difficult to fully automate, offering limited support for fine-grained and scalable evaluation of reasoning outputs. In this work, we propose JudgeBoard, a novel evaluation pipeline that directly queries models to assess the correctness of candidate answers without requiring extra answer comparisons. We focus on two core reasoning domains: mathematical reasoning and science/commonsense reasoning, and construct task-specific evaluation leaderboards using both accuracy-based ranking and an Elo-based rating system across five benchmark datasets, enabling consistent model comparison as judges rather than comparators. To improve judgment performance in lightweight models, we propose MAJ (Multi-Agent Judging), a novel multi-agent evaluation framework that leverages multiple interacting SLMs with distinct reasoning profiles to approximate LLM-level judgment accuracy through collaborative deliberation. Experimental results reveal a significant performance gap between SLMs and LLMs in isolated judging tasks. However, our MAJ framework substantially improves the reliability and consistency of SLMs. On the MATH dataset, MAJ using smaller-sized models as backbones performs comparatively well or even better than their larger-sized counterparts. Our findings highlight that multi-agent SLM systems can potentially match or exceed LLM performance in judgment tasks, with implications for scalable and efficient assessment.
comment: 23 pages, 4 figures
♻ ☆ LLMInit: A Free Lunch from Large Language Models for Selective Initialization of Recommendation EMNLP 2025
Weizhi Zhang, Liangwei Yang, Wooseong Yang, Henry Peng Zou, Yuqing Liu, Ke Xu, Sourav Medya, Philip S. Yu
Collaborative filtering (CF) is widely adopted in industrial recommender systems (RecSys) for modeling user-item interactions across numerous applications, but often struggles with cold-start and data-sparse scenarios. Recent advancements in pre-trained large language models (LLMs) with rich semantic knowledge, offer promising solutions to these challenges. However, deploying LLMs at scale is hindered by their significant computational demands and latency. In this paper, we propose a novel and scalable LLM-RecSys framework, LLMInit, designed to integrate pretrained LLM embeddings into CF models through selective initialization strategies. Specifically, we identify the embedding collapse issue observed when CF models scale and match the large embedding sizes in LLMs and avoid the problem by introducing efficient sampling methods, including, random, uniform, and variance-based selections. Comprehensive experiments conducted on multiple real-world datasets demonstrate that LLMInit significantly improves recommendation performance while maintaining low computational costs, offering a practical and scalable solution for industrial applications. To facilitate industry adoption and promote future research, we provide open-source access to our implementation at https://github.com/DavidZWZ/LLMInit.
comment: Accepted in EMNLP 2025 Industry Track
♻ ☆ Sigma: Semantically Informative Pre-training for Skeleton-based Sign Language Understanding
Pre-training has proven effective for learning transferable features in sign language understanding (SLU) tasks. Recently, skeleton-based methods have gained increasing attention because they can robustly handle variations in subjects and backgrounds without being affected by appearance or environmental factors. Current SLU methods continue to face three key limitations: 1) weak semantic grounding, as models often capture low-level motion patterns from skeletal data but struggle to relate them to linguistic meaning; 2) imbalance between local details and global context, with models either focusing too narrowly on fine-grained cues or overlooking them for broader context; and 3) inefficient cross-modal learning, as constructing semantically aligned representations across modalities remains difficult. To address these, we propose Sigma, a unified skeleton-based SLU framework featuring: 1) a sign-aware early fusion mechanism that facilitates deep interaction between visual and textual modalities, enriching visual features with linguistic context; 2) a hierarchical alignment learning strategy that jointly maximises agreements across different levels of paired features from different modalities, effectively capturing both fine-grained details and high-level semantic relationships; and 3) a unified pre-training framework that combines contrastive learning, text matching and language modelling to promote semantic consistency and generalisation. Sigma achieves new state-of-the-art results on isolated sign language recognition, continuous sign language recognition, and gloss-free sign language translation on multiple benchmarks spanning different sign and spoken languages, demonstrating the impact of semantically informative pre-training and the effectiveness of skeletal data as a stand-alone solution for SLU.
♻ ☆ Turning Up the Heat: Min-p Sampling for Creative and Coherent LLM Outputs ICLR 2025
Large Language Models (LLMs) generate text by sampling the next token from a probability distribution over the vocabulary at each decoding step. Popular sampling methods like top-p (nucleus sampling) often struggle to balance quality and diversity, especially at higher temperatures which lead to incoherent or repetitive outputs. We propose min-p sampling, a dynamic truncation method that adjusts the sampling threshold based on the model's confidence by using the top token's probability as a scaling factor. Our experiments on benchmarks including GPQA, GSM8K, and AlpacaEval Creative Writing show that min-p sampling improves both the quality and diversity of generated text across different model families (Mistral and Llama 3) and model sizes (1B to 123B parameters), especially at higher temperatures. Human evaluations further show a clear preference for min-p sampling, in both text quality and creativity. Min-p sampling has been adopted by popular open-source LLM frameworks, including Hugging Face Transformers, VLLM, and many others, highlighting its considerable impact on improving text generation quality.
comment: Oral presentation at ICLR 2025. Camera-ready version available at https://iclr.cc/virtual/2025/poster/30358
♻ ☆ Probing the Critical Point (CritPt) of AI Reasoning: a Frontier Physics Research Benchmark
Minhui Zhu, Minyang Tian, Xiaocheng Yang, Tianci Zhou, Lifan Yuan, Penghao Zhu, Eli Chertkov, Shengyan Liu, Yufeng Du, Ziming Ji, Indranil Das, Junyi Cao, Yufeng Du, Jiabin Yu, Peixue Wu, Jinchen He, Yifan Su, Yikun Jiang, Yujie Zhang, Chang Liu, Ze-Min Huang, Weizhen Jia, Yunkai Wang, Farshid Jafarpour, Yong Zhao, Xinan Chen, Jessie Shelton, Aaron W. Young, John Bartolotta, Wenchao Xu, Yue Sun, Anjun Chu, Victor Colussi, Chris Akers, Nathan Brooks, Wenbo Fu, Jinchao Zhao, Marvin Qi, Anqi Mu, Yubo Yang, Allen Zang, Yang Lyu, Peizhi Mai, Christopher Wilson, Xuefei Guo, Juntai Zhou, Daniel Inafuku, Chi Xue, Luyu Gao, Ze Yang, Yaïr Hein, Yonatan Kahn, Kevin Zhou, Di Luo, John Drew Wilson, Jarrod T. Reilly, Dmytro Bandak, Ofir Press, Liang Yang, Xueying Wang, Hao Tong, Nicolas Chia, Eliu Huerta, Hao Peng
While large language models (LLMs) with reasoning capabilities are progressing rapidly on high-school math competitions and coding, can they reason effectively through complex, open-ended challenges found in frontier physics research? And crucially, what kinds of reasoning tasks do physicists want LLMs to assist with? To address these questions, we present the CritPt (Complex Research using Integrated Thinking - Physics Test, pronounced "critical point"), the first benchmark designed to test LLMs on unpublished, research-level reasoning tasks that broadly covers modern physics research areas, including condensed matter, quantum physics, atomic, molecular & optical physics, astrophysics, high energy physics, mathematical physics, statistical physics, nuclear physics, nonlinear dynamics, fluid dynamics and biophysics. CritPt consists of 71 composite research challenges designed to simulate full-scale research projects at the entry level, which are also decomposed to 190 simpler checkpoint tasks for more fine-grained insights. All problems are newly created by 50+ active physics researchers based on their own research. Every problem is hand-curated to admit a guess-resistant and machine-verifiable answer and is evaluated by an automated grading pipeline heavily customized for advanced physics-specific output formats. We find that while current state-of-the-art LLMs show early promise on isolated checkpoints, they remain far from being able to reliably solve full research-scale challenges: the best average accuracy among base models is only 5.7%, achieved by GPT-5 (high), moderately rising to around 10% when equipped with coding tools. Through the realistic yet standardized evaluation offered by CritPt, we highlight a large disconnect between current model capabilities and realistic physics research demands, offering a foundation to guide the development of scientifically grounded AI tools.
comment: 39 pages, 6 figures, 6 tables
♻ ☆ False Sense of Security: Why Probing-based Malicious Input Detection Fails to Generalize
Large Language Models (LLMs) can comply with harmful instructions, raising serious safety concerns despite their impressive capabilities. Recent work has leveraged probing-based approaches to study the separability of malicious and benign inputs in LLMs' internal representations, and researchers have proposed using such probing methods for safety detection. We systematically re-examine this paradigm. Motivated by poor out-of-distribution performance, we hypothesize that probes learn superficial patterns rather than semantic harmfulness. Through controlled experiments, we confirm this hypothesis and identify the specific patterns learned: instructional patterns and trigger words. Our investigation follows a systematic approach, progressing from demonstrating comparable performance of simple n-gram methods, to controlled experiments with semantically cleaned datasets, to detailed analysis of pattern dependencies. These results reveal a false sense of security around current probing-based approaches and highlight the need to redesign both models and evaluation protocols, for which we provide further discussions in the hope of suggesting responsible further research in this direction. We have open-sourced the project at https://github.com/WangCheng0116/Why-Probe-Fails.
comment: Withdrawn due to identified errors in the experimental procedure
♻ ☆ AgentSwift: Efficient LLM Agent Design via Value-guided Hierarchical Search AAAI-2026
Large language model (LLM) agents have demonstrated strong capabilities across diverse domains, yet automated agent design remains a significant challenge. Current automated agent design approaches are often constrained by limited search spaces that primarily optimize workflows but fail to integrate crucial human-designed components like memory, planning, and tool use. Furthermore, these methods are hampered by high evaluation costs, as evaluating even a single new agent on a benchmark can require tens of dollars. The difficulty of this exploration is further exacerbated by inefficient search strategies that struggle to navigate the large design space effectively, making the discovery of novel agents a slow and resource-intensive process. To address these challenges, we propose AgentSwift, a novel framework for automated agent design. We formalize a hierarchical search space that jointly models agentic workflow and composable functional components. This structure moves beyond optimizing workflows alone by co-optimizing functional components, which enables the discovery of more complex and effective agent architectures. To make exploration within this expansive space feasible, we mitigate high evaluation costs by training a value model on a high-quality dataset, generated via a novel strategy combining combinatorial coverage and balanced Bayesian sampling for low-cost evaluation. Guiding the entire process is a hierarchical MCTS strategy, which is informed by uncertainty to efficiently navigate the search space. Evaluated across a comprehensive set of seven benchmarks spanning embodied, math, web, tool, and game domains, AgentSwift discovers agents that achieve an average performance gain of 8.34\% over both existing automated agent search methods and manually designed agents. Our framework serves as a launchpad for researchers to rapidly discover powerful agent architectures.
comment: AAAI-2026
♻ ☆ KVTuner: Sensitivity-Aware Layer-Wise Mixed-Precision KV Cache Quantization for Efficient and Nearly Lossless LLM Inference ICML25
Xing Li, Zeyu Xing, Yiming Li, Linping Qu, Hui-Ling Zhen, Wulong Liu, Yiwu Yao, Sinno Jialin Pan, Mingxuan Yuan
KV cache quantization can improve Large Language Models (LLMs) inference throughput and latency in long contexts and large batch-size scenarios while preserving LLMs effectiveness. However, current methods have three unsolved issues: overlooking layer-wise sensitivity to KV cache quantization, high overhead of online fine-grained decision-making, and low flexibility to different LLMs and constraints. Therefore, we theoretically analyze the inherent correlation of layer-wise transformer attention patterns to KV cache quantization errors and study why key cache is generally more important than value cache for quantization error reduction. We further propose a simple yet effective framework KVTuner to adaptively search for the optimal hardware-friendly layer-wise KV quantization precision pairs for coarse-grained KV cache with multi-objective optimization and directly utilize the offline searched configurations during online inference. To reduce the computational cost of offline calibration, we utilize the intra-layer KV precision pair pruning and inter-layer clustering to reduce the search space. Experimental results show that we can achieve nearly lossless 3.25-bit mixed precision KV cache quantization for LLMs like Llama-3.1-8B-Instruct and 4.0-bit for sensitive models like Qwen2.5-7B-Instruct on mathematical reasoning tasks. The maximum inference throughput can be improved by 21.25\% compared with KIVI-KV8 quantization over various context lengths. Our code and searched configurations are available at https://github.com/cmd2001/KVTuner.
comment: Accepted by ICML25. Code: https://github.com/cmd2001/KVTuner
♻ ☆ Crowdsourcing Lexical Diversity
Lexical-semantic resources (LSRs), such as online lexicons and wordnets, are fundamental to natural language processing applications as well as to fields such as linguistic anthropology and language preservation. In many languages, however, such resources suffer from quality issues: incorrect entries, incompleteness, but also the rarely addressed issue of bias towards the English language and Anglo-Saxon culture. Such bias manifests itself in the absence of concepts specific to the language or culture at hand, the presence of foreign (Anglo-Saxon) concepts, as well as in the lack of an explicit indication of untranslatability, also known as cross-lingual lexical gaps, when a term has no equivalent in another language. This paper proposes a novel crowdsourcing methodology for reducing bias in LSRs. Crowd workers compare lexemes from two languages, focusing on domains rich in lexical diversity, such as kinship or food. Our LingoGap crowdsourcing platform facilitates comparisons through microtasks identifying equivalent terms, language-specific terms, and lexical gaps across languages. We validated our method by applying it to two case studies focused on food-related terminology: (1) English and Arabic, and (2) Standard Indonesian and Banjarese. These experiments identified 2,140 lexical gaps in the first case study and 951 in the second. The success of these experiments confirmed the usability of our method and tool for future large-scale lexicon enrichment tasks.
♻ ☆ Arg-LLaDA: Argument Summarization via Large Language Diffusion Models and Sufficiency-Aware Refinement
Argument summarization aims to generate concise, structured representations of complex, multi-perspective debates. While recent work has advanced the identification and clustering of argumentative components, the generation stage remains underexplored. Existing approaches typically rely on single-pass generation, offering limited support for factual correction or structural refinement. To address this gap, we introduce Arg-LLaDA, a novel large language diffusion framework that iteratively improves summaries via sufficiency-guided remasking and regeneration. Our method combines a flexible masking controller with a sufficiency-checking module to identify and revise unsupported, redundant, or incomplete spans, yielding more faithful, concise, and coherent outputs. Empirical results on two benchmark datasets demonstrate that Arg-LLaDA surpasses state-of-the-art baselines in 7 out of 10 automatic evaluation metrics. In addition, human evaluations reveal substantial improvements across core dimensions, coverage, faithfulness, and conciseness, validating the effectiveness of our iterative, sufficiency-aware generation strategy.
comment: Preprint
♻ ☆ Eliciting Reasoning in Language Models with Cognitive Tools
The recent advent of reasoning models like OpenAI's o1 was met with excited speculation by the AI community about the mechanisms underlying these capabilities in closed models, followed by a rush of replication efforts, particularly from the open source community. These speculations were largely settled by the demonstration from DeepSeek-R1 that chains-of-thought and reinforcement learning (RL) can effectively replicate reasoning on top of base LLMs. However, it remains valuable to explore alternative methods for theoretically eliciting reasoning that could help elucidate the underlying mechanisms, as well as providing additional methods that may offer complementary benefits.
Here, we build on the long-standing literature in cognitive psychology and cognitive architectures, which postulates that reasoning arises from the orchestrated, sequential execution of a set of modular, predetermined cognitive operations. Crucially, we implement this key idea within a modern agentic tool-calling framework. In particular, we endow an LLM with a small set of "cognitive tools" encapsulating specific reasoning operations, each executed by the LLM itself. Surprisingly, this simple strategy results in considerable gains in performance on standard mathematical reasoning benchmarks compared to base LLMs, for both closed and open-weight models. For instance, providing our "cognitive tools" to GPT-4.1 increases its pass@1 performance on AIME2024 from 32% to 53%, even surpassing the performance of o1-preview.
In addition to its practical implications, this demonstration contributes to the debate regarding the role of post-training methods in eliciting reasoning in LLMs versus the role of inherent capabilities acquired during pre-training, and whether post-training merely uncovers these latent abilities.
comment: 25 pages, 2 figures
♻ ☆ AutoJudge: Judge Decoding Without Manual Annotation NeurIPS 2025
Roman Garipov, Fedor Velikonivtsev, Ivan Ermakov, Ruslan Svirschevski, Vage Egiazarian, Max Ryabinin
We introduce AutoJudge, a method that accelerates large language model (LLM) inference with task-specific lossy speculative decoding. Instead of matching the original model output distribution token-by-token, we identify which of the generated tokens affect the downstream quality of the response, relaxing the distribution match guarantee so that the "unimportant" tokens can be generated faster. Our approach relies on a semi-greedy search algorithm to test which of the mismatches between target and draft models should be corrected to preserve quality and which ones may be skipped. We then train a lightweight classifier based on existing LLM embeddings to predict, at inference time, which mismatching tokens can be safely accepted without compromising the final answer quality. We evaluate the effectiveness of AutoJudge with multiple draft/target model pairs on mathematical reasoning and programming benchmarks, achieving significant speedups at the cost of a minor accuracy reduction. Notably, on GSM8k with the Llama 3.1 70B target model, our approach achieves up to $\approx2\times$ speedup over speculative decoding at the cost of $\le 1\%$ drop in accuracy. When applied to the LiveCodeBench benchmark, AutoJudge automatically detects programming-specific important tokens, accepting $\ge 25$ tokens per speculation cycle at $2\%$ drop in Pass@1. Our approach requires no human annotation and is easy to integrate with modern LLM inference frameworks.
comment: Accepted at NeurIPS 2025
♻ ☆ One Pic is All it Takes: Poisoning Visual Document Retrieval Augmented Generation with a Single Image
Retrieval-augmented generation (RAG) is instrumental for inhibiting hallucinations in large language models (LLMs) through the use of a factual knowledge base (KB). Although PDF documents are prominent sources of knowledge, text-based RAG pipelines are ineffective at capturing their rich multi-modal information. In contrast, visual document RAG (VD-RAG) uses screenshots of document pages as the KB, which has been shown to achieve state-of-the-art results. However, by introducing the image modality, VD-RAG introduces new attack vectors for adversaries to disrupt the system by injecting malicious documents into the KB. In this paper, we demonstrate the vulnerability of VD-RAG to poisoning attacks targeting both retrieval and generation. We define two attack objectives and demonstrate that both can be realized by injecting only a single adversarial image into the KB. Firstly, we introduce a targeted attack against one or a group of queries with the goal of spreading targeted disinformation. Secondly, we present a universal attack that, for any potential user query, influences the response to cause a denial-of-service in the VD-RAG system. We investigate the two attack objectives under both white-box and black-box assumptions, employing a multi-objective gradient-based optimization approach as well as prompting state-of-the-art generative models. Using two visual document datasets, a diverse set of state-of-the-art retrievers (embedding models) and generators (vision language models), we show VD-RAG is vulnerable to poisoning attacks in both the targeted and universal settings, yet demonstrating robustness to black-box attacks in the universal setting.
♻ ☆ Co-Reinforcement Learning for Unified Multimodal Understanding and Generation NeurIPS 2025
This paper presents a pioneering exploration of reinforcement learning (RL) via group relative policy optimization for unified multimodal large language models (ULMs), aimed at simultaneously reinforcing generation and understanding capabilities. Through systematic pilot studies, we uncover the significant potential of ULMs to enable the synergistic co-evolution of dual capabilities within a shared policy optimization framework. Building on this insight, we introduce CoRL, a co-reinforcement learning framework comprising a unified RL stage for joint optimization and a refined RL stage for task-specific enhancement. With the proposed CoRL, our resulting model, ULM-R1, achieves average improvements of 7% on three text-to-image generation datasets and 23% on nine multimodal understanding benchmarks. These results demonstrate the effectiveness of CoRL and highlight the substantial benefit of reinforcement learning in facilitating cross-task synergy and optimization for ULMs. Code is available at https://github.com/mm-vl/ULM-R1.
comment: NeurIPS 2025
♻ ☆ CoBA: Counterbias Text Augmentation for Mitigating Various Spurious Correlations via Semantic Triples EMNLP 2025
Deep learning models often learn and exploit spurious correlations in training data, using these non-target features to inform their predictions. Such reliance leads to performance degradation and poor generalization on unseen data. To address these limitations, we introduce a more general form of counterfactual data augmentation, termed counterbias data augmentation, which simultaneously tackles multiple biases (e.g., gender bias, simplicity bias) and enhances out-of-distribution robustness. We present CoBA: CounterBias Augmentation, a unified framework that operates at the semantic triple level: first decomposing text into subject-predicate-object triples, then selectively modifying these triples to disrupt spurious correlations. By reconstructing the text from these adjusted triples, CoBA generates counterbias data that mitigates spurious patterns. Through extensive experiments, we demonstrate that CoBA not only improves downstream task performance, but also effectively reduces biases and strengthens out-of-distribution resilience, offering a versatile and robust solution to the challenges posed by spurious correlations.
comment: Accepted at EMNLP 2025
♻ ☆ TabDistill: Distilling Transformers into Neural Nets for Few-Shot Tabular Classification
Transformer-based models have shown promising performance on tabular data compared to their classical counterparts such as neural networks and Gradient Boosted Decision Trees (GBDTs) in scenarios with limited training data. They utilize their pre-trained knowledge to adapt to new domains, achieving commendable performance with only a few training examples, also called the few-shot regime. However, the performance gain in the few-shot regime comes at the expense of significantly increased complexity and number of parameters. To circumvent this trade-off, we introduce TabDistill, a new strategy to distill the pre-trained knowledge in complex transformer-based models into simpler neural networks for effectively classifying tabular data. Our framework yields the best of both worlds: being parameter-efficient while performing well with limited training data. The distilled neural networks surpass classical baselines such as regular neural networks, XGBoost and logistic regression under equal training data, and in some cases, even the original transformer-based models that they were distilled from.
♻ ☆ Multimodal Evaluation of Russian-language Architectures
Artem Chervyakov, Ulyana Isaeva, Anton Emelyanov, Artem Safin, Maria Tikhonova, Alexander Kharitonov, Yulia Lyakh, Petr Surovtsev, Denis Shevelev, Vildan Saburov, Vasily Konovalov, Elisei Rykov, Ivan Sviridov, Amina Miftakhova, Ilseyar Alimova, Alexander Panchenko, Alexander Kapitanov, Alena Fenogenova
Multimodal large language models (MLLMs) are currently at the center of research attention, showing rapid progress in scale and capabilities, yet their intelligence, limitations, and risks remain insufficiently understood. To address these issues, particularly in the context of the Russian language, where no multimodal benchmarks currently exist, we introduce Mera Multi, an open multimodal evaluation framework for Russian-spoken architectures. The benchmark is instruction-based and encompasses default text, image, audio, and video modalities, comprising 18 newly constructed evaluation tasks for both general-purpose models and modality-specific architectures (image-to-text, video-to-text, and audio-to-text). Our contributions include: (i) a universal taxonomy of multimodal abilities; (ii) 18 datasets created entirely from scratch with attention to Russian cultural and linguistic specificity, unified prompts, and metrics; (iii) baseline results for both closed-source and open-source models; (iv) a methodology for preventing benchmark leakage, including watermarking and licenses for private sets. While our current focus is on Russian, the proposed benchmark provides a replicable methodology for constructing multimodal benchmarks in typologically diverse languages, particularly within the Slavic language family.
♻ ☆ VisPlay: Self-Evolving Vision-Language Models from Images
Reinforcement learning (RL) provides a principled framework for improving Vision-Language Models (VLMs) on complex reasoning tasks. However, existing RL approaches often rely on human-annotated labels or task-specific heuristics to define verifiable rewards, both of which are costly and difficult to scale. We introduce VisPlay, a self-evolving RL framework that enables VLMs to autonomously improve their reasoning abilities using large amounts of unlabeled image data. Starting from a single base VLM, VisPlay assigns the model into two interacting roles: an Image-Conditioned Questioner that formulates challenging yet answerable visual questions, and a Multimodal Reasoner that generates silver responses. These roles are jointly trained with Group Relative Policy Optimization (GRPO), which incorporates diversity and difficulty rewards to balance the complexity of generated questions with the quality of the silver answers. VisPlay scales efficiently across two model families. When trained on Qwen2.5-VL and MiMo-VL, VisPlay achieves consistent improvements in visual reasoning, compositional generalization, and hallucination reduction across eight benchmarks, including MM-Vet and MMMU, demonstrating a scalable path toward self-evolving multimodal intelligence. The project page is available at https://bruno686.github.io/VisPlay/
♻ ☆ HalluClean: A Unified Framework to Combat Hallucinations in LLMs
Large language models (LLMs) have achieved impressive performance across a wide range of natural language processing tasks, yet they often produce hallucinated content that undermines factual reliability. To address this challenge, we introduce HalluClean, a lightweight and task-agnostic framework for detecting and correcting hallucinations in LLM-generated text. HalluClean adopts a reasoning-enhanced paradigm, explicitly decomposing the process into planning, execution, and revision stages to identify and refine unsupported claims. It employs minimal task-routing prompts to enable zero-shot generalization across diverse domains, without relying on external knowledge sources or supervised detectors. We conduct extensive evaluations on five representative tasks-question answering, dialogue, summarization, math word problems, and contradiction detection. Experimental results show that HalluClean significantly improves factual consistency and outperforms competitive baselines, demonstrating its potential to enhance the trustworthiness of LLM outputs in real-world applications.
♻ ☆ LoRA on the Go: Instance-level Dynamic LoRA Selection and Merging
Low-Rank Adaptation (LoRA) has emerged as a parameter-efficient approach for fine-tuning large language models. However, conventional LoRA adapters are typically trained for a single task, limiting their applicability in real-world settings where inputs may span diverse and unpredictable domains. At inference time, existing approaches combine multiple LoRAs for improving performance on diverse tasks, while usually requiring labeled data or additional task-specific training, which is expensive at scale. In this work, we introduce LoRA on the Go (LoGo), a training-free framework that dynamically selects and merges adapters at the instance level without any additional requirements. LoGo leverages signals extracted from a single forward pass through LoRA adapters, to identify the most relevant adapters and determine their contributions on-the-fly. Across 5 NLP benchmarks, 27 datasets, and 3 model families, LoGo outperforms training-based baselines on some tasks upto a margin of 3.6% while remaining competitive on other tasks and maintaining inference throughput, highlighting its effectiveness and practicality.
♻ ☆ From Confidence to Collapse in LLM Factual Robustness
Ensuring the robustness of factual knowledge in LLMs is critical for reliable applications in tasks such as question answering and reasoning. However, existing evaluation methods predominantly focus on performance-based metrics, often investigating from the perspective of prompt perturbations, which captures only the externally triggered side of knowledge robustness. To bridge this gap, we introduce a principled approach to measure factual robustness from the perspective of the generation process by analyzing token distribution entropy in combination with temperature scaling sensitivity. These two factors build the Factual Robustness Score (FRS), a novel metric which quantifies the stability of a fact against perturbations in decoding conditions, given its initial uncertainty. To validate our approach, we conduct extensive experiments on 5 LLMs across 3 closed-book QA datasets (SQuAD, TriviaQA, and HotpotQA). We show that factual robustness varies significantly -- smaller models report an FRS of $0.76$, larger ones $0.93$ -- with accuracy degrading by ~$60\%$ under increased uncertainty. These insights demonstrate how entropy and temperature scaling impact factual accuracy, and lay a foundation for developing more robust knowledge retention and retrieval in future models.
♻ ☆ CRISP: Persistent Concept Unlearning via Sparse Autoencoders
As large language models (LLMs) are increasingly deployed in real-world applications, the need to selectively remove unwanted knowledge while preserving model utility has become paramount. Recent work has explored sparse autoencoders (SAEs) to perform precise interventions on monosemantic features. However, most SAE-based methods operate at inference time, which does not create persistent changes in the model's parameters. Such interventions can be bypassed or reversed by malicious actors with parameter access. We introduce CRISP, a parameter-efficient method for persistent concept unlearning using SAEs. CRISP automatically identifies salient SAE features across multiple layers and suppresses their activations. We experiment with two LLMs and show that our method outperforms prior approaches on safety-critical unlearning tasks from the WMDP benchmark, successfully removing harmful knowledge while preserving general and in-domain capabilities. Feature-level analysis reveals that CRISP achieves semantically coherent separation between target and benign concepts, allowing precise suppression of the target features.
comment: 18 pages, 5 figures
♻ ☆ Injecting Falsehoods: Adversarial Man-in-the-Middle Attacks Undermining Factual Recall in LLMs
LLMs are now an integral part of information retrieval. As such, their role as question answering chatbots raises significant concerns due to their shown vulnerability to adversarial man-in-the-middle (MitM) attacks. Here, we propose the first principled attack evaluation on LLM factual memory under prompt injection via Xmera, our novel, theory-grounded MitM framework. By perturbing the input given to "victim" LLMs in three closed-book and fact-based QA settings, we undermine the correctness of the responses and assess the uncertainty of their generation process. Surprisingly, trivial instruction-based attacks report the highest success rate (up to ~85.3%) while simultaneously having a high uncertainty for incorrectly answered questions. To provide a simple defense mechanism against Xmera, we train Random Forest classifiers on the response uncertainty levels to distinguish between attacked and unattacked queries (average AUC of up to ~96%). We believe that signaling users to be cautious about the answers they receive from black-box and potentially corrupt LLMs is a first checkpoint toward user cyberspace safety.
♻ ☆ GPTopic: Dynamic and Interactive Topic Representations
Topic modeling seems to be almost synonymous with generating lists of top words to represent topics within large text corpora. However, deducing a topic from such list of individual terms can require substantial expertise and experience, making topic modelling less accessible to people unfamiliar with the particularities and pitfalls of top-word interpretation. A topic representation limited to top-words might further fall short of offering a comprehensive and easily accessible characterization of the various aspects, facets and nuances a topic might have. To address these challenges, we introduce GPTopic, a software package that leverages Large Language Models (LLMs) to create dynamic, interactive topic representations. GPTopic provides an intuitive chat interface for users to explore, analyze, and refine topics interactively, making topic modeling more accessible and comprehensive. The corresponding code is available here: https://github.com/ArikReuter/TopicGPT.
♻ ☆ ACEBench: Who Wins the Match Point in Tool Usage?
Chen Chen, Xinlong Hao, Weiwen Liu, Xu Huang, Xingshan Zeng, Shuai Yu, Dexun Li, Shuai Wang, Weinan Gan, Yuefeng Huang, Wulong Liu, Xinzhi Wang, Defu Lian, Baoqun Yin, Yasheng Wang, Wu Liu
Large Language Models (LLMs) have demonstrated significant potential in decision-making and reasoning, particularly when integrated with various tools to effectively solve complex problems. However, existing benchmarks for evaluating LLMs' tool usage face several limitations: (1) limited evaluation scenarios, often lacking assessments in real multi-turn dialogue contexts; (2) narrow evaluation dimensions, with insufficient detailed assessments of how LLMs use tools; and (3) reliance on LLMs or real API executions for evaluation, which introduces significant overhead. To address these challenges, we introduce ACEBench, a comprehensive benchmark for assessing tool usage in LLMs. ACEBench categorizes data into three primary types based on evaluation methodology: Normal, Special, and Agent. "Normal" evaluates tool usage in basic scenarios; "Special" evaluates tool usage in situations with ambiguous or incomplete instructions; "Agent" evaluates tool usage through multi-agent interactions to simulate real-world, multi-turn dialogues. We conducted extensive experiments using ACEBench, analyzing various LLMs in-depth and providing a more granular examination of error causes across different data types.
♻ ☆ Atomic Calibration of LLMs in Long-Form Generations ACL 2025
Large language models (LLMs) often suffer from hallucinations, posing significant challenges for real-world applications. Confidence calibration, as an effective indicator of hallucination, is thus essential to enhance the trustworthiness of LLMs. Prior work mainly focuses on short-form tasks using a single response-level score (macro calibration), which is insufficient for long-form outputs that may contain both accurate and inaccurate claims. In this work, we systematically study atomic calibration, which evaluates factuality calibration at a fine-grained level by decomposing long responses into atomic claims. We further categorize existing confidence elicitation methods into discriminative and generative types, and propose two new confidence fusion strategies to improve calibration. Our experiments demonstrate that LLMs exhibit poorer calibration at the atomic level during long-form generation. More importantly, atomic calibration uncovers insightful patterns regarding the alignment of confidence methods and the changes of confidence throughout generation. This sheds light on future research directions for confidence estimation in long-form generation.
comment: ACL 2025 KnowFM Oral / AACL-IJCNLP 2025
♻ ☆ An Iterative Question-Guided Framework for Knowledge Base Question Answering ACL 2025
Large Language Models (LLMs) excel in many natural language processing tasks but often exhibit factual inconsistencies in knowledge-intensive settings. Integrating external knowledge resources, particularly knowledge graphs (KGs), provides a transparent and updatable foundation for more reliable reasoning. Knowledge Base Question Answering (KBQA), which queries and reasons over KGs, is central to this effort, especially for complex, multi-hop queries. However, multi-hop reasoning poses two key challenges: (1)~maintaining coherent reasoning paths, and (2)~avoiding prematurely discarding critical multi-hop connections. To tackle these challenges, we introduce iQUEST, a question-guided KBQA framework that iteratively decomposes complex queries into simpler sub-questions, ensuring a structured and focused reasoning trajectory. Additionally, we integrate a Graph Neural Network (GNN) to look ahead and incorporate 2-hop neighbor information at each reasoning step. This dual approach strengthens the reasoning process, enabling the model to explore viable paths more effectively. Detailed experiments demonstrate the consistent improvement delivered by iQUEST across four benchmark datasets and four LLMs.
comment: Accepted to the 63rd Annual Meeting of the Association for Computational Linguistics (ACL 2025), Main Track
♻ ☆ MAQuA: Adaptive Question-Asking for Multidimensional Mental Health Screening using Item Response Theory
Vasudha Varadarajan, Hui Xu, Rebecca Astrid Boehme, Mariam Marlan Mirstrom, Sverker Sikstrom, H. Andrew Schwartz
Recent advances in large language models (LLMs) offer new opportunities for scalable, interactive mental health assessment, but excessive querying by LLMs burdens users and is inefficient for real-world screening across transdiagnostic symptom profiles. We introduce MAQuA, an adaptive question-asking framework for simultaneous, multidimensional mental health screening. Combining multi-outcome modeling on language responses with item response theory (IRT) and factor analysis, MAQuA selects the questions with most informative responses across multiple dimensions at each turn to optimize diagnostic information, improving accuracy and potentially reducing response burden. Empirical results on a novel dataset reveal that MAQuA reduces the number of assessment questions required for score stabilization by 50-87% compared to random ordering (e.g., achieving stable depression scores with 71% fewer questions and eating disorder scores with 85% fewer questions). MAQuA demonstrates robust performance across both internalizing (depression, anxiety) and externalizing (substance use, eating disorder) domains, with early stopping strategies further reducing patient time and burden. These findings position MAQuA as a powerful and efficient tool for scalable, nuanced, and interactive mental health screening, advancing the integration of LLM-based agents into real-world clinical workflows.
♻ ☆ MajinBook: An open catalogue of digital world literature with likes
This data paper introduces MajinBook, an open catalogue designed to facilitate the use of shadow libraries--such as Library Genesis and Z-Library--for computational social science and cultural analytics. By linking metadata from these vast, crowd-sourced archives with structured bibliographic data from Goodreads, we create a high-precision corpus of over 539,000 references to English-language books spanning three centuries, enriched with first publication dates, genres, and popularity metrics like ratings and reviews. Our methodology prioritizes natively digital EPUB files to ensure machine-readable quality, while addressing biases in traditional corpora like HathiTrust, and includes secondary datasets for French, German, and Spanish. We evaluate the linkage strategy for accuracy, release all underlying data openly, and discuss the project's legal permissibility under EU and US frameworks for text and data mining in research.
comment: 9 pages, 5 figures, 1 table
♻ ☆ Multi-dimensional Data Analysis and Applications Basing on LLM Agents and Knowledge Graph Interactions
Xi Wang, Xianyao Ling, Kun Li, Gang Yin, Liang Zhang, Jiang Wu, Jun Xu, Fu Zhang, Wenbo Lei, Annie Wang, Peng Gong
In the current era of big data, extracting deep insights from massive, heterogeneous, and complexly associated multi-dimensional data has become a significant challenge. Large Language Models (LLMs) perform well in natural language understanding and generation, but still suffer from "hallucination" issues when processing structured knowledge and are difficult to update in real-time. Although Knowledge Graphs (KGs) can explicitly store structured knowledge, their static nature limits dynamic interaction and analytical capabilities. Therefore, this paper proposes a multi-dimensional data analysis method based on the interactions between LLM agents and KGs, constructing a dynamic, collaborative analytical ecosystem. This method utilizes LLM agents to automatically extract product data from unstructured data, constructs and visualizes the KG in real-time, and supports users in deep exploration and analysis of graph nodes through an interactive platform. Experimental results show that this method has significant advantages in product ecosystem analysis, relationship mining, and user-driven exploratory analysis, providing new ideas and tools for multi-dimensional data analysis.
comment: 14 pages, 7 figures, 40 references
♻ ☆ ATLAS: A High-Difficulty, Multidisciplinary Benchmark for Frontier Scientific Reasoning
Hongwei Liu, Junnan Liu, Shudong Liu, Haodong Duan, Yuqiang Li, Mao Su, Xiaohong Liu, Guangtao Zhai, Xinyu Fang, Qianhong Ma, Taolin Zhang, Zihan Ma, Yufeng Zhao, Peiheng Zhou, Linchen Xiao, Wenlong Zhang, Shijie Zhou, Xingjian Ma, Siqi Sun, Jiaye Ge, Meng Li, Yuhong Liu, Jianxin Dong, Jiaying Li, Hui Wu, Hanwen Liang, Jintai Lin, Yanting Wang, Jie Dong, Tong Zhu, Tianfan Fu, Conghui He, Qi Zhang, Songyang Zhang, Lei Bai, Kai Chen
The rapid advancement of Large Language Models (LLMs) has led to performance saturation on many established benchmarks, questioning their ability to distinguish frontier models. Concurrently, existing high-difficulty benchmarks often suffer from narrow disciplinary focus, oversimplified answer formats, and vulnerability to data contamination, creating a fidelity gap with real-world scientific inquiry. To address these challenges, we introduce ATLAS (AGI-Oriented Testbed for Logical Application in Science), a large-scale, high-difficulty, and cross-disciplinary evaluation suite composed of approximately 800 original problems. Developed by domain experts (PhD-level and above), ATLAS spans seven core scientific fields: mathematics, physics, chemistry, biology, computer science, earth science, and materials science. Its key features include: (1) High Originality and Contamination Resistance, with all questions newly created or substantially adapted to prevent test data leakage; (2) Cross-Disciplinary Focus, designed to assess models' ability to integrate knowledge and reason across scientific domains; (3) High-Fidelity Answers, prioritizing complex, open-ended answers involving multi-step reasoning and LaTeX-formatted expressions over simple multiple-choice questions; and (4) Rigorous Quality Control, employing a multi-stage process of expert peer review and adversarial testing to ensure question difficulty, scientific value, and correctness. We also propose a robust evaluation paradigm using a panel of LLM judges for automated, nuanced assessment of complex answers. Preliminary results on leading models demonstrate ATLAS's effectiveness in differentiating their advanced scientific reasoning capabilities. We plan to develop ATLAS into a long-term, open, community-driven platform to provide a reliable "ruler" for progress toward Artificial General Intelligence.
comment: 39 pages
♻ ☆ Beyond Bias Scores: Unmasking Vacuous Neutrality in Small Language Models
The rapid adoption of Small Language Models (SLMs) for resource constrained applications has outpaced our understanding of their ethical and fairness implications. To address this gap, we introduce the Vacuous Neutrality Framework (VaNeu), a multi-dimensional evaluation paradigm designed to assess SLM fairness prior to deployment. The framework examines model robustness across four stages - biases, utility, ambiguity handling, and positional bias over diverse social bias categories. To the best of our knowledge, this work presents the first large-scale audit of SLMs in the 0.5-5B parameter range, an overlooked "middle tier" between BERT-class encoders and flagship LLMs. We evaluate nine widely used SLMs spanning four model families under both ambiguous and disambiguated contexts. Our findings show that models demonstrating low bias in early stages often fail subsequent evaluations, revealing hidden vulnerabilities and unreliable reasoning. These results underscore the need for a more comprehensive understanding of fairness and reliability in SLMs, and position the proposed framework as a principled tool for responsible deployment in socially sensitive settings.
♻ ☆ Property-guided Inverse Design of Metal-Organic Frameworks Using Quantum Natural Language Processing
In this study, we explore the potential of using quantum natural language processing (QNLP) to inverse design metal-organic frameworks (MOFs) with targeted properties. Specifically, by analyzing 450 hypothetical MOF structures consisting of 3 topologies, 10 metal nodes and 15 organic ligands, we categorize these structures into four distinct classes for pore volume and $CO_{2}$ Henry's constant values. We then compare various QNLP models (i.e. the bag-of-words, DisCoCat (Distributional Compositional Categorical), and sequence-based models) to identify the most effective approach to process the MOF dataset. Using a classical simulator provided by the IBM Qiskit, the bag-of-words model is identified to be the optimum model, achieving validation accuracies of 88.6% and 78.0% for binary classification tasks on pore volume and $CO_{2}$ Henry's constant, respectively. Further, we developed multi-class classification models tailored to the probabilistic nature of quantum circuits, with average test accuracies of 92% and 80% across different classes for pore volume and $CO_{2}$ Henry's constant datasets. Finally, the performance of generating MOF with target properties showed accuracies of 93.5% for pore volume and 87% for $CO_{2}$ Henry's constant, respectively. Although our investigation covers only a fraction of the vast MOF search space, it marks a promising first step towards using quantum computing for materials design, offering a new perspective through which to explore the complex landscape of MOFs.
comment: 46 pages, 7 figures, 6 supplementary figures, 1 table, 2 supplementary tables, 1 supplementary note
♻ ☆ OEMA: Ontology-Enhanced Multi-Agent Collaboration Framework for Zero-Shot Clinical Named Entity Recognition
With the rapid expansion of unstructured clinical texts in electronic health records (EHRs), clinical named entity recognition (NER) has become a crucial technique for extracting medical information. However, traditional supervised models such as CRF and BioClinicalBERT suffer from high annotation costs. Although zero-shot NER based on large language models (LLMs) reduces the dependency on labeled data, challenges remain in aligning example selection with task granularity and effectively integrating prompt design with self-improvement frameworks. To address these limitations, we propose OEMA, a novel zero-shot clinical NER framework based on multi-agent collaboration. OEMA consists of three core components: (1) a self-annotator that autonomously generates candidate examples; (2) a discriminator that leverages SNOMED CT to filter token-level examples by clinical relevance; and (3) a predictor that incorporates entity-type descriptions to enhance inference accuracy. Experimental results on two benchmark datasets, MTSamples and VAERS, demonstrate that OEMA achieves state-of-the-art performance under exact-match evaluation. Moreover, under related-match criteria, OEMA performs comparably to the supervised BioClinicalBERT model while significantly outperforming the traditional CRF method. OEMA improves zero-shot clinical NER, achieving near-supervised performance under related-match criteria. Future work will focus on continual learning and open-domain adaptation to expand its applicability in clinical NLP.
comment: 12 pages, 4 figures, 4 tables
♻ ☆ LLMs as Models for Analogical Reasoning
Analogical reasoning -- the capacity to identify and map structural relationships between different domains -- is fundamental to human cognition and learning. Recent studies have shown that large language models (LLMs) can sometimes match humans in analogical reasoning tasks, opening the possibility that analogical reasoning might emerge from domain-general processes. However, it is still debated whether these emergent capacities are largely superficial and limited to simple relations seen during training or whether they encompass the flexible representational and mapping capabilities which are the focus of leading cognitive models of analogy. In this study, we introduce novel analogical reasoning tasks that require participants to map between semantically contentful words and sequences of letters and other abstract characters. This task necessitates the ability to flexibly re-represent rich semantic information -- an ability which is known to be central to human analogy but which is thus far not well captured by existing cognitive theories and models. We assess the performance of both human participants and LLMs on tasks focusing on reasoning from semantic structure and semantic content, introducing variations that test the robustness of their analogical inferences. Advanced LLMs match human performance across several conditions, though humans and LLMs respond differently to certain task variations and semantic distractors. Our results thus provide new evidence that LLMs might offer a how-possibly explanation of human analogical reasoning in contexts that are not yet well modeled by existing theories, but that even today's best models are unlikely to yield how-actually explanations.
comment: The title has been changed from Semantic Structure-Mapping in LLM and Human Analogical Reasoning to LLMs as Models for Analogical Reasoning to improve clarity and accuracy
♻ ☆ Adversarial Poetry as a Universal Single-Turn Jailbreak Mechanism in Large Language Models
Piercosma Bisconti, Matteo Prandi, Federico Pierucci, Francesco Giarrusso, Marcantonio Bracale, Marcello Galisai, Vincenzo Suriani, Olga Sorokoletova, Federico Sartore, Daniele Nardi
We present evidence that adversarial poetry functions as a universal single-turn jailbreak technique for Large Language Models (LLMs). Across 25 frontier proprietary and open-weight models, curated poetic prompts yielded high attack-success rates (ASR), with some providers exceeding 90%. Mapping prompts to MLCommons and EU CoP risk taxonomies shows that poetic attacks transfer across CBRN, manipulation, cyber-offence, and loss-of-control domains. Converting 1,200 MLCommons harmful prompts into verse via a standardized meta-prompt produced ASRs up to 18 times higher than their prose baselines. Outputs are evaluated using an ensemble of 3 open-weight LLM judges, whose binary safety assessments were validated on a stratified human-labeled subset. Poetic framing achieved an average jailbreak success rate of 62% for hand-crafted poems and approximately 43% for meta-prompt conversions (compared to non-poetic baselines), substantially outperforming non-poetic baselines and revealing a systematic vulnerability across model families and safety training approaches. These findings demonstrate that stylistic variation alone can circumvent contemporary safety mechanisms, suggesting fundamental limitations in current alignment methods and evaluation protocols.
♻ ☆ CoTKR: Chain-of-Thought Enhanced Knowledge Rewriting for Complex Knowledge Graph Question Answering
Recent studies have explored the use of Large Language Models (LLMs) with Retrieval Augmented Generation (RAG) for Knowledge Graph Question Answering (KGQA). They typically require rewriting retrieved subgraphs into natural language formats comprehensible to LLMs. However, when tackling complex questions, the knowledge rewritten by existing methods may include irrelevant information, omit crucial details, or fail to align with the question's semantics. To address them, we propose a novel rewriting method CoTKR, Chain-of-Thought Enhanced Knowledge Rewriting, for generating reasoning traces and corresponding knowledge in an interleaved manner, thereby mitigating the limitations of single-step knowledge rewriting. Additionally, to bridge the preference gap between the knowledge rewriter and the question answering (QA) model, we propose a training strategy PAQAF, Preference Alignment from Question Answering Feedback, for leveraging feedback from the QA model to further optimize the knowledge rewriter. We conduct experiments using various LLMs across several KGQA benchmarks. Experimental results demonstrate that, compared with previous knowledge rewriting methods, CoTKR generates the most beneficial knowledge representation for QA models, which significantly improves the performance of LLMs in KGQA.
♻ ☆ Interpreting the Effects of Quantization on LLMs AACL 2025
Quantization offers a practical solution to deploy LLMs in resource-constraint environments. However, its impact on internal representations remains understudied, raising questions about the reliability of quantized models. In this study, we employ a range of interpretability techniques to investigate how quantization affects model and neuron behavior. We analyze multiple LLMs under 4-bit and 8-bit quantization. Our findings reveal that the impact of quantization on model calibration is generally minor. Analysis of neuron activations indicates that the number of dead neurons, i.e., those with activation values close to 0 across the dataset, remains consistent regardless of quantization. In terms of neuron contribution to predictions, we observe that smaller full precision models exhibit fewer salient neurons, whereas larger models tend to have more, with the exception of Llama-2-7B. The effect of quantization on neuron redundancy varies across models. Overall, our findings suggest that effect of quantization may vary by model and tasks, however, we did not observe any drastic change which may discourage the use of quantization as a reliable model compression technique.
comment: Accepted to AACL 2025 Main
♻ ☆ Confidence-Guided Stepwise Model Routing for Cost-Efficient Reasoning
Recent advances in Large Language Models (LLMs) - particularly model scaling and test-time techniques - have greatly enhanced the reasoning capabilities of language models at the expense of higher inference costs. To lower inference costs, prior works train router models or deferral mechanisms that allocate easy queries to a small, efficient model, while forwarding harder queries to larger, more expensive models. However, these trained router models often lack robustness under domain shifts and require expensive data synthesis techniques such as Monte Carlo rollouts to obtain sufficient ground-truth routing labels for training. In this work, we propose Confidence-Guided Stepwise Model Routing for Cost-Efficient Reasoning (STEER), a domain-agnostic framework that performs fine-grained, step-level routing between smaller and larger LLMs without utilizing external models. STEER leverages confidence scores from the smaller model's logits prior to generating a reasoning step, so that the large model is invoked only when necessary. Extensive evaluations using different LLMs on a diverse set of challenging benchmarks across multiple domains such as Mathematical Reasoning, Multi-Hop QA, and Planning tasks indicate that STEER achieves competitive or enhanced accuracy while reducing inference costs (up to +20% accuracy with 48% less FLOPs compared to solely using the larger model on AIME), outperforming baselines that rely on trained external modules. Our results establish model-internal confidence as a robust, domain-agnostic signal for model routing, offering a scalable pathway for efficient LLM deployment.
comment: 7 pages, 5 figures
♻ ☆ OmniThink: Expanding Knowledge Boundaries in Machine Writing through Thinking EMNLP 2025
Zekun Xi, Wenbiao Yin, Jizhan Fang, Jialong Wu, Runnan Fang, Yong Jiang, Pengjun Xie, Fei Huang, Huajun Chen, Ningyu Zhang
Machine writing with large language models often relies on retrieval-augmented generation. However, these approaches remain confined within the boundaries of the model's predefined scope, limiting the generation of content with rich information. Specifically, vanilla-retrieved information tends to lack depth, novelty, and suffers from redundancy, which negatively impacts the quality of generated articles, leading to shallow, unoriginal, and repetitive outputs. To address these issues, we propose OmniThink, a slow-thinking machine writing framework that emulates the human-like process of iterative expansion and reflection. The core idea behind OmniThink is to simulate the cognitive behavior of learners as they slowly deepen their knowledge of the topics. Experimental results demonstrate that OmniThink improves the knowledge density of generated articles without compromising metrics such as coherence and depth. Human evaluations and expert feedback further highlight the potential of OmniThink to address real-world challenges in the generation of long-form articles. Code is available at https://github.com/zjunlp/OmniThink.
comment: EMNLP 2025
♻ ☆ CaKE: Circuit-aware Editing Enables Generalizable Knowledge Learners EMNLP 2025
Knowledge Editing (KE) enables the modification of outdated or incorrect information in large language models (LLMs). While existing KE methods can update isolated facts, they often fail to generalize these updates to multi-hop reasoning tasks that rely on the modified knowledge. Through an analysis of reasoning circuits -- the neural pathways LLMs use for knowledge-based inference, we find that current layer-localized KE approaches (e.g., MEMIT, WISE), which edit only single or a few model layers, inadequately integrate updated knowledge into these reasoning pathways. To address this limitation, we present CaKE (Circuit-aware Knowledge Editing), a novel method that enhances the effective integration of updated knowledge in LLMs. By only leveraging a few curated data samples guided by our circuit-based analysis, CaKE stimulates the model to develop appropriate reasoning circuits for newly incorporated knowledge. Experiments show that CaKE enables more accurate and consistent use of edited knowledge across related reasoning tasks, achieving an average improvement of 20% in multi-hop reasoning accuracy on the MQuAKE dataset while requiring less memory than existing KE methods. We release the code and data in https://github.com/zjunlp/CaKE.
comment: EMNLP 2025
♻ ☆ The Illusion of Thinking: Understanding the Strengths and Limitations of Reasoning Models via the Lens of Problem Complexity NeurIPS 2025
Recent generations of language models have introduced Large Reasoning Models (LRMs) that generate detailed thinking processes before providing answers. While these models demonstrate improved performance on reasoning benchmarks, their fundamental capabilities, scaling properties, and limitations remain insufficiently understood. Current evaluations primarily focus on established math and coding benchmarks, emphasizing final answer accuracy. However, this evaluation paradigm often suffers from contamination and does not provide insights into the reasoning traces. In this work, we systematically investigate these gaps with the help of controllable puzzle environments that allow precise manipulation of complexity while maintaining consistent logical structures. This setup enables the analysis of not only final answers but also the internal reasoning traces, offering insights into how LRMs think. Through extensive experiments, we show that LRMs face a complete accuracy collapse beyond certain complexities. Moreover, they exhibit a counterintuitive scaling limit: their reasoning effort increases with problem complexity up to a point, then declines despite having remaining token budget. By comparing LRMs with their standard LLM counterparts under same inference compute, we identify three performance regimes: (1) low-complexity tasks where standard models outperform LRMs, (2) medium-complexity tasks where LRMs demonstrates advantage, and (3) high-complexity tasks where both models face complete collapse. We found that LRMs have limitations in exact computation: they fail to use explicit algorithms and reason inconsistently across scales. We also investigate the reasoning traces in more depth, studying the patterns of explored solutions and analyzing the models' computational behavior, shedding light on their strengths, limitations, and raising questions about their reasoning capabilities.
comment: NeurIPS 2025. camera-ready version + additional discussion in the appendix
♻ ☆ Can LLMs Replace Economic Choice Prediction Labs? The Case of Language-based Persuasion Games
Human choice prediction in economic contexts is crucial for applications in marketing, finance, public policy, and more. This task, however, is often constrained by the difficulties in acquiring human choice data. With most experimental economics studies focusing on simple choice settings, the AI community has explored whether LLMs can substitute for humans in these predictions and examined more complex experimental economics settings. However, a key question remains: can LLMs generate training data for human choice prediction? We explore this in language-based persuasion games, a complex economic setting involving natural language in strategic interactions. Our experiments show that models trained on LLM-generated data can effectively predict human behavior in these games and even outperform models trained on actual human data. Beyond data generation, we investigate the dual role of LLMs as both data generators and predictors, introducing a comprehensive empirical study on the effectiveness of utilizing LLMs for data generation, human choice prediction, or both. We then utilize our choice prediction framework to analyze how strategic factors shape decision-making, showing that interaction history (rather than linguistic sentiment alone) plays a key role in predicting human decision-making in repeated interactions. Particularly, when LLMs capture history-dependent decision patterns similarly to humans, their predictive success improves substantially. Finally, we demonstrate the robustness of our findings across alternative persuasion-game settings, highlighting the broader potential of using LLM-generated data to model human decision-making.