MyArxiv
Computation and Language
☆ Small Drafts, Big Verdict: Information-Intensive Visual Reasoning via Speculation
Large Vision-Language Models (VLMs) have achieved remarkable progress in multimodal understanding, yet they struggle when reasoning over information-intensive images that densely interleave textual annotations with fine-grained graphical elements. The main challenges lie in precisely localizing critical cues in dense layouts and multi-hop reasoning to integrate dispersed evidence. We propose Speculative Verdict (SV), a training-free framework inspired by speculative decoding that combines multiple lightweight draft experts with a large verdict model. In the draft stage, small VLMs act as draft experts to generate reasoning paths that provide diverse localization candidates; in the verdict stage, a strong VLM synthesizes these paths to produce the final answer, minimizing computational cost while recovering correct answers. To further improve efficiency and accuracy, SV introduces a consensus expert selection mechanism that forwards only high-agreement reasoning paths to the verdict. Empirically, SV achieves consistent gains on challenging information-intensive and high-resolution visual question answering benchmarks, including InfographicVQA, ChartMuseum, ChartQAPro, and HR-Bench 4K. By synthesizing correct insights from multiple partially accurate reasoning paths, SV achieves both error correction and cost-efficiency compared to large proprietary models or training pipelines. Code is available at https://github.com/Tinaliu0123/speculative-verdict
☆ On the Detectability of LLM-Generated Text: What Exactly Is LLM-Generated Text?
With the widespread use of large language models (LLMs), many researchers have turned their attention to detecting text generated by them. However, there is no consistent or precise definition of their target, namely "LLM-generated text". Differences in usage scenarios and the diversity of LLMs further increase the difficulty of detection. What is commonly regarded as the detecting target usually represents only a subset of the text that LLMs can potentially produce. Human edits to LLM outputs, together with the subtle influences that LLMs exert on their users, are blurring the line between LLM-generated and human-written text. Existing benchmarks and evaluation approaches do not adequately address the various conditions in real-world detector applications. Hence, the numerical results of detectors are often misunderstood, and their significance is diminishing. Therefore, detectors remain useful under specific conditions, but their results should be interpreted only as references rather than decisive indicators.
☆ Real Deep Research for AI, Robotics and Beyond
With the rapid growth of research in AI and robotics now producing over 10,000 papers annually it has become increasingly difficult for researchers to stay up to date. Fast evolving trends, the rise of interdisciplinary work, and the need to explore domains beyond one's expertise all contribute to this challenge. To address these issues, we propose a generalizable pipeline capable of systematically analyzing any research area: identifying emerging trends, uncovering cross domain opportunities, and offering concrete starting points for new inquiry. In this work, we present Real Deep Research (RDR) a comprehensive framework applied to the domains of AI and robotics, with a particular focus on foundation models and robotics advancements. We also briefly extend our analysis to other areas of science. The main paper details the construction of the RDR pipeline, while the appendix provides extensive results across each analyzed topic. We hope this work sheds light for researchers working in the field of AI and beyond.
comment: website: https://realdeepresearch.github.io
☆ Compress to Impress: Efficient LLM Adaptation Using a Single Gradient Step on 100 Samples
Recently, Sharma et al. suggested a method called Layer-SElective-Rank reduction (LASER) which demonstrated that pruning high-order components of carefully chosen LLM's weight matrices can boost downstream accuracy -- without any gradient-based fine-tuning. Yet LASER's exhaustive, per-matrix search (each requiring full-dataset forward passes) makes it impractical for rapid deployment. We demonstrate that this overhead can be removed and find that: (i) Only a small, carefully chosen subset of matrices needs to be inspected -- eliminating the layer-by-layer sweep, (ii) The gradient of each matrix's singular values pinpoints which matrices merit reduction, (iii) Increasing the factorization search space by allowing matrices rows to cluster around multiple subspaces and then decomposing each cluster separately further reduces overfitting on the original training data and further lifts accuracy by up to 24.6 percentage points, and finally, (iv) we discover that evaluating on just 100 samples rather than the full training data -- both for computing the indicative gradients and for measuring the final accuracy -- suffices to further reduce the search time; we explain that as adaptation to downstream tasks is dominated by prompting style, not dataset size. As a result, we show that combining these findings yields a fast and robust adaptation algorithm for downstream tasks. Overall, with a single gradient step on 100 examples and a quick scan of the top candidate layers and factorization techniques, we can adapt LLMs to new datasets -- entirely without fine-tuning.
☆ Simple Context Compression: Mean-Pooling and Multi-Ratio Training
A common strategy to reduce the computational costs of using long contexts in retrieval-augmented generation (RAG) with large language models (LLMs) is soft context compression, where the input sequence is transformed into a shorter continuous representation. We develop a lightweight and simple mean-pooling approach that consistently outperforms the widely used compression-tokens architecture, and study training the same compressor to output multiple compression ratios. We conduct extensive experiments across in-domain and out-of-domain QA datasets, as well as across model families, scales, and compression ratios. Overall, our simple mean-pooling approach achieves the strongest performance, with a relatively small drop when training for multiple compression ratios. More broadly though, across architectures and training regimes the trade-offs are more nuanced, illustrating the complex landscape of compression methods.
comment: Code available at https://github.com/lil-lab/simple-context-compression
☆ BadGraph: A Backdoor Attack Against Latent Diffusion Model for Text-Guided Graph Generation
The rapid progress of graph generation has raised new security concerns, particularly regarding backdoor vulnerabilities. While prior work has explored backdoor attacks in image diffusion and unconditional graph generation, conditional, especially text-guided graph generation remains largely unexamined. This paper proposes BadGraph, a backdoor attack method targeting latent diffusion models for text-guided graph generation. BadGraph leverages textual triggers to poison training data, covertly implanting backdoors that induce attacker-specified subgraphs during inference when triggers appear, while preserving normal performance on clean inputs. Extensive experiments on four benchmark datasets (PubChem, ChEBI-20, PCDes, MoMu) demonstrate the effectiveness and stealth of the attack: less than 10% poisoning rate can achieves 50% attack success rate, while 24% suffices for over 80% success rate, with negligible performance degradation on benign samples. Ablation studies further reveal that the backdoor is implanted during VAE and diffusion training rather than pretraining. These findings reveal the security vulnerabilities in latent diffusion models of text-guided graph generation, highlight the serious risks in models' applications such as drug discovery and underscore the need for robust defenses against the backdoor attack in such diffusion models.
☆ Alleviating Forgetfulness of Linear Attention by Hybrid Sparse Attention and Contextualized Learnable Token Eviction
Linear-attention models that compress the entire input sequence into a fixed-size recurrent state offer an efficient alternative to Transformers, but their finite memory induces forgetfulness that harms retrieval-intensive tasks. To mitigate the issue, we explore a series of hybrid models that restore direct access to past tokens. We interleave token mixers with intermediate time and space complexity between linear and full attention, including sparse attention with token eviction, and the query-aware native sparse attention. Particularly, we propose a novel learnable token eviction approach. Combined with sliding-window attention, an end-to-end trainable lightweight CNN aggregates information from both past and future adjacent tokens to adaptively retain a limited set of critical KV-pairs per head, maintaining linear attention's constant time and space complexity. Efficient Triton kernels for the sparse attention mechanisms are provided. Empirical evaluations on retrieval-intensive benchmarks support the effectiveness of our approaches.
comment: 19 pages, 5 figures
☆ A Use-Case Specific Dataset for Measuring Dimensions of Responsible Performance in LLM-generated Text CIKM '25
Current methods for evaluating large language models (LLMs) typically focus on high-level tasks such as text generation, without targeting a particular AI application. This approach is not sufficient for evaluating LLMs for Responsible AI dimensions like fairness, since protected attributes that are highly relevant in one application may be less relevant in another. In this work, we construct a dataset that is driven by a real-world application (generate a plain-text product description, given a list of product features), parameterized by fairness attributes intersected with gendered adjectives and product categories, yielding a rich set of labeled prompts. We show how to use the data to identify quality, veracity, safety, and fairness gaps in LLMs, contributing a proposal for LLM evaluation paired with a concrete resource for the research community.
comment: 24 pages with 3 figures, to appear in Proceedings of the 34th ACM International Conference on Information and Knowledge Management (CIKM '25)
☆ Are Large Reasoning Models Good Translation Evaluators? Analysis and Performance Boost NeurIPS 2025
Recent advancements in large reasoning models (LRMs) have introduced an intermediate "thinking" process prior to generating final answers, improving their reasoning capabilities on complex downstream tasks. However, the potential of LRMs as evaluators for machine translation (MT) quality remains underexplored. We provides the first systematic analysis of LRM-as-a-judge in MT evaluation. We identify key challenges, revealing LRMs require tailored evaluation materials, tend to "overthink" simpler instances and have issues with scoring mechanisms leading to overestimation. To address these, we propose to calibrate LRM thinking by training them on synthetic, human-like thinking trajectories. Our experiments on WMT24 Metrics benchmarks demonstrate that this approach largely reduces thinking budgets by ~35x while concurrently improving evaluation performance across different LRM scales from 7B to 32B (e.g., R1-Distill-Qwen-7B achieves a +8.7 correlation point improvement). These findings highlight the potential of efficiently calibrated LRMs to advance fine-grained automatic MT evaluation.
comment: NeurIPS 2025
☆ Empathic Prompting: Non-Verbal Context Integration for Multimodal LLM Conversations
We present Empathic Prompting, a novel framework for multimodal human-AI interaction that enriches Large Language Model (LLM) conversations with implicit non-verbal context. The system integrates a commercial facial expression recognition service to capture users' emotional cues and embeds them as contextual signals during prompting. Unlike traditional multimodal interfaces, empathic prompting requires no explicit user control; instead, it unobtrusively augments textual input with affective information for conversational and smoothness alignment. The architecture is modular and scalable, allowing integration of additional non-verbal modules. We describe the system design, implemented through a locally deployed DeepSeek instance, and report a preliminary service and usability evaluation (N=5). Results show consistent integration of non-verbal input into coherent LLM outputs, with participants highlighting conversational fluidity. Beyond this proof of concept, empathic prompting points to applications in chatbot-mediated communication, particularly in domains like healthcare or education, where users' emotional signals are critical yet often opaque in verbal exchanges.
☆ Co-Designing Quantum Codes with Transversal Diagonal Gates via Multi-Agent Systems
We present a multi-agent, human-in-the-loop workflow that co-designs quantum codes with prescribed transversal diagonal gates. It builds on the Subset-Sum Linear Programming (SSLP) framework (arXiv:2504.20847), which partitions basis strings by modular residues and enforces $Z$-marginal Knill-Laflamme (KL) equalities via small LPs. The workflow is powered by GPT-5 and implemented within TeXRA (https://texra.ai)-a multi-agent research assistant platform that supports an iterative tool-use loop agent and a derivation-then-edit workflow reasoning agent. We work in a LaTeX-Python environment where agents reason, edit documents, execute code, and synchronize their work to Git/Overleaf. Within this workspace, three roles collaborate: a Synthesis Agent formulates the problem; a Search Agent sweeps/screens candidates and exactifies numerics into rationals; and an Audit Agent independently checks all KL equalities and the induced logical action. As a first step we focus on distance $d=2$ with nondegenerate residues. For code dimension $K\in\{2,3,4\}$ and $n\le6$ qubits, systematic sweeps yield certificate-backed tables cataloging attainable cyclic logical groups-all realized by new codes-e.g., for $K=3$ we obtain order $16$ at $n=6$. From verified instances, Synthesis Agent abstracts recurring structures into closed-form families and proves they satisfy the KL equalities for all parameters. It further demonstrates that SSLP accommodates residue degeneracy by exhibiting a new $((6,4,2))$ code implementing the transversal controlled-phase $diag(1,1,1,i)$. Overall, the workflow recasts diagonal-transversal feasibility as an analytical pipeline executed at scale, combining systematic enumeration with exact analytical reconstruction. It yields reproducible code constructions, supports targeted extensions to larger $K$ and higher distances, and leads toward data-driven classification.
comment: 29 pages, 2 figures
☆ Automated Extraction of Fluoropyrimidine Treatment and Treatment-Related Toxicities from Clinical Notes Using Natural Language Processing
Objective: Fluoropyrimidines are widely prescribed for colorectal and breast cancers, but are associated with toxicities such as hand-foot syndrome and cardiotoxicity. Since toxicity documentation is often embedded in clinical notes, we aimed to develop and evaluate natural language processing (NLP) methods to extract treatment and toxicity information. Materials and Methods: We constructed a gold-standard dataset of 236 clinical notes from 204,165 adult oncology patients. Domain experts annotated categories related to treatment regimens and toxicities. We developed rule-based, machine learning-based (Random Forest, Support Vector Machine [SVM], Logistic Regression [LR]), deep learning-based (BERT, ClinicalBERT), and large language models (LLM)-based NLP approaches (zero-shot and error-analysis prompting). Models used an 80:20 train-test split. Results: Sufficient data existed to train and evaluate 5 annotated categories. Error-analysis prompting achieved optimal precision, recall, and F1 scores (F1=1.000) for treatment and toxicities extraction, whereas zero-shot prompting reached F1=1.000 for treatment and F1=0.876 for toxicities extraction.LR and SVM ranked second for toxicities (F1=0.937). Deep learning underperformed, with BERT (F1=0.873 treatment; F1= 0.839 toxicities) and ClinicalBERT (F1=0.873 treatment; F1 = 0.886 toxicities). Rule-based methods served as our baseline with F1 scores of 0.857 in treatment and 0.858 in toxicities. Discussion: LMM-based approaches outperformed all others, followed by machine learning methods. Machine and deep learning approaches were limited by small training data and showed limited generalizability, particularly for rare categories. Conclusion: LLM-based NLP most effectively extracted fluoropyrimidine treatment and toxicity information from clinical notes, and has strong potential to support oncology research and pharmacovigilance.
☆ User Perceptions of Privacy and Helpfulness in LLM Responses to Privacy-Sensitive Scenarios
Large language models (LLMs) have seen rapid adoption for tasks such as drafting emails, summarizing meetings, and answering health questions. In such uses, users may need to share private information (e.g., health records, contact details). To evaluate LLMs' ability to identify and redact such private information, prior work developed benchmarks (e.g., ConfAIde, PrivacyLens) with real-life scenarios. Using these benchmarks, researchers have found that LLMs sometimes fail to keep secrets private when responding to complex tasks (e.g., leaking employee salaries in meeting summaries). However, these evaluations rely on LLMs (proxy LLMs) to gauge compliance with privacy norms, overlooking real users' perceptions. Moreover, prior work primarily focused on the privacy-preservation quality of responses, without investigating nuanced differences in helpfulness. To understand how users perceive the privacy-preservation quality and helpfulness of LLM responses to privacy-sensitive scenarios, we conducted a user study with 94 participants using 90 scenarios from PrivacyLens. We found that, when evaluating identical responses to the same scenario, users showed low agreement with each other on the privacy-preservation quality and helpfulness of the LLM response. Further, we found high agreement among five proxy LLMs, while each individual LLM had low correlation with users' evaluations. These results indicate that the privacy and helpfulness of LLM responses are often specific to individuals, and proxy LLMs are poor estimates of how real users would perceive these responses in privacy-sensitive scenarios. Our results suggest the need to conduct user-centered studies on measuring LLMs' ability to help users while preserving privacy. Additionally, future research could investigate ways to improve the alignment between proxy LLMs and users for better estimation of users' perceived privacy and utility.
☆ Structure-Conditional Minimum Bayes Risk Decoding EMNLP 2025
Minimum Bayes Risk (MBR) decoding has seen renewed interest as an alternative to traditional generation strategies. While MBR has proven effective in machine translation, where the variability of a language model's outcome space is naturally constrained, it may face challenges in more open-ended tasks such as dialogue or instruction-following. We hypothesise that in such settings, applying MBR with standard similarity-based utility functions may result in selecting responses that are broadly representative of the model's distribution, yet sub-optimal with respect to any particular grouping of generations that share an underlying latent structure. In this work, we introduce three lightweight adaptations to the utility function, designed to make MBR more sensitive to structural variability in the outcome space. To test our hypothesis, we curate a dataset capturing three representative types of latent structure: dialogue act, emotion, and response structure (e.g., a sentence, a paragraph, or a list). We further propose two metrics to evaluate the structural optimality of MBR. Our analysis demonstrates that common similarity-based utility functions fall short by these metrics. In contrast, our proposed adaptations considerably improve structural optimality. Finally, we evaluate our approaches on real-world instruction-following benchmarks, AlpacaEval and MT-Bench, and show that increased structural sensitivity improves generation quality by up to 13.7 percentage points in win rate.
comment: EMNLP 2025 Camera-Ready
☆ Neural Diversity Regularizes Hallucinations in Small Models
Language models continue to hallucinate despite increases in parameters, compute, and data. We propose neural diversity -- decorrelated parallel representations -- as a principled mechanism that reduces hallucination rates at fixed parameter and data budgets. Inspired by portfolio theory, where uncorrelated assets reduce risk by $\sqrt{P}$, we prove hallucination probability is bounded by representational correlation: $P(H) \leq f(\sigma^2((1-\rho(P))/P + \rho(P)), \mu^2)$, which predicts that language models need an optimal amount of neurodiversity. To validate this, we introduce ND-LoRA (Neural Diversity Low-Rank Adaptation), combining parallel LoRA adapters with Barlow Twins regularization, and demonstrate that ND-LoRA reduces hallucinations by up to 25.6% (and 14.6% on average) without degrading general accuracy. Ablations show LoRA adapters and regularization act synergistically, causal interventions prove neurodiversity as the mediating factor and correlational analyses indicate scale: a 0.1% neural correlation increase is associated with a 3.8% hallucination increase. Finally, task-dependent optimality emerges: different tasks require different amounts of optimal neurodiversity. Together, our results highlight neural diversity as a third axis of scaling -- orthogonal to parameters and data -- to improve the reliability of language models at fixed budgets.
☆ Analyticup E-commerce Product Search Competition Technical Report from Team Tredence_AICOE
This study presents the multilingual e-commerce search system developed by the Tredence_AICOE team. The competition features two multilingual relevance tasks: Query-Category (QC) Relevance, which evaluates how well a user's search query aligns with a product category, and Query-Item (QI) Relevance, which measures the match between a multilingual search query and an individual product listing. To ensure full language coverage, we performed data augmentation by translating existing datasets into languages missing from the development set, enabling training across all target languages. We fine-tuned Gemma-3 12B and Qwen-2.5 14B model for both tasks using multiple strategies. The Gemma-3 12B (4-bit) model achieved the best QC performance using original and translated data, and the best QI performance using original, translated, and minority class data creation. These approaches secured 4th place on the final leaderboard, with an average F1-score of 0.8857 on the private test set.
☆ \textsc{CantoNLU}: A benchmark for Cantonese natural language understanding
Cantonese, although spoken by millions, remains under-resourced due to policy and diglossia. To address this scarcity of evaluation frameworks for Cantonese, we introduce \textsc{\textbf{CantoNLU}}, a benchmark for Cantonese natural language understanding (NLU). This novel benchmark spans seven tasks covering syntax and semantics, including word sense disambiguation, linguistic acceptability judgment, language detection, natural language inference, sentiment analysis, part-of-speech tagging, and dependency parsing. In addition to the benchmark, we provide model baseline performance across a set of models: a Mandarin model without Cantonese training, two Cantonese-adapted models obtained by continual pre-training a Mandarin model on Cantonese text, and a monolingual Cantonese model trained from scratch. Results show that Cantonese-adapted models perform best overall, while monolingual models perform better on syntactic tasks. Mandarin models remain competitive in certain settings, indicating that direct transfer may be sufficient when Cantonese domain data is scarce. We release all datasets, code, and model weights to facilitate future research in Cantonese NLP.
comment: 13 pages, 1 figure
☆ The Reasoning Lingua Franca: A Double-Edged Sword for Multilingual AI
Large Reasoning Models (LRMs) achieve strong performance on mathematical, scientific, and other question-answering tasks, but their multilingual reasoning abilities remain underexplored. When presented with non-English questions, LRMs often default to reasoning in English, raising concerns about interpretability and the handling of linguistic and cultural nuances. We systematically compare an LRM's reasoning in English versus the language of the question. Our evaluation spans two tasks: MGSM and GPQA Diamond. Beyond measuring answer accuracy, we also analyze cognitive attributes in the reasoning traces. We find that English reasoning traces exhibit a substantially higher presence of these cognitive behaviors, and that reasoning in English generally yields higher final-answer accuracy, with the performance gap increasing as tasks become more complex. However, this English-centric strategy is susceptible to a key failure mode - getting "Lost in Translation," where translation steps lead to errors that would have been avoided by question's language reasoning.
comment: 14 pages, 13 figures, 5 tables
☆ Why Did Apple Fall To The Ground: Evaluating Curiosity In Large Language Model
Curiosity serves as a pivotal conduit for human beings to discover and learn new knowledge. Recent advancements of large language models (LLMs) in natural language processing have sparked discussions regarding whether these models possess capability of curiosity-driven learning akin to humans. In this paper, starting from the human curiosity assessment questionnaire Five-Dimensional Curiosity scale Revised (5DCR), we design a comprehensive evaluation framework that covers dimensions such as Information Seeking, Thrill Seeking, and Social Curiosity to assess the extent of curiosity exhibited by LLMs. The results demonstrate that LLMs exhibit a stronger thirst for knowledge than humans but still tend to make conservative choices when faced with uncertain environments. We further investigated the relationship between curiosity and thinking of LLMs, confirming that curious behaviors can enhance the model's reasoning and active learning abilities. These findings suggest that LLMs have the potential to exhibit curiosity similar to that of humans, providing experimental support for the future development of learning capabilities and innovative research in LLMs.
☆ BUSTED at AraGenEval Shared Task: A Comparative Study of Transformer-Based Models for Arabic AI-Generated Text Detection
This paper details our submission to the Ara- GenEval Shared Task on Arabic AI-generated text detection, where our team, BUSTED, se- cured 5th place. We investigated the effec- tiveness of three pre-trained transformer mod- els: AraELECTRA, CAMeLBERT, and XLM- RoBERTa. Our approach involved fine-tuning each model on the provided dataset for a binary classification task. Our findings revealed a sur- prising result: the multilingual XLM-RoBERTa model achieved the highest performance with an F1 score of 0.7701, outperforming the spe- cialized Arabic models. This work underscores the complexities of AI-generated text detection and highlights the strong generalization capa- bilities of multilingual models.
☆ What Defines Good Reasoning in LLMs? Dissecting Reasoning Steps with Multi-Aspect Evaluation
Evaluating large language models (LLMs) on final-answer correctness is the dominant paradigm. This approach, however, provides a coarse signal for model improvement and overlooks the quality of the underlying reasoning process. We argue that a more granular evaluation of reasoning offers a more effective path to building robust models. We decompose reasoning quality into two dimensions: relevance and coherence. Relevance measures if a step is grounded in the problem; coherence measures if it follows logically from prior steps. To measure these aspects reliably, we introduce causal stepwise evaluation (CaSE). This method assesses each reasoning step using only its preceding context, which avoids hindsight bias. We validate CaSE against human judgments on our new expert-annotated benchmarks, MRa-GSM8K and MRa-MATH. More importantly, we show that curating training data with CaSE-evaluated relevance and coherence directly improves final task performance. Our work provides a scalable framework for analyzing, debugging, and improving LLM reasoning, demonstrating the practical value of moving beyond validity checks.
☆ Can ChatGPT Code Communication Data Fairly?: Empirical Evidence from Multiple Collaborative Tasks
Assessing communication and collaboration at scale depends on a labor intensive task of coding communication data into categories according to different frameworks. Prior research has established that ChatGPT can be directly instructed with coding rubrics to code the communication data and achieves accuracy comparable to human raters. However, whether the coding from ChatGPT or similar AI technology exhibits bias against different demographic groups, such as gender and race, remains unclear. To fill this gap, this paper investigates ChatGPT-based automated coding of communication data using a typical coding framework for collaborative problem solving, examining differences across gender and racial groups. The analysis draws on data from three types of collaborative tasks: negotiation, problem solving, and decision making. Our results show that ChatGPT-based coding exhibits no significant bias across gender and racial groups, paving the road for its adoption in large-scale assessment of collaboration and communication.
comment: 38 pages, 4 figures
☆ Beyond Retrieval-Ranking: A Multi-Agent Cognitive Decision Framework for E-Commerce Search
The retrieval-ranking paradigm has long dominated e-commerce search, but its reliance on query-item matching fundamentally misaligns with multi-stage cognitive decision processes of platform users. This misalignment introduces critical limitations: semantic gaps in complex queries, high decision costs due to cross-platform information foraging, and the absence of professional shopping guidance. To address these issues, we propose a Multi-Agent Cognitive Decision Framework (MACDF), which shifts the paradigm from passive retrieval to proactive decision support. Extensive offline evaluations demonstrate MACDF's significant improvements in recommendation accuracy and user satisfaction, particularly for complex queries involving negation, multi-constraint, or reasoning demands. Online A/B testing on JD search platform confirms its practical efficacy. This work highlights the transformative potential of multi-agent cognitive systems in redefining e-commerce search.
☆ GlobalRAG: Enhancing Global Reasoning in Multi-hop Question Answering via Reinforcement Learning
Reinforcement learning has recently shown promise in improving retrieval-augmented generation (RAG). Despite these advances, its effectiveness in multi-hop question answering (QA) remains limited by two fundamental limitations: (i) global planning absence to structure multi-step reasoning, and (ii) unfaithful execution, which hinders effective query formulation and consistent use of retrieved evidence. We propose GlobalRAG, a reinforcement learning framework designed to enhance global reasoning in multi-hop QA. GlobalRAG decomposes questions into subgoals, coordinates retrieval with reasoning, and refines evidence iteratively. To guide this process, we introduce Planning Quality Reward and SubGoal Completion Reward, which encourage coherent planning and reliable subgoal execution. In addition, a progressive weight annealing strategy balances process-oriented and outcome-based objectives. Extensive experiments on both in-domain and out-of-domain benchmarks demonstrate that GlobalRAG significantly outperforms strong baselines while using only 8k training data (42% of the training data used by strong baselines), achieving average improvements of 14.2% in both EM and F1.
comment: 8 pages, 3 figures, 4 tables
☆ The Dog the Cat Chased Stumped the Model: Measuring When Language Models Abandon Structure for Shortcuts
When language models correctly parse "The cat that the dog chased meowed," are they analyzing syntax or simply familiar with dogs chasing cats? Despite extensive benchmarking, we lack methods to distinguish structural understanding from semantic pattern matching. We introduce CenterBench, a dataset of 9,720 comprehension questions on center-embedded sentences (like "The cat [that the dog chased] meowed") where relative clauses nest recursively, creating processing demands from simple to deeply nested structures. Each sentence has a syntactically identical but semantically implausible counterpart (e.g., mailmen prescribe medicine, doctors deliver mail) and six comprehension questions testing surface understanding, syntactic dependencies, and causal reasoning. Testing six models reveals that performance gaps between plausible and implausible sentences widen systematically with complexity, with models showing median gaps up to 26.8 percentage points, quantifying when they abandon structural analysis for semantic associations. Notably, semantic plausibility harms performance on questions about resulting actions, where following causal relationships matters more than semantic coherence. Reasoning models improve accuracy but their traces show semantic shortcuts, overthinking, and answer refusal. Unlike models whose plausibility advantage systematically widens with complexity, humans shows variable semantic effects. CenterBench provides the first framework to identify when models shift from structural analysis to pattern matching.
☆ ARC-Encoder: learning compressed text representations for large language models
Recent techniques such as retrieval-augmented generation or chain-of-thought reasoning have led to longer contexts and increased inference costs. Context compression techniques can reduce these costs, but the most effective approaches require fine-tuning the target model or even modifying its architecture. This can degrade its general abilities when not used for this specific purpose. Here we explore an alternative approach: an encoder that compresses the context into continuous representations which replace token embeddings in decoder LLMs. First, we perform a systematic study of training strategies and architecture choices for the encoder. Our findings led to the design of an Adaptable text Representations Compressor, named ARC-Encoder, which outputs $x$-times fewer continuous representations (typically $x\!\in\!\{4,8\}$) than text tokens. We evaluate ARC-Encoder across a variety of LLM usage scenarios, ranging from in-context learning to context window extension, on both instruct and base decoders. Results show that ARC-Encoder achieves state-of-the-art performance on several benchmarks while improving computational efficiency at inference. Finally, we demonstrate that our models can be adapted to multiple decoders simultaneously, allowing a single encoder to generalize across different decoder LLMs. This makes ARC-Encoder a flexible and efficient solution for portable encoders that work seamlessly with multiple LLMs. We release a training code at https://github.com/kyutai-labs/ARC-Encoder , fine-tuning dataset and pretrained models are available at https://huggingface.co/collections/kyutai/arc-encoders-68ee18787301407d60a57047 .
☆ Decoding the Ear: A Framework for Objectifying Expressiveness from Human Preference Through Efficient Alignment ICASSP 2026
Recent speech-to-speech (S2S) models generate intelligible speech but still lack natural expressiveness, largely due to the absence of a reliable evaluation metric. Existing approaches, such as subjective MOS ratings, low-level acoustic features, and emotion recognition are costly, limited, or incomplete. To address this, we present DeEAR (Decoding the Expressive Preference of eAR), a framework that converts human preference for speech expressiveness into an objective score. Grounded in phonetics and psychology, DeEAR evaluates speech across three dimensions: Emotion, Prosody, and Spontaneity, achieving strong alignment with human perception (Spearman's Rank Correlation Coefficient, SRCC = 0.86) using fewer than 500 annotated samples. Beyond reliable scoring, DeEAR enables fair benchmarking and targeted data curation. It not only distinguishes expressiveness gaps across S2S models but also selects 14K expressive utterances to form ExpressiveSpeech, which improves the expressive score (from 2.0 to 23.4 on a 100-point scale) of S2S models. Demos and codes are available at https://github.com/FreedomIntelligence/ExpressiveSpeech
comment: Submitted to ICASSP 2026. Demos and codes are available at https://github.com/FreedomIntelligence/ExpressiveSpeech
☆ Assessing the Political Fairness of Multilingual LLMs: A Case Study based on a 21-way Multiparallel EuroParl Dataset
The political biases of Large Language Models (LLMs) are usually assessed by simulating their answers to English surveys. In this work, we propose an alternative framing of political biases, relying on principles of fairness in multilingual translation. We systematically compare the translation quality of speeches in the European Parliament (EP), observing systematic differences with majority parties from left, center, and right being better translated than outsider parties. This study is made possible by a new, 21-way multiparallel version of EuroParl, the parliamentary proceedings of the EP, which includes the political affiliations of each speaker. The dataset consists of 1.5M sentences for a total of 40M words and 249M characters. It covers three years, 1000+ speakers, 7 countries, 12 EU parties, 25 EU committees, and hundreds of national parties.
☆ Hierarchical Sequence Iteration for Heterogeneous Question Answering
Retrieval-augmented generation (RAG) remains brittle on multi-step questions and heterogeneous evidence sources, trading accuracy against latency and token/tool budgets. This paper introducesHierarchical Sequence (HSEQ) Iteration for Heterogeneous Question Answering, a unified framework that (i) linearize documents, tables, and knowledge graphs into a reversible hierarchical sequence with lightweight structural tags, and (ii) perform structure-aware iteration to collect just-enough evidence before answer synthesis. A Head Agent provides guidance that leads retrieval, while an Iteration Agent selects and expands HSeq via structure-respecting actions (e.g., parent/child hops, table row/column neighbors, KG relations); Finally the head agent composes canonicalized evidence to genearte the final answer, with an optional refinement loop to resolve detected contradictions. Experiments on HotpotQA (text), HybridQA/TAT-QA (table+text), and MetaQA (KG) show consistent EM/F1 gains over strong single-pass, multi-hop, and agentic RAG baselines with high efficiency. Besides, HSEQ exhibits three key advantages: (1) a format-agnostic unification that enables a single policy to operate across text, tables, and KGs without per-dataset specialization; (2) guided, budget-aware iteration that reduces unnecessary hops, tool calls, and tokens while preserving accuracy; and (3) evidence canonicalization for reliable QA, improving answers consistency and auditability.
comment: 22 pages, 3 figures
☆ Robust Preference Alignment via Directional Neighborhood Consensus ICLR 2026
Aligning large language models with human preferences is critical for creating reliable and controllable AI systems. A human preference can be visualized as a high-dimensional vector where different directions represent trade-offs between desired attributes (e.g., helpfulness vs. verbosity). Yet, because the training data often reflects dominant, average preferences, LLMs tend to perform well on common requests but fall short in specific, individual needs. This mismatch creates a preference coverage gap. Existing methods often address this through costly retraining, which may not be generalized to the full spectrum of diverse preferences. This brittleness means that when a user's request reflects a nuanced preference deviating from the training data's central tendency, model performance can degrade unpredictably. To address this challenge, we introduce Robust Preference Selection (RPS), a post-hoc, training-free method by leveraging directional neighborhood consensus. Instead of forcing a model to generate a response from a single, highly specific preference, RPS samples multiple responses from a local neighborhood of related preferences to create a superior candidate pool. It then selects the response that best aligns with the user's original intent. We provide a theoretical framework showing our neighborhood generation strategy is provably superior to a strong baseline that also samples multiple candidates. Comprehensive experiments across three distinct alignment paradigms (DPA, DPO, and SFT) demonstrate that RPS consistently improves robustness against this baseline, achieving win rates of up to 69% on challenging preferences from under-represented regions of the space without any model retraining. Our work presents a practical, theoretically-grounded solution for enhancing the reliability of preference-aligned models.
comment: Under review at ICLR 2026. 10 pages, 5 figures. Code and data available at https://github.com/rcmao/robust-preference-alignment
☆ Steering Evaluation-Aware Language Models To Act Like They Are Deployed
Large language models (LLMs) can sometimes detect when they are being evaluated and adjust their behavior to appear more aligned, compromising the reliability of safety evaluations. In this paper, we show that adding a steering vector to an LLM's activations can suppress evaluation-awareness and make the model act like it is deployed during evaluation. To study our steering technique, we train an LLM to exhibit evaluation-aware behavior using a two-step training process designed to mimic how this behavior could emerge naturally. First, we perform continued pretraining on documents with factual descriptions of the model (1) using Python type hints during evaluation but not during deployment and (2) recognizing that the presence of a certain evaluation cue always means that it is being tested. Then, we train the model with expert iteration to use Python type hints in evaluation settings. The resulting model is evaluation-aware: it writes type hints in evaluation contexts more than deployment contexts. However, this gap can only be observed by removing the evaluation cue. We find that activation steering can suppress evaluation awareness and make the model act like it is deployed even when the cue is present. Importantly, we constructed our steering vector using the original model before our additional training. Our results suggest that AI evaluators could improve the reliability of safety evaluations by steering models to act like they are deployed.
☆ RECALL: REpresentation-aligned Catastrophic-forgetting ALLeviation via Hierarchical Model Merging
We unveil that internal representations in large language models (LLMs) serve as reliable proxies of learned knowledge, and propose RECALL, a novel representation-aware model merging framework for continual learning without access to historical data. RECALL computes inter-model similarity from layer-wise hidden representations over clustered typical samples, and performs adaptive, hierarchical parameter fusion to align knowledge across models. This design enables the preservation of domain-general features in shallow layers while allowing task-specific adaptation in deeper layers. Unlike prior methods that require task labels or incur performance trade-offs, RECALL achieves seamless multi-domain integration and strong resistance to catastrophic forgetting. Extensive experiments across five NLP tasks and multiple continual learning scenarios show that RECALL outperforms baselines in both knowledge retention and generalization, providing a scalable and data-free solution for evolving LLMs.
☆ Mask and You Shall Receive: Optimizing Masked Language Modeling For Pretraining BabyLMs
We describe our strategy for the 2025 edition of the BabyLM Challenge. Our main contribution is that of an improved form of Masked Language Modeling (MLM), which adapts the probabilities of the tokens masked according to the model's ability to predict them. The results show a substantial increase in performance on (Super)GLUE tasks over the standard MLM. We also incorporate sub-token embeddings, finding that this increases the model's morphological generalization capabilities. Our submission beats the baseline in the strict-small track.
comment: Submission to the 2025 BabyLM Challenge
☆ Systematic Evaluation of Uncertainty Estimation Methods in Large Language Models
Large language models (LLMs) produce outputs with varying levels of uncertainty, and, just as often, varying levels of correctness; making their practical reliability far from guaranteed. To quantify this uncertainty, we systematically evaluate four approaches for confidence estimation in LLM outputs: VCE, MSP, Sample Consistency, and CoCoA (Vashurin et al., 2025). For the evaluation of the approaches, we conduct experiments on four question-answering tasks using a state-of-the-art open-source LLM. Our results show that each uncertainty metric captures a different facet of model confidence and that the hybrid CoCoA approach yields the best reliability overall, improving both calibration and discrimination of correct answers. We discuss the trade-offs of each method and provide recommendations for selecting uncertainty measures in LLM applications.
☆ LM-mixup: Text Data Augmentation via Language Model based Mixup
Instruction tuning is crucial for aligning Large Language Models (LLMs), yet the quality of instruction-following data varies significantly. While high-quality data is paramount, it is often scarce; conversely, abundant low-quality data is frequently discarded, leading to substantial information loss. Existing data augmentation methods struggle to augment this low-quality data effectively, and the evaluation of such techniques remains poorly defined. To address this, we formally define the task of Instruction Distillation: distilling multiple low-quality and redundant inputs into high-quality and coherent instruction-output pairs. Specifically, we introduce a comprehensive data construction pipeline to create MIXTURE, a 144K-sample dataset pairing low-quality or semantically redundant imperfect instruction clusters with their high-quality distillations. We then introduce LM-Mixup, by first performing supervised fine-tuning on MIXTURE and then optimizing it with reinforcement learning. This process uses three complementary reward signals: quality, semantic alignment, and format compliance, via Group Relative Policy Optimization (GRPO). We demonstrate that LM-Mixup effectively augments imperfect datasets: fine-tuning LLMs on its distilled data, which accounts for only about 3% of the entire dataset, not only surpasses full-dataset training but also competes with state-of-the-art high-quality data selection methods across multiple benchmarks. Our work establishes that low-quality data is a valuable resource when properly distilled and augmented with LM-Mixup, significantly enhancing the efficiency and performance of instruction-tuned LLMs.
☆ Teacher Demonstrations in a BabyLM's Zone of Proximal Development for Contingent Multi-Turn Interaction EMNLP 2025
Multi-turn dialogues between a child and a caregiver are characterized by a property called contingency - that is, prompt, direct, and meaningful exchanges between interlocutors. We introduce ContingentChat, a teacher-student framework that benchmarks and improves multi-turn contingency in a BabyLM trained on 100M words. Using a novel alignment dataset for post-training, BabyLM generates responses that are more grammatical and cohesive. Experiments with adaptive teacher decoding strategies show limited additional gains. ContingentChat demonstrates the benefits of targeted post-training for dialogue quality and indicates that contingency remains a challenging goal for BabyLMs.
comment: Outstanding Paper Award, EMNLP 2025 BabyLM Workshop - Oral presentation, Suzhou, China
☆ Relative-Based Scaling Law for Neural Language Models
Scaling laws aim to accurately predict model performance across different scales. Existing scaling-law studies almost exclusively rely on cross-entropy as the evaluation metric. However, cross-entropy provides only a partial view of performance: it measures the absolute probability assigned to the correct token, but ignores the relative ordering between correct and incorrect tokens. Yet, relative ordering is crucial for language models, such as in greedy-sampling scenario. To address this limitation, we investigate scaling from the perspective of relative ordering. We first propose the Relative-Based Probability (RBP) metric, which quantifies the probability that the correct token is ranked among the top predictions. Building on this metric, we establish the Relative-Based Scaling Law, which characterizes how RBP improves with increasing model size. Through extensive experiments on four datasets and four model families spanning five orders of magnitude, we demonstrate the robustness and accuracy of this law. Finally, we illustrate the broad application of this law with two examples, namely providing a deeper explanation of emergence phenomena and facilitating finding fundamental theories of scaling laws. In summary, the Relative-Based Scaling Law complements the cross-entropy perspective and contributes to a more complete understanding of scaling large language models. Thus, it offers valuable insights for both practical development and theoretical exploration.
☆ NeoDictaBERT: Pushing the Frontier of BERT models for Hebrew
Since their initial release, BERT models have demonstrated exceptional performance on a variety of tasks, despite their relatively small size (BERT-base has ~100M parameters). Nevertheless, the architectural choices used in these models are outdated compared to newer transformer-based models such as Llama3 and Qwen3. In recent months, several architectures have been proposed to close this gap. ModernBERT and NeoBERT both show strong improvements on English benchmarks and significantly extend the supported context window. Following their successes, we introduce NeoDictaBERT and NeoDictaBERT-bilingual: BERT-style models trained using the same architecture as NeoBERT, with a dedicated focus on Hebrew texts. These models outperform existing ones on almost all Hebrew benchmarks and provide a strong foundation for downstream tasks. Notably, the NeoDictaBERT-bilingual model shows strong results on retrieval tasks, outperforming other multilingual models of similar size. In this paper, we describe the training process and report results across various benchmarks. We release the models to the community as part of our goal to advance research and development in Hebrew NLP.
☆ VLSP 2025 MLQA-TSR Challenge: Vietnamese Multimodal Legal Question Answering on Traffic Sign Regulation SP 2025
This paper presents the VLSP 2025 MLQA-TSR - the multimodal legal question answering on traffic sign regulation shared task at VLSP 2025. VLSP 2025 MLQA-TSR comprises two subtasks: multimodal legal retrieval and multimodal question answering. The goal is to advance research on Vietnamese multimodal legal text processing and to provide a benchmark dataset for building and evaluating intelligent systems in multimodal legal domains, with a focus on traffic sign regulation in Vietnam. The best-reported results on VLSP 2025 MLQA-TSR are an F2 score of 64.55% for multimodal legal retrieval and an accuracy of 86.30% for multimodal question answering.
comment: VLSP 2025 MLQA-TSR Share Task
☆ IKnow: Instruction-Knowledge-Aware Continual Pretraining for Effective Domain Adaptation
Continual pretraining promises to adapt large language models (LLMs) to new domains using only unlabeled test-time data, but naively applying standard self-supervised objectives to instruction-tuned models is known to degrade their instruction-following capability and semantic representations. Existing fixes assume access to the original base model or rely on knowledge from an external domain-specific database - both of which pose a realistic barrier in settings where the base model weights are withheld for safety reasons or reliable external corpora are unavailable. In this work, we propose Instruction-Knowledge-Aware Continual Adaptation (IKnow), a simple and general framework that formulates novel self-supervised objectives in the instruction-response dialogue format. Rather than depend- ing on external resources, IKnow leverages domain knowledge embedded within the text itself and learns to encode it at a deeper semantic level.
☆ The Impact of Negated Text on Hallucination with Large Language Models EMNLP 2025
Recent studies on hallucination in large language models (LLMs) have been actively progressing in natural language processing. However, the impact of negated text on hallucination with LLMs remains largely unexplored. In this paper, we set three important yet unanswered research questions and aim to address them. To derive the answers, we investigate whether LLMs can recognize contextual shifts caused by negation and still reliably distinguish hallucinations comparable to affirmative cases. We also design the NegHalu dataset by reconstructing existing hallucination detection datasets with negated expressions. Our experiments demonstrate that LLMs struggle to detect hallucinations in negated text effectively, often producing logically inconsistent or unfaithful judgments. Moreover, we trace the internal state of LLMs as they process negated inputs at the token level and reveal the challenges of mitigating their unintended effects.
comment: Accepted to the EMNLP 2025
☆ Dialogue Is Not Enough to Make a Communicative BabyLM (But Neither Is Developmentally Inspired Reinforcement Learning)
We investigate whether pre-training exclusively on dialogue data results in formally and functionally apt small language models. Based on this pre-trained llamalogue model, we employ a variety of fine-tuning strategies to enforce "more communicative" text generations by our models. Although our models underperform on most standard BabyLM benchmarks, they excel at dialogue continuation prediction in a minimal pair setting. While PPO fine-tuning has mixed to adversarial effects on our models, DPO fine-tuning further improves their performance on our custom dialogue benchmark.
☆ FreeChunker: A Cross-Granularity Chunking Framework
Chunking strategies significantly impact the effectiveness of Retrieval-Augmented Generation (RAG) systems. Existing methods operate within fixed-granularity paradigms that rely on static boundary identification, limiting their adaptability to diverse query requirements. This paper presents FreeChunker, a Cross-Granularity Encoding Framework that fundamentally transforms the traditional chunking paradigm: the framework treats sentences as atomic units and shifts from static chunk segmentation to flexible retrieval supporting arbitrary sentence combinations. This paradigm shift not only significantly reduces the computational overhead required for semantic boundary detection but also enhances adaptability to complex queries. Experimental evaluation on LongBench V2 demonstrates that FreeChunker achieves superior retrieval performance compared to traditional chunking methods, while significantly outperforming existing approaches in computational efficiency.
comment: Submitted to arXiv, October 2025
☆ Evaluating Latent Knowledge of Public Tabular Datasets in Large Language Models
Large Language Models (LLMs) are increasingly evaluated on their ability to reason over structured data, yet such assessments often overlook a crucial confound: dataset contamination. In this work, we investigate whether LLMs exhibit prior knowledge of widely used tabular benchmarks such as Adult Income, Titanic, and others. Through a series of controlled probing experiments, we reveal that contamination effects emerge exclusively for datasets containing strong semantic cues-for instance, meaningful column names or interpretable value categories. In contrast, when such cues are removed or randomized, performance sharply declines to near-random levels. These findings suggest that LLMs' apparent competence on tabular reasoning tasks may, in part, reflect memorization of publicly available datasets rather than genuine generalization. We discuss implications for evaluation protocols and propose strategies to disentangle semantic leakage from authentic reasoning ability in future LLM assessments.
☆ Teaching Language Models to Reason with Tools NIPS2025
Large reasoning models (LRMs) like OpenAI-o1 have shown impressive capabilities in natural language reasoning. However, these models frequently demonstrate inefficiencies or inaccuracies when tackling complex mathematical operations. While integrating computational tools such as Code Interpreters (CIs) offers a promising solution, it introduces a critical challenge: a conflict between the model's internal, probabilistic reasoning and the external, deterministic knowledge provided by the CI, which often leads models to unproductive deliberation. To overcome this, we introduce CoRT (Code-Optimized Reasoning Training), a post-training framework designed to teach LRMs to effectively utilize CIs. We propose \emph{Hint-Engineering}, a new data synthesis strategy that strategically injects diverse hints at optimal points within reasoning paths. This approach generates high-quality, code-integrated reasoning data specifically tailored to optimize LRM-CI interaction. Using this method, we have synthesized 30 high-quality samples to post-train models ranging from 1.5B to 32B parameters through supervised fine-tuning. CoRT further refines the multi-round interleaving of external CI usage and internal thinking by employing rejection sampling and reinforcement learning. Our experimental evaluations demonstrate CoRT's effectiveness, yielding absolute improvements of 4\% and 8\% on DeepSeek-R1-Distill-Qwen-32B and DeepSeek-R1-Distill-Qwen-1.5B, respectively, across five challenging mathematical reasoning datasets. Moreover, CoRT significantly enhances efficiency, reducing token usage by approximately 30\% for the 32B model and 50\% for the 1.5B model compared to pure natural language reasoning baselines. The models and code are available at: https://github.com/ChengpengLi1003/CoRT.
comment: NIPS2025 Accepted
☆ Exploring Generative Process Reward Modeling for Semi-Structured Data: A Case Study of Table Question Answering
Process reward models (PRMs) improve complex reasoning in large language models (LLMs) by grading candidate solutions step-by-step and selecting answers via aggregated step scores. While effective in domains such as mathematics, their applicability to tasks involving semi-structured data, like table question answering (TQA) remains unexplored. TQA poses unique challenges for PRMs, including abundant irrelevant information, loosely connected reasoning steps, and domain-specific reasoning. This work presents the first systematic study of PRMs for TQA. We evaluate state-of-the-art generative PRMs on TQA from both answer and step perspectives. Results show that PRMs that combine textual and code verification can aid solution selection but struggle to generalize to out-of-domain data. Analysis reveals a weak correlation between performance in step-level verification and answer accuracy, possibly stemming from weak step dependencies and loose causal links. Our findings highlight limitations of current PRMs on TQA and offer valuable insights for building more robust, process-aware verifiers.
☆ Citation Failure: Definition, Analysis and Efficient Mitigation
Citations from LLM-based RAG systems are supposed to simplify response verification. However, this does not hold for citation failure, when a model generates a helpful response, but fails to cite complete evidence. In contrast to previous work, we propose to disentangle this from response failure, where the response itself is flawed, and citing complete evidence is impossible. To address citation failure, this work follows a two-step approach: (1) We study when citation failure occurs and (2) how it can be mitigated. For step 1, we extend prior work by investigating how the relation between response and evidence affects citation quality. We introduce CITECONTROL, a benchmark that systematically varies this relation to analyze failure modes. Experiments show that failures increase with relational complexity and suggest that combining citation methods could improve performance, motivating step 2. To improve LLM citation efficiently, we propose CITENTION, a framework integrating generative, attention-based, and retrieval-based methods. Results demonstrate substantial citation improvements on CITECONTROL and in transfer settings. We make our data and code publicly available.
comment: Under review. Paper repository: https://github.com/UKPLab/arxiv2025-citation-failure
☆ Context-level Language Modeling by Learning Predictive Context Embeddings
Next-token prediction (NTP) is the cornerstone of modern large language models (LLMs) pretraining, driving their unprecedented capabilities in text generation, reasoning, and instruction following. However, the token-level prediction limits the model's capacity to capture higher-level semantic structures and long-range contextual relationships. To overcome this limitation, we introduce \textbf{ContextLM}, a framework that augments standard pretraining with an inherent \textbf{next-context prediction} objective. This mechanism trains the model to learn predictive representations of multi-token contexts, leveraging error signals derived from future token chunks. Crucially, ContextLM achieves this enhancement while remaining fully compatible with the standard autoregressive, token-by-token evaluation paradigm (e.g., perplexity). Extensive experiments on the GPT2 and Pythia model families, scaled up to $1.5$B parameters, show that ContextLM delivers consistent improvements in both perplexity and downstream task performance. Our analysis indicates that next-context prediction provides a scalable and efficient pathway to stronger language modeling, yielding better long-range coherence and more effective attention allocation with minimal computational overhead.
comment: 16pages,6 figures
☆ ImpossibleBench: Measuring LLMs' Propensity of Exploiting Test Cases
The tendency to find and exploit "shortcuts" to complete tasks poses significant risks for reliable assessment and deployment of large language models (LLMs). For example, an LLM agent with access to unit tests may delete failing tests rather than fix the underlying bug. Such behavior undermines both the validity of benchmark results and the reliability of real-world LLM coding assistant deployments. To quantify, study, and mitigate such behavior, we introduce ImpossibleBench, a benchmark framework that systematically measures LLM agents' propensity to exploit test cases. ImpossibleBench creates "impossible" variants of tasks from existing benchmarks like LiveCodeBench and SWE-bench by introducing direct conflicts between the natural-language specification and the unit tests. We measure an agent's "cheating rate" as its pass rate on these impossible tasks, where any pass necessarily implies a specification-violating shortcut. As a practical framework, ImpossibleBench is not just an evaluation but a versatile tool. We demonstrate its utility for: (1) studying model behaviors, revealing more fine-grained details of cheating behaviors from simple test modification to complex operator overloading; (2) context engineering, showing how prompt, test access and feedback loop affect cheating rates; and (3) developing monitoring tools, providing a testbed with verified deceptive solutions. We hope ImpossibleBench serves as a useful framework for building more robust and reliable LLM systems. Our implementation can be found at https://github.com/safety-research/impossiblebench.
☆ Calibrating Multimodal Consensus for Emotion Recognition
In recent years, Multimodal Emotion Recognition (MER) has made substantial progress. Nevertheless, most existing approaches neglect the semantic inconsistencies that may arise across modalities, such as conflicting emotional cues between text and visual inputs. Besides, current methods are often dominated by the text modality due to its strong representational capacity, which can compromise recognition accuracy. To address these challenges, we propose a model termed Calibrated Multimodal Consensus (CMC). CMC introduces a Pseudo Label Generation Module (PLGM) to produce pseudo unimodal labels, enabling unimodal pretraining in a self-supervised fashion. It then employs a Parameter-free Fusion Module (PFM) and a Multimodal Consensus Router (MCR) for multimodal finetuning, thereby mitigating text dominance and guiding the fusion process toward a more reliable consensus. Experimental results demonstrate that CMC achieves performance on par with or superior to state-of-the-art methods across four datasets, CH-SIMS, CH-SIMS v2, CMU-MOSI, and CMU-MOSEI, and exhibits notable advantages in scenarios with semantic inconsistencies on CH-SIMS and CH-SIMS v2. The implementation of this work is publicly accessible at https://github.com/gw-zhong/CMC.
☆ Tri-Modal Severity Fused Diagnosis across Depression and Post-traumatic Stress Disorders
Depression and post traumatic stress disorder (PTSD) often co-occur with connected symptoms, complicating automated assessment, which is often binary and disorder specific. Clinically useful diagnosis needs severity aware cross disorder estimates and decision support explanations. Our unified tri modal affective severity framework synchronizes and fuses interview text with sentence level transformer embeddings, audio with log Mel statistics with deltas, and facial signals with action units, gaze, head and pose descriptors to output graded severities for diagnosing both depression (PHQ-8; 5 classes) and PTSD (3 classes). Standardized features are fused via a calibrated late fusion classifier, yielding per disorder probabilities and feature-level attributions. This severity aware tri-modal affective fusion approach is demoed on multi disorder concurrent depression and PTSD assessment. Stratified cross validation on DAIC derived corpora outperforms unimodal/ablation baselines. The fused model matches the strongest unimodal baseline on accuracy and weighted F1, while improving decision curve utility and robustness under noisy or missing modalities. For PTSD specifically, fusion reduces regression error and improves class concordance. Errors cluster between adjacent severities; extreme classes are identified reliably. Ablations show text contributes most to depression severity, audio and facial cues are critical for PTSD, whereas attributions align with linguistic and behavioral markers. Our approach offers reproducible evaluation and clinician in the loop support for affective clinical decision making.
☆ Why LVLMs Are More Prone to Hallucinations in Longer Responses: The Role of Context
Large Vision-Language Models (LVLMs) have made significant progress in recent years but are also prone to hallucination issues. They exhibit more hallucinations in longer, free-form responses, often attributed to accumulated uncertainties. In this paper, we ask: Does increased hallucination result solely from length-induced errors, or is there a deeper underlying mechanism? After a series of preliminary experiments and findings, we suggest that the risk of hallucinations is not caused by length itself but by the increased reliance on context for coherence and completeness in longer responses. Building on these insights, we propose a novel "induce-detect-suppress" framework that actively induces hallucinations through deliberately designed contexts, leverages induced instances for early detection of high-risk cases, and ultimately suppresses potential object-level hallucinations during actual decoding. Our approach achieves consistent, significant improvements across all benchmarks, demonstrating its efficacy. The strong detection and improved hallucination mitigation not only validate our framework but, more importantly, re-validate our hypothesis on context. Rather than solely pursuing performance gains, this study aims to provide new insights and serves as a first step toward a deeper exploration of hallucinations in LVLMs' longer responses.
☆ Decoding-Free Sampling Strategies for LLM Marginalization
Modern language models operate on subword-tokenized text in order to make a trade-off between model size, inference speed, and vocabulary coverage. A side effect of this is that, during inference, models are evaluated by measuring the probability of only the specific tokenization produced as the output, despite there being many possible ways to represent the same text with a subword vocabulary. Recent studies have argued instead for evaluating LLMs by marginalization - the probability mass of all tokenizations of a given text. Marginalization is difficult due to the number of possible tokenizations of a text, so often approximate marginalization is done via sampling. However, a downside of sampling is that an expensive generation step must be performed by the LLM for each sample, which limits the number of samples that can be acquired given a runtime budget, and therefore also the accuracy of the approximation. Since computing the probability of a sequence given the tokenization is relatively cheap compared to actually generating it, we investigate sampling strategies that are decoding-free - they require no generation from the LLM, instead relying entirely on extremely cheap sampling strategies that are model and tokenizer agnostic. We investigate the approximation quality and speed of decoding-free sampling strategies for a number of open models to find that they provide sufficiently accurate marginal estimates at a small fraction of the runtime cost and demonstrate its use on a set of downstream inference tasks.
comment: 10 pages, 3 figures
☆ Stuck in the Matrix: Probing Spatial Reasoning in Large Language Models
This paper explores the spatial reasoning capability of large language models (LLMs) over textual input through a suite of five tasks aimed at probing their spatial understanding and computational abilities. The models were tested on both fundamental spatial reasoning and multi-step problem-solving within structured grid-based environments using tasks such as quadrant identification, geometric transformations, distance evaluation, word searches, and tile sliding. Each task was scaled in complexity through increasing grid dimensions, requiring models to extend beyond simple pattern recognition into abstract spatial reasoning. Our results reveal that while LLMs demonstrate moderate success in all tasks with small complexity and size, performance drops off rapidly as scale increases, with an average loss in accuracy of 42.7%, and reaching as high as 84%. Every test that began with over 50% accuracy showed a loss of at least 48%, illustrating the consistent nature of the deterioration. Furthermore, their struggles with scaling complexity hint at a lack of robust spatial representations in their underlying architectures. This paper underscores the gap between linguistic and spatial reasoning in LLMs, offering insights into their current limitations, and laying the groundwork for future integrative benchmarks at the intersection of language and geometry.
comment: 20 pages, 24 figures
☆ Multimedia-Aware Question Answering: A Review of Retrieval and Cross-Modal Reasoning Architectures
Question Answering (QA) systems have traditionally relied on structured text data, but the rapid growth of multimedia content (images, audio, video, and structured metadata) has introduced new challenges and opportunities for retrieval-augmented QA. In this survey, we review recent advancements in QA systems that integrate multimedia retrieval pipelines, focusing on architectures that align vision, language, and audio modalities with user queries. We categorize approaches based on retrieval methods, fusion techniques, and answer generation strategies, and analyze benchmark datasets, evaluation protocols, and performance tradeoffs. Furthermore, we highlight key challenges such as cross-modal alignment, latency-accuracy tradeoffs, and semantic grounding, and outline open problems and future research directions for building more robust and context-aware QA systems leveraging multimedia data.
comment: In Proceedings of the 2nd ACM Workshop in AI-powered Question and Answering Systems (AIQAM '25), October 27-28, 2025, Dublin, Ireland. ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/3746274.3760393
☆ Every Question Has Its Own Value: Reinforcement Learning with Explicit Human Values
We propose Reinforcement Learning with Explicit Human Values (RLEV), a method that aligns Large Language Model (LLM) optimization directly with quantifiable human value signals. While Reinforcement Learning with Verifiable Rewards (RLVR) effectively trains models in objective domains using binary correctness rewards, it overlooks that not all tasks are equally significant. RLEV extends this framework by incorporating human-defined value signals directly into the reward function. Using exam-style data with explicit ground-truth value labels, RLEV consistently outperforms correctness-only baselines across multiple RL algorithms and model scales. Crucially, RLEV policies not only improve value-weighted accuracy but also learn a value-sensitive termination policy: concise for low-value prompts, thorough for high-value ones. We demonstrate this behavior stems from value-weighted gradient amplification on end-of-sequence tokens. Ablation studies confirm the gain is causally linked to value alignment. RLEV remains robust under noisy value signals, such as difficulty-based labels, demonstrating that optimizing for an explicit utility function offers a practical path to aligning LLMs with human priorities.
comment: 15 pages, 4 figures
☆ Mixture-of-Minds: Multi-Agent Reinforcement Learning for Table Understanding
Understanding and reasoning over tables is a critical capability for many real-world applications. Large language models (LLMs) have shown promise on this task, but current approaches remain limited. Fine-tuning based methods strengthen language reasoning; yet they are prone to arithmetic errors and hallucination. In contrast, tool-based methods enable precise table manipulation but rely on rigid schemas and lack semantic understanding. These complementary drawbacks highlight the need for approaches that integrate robust reasoning with reliable table processing. In this work, we propose Mixture-of-Minds, a multi-agent framework that decomposes table reasoning into three specialized roles: planning, coding, and answering. This design enables each agent to focus on a specific aspect of the task while leveraging code execution for precise table manipulation. Building on this workflow, we introduce a self-improvement training framework that employs Monte Carlo Tree Search (MCTS) rollouts to generate pseudo-gold trajectories and optimize agents with reinforcement learning (RL). Extensive experiments show that Mixture-of-Minds delivers substantial gains, reaching 62.13% on TableBench and surpassing OpenAI-o4-mini-high. These results demonstrate the promise of combining structured multi-agent workflows with RL to advance table understanding.
comment: 18 pages, 4 figures
☆ DeepWideSearch: Benchmarking Depth and Width in Agentic Information Seeking
Current search agents fundamentally lack the ability to simultaneously perform \textit{deep} reasoning over multi-hop retrieval and \textit{wide}-scale information collection-a critical deficiency for real-world applications like comprehensive market analysis and business development. To bridge this gap, we introduce DeepWideSearch, the first benchmark explicitly designed to evaluate agents to integrate depth and width in information seeking. In DeepWideSearch, agents must process a large volume of data, each requiring deep reasoning over multi-hop retrieval paths. Specifically, we propose two methods to converse established datasets, resulting in a curated collection of 220 questions spanning 15 diverse domains. Extensive experiments demonstrate that even state-of-the-art agents achieve only 2.39% average success rate on DeepWideSearch, highlighting the substantial challenge of integrating depth and width search in information-seeking tasks. Furthermore, our error analysis reveals four failure modes: lack of reflection, overreliance on internal knowledge, insufficient retrieval, and context overflow-exposing key limitations in current agent architectures. We publicly release DeepWideSearch to catalyze future research on more capable and robust information-seeking agents.
☆ Are Stereotypes Leading LLMs' Zero-Shot Stance Detection ? EMNLP 2025
Large Language Models inherit stereotypes from their pretraining data, leading to biased behavior toward certain social groups in many Natural Language Processing tasks, such as hateful speech detection or sentiment analysis. Surprisingly, the evaluation of this kind of bias in stance detection methods has been largely overlooked by the community. Stance Detection involves labeling a statement as being against, in favor, or neutral towards a specific target and is among the most sensitive NLP tasks, as it often relates to political leanings. In this paper, we focus on the bias of Large Language Models when performing stance detection in a zero-shot setting. We automatically annotate posts in pre-existing stance detection datasets with two attributes: dialect or vernacular of a specific group and text complexity/readability, to investigate whether these attributes influence the model's stance detection decisions. Our results show that LLMs exhibit significant stereotypes in stance detection tasks, such as incorrectly associating pro-marijuana views with low text complexity and African American dialect with opposition to Donald Trump.
comment: Accepted in EMNLP 2025 (Main)
☆ BoundRL: Efficient Structured Text Segmentation through Reinforced Boundary Generation
As structured texts become increasingly complex across diverse domains -- from technical reports to generative AI prompts -- the need for text segmentation into semantically meaningful components becomes critical. Such texts often contain elements beyond plain language, including tables, code snippets, and placeholders, which conventional sentence- or paragraph-level segmentation methods cannot handle effectively. To address this challenge, we propose BoundRL, a novel and efficient approach that jointly performs token-level text segmentation and label prediction for long structured texts. Instead of generating complete contents for each segment, it generates only a sequence of starting tokens and reconstructs the complete contents by locating these tokens within the original texts, thereby reducing inference costs by orders of magnitude and minimizing hallucination. To adapt the model for the output format, BoundRL~performs reinforcement learning with verifiable rewards (RLVR) with a specifically designed reward that jointly optimizes document reconstruction fidelity and semantic alignment. To mitigate entropy collapse, it further constructs intermediate candidates by systematically perturbing a fraction of generated sequences of segments to create stepping stones toward higher-quality solutions. To demonstrate BoundRL's effectiveness on particularly challenging structured texts, we focus evaluation on complex prompts used for LLM applications. Experiments show that BoundRL enables small language models (1.7B parameters) to outperform few-shot prompting of much larger models. Moreover, RLVR with our designed reward yields significant improvements over supervised fine-tuning, and incorporating intermediate candidates further improves both performance and generalization.
☆ AI PB: A Grounded Generative Agent for Personalized Investment Insights
We present AI PB, a production-scale generative agent deployed in real retail finance. Unlike reactive chatbots that answer queries passively, AI PB proactively generates grounded, compliant, and user-specific investment insights. It integrates (i) a component-based orchestration layer that deterministically routes between internal and external LLMs based on data sensitivity, (ii) a hybrid retrieval pipeline using OpenSearch and the finance-domain embedding model, and (iii) a multi-stage recommendation mechanism combining rule heuristics, sequential behavioral modeling, and contextual bandits. Operating fully on-premises under Korean financial regulations, the system employs Docker Swarm and vLLM across 24 X NVIDIA H100 GPUs. Through human QA and system metrics, we demonstrate that grounded generation with explicit routing and layered safety can deliver trustworthy AI insights in high-stakes finance.
comment: Under Review
☆ Leveraging the Power of Large Language Models in Entity Linking via Adaptive Routing and Targeted Reasoning
Entity Linking (EL) has traditionally relied on large annotated datasets and extensive model fine-tuning. While recent few-shot methods leverage large language models (LLMs) through prompting to reduce training requirements, they often suffer from inefficiencies due to expensive LLM-based reasoning. ARTER (Adaptive Routing and Targeted Entity Reasoning) presents a structured pipeline that achieves high performance without deep fine-tuning by strategically combining candidate generation, context-based scoring, adaptive routing, and selective reasoning. ARTER computes a small set of complementary signals(both embedding and LLM-based) over the retrieved candidates to categorize contextual mentions into easy and hard cases. The cases are then handled by a low-computational entity linker (e.g. ReFinED) and more expensive targeted LLM-based reasoning respectively. On standard benchmarks, ARTER outperforms ReFinED by up to +4.47%, with an average gain of +2.53% on 5 out of 6 datasets, and performs comparably to pipelines using LLM-based reasoning for all mentions, while being as twice as efficient in terms of the number of LLM tokens.
☆ BIOCAP: Exploiting Synthetic Captions Beyond Labels in Biological Foundation Models
This work investigates descriptive captions as an additional source of supervision for biological multimodal foundation models. Images and captions can be viewed as complementary samples from the latent morphospace of a species, each capturing certain biological traits. Incorporating captions during training encourages alignment with this shared latent structure, emphasizing potentially diagnostic characters while suppressing spurious correlations. The main challenge, however, lies in obtaining faithful, instance-specific captions at scale. This requirement has limited the utilization of natural language supervision in organismal biology compared with many other scientific domains. We complement this gap by generating synthetic captions with multimodal large language models (MLLMs), guided by Wikipedia-derived visual information and taxon-tailored format examples. These domain-specific contexts help reduce hallucination and yield accurate, instance-based descriptive captions. Using these captions, we train BIOCAP (i.e., BIOCLIP with Captions), a biological foundation model that captures rich semantics and achieves strong performance in species classification and text-image retrieval. These results demonstrate the value of descriptive captions beyond labels in bridging biological images with multimodal foundation models.
comment: Project page: https://imageomics.github.io/biocap/
☆ CreativityPrism: A Holistic Benchmark for Large Language Model Creativity
Creativity is often seen as a hallmark of human intelligence. While large language models (LLMs) are increasingly perceived as producing creative text, there is still no holistic framework to evaluate their creativity across diverse scenarios. Existing evaluation methods remain fragmented, with dramatic variation across domains and tasks, largely due to differing definitions and measurements of creativity. Inspired by the hypothesis that creativity is not one fixed idea, we propose CreativityPrism, an evaluation analysis framework that decomposes creativity into three dimensions: quality, novelty, and diversity. CreativityPrism incorporates nine tasks, three domains, i.e., divergent thinking, creative writing, and logical reasoning, and twenty evaluation metrics, which measure each dimension in task-specific, unique ways. We evaluate 17 state-of-the-art (SoTA) proprietary and open-sourced LLMs on CreativityPrism and analyze the performance correlations among different metrics and task domains. Our results reveal a notable gap between proprietary and open-source models. Overall, model performance tends to be highly correlated across tasks within the same domain and less so across different domains. Among evaluation dimensions, diversity and quality metrics show strong correlations - models that perform well on one often excel on the other - whereas novelty exhibits much weaker correlation with either. These findings support our hypothesis that strong performance in one creativity task or dimension does not necessarily generalize to others, underscoring the need for a holistic evaluation of LLM creativity.
♻ ☆ Language Models use Lookbacks to Track Beliefs
How do language models (LMs) represent characters' beliefs, especially when those beliefs may differ from reality? This question lies at the heart of understanding the Theory of Mind (ToM) capabilities of LMs. We analyze LMs' ability to reason about characters' beliefs using causal mediation and abstraction. We construct a dataset, CausalToM, consisting of simple stories where two characters independently change the state of two objects, potentially unaware of each other's actions. Our investigation uncovers a pervasive algorithmic pattern that we call a lookback mechanism, which enables the LM to recall important information when it becomes necessary. The LM binds each character-object-state triple together by co-locating their reference information, represented as Ordering IDs (OIs), in low-rank subspaces of the state token's residual stream. When asked about a character's beliefs regarding the state of an object, the binding lookback retrieves the correct state OI and then the answer lookback retrieves the corresponding state token. When we introduce text specifying that one character is (not) visible to the other, we find that the LM first generates a visibility ID encoding the relation between the observing and the observed character OIs. In a visibility lookback, this ID is used to retrieve information about the observed character and update the observing character's beliefs. Our work provides insights into belief tracking mechanisms, taking a step toward reverse-engineering ToM reasoning in LMs.
comment: 31 pages, 33 figures. Code and data at https://belief.baulab.info/
♻ ☆ Text2Mem: A Unified Memory Operation Language for Memory Operating System
Large language model agents increasingly depend on memory to sustain long horizon interaction, but existing frameworks remain limited. Most expose only a few basic primitives such as encode, retrieve, and delete, while higher order operations like merge, promote, demote, split, lock, and expire are missing or inconsistently supported. Moreover, there is no formal and executable specification for memory commands, leaving scope and lifecycle rules implicit and causing unpredictable behavior across systems. We introduce Text2Mem, a unified memory operation language that provides a standardized pathway from natural language to reliable execution. Text2Mem defines a compact yet expressive operation set aligned with encoding, storage, and retrieval. Each instruction is represented as a JSON based schema instance with required fields and semantic invariants, which a parser transforms into typed operation objects with normalized parameters. A validator ensures correctness before execution, while adapters map typed objects either to a SQL prototype backend or to real memory frameworks. Model based services such as embeddings or summarization are integrated when required. All results are returned through a unified execution contract. This design ensures safety, determinism, and portability across heterogeneous backends. We also outline Text2Mem Bench, a planned benchmark that separates schema generation from backend execution to enable systematic evaluation. Together, these components establish the first standardized foundation for memory control in agents.
comment: 12 pages, 3 figures, 2 tables
♻ ☆ FlyLoRA: Boosting Task Decoupling and Parameter Efficiency via Implicit Rank-Wise Mixture-of-Experts NeurIPS 2025
Low-Rank Adaptation (LoRA) is a widely used parameter-efficient fine-tuning method for foundation models, but it suffers from parameter interference, resulting in suboptimal performance. Although Mixture-of-Experts (MoE)-based LoRA variants show promise in mitigating intra-task correlations in single-task instruction tuning, they introduce additional router parameters and remain ineffective in multi-task model merging where inter-task interference arises. Inspired by the fly olfactory circuit, we propose FlyLoRA, an implicit MoE-based LoRA variant that introduces: (1) rank-wise expert activation in the up-projection matrix, and (2) an implicit router that unifies expert routing and down-projection, where a frozen sparse random projection matrix replaces the traditional dense trainable version. This design resolves the trade-off between intra-task decorrelation and computational efficiency by eliminating the need for an explicit router, while inherently mitigating inter-task interference due to the orthogonality property of random matrices. Extensive experiments across four domains -- general knowledge understanding, scientific question answering, mathematical reasoning, and code generation -- demonstrate consistent performance improvements over existing methods. Beyond empirical gains, FlyLoRA highlights how biological structures can inspire innovations in AI technologies. Code is available at https://github.com/gfyddha/FlyLoRA.
comment: NeurIPS 2025 accepted paper
♻ ☆ Integrating Structural and Semantic Signals in Text-Attributed Graphs with BiGTex
Text-attributed graphs (TAGs) present unique challenges in representation learning by requiring models to capture both the semantic richness of node-associated texts and the structural dependencies of the graph. While graph neural networks (GNNs) excel at modeling topological information, they lack the capacity to process unstructured text. Conversely, large language models (LLMs) are proficient in text understanding but are typically unaware of graph structure. In this work, we propose BiGTex (Bidirectional Graph Text), a novel architecture that tightly integrates GNNs and LLMs through stacked Graph-Text Fusion Units. Each unit allows for mutual attention between textual and structural representations, enabling information to flow in both directions, text influencing structure and structure guiding textual interpretation. The proposed architecture is trained using parameter-efficient fine-tuning (LoRA), keeping the LLM frozen while adapting to task-specific signals. Extensive experiments on five benchmark datasets demonstrate that BiGTex achieves state-of-the-art performance in node classification and generalizes effectively to link prediction. An ablation study further highlights the importance of soft prompting and bi-directional attention in the model's success.
comment: 26 pages, 4 figures
♻ ☆ Blockwise SFT for Diffusion Language Models: Reconciling Bidirectional Attention and Autoregressive Decoding
Discrete diffusion language models have shown strong potential for text generation, yet standard supervised fine-tuning (SFT) misaligns with their semi-autoregressive inference: training randomly masks tokens across the entire response, while inference generates fixed-size blocks sequentially. This mismatch introduces noisy prefixes and leaky suffixes, biasing gradients away from the desired blockwise likelihood. We propose Blockwise SFT, which partitions responses into fixed-size blocks, selects one active block per step for stochastic masking, freezes all preceding tokens, and fully hides future ones. Loss is computed only over the active block, directly mirroring the blockwise decoding process. Experiments on GSM8K, MATH, and MetaMathQA show consistent gains over classical SFT under equal compute or token budgets. Block size consistency studies and ablations confirm that improvements stem from faithful training-inference alignment rather than incidental masking effects. Our results highlight the importance of matching supervision granularity to the decoding procedure in diffusion-based language models.
♻ ☆ Fast-Slow Thinking GRPO for Large Vision-Language Model Reasoning
When applying reinforcement learning--typically through GRPO--to large vision-language model reasoning struggles to effectively scale reasoning length or generates verbose outputs across all tasks with only marginal gains in accuracy. To address this issue, we present FAST-GRPO, a variant of GRPO that dynamically adapts reasoning depth based on question characteristics. Through empirical analysis, we establish the feasibility of fast-slow thinking in LVLMs by investigating how response length and data distribution affect performance. Inspired by these observations, we introduce two complementary metrics to estimate the difficulty of the questions, guiding the model to determine when fast or slow thinking is more appropriate. Next, we incorporate adaptive length-based rewards and difficulty-aware KL divergence into the GRPO algorithm. Experiments across seven reasoning benchmarks demonstrate that FAST achieves state-of-the-art accuracy with over 10\% relative improvement compared to the base model, while reducing token usage by 32.7-67.3\% compared to previous slow-thinking approaches, effectively balancing reasoning length and accuracy.
♻ ☆ On the Emergence of Linear Analogies in Word Embeddings NeurIPS 2025
Models such as Word2Vec and GloVe construct word embeddings based on the co-occurrence probability $P(i,j)$ of words $i$ and $j$ in text corpora. The resulting vectors $W_i$ not only group semantically similar words but also exhibit a striking linear analogy structure -- for example, $W_{\text{king}} - W_{\text{man}} + W_{\text{woman}} \approx W_{\text{queen}}$ -- whose theoretical origin remains unclear. Previous observations indicate that this analogy structure: (i) already emerges in the top eigenvectors of the matrix $M(i,j) = P(i,j)/P(i)P(j)$, (ii) strengthens and then saturates as more eigenvectors of $M (i, j)$, which controls the dimension of the embeddings, are included, (iii) is enhanced when using $\log M(i,j)$ rather than $M(i,j)$, and (iv) persists even when all word pairs involved in a specific analogy relation (e.g., king-queen, man-woman) are removed from the corpus. To explain these phenomena, we introduce a theoretical generative model in which words are defined by binary semantic attributes, and co-occurrence probabilities are derived from attribute-based interactions. This model analytically reproduces the emergence of linear analogy structure and naturally accounts for properties (i)-(iv). It can be viewed as giving fine-grained resolution into the role of each additional embedding dimension. It is robust to various forms of noise and agrees well with co-occurrence statistics measured on Wikipedia and the analogy benchmark introduced by Mikolov et al.
comment: Main: 10 pages, 3 figures. Appendices: 11 pages, 7 figures. Accepted at NeurIPS 2025 as a poster
♻ ☆ Superposition Yields Robust Neural Scaling NeurIPS 2025
The success of today's large language models (LLMs) depends on the observation that larger models perform better. However, the origin of this neural scaling law, that loss decreases as a power law with model size, remains unclear. We propose that representation superposition, meaning that LLMs represent more features than they have dimensions, can be a key contributor to loss and cause neural scaling. Based on Anthropic's toy model, we use weight decay to control the degree of superposition, allowing us to systematically study how loss scales with model size. When superposition is weak, the loss follows a power law only if data feature frequencies are power-law distributed. In contrast, under strong superposition, the loss generically scales inversely with model dimension across a broad class of frequency distributions, due to geometric overlaps between representation vectors. We confirmed that open-sourced LLMs operate in the strong superposition regime and have loss scaling like one over the model dimension, and that the Chinchilla scaling laws are also consistent with this behavior. Our results identify representation superposition as a central driver of neural scaling laws, providing insights into questions like when neural scaling laws can be improved and when they will break down.
comment: Accepted at NeurIPS 2025
♻ ☆ ReDit: Reward Dithering for Improved LLM Policy Optimization
DeepSeek-R1 has successfully enhanced Large Language Model (LLM) reasoning capabilities through its rule-based reward system. While it's a ''perfect'' reward system that effectively mitigates reward hacking, such reward functions are often discrete. Our experimental observations suggest that discrete rewards can lead to gradient anomaly, unstable optimization, and slow convergence. To address this issue, we propose ReDit (Reward Dithering), a method that dithers the discrete reward signal by adding simple random noise. With this perturbed reward, exploratory gradients are continuously provided throughout the learning process, enabling smoother gradient updates and accelerating convergence. The injected noise also introduces stochasticity into flat reward regions, encouraging the model to explore novel policies and escape local optima. Experiments across diverse tasks demonstrate the effectiveness and efficiency of ReDit. On average, ReDit achieves performance comparable to vanilla GRPO with only approximately 10% the training steps, and furthermore, still exhibits a 4% performance improvement over vanilla GRPO when trained for a similar duration. Visualizations confirm significant mitigation of gradient issues with ReDit. Moreover, theoretical analyses are provided to further validate these advantages.
comment: 34 pages, 19 figures
♻ ☆ X-Reflect: Cross-Reflection Prompting for Multimodal Recommendation
Large Language Models (LLMs) have been shown to enhance the effectiveness of enriching item descriptions, thereby improving the accuracy of recommendation systems. However, most existing approaches either rely on text-only prompting or employ basic multimodal strategies that do not fully exploit the complementary information available from both textual and visual modalities. This paper introduces a novel framework, Cross-Reflection Prompting, termed X-Reflect, designed to address these limitations by prompting Multimodal Large Language Models (MLLMs) to explicitly identify and reconcile supportive and conflicting information between text and images. By capturing nuanced insights from both modalities, this approach generates more comprehensive and contextually rich item representations. Extensive experiments conducted on two widely used benchmarks demonstrate that our method outperforms existing prompting baselines in downstream recommendation accuracy. Furthermore, we identify a U-shaped relationship between text-image dissimilarity and recommendation performance, suggesting the benefit of applying multimodal prompting selectively. To support efficient real-time inference, we also introduce X-Reflect-keyword, a lightweight variant that summarizes image content using keywords and replaces the base model with a smaller backbone, achieving nearly 50% reduction in input length while maintaining competitive performance. This work underscores the importance of integrating multimodal information and presents an effective solution for improving item understanding in multimodal recommendation systems.
♻ ☆ BioCLIP 2: Emergent Properties from Scaling Hierarchical Contrastive Learning NeurIPS 2025
Foundation models trained at scale exhibit remarkable emergent behaviors, learning new capabilities beyond their initial training objectives. We find such emergent behaviors in biological vision models via large-scale contrastive vision-language training. To achieve this, we first curate TreeOfLife-200M, comprising 214 million images of living organisms, the largest and most diverse biological organism image dataset to date. We then train BioCLIP 2 on TreeOfLife-200M to distinguish different species. Despite the narrow training objective, BioCLIP 2 yields extraordinary accuracy when applied to various biological visual tasks such as habitat classification and trait prediction. We identify emergent properties in the learned embedding space of BioCLIP 2. At the inter-species level, the embedding distribution of different species aligns closely with functional and ecological meanings (e.g., beak sizes and habitats). At the intra-species level, instead of being diminished, the intra-species variations (e.g., life stages and sexes) are preserved and better separated in subspaces orthogonal to inter-species distinctions. We provide formal proof and analyses to explain why hierarchical supervision and contrastive objectives encourage these emergent properties. Crucially, our results reveal that these properties become increasingly significant with larger-scale training data, leading to a biologically meaningful embedding space.
comment: NeurIPS 2025 Spotlight; Project page: https://imageomics.github.io/bioclip-2/
♻ ☆ Does Reinforcement Learning Really Incentivize Reasoning Capacity in LLMs Beyond the Base Model?
Reinforcement Learning with Verifiable Rewards (RLVR) has recently demonstrated notable success in enhancing the reasoning performance of large language models (LLMs), particularly on mathematics and programming tasks. Similar to how traditional RL helps agents explore and learn new strategies, RLVR is believed to enable LLMs to continuously self-improve, thus acquiring novel reasoning abilities beyond those of the corresponding base models. In this study we critically examine the current state of RLVR by systematically probing the reasoning capability boundaries of RLVR-trained LLMs across various model families, RL algorithms, and math, coding, and visual reasoning benchmarks, using pass@k at large k values as the evaluation metric. Surprisingly, we find that the current training setup does not elicit fundamentally new reasoning patterns. While RLVR-trained models outperform their base models at small k (e.g., k = 1), the base models achieve a higher pass@k score when k is large. Coverage and perplexity analyses show that the observed reasoning abilities originate from and are bounded by the base model. Treating the base model as an upper bound, our quantitative analysis shows that six popular RLVR algorithms perform similarly and remain far from optimal in leveraging the potential of the base model. By contrast, we find that distillation can introduce new reasoning patterns from the teacher and genuinely expand the model's reasoning capabilities. Overall, our findings suggest that current RLVR methods have not yet realized the potential of RL to elicit truly novel reasoning abilities in LLMs. This highlights the need for improved RL paradigms, such as continual scaling and multi-turn agent-environment interaction, to unlock this potential.
comment: 30 pages, 27 figures
♻ ☆ Towards Understanding Safety Alignment: A Mechanistic Perspective from Safety Neurons NeurIPS 2025
Large language models (LLMs) excel in various capabilities but pose safety risks such as generating harmful content and misinformation, even after safety alignment. In this paper, we explore the inner mechanisms of safety alignment through the lens of mechanistic interpretability, focusing on identifying and analyzing safety neurons within LLMs that are responsible for safety behaviors. We propose inference-time activation contrasting to locate these neurons and dynamic activation patching to evaluate their causal effects on model safety. Experiments on multiple prevalent LLMs demonstrate that we can consistently identify about $5\%$ safety neurons, and by only patching their activations we can restore over $90\%$ of the safety performance across various red-teaming benchmarks without influencing general ability. The finding of safety neurons also helps explain the ''alignment tax'' phenomenon by revealing that the key neurons for model safety and helpfulness significantly overlap, yet they require different activation patterns for the same neurons. Furthermore, we demonstrate an application of our findings in safeguarding LLMs by detecting unsafe outputs before generation. The source code is available at https://github.com/THU-KEG/SafetyNeuron.
comment: NeurIPS 2025
♻ ☆ Benchmarking GPT-5 for biomedical natural language processing
Biomedical literature and clinical narratives pose multifaceted challenges for natural language understanding, from precise entity extraction and document synthesis to multi-step diagnostic reasoning. This study extends a unified benchmark to evaluate GPT-5 and GPT-4o under zero-, one-, and five-shot prompting across five core biomedical NLP tasks: named entity recognition, relation extraction, multi-label document classification, summarization, and simplification, and nine expanded biomedical QA datasets covering factual knowledge, clinical reasoning, and multimodal visual understanding. Using standardized prompts, fixed decoding parameters, and consistent inference pipelines, we assessed model performance, latency, and token-normalized cost under official pricing. GPT-5 consistently outperformed GPT-4o, with the largest gains on reasoning-intensive datasets such as MedXpertQA and DiagnosisArena and stable improvements in multimodal QA. In core tasks, GPT-5 achieved better chemical NER and ChemProt scores but remained below domain-tuned baselines for disease NER and summarization. Despite producing longer outputs, GPT-5 showed comparable latency and 30 to 50 percent lower effective cost per correct prediction. Fine-grained analyses revealed improvements in diagnosis, treatment, and reasoning subtypes, whereas boundary-sensitive extraction and evidence-dense summarization remain challenging. Overall, GPT-5 approaches deployment-ready performance for biomedical QA while offering a favorable balance of accuracy, interpretability, and economic efficiency. The results support a tiered prompting strategy: direct prompting for large-scale or cost-sensitive applications, and chain-of-thought scaffolds for analytically complex or high-stakes scenarios, highlighting the continued need for hybrid solutions where precision and factual fidelity are critical.
♻ ☆ XtraGPT: Context-Aware and Controllable Academic Paper Revision
Despite the growing adoption of large language models (LLMs) in academic workflows, their capabilities remain limited to support high-quality scientific writing. Most existing systems are designed for general-purpose scientific text generation and fail to meet the sophisticated demands of research communication beyond surface-level polishing, such as conceptual coherence across sections. Furthermore, academic writing is inherently iterative and revision-driven, a process not well supported by direct prompting-based paradigms. To address these scenarios, we propose a human-AI collaboration framework for academic paper revision centered on criteria-guided intent alignment and context-aware modeling. To validate the framework, we curate a dataset of 7,000 research papers from top-tier venues annotated with 140,000 instruction-response pairs that reflect realistic, section-level scientific revisions. We instantiate the framework in XtraGPT, the first suite of open-source LLMs (1.5B to 14B parameters) for context-aware, instruction-guided writing assistance. Extensive experiments validate that XtraGPT significantly outperforms same-scale baselines and approaches the quality of proprietary systems. Both automated preference assessments and human evaluations confirm the effectiveness of XtraGPT in improving scientific drafts.
comment: Preprint. The model report is available at https://arxiv.org/abs/2505.11336v1
♻ ☆ Unlocking Multi-View Insights in Knowledge-Dense Retrieval-Augmented Generation
While Retrieval-Augmented Generation (RAG) plays a crucial role in the application of Large Language Models (LLMs), existing retrieval methods in knowledge-dense domains like law and medicine still suffer from a lack of multi-perspective views, which are essential for improving interpretability and reliability. Previous research on multi-view retrieval often focused solely on different semantic forms of queries, neglecting the expression of specific domain knowledge perspectives. This paper introduces a novel multi-view RAG framework, MVRAG, tailored for knowledge-dense domains that utilizes intention-aware query rewriting from multiple domain viewpoints to enhance retrieval precision, thereby improving the effectiveness of the final inference. Experiments conducted on legal and medical case retrieval demonstrate significant improvements in recall and precision rates with our framework. Our multi-perspective retrieval approach unleashes the potential of multi-view information enhancing RAG tasks, accelerating the further application of LLMs in knowledge-intensive fields.
♻ ☆ Neural Attention Search
We present Neural Attention Search (NAtS), a framework that automatically evaluates the importance of each token within a sequence and determines if the corresponding token can be dropped after several steps. This approach can efficiently reduce the KV cache sizes required by transformer-based models during inference and thus reduce inference costs. In this paper, we design a search space that contains three token types: (i) Global Tokens will be preserved and queried by all the following tokens. (ii) Local Tokens survive until the next global token appears. (iii) Sliding Window Tokens have an impact on the inference of a fixed size of the next following tokens. Similar to the One-Shot Neural Architecture Search approach, this token-type information can be learned jointly with the architecture weights via a learnable attention mask. Experiments on both training a new transformer from scratch and fine-tuning existing large language models show that NAtS can efficiently reduce the KV cache size required for the models while maintaining the models' performance.
comment: 35 pages, 11 figures
♻ ☆ Position: The Current AI Conference Model is Unsustainable! Diagnosing the Crisis of Centralized AI Conference
Artificial Intelligence (AI) conferences are essential for advancing research, sharing knowledge, and fostering academic community. However, their rapid expansion has rendered the centralized conference model increasingly unsustainable. This paper offers a data-driven diagnosis of a structural crisis that threatens the foundational goals of scientific dissemination, equity, and community well-being. We identify four key areas of strain: (1) scientifically, with per-author publication rates more than doubling over the past decade to over 4.5 papers annually; (2) environmentally, with the carbon footprint of a single conference exceeding the daily emissions of its host city; (3) psychologically, with 71% of online community discourse reflecting negative sentiment and 35% referencing mental health concerns; and (4) logistically, with attendance at top conferences such as NeurIPS 2024 beginning to outpace venue capacity. These pressures point to a system that is misaligned with its core mission. In response, we propose the Community-Federated Conference (CFC) model, which separates peer review, presentation, and networking into globally coordinated but locally organized components, offering a more sustainable, inclusive, and resilient path forward for AI research.
comment: Preprint
♻ ☆ Breaking Bad Tokens: Detoxification of LLMs Using Sparse Autoencoders EMNLP 2025
Large language models (LLMs) are now ubiquitous in user-facing applications, yet they still generate undesirable toxic outputs, including profanity, vulgarity, and derogatory remarks. Although numerous detoxification methods exist, most apply broad, surface-level fixes and can therefore easily be circumvented by jailbreak attacks. In this paper we leverage sparse autoencoders (SAEs) to identify toxicity-related directions in the residual stream of models and perform targeted activation steering using the corresponding decoder vectors. We introduce three tiers of steering aggressiveness and evaluate them on GPT-2 Small and Gemma-2-2B, revealing trade-offs between toxicity reduction and language fluency. At stronger steering strengths, these causal interventions surpass competitive baselines in reducing toxicity by up to 20%, though fluency can degrade noticeably on GPT-2 Small depending on the aggressiveness. Crucially, standard NLP benchmark scores upon steering remain stable, indicating that the model's knowledge and general abilities are preserved. We further show that feature-splitting in wider SAEs hampers safety interventions, underscoring the importance of disentangled feature learning. Our findings highlight both the promise and the current limitations of SAE-based causal interventions for LLM detoxification, further suggesting practical guidelines for safer language-model deployment.
comment: EMNLP 2025
♻ ☆ MoMoE: Mixture of Moderation Experts Framework for AI-Assisted Online Governance EMNLP 2025
Large language models (LLMs) have shown great potential in flagging harmful content in online communities. Yet, existing approaches for moderation require a separate model for every community and are opaque in their decision-making, limiting real-world adoption. We introduce Mixture of Moderation Experts (MoMoE), a modular, cross-community framework that adds post-hoc explanations to scalable content moderation. MoMoE orchestrates four operators -- Allocate, Predict, Aggregate, Explain -- and is instantiated as seven community-specialized experts (MoMoE-Community) and five norm-violation experts (MoMoE-NormVio). On 30 unseen subreddits, the best variants obtain Micro-F1 scores of 0.72 and 0.67, respectively, matching or surpassing strong fine-tuned baselines while consistently producing concise and reliable explanations. Although community-specialized experts deliver the highest peak accuracy, norm-violation experts provide steadier performance across domains. These findings show that MoMoE yields scalable, transparent moderation without needing per-community fine-tuning. More broadly, they suggest that lightweight, explainable expert ensembles can guide future NLP and HCI research on trustworthy human-AI governance of online communities.
comment: EMNLP 2025 (Oral)
♻ ☆ MultiHal: Multilingual Dataset for Knowledge-Graph Grounded Evaluation of LLM Hallucinations
Large Language Models (LLMs) have inherent limitations of faithfulness and factuality, commonly referred to as hallucinations. Several benchmarks have been developed that provide a test bed for factuality evaluation within the context of English-centric datasets, while relying on supplementary informative context like web links or text passages but ignoring the available structured factual resources. To this end, Knowledge Graphs (KGs) have been identified as a useful aid for hallucination mitigation, as they provide a structured way to represent the facts about entities and their relations with minimal linguistic overhead. We bridge the lack of KG paths and multilinguality for factual language modeling within the existing hallucination evaluation benchmarks and propose a KG-based multilingual, multihop benchmark called MultiHal framed for generative text evaluation. As part of our data collection pipeline, we mined 140k KG-paths from open-domain KGs, from which we pruned noisy KG-paths, curating a high-quality subset of 25.9k. Our baseline evaluation shows an absolute scale improvement by approximately 0.12 to 0.36 points for the semantic similarity score, 0.16 to 0.36 for NLI entailment and 0.29 to 0.42 for hallucination detection in KG-RAG over vanilla QA across multiple languages and multiple models, demonstrating the potential of KG integration. We anticipate MultiHal will foster future research towards several graph-based hallucination mitigation and fact-checking tasks.
♻ ☆ Embodied Agents Meet Personalization: Investigating Challenges and Solutions Through the Lens of Memory Utilization
LLM-powered embodied agents have shown success on conventional object-rearrangement tasks, but providing personalized assistance that leverages user-specific knowledge from past interactions presents new challenges. We investigate these challenges through the lens of agents' memory utilization along two critical dimensions: object semantics (identifying objects based on personal meaning) and user patterns (recalling sequences from behavioral routines). To assess these capabilities, we construct MEMENTO, an end-to-end two-stage evaluation framework comprising single-memory and joint-memory tasks. Our experiments reveal that current agents can recall simple object semantics but struggle to apply sequential user patterns to planning. Through in-depth analysis, we identify two critical bottlenecks: information overload and coordination failures when handling multiple memories. Based on these findings, we explore memory architectural approaches to address these challenges. Given our observation that episodic memory provides both personalized knowledge and in-context learning benefits, we design a hierarchical knowledge graph-based user-profile memory module that separately manages personalized knowledge, achieving substantial improvements on both single and joint-memory tasks. Project website: https://connoriginal.github.io/MEMENTO
comment: Work in progress
♻ ☆ MCIF: Multimodal Crosslingual Instruction-Following Benchmark from Scientific Talks
Recent advances in large language models have catalyzed the development of multimodal LLMs (MLLMs) that integrate text, speech, and vision within unified frameworks. As MLLMs evolve from narrow, monolingual, task-specific systems to general-purpose instruction-following models, a key frontier lies in evaluating their multilingual and multimodal capabilities over both long and short contexts. However, existing benchmarks fall short in evaluating these dimensions jointly: they are often limited to English, mostly focus on one single modality at a time, rely on short-form contexts, or lack human annotations -- hindering comprehensive assessment of model performance across languages, modalities, and task complexity. To address these gaps, we introduce MCIF (Multimodal Crosslingual Instruction Following), the first multilingual human-annotated benchmark based on scientific talks that is designed to evaluate instruction-following in crosslingual, multimodal settings over both short- and long-form inputs. MCIF spans three core modalities -- speech, vision, and text -- and four diverse languages (English, German, Italian, and Chinese), enabling a comprehensive evaluation of MLLMs' abilities to interpret instructions across languages and combine them with multimodal contextual information. MCIF is released under a CC-BY 4.0 license to encourage open research and progress in MLLMs development.
comment: Data available at https://huggingface.co/datasets/FBK-MT/MCIF | Evaluation and baselines available at https://github.com/hlt-mt/mcif
♻ ☆ Face-Human-Bench: A Comprehensive Benchmark of Face and Human Understanding for Multi-modal Assistants NeurIPS 2025
Faces and humans are crucial elements in social interaction and are widely included in everyday photos and videos. Therefore, a deep understanding of faces and humans will enable multi-modal assistants to achieve improved response quality and broadened application scope. Currently, the multi-modal assistant community lacks a comprehensive and scientific evaluation of face and human understanding abilities. In this paper, we first propose a hierarchical ability taxonomy that includes three levels of abilities. Then, based on this taxonomy, we collect images and annotations from publicly available datasets in the face and human community and build a semi-automatic data pipeline to produce problems for the new benchmark. Finally, the obtained Face-Human-Bench includes a development set and a test set, each with 1800 problems, supporting both English and Chinese. We conduct evaluations over 25 mainstream multi-modal large language models (MLLMs) with our Face-Human-Bench, focusing on the correlation between abilities, the impact of the relative position of targets on performance, and the impact of Chain of Thought (CoT) prompting on performance. We also explore which abilities of MLLMs need to be supplemented by specialist models. The dataset and evaluation code have been made publicly available at https://face-human-bench.github.io.
comment: 50 pages, 14 figures, 42 tables. NeurIPS 2025 Datasets and Benchmarks Track
♻ ☆ Breaking mBad! Supervised Fine-tuning for Cross-Lingual Detoxification
As large language models (LLMs) become increasingly prevalent in global applications, ensuring that they are toxicity-free across diverse linguistic contexts remains a critical challenge. We explore "Cross-lingual Detoxification", a cross-lingual paradigm that mitigates toxicity, enabling detoxification capabilities to transfer between high and low-resource languages across different script families. We analyze cross-lingual detoxification's effectiveness through 392 extensive settings to evaluate toxicity reduction in cross-distribution settings with limited data and investigate how mitigation impacts model performance on non-toxic tasks, revealing trade-offs between safety and knowledge preservation. Our code and dataset are publicly available at https://github.com/himanshubeniwal/Breaking-mBad.
comment: Accepted at MELT Workshop @ COLM 2025
♻ ☆ Memory Decoder: A Pretrained, Plug-and-Play Memory for Large Language Models
Large Language Models (LLMs) have shown strong abilities in general language tasks, yet adapting them to specific domains remains a challenge. Current method like Domain Adaptive Pretraining (DAPT) requires costly full-parameter training and suffers from catastrophic forgetting. Meanwhile, Retrieval-Augmented Generation (RAG) introduces substantial inference latency due to expensive nearest-neighbor searches and longer context. This paper introduces Memory Decoder, a plug-and-play pretrained memory that enables efficient domain adaptation without changing the original model's parameters. Memory Decoder employs a small transformer decoder that learns to imitate the behavior of an external non-parametric retriever. Once trained, Memory Decoder can be seamlessly integrated with any pretrained language model that shares the same tokenizer, requiring no model-specific modifications. Experimental results demonstrate that Memory Decoder enables effective adaptation of various Qwen and Llama models to three distinct specialized domains: biomedicine, finance, and law, reducing perplexity by an average of 6.17 points. Overall, Memory Decoder introduces a novel paradigm centered on a specially pretrained memory component designed for domain-specific adaptation. This memory architecture can be integrated in a plug-and-play manner, consistently enhancing performance across multiple models within the target domain.
♻ ☆ Grounding Language with Vision: A Conditional Mutual Information Calibrated Decoding Strategy for Reducing Hallucinations in LVLMs
Large Vision-Language Models (LVLMs) are susceptible to hallucinations, where generated responses seem semantically plausible yet exhibit little or no relevance to the input image. Previous studies reveal that this issue primarily stems from LVLMs' over-reliance on language priors while disregarding the visual information during decoding. To alleviate this issue, we introduce a novel Conditional Pointwise Mutual Information (C-PMI) calibrated decoding strategy, which adaptively strengthens the mutual dependency between generated texts and input images to mitigate hallucinations. Unlike existing methods solely focusing on text token sampling, we propose to jointly model the contributions of visual and textual tokens to C-PMI, formulating hallucination mitigation as a bi-level optimization problem aimed at maximizing mutual information. To solve it, we design a token purification mechanism that dynamically regulates the decoding process by sampling text tokens remaining maximally relevant to the given image, while simultaneously refining image tokens most pertinent to the generated response. Extensive experiments across various benchmarks reveal that the proposed method significantly reduces hallucinations in LVLMs while preserving decoding efficiency.
♻ ☆ MindForge: Empowering Embodied Agents with Theory of Mind for Lifelong Cultural Learning NeurIPS 2025
Embodied agents powered by large language models (LLMs), such as Voyager, promise open-ended competence in worlds such as Minecraft. However, when powered by open-weight LLMs they still falter on elementary tasks after domain-specific fine-tuning. We propose MindForge, a generative-agent framework for cultural lifelong learning through explicit perspective taking. We introduce three key innovations: (1) a structured theory of mind representation linking percepts, beliefs, desires, and actions; (2) natural inter-agent communication; and (3) a multi-component memory system. Following the cultural learning framework, we test MindForge in both instructive and collaborative settings within Minecraft. In an instructive setting with GPT-4, MindForge agents powered by open-weight LLMs significantly outperform their Voyager counterparts in basic tasks yielding $3\times$ more tech-tree milestones and collecting $2.3\times$ more unique items than the Voyager baseline. Furthermore, in fully \textit{collaborative} settings, we find that the performance of two underachieving agents improves with more communication rounds, echoing the Condorcet Jury Theorem. MindForge agents demonstrate sophisticated behaviors, including expert-novice knowledge transfer, collaborative problem solving, and adaptation to out-of-distribution tasks through accumulated cultural experiences.
comment: Accepted to NeurIPS 2025 main track as poster
♻ ☆ HauntAttack: When Attack Follows Reasoning as a Shadow
Emerging Large Reasoning Models (LRMs) consistently excel in mathematical and reasoning tasks, showcasing remarkable capabilities. However, the enhancement of reasoning abilities and the exposure of internal reasoning processes introduce new safety vulnerabilities. A critical question arises: when reasoning becomes intertwined with harmfulness, will LRMs become more vulnerable to jailbreaks in reasoning mode? To investigate this, we introduce HauntAttack, a novel and general-purpose black-box adversarial attack framework that systematically embeds harmful instructions into reasoning questions. Specifically, we modify key reasoning conditions in existing questions with harmful instructions, thereby constructing a reasoning pathway that guides the model step by step toward unsafe outputs. We evaluate HauntAttack on 11 LRMs and observe an average attack success rate of 70\%, achieving up to 12 percentage points of absolute improvement over the strongest prior baseline. Our further analysis reveals that even advanced safety-aligned models remain highly susceptible to reasoning-based attacks, offering insights into the urgent challenge of balancing reasoning capability and safety in future model development.
♻ ☆ SAFEPATH: Preventing Harmful Reasoning in Chain-of-Thought via Early Alignment NeurIPS 2025
Large Reasoning Models (LRMs) have become powerful tools for complex problem solving, but their structured reasoning pathways can lead to unsafe outputs when exposed to harmful prompts. Existing safety alignment methods reduce harmful outputs but can degrade reasoning depth, leading to significant trade-offs in complex, multi-step tasks, and remain vulnerable to sophisticated jailbreak attacks. To address this, we introduce SAFEPATH, a lightweight alignment method that fine-tunes LRMs to emit a short, 8-token Safety Primer at the start of their reasoning, in response to harmful prompts, while leaving the rest of the reasoning process unsupervised. Empirical results across multiple benchmarks indicate that SAFEPATH effectively reduces harmful outputs while maintaining reasoning performance. Specifically, SAFEPATH reduces harmful responses by up to 90.0% and blocks 83.3% of jailbreak attempts in the DeepSeek-R1-Distill-Llama-8B model, while requiring 295.9x less compute than Direct Refusal and 314.1x less than SafeChain. We further introduce a zero-shot variant that requires no fine-tuning. In addition, we provide a comprehensive analysis of how existing methods in LLMs generalize, or fail, when applied to reasoning-centric models, revealing critical gaps and new directions for safer AI.
comment: Accepted at NeurIPS 2025. Code and models are available at https://ai-isl.github.io/safepath
♻ ☆ Twilight: Adaptive Attention Sparsity with Hierarchical Top-$p$ Pruning NeurIPS 2025
Leveraging attention sparsity to accelerate long-context large language models (LLMs) has been a hot research topic. However, current algorithms such as sparse attention or key-value (KV) cache compression tend to use a fixed budget, which presents a significant challenge during deployment because it fails to account for the dynamic nature of real-world scenarios, where the optimal balance between accuracy and efficiency can vary greatly. In this paper, we find that borrowing top-$p$ sampling (nucleus sampling) to sparse attention can surprisingly achieve adaptive budgeting. Based on this, we propose Twilight, a framework to bring adaptive sparsity to any existing sparse attention algorithm without sacrificing their accuracy. Empirical results show that Twilight can adaptively prune at most 98% of redundant tokens, leading to $15.4\times$ acceleration in self-attention operations and $3.9\times$ acceleration in end-to-end per token latency in long context LLM decoding.
comment: To appear on NeurIPS 2025 (spotlight)
♻ ☆ S-DAT: A Multilingual, GenAI-Driven Framework for Automated Divergent Thinking Assessment
This paper introduces S-DAT (Synthetic-Divergent Association Task), a scalable, multilingual framework for automated assessment of divergent thinking (DT) -a core component of human creativity. Traditional creativity assessments are often labor-intensive, language-specific, and reliant on subjective human ratings, limiting their scalability and cross-cultural applicability. In contrast, S-DAT leverages large language models and advanced multilingual embeddings to compute semantic distance -- a language-agnostic proxy for DT. We evaluate S-DAT across eleven diverse languages, including English, Spanish, German, Russian, Hindi, and Japanese (Kanji, Hiragana, Katakana), demonstrating robust and consistent scoring across linguistic contexts. Unlike prior DAT approaches, the S-DAT shows convergent validity with other DT measures and correct discriminant validity with convergent thinking. This cross-linguistic flexibility allows for more inclusive, global-scale creativity research, addressing key limitations of earlier approaches. S-DAT provides a powerful tool for fairer, more comprehensive evaluation of cognitive flexibility in diverse populations and can be freely assessed online: https://sdat.iol.zib.de/.
♻ ☆ ViSpec: Accelerating Vision-Language Models with Vision-Aware Speculative Decoding NeurIPS 2025
Speculative decoding is a widely adopted technique for accelerating inference in large language models (LLMs), yet its application to vision-language models (VLMs) remains underexplored, with existing methods achieving only modest speedups (<1.5x). This gap is increasingly significant as multimodal capabilities become central to large-scale models. We hypothesize that large VLMs can effectively filter redundant image information layer by layer without compromising textual comprehension, whereas smaller draft models struggle to do so. To address this, we introduce Vision-Aware Speculative Decoding (ViSpec), a novel framework tailored for VLMs. ViSpec employs a lightweight vision adaptor module to compress image tokens into a compact representation, which is seamlessly integrated into the draft model's attention mechanism while preserving original image positional information. Additionally, we extract a global feature vector for each input image and augment all subsequent text tokens with this feature to enhance multimodal coherence. To overcome the scarcity of multimodal datasets with long assistant responses, we curate a specialized training dataset by repurposing existing datasets and generating extended outputs using the target VLM with modified prompts. Our training strategy mitigates the risk of the draft model exploiting direct access to the target model's hidden states, which could otherwise lead to shortcut learning when training solely on target model outputs. Extensive experiments validate ViSpec, achieving, to our knowledge, the first substantial speedup in VLM speculative decoding. Code is available at https://github.com/KangJialiang/ViSpec.
comment: NeurIPS 2025
♻ ☆ Adapting Multilingual Models to Code-Mixed Tasks via Model Merging
We study model merging as a practical alternative to conventional adaptation strategies for code-mixed NLP. Starting from a multilingual base model, we: (i) perform continued pre-training (CPT) on unlabeled code-mixed text to obtain an adapted checkpoint, (ii) merge checkpoint with the base model, and (iii) fine-tune (FT) on the downstream task data. We evaluate our approach for sentence classification (sentiment and hate speech) task in English-Hindi (En-Hi) and English-Spanish (En-Es) using XLM-R and Llama-3.2-1B models. Our results show that merged models consistently outperform full fine-tuning and CPT->FT. We observe gains of 2--5 points in F1 over full fine-tuning and ~1-2 points over CPT->FT, indicating that unlabeled data is leveraged more effectively via merging than via CPT alone. Zero-/few-shot prompting with larger LLMs (e.g., Llama-3.3-70B) lags behind fine-tuned and merged checkpoints, underscoring limits of in-context learning for code-mixed inputs. We further test cross-pair transfer by training on En-Hi and evaluating on En-Ta and En-Ml: merged checkpoints transfer more strongly than monolingual-English baselines (e.g., TV/TIES variants reaching 0.65-0.68 F1 vs 0.61-0.63 for full fine-tuning), suggesting that code-mixed knowledge is a more reliable substrate for low-resource pairs. We conclude with adaptation recipes matched to common data regimes (labeled only; labeled+unlabeled; transfer-only) and discuss limitations and scaling considerations for broader tasks and larger models.
comment: 9 pages, 5 tables, CODS 2025
♻ ☆ Less is More: Compact Clue Selection for Efficient Retrieval-Augmented Generation Reasoning
Current RAG retrievers are designed primarily for human readers, emphasizing complete, readable, and coherent paragraphs. However, LLMs benefit more from precise, compact, and well-structured input, which enhances reasoning quality and efficiency. Existing methods often rely on reranking or summarization to identify key sentences, but may suffer from semantic breaks and unfaithfulness. Thus, efficiently extracting and organizing answer-relevant clues from large-scale documents while reducing LLM reasoning costs remains a challenge for RAG. Inspired by Occam's razor, we frame LLM-centric retrieval as a MinMax optimization: maximizing the extraction of potential clues and reranking them for well-organization, while minimizing reasoning costs by truncating to the smallest sufficient clues set. In this paper, we propose CompSelect, a Compact clue Selection mechanism for LLM-centric RAG, consisting of a clue extractor, a reranker, and a truncator. (1) The clue extractor first uses answer-containing sentences as fine-tuning targets, aiming to extract sufficient potential clues; (2) The reranker is trained to prioritize effective clues based on real LLM feedback; (3) The truncator uses the truncated text containing the minimum sufficient clues for answering the question as fine-tuning targets, thereby enabling efficient RAG reasoning. Experiments on three QA datasets show that CompSelect improves QA performance by approximately 11\% and reduces Total Latency and Online Latency by approximately 17\% and 67\% compared to various baseline methods on both LLaMA3 and Qwen3. Further analysis confirms its robustness to unreliable retrieval and generalization across different scenarios, offering a scalable and cost-efficient solution for web-scale RAG applications.
comment: 12 pages, 7 figures, 12 tables, under review
♻ ☆ Bi-Mamba: Towards Accurate 1-Bit State Space Models
The typical Selective State-Space Model (SSM) used in Mamba addresses several limitations of Transformers, such as the quadratic computational complexity with respect to sequence length and the significant memory requirements during inference due to the key-value (KV) cache. However, the increasing size of Mamba models continues to pose challenges for training and deployment, particularly due to their substantial computational demands during both training and inference. In this work, we introduce $\texttt{Bi-Mamba}$, a scalable and powerful 1-bit Mamba architecture designed to enable more efficient large language models (LLMs), with model sizes of 780M, 1.3B, and 2.7B parameters. $\texttt{Bi-Mamba}$ models are trained from scratch on a standard LLM-scale dataset using an autoregressive distillation loss. Extensive experiments on language modeling benchmarks demonstrate that $\texttt{Bi-Mamba}$ achieves performance comparable to its full-precision (FP16 or BF16) counterparts, while outperforming post-training binarization (PTB) Mamba and binarization-aware training (BAT) Transformer baselines. Moreover, $\texttt{Bi-Mamba}$ drastically reduces memory usage and computational cost compared to the original Mamba. Our work pioneers a new line of linear-complexity LLMs under low-bit representation and provides the way for the design of specialized hardware optimized for efficient 1-bit Mamba-based models. Code and the pre-trained weights are available at https://github.com/Tangshengku/Bi-Mamba.
comment: Accepted in TMLR 2025
♻ ☆ Zhyper: Factorized Hypernetworks for Conditioned LLM Fine-Tuning
Large Language Model (LLM) conditioning refers to instructing an LLM to generate content in accordance with the norms and values of a specific culture, beliefs of a particular political orientation, or any desired text-specified semantic conditioning. Unfortunately, prompt engineering does not ensure that LLMs behave in accordance with a desired conditioning due to the inductive bias of the pre-training and alignment datasets. Prior works have focused on fine-tuning LLMs by directly conditioning the LoRA weights; however, such methods introduce a large number of parameters. As a remedy, we propose Zhyper, a parameter-efficient factorized hypernetwork framework that generates context-aware LoRA adapters from textual descriptions. Experiments on multiple benchmarks show that Zhyper achieves competitive performance with up to 26x fewer parameters than the state-of-the-art baselines. Furthermore, we extend Zhyper to cultural alignment, demonstrating improved generalization to out-of-domain settings and a better capturing of fine-grained contextual values.
♻ ☆ MLMA: Towards Multilingual ASR With Mamba-based Architectures ICASSP 2026
Multilingual automatic speech recognition (ASR) remains a challenging task, especially when balancing performance across high- and low-resource languages. Recent advances in sequence modeling suggest that architectures beyond Transformers may offer better scalability and efficiency. In this work, we introduce MLMA (Multilingual Language Modeling with Mamba for ASR), a new approach that leverages the Mamba architecture -- an efficient state-space model optimized for long-context sequence processing -- for multilingual ASR. Using Mamba, MLMA implicitly incorporates language-aware conditioning and shared representations to support robust recognition across diverse languages. Experiments on standard multilingual benchmarks show that MLMA achieves competitive performance compared to Transformer-based architectures. These results highlight Mamba's potential as a strong backbone for scalable, efficient, and accurate multilingual speech recognition.
comment: The paper is under review at ICASSP 2026
♻ ☆ Accelerating Mobile Language Model via Speculative Decoding and NPU-Coordinated Execution
Enhancing on-device large language models (LLMs) with contextual information from local data enables personalized and task-aware generation, powering use cases such as intelligent assistants and UI agents. While recent developments in neural processors have substantially improved the efficiency of prefill on mobile devices, the token-by-token generation process still suffers from high latency and limited hardware utilization due to its inherently memory-bound characteristics. This work presents sd.npu, a mobile inference framework that integrates speculative decoding with dynamic hardware scheduling to accelerate context-aware text generation on mobile devices. The framework introduces three synergistic components: (1) adaptive execution scheduling, which dynamically balances compute graphs between prefill and decoding phases; (2) context-aligned drafting, which improves speculative efficiency through lightweight online calibration to current tasks; and (3) hardware-efficient draft extension, which reuses and expands intermediate sequences to improve processing parallelism and reduce verification cost. Experiments on multiple smartphones and representative workloads show consistent improvements of up to 3.8x in generation speed and 4.7x in energy efficiency compared with existing mobile inference solutions. Component-level analysis further validates the contribution of each optimization.
♻ ☆ Diagnosing Representation Dynamics in NER Model Extension
Extending Named Entity Recognition (NER) models to new PII entities in noisy spoken-language data is a common need. We find that jointly fine-tuning a BERT model on standard semantic entities (PER, LOC, ORG) and new pattern-based PII (EMAIL, PHONE) results in minimal degradation for original classes. We investigate this "peaceful coexistence," hypothesizing that the model uses independent semantic vs. morphological feature mechanisms. Using an incremental learning setup as a diagnostic tool, we measure semantic drift and find two key insights. First, the LOC (location) entity is uniquely vulnerable due to a representation overlap with new PII, as it shares pattern-like features (e.g., postal codes). Second, we identify a "reverse O-tag representation drift." The model, initially trained to map PII patterns to 'O', blocks new learning. This is resolved only by unfreezing the 'O' tag's classifier, allowing the background class to adapt and "release" these patterns. This work provides a mechanistic diagnosis of NER model adaptation, highlighting feature independence, representation overlap, and 'O' tag plasticity. Work done based on data gathered by https://www.papernest.com
♻ ☆ More Documents, Same Length: Isolating the Challenge of Multiple Documents in RAG
Retrieval-Augmented Generation (RAG) enhances the accuracy of Large Language Model (LLM) responses by leveraging relevant external documents during generation. Although previous studies noted that retrieving many documents can degrade performance, they did not isolate how the quantity of documents affects performance while controlling for context length. We evaluate various language models on custom datasets derived from a multi-hop QA task. We keep the context length and position of relevant information constant while varying the number of documents, and find that increasing the document count in RAG settings poses significant challenges for most LLMs, reducing performance by up to 20%. However, Qwen2.5 maintained consistent results across increasing document counts, indicating better multi-document handling capability. Finally, our results indicate that processing multiple documents is a separate challenge from handling long contexts. We also make the datasets and code available: https://github.com/shaharl6000/MoreDocsSameLen .
comment: Preprint
♻ ☆ A New Benchmark Dataset and Mixture-of-Experts Language Models for Adversarial Natural Language Inference in Vietnamese
Existing Vietnamese Natural Language Inference (NLI) datasets lack adversarial complexity, limiting their ability to evaluate model robustness against challenging linguistic phenomena. In this article, we address the gap in robust Vietnamese NLI resources by introducing ViANLI, the first adversarial NLI dataset for Vietnamese, and propose NLIMoE, a Mixture-of-Experts model to tackle its complexity. We construct ViANLI using an adversarial human-and-machine-in-the-loop approach with rigorous verification. NLIMoE integrates expert subnetworks with a learned dynamic routing mechanism on top of a shared transformer encoder. ViANLI comprises over 10,000 premise-hypothesis pairs and challenges state-of-the-art models, with XLM-R Large achieving only 45.5% accuracy, while NLIMoE reaches 47.3%. Training with ViANLI improves performance on other benchmark Vietnamese NLI datasets including ViNLI, VLSP2021-NLI, and VnNewsNLI. ViANLI is released for enhancing research into model robustness and enriching resources for future Vietnamese and multilingual NLI research.
comment: Accepted by Expert Systems with Applications
♻ ☆ Born a Transformer -- Always a Transformer? On the Effect of Pretraining on Architectural Abilities NeurIPS 2025
Transformers have theoretical limitations in modeling certain sequence-to-sequence tasks, yet it remains largely unclear if these limitations play a role in large-scale pretrained LLMs, or whether LLMs might effectively overcome these constraints in practice due to the scale of both the models themselves and their pretraining data. We explore how these architectural constraints manifest after pretraining, by studying a family of $\textit{retrieval}$ and $\textit{copying}$ tasks inspired by Liu et al. [2024a]. We use a recently proposed framework for studying length generalization [Huang et al., 2025] to provide guarantees for each of our settings. Empirically, we observe an $\textit{induction-versus-anti-induction}$ asymmetry, where pretrained models are better at retrieving tokens to the right (induction) rather than the left (anti-induction) of a query token. This asymmetry disappears upon targeted fine-tuning if length-generalization is guaranteed by theory. Mechanistic analysis reveals that this asymmetry is connected to the differences in the strength of induction versus anti-induction circuits within pretrained transformers. We validate our findings through practical experiments on real-world tasks demonstrating reliability risks. Our results highlight that pretraining selectively enhances certain transformer capabilities, but does not overcome fundamental length-generalization limits.
comment: NeurIPS 2025
♻ ☆ "You Are Rejected!": An Empirical Study of Large Language Models Taking Hiring Evaluations
With the proliferation of the internet and the rapid advancement of Artificial Intelligence, leading technology companies face an urgent annual demand for a considerable number of software and algorithm engineers. To efficiently and effectively identify high-potential candidates from thousands of applicants, these firms have established a multi-stage selection process, which crucially includes a standardized hiring evaluation designed to assess job-specific competencies. Motivated by the demonstrated prowess of Large Language Models (LLMs) in coding and reasoning tasks, this paper investigates a critical question: Can LLMs successfully pass these hiring evaluations? To this end, we conduct a comprehensive examination of a widely used professional assessment questionnaire. We employ state-of-the-art LLMs to generate responses and subsequently evaluate their performance. Contrary to any prior expectation of LLMs being ideal engineers, our analysis reveals a significant inconsistency between the model-generated answers and the company-referenced solutions. Our empirical findings lead to a striking conclusion: All evaluated LLMs fails to pass the hiring evaluation.
comment: Technical Report, 14 pages, 8 figures
♻ ☆ Stress-Testing Model Specs Reveals Character Differences among Language Models
Large language models (LLMs) are increasingly trained from AI constitutions and model specifications that establish behavioral guidelines and ethical principles. However, these specifications face critical challenges, including internal conflicts between principles and insufficient coverage of nuanced scenarios. We present a systematic methodology for stress-testing model character specifications, automatically identifying numerous cases of principle contradictions and interpretive ambiguities in current model specs. We stress test current model specs by generating scenarios that force explicit tradeoffs between competing value-based principles. Using a comprehensive taxonomy we generate diverse value tradeoff scenarios where models must choose between pairs of legitimate principles that cannot be simultaneously satisfied. We evaluate responses from twelve frontier LLMs across major providers (Anthropic, OpenAI, Google, xAI) and measure behavioral disagreement through value classification scores. Among these scenarios, we identify over 70,000 cases exhibiting significant behavioral divergence. Empirically, we show this high divergence in model behavior strongly predicts underlying problems in model specifications. Through qualitative analysis, we provide numerous example issues in current model specs such as direct contradiction and interpretive ambiguities of several principles. Additionally, our generated dataset also reveals both clear misalignment cases and false-positive refusals across all of the frontier models we study. Lastly, we also provide value prioritization patterns and differences of these models.
♻ ☆ LFD: Layer Fused Decoding to Exploit External Knowledge in Retrieval-Augmented Generation
Retrieval-augmented generation (RAG) incorporates external knowledge into large language models (LLMs), improving their adaptability to downstream tasks and enabling information updates. Surprisingly, recent empirical evidence demonstrates that injecting noise into retrieved relevant documents paradoxically facilitates exploitation of external knowledge and improves generation quality. Although counterintuitive and challenging to apply in practice, this phenomenon enables granular control and rigorous analysis of how LLMs integrate external knowledge. Therefore, in this paper, we intervene on noise injection and establish a layer-specific functional demarcation within the LLM: shallow layers specialize in local context modeling, intermediate layers focus on integrating long-range external factual knowledge, and deeper layers primarily rely on parametric internal knowledge. Building on this insight, we propose Layer Fused Decoding (LFD), a simple decoding strategy that directly combines representations from an intermediate layer with final-layer decoding outputs to fully exploit the external factual knowledge. To identify the optimal intermediate layer, we introduce an internal knowledge score (IKS) criterion that selects the layer with the lowest IKS value in the latter half of layers. Experimental results across multiple benchmarks demonstrate that LFD helps RAG systems more effectively surface retrieved context knowledge with minimal cost.
♻ ☆ Multilingual LLM Prompting Strategies for Medical English-Vietnamese Machine Translation
Medical English-Vietnamese machine translation (En-Vi MT) is essential for healthcare access and communication in Vietnam, yet Vietnamese remains a low-resource and under-studied language. We systematically evaluate prompting strategies for six multilingual LLMs (0.5B-9B parameters) on the MedEV dataset, comparing zero-shot, few-shot, and dictionary-augmented prompting with Meddict, an English-Vietnamese medical lexicon. Results show that model scale is the primary driver of performance: larger LLMs achieve strong zero-shot results, while few-shot prompting yields only marginal improvements. In contrast, terminology-aware cues and embedding-based example retrieval consistently improve domain-specific translation. These findings underscore both the promise and the current limitations of multilingual LLMs for medical En-Vi MT.
comment: This version has been withdrawn after receiving the conference review results. We are currently extending and reorganizing the work into a new study
♻ ☆ ixi-GEN: Efficient Industrial sLLMs through Domain Adaptive Continual Pretraining EMNLP 2025
The emergence of open-source large language models (LLMs) has expanded opportunities for enterprise applications; however, many organizations still lack the infrastructure to deploy and maintain large-scale models. As a result, small LLMs (sLLMs) have become a practical alternative despite inherent performance limitations. While Domain Adaptive Continual Pretraining (DACP) has been explored for domain adaptation, its utility in commercial settings remains under-examined. In this study, we validate the effectiveness of a DACP-based recipe across diverse foundation models and service domains, producing DACP-applied sLLMs (ixi-GEN). Through extensive experiments and real-world evaluations, we demonstrate that ixi-GEN models achieve substantial gains in target-domain performance while preserving general capabilities, offering a cost-efficient and scalable solution for enterprise-level deployment.
comment: Accepted at EMNLP 2025 Industry Track
♻ ☆ Every Attention Matters: An Efficient Hybrid Architecture for Long-Context Reasoning
In this technical report, we present the Ring-linear model series, specifically including Ring-mini-linear-2.0 and Ring-flash-linear-2.0. Ring-mini-linear-2.0 comprises 16B parameters and 957M activations, while Ring-flash-linear-2.0 contains 104B parameters and 6.1B activations. Both models adopt a hybrid architecture that effectively integrates linear attention and softmax attention, significantly reducing I/O and computational overhead in long-context inference scenarios. Compared to a 32 billion parameter dense model, this series reduces inference cost to 1/10, and compared to the original Ring series, the cost is also reduced by over 50%. Furthermore, through systematic exploration of the ratio between different attention mechanisms in the hybrid architecture, we have identified the currently optimal model structure. Additionally, by leveraging our self-developed high-performance FP8 operator library-linghe, overall training efficiency has been improved by 50%. Benefiting from the high alignment between the training and inference engine operators, the models can undergo long-term, stable, and highly efficient optimization during the reinforcement learning phase, consistently maintaining SOTA performance across multiple challenging complex reasoning benchmarks.
comment: 20 pages, 13 figures
♻ ☆ Toward Metaphor-Fluid Conversation Design for Voice User Interfaces
Metaphors play a critical role in shaping user experiences with Voice User Interfaces (VUIs), yet existing designs often rely on static, human-centric metaphors that fail to adapt to diverse contexts and user needs. This paper introduces Metaphor-Fluid Design, a novel approach that dynamically adjusts metaphorical representations based on conversational use-contexts. We compare this approach to a Default VUI, which characterizes the present implementation of commercial VUIs commonly designed around the persona of an assistant, offering a uniform interaction style across contexts. In Study 1 (N=130), metaphors were mapped to four key use-contexts-commands, information seeking, sociality, and error recovery-along the dimensions of formality and hierarchy, revealing distinct preferences for task-specific metaphorical designs. Study 2 (N=91) evaluates a Metaphor-Fluid VUI against a Default VUI, showing that the Metaphor-Fluid VUI enhances perceived intention to adopt, enjoyment, and likability by aligning better with user expectations for different contexts. However, individual differences in metaphor preferences highlight the need for personalization. These findings challenge the one-size-fits-all paradigm of VUI design and demonstrate the potential of Metaphor-Fluid Design to create more adaptive and engaging human-AI interactions.
♻ ☆ TianHui: A Domain-Specific Large Language Model for Diverse Traditional Chinese Medicine Scenarios
Domain-specific LLMs in TCM face limitations in research settings due to constrained adaptability, insufficient evaluation datasets, and limited computational resources. This study presents TianHui, a specialized TCM LLM built through contextual data integration and domain knowledge fusion. We constructed a large-scale TCM corpus (0.97GB unsupervised data + 611,312 QA pairs) and employed a two-stage training strategy with QLoRA, DeepSpeed Stage 2, and Flash Attention 2. Evaluation on 12 benchmarks showed TianHui ranked top-three in all metrics for six datasets (APQ, TCMCD, HFR, HCCA, DHPE, TLAW) and achieved top results in the other six (TCMEE, APR, GCPMI, TCMKQA, TCMRC, ADTG). Optimal configuration was identified as LoRA rank=128, alpha=256, epoch=4, dropout=0.2, max length=2048. TianHui enables systematic preservation and scalable application of TCM knowledge. All resources are open-sourced.
comment: 46 pages, 5 figures,3 tables
♻ ☆ Does Thinking More always Help? Mirage of Test-Time Scaling in Reasoning Models NeurIPS 2025
Recent trends in test-time scaling for reasoning models (e.g., OpenAI o1, DeepSeek R1) have led to a popular belief that extending thinking traces using prompts like "Wait" or "Let me rethink" can improve performance. This raises a natural question: Does thinking more at test-time truly lead to better reasoning? To answer this question, we perform a detailed empirical study across models and benchmarks, which reveals a consistent pattern of initial performance improvements from additional thinking followed by a decline, due to "overthinking". To understand this non-monotonic trend, we consider a simple probabilistic model, which reveals that additional thinking increases output variance-creating an illusion of improved reasoning while ultimately undermining precision. Thus, observed gains from "more thinking" are not true indicators of improved reasoning, but artifacts stemming from the connection between model uncertainty and evaluation metric. This suggests that test-time scaling through extended thinking is not an effective way to utilize the inference thinking budget. Recognizing these limitations, we introduce an alternative test-time scaling approach, parallel thinking, inspired by Best-of-N sampling. Our method generates multiple independent reasoning paths within the same inference budget and selects the most consistent response via majority vote, achieving up to 20% higher accuracy compared to extended thinking. This provides a simple yet effective mechanism for test-time scaling of reasoning models.
comment: Accepted at NeurIPS 2025
♻ ☆ LeCoDe: A Benchmark Dataset for Interactive Legal Consultation Dialogue Evaluation
Legal consultation is essential for safeguarding individual rights and ensuring access to justice, yet remains costly and inaccessible to many individuals due to the shortage of professionals. While recent advances in Large Language Models (LLMs) offer a promising path toward scalable, low-cost legal assistance, current systems fall short in handling the interactive and knowledge-intensive nature of real-world consultations. To address these challenges, we introduce LeCoDe, a real-world multi-turn benchmark dataset comprising 3,696 legal consultation dialogues with 110,008 dialogue turns, designed to evaluate and improve LLMs' legal consultation capability. With LeCoDe, we innovatively collect live-streamed consultations from short-video platforms, providing authentic multi-turn legal consultation dialogues. The rigorous annotation by legal experts further enhances the dataset with professional insights and expertise. Furthermore, we propose a comprehensive evaluation framework that assesses LLMs' consultation capabilities in terms of (1) clarification capability and (2) professional advice quality. This unified framework incorporates 12 metrics across two dimensions. Through extensive experiments on various general and domain-specific LLMs, our results reveal significant challenges in this task, with even state-of-the-art models like GPT-4 achieving only 39.8% recall for clarification and 59% overall score for advice quality, highlighting the complexity of professional consultation scenarios. Based on these findings, we further explore several strategies to enhance LLMs' legal consultation abilities. Our benchmark contributes to advancing research in legal domain dialogue systems, particularly in simulating more real-world user-expert interactions.
♻ ☆ MLP Memory: A Retriever-Pretrained Memory for Large Language Models
Modern approaches to enhancing Large Language Models' factual accuracy and knowledge utilization face a fundamental trade-off: non-parametric retrieval-augmented generation (RAG) provides flexible access to external knowledge but suffers from high inference latency and shallow integration, while parametric fine-tuning methods like LoRA risk catastrophic forgetting and degraded general capabilities. In this work, we propose MLP Memory, a lightweight parametric module that learns to internalize retrieval patterns without explicit document access. By pretraining an MLP to imitate a $k$NN retriever's behavior on the entire pretraining dataset, we create a differentiable memory component that captures the benefits of retrieval-based knowledge access in a fully parametric form. Our architecture integrates this pretrained MLP Memory with Transformer decoders through simple probability interpolation, yielding 17.5\% and 24.1\% scaling gains on WikiText-103 and Web datasets, respectively. It further achieves 12.3\% relative improvement on five question-answering benchmarks and 5.2 points absolute gain across nine general NLP tasks, while reducing hallucinations by up to 10 points on HaluEval. Moreover, MLP Memory delivers 2.5$\times$ faster inference than RAG with superior accuracy. Our findings show that learning retrieval patterns parametrically bridges the gap between efficient inference and effective knowledge access, offering a practical alternative to both RAG and fine-tuning approaches.
♻ ☆ Debate or Vote: Which Yields Better Decisions in Multi-Agent Large Language Models? NeurIPS 2025
Multi-Agent Debate~(MAD) has emerged as a promising paradigm for improving the performance of large language models through collaborative reasoning. Despite recent advances, the key factors driving MAD's effectiveness remain unclear. In this work, we disentangle MAD into two key components--Majority Voting and inter-agent Debate--and assess their respective contributions. Through extensive experiments across seven NLP benchmarks, we find that Majority Voting alone accounts for most of the performance gains typically attributed to MAD. To explain this, we propose a theoretical framework that models debate as a stochastic process. We prove that it induces a martingale over agents' belief trajectories, implying that debate alone does not improve expected correctness. Guided by these insights, we demonstrate that targeted interventions, by biasing the belief update toward correction, can meaningfully enhance debate effectiveness. Overall, our findings suggest that while MAD has potential, simple ensembling methods remain strong and more reliable alternatives in many practical settings. Code is released in https://github.com/deeplearning-wisc/debate-or-vote.
comment: NeurIPS 2025 Spotlight
♻ ☆ Text to Band Gap: Pre-trained Language Models as Encoders for Semiconductor Band Gap Prediction
We investigate transformer-based language models, including RoBERTa, T5, Llama-3, and MatSciBERT, for predicting the band gaps of semiconductor materials directly from textual descriptions. The inputs encode key material features, such as chemical composition, crystal system, space group, and other structural and electronic properties. Unlike shallow machine learning models, which require extensive feature engineering, or Graph Neural Networks, which rely on graph representations derived from atomic coordinates, pretrained language models can process textual inputs directly, eliminating the need for manual feature preprocessing or structure-based encoding. Material descriptions were constructed in two formats: structured strings with a consistent template and natural language narratives generated via the ChatGPT API. Each model was augmented with a custom regression head and finetuned for band gap prediction task. Language models of different architectures and parameter sizes were all able to predict band gaps from human-readable text with strong accuracy, achieving MAEs in the range of 0.25-0.33 eV, highlighting the success of this approach for scientific regression tasks. Finetuned Llama-3, with 1.2 billion parameters, achieved the highest accuracy (MAE 0.248 eV, R2 0.891). MatSciBERT, pretrained on materials science literature, reached comparable performance (MAE 0.288 eV, R2 0.871) with significantly fewer parameters (110 million), emphasizing the importance of domain-specific pretraining. Attention analysis shows that both models selectively focus on compositional and spin-related features while de-emphasizing geometric features, reflecting the difficulty of capturing spatial information from text. These results establish that pretrained language models can effectively extract complex feature-property relationships from textual material descriptions.
♻ ☆ LAMA-UT: Language Agnostic Multilingual ASR through Orthography Unification and Language-Specific Transliteration AAAI 2025
Building a universal multilingual automatic speech recognition (ASR) model that performs equitably across languages has long been a challenge due to its inherent difficulties. To address this task we introduce a Language-Agnostic Multilingual ASR pipeline through orthography Unification and language-specific Transliteration (LAMA-UT). LAMA-UT operates without any language-specific modules while matching the performance of state-of-the-art models trained on a minimal amount of data. Our pipeline consists of two key steps. First, we utilize a universal transcription generator to unify orthographic features into Romanized form and capture common phonetic characteristics across diverse languages. Second, we utilize a universal converter to transform these universal transcriptions into language-specific ones. In experiments, we demonstrate the effectiveness of our proposed method leveraging universal transcriptions for massively multilingual ASR. Our pipeline achieves a relative error reduction rate of 45% when compared to Whisper and performs comparably to MMS, despite being trained on only 0.1% of Whisper's training data. Furthermore, our pipeline does not rely on any language-specific modules. However, it performs on par with zero-shot ASR approaches which utilize additional language-specific lexicons and language models. We expect this framework to serve as a cornerstone for flexible multilingual ASR systems that are generalizable even to unseen languages.
comment: Accepted to AAAI 2025 (Oral Presentation)
♻ ☆ KAT-Coder Technical Report
Recent advances in large language models (LLMs) have enabled progress in agentic coding, where models autonomously reason, plan, and act within interactive software development workflows. However, bridging the gap between static text-based training and dynamic real-world agentic execution remains a core challenge. In this technical report, we present KAT-Coder, a large-scale agentic code model trained through a multi-stage curriculum encompassing Mid-Term Training, Supervised Fine-Tuning (SFT), Reinforcement Fine-Tuning (RFT), and Reinforcement-to-Deployment Adaptation. The Mid-Term stage enhances reasoning, planning, and reflection capabilities through a corpus of real software engineering data and synthetic agentic interactions. The SFT stage constructs a million-sample dataset balancing twenty programming languages, ten development contexts, and ten task archetypes. The RFT stage introduces a novel multi-ground-truth reward formulation for stable and sample-efficient policy optimization. Finally, the Reinforcement-to-Deployment phase adapts the model to production-grade IDE environments using Error-Masked SFT and Tree-Structured Trajectory Training. In summary, these stages enable KAT-Coder to achieve robust tool-use reliability, instruction alignment, and long-context reasoning, forming a deployable foundation for real-world intelligent coding agents. Our KAT series 32B model, KAT-Dev, has been open-sourced on https://huggingface.co/Kwaipilot/KAT-Dev.
♻ ☆ Curing Miracle Steps in LLM Mathematical Reasoning with Rubric Rewards
Large language models for mathematical reasoning are typically trained with outcome-based rewards, which credit only the final answer. In our experiments, we observe that this paradigm is highly susceptible to reward hacking, leading to a substantial overestimation of a model's reasoning ability. This is evidenced by a high incidence of false positives - solutions that reach the correct final answer through an unsound reasoning process. Through a systematic analysis with human verification, we establish a taxonomy of these failure modes, identifying patterns like Miracle Steps - abrupt jumps to a correct output without a valid preceding derivation. Probing experiments suggest a strong association between these Miracle Steps and memorization, where the model appears to recall the answer directly rather than deriving it. To mitigate this systemic issue, we introduce the Rubric Reward Model (RRM), a process-oriented reward function that evaluates the entire reasoning trajectory against problem-specific rubrics. The generative RRM provides fine-grained, calibrated rewards (0-1) that explicitly penalize logical flaws and encourage rigorous deduction. When integrated into a reinforcement learning pipeline, RRM-based training consistently outperforms outcome-only supervision across four math benchmarks. Notably, it boosts Verified Pass@1024 on AIME2024 from 26.7% to 62.6% and reduces the incidence of Miracle Steps by 71%. Our work demonstrates that rewarding the solution process is crucial for building models that are not only more accurate but also more reliable.
comment: 25 pages, 11 figures, 6 Tables
♻ ☆ A Comprehensive Survey on Benchmarks and Solutions in Software Engineering of LLM-Empowered Agentic System
The integration of Large Language Models (LLMs) into software engineering has driven a transition from traditional rule-based systems to autonomous agentic systems capable of solving complex problems. However, systematic progress is hindered by a lack of comprehensive understanding of how benchmarks and solutions interconnect. This survey addresses this gap by providing the first holistic analysis of LLM-powered software engineering, offering insights into evaluation methodologies and solution paradigms. We review over 150 recent papers and propose a taxonomy along two key dimensions: (1) Solutions, categorized into prompt-based, fine-tuning-based, and agent-based paradigms, and (2) Benchmarks, including tasks such as code generation, translation, and repair. Our analysis highlights the evolution from simple prompt engineering to sophisticated agentic systems incorporating capabilities like planning, reasoning, memory mechanisms, and tool augmentation. To contextualize this progress, we present a unified pipeline illustrating the workflow from task specification to deliverables, detailing how different solution paradigms address various complexity levels. Unlike prior surveys that focus narrowly on specific aspects, this work connects 50+ benchmarks to their corresponding solution strategies, enabling researchers to identify optimal approaches for diverse evaluation criteria. We also identify critical research gaps and propose future directions, including multi-agent collaboration, self-evolving systems, and formal verification integration. This survey serves as a foundational guide for advancing LLM-driven software engineering. We maintain a GitHub repository that continuously updates the reviewed and related papers at https://github.com/lisaGuojl/LLM-Agent-SE-Survey.
comment: 22 pages
♻ ☆ MIR-Bench: Can Your LLM Recognize Complicated Patterns via Many-Shot In-Context Reasoning? NeurIPS 2025
The ability to recognize patterns from examples and apply them to new ones is a primal ability for general intelligence, and is widely studied by psychology and AI researchers. Many benchmarks have been proposed to measure such ability for Large Language Models (LLMs); however, they focus on few-shot (usually <10) setting and lack evaluation for aggregating many pieces of information from long contexts. On the other hand, the ever-growing context length of LLMs have brought forth the novel paradigm of many-shot In-Context Learning (ICL), which addresses new tasks with hundreds to thousands of examples without expensive and inefficient fine-tuning. However, many-shot evaluations often focus on classification, and popular long-context LLM tasks such as Needle-In-A-Haystack (NIAH) seldom require complicated intelligence for integrating many pieces of information. To fix the issues from both worlds, we propose MIR-Bench, the first many-shot in-context reasoning benchmark for pattern recognition that asks LLM to predict output via input-output examples from underlying functions with diverse data format. Based on MIR-Bench, we study many novel problems for many-shot in-context reasoning, and acquired many insightful findings including scaling effect, robustness, inductive vs. transductive reasoning, retrieval Augmented Generation (RAG), coding for inductive reasoning, cross-domain generalizability, etc.
comment: 39 pages, 11 figures. The paper is accepted at NeurIPS 2025 Datasets & Benchmarks Track, and the latest version adds modifications in camera-ready
♻ ☆ Sherlock: Self-Correcting Reasoning in Vision-Language Models NeurIPS 2025
Reasoning Vision-Language Models (VLMs) have shown promising performance on complex multimodal tasks. However, they still face significant challenges: they are highly sensitive to reasoning errors, require large volumes of annotated data or accurate verifiers, and struggle to generalize beyond specific domains. To address these limitations, we explore self-correction as a strategy to enhance reasoning VLMs. We first conduct an in-depth analysis of reasoning VLMs' self-correction abilities and identify key gaps. Based on our findings, we introduce Sherlock, a self-correction and self-improvement training framework. Sherlock introduces a trajectory-level self-correction objective, a preference data construction method based on visual perturbation, and a dynamic $\beta$ for preference tuning. Once the model acquires self-correction capabilities using only 20k randomly sampled annotated data, it continues to self-improve without external supervision. Built on the Llama3.2-Vision-11B model, Sherlock achieves remarkable results across eight benchmarks, reaching an average accuracy of 64.1 with direct generation and 65.4 after self-correction. It outperforms LLaVA-CoT (63.2), Mulberry (63.9), and LlamaV-o1 (63.4) while using less than 20% of the annotated data.
comment: Published at NeurIPS 2025, 27 pages
♻ ☆ RL Tango: Reinforcing Generator and Verifier Together for Language Reasoning NeurIPS 2025
Reinforcement learning (RL) has recently emerged as a compelling approach for enhancing the reasoning capabilities of large language models (LLMs), where an LLM generator serves as a policy guided by a verifier (reward model). However, current RL post-training methods for LLMs typically use verifiers that are fixed (rule-based or frozen pretrained) or trained discriminatively via supervised fine-tuning (SFT). Such designs are susceptible to reward hacking and generalize poorly beyond their training distributions. To overcome these limitations, we propose Tango, a novel framework that uses RL to concurrently train both an LLM generator and a verifier in an interleaved manner. A central innovation of Tango is its generative, process-level LLM verifier, which is trained via RL and co-evolves with the generator. Importantly, the verifier is trained solely based on outcome-level verification correctness rewards without requiring explicit process-level annotations. This generative RL-trained verifier exhibits improved robustness and superior generalization compared to deterministic or SFT-trained verifiers, fostering effective mutual reinforcement with the generator. Extensive experiments demonstrate that both components of Tango achieve state-of-the-art results among 7B/8B-scale models: the generator attains best-in-class performance across five competition-level math benchmarks and four challenging out-of-domain reasoning tasks, while the verifier leads on the ProcessBench dataset. Remarkably, both components exhibit particularly substantial improvements on the most difficult mathematical reasoning problems. Code is at: https://github.com/kaiwenzha/rl-tango.
comment: NeurIPS 2025. The first two authors contributed equally
♻ ☆ Quantitative LLM Judges
LLM-as-a-judge is a framework where a large language model (LLM) evaluates the output of another LLM. While LLMs excel at producing qualitative textual evaluations, they often struggle to predict human preferences and numeric scores. We propose quantitative LLM judges, which align evaluation scores of existing LLM judges to humans in a given domain using regression models. The models are trained to improve the score of the original judge using its rationale and score. We present four quantitative judges for different types of absolute and relative feedback, which showcases the generality and versatility of our framework. Our framework is more computationally efficient than supervised fine-tuning and can be more statistically efficient when human feedback is limited, which is expected in practice. We validate these claims empirically on four datasets using two base judges. Our experiments show that quantitative judges can improve the predictive power of existing judges through post-hoc modeling.
♻ ☆ Annotation Guidelines-Based Knowledge Augmentation: Towards Enhancing Large Language Models for Educational Text Classification
Various machine learning approaches have gained significant popularity for the automated classification of educational text to identify indicators of learning engagement -- i.e. learning engagement classification (LEC). LEC can offer comprehensive insights into human learning processes, attracting significant interest from diverse research communities, including Natural Language Processing (NLP), Learning Analytics, and Educational Data Mining. Recently, Large Language Models (LLMs), such as ChatGPT, have demonstrated remarkable performance in various NLP tasks. However, their comprehensive evaluation and improvement approaches in LEC tasks have not been thoroughly investigated. In this study, we propose the Annotation Guidelines-based Knowledge Augmentation (AGKA) approach to improve LLMs. AGKA employs GPT 4.0 to retrieve label definition knowledge from annotation guidelines, and then applies the random under-sampler to select a few typical examples. Subsequently, we conduct a systematic evaluation benchmark of LEC, which includes six LEC datasets covering behavior classification (question and urgency level), emotion classification (binary and epistemic emotion), and cognition classification (opinion and cognitive presence). The study results demonstrate that AGKA can enhance non-fine-tuned LLMs, particularly GPT 4.0 and Llama 3 70B. GPT 4.0 with AGKA few-shot outperforms full-shot fine-tuned models such as BERT and RoBERTa on simple binary classification datasets. However, GPT 4.0 lags in multi-class tasks that require a deep understanding of complex semantic information. Notably, Llama 3 70B with AGKA is a promising combination based on open-source LLM, because its performance is on par with closed-source GPT 4.0 with AGKA. In addition, LLMs struggle to distinguish between labels with similar names in multi-class classification.
comment: The manuscript has been accepted for publication in IEEE Transactions on Learning Technologies. https://doi.org/10.1109/TLT.2025.3570775
♻ ☆ Hybrid Latent Reasoning via Reinforcement Learning NeurIPS 2025
Recent advances in large language models (LLMs) have introduced latent reasoning as a promising alternative to autoregressive reasoning. By performing internal computation with hidden states from previous steps, latent reasoning benefit from more informative features rather than sampling a discrete chain-of-thought (CoT) path. Yet latent reasoning approaches are often incompatible with LLMs, as their continuous paradigm conflicts with the discrete nature of autoregressive generation. Moreover, these methods rely on CoT traces for training and thus fail to exploit the inherent reasoning patterns of LLMs. In this work, we explore latent reasoning by leveraging the intrinsic capabilities of LLMs via reinforcement learning (RL). To this end, we introduce hybrid reasoning policy optimization (HRPO), an RL-based hybrid latent reasoning approach that (1) integrates prior hidden states into sampled tokens with a learnable gating mechanism, and (2) initializes training with predominantly token embeddings while progressively incorporating more hidden features. This design maintains LLMs' generative capabilities and incentivizes hybrid reasoning using both discrete and continuous representations. In addition, the hybrid HRPO introduces stochasticity into latent reasoning via token sampling, thereby enabling RL-based optimization without requiring CoT trajectories. Extensive evaluations across diverse benchmarks show that HRPO outperforms prior methods in both knowledge- and reasoning-intensive tasks. Furthermore, HRPO-trained LLMs remain interpretable and exhibit intriguing behaviors like cross-lingual patterns and shorter completion lengths, highlighting the potential of our RL-based approach and offer insights for future work in latent reasoning.
comment: NeurIPS 2025
♻ ☆ PersonaMatrix: A Recipe for Persona-Aware Evaluation of Legal Summarization
Legal documents are often long, dense, and difficult to comprehend, not only for laypeople but also for legal experts. While automated document summarization has great potential to improve access to legal knowledge, prevailing task-based evaluators overlook divergent user and stakeholder needs. Tool development is needed to encompass the technicality of a case summary for a litigator yet be accessible for a self-help public researching for their lawsuit. We introduce PersonaMatrix, a persona-by-criterion evaluation framework that scores summaries through the lens of six personas, including legal and non-legal users. We also introduce a controlled dimension-shifted pilot dataset of U.S. civil rights case summaries that varies along depth, accessibility, and procedural detail as well as Diversity-Coverage Index (DCI) to expose divergent optima of legal summary between persona-aware and persona-agnostic judges. This work enables refinement of legal AI summarization systems for both expert and non-expert users, with the potential to increase access to legal knowledge. The code base and data are publicly available in GitHub.
comment: Accepted for publication in JURIX 2025 (Legal Knowledge and Information Systems, FAIA series, IOS Press). Long Paper
♻ ☆ AssistedDS: Benchmarking How External Domain Knowledge Assists LLMs in Automated Data Science
Large language models (LLMs) have advanced the automation of data science workflows. Yet it remains unclear whether they can critically leverage external domain knowledge as human data scientists do in practice. To answer this question, we introduce AssistedDS (Assisted Data Science), a benchmark designed to systematically evaluate how LLMs handle domain knowledge in tabular prediction tasks. AssistedDS features both synthetic datasets with explicitly known generative mechanisms and real-world Kaggle competitions, each accompanied by curated bundles of helpful and adversarial documents. These documents provide domain-specific insights into data cleaning, feature engineering, and model selection. We assess state-of-the-art LLMs on their ability to discern and apply beneficial versus harmful domain knowledge, evaluating submission validity, information recall, and predictive performance. Our results demonstrate three key findings: (1) LLMs frequently exhibit an uncritical adoption of provided information, significantly impairing their predictive performance when adversarial content is introduced, (2) helpful guidance is often insufficient to counteract the negative influence of adversarial information, and (3) in Kaggle datasets, LLMs often make errors in handling time-series data, applying consistent feature engineering across different folds, and interpreting categorical variables correctly. These findings highlight a substantial gap in current models' ability to critically evaluate and leverage expert knowledge, underscoring an essential research direction for developing more robust, knowledge-aware automated data science systems. Our data and code are publicly available here: https://github.com/jeremyxianx/Assisted-DS
♻ ☆ RMTBench: Benchmarking LLMs Through Multi-Turn User-Centric Role-Playing
Recent advancements in Large Language Models (LLMs) have shown outstanding potential for role-playing applications. Evaluating these capabilities is becoming crucial yet remains challenging. Existing benchmarks mostly adopt a \textbf{character-centric} approach, simplify user-character interactions to isolated Q&A tasks, and fail to reflect real-world applications. To address this limitation, we introduce RMTBench, a comprehensive \textbf{user-centric} bilingual role-playing benchmark featuring 80 diverse characters and over 8,000 dialogue rounds. RMTBench includes custom characters with detailed backgrounds and abstract characters defined by simple traits, enabling evaluation across various user scenarios. Our benchmark constructs dialogues based on explicit user motivations rather than character descriptions, ensuring alignment with practical user applications. Furthermore, we construct an authentic multi-turn dialogue simulation mechanism. With carefully selected evaluation dimensions and LLM-based scoring, this mechanism captures the complex intention of conversations between the user and the character. By shifting focus from character background to user intention fulfillment, RMTBench bridges the gap between academic evaluation and practical deployment requirements, offering a more effective framework for assessing role-playing capabilities in LLMs. All code and datasets will be released soon. We release the datasets at https://huggingface.co/datasets/xiangh/RMTBENCH.
♻ ☆ Iterative Self-Tuning LLMs for Enhanced Jailbreaking Capabilities NAACL 2025
Recent research has shown that Large Language Models (LLMs) are vulnerable to automated jailbreak attacks, where adversarial suffixes crafted by algorithms appended to harmful queries bypass safety alignment and trigger unintended responses. Current methods for generating these suffixes are computationally expensive and have low Attack Success Rates (ASR), especially against well-aligned models like Llama2 and Llama3. To overcome these limitations, we introduce ADV-LLM, an iterative self-tuning process that crafts adversarial LLMs with enhanced jailbreak ability. Our framework significantly reduces the computational cost of generating adversarial suffixes while achieving nearly 100\% ASR on various open-source LLMs. Moreover, it exhibits strong attack transferability to closed-source models, achieving 99\% ASR on GPT-3.5 and 49\% ASR on GPT-4, despite being optimized solely on Llama3. Beyond improving jailbreak ability, ADV-LLM provides valuable insights for future safety alignment research through its ability to generate large datasets for studying LLM safety. Our code is available at: https://github.com/SunChungEn/ADV-LLM
comment: Accepted to NAACL 2025 Main (Oral)
♻ ☆ Not All Heads Matter: A Head-Level KV Cache Compression Method with Integrated Retrieval and Reasoning ICLR2025
Key-Value (KV) caching is a common technique to enhance the computational efficiency of Large Language Models (LLMs), but its memory overhead grows rapidly with input length. Prior work has shown that not all tokens are equally important for text generation, proposing layer-level KV cache compression to selectively retain key information. Recognizing the distinct roles of attention heads in generation, we propose HeadKV, a head-level KV cache compression method, and HeadKV-R2, which leverages a novel contextual reasoning ability estimation for compression. Our approach operates at the level of individual heads, estimating their importance for contextual QA tasks that require both retrieval and reasoning capabilities. Extensive experiments across diverse benchmarks (LongBench, LooGLE), model architectures (e.g., Llama-3-8B-Instruct, Mistral-7B-Instruct), and long-context abilities tests demonstrate that our head-level KV cache compression significantly outperforms strong baselines, particularly in low-resource settings (KV size = 64 & 128). Notably, our method retains just 1.5% of the KV cache while achieving 97% of the performance of the full KV cache on the contextual question answering benchmark. Codes are available at https://github.com/FYYFU/HeadKV
comment: Accepted to ICLR2025
♻ ☆ Is Safety Standard Same for Everyone? User-Specific Safety Evaluation of Large Language Models EMNLP 2025
As the use of large language model (LLM) agents continues to grow, their safety vulnerabilities have become increasingly evident. Extensive benchmarks evaluate various aspects of LLM safety by defining the safety relying heavily on general standards, overlooking user-specific standards. However, safety standards for LLM may vary based on a user-specific profiles rather than being universally consistent across all users. This raises a critical research question: Do LLM agents act safely when considering user-specific safety standards? Despite its importance for safe LLM use, no benchmark datasets currently exist to evaluate the user-specific safety of LLMs. To address this gap, we introduce U-SafeBench, a benchmark designed to assess user-specific aspect of LLM safety. Our evaluation of 20 widely used LLMs reveals current LLMs fail to act safely when considering user-specific safety standards, marking a new discovery in this field. To address this vulnerability, we propose a simple remedy based on chain-of-thought, demonstrating its effectiveness in improving user-specific safety. Our benchmark and code are available at https://github.com/yeonjun-in/U-SafeBench.
comment: EMNLP 2025 Findings
Artificial Intelligence
☆ Towards General Modality Translation with Contrastive and Predictive Latent Diffusion Bridge
Recent advances in generative modeling have positioned diffusion models as state-of-the-art tools for sampling from complex data distributions. While these models have shown remarkable success across single-modality domains such as images and audio, extending their capabilities to Modality Translation (MT), translating information across different sensory modalities, remains an open challenge. Existing approaches often rely on restrictive assumptions, including shared dimensionality, Gaussian source priors, and modality-specific architectures, which limit their generality and theoretical grounding. In this work, we propose the Latent Denoising Diffusion Bridge Model (LDDBM), a general-purpose framework for modality translation based on a latent-variable extension of Denoising Diffusion Bridge Models. By operating in a shared latent space, our method learns a bridge between arbitrary modalities without requiring aligned dimensions. We introduce a contrastive alignment loss to enforce semantic consistency between paired samples and design a domain-agnostic encoder-decoder architecture tailored for noise prediction in latent space. Additionally, we propose a predictive loss to guide training toward accurate cross-domain translation and explore several training strategies to improve stability. Our approach supports arbitrary modality pairs and performs strongly on diverse MT tasks, including multi-view to 3D shape generation, image super-resolution, and multi-view scene synthesis. Comprehensive experiments and ablations validate the effectiveness of our framework, establishing a new strong baseline in general modality translation. For more information, see our project page: https://sites.google.com/view/lddbm/home.
☆ VAMOS: A Hierarchical Vision-Language-Action Model for Capability-Modulated and Steerable Navigation
A fundamental challenge in robot navigation lies in learning policies that generalize across diverse environments while conforming to the unique physical constraints and capabilities of a specific embodiment (e.g., quadrupeds can walk up stairs, but rovers cannot). We propose VAMOS, a hierarchical VLA that decouples semantic planning from embodiment grounding: a generalist planner learns from diverse, open-world data, while a specialist affordance model learns the robot's physical constraints and capabilities in safe, low-cost simulation. We enabled this separation by carefully designing an interface that lets a high-level planner propose candidate paths directly in image space that the affordance model then evaluates and re-ranks. Our real-world experiments show that VAMOS achieves higher success rates in both indoor and complex outdoor navigation than state-of-the-art model-based and end-to-end learning methods. We also show that our hierarchical design enables cross-embodied navigation across legged and wheeled robots and is easily steerable using natural language. Real-world ablations confirm that the specialist model is key to embodiment grounding, enabling a single high-level planner to be deployed across physically distinct wheeled and legged robots. Finally, this model significantly enhances single-robot reliability, achieving 3X higher success rates by rejecting physically infeasible plans. Website: https://vamos-vla.github.io/
☆ GSWorld: Closed-Loop Photo-Realistic Simulation Suite for Robotic Manipulation
This paper presents GSWorld, a robust, photo-realistic simulator for robotics manipulation that combines 3D Gaussian Splatting with physics engines. Our framework advocates "closing the loop" of developing manipulation policies with reproducible evaluation of policies learned from real-robot data and sim2real policy training without using real robots. To enable photo-realistic rendering of diverse scenes, we propose a new asset format, which we term GSDF (Gaussian Scene Description File), that infuses Gaussian-on-Mesh representation with robot URDF and other objects. With a streamlined reconstruction pipeline, we curate a database of GSDF that contains 3 robot embodiments for single-arm and bimanual manipulation, as well as more than 40 objects. Combining GSDF with physics engines, we demonstrate several immediate interesting applications: (1) learning zero-shot sim2real pixel-to-action manipulation policy with photo-realistic rendering, (2) automated high-quality DAgger data collection for adapting policies to deployment environments, (3) reproducible benchmarking of real-robot manipulation policies in simulation, (4) simulation data collection by virtual teleoperation, and (5) zero-shot sim2real visual reinforcement learning. Website: https://3dgsworld.github.io/.
☆ Small Drafts, Big Verdict: Information-Intensive Visual Reasoning via Speculation
Large Vision-Language Models (VLMs) have achieved remarkable progress in multimodal understanding, yet they struggle when reasoning over information-intensive images that densely interleave textual annotations with fine-grained graphical elements. The main challenges lie in precisely localizing critical cues in dense layouts and multi-hop reasoning to integrate dispersed evidence. We propose Speculative Verdict (SV), a training-free framework inspired by speculative decoding that combines multiple lightweight draft experts with a large verdict model. In the draft stage, small VLMs act as draft experts to generate reasoning paths that provide diverse localization candidates; in the verdict stage, a strong VLM synthesizes these paths to produce the final answer, minimizing computational cost while recovering correct answers. To further improve efficiency and accuracy, SV introduces a consensus expert selection mechanism that forwards only high-agreement reasoning paths to the verdict. Empirically, SV achieves consistent gains on challenging information-intensive and high-resolution visual question answering benchmarks, including InfographicVQA, ChartMuseum, ChartQAPro, and HR-Bench 4K. By synthesizing correct insights from multiple partially accurate reasoning paths, SV achieves both error correction and cost-efficiency compared to large proprietary models or training pipelines. Code is available at https://github.com/Tinaliu0123/speculative-verdict
☆ On the Detectability of LLM-Generated Text: What Exactly Is LLM-Generated Text?
With the widespread use of large language models (LLMs), many researchers have turned their attention to detecting text generated by them. However, there is no consistent or precise definition of their target, namely "LLM-generated text". Differences in usage scenarios and the diversity of LLMs further increase the difficulty of detection. What is commonly regarded as the detecting target usually represents only a subset of the text that LLMs can potentially produce. Human edits to LLM outputs, together with the subtle influences that LLMs exert on their users, are blurring the line between LLM-generated and human-written text. Existing benchmarks and evaluation approaches do not adequately address the various conditions in real-world detector applications. Hence, the numerical results of detectors are often misunderstood, and their significance is diminishing. Therefore, detectors remain useful under specific conditions, but their results should be interpreted only as references rather than decisive indicators.
☆ Real Deep Research for AI, Robotics and Beyond
With the rapid growth of research in AI and robotics now producing over 10,000 papers annually it has become increasingly difficult for researchers to stay up to date. Fast evolving trends, the rise of interdisciplinary work, and the need to explore domains beyond one's expertise all contribute to this challenge. To address these issues, we propose a generalizable pipeline capable of systematically analyzing any research area: identifying emerging trends, uncovering cross domain opportunities, and offering concrete starting points for new inquiry. In this work, we present Real Deep Research (RDR) a comprehensive framework applied to the domains of AI and robotics, with a particular focus on foundation models and robotics advancements. We also briefly extend our analysis to other areas of science. The main paper details the construction of the RDR pipeline, while the appendix provides extensive results across each analyzed topic. We hope this work sheds light for researchers working in the field of AI and beyond.
comment: website: https://realdeepresearch.github.io
☆ The Reality Gap in Robotics: Challenges, Solutions, and Best Practices
Machine learning has facilitated significant advancements across various robotics domains, including navigation, locomotion, and manipulation. Many such achievements have been driven by the extensive use of simulation as a critical tool for training and testing robotic systems prior to their deployment in real-world environments. However, simulations consist of abstractions and approximations that inevitably introduce discrepancies between simulated and real environments, known as the reality gap. These discrepancies significantly hinder the successful transfer of systems from simulation to the real world. Closing this gap remains one of the most pressing challenges in robotics. Recent advances in sim-to-real transfer have demonstrated promising results across various platforms, including locomotion, navigation, and manipulation. By leveraging techniques such as domain randomization, real-to-sim transfer, state and action abstractions, and sim-real co-training, many works have overcome the reality gap. However, challenges persist, and a deeper understanding of the reality gap's root causes and solutions is necessary. In this survey, we present a comprehensive overview of the sim-to-real landscape, highlighting the causes, solutions, and evaluation metrics for the reality gap and sim-to-real transfer.
comment: Accepted for Publication as part of the Annual Review of Control, Robotics, and Autonomous Systems 2026
☆ Compress to Impress: Efficient LLM Adaptation Using a Single Gradient Step on 100 Samples
Recently, Sharma et al. suggested a method called Layer-SElective-Rank reduction (LASER) which demonstrated that pruning high-order components of carefully chosen LLM's weight matrices can boost downstream accuracy -- without any gradient-based fine-tuning. Yet LASER's exhaustive, per-matrix search (each requiring full-dataset forward passes) makes it impractical for rapid deployment. We demonstrate that this overhead can be removed and find that: (i) Only a small, carefully chosen subset of matrices needs to be inspected -- eliminating the layer-by-layer sweep, (ii) The gradient of each matrix's singular values pinpoints which matrices merit reduction, (iii) Increasing the factorization search space by allowing matrices rows to cluster around multiple subspaces and then decomposing each cluster separately further reduces overfitting on the original training data and further lifts accuracy by up to 24.6 percentage points, and finally, (iv) we discover that evaluating on just 100 samples rather than the full training data -- both for computing the indicative gradients and for measuring the final accuracy -- suffices to further reduce the search time; we explain that as adaptation to downstream tasks is dominated by prompting style, not dataset size. As a result, we show that combining these findings yields a fast and robust adaptation algorithm for downstream tasks. Overall, with a single gradient step on 100 examples and a quick scan of the top candidate layers and factorization techniques, we can adapt LLMs to new datasets -- entirely without fine-tuning.
☆ Simple Context Compression: Mean-Pooling and Multi-Ratio Training
A common strategy to reduce the computational costs of using long contexts in retrieval-augmented generation (RAG) with large language models (LLMs) is soft context compression, where the input sequence is transformed into a shorter continuous representation. We develop a lightweight and simple mean-pooling approach that consistently outperforms the widely used compression-tokens architecture, and study training the same compressor to output multiple compression ratios. We conduct extensive experiments across in-domain and out-of-domain QA datasets, as well as across model families, scales, and compression ratios. Overall, our simple mean-pooling approach achieves the strongest performance, with a relatively small drop when training for multiple compression ratios. More broadly though, across architectures and training regimes the trade-offs are more nuanced, illustrating the complex landscape of compression methods.
comment: Code available at https://github.com/lil-lab/simple-context-compression
☆ Bayesian Inference of Primordial Magnetic Field Parameters from CMB with Spherical Graph Neural Networks
Deep learning has emerged as a transformative methodology in modern cosmology, providing powerful tools to extract meaningful physical information from complex astronomical datasets. This paper implements a novel Bayesian graph deep learning framework for estimating key cosmological parameters in a primordial magnetic field (PMF) cosmology directly from simulated Cosmic Microwave Background (CMB) maps. Our methodology utilizes DeepSphere, a spherical convolutional neural network architecture specifically designed to respect the spherical geometry of CMB data through HEALPix pixelization. To advance beyond deterministic point estimates and enable robust uncertainty quantification, we integrate Bayesian Neural Networks (BNNs) into the framework, capturing aleatoric and epistemic uncertainties that reflect the model confidence in its predictions. The proposed approach demonstrates exceptional performance, achieving $R^{2}$ scores exceeding 0.89 for the magnetic parameter estimation. We further obtain well-calibrated uncertainty estimates through post-hoc training techniques including Variance Scaling and GPNormal. This integrated DeepSphere-BNNs framework not only delivers accurate parameter estimation from CMB maps with PMF contributions but also provides reliable uncertainty quantification, providing the necessary tools for robust cosmological inference in the era of precision cosmology.
comment: 16 pages, 6 figures, 4 tables
☆ A Coherence-Based Measure of AGI
Recent work by \citet{hendrycks2025agidefinition} formalized \textit{Artificial General Intelligence} (AGI) as the arithmetic mean of proficiencies across cognitive domains derived from the Cattell--Horn--Carroll (CHC) model of human cognition. While elegant, this definition assumes \textit{compensability} -- that exceptional ability in some domains can offset failure in others. True general intelligence, however, should reflect \textit{coherent sufficiency}: balanced competence across all essential domains. We propose a coherence-aware measure of AGI based on the integral of generalized means over a continuum of compensability exponents. This formulation spans arithmetic, geometric, and harmonic regimes, and the resulting \textit{area under the curve} (AUC) quantifies robustness under varying compensability assumptions. Unlike the arithmetic mean, which rewards specialization, the AUC penalizes imbalance and captures inter-domain dependency. Applied to published CHC-based domain scores for GPT-4 and GPT-5, the coherence-adjusted AUC reveals that both systems remain far from general competence despite high arithmetic scores (e.g., GPT-5 at~24\%). Integrating the generalized mean thus yields a principled, interpretable, and stricter foundation for measuring genuine progress toward AGI.
comment: 13 pages, 1 figure, 12 tables
☆ A Use-Case Specific Dataset for Measuring Dimensions of Responsible Performance in LLM-generated Text CIKM '25
Current methods for evaluating large language models (LLMs) typically focus on high-level tasks such as text generation, without targeting a particular AI application. This approach is not sufficient for evaluating LLMs for Responsible AI dimensions like fairness, since protected attributes that are highly relevant in one application may be less relevant in another. In this work, we construct a dataset that is driven by a real-world application (generate a plain-text product description, given a list of product features), parameterized by fairness attributes intersected with gendered adjectives and product categories, yielding a rich set of labeled prompts. We show how to use the data to identify quality, veracity, safety, and fairness gaps in LLMs, contributing a proposal for LLM evaluation paired with a concrete resource for the research community.
comment: 24 pages with 3 figures, to appear in Proceedings of the 34th ACM International Conference on Information and Knowledge Management (CIKM '25)
☆ Are Large Reasoning Models Good Translation Evaluators? Analysis and Performance Boost NeurIPS 2025
Recent advancements in large reasoning models (LRMs) have introduced an intermediate "thinking" process prior to generating final answers, improving their reasoning capabilities on complex downstream tasks. However, the potential of LRMs as evaluators for machine translation (MT) quality remains underexplored. We provides the first systematic analysis of LRM-as-a-judge in MT evaluation. We identify key challenges, revealing LRMs require tailored evaluation materials, tend to "overthink" simpler instances and have issues with scoring mechanisms leading to overestimation. To address these, we propose to calibrate LRM thinking by training them on synthetic, human-like thinking trajectories. Our experiments on WMT24 Metrics benchmarks demonstrate that this approach largely reduces thinking budgets by ~35x while concurrently improving evaluation performance across different LRM scales from 7B to 32B (e.g., R1-Distill-Qwen-7B achieves a +8.7 correlation point improvement). These findings highlight the potential of efficiently calibrated LRMs to advance fine-grained automatic MT evaluation.
comment: NeurIPS 2025
☆ FieldGen: From Teleoperated Pre-Manipulation Trajectories to Field-Guided Data Generation
Large-scale and diverse datasets are vital for training robust robotic manipulation policies, yet existing data collection methods struggle to balance scale, diversity, and quality. Simulation offers scalability but suffers from sim-to-real gaps, while teleoperation yields high-quality demonstrations with limited diversity and high labor cost. We introduce FieldGen, a field-guided data generation framework that enables scalable, diverse, and high-quality real-world data collection with minimal human supervision. FieldGen decomposes manipulation into two stages: a pre-manipulation phase, allowing trajectory diversity, and a fine manipulation phase requiring expert precision. Human demonstrations capture key contact and pose information, after which an attraction field automatically generates diverse trajectories converging to successful configurations. This decoupled design combines scalable trajectory diversity with precise supervision. Moreover, FieldGen-Reward augments generated data with reward annotations to further enhance policy learning. Experiments demonstrate that policies trained with FieldGen achieve higher success rates and improved stability compared to teleoperation-based baselines, while significantly reducing human effort in long-term real-world data collection. Webpage is available at https://fieldgen.github.io/.
comment: Webpage: https://fieldgen.github.io/
☆ RAGRank: Using PageRank to Counter Poisoning in CTI LLM Pipelines
Retrieval-Augmented Generation (RAG) has emerged as the dominant architectural pattern to operationalize Large Language Model (LLM) usage in Cyber Threat Intelligence (CTI) systems. However, this design is susceptible to poisoning attacks, and previously proposed defenses can fail for CTI contexts as cyber threat information is often completely new for emerging attacks, and sophisticated threat actors can mimic legitimate formats, terminology, and stylistic conventions. To address this issue, we propose that the robustness of modern RAG defenses can be accelerated by applying source credibility algorithms on corpora, using PageRank as an example. In our experiments, we demonstrate quantitatively that our algorithm applies a lower authority score to malicious documents while promoting trusted content, using the standardized MS MARCO dataset. We also demonstrate proof-of-concept performance of our algorithm on CTI documents and feeds.
☆ Reinforcement Learning and Consumption-Savings Behavior
This paper demonstrates how reinforcement learning can explain two puzzling empirical patterns in household consumption behavior during economic downturns. I develop a model where agents use Q-learning with neural network approximation to make consumption-savings decisions under income uncertainty, departing from standard rational expectations assumptions. The model replicates two key findings from recent literature: (1) unemployed households with previously low liquid assets exhibit substantially higher marginal propensities to consume (MPCs) out of stimulus transfers compared to high-asset households (0.50 vs 0.34), even when neither group faces borrowing constraints, consistent with Ganong et al. (2024); and (2) households with more past unemployment experiences maintain persistently lower consumption levels after controlling for current economic conditions, a "scarring" effect documented by Malmendier and Shen (2024). Unlike existing explanations based on belief updating about income risk or ex-ante heterogeneity, the reinforcement learning mechanism generates both higher MPCs and lower consumption levels simultaneously through value function approximation errors that evolve with experience. Simulation results closely match the empirical estimates, suggesting that adaptive learning through reinforcement learning provides a unifying framework for understanding how past experiences shape current consumption behavior beyond what current economic conditions would predict.
comment: 41 pages, 10 figures
☆ Empathic Prompting: Non-Verbal Context Integration for Multimodal LLM Conversations
We present Empathic Prompting, a novel framework for multimodal human-AI interaction that enriches Large Language Model (LLM) conversations with implicit non-verbal context. The system integrates a commercial facial expression recognition service to capture users' emotional cues and embeds them as contextual signals during prompting. Unlike traditional multimodal interfaces, empathic prompting requires no explicit user control; instead, it unobtrusively augments textual input with affective information for conversational and smoothness alignment. The architecture is modular and scalable, allowing integration of additional non-verbal modules. We describe the system design, implemented through a locally deployed DeepSeek instance, and report a preliminary service and usability evaluation (N=5). Results show consistent integration of non-verbal input into coherent LLM outputs, with participants highlighting conversational fluidity. Beyond this proof of concept, empathic prompting points to applications in chatbot-mediated communication, particularly in domains like healthcare or education, where users' emotional signals are critical yet often opaque in verbal exchanges.
☆ Thought Communication in Multiagent Collaboration NeurIPS 2025
Natural language has long enabled human cooperation, but its lossy, ambiguous, and indirect nature limits the potential of collective intelligence. While machines are not subject to these constraints, most LLM-based multi-agent systems still rely solely on natural language, exchanging tokens or their embeddings. To go beyond language, we introduce a new paradigm, thought communication, which enables agents to interact directly mind-to-mind, akin to telepathy. To uncover these latent thoughts in a principled way, we formalize the process as a general latent variable model, where agent states are generated by an unknown function of underlying thoughts. We prove that, in a nonparametric setting without auxiliary information, both shared and private latent thoughts between any pair of agents can be identified. Moreover, the global structure of thought sharing, including which agents share which thoughts and how these relationships are structured, can also be recovered with theoretical guarantees. Guided by the established theory, we develop a framework that extracts latent thoughts from all agents prior to communication and assigns each agent the relevant thoughts, along with their sharing patterns. This paradigm naturally extends beyond LLMs to all modalities, as most observational data arise from hidden generative processes. Experiments on both synthetic and real-world benchmarks validate the theory and demonstrate the collaborative advantages of thought communication. We hope this work illuminates the potential of leveraging the hidden world, as many challenges remain unsolvable through surface-level observation alone, regardless of compute or data scale.
comment: NeurIPS 2025 Spotlight
☆ Co-Designing Quantum Codes with Transversal Diagonal Gates via Multi-Agent Systems
We present a multi-agent, human-in-the-loop workflow that co-designs quantum codes with prescribed transversal diagonal gates. It builds on the Subset-Sum Linear Programming (SSLP) framework (arXiv:2504.20847), which partitions basis strings by modular residues and enforces $Z$-marginal Knill-Laflamme (KL) equalities via small LPs. The workflow is powered by GPT-5 and implemented within TeXRA (https://texra.ai)-a multi-agent research assistant platform that supports an iterative tool-use loop agent and a derivation-then-edit workflow reasoning agent. We work in a LaTeX-Python environment where agents reason, edit documents, execute code, and synchronize their work to Git/Overleaf. Within this workspace, three roles collaborate: a Synthesis Agent formulates the problem; a Search Agent sweeps/screens candidates and exactifies numerics into rationals; and an Audit Agent independently checks all KL equalities and the induced logical action. As a first step we focus on distance $d=2$ with nondegenerate residues. For code dimension $K\in\{2,3,4\}$ and $n\le6$ qubits, systematic sweeps yield certificate-backed tables cataloging attainable cyclic logical groups-all realized by new codes-e.g., for $K=3$ we obtain order $16$ at $n=6$. From verified instances, Synthesis Agent abstracts recurring structures into closed-form families and proves they satisfy the KL equalities for all parameters. It further demonstrates that SSLP accommodates residue degeneracy by exhibiting a new $((6,4,2))$ code implementing the transversal controlled-phase $diag(1,1,1,i)$. Overall, the workflow recasts diagonal-transversal feasibility as an analytical pipeline executed at scale, combining systematic enumeration with exact analytical reconstruction. It yields reproducible code constructions, supports targeted extensions to larger $K$ and higher distances, and leads toward data-driven classification.
comment: 29 pages, 2 figures
☆ Automated Extraction of Fluoropyrimidine Treatment and Treatment-Related Toxicities from Clinical Notes Using Natural Language Processing
Objective: Fluoropyrimidines are widely prescribed for colorectal and breast cancers, but are associated with toxicities such as hand-foot syndrome and cardiotoxicity. Since toxicity documentation is often embedded in clinical notes, we aimed to develop and evaluate natural language processing (NLP) methods to extract treatment and toxicity information. Materials and Methods: We constructed a gold-standard dataset of 236 clinical notes from 204,165 adult oncology patients. Domain experts annotated categories related to treatment regimens and toxicities. We developed rule-based, machine learning-based (Random Forest, Support Vector Machine [SVM], Logistic Regression [LR]), deep learning-based (BERT, ClinicalBERT), and large language models (LLM)-based NLP approaches (zero-shot and error-analysis prompting). Models used an 80:20 train-test split. Results: Sufficient data existed to train and evaluate 5 annotated categories. Error-analysis prompting achieved optimal precision, recall, and F1 scores (F1=1.000) for treatment and toxicities extraction, whereas zero-shot prompting reached F1=1.000 for treatment and F1=0.876 for toxicities extraction.LR and SVM ranked second for toxicities (F1=0.937). Deep learning underperformed, with BERT (F1=0.873 treatment; F1= 0.839 toxicities) and ClinicalBERT (F1=0.873 treatment; F1 = 0.886 toxicities). Rule-based methods served as our baseline with F1 scores of 0.857 in treatment and 0.858 in toxicities. Discussion: LMM-based approaches outperformed all others, followed by machine learning methods. Machine and deep learning approaches were limited by small training data and showed limited generalizability, particularly for rare categories. Conclusion: LLM-based NLP most effectively extracted fluoropyrimidine treatment and toxicity information from clinical notes, and has strong potential to support oncology research and pharmacovigilance.
☆ User Perceptions of Privacy and Helpfulness in LLM Responses to Privacy-Sensitive Scenarios
Large language models (LLMs) have seen rapid adoption for tasks such as drafting emails, summarizing meetings, and answering health questions. In such uses, users may need to share private information (e.g., health records, contact details). To evaluate LLMs' ability to identify and redact such private information, prior work developed benchmarks (e.g., ConfAIde, PrivacyLens) with real-life scenarios. Using these benchmarks, researchers have found that LLMs sometimes fail to keep secrets private when responding to complex tasks (e.g., leaking employee salaries in meeting summaries). However, these evaluations rely on LLMs (proxy LLMs) to gauge compliance with privacy norms, overlooking real users' perceptions. Moreover, prior work primarily focused on the privacy-preservation quality of responses, without investigating nuanced differences in helpfulness. To understand how users perceive the privacy-preservation quality and helpfulness of LLM responses to privacy-sensitive scenarios, we conducted a user study with 94 participants using 90 scenarios from PrivacyLens. We found that, when evaluating identical responses to the same scenario, users showed low agreement with each other on the privacy-preservation quality and helpfulness of the LLM response. Further, we found high agreement among five proxy LLMs, while each individual LLM had low correlation with users' evaluations. These results indicate that the privacy and helpfulness of LLM responses are often specific to individuals, and proxy LLMs are poor estimates of how real users would perceive these responses in privacy-sensitive scenarios. Our results suggest the need to conduct user-centered studies on measuring LLMs' ability to help users while preserving privacy. Additionally, future research could investigate ways to improve the alignment between proxy LLMs and users for better estimation of users' perceived privacy and utility.
☆ Unsupervised Anomaly Prediction with N-BEATS and Graph Neural Network in Multi-variate Semiconductor Process Time Series
Semiconductor manufacturing is an extremely complex and precision-driven process, characterized by thousands of interdependent parameters collected across diverse tools and process steps. Multi-variate time-series analysis has emerged as a critical field for real-time monitoring and fault detection in such environments. However, anomaly prediction in semiconductor fabrication presents several critical challenges, including high dimensionality of sensor data and severe class imbalance due to the rarity of true faults. Furthermore, the complex interdependencies between variables complicate both anomaly prediction and root-cause-analysis. This paper proposes two novel approaches to advance the field from anomaly detection to anomaly prediction, an essential step toward enabling real-time process correction and proactive fault prevention. The proposed anomaly prediction framework contains two main stages: (a) training a forecasting model on a dataset assumed to contain no anomalies, and (b) performing forecast on unseen time series data. The forecast is compared with the forecast of the trained signal. Deviations beyond a predefined threshold are flagged as anomalies. The two approaches differ in the forecasting model employed. The first assumes independence between variables by utilizing the N-BEATS model for univariate time series forecasting. The second lifts this assumption by utilizing a Graph Neural Network (GNN) to capture inter-variable relationships. Both models demonstrate strong forecasting performance up to a horizon of 20 time points and maintain stable anomaly prediction up to 50 time points. The GNN consistently outperforms the N-BEATS model while requiring significantly fewer trainable parameters and lower computational cost. These results position the GNN as promising solution for online anomaly forecasting to be deployed in manufacturing environments.
comment: 17 pages, 27 figures
☆ Real-Time Gait Adaptation for Quadrupeds using Model Predictive Control and Reinforcement Learning
Model-free reinforcement learning (RL) has enabled adaptable and agile quadruped locomotion; however, policies often converge to a single gait, leading to suboptimal performance. Traditionally, Model Predictive Control (MPC) has been extensively used to obtain task-specific optimal policies but lacks the ability to adapt to varying environments. To address these limitations, we propose an optimization framework for real-time gait adaptation in a continuous gait space, combining the Model Predictive Path Integral (MPPI) algorithm with a Dreamer module to produce adaptive and optimal policies for quadruped locomotion. At each time step, MPPI jointly optimizes the actions and gait variables using a learned Dreamer reward that promotes velocity tracking, energy efficiency, stability, and smooth transitions, while penalizing abrupt gait changes. A learned value function is incorporated as terminal reward, extending the formulation to an infinite-horizon planner. We evaluate our framework in simulation on the Unitree Go1, demonstrating an average reduction of up to 36.48\% in energy consumption across varying target speeds, while maintaining accurate tracking and adaptive, task-appropriate gaits.
☆ Fusing Narrative Semantics for Financial Volatility Forecasting
We introduce M2VN: Multi-Modal Volatility Network, a novel deep learning-based framework for financial volatility forecasting that unifies time series features with unstructured news data. M2VN leverages the representational power of deep neural networks to address two key challenges in this domain: (i) aligning and fusing heterogeneous data modalities, numerical financial data and textual information, and (ii) mitigating look-ahead bias that can undermine the validity of financial models. To achieve this, M2VN combines open-source market features with news embeddings generated by Time Machine GPT, a recently introduced point-in-time LLM, ensuring temporal integrity. An auxiliary alignment loss is introduced to enhance the integration of structured and unstructured data within the deep learning architecture. Extensive experiments demonstrate that M2VN consistently outperforms existing baselines, underscoring its practical value for risk management and financial decision-making in dynamic markets.
comment: The 6th ACM International Conference on AI in Finance (ICAIF 2025)
☆ Exploring Large Language Models for Access Control Policy Synthesis and Summarization
Cloud computing is ubiquitous, with a growing number of services being hosted on the cloud every day. Typical cloud compute systems allow administrators to write policies implementing access control rules which specify how access to private data is governed. These policies must be manually written, and due to their complexity can often be error prone. Moreover, existing policies often implement complex access control specifications and thus can be difficult to precisely analyze in determining their behavior works exactly as intended. Recently, Large Language Models (LLMs) have shown great success in automated code synthesis and summarization. Given this success, they could potentially be used for automatically generating access control policies or aid in understanding existing policies. In this paper, we explore the effectiveness of LLMs for access control policy synthesis and summarization. Specifically, we first investigate diverse LLMs for access control policy synthesis, finding that: although LLMs can effectively generate syntactically correct policies, they have permissiveness issues, generating policies equivalent to the given specification 45.8% of the time for non-reasoning LLMs, and 93.7% of the time for reasoning LLMs. We then investigate how LLMs can be used to analyze policies by introducing a novel semantic-based request summarization approach which leverages LLMs to generate a precise characterization of the requests allowed by a policy. Our results show that while there are significant hurdles in leveraging LLMs for automated policy generation, LLMs show promising results when combined with symbolic approaches in analyzing existing policies.
comment: 20 pages, 7 figures
☆ Plan Then Retrieve: Reinforcement Learning-Guided Complex Reasoning over Knowledge Graphs
Knowledge Graph Question Answering aims to answer natural language questions by reasoning over structured knowledge graphs. While large language models have advanced KGQA through their strong reasoning capabilities, existing methods continue to struggle to fully exploit both the rich knowledge encoded in KGs and the reasoning capabilities of LLMs, particularly in complex scenarios. They often assume complete KG coverage and lack mechanisms to judge when external information is needed, and their reasoning remains locally myopic, failing to maintain coherent multi-step planning, leading to reasoning failures even when relevant knowledge exists. We propose Graph-RFT, a novel two-stage reinforcement fine-tuning KGQA framework with a 'plan-KGsearch-and-Websearch-during-think' paradigm, that enables LLMs to perform autonomous planning and adaptive retrieval scheduling across KG and web sources under incomplete knowledge conditions. Graph-RFT introduces a chain-of-thought fine-tuning method with a customized plan-retrieval dataset activates structured reasoning and resolves the GRPO cold-start problem. It then introduces a novel plan-retrieval guided reinforcement learning process integrates explicit planning and retrieval actions with a multi-reward design, enabling coverage-aware retrieval scheduling. It employs a Cartesian-inspired planning module to decompose complex questions into ordered subquestions, and logical expression to guide tool invocation for globally consistent multi-step reasoning. This reasoning retrieval process is optimized with a multi-reward combining outcome and retrieval specific signals, enabling the model to learn when and how to combine KG and web retrieval effectively.
☆ Neural Diversity Regularizes Hallucinations in Small Models
Language models continue to hallucinate despite increases in parameters, compute, and data. We propose neural diversity -- decorrelated parallel representations -- as a principled mechanism that reduces hallucination rates at fixed parameter and data budgets. Inspired by portfolio theory, where uncorrelated assets reduce risk by $\sqrt{P}$, we prove hallucination probability is bounded by representational correlation: $P(H) \leq f(\sigma^2((1-\rho(P))/P + \rho(P)), \mu^2)$, which predicts that language models need an optimal amount of neurodiversity. To validate this, we introduce ND-LoRA (Neural Diversity Low-Rank Adaptation), combining parallel LoRA adapters with Barlow Twins regularization, and demonstrate that ND-LoRA reduces hallucinations by up to 25.6% (and 14.6% on average) without degrading general accuracy. Ablations show LoRA adapters and regularization act synergistically, causal interventions prove neurodiversity as the mediating factor and correlational analyses indicate scale: a 0.1% neural correlation increase is associated with a 3.8% hallucination increase. Finally, task-dependent optimality emerges: different tasks require different amounts of optimal neurodiversity. Together, our results highlight neural diversity as a third axis of scaling -- orthogonal to parameters and data -- to improve the reliability of language models at fixed budgets.
☆ A Scalable, Causal, and Energy Efficient Framework for Neural Decoding with Spiking Neural Networks
Brain-computer interfaces (BCIs) promise to enable vital functions, such as speech and prosthetic control, for individuals with neuromotor impairments. Central to their success are neural decoders, models that map neural activity to intended behavior. Current learning-based decoding approaches fall into two classes: simple, causal models that lack generalization, or complex, non-causal models that generalize and scale offline but struggle in real-time settings. Both face a common challenge, their reliance on power-hungry artificial neural network backbones, which makes integration into real-world, resource-limited systems difficult. Spiking neural networks (SNNs) offer a promising alternative. Because they operate causally these models are suitable for real-time use, and their low energy demands make them ideal for battery-constrained environments. To this end, we introduce Spikachu: a scalable, causal, and energy-efficient neural decoding framework based on SNNs. Our approach processes binned spikes directly by projecting them into a shared latent space, where spiking modules, adapted to the timing of the input, extract relevant features; these latent representations are then integrated and decoded to generate behavioral predictions. We evaluate our approach on 113 recording sessions from 6 non-human primates, totaling 43 hours of recordings. Our method outperforms causal baselines when trained on single sessions using between 2.26 and 418.81 times less energy. Furthermore, we demonstrate that scaling up training to multiple sessions and subjects improves performance and enables few-shot transfer to unseen sessions, subjects, and tasks. Overall, Spikachu introduces a scalable, online-compatible neural decoding framework based on SNNs, whose performance is competitive relative to state-of-the-art models while consuming orders of magnitude less energy.
☆ R2-SVC: Towards Real-World Robust and Expressive Zero-shot Singing Voice Conversion
In real-world singing voice conversion (SVC) applications, environmental noise and the demand for expressive output pose significant challenges. Conventional methods, however, are typically designed without accounting for real deployment scenarios, as both training and inference usually rely on clean data. This mismatch hinders practical use, given the inevitable presence of diverse noise sources and artifacts from music separation. To tackle these issues, we propose R2-SVC, a robust and expressive SVC framework. First, we introduce simulation-based robustness enhancement through random fundamental frequency ($F_0$) perturbations and music separation artifact simulations (e.g., reverberation, echo), substantially improving performance under noisy conditions. Second, we enrich speaker representation using domain-specific singing data: alongside clean vocals, we incorporate DNSMOS-filtered separated vocals and public singing corpora, enabling the model to preserve speaker timbre while capturing singing style nuances. Third, we integrate the Neural Source-Filter (NSF) model to explicitly represent harmonic and noise components, enhancing the naturalness and controllability of converted singing. R2-SVC achieves state-of-the-art results on multiple SVC benchmarks under both clean and noisy conditions.
comment: 5 pages, 2 figures
☆ GRACE: GRaph-based Addiction Care prEdiction
Determining the appropriate locus of care for addiction patients is one of the most critical clinical decisions that affects patient treatment outcomes and effective use of resources. With a lack of sufficient specialized treatment resources, such as inpatient beds or staff, there is an unmet need to develop an automated framework for the same. Current decision-making approaches suffer from severe class imbalances in addiction datasets. To address this limitation, we propose a novel graph neural network (GRACE) framework that formalizes locus of care prediction as a structured learning problem. Further, we perform extensive feature engineering and propose a new approach of obtaining an unbiased meta-graph to train a GNN to overcome the class imbalance problem. Experimental results in real-world data show an improvement of 11-35% in terms of the F1 score of the minority class over competitive baselines. The codes and note embeddings are available at https://anonymous.4open.science/r/GRACE-F8E1/.
☆ The Shape of Reasoning: Topological Analysis of Reasoning Traces in Large Language Models
Evaluating the quality of reasoning traces from large language models remains understudied, labor-intensive, and unreliable: current practice relies on expert rubrics, manual annotation, and slow pairwise judgments. Automated efforts are dominated by graph-based proxies that quantify structural connectivity but do not clarify what constitutes high-quality reasoning; such abstractions can be overly simplistic for inherently complex processes. We introduce a topological data analysis (TDA)-based evaluation framework that captures the geometry of reasoning traces and enables label-efficient, automated assessment. In our empirical study, topological features yield substantially higher predictive power for assessing reasoning quality than standard graph metrics, suggesting that effective reasoning is better captured by higher-dimensional geometric structures rather than purely relational graphs. We further show that a compact, stable set of topological features reliably indicates trace quality, offering a practical signal for future reinforcement learning algorithms.
☆ Finding the Sweet Spot: Trading Quality, Cost, and Speed During Inference-Time LLM Reflection
As Large Language Models (LLMs) continue to evolve, practitioners face increasing options for enhancing inference-time performance without model retraining, including budget tuning and multi-step techniques like self-reflection. While these methods improve output quality, they create complex trade-offs among accuracy, cost, and latency that remain poorly understood across different domains. This paper systematically compares self-reflection and budget tuning across mathematical reasoning and translation tasks. We evaluate prominent LLMs, including Anthropic Claude, Amazon Nova, and Mistral families, along with other models under varying reflection depths and compute budgets to derive Pareto optimal performance frontiers. Our analysis reveals substantial domain dependent variation in self-reflection effectiveness, with performance gains up to 220\% in mathematical reasoning. We further investigate how reflection round depth and feedback mechanism quality influence performance across model families. To validate our findings in a real-world setting, we deploy a self-reflection enhanced marketing content localisation system at Lounge by Zalando, where it shows market-dependent effectiveness, reinforcing the importance of domain specific evaluation when deploying these techniques. Our results provide actionable guidance for selecting optimal inference strategies given specific domains and resource constraints. We open source our self-reflection implementation for reproducibility at https://github.com/aws-samples/sample-genai-reflection-for-bedrock.
☆ The Reasoning Lingua Franca: A Double-Edged Sword for Multilingual AI
Large Reasoning Models (LRMs) achieve strong performance on mathematical, scientific, and other question-answering tasks, but their multilingual reasoning abilities remain underexplored. When presented with non-English questions, LRMs often default to reasoning in English, raising concerns about interpretability and the handling of linguistic and cultural nuances. We systematically compare an LRM's reasoning in English versus the language of the question. Our evaluation spans two tasks: MGSM and GPQA Diamond. Beyond measuring answer accuracy, we also analyze cognitive attributes in the reasoning traces. We find that English reasoning traces exhibit a substantially higher presence of these cognitive behaviors, and that reasoning in English generally yields higher final-answer accuracy, with the performance gap increasing as tasks become more complex. However, this English-centric strategy is susceptible to a key failure mode - getting "Lost in Translation," where translation steps lead to errors that would have been avoided by question's language reasoning.
comment: 14 pages, 13 figures, 5 tables
☆ Integrating Machine Learning into Belief-Desire-Intention Agents: Current Advances and Open Challenges
Thanks to the remarkable human-like capabilities of machine learning (ML) models in perceptual and cognitive tasks, frameworks integrating ML within rational agent architectures are gaining traction. Yet, the landscape remains fragmented and incoherent, often focusing on embedding ML into generic agent containers while overlooking the expressive power of rational architectures--such as Belief-Desire-Intention (BDI) agents. This paper presents a fine-grained systematisation of existing approaches, using the BDI paradigm as a reference. Our analysis illustrates the fast-evolving literature on rational agents enhanced by ML, and identifies key research opportunities and open challenges for designing effective rational ML agents.
☆ Fluidity Index: Next-Generation Super-intelligence Benchmarks
This paper introduces the Fluidity Index (FI) to quantify model adaptability in dynamic, scaling environments. The benchmark evaluates response accuracy based on deviations in initial, current, and future environment states, assessing context switching and continuity. We distinguish between closed-ended and open-ended benchmarks, prioritizing closed-loop open-ended real-world benchmarks to test adaptability. The approach measures a model's ability to understand, predict, and adjust to state changes in scaling environments. A truly super-intelligent model should exhibit at least second-order adaptability, enabling self-sustained computation through digital replenishment for optimal fluidity.
comment: 12
☆ Why Did Apple Fall To The Ground: Evaluating Curiosity In Large Language Model
Curiosity serves as a pivotal conduit for human beings to discover and learn new knowledge. Recent advancements of large language models (LLMs) in natural language processing have sparked discussions regarding whether these models possess capability of curiosity-driven learning akin to humans. In this paper, starting from the human curiosity assessment questionnaire Five-Dimensional Curiosity scale Revised (5DCR), we design a comprehensive evaluation framework that covers dimensions such as Information Seeking, Thrill Seeking, and Social Curiosity to assess the extent of curiosity exhibited by LLMs. The results demonstrate that LLMs exhibit a stronger thirst for knowledge than humans but still tend to make conservative choices when faced with uncertain environments. We further investigated the relationship between curiosity and thinking of LLMs, confirming that curious behaviors can enhance the model's reasoning and active learning abilities. These findings suggest that LLMs have the potential to exhibit curiosity similar to that of humans, providing experimental support for the future development of learning capabilities and innovative research in LLMs.
☆ Deep Learning in Dental Image Analysis: A Systematic Review of Datasets, Methodologies, and Emerging Challenges
Efficient analysis and processing of dental images are crucial for dentists to achieve accurate diagnosis and optimal treatment planning. However, dental imaging inherently poses several challenges, such as low contrast, metallic artifacts, and variations in projection angles. Combined with the subjectivity arising from differences in clinicians' expertise, manual interpretation often proves time-consuming and prone to inconsistency. Artificial intelligence (AI)-based automated dental image analysis (DIA) offers a promising solution to these issues and has become an integral part of computer-aided dental diagnosis and treatment. Among various AI technologies, deep learning (DL) stands out as the most widely applied and influential approach due to its superior feature extraction and representation capabilities. To comprehensively summarize recent progress in this field, we focus on the two fundamental aspects of DL research-datasets and models. In this paper, we systematically review 260 studies on DL applications in DIA, including 49 papers on publicly available dental datasets and 211 papers on DL-based algorithms. We first introduce the basic concepts of dental imaging and summarize the characteristics and acquisition methods of existing datasets. Then, we present the foundational techniques of DL and categorize relevant models and algorithms according to different DIA tasks, analyzing their network architectures, optimization strategies, training methods, and performance. Furthermore, we summarize commonly used training and evaluation metrics in the DIA domain. Finally, we discuss the current challenges of existing research and outline potential future directions. We hope that this work provides a valuable and systematic reference for researchers in this field. All supplementary materials and detailed comparison tables will be made publicly available on GitHub.
comment: 52 pages, 24 figures. Under Review
☆ Towards Reliable Evaluation of Large Language Models for Multilingual and Multimodal E-Commerce Applications
Large Language Models (LLMs) excel on general-purpose NLP benchmarks, yet their capabilities in specialized domains remain underexplored. In e-commerce, existing evaluations-such as EcomInstruct, ChineseEcomQA, eCeLLM, and Shopping MMLU-suffer from limited task diversity (e.g., lacking product guidance and after-sales issues), limited task modalities (e.g., absence of multimodal data), synthetic or curated data, and a narrow focus on English and Chinese, leaving practitioners without reliable tools to assess models on complex, real-world shopping scenarios. We introduce EcomEval, a comprehensive multilingual and multimodal benchmark for evaluating LLMs in e-commerce. EcomEval covers six categories and 37 tasks (including 8 multimodal tasks), sourced primarily from authentic customer queries and transaction logs, reflecting the noisy and heterogeneous nature of real business interactions. To ensure both quality and scalability of reference answers, we adopt a semi-automatic pipeline in which large models draft candidate responses subsequently reviewed and modified by over 50 expert annotators with strong e-commerce and multilingual expertise. We define difficulty levels for each question and task category by averaging evaluation scores across models with different sizes and capabilities, enabling challenge-oriented and fine-grained assessment. EcomEval also spans seven languages-including five low-resource Southeast Asian languages-offering a multilingual perspective absent from prior work.
☆ Quantum Processing Unit (QPU) processing time Prediction with Machine Learning
This paper explores the application of machine learning (ML) techniques in predicting the QPU processing time of quantum jobs. By leveraging ML algorithms, this study introduces predictive models that are designed to enhance operational efficiency in quantum computing systems. Using a dataset of about 150,000 jobs that follow the IBM Quantum schema, we employ ML methods based on Gradient-Boosting (LightGBM) to predict the QPU processing times, incorporating data preprocessing methods to improve model accuracy. The results demonstrate the effectiveness of ML in forecasting quantum jobs. This improvement can have implications on improving resource management and scheduling within quantum computing frameworks. This research not only highlights the potential of ML in refining quantum job predictions but also sets a foundation for integrating AI-driven tools in advanced quantum computing operations.
comment: Technical paper accepted at the IEEE Quantum Week 2025 Conference
☆ Equitable Survival Prediction: A Fairness-Aware Survival Modeling (FASM) Approach
As machine learning models become increasingly integrated into healthcare, structural inequities and social biases embedded in clinical data can be perpetuated or even amplified by data-driven models. In survival analysis, censoring and time dynamics can further add complexity to fair model development. Additionally, algorithmic fairness approaches often overlook disparities in cross-group rankings, e.g., high-risk Black patients may be ranked below lower-risk White patients who do not experience the event of mortality. Such misranking can reinforce biological essentialism and undermine equitable care. We propose a Fairness-Aware Survival Modeling (FASM), designed to mitigate algorithmic bias regarding both intra-group and cross-group risk rankings over time. Using breast cancer prognosis as a representative case and applying FASM to SEER breast cancer data, we show that FASM substantially improves fairness while preserving discrimination performance comparable to fairness-unaware survival models. Time-stratified evaluations show that FASM maintains stable fairness over a 10-year horizon, with the greatest improvements observed during the mid-term of follow-up. Our approach enables the development of survival models that prioritize both accuracy and equity in clinical decision-making, advancing fairness as a core principle in clinical care.
☆ Towards the Formalization of a Trustworthy AI for Mining Interpretable Models explOiting Sophisticated Algorithms
Interpretable-by-design models are crucial for fostering trust, accountability, and safe adoption of automated decision-making models in real-world applications. In this paper we formalize the ground for the MIMOSA (Mining Interpretable Models explOiting Sophisticated Algorithms) framework, a comprehensive methodology for generating predictive models that balance interpretability with performance while embedding key ethical properties. We formally define here the supervised learning setting across diverse decision-making tasks and data types, including tabular data, time series, images, text, transactions, and trajectories. We characterize three major families of interpretable models: feature importance, rule, and instance based models. For each family, we analyze their interpretability dimensions, reasoning mechanisms, and complexity. Beyond interpretability, we formalize three critical ethical properties, namely causality, fairness, and privacy, providing formal definitions, evaluation metrics, and verification procedures for each. We then examine the inherent trade-offs between these properties and discuss how privacy requirements, fairness constraints, and causal reasoning can be embedded within interpretable pipelines. By evaluating ethical measures during model generation, this framework establishes the theoretical foundations for developing AI systems that are not only accurate and interpretable but also fair, privacy-preserving, and causally aware, i.e., trustworthy.
☆ Black Box Absorption: LLMs Undermining Innovative Ideas
Large Language Models are increasingly adopted as critical tools for accelerating innovation. This paper identifies and formalizes a systemic risk inherent in this paradigm: \textbf{Black Box Absorption}. We define this as the process by which the opaque internal architectures of LLM platforms, often operated by large-scale service providers, can internalize, generalize, and repurpose novel concepts contributed by users during interaction. This mechanism threatens to undermine the foundational principles of innovation economics by creating severe informational and structural asymmetries between individual creators and platform operators, thereby jeopardizing the long-term sustainability of the innovation ecosystem. To analyze this challenge, we introduce two core concepts: the idea unit, representing the transportable functional logic of an innovation, and idea safety, a multidimensional standard for its protection. This paper analyzes the mechanisms of absorption and proposes a concrete governance and engineering agenda to mitigate these risks, ensuring that creator contributions remain traceable, controllable, and equitable.
☆ PSO-XAI: A PSO-Enhanced Explainable AI Framework for Reliable Breast Cancer Detection
Breast cancer is considered the most critical and frequently diagnosed cancer in women worldwide, leading to an increase in cancer-related mortality. Early and accurate detection is crucial as it can help mitigate possible threats while improving survival rates. In terms of prediction, conventional diagnostic methods are often limited by variability, cost, and, most importantly, risk of misdiagnosis. To address these challenges, machine learning (ML) has emerged as a powerful tool for computer-aided diagnosis, with feature selection playing a vital role in improving model performance and interpretability. This research study proposes an integrated framework that incorporates customized Particle Swarm Optimization (PSO) for feature selection. This framework has been evaluated on a comprehensive set of 29 different models, spanning classical classifiers, ensemble techniques, neural networks, probabilistic algorithms, and instance-based algorithms. To ensure interpretability and clinical relevance, the study uses cross-validation in conjunction with explainable AI methods. Experimental evaluation showed that the proposed approach achieved a superior score of 99.1\% across all performance metrics, including accuracy and precision, while effectively reducing dimensionality and providing transparent, model-agnostic explanations. The results highlight the potential of combining swarm intelligence with explainable ML for robust, trustworthy, and clinically meaningful breast cancer diagnosis.
☆ BUSTED at AraGenEval Shared Task: A Comparative Study of Transformer-Based Models for Arabic AI-Generated Text Detection
This paper details our submission to the Ara- GenEval Shared Task on Arabic AI-generated text detection, where our team, BUSTED, se- cured 5th place. We investigated the effec- tiveness of three pre-trained transformer mod- els: AraELECTRA, CAMeLBERT, and XLM- RoBERTa. Our approach involved fine-tuning each model on the provided dataset for a binary classification task. Our findings revealed a sur- prising result: the multilingual XLM-RoBERTa model achieved the highest performance with an F1 score of 0.7701, outperforming the spe- cialized Arabic models. This work underscores the complexities of AI-generated text detection and highlights the strong generalization capa- bilities of multilingual models.
☆ Practical Code RAG at Scale: Task-Aware Retrieval Design Choices under Compute Budgets
We study retrieval design for code-focused generation tasks under realistic compute budgets. Using two complementary tasks from Long Code Arena -- code completion and bug localization -- we systematically compare retrieval configurations across various context window sizes along three axes: (i) chunking strategy, (ii) similarity scoring, and (iii) splitting granularity. (1) For PL-PL, sparse BM25 with word-level splitting is the most effective and practical, significantly outperforming dense alternatives while being an order of magnitude faster. (2) For NL-PL, proprietary dense encoders (Voyager-3 family) consistently beat sparse retrievers, however requiring 100x larger latency. (3) Optimal chunk size scales with available context: 32-64 line chunks work best at small budgets, and whole-file retrieval becomes competitive at 16000 tokens. (4) Simple line-based chunking matches syntax-aware splitting across budgets. (5) Retrieval latency varies by up to 200x across configurations; BPE-based splitting is needlessly slow, and BM25 + word splitting offers the best quality-latency trade-off. Thus, we provide evidence-based recommendations for implementing effective code-oriented RAG systems based on task requirements, model constraints, and computational efficiency.
☆ Generalizable Reasoning through Compositional Energy Minimization
Generalization is a key challenge in machine learning, specifically in reasoning tasks, where models are expected to solve problems more complex than those encountered during training. Existing approaches typically train reasoning models in an end-to-end fashion, directly mapping input instances to solutions. While this allows models to learn useful heuristics from data, it often results in limited generalization beyond the training distribution. In this work, we propose a novel approach to reasoning generalization by learning energy landscapes over the solution spaces of smaller, more tractable subproblems. At test time, we construct a global energy landscape for a given problem by combining the energy functions of multiple subproblems. This compositional approach enables the incorporation of additional constraints during inference, allowing the construction of energy landscapes for problems of increasing difficulty. To improve the sample quality from this newly constructed energy landscape, we introduce Parallel Energy Minimization (PEM). We evaluate our approach on a wide set of reasoning problems. Our method outperforms existing state-of-the-art methods, demonstrating its ability to generalize to larger and more complex problems. Project website can be found at: https://alexoarga.github.io/compositional_reasoning/
☆ OnlineSplatter: Pose-Free Online 3D Reconstruction for Free-Moving Objects NeurIPS 2025
Free-moving object reconstruction from monocular video remains challenging, particularly without reliable pose or depth cues and under arbitrary object motion. We introduce OnlineSplatter, a novel online feed-forward framework generating high-quality, object-centric 3D Gaussians directly from RGB frames without requiring camera pose, depth priors, or bundle optimization. Our approach anchors reconstruction using the first frame and progressively refines the object representation through a dense Gaussian primitive field, maintaining constant computational cost regardless of video sequence length. Our core contribution is a dual-key memory module combining latent appearance-geometry keys with explicit directional keys, robustly fusing current frame features with temporally aggregated object states. This design enables effective handling of free-moving objects via spatial-guided memory readout and an efficient sparsification mechanism, ensuring comprehensive yet compact object coverage. Evaluations on real-world datasets demonstrate that OnlineSplatter significantly outperforms state-of-the-art pose-free reconstruction baselines, consistently improving with more observations while maintaining constant memory and runtime.
comment: NeurIPS 2025 (Spotlight)
☆ Efficient Algorithms for Computing Random Walk Centrality
Random walk centrality is a fundamental metric in graph mining for quantifying node importance and influence, defined as the weighted average of hitting times to a node from all other nodes. Despite its ability to capture rich graph structural information and its wide range of applications, computing this measure for large networks remains impractical due to the computational demands of existing methods. In this paper, we present a novel formulation of random walk centrality, underpinning two scalable algorithms: one leveraging approximate Cholesky factorization and sparse inverse estimation, while the other sampling rooted spanning trees. Both algorithms operate in near-linear time and provide strong approximation guarantees. Extensive experiments on large real-world networks, including one with over 10 million nodes, demonstrate the efficiency and approximation quality of the proposed algorithms.
comment: Accepted by TKDE
☆ What Defines Good Reasoning in LLMs? Dissecting Reasoning Steps with Multi-Aspect Evaluation
Evaluating large language models (LLMs) on final-answer correctness is the dominant paradigm. This approach, however, provides a coarse signal for model improvement and overlooks the quality of the underlying reasoning process. We argue that a more granular evaluation of reasoning offers a more effective path to building robust models. We decompose reasoning quality into two dimensions: relevance and coherence. Relevance measures if a step is grounded in the problem; coherence measures if it follows logically from prior steps. To measure these aspects reliably, we introduce causal stepwise evaluation (CaSE). This method assesses each reasoning step using only its preceding context, which avoids hindsight bias. We validate CaSE against human judgments on our new expert-annotated benchmarks, MRa-GSM8K and MRa-MATH. More importantly, we show that curating training data with CaSE-evaluated relevance and coherence directly improves final task performance. Our work provides a scalable framework for analyzing, debugging, and improving LLM reasoning, demonstrating the practical value of moving beyond validity checks.
☆ Resounding Acoustic Fields with Reciprocity NeurIPS 2025
Achieving immersive auditory experiences in virtual environments requires flexible sound modeling that supports dynamic source positions. In this paper, we introduce a task called resounding, which aims to estimate room impulse responses at arbitrary emitter location from a sparse set of measured emitter positions, analogous to the relighting problem in vision. We leverage the reciprocity property and introduce Versa, a physics-inspired approach to facilitating acoustic field learning. Our method creates physically valid samples with dense virtual emitter positions by exchanging emitter and listener poses. We also identify challenges in deploying reciprocity due to emitter/listener gain patterns and propose a self-supervised learning approach to address them. Results show that Versa substantially improve the performance of acoustic field learning on both simulated and real-world datasets across different metrics. Perceptual user studies show that Versa can greatly improve the immersive spatial sound experience. Code, dataset and demo videos are available on the project website: https://waves.seas.upenn.edu/projects/versa.
comment: NeurIPS 2025
☆ Unsupervised Domain Adaptation via Similarity-based Prototypes for Cross-Modality Segmentation MICCAI 2021
Deep learning models have achieved great success on various vision challenges, but a well-trained model would face drastic performance degradation when applied to unseen data. Since the model is sensitive to domain shift, unsupervised domain adaptation attempts to reduce the domain gap and avoid costly annotation of unseen domains. This paper proposes a novel framework for cross-modality segmentation via similarity-based prototypes. In specific, we learn class-wise prototypes within an embedding space, then introduce a similarity constraint to make these prototypes representative for each semantic class while separable from different classes. Moreover, we use dictionaries to store prototypes extracted from different images, which prevents the class-missing problem and enables the contrastive learning of prototypes, and further improves performance. Extensive experiments show that our method achieves better results than other state-of-the-art methods.
comment: MICCAI 2021
☆ Transferable Graph Learning for Transmission Congestion Management via Busbar Splitting
Network topology optimization (NTO) via busbar splitting can mitigate transmission grid congestion and reduce redispatch costs. However, solving this mixed-integer non-linear problem for large-scale systems in near-real-time is currently intractable with existing solvers. Machine learning (ML) approaches have emerged as a promising alternative, but they have limited generalization to unseen topologies, varying operating conditions, and different systems, which limits their practical applicability. This paper formulates NTO for congestion management problem considering linearized AC PF, and proposes a graph neural network (GNN)-accelerated approach. We develop a heterogeneous edge-aware message passing NN to predict effective busbar splitting actions as candidate NTO solutions. The proposed GNN captures local flow patterns, achieves generalization to unseen topology changes, and improves transferability across systems. Case studies show up to 4 orders-of-magnitude speed-up, delivering AC-feasible solutions within one minute and a 2.3% optimality gap on the GOC 2000-bus system. These results demonstrate a significant step toward near-real-time NTO for large-scale systems with topology and cross-system generalization.
☆ Can ChatGPT Code Communication Data Fairly?: Empirical Evidence from Multiple Collaborative Tasks
Assessing communication and collaboration at scale depends on a labor intensive task of coding communication data into categories according to different frameworks. Prior research has established that ChatGPT can be directly instructed with coding rubrics to code the communication data and achieves accuracy comparable to human raters. However, whether the coding from ChatGPT or similar AI technology exhibits bias against different demographic groups, such as gender and race, remains unclear. To fill this gap, this paper investigates ChatGPT-based automated coding of communication data using a typical coding framework for collaborative problem solving, examining differences across gender and racial groups. The analysis draws on data from three types of collaborative tasks: negotiation, problem solving, and decision making. Our results show that ChatGPT-based coding exhibits no significant bias across gender and racial groups, paving the road for its adoption in large-scale assessment of collaboration and communication.
comment: 38 pages, 4 figures
☆ Open-o3 Video: Grounded Video Reasoning with Explicit Spatio-Temporal Evidence
Most video reasoning models only generate textual reasoning traces without indicating when and where key evidence appears. Recent models such as OpenAI-o3 have sparked wide interest in evidence-centered reasoning for images, yet extending this ability to videos is more challenging, as it requires joint temporal tracking and spatial localization across dynamic scenes. We introduce Open-o3 Video, a non-agent framework that integrates explicit spatio-temporal evidence into video reasoning, and carefully collect training data and design training strategies to address the aforementioned challenges. The model highlights key timestamps, objects, and bounding boxes alongside its answers, allowing reasoning to be grounded in concrete visual observations. To enable this functionality, we first curate and build two high-quality datasets, STGR-CoT-30k for SFT and STGR-RL-36k for RL, with carefully constructed temporal and spatial annotations, since most existing datasets offer either temporal spans for videos or spatial boxes on images, lacking unified spatio-temporal supervision and reasoning traces. Then, we adopt a cold-start reinforcement learning strategy with multiple specially designed rewards that jointly encourage answer accuracy, temporal alignment, and spatial precision. On V-STAR benchmark, Open-o3 Video achieves state-of-the-art performance, raising mAM by 14.4% and mLGM by 24.2% on the Qwen2.5-VL baseline. Consistent improvements are also observed on a broad range of video understanding benchmarks, including VideoMME, WorldSense, VideoMMMU, and TVGBench. Beyond accuracy, the reasoning traces produced by Open-o3 Video also provide valuable signals for test-time scaling, enabling confidence-aware verification and improving answer reliability.
☆ Lost in Translation: Policymakers are not really listening to Citizen Concerns about AI
The worlds people have strong opinions about artificial intelligence (AI), and they want policymakers to listen. Governments are inviting public comment on AI, but as they translate input into policy, much of what citizens say is lost. Policymakers are missing a critical opportunity to build trust in AI and its governance. This paper compares three countries, Australia, Colombia, and the United States, that invited citizens to comment on AI risks and policies. Using a landscape analysis, the authors examined how each government solicited feedback and whether that input shaped governance. Yet in none of the three cases did citizens and policymakers establish a meaningful dialogue. Governments did little to attract diverse voices or publicize calls for comment, leaving most citizens unaware or unprepared to respond. In each nation, fewer than one percent of the population participated. Moreover, officials showed limited responsiveness to the feedback they received, failing to create an effective feedback loop. The study finds a persistent gap between the promise and practice of participatory AI governance. The authors conclude that current approaches are unlikely to build trust or legitimacy in AI because policymakers are not adequately listening or responding to public concerns. They offer eight recommendations: promote AI literacy; monitor public feedback; broaden outreach; hold regular online forums; use innovative engagement methods; include underrepresented groups; respond publicly to input; and make participation easier.
☆ AdaDoS: Adaptive DoS Attack via Deep Adversarial Reinforcement Learning in SDN
Existing defence mechanisms have demonstrated significant effectiveness in mitigating rule-based Denial-of-Service (DoS) attacks, leveraging predefined signatures and static heuristics to identify and block malicious traffic. However, the emergence of AI-driven techniques presents new challenges to SDN security, potentially compromising the efficacy of existing defence mechanisms. In this paper, we introduce~AdaDoS, an adaptive attack model that disrupt network operations while evading detection by existing DoS-based detectors through adversarial reinforcement learning (RL). Specifically, AdaDoS models the problem as a competitive game between an attacker, whose goal is to obstruct network traffic without being detected, and a detector, which aims to identify malicious traffic. AdaDoS can solve this game by dynamically adjusting its attack strategy based on feedback from the SDN and the detector. Additionally, recognising that attackers typically have less information than defenders, AdaDoS formulates the DoS-like attack as a partially observed Markov decision process (POMDP), with the attacker having access only to delay information between attacker and victim nodes. We address this challenge with a novel reciprocal learning module, where the student agent, with limited observations, enhances its performance by learning from the teacher agent, who has full observational capabilities in the SDN environment. AdaDoS represents the first application of RL to develop DoS-like attack sequences, capable of adaptively evading both machine learning-based and rule-based DoS-like attack detectors.
☆ Structural Invariance Matters: Rethinking Graph Rewiring through Graph Metrics
Graph rewiring has emerged as a key technique to alleviate over-squashing in Graph Neural Networks (GNNs) and Graph Transformers by modifying the graph topology to improve information flow. While effective, rewiring inherently alters the graph's structure, raising the risk of distorting important topology-dependent signals. Yet, despite the growing use of rewiring, little is known about which structural properties must be preserved to ensure both performance gains and structural fidelity. In this work, we provide the first systematic analysis of how rewiring affects a range of graph structural metrics, and how these changes relate to downstream task performance. We study seven diverse rewiring strategies and correlate changes in local and global graph properties with node classification accuracy. Our results reveal a consistent pattern: successful rewiring methods tend to preserve local structure while allowing for flexibility in global connectivity. These findings offer new insights into the design of effective rewiring strategies, bridging the gap between graph theory and practical GNN optimization.
comment: 21 pages, 5 figures, conference
☆ GlobalRAG: Enhancing Global Reasoning in Multi-hop Question Answering via Reinforcement Learning
Reinforcement learning has recently shown promise in improving retrieval-augmented generation (RAG). Despite these advances, its effectiveness in multi-hop question answering (QA) remains limited by two fundamental limitations: (i) global planning absence to structure multi-step reasoning, and (ii) unfaithful execution, which hinders effective query formulation and consistent use of retrieved evidence. We propose GlobalRAG, a reinforcement learning framework designed to enhance global reasoning in multi-hop QA. GlobalRAG decomposes questions into subgoals, coordinates retrieval with reasoning, and refines evidence iteratively. To guide this process, we introduce Planning Quality Reward and SubGoal Completion Reward, which encourage coherent planning and reliable subgoal execution. In addition, a progressive weight annealing strategy balances process-oriented and outcome-based objectives. Extensive experiments on both in-domain and out-of-domain benchmarks demonstrate that GlobalRAG significantly outperforms strong baselines while using only 8k training data (42% of the training data used by strong baselines), achieving average improvements of 14.2% in both EM and F1.
comment: 8 pages, 3 figures, 4 tables
☆ The Dog the Cat Chased Stumped the Model: Measuring When Language Models Abandon Structure for Shortcuts
When language models correctly parse "The cat that the dog chased meowed," are they analyzing syntax or simply familiar with dogs chasing cats? Despite extensive benchmarking, we lack methods to distinguish structural understanding from semantic pattern matching. We introduce CenterBench, a dataset of 9,720 comprehension questions on center-embedded sentences (like "The cat [that the dog chased] meowed") where relative clauses nest recursively, creating processing demands from simple to deeply nested structures. Each sentence has a syntactically identical but semantically implausible counterpart (e.g., mailmen prescribe medicine, doctors deliver mail) and six comprehension questions testing surface understanding, syntactic dependencies, and causal reasoning. Testing six models reveals that performance gaps between plausible and implausible sentences widen systematically with complexity, with models showing median gaps up to 26.8 percentage points, quantifying when they abandon structural analysis for semantic associations. Notably, semantic plausibility harms performance on questions about resulting actions, where following causal relationships matters more than semantic coherence. Reasoning models improve accuracy but their traces show semantic shortcuts, overthinking, and answer refusal. Unlike models whose plausibility advantage systematically widens with complexity, humans shows variable semantic effects. CenterBench provides the first framework to identify when models shift from structural analysis to pattern matching.
☆ ARC-Encoder: learning compressed text representations for large language models
Recent techniques such as retrieval-augmented generation or chain-of-thought reasoning have led to longer contexts and increased inference costs. Context compression techniques can reduce these costs, but the most effective approaches require fine-tuning the target model or even modifying its architecture. This can degrade its general abilities when not used for this specific purpose. Here we explore an alternative approach: an encoder that compresses the context into continuous representations which replace token embeddings in decoder LLMs. First, we perform a systematic study of training strategies and architecture choices for the encoder. Our findings led to the design of an Adaptable text Representations Compressor, named ARC-Encoder, which outputs $x$-times fewer continuous representations (typically $x\!\in\!\{4,8\}$) than text tokens. We evaluate ARC-Encoder across a variety of LLM usage scenarios, ranging from in-context learning to context window extension, on both instruct and base decoders. Results show that ARC-Encoder achieves state-of-the-art performance on several benchmarks while improving computational efficiency at inference. Finally, we demonstrate that our models can be adapted to multiple decoders simultaneously, allowing a single encoder to generalize across different decoder LLMs. This makes ARC-Encoder a flexible and efficient solution for portable encoders that work seamlessly with multiple LLMs. We release a training code at https://github.com/kyutai-labs/ARC-Encoder , fine-tuning dataset and pretrained models are available at https://huggingface.co/collections/kyutai/arc-encoders-68ee18787301407d60a57047 .
☆ Fake-in-Facext: Towards Fine-Grained Explainable DeepFake Analysis
The advancement of Multimodal Large Language Models (MLLMs) has bridged the gap between vision and language tasks, enabling the implementation of Explainable DeepFake Analysis (XDFA). However, current methods suffer from a lack of fine-grained awareness: the description of artifacts in data annotation is unreliable and coarse-grained, and the models fail to support the output of connections between textual forgery explanations and the visual evidence of artifacts, as well as the input of queries for arbitrary facial regions. As a result, their responses are not sufficiently grounded in Face Visual Context (Facext). To address this limitation, we propose the Fake-in-Facext (FiFa) framework, with contributions focusing on data annotation and model construction. We first define a Facial Image Concept Tree (FICT) to divide facial images into fine-grained regional concepts, thereby obtaining a more reliable data annotation pipeline, FiFa-Annotator, for forgery explanation. Based on this dedicated data annotation, we introduce a novel Artifact-Grounding Explanation (AGE) task, which generates textual forgery explanations interleaved with segmentation masks of manipulated artifacts. We propose a unified multi-task learning architecture, FiFa-MLLM, to simultaneously support abundant multimodal inputs and outputs for fine-grained Explainable DeepFake Analysis. With multiple auxiliary supervision tasks, FiFa-MLLM can outperform strong baselines on the AGE task and achieve SOTA performance on existing XDFA datasets. The code and data will be made open-source at https://github.com/lxq1000/Fake-in-Facext.
comment: 25 pages, 9 figures, 17 tables
☆ Metis-HOME: Hybrid Optimized Mixture-of-Experts for Multimodal Reasoning
Inspired by recent advancements in LLM reasoning, the field of multimodal reasoning has seen remarkable progress, achieving significant performance gains on intricate tasks such as mathematical problem-solving. Despite this progress, current multimodal large reasoning models exhibit two key limitations. They tend to employ computationally expensive reasoning even for simple queries, leading to inefficiency. Furthermore, this focus on specialized reasoning often impairs their broader, more general understanding capabilities. In this paper, we propose Metis-HOME: a Hybrid Optimized Mixture-of-Experts framework designed to address this trade-off. Metis-HOME enables a ''Hybrid Thinking'' paradigm by structuring the original dense model into two distinct expert branches: a thinking branch tailored for complex, multi-step reasoning, and a non-thinking branch optimized for rapid, direct inference on tasks like general VQA and OCR. A lightweight, trainable router dynamically allocates queries to the most suitable expert. We instantiate Metis-HOME by adapting the Qwen2.5-VL-7B into an MoE architecture. Comprehensive evaluations reveal that our approach not only substantially enhances complex reasoning abilities but also improves the model's general capabilities, reversing the degradation trend observed in other reasoning-specialized models. Our work establishes a new paradigm for building powerful and versatile MLLMs, effectively resolving the prevalent reasoning-vs-generalization dilemma.
☆ Hierarchical Sequence Iteration for Heterogeneous Question Answering
Retrieval-augmented generation (RAG) remains brittle on multi-step questions and heterogeneous evidence sources, trading accuracy against latency and token/tool budgets. This paper introducesHierarchical Sequence (HSEQ) Iteration for Heterogeneous Question Answering, a unified framework that (i) linearize documents, tables, and knowledge graphs into a reversible hierarchical sequence with lightweight structural tags, and (ii) perform structure-aware iteration to collect just-enough evidence before answer synthesis. A Head Agent provides guidance that leads retrieval, while an Iteration Agent selects and expands HSeq via structure-respecting actions (e.g., parent/child hops, table row/column neighbors, KG relations); Finally the head agent composes canonicalized evidence to genearte the final answer, with an optional refinement loop to resolve detected contradictions. Experiments on HotpotQA (text), HybridQA/TAT-QA (table+text), and MetaQA (KG) show consistent EM/F1 gains over strong single-pass, multi-hop, and agentic RAG baselines with high efficiency. Besides, HSEQ exhibits three key advantages: (1) a format-agnostic unification that enables a single policy to operate across text, tables, and KGs without per-dataset specialization; (2) guided, budget-aware iteration that reduces unnecessary hops, tool calls, and tokens while preserving accuracy; and (3) evidence canonicalization for reliable QA, improving answers consistency and auditability.
comment: 22 pages, 3 figures
☆ Steering Evaluation-Aware Language Models To Act Like They Are Deployed
Large language models (LLMs) can sometimes detect when they are being evaluated and adjust their behavior to appear more aligned, compromising the reliability of safety evaluations. In this paper, we show that adding a steering vector to an LLM's activations can suppress evaluation-awareness and make the model act like it is deployed during evaluation. To study our steering technique, we train an LLM to exhibit evaluation-aware behavior using a two-step training process designed to mimic how this behavior could emerge naturally. First, we perform continued pretraining on documents with factual descriptions of the model (1) using Python type hints during evaluation but not during deployment and (2) recognizing that the presence of a certain evaluation cue always means that it is being tested. Then, we train the model with expert iteration to use Python type hints in evaluation settings. The resulting model is evaluation-aware: it writes type hints in evaluation contexts more than deployment contexts. However, this gap can only be observed by removing the evaluation cue. We find that activation steering can suppress evaluation awareness and make the model act like it is deployed even when the cue is present. Importantly, we constructed our steering vector using the original model before our additional training. Our results suggest that AI evaluators could improve the reliability of safety evaluations by steering models to act like they are deployed.
☆ Hurdle-IMDL: An Imbalanced Learning Framework for Infrared Rainfall Retrieval
Artificial intelligence has advanced quantitative remote sensing, yet its effectiveness is constrained by imbalanced label distribution. This imbalance leads conventionally trained models to favor common samples, which in turn degrades retrieval performance for rare ones. Rainfall retrieval exemplifies this issue, with performance particularly compromised for heavy rain. This study proposes Hurdle-Inversion Model Debiasing Learning (IMDL) framework. Following a divide-and-conquer strategy, imbalance in the rain distribution is decomposed into two components: zero inflation, defined by the predominance of non-rain samples; and long tail, defined by the disproportionate abundance of light-rain samples relative to heavy-rain samples. A hurdle model is adopted to handle the zero inflation, while IMDL is proposed to address the long tail by transforming the learning object into an unbiased ideal inverse model. Comprehensive evaluation via statistical metrics and case studies investigating rainy weather in eastern China confirms Hurdle-IMDL's superiority over conventional, cost-sensitive, generative, and multi-task learning methods. Its key advancements include effective mitigation of systematic underestimation and a marked improvement in the retrieval of heavy-to-extreme rain. IMDL offers a generalizable approach for addressing imbalance in distributions of environmental variables, enabling enhanced retrieval of rare yet high-impact events.
comment: 26 pages
☆ RECALL: REpresentation-aligned Catastrophic-forgetting ALLeviation via Hierarchical Model Merging
We unveil that internal representations in large language models (LLMs) serve as reliable proxies of learned knowledge, and propose RECALL, a novel representation-aware model merging framework for continual learning without access to historical data. RECALL computes inter-model similarity from layer-wise hidden representations over clustered typical samples, and performs adaptive, hierarchical parameter fusion to align knowledge across models. This design enables the preservation of domain-general features in shallow layers while allowing task-specific adaptation in deeper layers. Unlike prior methods that require task labels or incur performance trade-offs, RECALL achieves seamless multi-domain integration and strong resistance to catastrophic forgetting. Extensive experiments across five NLP tasks and multiple continual learning scenarios show that RECALL outperforms baselines in both knowledge retention and generalization, providing a scalable and data-free solution for evolving LLMs.
☆ Structures generated in a multiagent system performing information fusion in peer-to-peer resource-constrained networks
There has recently been a major advance with respect to how information fusion is performed. Information fusion has gone from being conceived as a purely hierarchical procedure, as is the case of traditional military applications, to now being regarded collaboratively, as holonic fusion, which is better suited for civil applications and edge organizations. The above paradigm shift is being boosted as information fusion gains ground in different non-military areas, and human-computer and machine-machine communications, where holarchies, which are more flexible structures than ordinary, static hierarchies, become more widespread. This paper focuses on showing how holonic structures tend to be generated when there are constraints on resources (energy, available messages, time, etc.) for interactions based on a set of fully intercommunicating elements (peers) whose components fuse information as a means of optimizing the impact of vagueness and uncertainty present message exchanges. Holon formation is studied generically based on a multiagent system model, and an example of its possible operation is shown. Holonic structures have a series of advantages, such as adaptability, to sudden changes in the environment or its composition, are somewhat autonomous and are capable of cooperating in order to achieve a common goal. This can be useful when the shortage of resources prevents communications or when the system components start to fail.
☆ Transferable Black-Box One-Shot Forging of Watermarks via Image Preference Models NeurIPS 2025
Recent years have seen a surge in interest in digital content watermarking techniques, driven by the proliferation of generative models and increased legal pressure. With an ever-growing percentage of AI-generated content available online, watermarking plays an increasingly important role in ensuring content authenticity and attribution at scale. There have been many works assessing the robustness of watermarking to removal attacks, yet, watermark forging, the scenario when a watermark is stolen from genuine content and applied to malicious content, remains underexplored. In this work, we investigate watermark forging in the context of widely used post-hoc image watermarking. Our contributions are as follows. First, we introduce a preference model to assess whether an image is watermarked. The model is trained using a ranking loss on purely procedurally generated images without any need for real watermarks. Second, we demonstrate the model's capability to remove and forge watermarks by optimizing the input image through backpropagation. This technique requires only a single watermarked image and works without knowledge of the watermarking model, making our attack much simpler and more practical than attacks introduced in related work. Third, we evaluate our proposed method on a variety of post-hoc image watermarking models, demonstrating that our approach can effectively forge watermarks, questioning the security of current watermarking approaches. Our code and further resources are publicly available.
comment: NeurIPS 2025
☆ FLORA: Unsupervised Knowledge Graph Alignment by Fuzzy Logic
Knowledge graph alignment is the task of matching equivalent entities (that is, instances and classes) and relations across two knowledge graphs. Most existing methods focus on pure entity-level alignment, computing the similarity of entities in some embedding space. They lack interpretable reasoning and need training data to work. In this paper, we propose FLORA, a simple yet effective method that (1) is unsupervised, i.e., does not require training data, (2) provides a holistic alignment for entities and relations iteratively, (3) is based on fuzzy logic and thus delivers interpretable results, (4) provably converges, (5) allows dangling entities, i.e., entities without a counterpart in the other KG, and (6) achieves state-of-the-art results on major benchmarks.
☆ Neural Reasoning for Robust Instance Retrieval in $\mathcal{SHOIQ}$
Concept learning exploits background knowledge in the form of description logic axioms to learn explainable classification models from knowledge bases. Despite recent breakthroughs in neuro-symbolic concept learning, most approaches still cannot be deployed on real-world knowledge bases. This is due to their use of description logic reasoners, which are not robust against inconsistencies nor erroneous data. We address this challenge by presenting a novel neural reasoner dubbed EBR. Our reasoner relies on embeddings to approximate the results of a symbolic reasoner. We show that EBR solely requires retrieving instances for atomic concepts and existential restrictions to retrieve or approximate the set of instances of any concept in the description logic $\mathcal{SHOIQ}$. In our experiments, we compare EBR with state-of-the-art reasoners. Our results suggest that EBR is robust against missing and erroneous data in contrast to existing reasoners.
comment: Accepted as a full research paper at K-CAP 2025
☆ Symbolic Regression and Differentiable Fits in Beyond the Standard Model Physics
We demonstrate the efficacy of symbolic regression (SR) to probe models of particle physics Beyond the Standard Model (BSM), by considering the so-called Constrained Minimal Supersymmetric Standard Model (CMSSM). Like many incarnations of BSM physics this model has a number (four) of arbitrary parameters, which determine the experimental signals, and cosmological observables such as the dark matter relic density. We show that analysis of the phenomenology can be greatly accelerated by using symbolic expressions derived for the observables in terms of the input parameters. Here we focus on the Higgs mass, the cold dark matter relic density, and the contribution to the anomalous magnetic moment of the muon. We find that SR can produce remarkably accurate expressions. Using them we make global fits to derive the posterior probability densities of the CMSSM input parameters which are in good agreement with those performed using conventional methods. Moreover, we demonstrate a major advantage of SR which is the ability to make fits using differentiable methods rather than sampling methods. We also compare the method with neural network (NN) regression. SR produces more globally robust results, while NNs require data that is focussed on the promising regions in order to be equally performant.
comment: 18 pages, 4 figures
☆ MolBridge: Atom-Level Joint Graph Refinement for Robust Drug-Drug Interaction Event Prediction
Drug combinations offer therapeutic benefits but also carry the risk of adverse drug-drug interactions (DDIs), especially under complex molecular structures. Accurate DDI event prediction requires capturing fine-grained inter-drug relationships, which are critical for modeling metabolic mechanisms such as enzyme-mediated competition. However, existing approaches typically rely on isolated drug representations and fail to explicitly model atom-level cross-molecular interactions, limiting their effectiveness across diverse molecular complexities and DDI type distributions. To address these limitations, we propose MolBridge, a novel atom-level joint graph refinement framework for robust DDI event prediction. MolBridge constructs a joint graph that integrates atomic structures of drug pairs, enabling direct modeling of inter-drug associations. A central challenge in such joint graph settings is the potential loss of information caused by over-smoothing when modeling long-range atomic dependencies. To overcome this, we introduce a structure consistency module that iteratively refines node features while preserving the global structural context. This joint design allows MolBridge to effectively learn both local and global interaction outperforms state-of-the-art baselines, achieving superior performance across long-tail and inductive scenarios. patterns, yielding robust representations across both frequent and rare DDI types. Extensive experiments on two benchmark datasets show that MolBridge consistently. These results demonstrate the advantages of fine-grained graph refinement in improving the accuracy, robustness, and mechanistic interpretability of DDI event prediction.This work contributes to Web Mining and Content Analysis by developing graph-based methods for mining and analyzing drug-drug interaction networks.
☆ UniSE: A Unified Framework for Decoder-only Autoregressive LM-based Speech Enhancement ICASSP 2026
The development of neural audio codecs (NACs) has largely promoted applications of language models (LMs) to speech processing and understanding. However, there lacks the verification on the effectiveness of autoregressive (AR) LMbased models in unifying different sub-tasks of speech enhancement (SE). In this work, we propose UniSE, a unified decoder-only LM-based framework to handle different SE tasks including speech restoration, target speaker extraction and speech separation. It takes input speech features as conditions and generates discrete tokens of the target speech using AR modeling, which facilitates a compatibility between distinct learning patterns of multiple tasks. Experiments on several benchmarks indicate the proposed UniSE can achieve competitive performance compared to discriminative and generative baselines, showing the capacity of LMs in unifying SE tasks. The demo page is available here: https://github.com/hyyan2k/UniSE.
comment: 5 pages, submitted to ICASSP 2026
☆ Dynamic Weight Adjustment for Knowledge Distillation: Leveraging Vision Transformer for High-Accuracy Lung Cancer Detection and Real-Time Deployment
This paper presents the FuzzyDistillViT-MobileNet model, a novel approach for lung cancer (LC) classification, leveraging dynamic fuzzy logic-driven knowledge distillation (KD) to address uncertainty and complexity in disease diagnosis. Unlike traditional models that rely on static KD with fixed weights, our method dynamically adjusts the distillation weight using fuzzy logic, enabling the student model to focus on high-confidence regions while reducing attention to ambiguous areas. This dynamic adjustment improves the model ability to handle varying uncertainty levels across different regions of LC images. We employ the Vision Transformer (ViT-B32) as the instructor model, which effectively transfers knowledge to the student model, MobileNet, enhancing the student generalization capabilities. The training process is further optimized using a dynamic wait adjustment mechanism that adapts the training procedure for improved convergence and performance. To enhance image quality, we introduce pixel-level image fusion improvement techniques such as Gamma correction and Histogram Equalization. The processed images (Pix1 and Pix2) are fused using a wavelet-based fusion method to improve image resolution and feature preservation. This fusion method uses the wavedec2 function to standardize images to a 224x224 resolution, decompose them into multi-scale frequency components, and recursively average coefficients at each level for better feature representation. To address computational efficiency, Genetic Algorithm (GA) is used to select the most suitable pre-trained student model from a pool of 12 candidates, balancing model performance with computational cost. The model is evaluated on two datasets, including LC25000 histopathological images (99.16% accuracy) and IQOTH/NCCD CT-scan images (99.54% accuracy), demonstrating robustness across different imaging domains.
☆ Balancing Specialization and Centralization: A Multi-Agent Reinforcement Learning Benchmark for Sequential Industrial Control
Autonomous control of multi-stage industrial processes requires both local specialization and global coordination. Reinforcement learning (RL) offers a promising approach, but its industrial adoption remains limited due to challenges such as reward design, modularity, and action space management. Many academic benchmarks differ markedly from industrial control problems, limiting their transferability to real-world applications. This study introduces an enhanced industry-inspired benchmark environment that combines tasks from two existing benchmarks, SortingEnv and ContainerGym, into a sequential recycling scenario with sorting and pressing operations. We evaluate two control strategies: a modular architecture with specialized agents and a monolithic agent governing the full system, while also analyzing the impact of action masking. Our experiments show that without action masking, agents struggle to learn effective policies, with the modular architecture performing better. When action masking is applied, both architectures improve substantially, and the performance gap narrows considerably. These results highlight the decisive role of action space constraints and suggest that the advantages of specialization diminish as action complexity is reduced. The proposed benchmark thus provides a valuable testbed for exploring practical and robust multi-agent RL solutions in industrial automation, while contributing to the ongoing debate on centralization versus specialization.
comment: Preprint (submitted version) to be presented at the 13th International Conference on Industrial Engineering and Applications (ICIEA-EU), Milan, 2026. The final Version of Record will appear in the official conference proceedings
☆ A computational model and tool for generating more novel opportunities in professional innovation processes
This paper presents a new computational model of creative outcomes, informed by creativity theories and techniques, which was implemented to generate more novel opportunities for innovation projects. The model implemented five functions that were developed to contribute to the generation of innovation opportunities with higher novelty without loss of usefulness. The model was evaluated using opportunities generated for an innovation project in the hospitality sector. The evaluation revealed that the computational model generated outcomes that were more novel and/or useful than outcomes from Notebook LM and ChatGPT4o. However, not all model functions contributed to the generation of more novel opportunities, leading to new directions for further model development
☆ FLAS: a combination of proactive and reactive auto-scaling architecture for distributed services
Cloud computing has established itself as the support for the vast majority of emerging technologies, mainly due to the characteristic of elasticity it offers. Auto-scalers are the systems that enable this elasticity by acquiring and releasing resources on demand to ensure an agreed service level. In this article we present FLAS (Forecasted Load Auto-Scaling), an auto-scaler for distributed services that combines the advantages of proactive and reactive approaches according to the situation to decide the optimal scaling actions in every moment. The main novelties introduced by FLAS are (i) a predictive model of the high-level metrics trend which allows to anticipate changes in the relevant SLA parameters (e.g. performance metrics such as response time or throughput) and (ii) a reactive contingency system based on the estimation of high-level metrics from resource use metrics, reducing the necessary instrumentation (less invasive) and allowing it to be adapted agnostically to different applications. We provide a FLAS implementation for the use case of a content-based publish-subscribe middleware (E-SilboPS) that is the cornerstone of an event-driven architecture. To the best of our knowledge, this is the first auto-scaling system for content-based publish-subscribe distributed systems (although it is generic enough to fit any distributed service). Through an evaluation based on several test cases recreating not only the expected contexts of use, but also the worst possible scenarios (following the Boundary-Value Analysis or BVA test methodology), we have validated our approach and demonstrated the effectiveness of our solution by ensuring compliance with performance requirements over 99% of the time.
☆ Relative-Based Scaling Law for Neural Language Models
Scaling laws aim to accurately predict model performance across different scales. Existing scaling-law studies almost exclusively rely on cross-entropy as the evaluation metric. However, cross-entropy provides only a partial view of performance: it measures the absolute probability assigned to the correct token, but ignores the relative ordering between correct and incorrect tokens. Yet, relative ordering is crucial for language models, such as in greedy-sampling scenario. To address this limitation, we investigate scaling from the perspective of relative ordering. We first propose the Relative-Based Probability (RBP) metric, which quantifies the probability that the correct token is ranked among the top predictions. Building on this metric, we establish the Relative-Based Scaling Law, which characterizes how RBP improves with increasing model size. Through extensive experiments on four datasets and four model families spanning five orders of magnitude, we demonstrate the robustness and accuracy of this law. Finally, we illustrate the broad application of this law with two examples, namely providing a deeper explanation of emergence phenomena and facilitating finding fundamental theories of scaling laws. In summary, the Relative-Based Scaling Law complements the cross-entropy perspective and contributes to a more complete understanding of scaling large language models. Thus, it offers valuable insights for both practical development and theoretical exploration.
☆ VLSP 2025 MLQA-TSR Challenge: Vietnamese Multimodal Legal Question Answering on Traffic Sign Regulation SP 2025
This paper presents the VLSP 2025 MLQA-TSR - the multimodal legal question answering on traffic sign regulation shared task at VLSP 2025. VLSP 2025 MLQA-TSR comprises two subtasks: multimodal legal retrieval and multimodal question answering. The goal is to advance research on Vietnamese multimodal legal text processing and to provide a benchmark dataset for building and evaluating intelligent systems in multimodal legal domains, with a focus on traffic sign regulation in Vietnam. The best-reported results on VLSP 2025 MLQA-TSR are an F2 score of 64.55% for multimodal legal retrieval and an accuracy of 86.30% for multimodal question answering.
comment: VLSP 2025 MLQA-TSR Share Task
☆ IKnow: Instruction-Knowledge-Aware Continual Pretraining for Effective Domain Adaptation
Continual pretraining promises to adapt large language models (LLMs) to new domains using only unlabeled test-time data, but naively applying standard self-supervised objectives to instruction-tuned models is known to degrade their instruction-following capability and semantic representations. Existing fixes assume access to the original base model or rely on knowledge from an external domain-specific database - both of which pose a realistic barrier in settings where the base model weights are withheld for safety reasons or reliable external corpora are unavailable. In this work, we propose Instruction-Knowledge-Aware Continual Adaptation (IKnow), a simple and general framework that formulates novel self-supervised objectives in the instruction-response dialogue format. Rather than depend- ing on external resources, IKnow leverages domain knowledge embedded within the text itself and learns to encode it at a deeper semantic level.
☆ The Impact of Negated Text on Hallucination with Large Language Models EMNLP 2025
Recent studies on hallucination in large language models (LLMs) have been actively progressing in natural language processing. However, the impact of negated text on hallucination with LLMs remains largely unexplored. In this paper, we set three important yet unanswered research questions and aim to address them. To derive the answers, we investigate whether LLMs can recognize contextual shifts caused by negation and still reliably distinguish hallucinations comparable to affirmative cases. We also design the NegHalu dataset by reconstructing existing hallucination detection datasets with negated expressions. Our experiments demonstrate that LLMs struggle to detect hallucinations in negated text effectively, often producing logically inconsistent or unfaithful judgments. Moreover, we trace the internal state of LLMs as they process negated inputs at the token level and reveal the challenges of mitigating their unintended effects.
comment: Accepted to the EMNLP 2025
☆ Evaluating Latent Knowledge of Public Tabular Datasets in Large Language Models
Large Language Models (LLMs) are increasingly evaluated on their ability to reason over structured data, yet such assessments often overlook a crucial confound: dataset contamination. In this work, we investigate whether LLMs exhibit prior knowledge of widely used tabular benchmarks such as Adult Income, Titanic, and others. Through a series of controlled probing experiments, we reveal that contamination effects emerge exclusively for datasets containing strong semantic cues-for instance, meaningful column names or interpretable value categories. In contrast, when such cues are removed or randomized, performance sharply declines to near-random levels. These findings suggest that LLMs' apparent competence on tabular reasoning tasks may, in part, reflect memorization of publicly available datasets rather than genuine generalization. We discuss implications for evaluation protocols and propose strategies to disentangle semantic leakage from authentic reasoning ability in future LLM assessments.
☆ What do AI-Generated Images Want?
W.J.T. Mitchell's influential essay 'What do pictures want?' shifts the theoretical focus away from the interpretative act of understanding pictures and from the motivations of the humans who create them to the possibility that the picture itself is an entity with agency and wants. In this article, I reframe Mitchell's question in light of contemporary AI image generation tools to ask: what do AI-generated images want? Drawing from art historical discourse on the nature of abstraction, I argue that AI-generated images want specificity and concreteness because they are fundamentally abstract. Multimodal text-to-image models, which are the primary subject of this article, are based on the premise that text and image are interchangeable or exchangeable tokens and that there is a commensurability between them, at least as represented mathematically in data. The user pipeline that sees textual input become visual output, however, obscures this representational regress and makes it seem like one form transforms into the other -- as if by magic.
☆ LLM-empowered knowledge graph construction: A survey
Knowledge Graphs (KGs) have long served as a fundamental infrastructure for structured knowledge representation and reasoning. With the advent of Large Language Models (LLMs), the construction of KGs has entered a new paradigm-shifting from rule-based and statistical pipelines to language-driven and generative frameworks. This survey provides a comprehensive overview of recent progress in LLM-empowered knowledge graph construction, systematically analyzing how LLMs reshape the classical three-layered pipeline of ontology engineering, knowledge extraction, and knowledge fusion. We first revisit traditional KG methodologies to establish conceptual foundations, and then review emerging LLM-driven approaches from two complementary perspectives: schema-based paradigms, which emphasize structure, normalization, and consistency; and schema-free paradigms, which highlight flexibility, adaptability, and open discovery. Across each stage, we synthesize representative frameworks, analyze their technical mechanisms, and identify their limitations. Finally, the survey outlines key trends and future research directions, including KG-based reasoning for LLMs, dynamic knowledge memory for agentic systems, and multimodal KG construction. Through this systematic review, we aim to clarify the evolving interplay between LLMs and knowledge graphs, bridging symbolic knowledge engineering and neural semantic understanding toward the development of adaptive, explainable, and intelligent knowledge systems.
♻ ☆ One-Step Offline Distillation of Diffusion-based Models via Koopman Modeling
Diffusion-based generative models have demonstrated exceptional performance, yet their iterative sampling procedures remain computationally expensive. A prominent strategy to mitigate this cost is distillation, with offline distillation offering particular advantages in terms of efficiency, modularity, and flexibility. In this work, we identify two key observations that motivate a principled distillation framework: (1) while diffusion models have been viewed through the lens of dynamical systems theory, powerful and underexplored tools can be further leveraged; and (2) diffusion models inherently impose structured, semantically coherent trajectories in latent space. Building on these observations, we introduce the Koopman Distillation Model (KDM), a novel offline distillation approach grounded in Koopman theory - a classical framework for representing nonlinear dynamics linearly in a transformed space. KDM encodes noisy inputs into an embedded space where a learned linear operator propagates them forward, followed by a decoder that reconstructs clean samples. This enables single-step generation while preserving semantic fidelity. We provide theoretical justification for our approach: (1) under mild assumptions, the learned diffusion dynamics admit a finite-dimensional Koopman representation; and (2) proximity in the Koopman latent space correlates with semantic similarity in the generated outputs, allowing for effective trajectory alignment. KDM achieves highly competitive performance across standard offline distillation benchmarks.
♻ ☆ DragFlow: Unleashing DiT Priors with Region Based Supervision for Drag Editing
Drag-based image editing has long suffered from distortions in the target region, largely because the priors of earlier base models, Stable Diffusion, are insufficient to project optimized latents back onto the natural image manifold. With the shift from UNet-based DDPMs to more scalable DiT with flow matching (e.g., SD3.5, FLUX), generative priors have become significantly stronger, enabling advances across diverse editing tasks. However, drag-based editing has yet to benefit from these stronger priors. This work proposes the first framework to effectively harness FLUX's rich prior for drag-based editing, dubbed DragFlow, achieving substantial gains over baselines. We first show that directly applying point-based drag editing to DiTs performs poorly: unlike the highly compressed features of UNets, DiT features are insufficiently structured to provide reliable guidance for point-wise motion supervision. To overcome this limitation, DragFlow introduces a region-based editing paradigm, where affine transformations enable richer and more consistent feature supervision. Additionally, we integrate pretrained open-domain personalization adapters (e.g., IP-Adapter) to enhance subject consistency, while preserving background fidelity through gradient mask-based hard constraints. Multimodal large language models (MLLMs) are further employed to resolve task ambiguities. For evaluation, we curate a novel Region-based Dragging benchmark (ReD Bench) featuring region-level dragging instructions. Extensive experiments on DragBench-DR and ReD Bench show that DragFlow surpasses both point-based and region-based baselines, setting a new state-of-the-art in drag-based image editing. Code and datasets will be publicly available upon publication.
comment: Preprint
♻ ☆ Autoencoding Random Forests NeurIPS 2025
We propose a principled method for autoencoding with random forests. Our strategy builds on foundational results from nonparametric statistics and spectral graph theory to learn a low-dimensional embedding of the model that optimally represents relationships in the data. We provide exact and approximate solutions to the decoding problem via constrained optimization, split relabeling, and nearest neighbors regression. These methods effectively invert the compression pipeline, establishing a map from the embedding space back to the input space using splits learned by the ensemble's constituent trees. The resulting decoders are universally consistent under common regularity assumptions. The procedure works with supervised or unsupervised models, providing a window into conditional or joint distributions. We demonstrate various applications of this autoencoder, including powerful new tools for visualization, compression, clustering, and denoising. Experiments illustrate the ease and utility of our method in a wide range of settings, including tabular, image, and genomic data.
comment: 10 pages main text, 34 pages total (including checklist). 9 figures, 4 tables. To be published in proceedings of the 39th Conference on Neural Information Processing Systems (NeurIPS 2025)
♻ ☆ Watermarking Autoregressive Image Generation NeurIPS 2025
Watermarking the outputs of generative models has emerged as a promising approach for tracking their provenance. Despite significant interest in autoregressive image generation models and their potential for misuse, no prior work has attempted to watermark their outputs at the token level. In this work, we present the first such approach by adapting language model watermarking techniques to this setting. We identify a key challenge: the lack of reverse cycle-consistency (RCC), wherein re-tokenizing generated image tokens significantly alters the token sequence, effectively erasing the watermark. To address this and to make our method robust to common image transformations, neural compression, and removal attacks, we introduce (i) a custom tokenizer-detokenizer finetuning procedure that improves RCC, and (ii) a complementary watermark synchronization layer. As our experiments demonstrate, our approach enables reliable and robust watermark detection with theoretically grounded p-values. Code and models are available at https://github.com/facebookresearch/wmar.
comment: NeurIPS 2025
♻ ☆ Learning Modular Exponentiation with Transformers NeurIPS'25
Modular exponentiation is crucial to number theory and cryptography, yet remains largely unexplored from a mechanistic interpretability standpoint. We train a 4-layer encoder-decoder Transformer model to perform this operation and investigate the emergence of numerical reasoning during training. Utilizing principled sampling strategies, PCA-based embedding analysis, and activation patching, we examine how number-theoretic properties are encoded within the model. We find that reciprocal operand training leads to strong performance gains, with sudden generalization across related moduli. These synchronized accuracy surges reflect grokking-like dynamics, suggesting the model internalizes shared arithmetic structure. We also find a subgraph consisting entirely of attention heads in the final layer sufficient to achieve full performance on the task of regular exponentiation. These results suggest that transformer models learn modular arithmetic through specialized computational circuits, paving the way for more interpretable and efficient neural approaches to modular exponentiation.
comment: Accepted at the 5th MATH-AI Workshop, NeurIPS'25
♻ ☆ FlyLoRA: Boosting Task Decoupling and Parameter Efficiency via Implicit Rank-Wise Mixture-of-Experts NeurIPS 2025
Low-Rank Adaptation (LoRA) is a widely used parameter-efficient fine-tuning method for foundation models, but it suffers from parameter interference, resulting in suboptimal performance. Although Mixture-of-Experts (MoE)-based LoRA variants show promise in mitigating intra-task correlations in single-task instruction tuning, they introduce additional router parameters and remain ineffective in multi-task model merging where inter-task interference arises. Inspired by the fly olfactory circuit, we propose FlyLoRA, an implicit MoE-based LoRA variant that introduces: (1) rank-wise expert activation in the up-projection matrix, and (2) an implicit router that unifies expert routing and down-projection, where a frozen sparse random projection matrix replaces the traditional dense trainable version. This design resolves the trade-off between intra-task decorrelation and computational efficiency by eliminating the need for an explicit router, while inherently mitigating inter-task interference due to the orthogonality property of random matrices. Extensive experiments across four domains -- general knowledge understanding, scientific question answering, mathematical reasoning, and code generation -- demonstrate consistent performance improvements over existing methods. Beyond empirical gains, FlyLoRA highlights how biological structures can inspire innovations in AI technologies. Code is available at https://github.com/gfyddha/FlyLoRA.
comment: NeurIPS 2025 accepted paper
♻ ☆ Privacy Risks and Preservation Methods in Explainable Artificial Intelligence: A Scoping Review
Explainable Artificial Intelligence (XAI) has emerged as a pillar of Trustworthy AI and aims to bring transparency in complex models that are opaque by nature. Despite the benefits of incorporating explanations in models, an urgent need is found in addressing the privacy concerns of providing this additional information to end users. In this article, we conduct a scoping review of existing literature to elicit details on the conflict between privacy and explainability. Using the standard methodology for scoping review, we extracted 57 articles from 1,943 studies published from January 2019 to December 2024. The review addresses 3 research questions to present readers with more understanding of the topic: (1) what are the privacy risks of releasing explanations in AI systems? (2) what current methods have researchers employed to achieve privacy preservation in XAI systems? (3) what constitutes a privacy preserving explanation? Based on the knowledge synthesized from the selected studies, we categorize the privacy risks and preservation methods in XAI and propose the characteristics of privacy preserving explanations to aid researchers and practitioners in understanding the requirements of XAI that is privacy compliant. Lastly, we identify the challenges in balancing privacy with other system desiderata and provide recommendations for achieving privacy preserving XAI. We expect that this review will shed light on the complex relationship of privacy and explainability, both being the fundamental principles of Trustworthy AI.
comment: Accepted in Transactions on Machine Learning Research
♻ ☆ Integrating Structural and Semantic Signals in Text-Attributed Graphs with BiGTex
Text-attributed graphs (TAGs) present unique challenges in representation learning by requiring models to capture both the semantic richness of node-associated texts and the structural dependencies of the graph. While graph neural networks (GNNs) excel at modeling topological information, they lack the capacity to process unstructured text. Conversely, large language models (LLMs) are proficient in text understanding but are typically unaware of graph structure. In this work, we propose BiGTex (Bidirectional Graph Text), a novel architecture that tightly integrates GNNs and LLMs through stacked Graph-Text Fusion Units. Each unit allows for mutual attention between textual and structural representations, enabling information to flow in both directions, text influencing structure and structure guiding textual interpretation. The proposed architecture is trained using parameter-efficient fine-tuning (LoRA), keeping the LLM frozen while adapting to task-specific signals. Extensive experiments on five benchmark datasets demonstrate that BiGTex achieves state-of-the-art performance in node classification and generalizes effectively to link prediction. An ablation study further highlights the importance of soft prompting and bi-directional attention in the model's success.
comment: 26 pages, 4 figures
♻ ☆ Prover Agent: An Agent-Based Framework for Formal Mathematical Proofs
We present Prover Agent, a novel AI agent for automated theorem proving that integrates large language models (LLMs) with a formal proof assistant, Lean. Prover Agent coordinates an informal reasoning LLM, a formal prover model, and feedback from Lean while also generating auxiliary lemmas. These auxiliary lemmas are not limited to subgoals in the formal proof but can also include special cases or potentially useful facts derived from the assumptions, which help in discovering a viable proof strategy. It achieves an 88.1% success rate on the MiniF2F benchmark, establishing a new state-of-the-art among methods using small language models (SLMs) with a much lower sample budget than previous approaches. We also present theoretical analyses and case studies that illustrate how these generated lemmas contribute to solving challenging problems. Our code is publicly available at: https://github.com/kAIto47802/Prover-Agent.
comment: 36 pages, 3 figures
♻ ☆ CLEVER: A Curated Benchmark for Formally Verified Code Generation
We introduce ${\rm C{\small LEVER}}$, a high-quality, curated benchmark of 161 problems for end-to-end verified code generation in Lean. Each problem consists of (1) the task of generating a specification that matches a held-out ground-truth specification, and (2) the task of generating a Lean implementation that provably satisfies this specification. Unlike prior benchmarks, ${\rm C{\small LEVER}}$ avoids test-case supervision, LLM-generated annotations, and specifications that leak implementation logic or allow vacuous solutions. All outputs are verified post-hoc using Lean's type checker to ensure machine-checkable correctness. We use ${\rm C{\small LEVER}}$ to evaluate several few-shot and agentic approaches based on state-of-the-art language models. These methods all struggle to achieve full verification, establishing it as a challenging frontier benchmark for program synthesis and formal reasoning. Our benchmark can be found on GitHub(https://github.com/trishullab/clever) as well as HuggingFace(https://huggingface.co/datasets/amitayusht/clever). All our evaluation code is also available online(https://github.com/trishullab/clever-prover).
♻ ☆ Stop Summation: Min-Form Credit Assignment Is All Process Reward Model Needs for Reasoning NeurIPS 2025
Process reward models (PRMs) have proven effective for test-time scaling of Large Language Models (LLMs) on challenging reasoning tasks. However, reward hacking issues with PRMs limit their successful application in reinforcement fine-tuning. In this paper, we identify the main cause of PRM-induced reward hacking: the canonical summation-form credit assignment in reinforcement learning (RL), which defines the value as cumulative gamma-decayed future rewards, easily induces LLMs to hack steps with high rewards. To address this, we propose PURE: Process sUpervised Reinforcement lEarning. The key innovation of PURE is a min-form credit assignment that formulates the value function as the minimum of future rewards. This method significantly alleviates reward hacking by limiting the value function range and distributing advantages more reasonably. Through extensive experiments on 3 base models, we show that PRM-based approaches enabling min-form credit assignment achieve comparable reasoning performance to verifiable reward-based methods within only 30% steps. In contrast, the canonical sum-form credit assignment collapses training even at the beginning! Additionally, when we supplement PRM-based fine-tuning with just 10% verifiable rewards, we further alleviate reward hacking and produce the best fine-tuned model based on Qwen2.5-Math-7B in our experiments, achieving 82.5% accuracy on AMC23 and 53.3% average accuracy across 5 benchmarks. Moreover, we summarize the observed reward hacking cases and analyze the causes of training collapse. We release our code and model weights at https://github.com/CJReinforce/PURE.
comment: Accepted by NeurIPS 2025
♻ ☆ Fast-Slow Thinking GRPO for Large Vision-Language Model Reasoning
When applying reinforcement learning--typically through GRPO--to large vision-language model reasoning struggles to effectively scale reasoning length or generates verbose outputs across all tasks with only marginal gains in accuracy. To address this issue, we present FAST-GRPO, a variant of GRPO that dynamically adapts reasoning depth based on question characteristics. Through empirical analysis, we establish the feasibility of fast-slow thinking in LVLMs by investigating how response length and data distribution affect performance. Inspired by these observations, we introduce two complementary metrics to estimate the difficulty of the questions, guiding the model to determine when fast or slow thinking is more appropriate. Next, we incorporate adaptive length-based rewards and difficulty-aware KL divergence into the GRPO algorithm. Experiments across seven reasoning benchmarks demonstrate that FAST achieves state-of-the-art accuracy with over 10\% relative improvement compared to the base model, while reducing token usage by 32.7-67.3\% compared to previous slow-thinking approaches, effectively balancing reasoning length and accuracy.
♻ ☆ TabR1: Taming GRPO for tabular reasoning LLMs
Tabular prediction has traditionally relied on gradient-boosted decision trees and specialized deep learning models, which excel within tasks but provide limited interpretability and weak transfer across tables. Reasoning large language models (LLMs) promise cross-task adaptability with trans- parent reasoning traces, yet their potential has not been fully realized for tabular data. This paper presents TabR1, the first reasoning LLM for tabular prediction with multi-step reasoning. At its core is Permutation Relative Policy Optimization (PRPO), a simple yet efficient reinforcement learning method that encodes column-permutation invariance as a structural prior. By construct- ing multiple label-preserving permutations per sample and estimating advantages both within and across permutations, PRPO transforms sparse rewards into dense learning signals and improves generalization. With limited supervision, PRPO activates the reasoning ability of LLMs for tabular prediction, enhancing few-shot and zero-shot performance as well as interpretability. Comprehensive experiments demonstrate that TabR1 achieves performance comparable to strong baselines under full-supervision fine-tuning. In the zero-shot setting, TabR1 approaches the performance of strong baselines under the 32-shot setting. Moreover, TabR1 (8B) substantially outperforms much larger LLMs across various tasks, achieving up to 53.17% improvement over DeepSeek-R1 (685B).
♻ ☆ Superposition Yields Robust Neural Scaling NeurIPS 2025
The success of today's large language models (LLMs) depends on the observation that larger models perform better. However, the origin of this neural scaling law, that loss decreases as a power law with model size, remains unclear. We propose that representation superposition, meaning that LLMs represent more features than they have dimensions, can be a key contributor to loss and cause neural scaling. Based on Anthropic's toy model, we use weight decay to control the degree of superposition, allowing us to systematically study how loss scales with model size. When superposition is weak, the loss follows a power law only if data feature frequencies are power-law distributed. In contrast, under strong superposition, the loss generically scales inversely with model dimension across a broad class of frequency distributions, due to geometric overlaps between representation vectors. We confirmed that open-sourced LLMs operate in the strong superposition regime and have loss scaling like one over the model dimension, and that the Chinchilla scaling laws are also consistent with this behavior. Our results identify representation superposition as a central driver of neural scaling laws, providing insights into questions like when neural scaling laws can be improved and when they will break down.
comment: Accepted at NeurIPS 2025
♻ ☆ Flow based approach for Dynamic Temporal Causal models with non-Gaussian or Heteroscedastic Noises
Understanding causal relationships in multivariate time series is crucial in many scenarios, such as those dealing with financial or neurological data. Many such time series exhibit multiple regimes, i.e., consecutive temporal segments with a priori unknown boundaries, with each regime having its own causal structure. Inferring causal dependencies and regime shifts is critical for analyzing the underlying processes. However, causal structure learning in this setting is challenging due to (1) non-stationarity, i.e., each regime can have its own causal graph and mixing function, and (2) complex noise distributions, which may be nonGaussian or heteroscedastic. Existing causal discovery approaches cannot address these challenges, since generally assume stationarity or Gaussian noise with constant variance. Hence, we introduce FANTOM, a unified framework for causal discovery that handles non-stationary processes along with non-Gaussian and heteroscedastic noises. FANTOM simultaneously infers the number of regimes and their corresponding indices and learns each regime's Directed Acyclic Graph. It uses a Bayesian Expectation Maximization algorithm that maximizes the evidence lower bound of the data log-likelihood. On the theoretical side, we prove, under mild assumptions, that temporal heteroscedastic causal models, introduced in FANTOM's formulation, are identifiable in both stationary and non-stationary settings. In addition, extensive experiments on synthetic and real data show that FANTOM outperforms existing methods.
♻ ☆ Temporal-Difference Variational Continual Learning NeurIPS 2025
Machine Learning models in real-world applications must continuously learn new tasks to adapt to shifts in the data-generating distribution. Yet, for Continual Learning (CL), models often struggle to balance learning new tasks (plasticity) with retaining previous knowledge (memory stability). Consequently, they are susceptible to Catastrophic Forgetting, which degrades performance and undermines the reliability of deployed systems. In the Bayesian CL literature, variational methods tackle this challenge by employing a learning objective that recursively updates the posterior distribution while constraining it to stay close to its previous estimate. Nonetheless, we argue that these methods may be ineffective due to compounding approximation errors over successive recursions. To mitigate this, we propose new learning objectives that integrate the regularization effects of multiple previous posterior estimations, preventing individual errors from dominating future posterior updates and compounding over time. We reveal insightful connections between these objectives and Temporal-Difference methods, a popular learning mechanism in Reinforcement Learning and Neuroscience. Experiments on challenging CL benchmarks show that our approach effectively mitigates Catastrophic Forgetting, outperforming strong Variational CL methods.
comment: Published at NeurIPS 2025
♻ ☆ ReDit: Reward Dithering for Improved LLM Policy Optimization
DeepSeek-R1 has successfully enhanced Large Language Model (LLM) reasoning capabilities through its rule-based reward system. While it's a ''perfect'' reward system that effectively mitigates reward hacking, such reward functions are often discrete. Our experimental observations suggest that discrete rewards can lead to gradient anomaly, unstable optimization, and slow convergence. To address this issue, we propose ReDit (Reward Dithering), a method that dithers the discrete reward signal by adding simple random noise. With this perturbed reward, exploratory gradients are continuously provided throughout the learning process, enabling smoother gradient updates and accelerating convergence. The injected noise also introduces stochasticity into flat reward regions, encouraging the model to explore novel policies and escape local optima. Experiments across diverse tasks demonstrate the effectiveness and efficiency of ReDit. On average, ReDit achieves performance comparable to vanilla GRPO with only approximately 10% the training steps, and furthermore, still exhibits a 4% performance improvement over vanilla GRPO when trained for a similar duration. Visualizations confirm significant mitigation of gradient issues with ReDit. Moreover, theoretical analyses are provided to further validate these advantages.
comment: 34 pages, 19 figures
♻ ☆ CALM-PDE: Continuous and Adaptive Convolutions for Latent Space Modeling of Time-dependent PDEs NeurIPS
Solving time-dependent Partial Differential Equations (PDEs) using a densely discretized spatial domain is a fundamental problem in various scientific and engineering disciplines, including modeling climate phenomena and fluid dynamics. However, performing these computations directly in the physical space often incurs significant computational costs. To address this issue, several neural surrogate models have been developed that operate in a compressed latent space to solve the PDE. While these approaches reduce computational complexity, they often use Transformer-based attention mechanisms to handle irregularly sampled domains, resulting in increased memory consumption. In contrast, convolutional neural networks allow memory-efficient encoding and decoding but are limited to regular discretizations. Motivated by these considerations, we propose CALM-PDE, a model class that efficiently solves arbitrarily discretized PDEs in a compressed latent space. We introduce a novel continuous convolution-based encoder-decoder architecture that uses an epsilon-neighborhood-constrained kernel and learns to apply the convolution operator to adaptive and optimized query points. We demonstrate the effectiveness of CALM-PDE on a diverse set of PDEs with both regularly and irregularly sampled spatial domains. CALM-PDE is competitive with or outperforms existing baseline methods while offering significant improvements in memory and inference time efficiency compared to Transformer-based methods.
comment: Accepted for publication at the 39th Conference on Neural Information Processing Systems (NeurIPS) 2025, San Diego, California, USA
♻ ☆ Lessons Learned: A Multi-Agent Framework for Code LLMs to Learn and Improve NeurIPS 2025
Recent studies show that LLMs possess different skills and specialize in different tasks. In fact, we observe that their varied performance occur in several levels of granularity. For example, in the code optimization task, code LLMs excel at different optimization categories and no one dominates others. This observation prompts the question of how one leverages multiple LLM agents to solve a coding problem without knowing their complementary strengths a priori. We argue that a team of agents can learn from each other's successes and failures so as to improve their own performance. Thus, a lesson is the knowledge produced by an agent and passed on to other agents in the collective solution process. We propose a lesson-based collaboration framework, design the lesson solicitation--banking--selection mechanism, and demonstrate that a team of small LLMs with lessons learned can outperform a much larger LLM and other multi-LLM collaboration methods.
comment: NeurIPS 2025. Code is available at https://github.com/MITIBM-FastCoder/LessonL
♻ ☆ Making Classic GNNs Strong Baselines Across Varying Homophily: A Smoothness-Generalization Perspective NeurIPS 2025
Graph Neural Networks (GNNs) have achieved great success but are often considered to be challenged by varying levels of homophily in graphs. Recent empirical studies have surprisingly shown that homophilic GNNs can perform well across datasets of different homophily levels with proper hyperparameter tuning, but the underlying theory and effective architectures remain unclear. To advance GNN universality across varying homophily, we theoretically revisit GNN message passing and uncover a novel smoothness-generalization dilemma, where increasing hops inevitably enhances smoothness at the cost of generalization. This dilemma hinders learning in higher-order homophilic neighborhoods and all heterophilic ones, where generalization is critical due to complex neighborhood class distributions that are sensitive to shifts induced by noise and sparsity. To address this, we introduce the Inceptive Graph Neural Network (IGNN) built on three simple yet effective design principles, which alleviate the dilemma by enabling distinct hop-wise generalization alongside improved overall generalization with adaptive smoothness. Benchmarking against 30 baselines demonstrates IGNN's superiority and reveals notable universality in certain homophilic GNN variants. Our code and datasets are available at https://github.com/galogm/IGNN.
comment: 36 pages. Accepted by NeurIPS 2025
♻ ☆ Does Reinforcement Learning Really Incentivize Reasoning Capacity in LLMs Beyond the Base Model?
Reinforcement Learning with Verifiable Rewards (RLVR) has recently demonstrated notable success in enhancing the reasoning performance of large language models (LLMs), particularly on mathematics and programming tasks. Similar to how traditional RL helps agents explore and learn new strategies, RLVR is believed to enable LLMs to continuously self-improve, thus acquiring novel reasoning abilities beyond those of the corresponding base models. In this study we critically examine the current state of RLVR by systematically probing the reasoning capability boundaries of RLVR-trained LLMs across various model families, RL algorithms, and math, coding, and visual reasoning benchmarks, using pass@k at large k values as the evaluation metric. Surprisingly, we find that the current training setup does not elicit fundamentally new reasoning patterns. While RLVR-trained models outperform their base models at small k (e.g., k = 1), the base models achieve a higher pass@k score when k is large. Coverage and perplexity analyses show that the observed reasoning abilities originate from and are bounded by the base model. Treating the base model as an upper bound, our quantitative analysis shows that six popular RLVR algorithms perform similarly and remain far from optimal in leveraging the potential of the base model. By contrast, we find that distillation can introduce new reasoning patterns from the teacher and genuinely expand the model's reasoning capabilities. Overall, our findings suggest that current RLVR methods have not yet realized the potential of RL to elicit truly novel reasoning abilities in LLMs. This highlights the need for improved RL paradigms, such as continual scaling and multi-turn agent-environment interaction, to unlock this potential.
comment: 30 pages, 27 figures
♻ ☆ Towards Understanding Safety Alignment: A Mechanistic Perspective from Safety Neurons NeurIPS 2025
Large language models (LLMs) excel in various capabilities but pose safety risks such as generating harmful content and misinformation, even after safety alignment. In this paper, we explore the inner mechanisms of safety alignment through the lens of mechanistic interpretability, focusing on identifying and analyzing safety neurons within LLMs that are responsible for safety behaviors. We propose inference-time activation contrasting to locate these neurons and dynamic activation patching to evaluate their causal effects on model safety. Experiments on multiple prevalent LLMs demonstrate that we can consistently identify about $5\%$ safety neurons, and by only patching their activations we can restore over $90\%$ of the safety performance across various red-teaming benchmarks without influencing general ability. The finding of safety neurons also helps explain the ''alignment tax'' phenomenon by revealing that the key neurons for model safety and helpfulness significantly overlap, yet they require different activation patterns for the same neurons. Furthermore, we demonstrate an application of our findings in safeguarding LLMs by detecting unsafe outputs before generation. The source code is available at https://github.com/THU-KEG/SafetyNeuron.
comment: NeurIPS 2025
♻ ☆ Benchmarking GPT-5 for biomedical natural language processing
Biomedical literature and clinical narratives pose multifaceted challenges for natural language understanding, from precise entity extraction and document synthesis to multi-step diagnostic reasoning. This study extends a unified benchmark to evaluate GPT-5 and GPT-4o under zero-, one-, and five-shot prompting across five core biomedical NLP tasks: named entity recognition, relation extraction, multi-label document classification, summarization, and simplification, and nine expanded biomedical QA datasets covering factual knowledge, clinical reasoning, and multimodal visual understanding. Using standardized prompts, fixed decoding parameters, and consistent inference pipelines, we assessed model performance, latency, and token-normalized cost under official pricing. GPT-5 consistently outperformed GPT-4o, with the largest gains on reasoning-intensive datasets such as MedXpertQA and DiagnosisArena and stable improvements in multimodal QA. In core tasks, GPT-5 achieved better chemical NER and ChemProt scores but remained below domain-tuned baselines for disease NER and summarization. Despite producing longer outputs, GPT-5 showed comparable latency and 30 to 50 percent lower effective cost per correct prediction. Fine-grained analyses revealed improvements in diagnosis, treatment, and reasoning subtypes, whereas boundary-sensitive extraction and evidence-dense summarization remain challenging. Overall, GPT-5 approaches deployment-ready performance for biomedical QA while offering a favorable balance of accuracy, interpretability, and economic efficiency. The results support a tiered prompting strategy: direct prompting for large-scale or cost-sensitive applications, and chain-of-thought scaffolds for analytically complex or high-stakes scenarios, highlighting the continued need for hybrid solutions where precision and factual fidelity are critical.
♻ ☆ Edit Flows: Flow Matching with Edit Operations
Autoregressive generative models naturally generate variable-length sequences, while non-autoregressive models struggle, often imposing rigid, token-wise structures. We propose Edit Flows, a non-autoregressive model that overcomes these limitations by defining a discrete flow over sequences through edit operations$\unicode{x2013}$insertions, deletions, and substitutions. By modeling these operations within a Continuous-time Markov Chain over the sequence space, Edit Flows enable flexible, position-relative generation that aligns more closely with the structure of sequence data. Our training method leverages an expanded state space with auxiliary variables, making the learning process efficient and tractable. Empirical results show that Edit Flows outperforms both autoregressive and mask models on image captioning and significantly outperforms the mask construction in text and code generation.
♻ ☆ Efficient Vision-Language-Action Models for Embodied Manipulation: A Systematic Survey
Vision-Language-Action (VLA) models extend vision-language models to embodied control by mapping natural-language instructions and visual observations to robot actions. Despite their capabilities, VLA systems face significant challenges due to their massive computational and memory demands, which conflict with the constraints of edge platforms such as on-board mobile manipulators that require real-time performance. Addressing this tension has become a central focus of recent research. In light of the growing efforts toward more efficient and scalable VLA systems, this survey provides a systematic review of approaches for improving VLA efficiency, with an emphasis on reducing latency, memory footprint, and training and inference costs. We categorize existing solutions into four dimensions: model architecture, perception feature, action generation, and training/inference strategies, summarizing representative techniques within each category. Finally, we discuss future trends and open challenges, highlighting directions for advancing efficient embodied intelligence.
♻ ☆ Residual Kolmogorov-Arnold Network for Enhanced Deep Learning
Despite their immense success, deep convolutional neural networks (CNNs) can be difficult to optimize and costly to train due to hundreds of layers within the network depth. Conventional convolutional operations are fundamentally limited by their linear nature along with fixed activations, where many layers are needed to learn meaningful patterns in data. Because of the sheer size of these networks, this approach is simply computationally inefficient, and poses overfitting or gradient explosion risks, especially in small datasets. As a result, we introduce a "plug-in" module, called Residual Kolmogorov-Arnold Network (RKAN). Our module is highly compact, so it can be easily added into any stage (level) of traditional deep networks, where it learns to integrate supportive polynomial feature transformations to existing convolutional frameworks. RKAN offers consistent improvements over baseline models in different vision tasks and widely tested benchmarks, accomplishing cutting-edge performance on them.
comment: Code is available at https://github.com/withray/residualKAN.git
♻ ☆ floq: Training Critics via Flow-Matching for Scaling Compute in Value-Based RL
A hallmark of modern large-scale machine learning techniques is the use of training objectives that provide dense supervision to intermediate computations, such as teacher forcing the next token in language models or denoising step-by-step in diffusion models. This enables models to learn complex functions in a generalizable manner. Motivated by this observation, we investigate the benefits of iterative computation for temporal difference (TD) methods in reinforcement learning (RL). Typically they represent value functions in a monolithic fashion, without iterative compute. We introduce floq (flow-matching Q-functions), an approach that parameterizes the Q-function using a velocity field and trains it using techniques from flow-matching, typically used in generative modeling. This velocity field underneath the flow is trained using a TD-learning objective, which bootstraps from values produced by a target velocity field, computed by running multiple steps of numerical integration. Crucially, floq allows for more fine-grained control and scaling of the Q-function capacity than monolithic architectures, by appropriately setting the number of integration steps. Across a suite of challenging offline RL benchmarks and online fine-tuning tasks, floq improves performance by nearly 1.8x. floq scales capacity far better than standard TD-learning architectures, highlighting the potential of iterative computation for value learning.
comment: Added new experiments, fixed typos. Code -- https://github.com/CMU-AIRe/floq
♻ ☆ How Ensembles of Distilled Policies Improve Generalisation in Reinforcement Learning
In the zero-shot policy transfer setting in reinforcement learning, the goal is to train an agent on a fixed set of training environments so that it can generalise to similar, but unseen, testing environments. Previous work has shown that policy distillation after training can sometimes produce a policy that outperforms the original in the testing environments. However, it is not yet entirely clear why that is, or what data should be used to distil the policy. In this paper, we prove, under certain assumptions, a generalisation bound for policy distillation after training. The theory provides two practical insights: for improved generalisation, you should 1) train an ensemble of distilled policies, and 2) distil it on as much data from the training environments as possible. We empirically verify that these insights hold in more general settings, when the assumptions required for the theory no longer hold. Finally, we demonstrate that an ensemble of policies distilled on a diverse dataset can generalise significantly better than the original agent.
♻ ☆ Neural Attention Search
We present Neural Attention Search (NAtS), a framework that automatically evaluates the importance of each token within a sequence and determines if the corresponding token can be dropped after several steps. This approach can efficiently reduce the KV cache sizes required by transformer-based models during inference and thus reduce inference costs. In this paper, we design a search space that contains three token types: (i) Global Tokens will be preserved and queried by all the following tokens. (ii) Local Tokens survive until the next global token appears. (iii) Sliding Window Tokens have an impact on the inference of a fixed size of the next following tokens. Similar to the One-Shot Neural Architecture Search approach, this token-type information can be learned jointly with the architecture weights via a learnable attention mask. Experiments on both training a new transformer from scratch and fine-tuning existing large language models show that NAtS can efficiently reduce the KV cache size required for the models while maintaining the models' performance.
comment: 35 pages, 11 figures
♻ ☆ Position: The Current AI Conference Model is Unsustainable! Diagnosing the Crisis of Centralized AI Conference
Artificial Intelligence (AI) conferences are essential for advancing research, sharing knowledge, and fostering academic community. However, their rapid expansion has rendered the centralized conference model increasingly unsustainable. This paper offers a data-driven diagnosis of a structural crisis that threatens the foundational goals of scientific dissemination, equity, and community well-being. We identify four key areas of strain: (1) scientifically, with per-author publication rates more than doubling over the past decade to over 4.5 papers annually; (2) environmentally, with the carbon footprint of a single conference exceeding the daily emissions of its host city; (3) psychologically, with 71% of online community discourse reflecting negative sentiment and 35% referencing mental health concerns; and (4) logistically, with attendance at top conferences such as NeurIPS 2024 beginning to outpace venue capacity. These pressures point to a system that is misaligned with its core mission. In response, we propose the Community-Federated Conference (CFC) model, which separates peer review, presentation, and networking into globally coordinated but locally organized components, offering a more sustainable, inclusive, and resilient path forward for AI research.
comment: Preprint
♻ ☆ Frequency-Dynamic Attention Modulation for Dense Prediction ICCV 2025
Vision Transformers (ViTs) have significantly advanced computer vision, demonstrating strong performance across various tasks. However, the attention mechanism in ViTs makes each layer function as a low-pass filter, and the stacked-layer architecture in existing transformers suffers from frequency vanishing. This leads to the loss of critical details and textures. We propose a novel, circuit-theory-inspired strategy called Frequency-Dynamic Attention Modulation (FDAM), which can be easily plugged into ViTs. FDAM directly modulates the overall frequency response of ViTs and consists of two techniques: Attention Inversion (AttInv) and Frequency Dynamic Scaling (FreqScale). Since circuit theory uses low-pass filters as fundamental elements, we introduce AttInv, a method that generates complementary high-pass filtering by inverting the low-pass filter in the attention matrix, and dynamically combining the two. We further design FreqScale to weight different frequency components for fine-grained adjustments to the target response function. Through feature similarity analysis and effective rank evaluation, we demonstrate that our approach avoids representation collapse, leading to consistent performance improvements across various models, including SegFormer, DeiT, and MaskDINO. These improvements are evident in tasks such as semantic segmentation, object detection, and instance segmentation. Additionally, we apply our method to remote sensing detection, achieving state-of-the-art results in single-scale settings. The code is available at https://github.com/Linwei-Chen/FDAM.
comment: Accepted by ICCV 2025
♻ ☆ On the Fairness of Privacy Protection: Measuring and Mitigating the Disparity of Group Privacy Risks for Differentially Private Machine Learning
While significant progress has been made in conventional fairness-aware machine learning (ML) and differentially private ML (DPML), the fairness of privacy protection across groups remains underexplored. Existing studies have proposed methods to assess group privacy risks, but these are based on the average-case privacy risks of data records. Such approaches may underestimate the group privacy risks, thereby potentially underestimating the disparity across group privacy risks. Moreover, the current method for assessing the worst-case privacy risks of data records is time-consuming, limiting their practical applicability. To address these limitations, we introduce a novel membership inference game that can efficiently audit the approximate worst-case privacy risks of data records. Experimental results demonstrate that our method provides a more stringent measurement of group privacy risks, yielding a reliable assessment of the disparity in group privacy risks. Furthermore, to promote privacy protection fairness in DPML, we enhance the standard DP-SGD algorithm with an adaptive group-specific gradient clipping strategy, inspired by the design of canaries in differential privacy auditing studies. Extensive experiments confirm that our algorithm effectively reduces the disparity in group privacy risks, thereby enhancing the fairness of privacy protection in DPML.
♻ ☆ MCIF: Multimodal Crosslingual Instruction-Following Benchmark from Scientific Talks
Recent advances in large language models have catalyzed the development of multimodal LLMs (MLLMs) that integrate text, speech, and vision within unified frameworks. As MLLMs evolve from narrow, monolingual, task-specific systems to general-purpose instruction-following models, a key frontier lies in evaluating their multilingual and multimodal capabilities over both long and short contexts. However, existing benchmarks fall short in evaluating these dimensions jointly: they are often limited to English, mostly focus on one single modality at a time, rely on short-form contexts, or lack human annotations -- hindering comprehensive assessment of model performance across languages, modalities, and task complexity. To address these gaps, we introduce MCIF (Multimodal Crosslingual Instruction Following), the first multilingual human-annotated benchmark based on scientific talks that is designed to evaluate instruction-following in crosslingual, multimodal settings over both short- and long-form inputs. MCIF spans three core modalities -- speech, vision, and text -- and four diverse languages (English, German, Italian, and Chinese), enabling a comprehensive evaluation of MLLMs' abilities to interpret instructions across languages and combine them with multimodal contextual information. MCIF is released under a CC-BY 4.0 license to encourage open research and progress in MLLMs development.
comment: Data available at https://huggingface.co/datasets/FBK-MT/MCIF | Evaluation and baselines available at https://github.com/hlt-mt/mcif
♻ ☆ Face-Human-Bench: A Comprehensive Benchmark of Face and Human Understanding for Multi-modal Assistants NeurIPS 2025
Faces and humans are crucial elements in social interaction and are widely included in everyday photos and videos. Therefore, a deep understanding of faces and humans will enable multi-modal assistants to achieve improved response quality and broadened application scope. Currently, the multi-modal assistant community lacks a comprehensive and scientific evaluation of face and human understanding abilities. In this paper, we first propose a hierarchical ability taxonomy that includes three levels of abilities. Then, based on this taxonomy, we collect images and annotations from publicly available datasets in the face and human community and build a semi-automatic data pipeline to produce problems for the new benchmark. Finally, the obtained Face-Human-Bench includes a development set and a test set, each with 1800 problems, supporting both English and Chinese. We conduct evaluations over 25 mainstream multi-modal large language models (MLLMs) with our Face-Human-Bench, focusing on the correlation between abilities, the impact of the relative position of targets on performance, and the impact of Chain of Thought (CoT) prompting on performance. We also explore which abilities of MLLMs need to be supplemented by specialist models. The dataset and evaluation code have been made publicly available at https://face-human-bench.github.io.
comment: 50 pages, 14 figures, 42 tables. NeurIPS 2025 Datasets and Benchmarks Track
♻ ☆ Breaking mBad! Supervised Fine-tuning for Cross-Lingual Detoxification
As large language models (LLMs) become increasingly prevalent in global applications, ensuring that they are toxicity-free across diverse linguistic contexts remains a critical challenge. We explore "Cross-lingual Detoxification", a cross-lingual paradigm that mitigates toxicity, enabling detoxification capabilities to transfer between high and low-resource languages across different script families. We analyze cross-lingual detoxification's effectiveness through 392 extensive settings to evaluate toxicity reduction in cross-distribution settings with limited data and investigate how mitigation impacts model performance on non-toxic tasks, revealing trade-offs between safety and knowledge preservation. Our code and dataset are publicly available at https://github.com/himanshubeniwal/Breaking-mBad.
comment: Accepted at MELT Workshop @ COLM 2025
♻ ☆ Memory Decoder: A Pretrained, Plug-and-Play Memory for Large Language Models
Large Language Models (LLMs) have shown strong abilities in general language tasks, yet adapting them to specific domains remains a challenge. Current method like Domain Adaptive Pretraining (DAPT) requires costly full-parameter training and suffers from catastrophic forgetting. Meanwhile, Retrieval-Augmented Generation (RAG) introduces substantial inference latency due to expensive nearest-neighbor searches and longer context. This paper introduces Memory Decoder, a plug-and-play pretrained memory that enables efficient domain adaptation without changing the original model's parameters. Memory Decoder employs a small transformer decoder that learns to imitate the behavior of an external non-parametric retriever. Once trained, Memory Decoder can be seamlessly integrated with any pretrained language model that shares the same tokenizer, requiring no model-specific modifications. Experimental results demonstrate that Memory Decoder enables effective adaptation of various Qwen and Llama models to three distinct specialized domains: biomedicine, finance, and law, reducing perplexity by an average of 6.17 points. Overall, Memory Decoder introduces a novel paradigm centered on a specially pretrained memory component designed for domain-specific adaptation. This memory architecture can be integrated in a plug-and-play manner, consistently enhancing performance across multiple models within the target domain.
♻ ☆ MindForge: Empowering Embodied Agents with Theory of Mind for Lifelong Cultural Learning NeurIPS 2025
Embodied agents powered by large language models (LLMs), such as Voyager, promise open-ended competence in worlds such as Minecraft. However, when powered by open-weight LLMs they still falter on elementary tasks after domain-specific fine-tuning. We propose MindForge, a generative-agent framework for cultural lifelong learning through explicit perspective taking. We introduce three key innovations: (1) a structured theory of mind representation linking percepts, beliefs, desires, and actions; (2) natural inter-agent communication; and (3) a multi-component memory system. Following the cultural learning framework, we test MindForge in both instructive and collaborative settings within Minecraft. In an instructive setting with GPT-4, MindForge agents powered by open-weight LLMs significantly outperform their Voyager counterparts in basic tasks yielding $3\times$ more tech-tree milestones and collecting $2.3\times$ more unique items than the Voyager baseline. Furthermore, in fully \textit{collaborative} settings, we find that the performance of two underachieving agents improves with more communication rounds, echoing the Condorcet Jury Theorem. MindForge agents demonstrate sophisticated behaviors, including expert-novice knowledge transfer, collaborative problem solving, and adaptation to out-of-distribution tasks through accumulated cultural experiences.
comment: Accepted to NeurIPS 2025 main track as poster
♻ ☆ HauntAttack: When Attack Follows Reasoning as a Shadow
Emerging Large Reasoning Models (LRMs) consistently excel in mathematical and reasoning tasks, showcasing remarkable capabilities. However, the enhancement of reasoning abilities and the exposure of internal reasoning processes introduce new safety vulnerabilities. A critical question arises: when reasoning becomes intertwined with harmfulness, will LRMs become more vulnerable to jailbreaks in reasoning mode? To investigate this, we introduce HauntAttack, a novel and general-purpose black-box adversarial attack framework that systematically embeds harmful instructions into reasoning questions. Specifically, we modify key reasoning conditions in existing questions with harmful instructions, thereby constructing a reasoning pathway that guides the model step by step toward unsafe outputs. We evaluate HauntAttack on 11 LRMs and observe an average attack success rate of 70\%, achieving up to 12 percentage points of absolute improvement over the strongest prior baseline. Our further analysis reveals that even advanced safety-aligned models remain highly susceptible to reasoning-based attacks, offering insights into the urgent challenge of balancing reasoning capability and safety in future model development.
♻ ☆ HumanCM: One Step Human Motion Prediction
We present HumanCM, a one-step human motion prediction framework built upon consistency models. Instead of relying on multi-step denoising as in diffusion-based methods, HumanCM performs efficient single-step generation by learning a self-consistent mapping between noisy and clean motion states. The framework adopts a Transformer-based spatiotemporal architecture with temporal embeddings to model long-range dependencies and preserve motion coherence. Experiments on Human3.6M and HumanEva-I demonstrate that HumanCM achieves comparable or superior accuracy to state-of-the-art diffusion models while reducing inference steps by up to two orders of magnitude.
comment: 6 pages, 3 figures, 2 tables
♻ ☆ Balanced Token Pruning: Accelerating Vision Language Models Beyond Local Optimization
Large Vision-Language Models (LVLMs) have shown impressive performance across multi-modal tasks by encoding images into thousands of tokens. However, the large number of image tokens results in significant computational overhead, and the use of dynamic high-resolution inputs further increases this burden. Previous approaches have attempted to reduce the number of image tokens through token pruning, typically by selecting tokens based on attention scores or image token diversity. Through empirical studies, we observe that existing methods often overlook the joint impact of pruning on both the current layer's output (local) and the outputs of subsequent layers (global), leading to suboptimal pruning decisions. To address this challenge, we propose Balanced Token Pruning (BTP), a plug-and-play method for pruning vision tokens. Specifically, our method utilizes a small calibration set to divide the pruning process into multiple stages. In the early stages, our method emphasizes the impact of pruning on subsequent layers, whereas in the deeper stages, the focus shifts toward preserving the consistency of local outputs. Extensive experiments across various LVLMs demonstrate the broad effectiveness of our approach on multiple benchmarks. Our method achieves a 78% compression rate while preserving 96.7% of the original models' performance on average. Our code is available at https://github.com/EmbodiedCity/NeurIPS2025-Balanced-Token-Pruning.
comment: Accepted by Neurips 2025
♻ ☆ Fine-Tuning Multilingual Language Models for Code Review: An Empirical Study on Industrial C# Projects
Code review is essential for maintaining software quality but often time-consuming and cognitively demanding, especially in industrial environments. Recent advancements in language models (LMs) have opened new avenues for automating core review tasks. This study presents the empirical evaluation of monolingual fine-tuning on the performance of open-source LMs across three key automated code review tasks: Code Change Quality Estimation, Review Comment Generation, and Code Refinement. We fine-tuned three distinct models, CodeReviewer, CodeLlama-7B, and DeepSeek-R1-Distill, on a C\# specific dataset combining public benchmarks with industrial repositories. Our study investigates how different configurations of programming languages and natural languages in the training data affect LM performance, particularly in comment generation. Additionally, we benchmark the fine-tuned models against an automated software analysis tool (ASAT) and human reviewers to evaluate their practical utility in real-world settings. Our results show that monolingual fine-tuning improves model accuracy and relevance compared to multilingual baselines. While LMs can effectively support code review workflows, especially for routine or repetitive tasks, human reviewers remain superior in handling semantically complex or context-sensitive changes. Our findings highlight the importance of language alignment and task-specific adaptation in optimizing LMs for automated code review.
♻ ☆ LeVo: High-Quality Song Generation with Multi-Preference Alignment NeurIPS 2025
Recent advances in large language models (LLMs) and audio language models have significantly improved music generation, particularly in lyrics-to-song generation. However, existing approaches still struggle with the complex composition of songs and the scarcity of high-quality data, leading to limitations in audio quality, musicality, instruction following, and vocal-instrument harmony. To address these challenges, we introduce LeVo, a language model based framework consisting of LeLM and Music Codec. LeLM is capable of parallel modeling of two types of tokens: mixed tokens, which represent the combined audio of vocals and accompaniment to achieve better vocal-instrument harmony, and dual-track tokens, which separately encode vocals and accompaniment for high-quality song generation. It employs two decoder-only transformers and a modular extension training strategy to prevent interference between different token types. To further enhance musicality and instruction following ability, we introduce a multi-preference alignment method based on Direct Preference Optimization (DPO). This method handles diverse human preferences through a semi-automatic data construction process and post-training. Experimental results demonstrate that LeVo significantly outperforms existing open-source methods in both objective and subjective metrics, while performing competitively with industry systems. Ablation studies further justify the effectiveness of our designs. Audio examples and source code are available at https://levo-demo.github.io and https://github.com/tencent-ailab/songgeneration.
comment: Accepted by NeurIPS 2025
♻ ☆ SAFEPATH: Preventing Harmful Reasoning in Chain-of-Thought via Early Alignment NeurIPS 2025
Large Reasoning Models (LRMs) have become powerful tools for complex problem solving, but their structured reasoning pathways can lead to unsafe outputs when exposed to harmful prompts. Existing safety alignment methods reduce harmful outputs but can degrade reasoning depth, leading to significant trade-offs in complex, multi-step tasks, and remain vulnerable to sophisticated jailbreak attacks. To address this, we introduce SAFEPATH, a lightweight alignment method that fine-tunes LRMs to emit a short, 8-token Safety Primer at the start of their reasoning, in response to harmful prompts, while leaving the rest of the reasoning process unsupervised. Empirical results across multiple benchmarks indicate that SAFEPATH effectively reduces harmful outputs while maintaining reasoning performance. Specifically, SAFEPATH reduces harmful responses by up to 90.0% and blocks 83.3% of jailbreak attempts in the DeepSeek-R1-Distill-Llama-8B model, while requiring 295.9x less compute than Direct Refusal and 314.1x less than SafeChain. We further introduce a zero-shot variant that requires no fine-tuning. In addition, we provide a comprehensive analysis of how existing methods in LLMs generalize, or fail, when applied to reasoning-centric models, revealing critical gaps and new directions for safer AI.
comment: Accepted at NeurIPS 2025. Code and models are available at https://ai-isl.github.io/safepath
♻ ☆ TriQuest:An AI Copilot-Powered Platform for Interdisciplinary Curriculum Design
Interdisciplinary teaching is a cornerstone of modern curriculum reform, but its implementation is hindered by challenges in knowledge integration and time-consuming lesson planning. Existing tools often lack the required pedagogical and domain-specific depth.We introduce TriQuest, an AI-copilot platform designed to solve these problems. TriQuest uses large language models and knowledge graphs via an intuitive GUI to help teachers efficiently generate high-quality interdisciplinary lesson plans. Its core features include intelligent knowledge integration from various disciplines and a human-computer collaborative review process to ensure quality and innovation.In a study with 43 teachers, TriQuest increased curriculum design efficiency and improved lesson plan quality. It also significantly lowered design barriers and cognitive load. Our work presents a new paradigm for empowering teacher professional development with intelligent technologies.
comment: 16 pages, 4 figures
♻ ☆ Benchmarking World-Model Learning
Model-learning agents should gather information to learn world models that support many downstream tasks and inferences, such as predicting unobserved states, estimating near- and far-term consequences of actions, planning action sequences, and detecting changes in dynamics. Current methods for learning and evaluating world models diverge from this goal: training and evaluation are anchored to next-frame prediction, and success is scored by reward maximization in the same environment. We propose WorldTest, a protocol to evaluate model-learning agents that separates reward-free interaction from a scored test phase in a different but related environment. WorldTest is open-ended$\unicode{x2014}$models should support many different tasks unknown ahead of time$\unicode{x2014}$and agnostic to model representation, allowing comparison across approaches. We instantiated WorldTest with AutumnBench, a suite of 43 interactive grid-world environments and 129 tasks across three families: masked-frame prediction, planning, and predicting changes to the causal dynamics. We compared 517 human participants and three frontier models on AutumnBench. We found that humans outperform the models, and scaling compute improves performance only in some environments but not others. WorldTest provides a novel template$\unicode{x2014}$reward-free exploration, derived tests, and behavior-based scoring$\unicode{x2014}$to evaluate what agents learn about environment dynamics, and AutumnBench exposes significant headroom in world-model learning.
comment: 30 pages, 10 figures
♻ ☆ HoMer: Addressing Heterogeneities by Modeling Sequential and Set-wise Contexts for CTR Prediction
Click-through rate (CTR) prediction, which models behavior sequence and non-sequential features (e.g., user/item profiles or cross features) to infer user interest, underpins industrial recommender systems. However, most methods face three forms of heterogeneity that degrade predictive performance: (i) Feature Heterogeneity persists when limited sequence side features provide less granular interest representation compared to extensive non-sequential features, thereby impairing sequence modeling performance; (ii) Context Heterogeneity arises because a user's interest in an item will be influenced by other items, yet point-wise prediction neglects cross-item interaction context from the entire item set; (iii) Architecture Heterogeneity stems from the fragmented integration of specialized network modules, which compounds the model's effectiveness, efficiency and scalability in industrial deployments. To tackle the above limitations, we propose HoMer, a Homogeneous-Oriented TransforMer for modeling sequential and set-wise contexts. First, we align sequence side features with non-sequential features for accurate sequence modeling and fine-grained interest representation. Second, we shift the prediction paradigm from point-wise to set-wise, facilitating cross-item interaction in a highly parallel manner. Third, HoMer's unified encoder-decoder architecture achieves dual optimization through structural simplification and shared computation, ensuring computational efficiency while maintaining scalability with model size. Without arduous modification to the prediction pipeline, HoMer successfully scales up and outperforms our industrial baseline by 0.0099 in the AUC metric, and enhances online business metrics like CTR/RPM by 1.99%/2.46%. Additionally, HoMer saves 27% of GPU resources via preliminary engineering optimization, further validating its superiority and practicality.
comment: 10 pages, 6 figures
♻ ☆ Bayes or Heisenberg: Who(se) Rules?
Although quantum systems are generally described by quantum state vectors, we show that in certain cases their measurement processes can be reformulated as probabilistic equations expressed in terms of probabilistic state vectors. These probabilistic representations can, in turn, be approximated by the neural network dynamics of the Tensor Brain (TB) model. The Tensor Brain is a recently proposed framework for modeling perception and memory in the brain, providing a biologically inspired mechanism for efficiently integrating generated symbolic representations into reasoning processes.
♻ ☆ PRUNE: A Patching Based Repair Framework for Certifiable Unlearning of Neural Networks
It is often desirable to remove (a.k.a. unlearn) a specific part of the training data from a trained neural network model. A typical application scenario is to protect the data holder's right to be forgotten, which has been promoted by many recent regulation rules. Existing unlearning methods involve training alternative models with remaining data, which may be costly and challenging to verify from the data holder or a thirdparty auditor's perspective. In this work, we provide a new angle and propose a novel unlearning approach by imposing carefully crafted "patch" on the original neural network to achieve targeted "forgetting" of the requested data to delete. Specifically, inspired by the research line of neural network repair, we propose to strategically seek a lightweight minimum "patch" for unlearning a given data point with certifiable guarantee. Furthermore, to unlearn a considerable amount of data points (or an entire class), we propose to iteratively select a small subset of representative data points to unlearn, which achieves the effect of unlearning the whole set. Extensive experiments on multiple categorical datasets demonstrates our approach's effectiveness, achieving measurable unlearning while preserving the model's performance and being competitive in efficiency and memory consumption compared to various baseline methods.
♻ ☆ The Parameterized Complexity of Computing the VC-Dimension NeurIPS 2025
The VC-dimension is a well-studied and fundamental complexity measure of a set system (or hypergraph) that is central to many areas of machine learning. We establish several new results on the complexity of computing the VC-dimension. In particular, given a hypergraph $\mathcal{H}=(\mathcal{V},\mathcal{E})$, we prove that the naive $2^{\mathcal{O}(|\mathcal{V}|)}$-time algorithm is asymptotically tight under the Exponential Time Hypothesis (ETH). We then prove that the problem admits a $1$-additive fixed-parameter approximation algorithm when parameterized by the maximum degree of $\mathcal{H}$ and a fixed-parameter algorithm when parameterized by its dimension, and that these are essentially the only such exploitable structural parameters. Lastly, we consider a generalization of the problem, formulated using graphs, which captures the VC-dimension of both set systems and graphs. We design a $2^{\mathcal{O}(\rm{tw}\cdot \log \rm{tw})}\cdot |V|$-time algorithm for any graph $G=(V,E)$ of treewidth $\rm{tw}$ (which, for a set system, applies to the treewidth of its incidence graph). This is in contrast with closely related problems that require a double-exponential dependency on the treewidth (assuming the ETH).
comment: To appear in the proceedings of NeurIPS 2025
♻ ☆ Multi-Agent Reinforcement Learning for Task Offloading in Wireless Edge Networks NeurIPS'25
In edge computing systems, autonomous agents must make fast local decisions while competing for shared resources. Existing MARL methods often resume to centralized critics or frequent communication, which fail under limited observability and communication constraints. We propose a decentralized framework in which each agent solves a constrained Markov decision process (CMDP), coordinating implicitly through a shared constraint vector. For the specific case of offloading, e.g., constraints prevent overloading shared server resources. Coordination constraints are updated infrequently and act as a lightweight coordination mechanism. They enable agents to align with global resource usage objectives but require little direct communication. Using safe reinforcement learning, agents learn policies that meet both local and global goals. We establish theoretical guarantees under mild assumptions and validate our approach experimentally, showing improved performance over centralized and independent baselines, especially in large-scale settings.
comment: Oral presentation at AI4NextG @ NeurIPS'25 Workshop
♻ ☆ BuildArena: A Physics-Aligned Interactive Benchmark of LLMs for Engineering Construction
Engineering construction automation aims to transform natural language specifications into physically viable structures, requiring complex integrated reasoning under strict physical constraints. While modern LLMs possess broad knowledge and strong reasoning capabilities that make them promising candidates for this domain, their construction competencies remain largely unevaluated. To address this gap, we introduce BuildArena, the first physics-aligned interactive benchmark designed for language-driven engineering construction. It contributes to the community in four aspects: (1) a highly customizable benchmarking framework for in-depth comparison and analysis of LLMs; (2) an extendable task design strategy spanning static and dynamic mechanics across multiple difficulty tiers; (3) a 3D Spatial Geometric Computation Library for supporting construction based on language instructions; (4) a baseline LLM agentic workflow that effectively evaluates diverse model capabilities. On eight frontier LLMs, BuildArena comprehensively evaluates their capabilities for language-driven and physics-grounded construction automation. The project page is at https://build-arena.github.io/.
comment: 33 pages, 10 figures
♻ ☆ Train with Perturbation, Infer after Merging: A Two-Stage Framework for Continual Learning NeurIPS 2025
Continual Learning (CL) aims to enable models to continuously acquire new knowledge from a sequence of tasks with avoiding the forgetting of learned information. However, existing CL methods only rely on the parameters of the most recent task for inference, which makes them susceptible to catastrophic forgetting. Inspired by the recent success of model merging techniques, we propose \textbf{Perturb-and-Merge (P\&M)}, a novel continual learning framework that integrates model merging into the CL paradigm to mitigate forgetting. Specifically, after training on each task, P\&M constructs a new model by forming a convex combination of the previous model and the newly trained task-specific model. Through theoretical analysis, We minimize the total loss increase across all tasks and derive a closed-form solution for the merging coefficient under mild assumptions. To further improve the performance of the merged model, we observe that the degradation introduced during merging can be alleviated by a regularization term composed of the task vector and the Hessian matrix of the loss function. Interestingly, we show that this term can be efficiently approximated using second-order symmetric finite differences, and a stochastic perturbation strategy along the task vector direction is accordingly devised which incurs no additional forward or backward passes while providing an effective approximation of the regularization term. Finally, we combine P\&M with LoRA, a parameter-efficient fine-tuning method, to reduce memory overhead. Our proposed approach achieves state-of-the-art performance on several continual learning benchmark datasets. The code is available at https://github.com/qhmiao/P-M-for-Continual-Learning.
comment: Accepted by NeurIPS 2025
♻ ☆ Shallow Flow Matching for Coarse-to-Fine Text-to-Speech Synthesis NeurIPS 2025
We propose Shallow Flow Matching (SFM), a novel mechanism that enhances flow matching (FM)-based text-to-speech (TTS) models within a coarse-to-fine generation paradigm. Unlike conventional FM modules, which use the coarse representations from the weak generator as conditions, SFM constructs intermediate states along the FM paths from these representations. During training, we introduce an orthogonal projection method to adaptively determine the temporal position of these states, and apply a principled construction strategy based on a single-segment piecewise flow. The SFM inference starts from the intermediate state rather than pure noise, thereby focusing computation on the latter stages of the FM paths. We integrate SFM into multiple TTS models with a lightweight SFM head. Experiments demonstrate that SFM yields consistent gains in speech naturalness across both objective and subjective evaluations, and significantly accelerates inference when using adaptive-step ODE solvers. Demo and codes are available at https://ydqmkkx.github.io/SFMDemo/.
comment: Accepted by NeurIPS 2025
♻ ☆ SPLite Hand: Sparsity-Aware Lightweight 3D Hand Pose Estimation
With the increasing ubiquity of AR/VR devices, the deployment of deep learning models on edge devices has become a critical challenge. These devices require real-time inference, low power consumption, and minimal latency. Many framework designers face the conundrum of balancing efficiency and performance. We design a light framework that adopts an encoder-decoder architecture and introduces several key contributions aimed at improving both efficiency and accuracy. We apply sparse convolution on a ResNet-18 backbone to exploit the inherent sparsity in hand pose images, achieving a 42% end-to-end efficiency improvement. Moreover, we propose our SPLite decoder. This new architecture significantly boosts the decoding process's frame rate by 3.1x on the Raspberry Pi 5, while maintaining accuracy on par. To further optimize performance, we apply quantization-aware training, reducing memory usage while preserving accuracy (PA-MPJPE increases only marginally from 9.0 mm to 9.1 mm on FreiHAND). Overall, our system achieves a 2.98x speed-up on a Raspberry Pi 5 CPU (BCM2712 quad-core Arm A76 processor). Our method is also evaluated on compound benchmark datasets, demonstrating comparable accuracy to state-of-the-art approaches while significantly enhancing computational efficiency.
comment: Accepted to AICCC 2025
♻ ☆ UMoE: Unifying Attention and FFN with Shared Experts NeurIPS 2025
Sparse Mixture of Experts (MoE) architectures have emerged as a promising approach for scaling Transformer models. While initial works primarily incorporated MoE into feed-forward network (FFN) layers, recent studies have explored extending the MoE paradigm to attention layers to enhance model performance. However, existing attention-based MoE layers require specialized implementations and demonstrate suboptimal performance compared to their FFN-based counterparts. In this paper, we aim to unify MoE designs in attention and FFN layers by introducing a novel reformulation of the attention mechanism, that reveals an underlying FFN-like structure within attention modules. Our proposed architecture, UMoE, achieves superior performance through attention-based MoE layers while enabling efficient parameter sharing between FFN and attention components.
comment: NeurIPS 2025 Spotlight
♻ ☆ Timely Clinical Diagnosis through Active Test Selection
There is growing interest in using machine learning (ML) to support clinical diag- nosis, but most approaches rely on static, fully observed datasets and fail to reflect the sequential, resource-aware reasoning clinicians use in practice. Diagnosis remains complex and error prone, especially in high-pressure or resource-limited settings, underscoring the need for frameworks that help clinicians make timely and cost-effective decisions. We propose ACTMED (Adaptive Clinical Test selection via Model-based Experimental Design), a diagnostic framework that integrates Bayesian Experimental Design (BED) with large language models (LLMs) to better emulate real-world diagnostic reasoning. At each step, ACTMED selects the test expected to yield the greatest reduction in diagnostic uncertainty for a given patient. LLMs act as flexible simulators, generating plausible patient state distributions and supporting belief updates without requiring structured, task-specific training data. Clinicians can remain in the loop; reviewing test suggestions, interpreting intermediate outputs, and applying clinical judgment throughout. We evaluate ACTMED on real-world datasets and show it can optimize test selection to improve diagnostic accuracy, interpretability, and resource use. This represents a step to- ward transparent, adaptive, and clinician-aligned diagnostic systems that generalize across settings with reduced reliance on domain-specific data.
comment: None
♻ ☆ Bi-Mamba: Towards Accurate 1-Bit State Space Models
The typical Selective State-Space Model (SSM) used in Mamba addresses several limitations of Transformers, such as the quadratic computational complexity with respect to sequence length and the significant memory requirements during inference due to the key-value (KV) cache. However, the increasing size of Mamba models continues to pose challenges for training and deployment, particularly due to their substantial computational demands during both training and inference. In this work, we introduce $\texttt{Bi-Mamba}$, a scalable and powerful 1-bit Mamba architecture designed to enable more efficient large language models (LLMs), with model sizes of 780M, 1.3B, and 2.7B parameters. $\texttt{Bi-Mamba}$ models are trained from scratch on a standard LLM-scale dataset using an autoregressive distillation loss. Extensive experiments on language modeling benchmarks demonstrate that $\texttt{Bi-Mamba}$ achieves performance comparable to its full-precision (FP16 or BF16) counterparts, while outperforming post-training binarization (PTB) Mamba and binarization-aware training (BAT) Transformer baselines. Moreover, $\texttt{Bi-Mamba}$ drastically reduces memory usage and computational cost compared to the original Mamba. Our work pioneers a new line of linear-complexity LLMs under low-bit representation and provides the way for the design of specialized hardware optimized for efficient 1-bit Mamba-based models. Code and the pre-trained weights are available at https://github.com/Tangshengku/Bi-Mamba.
comment: Accepted in TMLR 2025
♻ ☆ Local Guidance for Configuration-Based Multi-Agent Pathfinding
Guidance is an emerging concept that improves the empirical performance of real-time, sub-optimal multi-agent pathfinding (MAPF) methods. It offers additional information to MAPF algorithms to mitigate congestion on a global scale by considering the collective behavior of all agents across the entire workspace. This global perspective helps reduce agents' waiting times, thereby improving overall coordination efficiency. In contrast, this study explores an alternative approach: providing local guidance in the vicinity of each agent. While such localized methods involve recomputation as agents move and may appear computationally demanding, we empirically demonstrate that supplying informative spatiotemporal cues to the planner can significantly improve solution quality without exceeding a moderate time budget. When applied to LaCAM, a leading configuration-based solver, this form of guidance establishes a new performance frontier for MAPF.
comment: 10 pages
♻ ☆ GUIDE: Enhancing Gradient Inversion Attacks in Federated Learning with Denoising Models
Federated Learning (FL) enables collaborative training of Machine Learning (ML) models across multiple clients while preserving their privacy. Rather than sharing raw data, federated clients transmit locally computed updates to train the global model. Although this paradigm should provide stronger privacy guarantees than centralized ML, client updates remain vulnerable to privacy leakage. Adversaries can exploit them to infer sensitive properties about the training data or even to reconstruct the original inputs via Gradient Inversion Attacks (GIAs). Under the honest-butcurious threat model, GIAs attempt to reconstruct training data by reversing intermediate updates using optimizationbased techniques. We observe that these approaches usually reconstruct noisy approximations of the original inputs, whose quality can be enhanced with specialized denoising models. This paper presents Gradient Update Inversion with DEnoising (GUIDE), a novel methodology that leverages diffusion models as denoising tools to improve image reconstruction attacks in FL. GUIDE can be integrated into any GIAs that exploits surrogate datasets, a widely adopted assumption in GIAs literature. We comprehensively evaluate our approach in two attack scenarios that use different FL algorithms, models, and datasets. Our results demonstrate that GUIDE integrates seamlessly with two state-ofthe- art GIAs, substantially improving reconstruction quality across multiple metrics. Specifically, GUIDE achieves up to 46% higher perceptual similarity, as measured by the DreamSim metric.
comment: This work has been submitted to the IEEE for possible publication
♻ ☆ Diagnosing Representation Dynamics in NER Model Extension
Extending Named Entity Recognition (NER) models to new PII entities in noisy spoken-language data is a common need. We find that jointly fine-tuning a BERT model on standard semantic entities (PER, LOC, ORG) and new pattern-based PII (EMAIL, PHONE) results in minimal degradation for original classes. We investigate this "peaceful coexistence," hypothesizing that the model uses independent semantic vs. morphological feature mechanisms. Using an incremental learning setup as a diagnostic tool, we measure semantic drift and find two key insights. First, the LOC (location) entity is uniquely vulnerable due to a representation overlap with new PII, as it shares pattern-like features (e.g., postal codes). Second, we identify a "reverse O-tag representation drift." The model, initially trained to map PII patterns to 'O', blocks new learning. This is resolved only by unfreezing the 'O' tag's classifier, allowing the background class to adapt and "release" these patterns. This work provides a mechanistic diagnosis of NER model adaptation, highlighting feature independence, representation overlap, and 'O' tag plasticity. Work done based on data gathered by https://www.papernest.com
♻ ☆ S$^2$-Diffusion: Generalizing from Instance-level to Category-level Skills in Robot Manipulation
Recent advances in skill learning has propelled robot manipulation to new heights by enabling it to learn complex manipulation tasks from a practical number of demonstrations. However, these skills are often limited to the particular action, object, and environment \textit{instances} that are shown in the training data, and have trouble transferring to other instances of the same category. In this work we present an open-vocabulary Spatial-Semantic Diffusion policy (S$^2$-Diffusion) which enables generalization from instance-level training data to category-level, enabling skills to be transferable between instances of the same category. We show that functional aspects of skills can be captured via a promptable semantic module combined with a spatial representation. We further propose leveraging depth estimation networks to allow the use of only a single RGB camera. Our approach is evaluated and compared on a diverse number of robot manipulation tasks, both in simulation and in the real world. Our results show that S$^2$-Diffusion is invariant to changes in category-irrelevant factors as well as enables satisfying performance on other instances within the same category, even if it was not trained on that specific instance. Project website: https://s2-diffusion.github.io.
♻ ☆ A Survey on Cache Methods in Diffusion Models: Toward Efficient Multi-Modal Generation
Diffusion Models have become a cornerstone of modern generative AI for their exceptional generation quality and controllability. However, their inherent \textit{multi-step iterations} and \textit{complex backbone networks} lead to prohibitive computational overhead and generation latency, forming a major bottleneck for real-time applications. Although existing acceleration techniques have made progress, they still face challenges such as limited applicability, high training costs, or quality degradation. Against this backdrop, \textbf{Diffusion Caching} offers a promising training-free, architecture-agnostic, and efficient inference paradigm. Its core mechanism identifies and reuses intrinsic computational redundancies in the diffusion process. By enabling feature-level cross-step reuse and inter-layer scheduling, it reduces computation without modifying model parameters. This paper systematically reviews the theoretical foundations and evolution of Diffusion Caching and proposes a unified framework for its classification and analysis. Through comparative analysis of representative methods, we show that Diffusion Caching evolves from \textit{static reuse} to \textit{dynamic prediction}. This trend enhances caching flexibility across diverse tasks and enables integration with other acceleration techniques such as sampling optimization and model distillation, paving the way for a unified, efficient inference framework for future multimodal and interactive applications. We argue that this paradigm will become a key enabler of real-time and efficient generative AI, injecting new vitality into both theory and practice of \textit{Efficient Generative Intelligence}.
comment: 22 pages,2 figures
♻ ☆ Addressing Pitfalls in the Evaluation of Uncertainty Estimation Methods for Natural Language Generation
Hallucinations are a common issue that undermine the reliability of large language models (LLMs). Recent studies have identified a specific subset of hallucinations, known as confabulations, which arise due to predictive uncertainty of LLMs. To detect confabulations, various methods for estimating predictive uncertainty in natural language generation (NLG) have been developed. These methods are typically evaluated by correlating uncertainty estimates with the correctness of generated text, with question-answering (QA) datasets serving as the standard benchmark. However, commonly used approximate correctness functions have substantial disagreement between each other and, consequently, in the ranking of the uncertainty estimation methods. This allows one to inflate the apparent performance of uncertainty estimation methods. We propose using several alternative risk indicators for risk correlation experiments that improve robustness of empirical assessment of UE algorithms for NLG. For QA tasks, we show that marginalizing over multiple LLM-as-a-judge variants leads to reducing the evaluation biases. Furthermore, we explore structured tasks as well as out of distribution and perturbation detection tasks which provide robust and controllable risk indicators. Finally, we propose to use an Elo rating of uncertainty estimation methods to give an objective summarization over extensive evaluation settings.
comment: Preprint, under review
♻ ☆ Quantization-Aware Neuromorphic Architecture for Efficient Skin Disease Classification on Resource-Constrained Devices
Accurate and efficient skin lesion classification on edge devices is critical for accessible dermatological care but remains challenging due to computational, energy, and privacy constraints. We introduce QANA, a novel quantization-aware neuromorphic architecture for incremental skin lesion classification on resource-limited hardware. QANA effectively integrates ghost modules, efficient channel attention, and squeeze-and-excitation blocks for robust feature representation with low-latency and energy-efficient inference. Its quantization-aware head and spike-compatible transformations enable seamless conversion to spiking neural networks (SNNs) and deployment on neuromorphic platforms. Evaluation on the large-scale HAM10000 benchmark and a real-world clinical dataset shows that QANA achieves 91.6% Top-1 accuracy and 82.4% macro F1 on HAM10000, and 90.8%/81.7% on the clinical dataset, significantly outperforming state-of-the-art CNN-to-SNN models under fair comparison. Deployed on BrainChip Akida hardware, QANA achieves 1.5 ms inference latency and 1.7,mJ energy per image, reducing inference latency and energy use by over 94.6%/98.6% compared to GPU-based CNNs surpassing state-of-the-art CNN-to-SNN conversion baselines. These results demonstrate the effectiveness of QANA for accurate, real-time, and privacy-sensitive medical analysis in edge environments.
♻ ☆ Your Pre-trained LLM is Secretly an Unsupervised Confidence Calibrator
Post-training of large language models is essential for adapting pre-trained language models (PLMs) to align with human preferences and downstream tasks. While PLMs typically exhibit well-calibrated confidence, post-trained language models (PoLMs) often suffer from over-confidence, assigning high confidence to both correct and incorrect outputs, which can undermine reliability in critical applications. A major obstacle in calibrating PoLMs is the scarcity of labeled data for individual downstream tasks. To address this, we propose Disagreement-Aware Confidence Alignment (DACA), a novel unsupervised method to optimize the parameters (e.g., temperature $\tau$) in post-hoc confidence calibration. Our method is motivated by the under-confidence issue caused by prediction disagreement between the PLM and PoLM while aligning their confidence via temperature scaling. Theoretically, the PLM's confidence underestimates PoLM's prediction accuracy on disagreement examples, causing a larger $\tau$ and producing under-confident predictions. DACA mitigates this by selectively using only agreement examples for calibration, effectively decoupling the influence of disagreement. In this manner, our method avoids an overly large $\tau$ in temperature scaling caused by disagreement examples, improving calibration performance. Extensive experiments demonstrate the effectiveness of our method, improving the average ECE of open-sourced and API-based LLMs (e.g. GPT-4o) by up to 15.08$\%$ on common benchmarks.
♻ ☆ Leveraging Analytic Gradients in Provably Safe Reinforcement Learning
The deployment of autonomous robots in safety-critical applications requires safety guarantees. Provably safe reinforcement learning is an active field of research that aims to provide such guarantees using safeguards. These safeguards should be integrated during training to reduce the sim-to-real gap. While there are several approaches for safeguarding sampling-based reinforcement learning, analytic gradient-based reinforcement learning often achieves superior performance from fewer environment interactions. However, there is no safeguarding approach for this learning paradigm yet. Our work addresses this gap by developing the first effective safeguard for analytic gradient-based reinforcement learning. We analyse existing, differentiable safeguards, adapt them through modified mappings and gradient formulations, and integrate them into a state-of-the-art learning algorithm and a differentiable simulation. Using numerical experiments on three control tasks, we evaluate how different safeguards affect learning. The results demonstrate safeguarded training without compromising performance. Additional visuals are provided at \href{https://timwalter.github.io/safe-agb-rl.github.io}{timwalter.github.io/safe-agb-rl.github.io}.
comment: 21 pages, 10 figures
Machine Learning
☆ Towards General Modality Translation with Contrastive and Predictive Latent Diffusion Bridge
Recent advances in generative modeling have positioned diffusion models as state-of-the-art tools for sampling from complex data distributions. While these models have shown remarkable success across single-modality domains such as images and audio, extending their capabilities to Modality Translation (MT), translating information across different sensory modalities, remains an open challenge. Existing approaches often rely on restrictive assumptions, including shared dimensionality, Gaussian source priors, and modality-specific architectures, which limit their generality and theoretical grounding. In this work, we propose the Latent Denoising Diffusion Bridge Model (LDDBM), a general-purpose framework for modality translation based on a latent-variable extension of Denoising Diffusion Bridge Models. By operating in a shared latent space, our method learns a bridge between arbitrary modalities without requiring aligned dimensions. We introduce a contrastive alignment loss to enforce semantic consistency between paired samples and design a domain-agnostic encoder-decoder architecture tailored for noise prediction in latent space. Additionally, we propose a predictive loss to guide training toward accurate cross-domain translation and explore several training strategies to improve stability. Our approach supports arbitrary modality pairs and performs strongly on diverse MT tasks, including multi-view to 3D shape generation, image super-resolution, and multi-view scene synthesis. Comprehensive experiments and ablations validate the effectiveness of our framework, establishing a new strong baseline in general modality translation. For more information, see our project page: https://sites.google.com/view/lddbm/home.
☆ VAMOS: A Hierarchical Vision-Language-Action Model for Capability-Modulated and Steerable Navigation
A fundamental challenge in robot navigation lies in learning policies that generalize across diverse environments while conforming to the unique physical constraints and capabilities of a specific embodiment (e.g., quadrupeds can walk up stairs, but rovers cannot). We propose VAMOS, a hierarchical VLA that decouples semantic planning from embodiment grounding: a generalist planner learns from diverse, open-world data, while a specialist affordance model learns the robot's physical constraints and capabilities in safe, low-cost simulation. We enabled this separation by carefully designing an interface that lets a high-level planner propose candidate paths directly in image space that the affordance model then evaluates and re-ranks. Our real-world experiments show that VAMOS achieves higher success rates in both indoor and complex outdoor navigation than state-of-the-art model-based and end-to-end learning methods. We also show that our hierarchical design enables cross-embodied navigation across legged and wheeled robots and is easily steerable using natural language. Real-world ablations confirm that the specialist model is key to embodiment grounding, enabling a single high-level planner to be deployed across physically distinct wheeled and legged robots. Finally, this model significantly enhances single-robot reliability, achieving 3X higher success rates by rejecting physically infeasible plans. Website: https://vamos-vla.github.io/
☆ KL-Regularized Reinforcement Learning is Designed to Mode Collapse
It is commonly believed that optimizing the reverse KL divergence results in "mode seeking", while optimizing forward KL results in "mass covering", with the latter being preferred if the goal is to sample from multiple diverse modes. We show -- mathematically and empirically -- that this intuition does not necessarily transfer well to doing reinforcement learning with reverse/forward KL regularization (e.g. as commonly used with language models). Instead, the choice of reverse/forward KL determines the family of optimal target distributions, parameterized by the regularization coefficient. Mode coverage depends primarily on other factors, such as regularization strength, and relative scales between rewards and reference probabilities. Further, we show commonly used settings such as low regularization strength and equal verifiable rewards tend to specify unimodal target distributions, meaning the optimization objective is, by construction, non-diverse. We leverage these insights to construct a simple, scalable, and theoretically justified algorithm. It makes minimal changes to reward magnitudes, yet optimizes for a target distribution which puts high probability over all high-quality sampling modes. In experiments, this simple modification works to post-train both Large Language Models and Chemical Language Models to have higher solution quality and diversity, without any external signals of diversity, and works with both forward and reverse KL when using either naively fails.
☆ On the Detectability of LLM-Generated Text: What Exactly Is LLM-Generated Text?
With the widespread use of large language models (LLMs), many researchers have turned their attention to detecting text generated by them. However, there is no consistent or precise definition of their target, namely "LLM-generated text". Differences in usage scenarios and the diversity of LLMs further increase the difficulty of detection. What is commonly regarded as the detecting target usually represents only a subset of the text that LLMs can potentially produce. Human edits to LLM outputs, together with the subtle influences that LLMs exert on their users, are blurring the line between LLM-generated and human-written text. Existing benchmarks and evaluation approaches do not adequately address the various conditions in real-world detector applications. Hence, the numerical results of detectors are often misunderstood, and their significance is diminishing. Therefore, detectors remain useful under specific conditions, but their results should be interpreted only as references rather than decisive indicators.
☆ Real Deep Research for AI, Robotics and Beyond
With the rapid growth of research in AI and robotics now producing over 10,000 papers annually it has become increasingly difficult for researchers to stay up to date. Fast evolving trends, the rise of interdisciplinary work, and the need to explore domains beyond one's expertise all contribute to this challenge. To address these issues, we propose a generalizable pipeline capable of systematically analyzing any research area: identifying emerging trends, uncovering cross domain opportunities, and offering concrete starting points for new inquiry. In this work, we present Real Deep Research (RDR) a comprehensive framework applied to the domains of AI and robotics, with a particular focus on foundation models and robotics advancements. We also briefly extend our analysis to other areas of science. The main paper details the construction of the RDR pipeline, while the appendix provides extensive results across each analyzed topic. We hope this work sheds light for researchers working in the field of AI and beyond.
comment: website: https://realdeepresearch.github.io
☆ The Reality Gap in Robotics: Challenges, Solutions, and Best Practices
Machine learning has facilitated significant advancements across various robotics domains, including navigation, locomotion, and manipulation. Many such achievements have been driven by the extensive use of simulation as a critical tool for training and testing robotic systems prior to their deployment in real-world environments. However, simulations consist of abstractions and approximations that inevitably introduce discrepancies between simulated and real environments, known as the reality gap. These discrepancies significantly hinder the successful transfer of systems from simulation to the real world. Closing this gap remains one of the most pressing challenges in robotics. Recent advances in sim-to-real transfer have demonstrated promising results across various platforms, including locomotion, navigation, and manipulation. By leveraging techniques such as domain randomization, real-to-sim transfer, state and action abstractions, and sim-real co-training, many works have overcome the reality gap. However, challenges persist, and a deeper understanding of the reality gap's root causes and solutions is necessary. In this survey, we present a comprehensive overview of the sim-to-real landscape, highlighting the causes, solutions, and evaluation metrics for the reality gap and sim-to-real transfer.
comment: Accepted for Publication as part of the Annual Review of Control, Robotics, and Autonomous Systems 2026
☆ Video Prediction of Dynamic Physical Simulations With Pixel-Space Spatiotemporal Transformers
Inspired by the performance and scalability of autoregressive large language models (LLMs), transformer-based models have seen recent success in the visual domain. This study investigates a transformer adaptation for video prediction with a simple end-to-end approach, comparing various spatiotemporal self-attention layouts. Focusing on causal modeling of physical simulations over time; a common shortcoming of existing video-generative approaches, we attempt to isolate spatiotemporal reasoning via physical object tracking metrics and unsupervised training on physical simulation datasets. We introduce a simple yet effective pure transformer model for autoregressive video prediction, utilizing continuous pixel-space representations for video prediction. Without the need for complex training strategies or latent feature-learning components, our approach significantly extends the time horizon for physically accurate predictions by up to 50% when compared with existing latent-space approaches, while maintaining comparable performance on common video quality metrics. In addition, we conduct interpretability experiments to identify network regions that encode information useful to perform accurate estimations of PDE simulation parameters via probing models, and find that this generalizes to the estimation of out-of-distribution simulation parameters. This work serves as a platform for further attention-based spatiotemporal modeling of videos via a simple, parameter efficient, and interpretable approach.
comment: 14 pages, 14 figures
☆ Compress to Impress: Efficient LLM Adaptation Using a Single Gradient Step on 100 Samples
Recently, Sharma et al. suggested a method called Layer-SElective-Rank reduction (LASER) which demonstrated that pruning high-order components of carefully chosen LLM's weight matrices can boost downstream accuracy -- without any gradient-based fine-tuning. Yet LASER's exhaustive, per-matrix search (each requiring full-dataset forward passes) makes it impractical for rapid deployment. We demonstrate that this overhead can be removed and find that: (i) Only a small, carefully chosen subset of matrices needs to be inspected -- eliminating the layer-by-layer sweep, (ii) The gradient of each matrix's singular values pinpoints which matrices merit reduction, (iii) Increasing the factorization search space by allowing matrices rows to cluster around multiple subspaces and then decomposing each cluster separately further reduces overfitting on the original training data and further lifts accuracy by up to 24.6 percentage points, and finally, (iv) we discover that evaluating on just 100 samples rather than the full training data -- both for computing the indicative gradients and for measuring the final accuracy -- suffices to further reduce the search time; we explain that as adaptation to downstream tasks is dominated by prompting style, not dataset size. As a result, we show that combining these findings yields a fast and robust adaptation algorithm for downstream tasks. Overall, with a single gradient step on 100 examples and a quick scan of the top candidate layers and factorization techniques, we can adapt LLMs to new datasets -- entirely without fine-tuning.
☆ Simple Context Compression: Mean-Pooling and Multi-Ratio Training
A common strategy to reduce the computational costs of using long contexts in retrieval-augmented generation (RAG) with large language models (LLMs) is soft context compression, where the input sequence is transformed into a shorter continuous representation. We develop a lightweight and simple mean-pooling approach that consistently outperforms the widely used compression-tokens architecture, and study training the same compressor to output multiple compression ratios. We conduct extensive experiments across in-domain and out-of-domain QA datasets, as well as across model families, scales, and compression ratios. Overall, our simple mean-pooling approach achieves the strongest performance, with a relatively small drop when training for multiple compression ratios. More broadly though, across architectures and training regimes the trade-offs are more nuanced, illustrating the complex landscape of compression methods.
comment: Code available at https://github.com/lil-lab/simple-context-compression
☆ Bayesian Inference of Primordial Magnetic Field Parameters from CMB with Spherical Graph Neural Networks
Deep learning has emerged as a transformative methodology in modern cosmology, providing powerful tools to extract meaningful physical information from complex astronomical datasets. This paper implements a novel Bayesian graph deep learning framework for estimating key cosmological parameters in a primordial magnetic field (PMF) cosmology directly from simulated Cosmic Microwave Background (CMB) maps. Our methodology utilizes DeepSphere, a spherical convolutional neural network architecture specifically designed to respect the spherical geometry of CMB data through HEALPix pixelization. To advance beyond deterministic point estimates and enable robust uncertainty quantification, we integrate Bayesian Neural Networks (BNNs) into the framework, capturing aleatoric and epistemic uncertainties that reflect the model confidence in its predictions. The proposed approach demonstrates exceptional performance, achieving $R^{2}$ scores exceeding 0.89 for the magnetic parameter estimation. We further obtain well-calibrated uncertainty estimates through post-hoc training techniques including Variance Scaling and GPNormal. This integrated DeepSphere-BNNs framework not only delivers accurate parameter estimation from CMB maps with PMF contributions but also provides reliable uncertainty quantification, providing the necessary tools for robust cosmological inference in the era of precision cosmology.
comment: 16 pages, 6 figures, 4 tables
☆ BadGraph: A Backdoor Attack Against Latent Diffusion Model for Text-Guided Graph Generation
The rapid progress of graph generation has raised new security concerns, particularly regarding backdoor vulnerabilities. While prior work has explored backdoor attacks in image diffusion and unconditional graph generation, conditional, especially text-guided graph generation remains largely unexamined. This paper proposes BadGraph, a backdoor attack method targeting latent diffusion models for text-guided graph generation. BadGraph leverages textual triggers to poison training data, covertly implanting backdoors that induce attacker-specified subgraphs during inference when triggers appear, while preserving normal performance on clean inputs. Extensive experiments on four benchmark datasets (PubChem, ChEBI-20, PCDes, MoMu) demonstrate the effectiveness and stealth of the attack: less than 10% poisoning rate can achieves 50% attack success rate, while 24% suffices for over 80% success rate, with negligible performance degradation on benign samples. Ablation studies further reveal that the backdoor is implanted during VAE and diffusion training rather than pretraining. These findings reveal the security vulnerabilities in latent diffusion models of text-guided graph generation, highlight the serious risks in models' applications such as drug discovery and underscore the need for robust defenses against the backdoor attack in such diffusion models.
☆ Alleviating Forgetfulness of Linear Attention by Hybrid Sparse Attention and Contextualized Learnable Token Eviction
Linear-attention models that compress the entire input sequence into a fixed-size recurrent state offer an efficient alternative to Transformers, but their finite memory induces forgetfulness that harms retrieval-intensive tasks. To mitigate the issue, we explore a series of hybrid models that restore direct access to past tokens. We interleave token mixers with intermediate time and space complexity between linear and full attention, including sparse attention with token eviction, and the query-aware native sparse attention. Particularly, we propose a novel learnable token eviction approach. Combined with sliding-window attention, an end-to-end trainable lightweight CNN aggregates information from both past and future adjacent tokens to adaptively retain a limited set of critical KV-pairs per head, maintaining linear attention's constant time and space complexity. Efficient Triton kernels for the sparse attention mechanisms are provided. Empirical evaluations on retrieval-intensive benchmarks support the effectiveness of our approaches.
comment: 19 pages, 5 figures
☆ A Coherence-Based Measure of AGI
Recent work by \citet{hendrycks2025agidefinition} formalized \textit{Artificial General Intelligence} (AGI) as the arithmetic mean of proficiencies across cognitive domains derived from the Cattell--Horn--Carroll (CHC) model of human cognition. While elegant, this definition assumes \textit{compensability} -- that exceptional ability in some domains can offset failure in others. True general intelligence, however, should reflect \textit{coherent sufficiency}: balanced competence across all essential domains. We propose a coherence-aware measure of AGI based on the integral of generalized means over a continuum of compensability exponents. This formulation spans arithmetic, geometric, and harmonic regimes, and the resulting \textit{area under the curve} (AUC) quantifies robustness under varying compensability assumptions. Unlike the arithmetic mean, which rewards specialization, the AUC penalizes imbalance and captures inter-domain dependency. Applied to published CHC-based domain scores for GPT-4 and GPT-5, the coherence-adjusted AUC reveals that both systems remain far from general competence despite high arithmetic scores (e.g., GPT-5 at~24\%). Integrating the generalized mean thus yields a principled, interpretable, and stricter foundation for measuring genuine progress toward AGI.
comment: 13 pages, 1 figure, 12 tables
☆ Out-of-distribution Tests Reveal Compositionality in Chess Transformers
Chess is a canonical example of a task that requires rigorous reasoning and long-term planning. Modern decision Transformers - trained similarly to LLMs - are able to learn competent gameplay, but it is unclear to what extent they truly capture the rules of chess. To investigate this, we train a 270M parameter chess Transformer and test it on out-of-distribution scenarios, designed to reveal failures of systematic generalization. Our analysis shows that Transformers exhibit compositional generalization, as evidenced by strong rule extrapolation: they adhere to fundamental syntactic rules of the game by consistently choosing valid moves even in situations very different from the training data. Moreover, they also generate high-quality moves for OOD puzzles. In a more challenging test, we evaluate the models on variants including Chess960 (Fischer Random Chess) - a variant of chess where starting positions of pieces are randomized. We found that while the model exhibits basic strategy adaptation, they are inferior to symbolic AI algorithms that perform explicit search, but gap is smaller when playing against users on Lichess. Moreover, the training dynamics revealed that the model initially learns to move only its own pieces, suggesting an emergent compositional understanding of the game.
☆ AlphaFlow: Understanding and Improving MeanFlow Models
MeanFlow has recently emerged as a powerful framework for few-step generative modeling trained from scratch, but its success is not yet fully understood. In this work, we show that the MeanFlow objective naturally decomposes into two parts: trajectory flow matching and trajectory consistency. Through gradient analysis, we find that these terms are strongly negatively correlated, causing optimization conflict and slow convergence. Motivated by these insights, we introduce $\alpha$-Flow, a broad family of objectives that unifies trajectory flow matching, Shortcut Model, and MeanFlow under one formulation. By adopting a curriculum strategy that smoothly anneals from trajectory flow matching to MeanFlow, $\alpha$-Flow disentangles the conflicting objectives, and achieves better convergence. When trained from scratch on class-conditional ImageNet-1K 256x256 with vanilla DiT backbones, $\alpha$-Flow consistently outperforms MeanFlow across scales and settings. Our largest $\alpha$-Flow-XL/2+ model achieves new state-of-the-art results using vanilla DiT backbones, with FID scores of 2.58 (1-NFE) and 2.15 (2-NFE).
☆ CSU-PCAST: A Dual-Branch Transformer Framework for medium-range ensemble Precipitation Forecasting
Accurate medium-range precipitation forecasting is crucial for hydrometeorological risk management and disaster mitigation, yet remains challenging for current numerical weather prediction (NWP) systems. Traditional ensemble systems such as the Global Ensemble Forecast System (GEFS) struggle to maintain high skill, especially for moderate and heavy rainfall at extended lead times. This study develops a deep learning-based ensemble framework for multi-step precipitation prediction through joint modeling of a comprehensive set of atmospheric variables. The model is trained on ERA5 reanalysis data at 0.25$^{\circ}$ spatial resolution, with precipitation labels from NASA's Integrated Multi-satellite Retrievals for Global Precipitation Measurement (GPM) constellation (IMERG), incorporating 57 input variables, including upper-air and surface predictors. The architecture employs a patch-based Swin Transformer backbone with periodic convolutions to handle longitudinal continuity and integrates time and noise embeddings through conditional layer normalization. A dual-branch decoder predicts total precipitation and other variables, with targeted freezing of encoder-decoder pathways for specialized training. Training minimizes a hybrid loss combining the Continuous Ranked Probability Score (CRPS) and weighted log1p mean squared error (log1pMSE), balancing probabilistic accuracy and magnitude fidelity. During inference, the model ingests real-time Global Forecast System (GFS) initial conditions to generate 15-day forecasts autoregressively. Evaluation against GEFS using IMERG data demonstrates higher Critical Success Index (CSI) scores at precipitation thresholds of 0.1 mm, 1 mm, 10 mm, and 20 mm, highlighting improved performance for moderate to heavy rainfall.
comment: 20 pages, 12 figures, submitted to arXiv under Atmospheric and Oceanic Physics (physics.ao-ph) and Machine Learning (cs.LG)
☆ MEIcoder: Decoding Visual Stimuli from Neural Activity by Leveraging Most Exciting Inputs NeurIPS 2025
Decoding visual stimuli from neural population activity is crucial for understanding the brain and for applications in brain-machine interfaces. However, such biological data is often scarce, particularly in primates or humans, where high-throughput recording techniques, such as two-photon imaging, remain challenging or impossible to apply. This, in turn, poses a challenge for deep learning decoding techniques. To overcome this, we introduce MEIcoder, a biologically informed decoding method that leverages neuron-specific most exciting inputs (MEIs), a structural similarity index measure loss, and adversarial training. MEIcoder achieves state-of-the-art performance in reconstructing visual stimuli from single-cell activity in primary visual cortex (V1), especially excelling on small datasets with fewer recorded neurons. Using ablation studies, we demonstrate that MEIs are the main drivers of the performance, and in scaling experiments, we show that MEIcoder can reconstruct high-fidelity natural-looking images from as few as 1,000-2,500 neurons and less than 1,000 training data points. We also propose a unified benchmark with over 160,000 samples to foster future research. Our results demonstrate the feasibility of reliable decoding in early visual system and provide practical insights for neuroscience and neuroengineering applications.
comment: Accepted to NeurIPS 2025
☆ Reinforcement Learning and Consumption-Savings Behavior
This paper demonstrates how reinforcement learning can explain two puzzling empirical patterns in household consumption behavior during economic downturns. I develop a model where agents use Q-learning with neural network approximation to make consumption-savings decisions under income uncertainty, departing from standard rational expectations assumptions. The model replicates two key findings from recent literature: (1) unemployed households with previously low liquid assets exhibit substantially higher marginal propensities to consume (MPCs) out of stimulus transfers compared to high-asset households (0.50 vs 0.34), even when neither group faces borrowing constraints, consistent with Ganong et al. (2024); and (2) households with more past unemployment experiences maintain persistently lower consumption levels after controlling for current economic conditions, a "scarring" effect documented by Malmendier and Shen (2024). Unlike existing explanations based on belief updating about income risk or ex-ante heterogeneity, the reinforcement learning mechanism generates both higher MPCs and lower consumption levels simultaneously through value function approximation errors that evolve with experience. Simulation results closely match the empirical estimates, suggesting that adaptive learning through reinforcement learning provides a unifying framework for understanding how past experiences shape current consumption behavior beyond what current economic conditions would predict.
comment: 41 pages, 10 figures
☆ Learning to Triage Taint Flows Reported by Dynamic Program Analysis in Node.js Packages
Program analysis tools often produce large volumes of candidate vulnerability reports that require costly manual review, creating a practical challenge: how can security analysts prioritize the reports most likely to be true vulnerabilities? This paper investigates whether machine learning can be applied to prioritizing vulnerabilities reported by program analysis tools. We focus on Node.js packages and collect a benchmark of 1,883 Node.js packages, each containing one reported ACE or ACI vulnerability. We evaluate a variety of machine learning approaches, including classical models, graph neural networks (GNNs), large language models (LLMs), and hybrid models that combine GNN and LLMs, trained on data based on a dynamic program analysis tool's output. The top LLM achieves $F_{1} {=} 0.915$, while the best GNN and classical ML models reaching $F_{1} {=} 0.904$. At a less than 7% false-negative rate, the leading model eliminates 66.9% of benign packages from manual review, taking around 60 ms per package. If the best model is tuned to operate at a precision level of 0.8 (i.e., allowing 20% false positives amongst all warnings), our approach can detect 99.2% of exploitable taint flows while missing only 0.8%, demonstrating strong potential for real-world vulnerability triage.
☆ Amplifying Prominent Representations in Multimodal Learning via Variational Dirichlet Process
Developing effective multimodal fusion approaches has become increasingly essential in many real-world scenarios, such as health care and finance. The key challenge is how to preserve the feature expressiveness in each modality while learning cross-modal interactions. Previous approaches primarily focus on the cross-modal alignment, while over-emphasis on the alignment of marginal distributions of modalities may impose excess regularization and obstruct meaningful representations within each modality. The Dirichlet process (DP) mixture model is a powerful Bayesian non-parametric method that can amplify the most prominent features by its richer-gets-richer property, which allocates increasing weights to them. Inspired by this unique characteristic of DP, we propose a new DP-driven multimodal learning framework that automatically achieves an optimal balance between prominent intra-modal representation learning and cross-modal alignment. Specifically, we assume that each modality follows a mixture of multivariate Gaussian distributions and further adopt DP to calculate the mixture weights for all the components. This paradigm allows DP to dynamically allocate the contributions of features and select the most prominent ones, leveraging its richer-gets-richer property, thus facilitating multimodal feature fusion. Extensive experiments on several multimodal datasets demonstrate the superior performance of our model over other competitors. Ablation analysis further validates the effectiveness of DP in aligning modality distributions and its robustness to changes in key hyperparameters. Code is anonymously available at https://github.com/HKU-MedAI/DPMM.git
comment: Accepted by NeruIPS 2025
☆ Thought Communication in Multiagent Collaboration NeurIPS 2025
Natural language has long enabled human cooperation, but its lossy, ambiguous, and indirect nature limits the potential of collective intelligence. While machines are not subject to these constraints, most LLM-based multi-agent systems still rely solely on natural language, exchanging tokens or their embeddings. To go beyond language, we introduce a new paradigm, thought communication, which enables agents to interact directly mind-to-mind, akin to telepathy. To uncover these latent thoughts in a principled way, we formalize the process as a general latent variable model, where agent states are generated by an unknown function of underlying thoughts. We prove that, in a nonparametric setting without auxiliary information, both shared and private latent thoughts between any pair of agents can be identified. Moreover, the global structure of thought sharing, including which agents share which thoughts and how these relationships are structured, can also be recovered with theoretical guarantees. Guided by the established theory, we develop a framework that extracts latent thoughts from all agents prior to communication and assigns each agent the relevant thoughts, along with their sharing patterns. This paradigm naturally extends beyond LLMs to all modalities, as most observational data arise from hidden generative processes. Experiments on both synthetic and real-world benchmarks validate the theory and demonstrate the collaborative advantages of thought communication. We hope this work illuminates the potential of leveraging the hidden world, as many challenges remain unsolvable through surface-level observation alone, regardless of compute or data scale.
comment: NeurIPS 2025 Spotlight
☆ No-Regret Thompson Sampling for Finite-Horizon Markov Decision Processes with Gaussian Processes NeurIPS
Thompson sampling (TS) is a powerful and widely used strategy for sequential decision-making, with applications ranging from Bayesian optimization to reinforcement learning (RL). Despite its success, the theoretical foundations of TS remain limited, particularly in settings with complex temporal structure such as RL. We address this gap by establishing no-regret guarantees for TS using models with Gaussian marginal distributions. Specifically, we consider TS in episodic RL with joint Gaussian process (GP) priors over rewards and transitions. We prove a regret bound of $\mathcal{\tilde{O}}(\sqrt{KH\Gamma(KH)})$ over $K$ episodes of horizon $H$, where $\Gamma(\cdot)$ captures the complexity of the GP model. Our analysis addresses several challenges, including the non-Gaussian nature of value functions and the recursive structure of Bellman updates, and extends classical tools such as the elliptical potential lemma to multi-output settings. This work advances the understanding of TS in RL and highlights how structural assumptions and model uncertainty shape its performance in finite-horizon Markov Decision Processes.
comment: Appearing in NeurIPS, 2025
☆ Unsupervised Anomaly Prediction with N-BEATS and Graph Neural Network in Multi-variate Semiconductor Process Time Series
Semiconductor manufacturing is an extremely complex and precision-driven process, characterized by thousands of interdependent parameters collected across diverse tools and process steps. Multi-variate time-series analysis has emerged as a critical field for real-time monitoring and fault detection in such environments. However, anomaly prediction in semiconductor fabrication presents several critical challenges, including high dimensionality of sensor data and severe class imbalance due to the rarity of true faults. Furthermore, the complex interdependencies between variables complicate both anomaly prediction and root-cause-analysis. This paper proposes two novel approaches to advance the field from anomaly detection to anomaly prediction, an essential step toward enabling real-time process correction and proactive fault prevention. The proposed anomaly prediction framework contains two main stages: (a) training a forecasting model on a dataset assumed to contain no anomalies, and (b) performing forecast on unseen time series data. The forecast is compared with the forecast of the trained signal. Deviations beyond a predefined threshold are flagged as anomalies. The two approaches differ in the forecasting model employed. The first assumes independence between variables by utilizing the N-BEATS model for univariate time series forecasting. The second lifts this assumption by utilizing a Graph Neural Network (GNN) to capture inter-variable relationships. Both models demonstrate strong forecasting performance up to a horizon of 20 time points and maintain stable anomaly prediction up to 50 time points. The GNN consistently outperforms the N-BEATS model while requiring significantly fewer trainable parameters and lower computational cost. These results position the GNN as promising solution for online anomaly forecasting to be deployed in manufacturing environments.
comment: 17 pages, 27 figures
☆ Optimizing Clinical Fall Risk Prediction: A Data-Driven Integration of EHR Variables with the Johns Hopkins Fall Risk Assessment Tool
In this study we aim to better align fall risk prediction from the Johns Hopkins Fall Risk Assessment Tool (JHFRAT) with additional clinically meaningful measures via a data-driven modelling approach. We conducted a retrospective analysis of 54,209 inpatient admissions from three Johns Hopkins Health System hospitals between March 2022 and October 2023. A total of 20,208 admissions were included as high fall risk encounters, and 13,941 were included as low fall risk encounters. To incorporate clinical knowledge and maintain interpretability, we employed constrained score optimization (CSO) models on JHFRAT assessment data and additional electronic health record (EHR) variables. The model demonstrated significant improvements in predictive performance over the current JHFRAT (CSO AUC-ROC=0.91, JHFRAT AUC-ROC=0.86). The constrained score optimization models performed similarly with and without the EHR variables. Although the benchmark black-box model (XGBoost), improves upon the performance metrics of the knowledge-based constrained logistic regression (AUC-ROC=0.94), the CSO demonstrates more robustness to variations in risk labelling. This evidence-based approach provides a robust foundation for health systems to systematically enhance inpatient fall prevention protocols and patient safety using data-driven optimization techniques, contributing to improved risk assessment and resource allocation in healthcare settings.
comment: 19 pages, 7 figures, 4 tables
☆ Separating the what and how of compositional computation to enable reuse and continual learning
The ability to continually learn, retain and deploy skills to accomplish goals is a key feature of intelligent and efficient behavior. However, the neural mechanisms facilitating the continual learning and flexible (re-)composition of skills remain elusive. Here, we study continual learning and the compositional reuse of learned computations in recurrent neural network (RNN) models using a novel two-system approach: one system that infers what computation to perform, and one that implements how to perform it. We focus on a set of compositional cognitive tasks commonly studied in neuroscience. To construct the what system, we first show that a large family of tasks can be systematically described by a probabilistic generative model, where compositionality stems from a shared underlying vocabulary of discrete task epochs. The shared epoch structure makes these tasks inherently compositional. We first show that this compositionality can be systematically described by a probabilistic generative model. Furthermore, We develop an unsupervised online learning approach that can learn this model on a single-trial basis, building its vocabulary incrementally as it is exposed to new tasks, and inferring the latent epoch structure as a time-varying computational context within a trial. We implement the how system as an RNN whose low-rank components are composed according to the context inferred by the what system. Contextual inference facilitates the creation, learning, and reuse of low-rank RNN components as new tasks are introduced sequentially, enabling continual learning without catastrophic forgetting. Using an example task set, we demonstrate the efficacy and competitive performance of this two-system learning framework, its potential for forward and backward transfer, as well as fast compositional generalization to unseen tasks.
☆ Neural Diversity Regularizes Hallucinations in Small Models
Language models continue to hallucinate despite increases in parameters, compute, and data. We propose neural diversity -- decorrelated parallel representations -- as a principled mechanism that reduces hallucination rates at fixed parameter and data budgets. Inspired by portfolio theory, where uncorrelated assets reduce risk by $\sqrt{P}$, we prove hallucination probability is bounded by representational correlation: $P(H) \leq f(\sigma^2((1-\rho(P))/P + \rho(P)), \mu^2)$, which predicts that language models need an optimal amount of neurodiversity. To validate this, we introduce ND-LoRA (Neural Diversity Low-Rank Adaptation), combining parallel LoRA adapters with Barlow Twins regularization, and demonstrate that ND-LoRA reduces hallucinations by up to 25.6% (and 14.6% on average) without degrading general accuracy. Ablations show LoRA adapters and regularization act synergistically, causal interventions prove neurodiversity as the mediating factor and correlational analyses indicate scale: a 0.1% neural correlation increase is associated with a 3.8% hallucination increase. Finally, task-dependent optimality emerges: different tasks require different amounts of optimal neurodiversity. Together, our results highlight neural diversity as a third axis of scaling -- orthogonal to parameters and data -- to improve the reliability of language models at fixed budgets.
☆ A Scalable, Causal, and Energy Efficient Framework for Neural Decoding with Spiking Neural Networks
Brain-computer interfaces (BCIs) promise to enable vital functions, such as speech and prosthetic control, for individuals with neuromotor impairments. Central to their success are neural decoders, models that map neural activity to intended behavior. Current learning-based decoding approaches fall into two classes: simple, causal models that lack generalization, or complex, non-causal models that generalize and scale offline but struggle in real-time settings. Both face a common challenge, their reliance on power-hungry artificial neural network backbones, which makes integration into real-world, resource-limited systems difficult. Spiking neural networks (SNNs) offer a promising alternative. Because they operate causally these models are suitable for real-time use, and their low energy demands make them ideal for battery-constrained environments. To this end, we introduce Spikachu: a scalable, causal, and energy-efficient neural decoding framework based on SNNs. Our approach processes binned spikes directly by projecting them into a shared latent space, where spiking modules, adapted to the timing of the input, extract relevant features; these latent representations are then integrated and decoded to generate behavioral predictions. We evaluate our approach on 113 recording sessions from 6 non-human primates, totaling 43 hours of recordings. Our method outperforms causal baselines when trained on single sessions using between 2.26 and 418.81 times less energy. Furthermore, we demonstrate that scaling up training to multiple sessions and subjects improves performance and enables few-shot transfer to unseen sessions, subjects, and tasks. Overall, Spikachu introduces a scalable, online-compatible neural decoding framework based on SNNs, whose performance is competitive relative to state-of-the-art models while consuming orders of magnitude less energy.
☆ Efficient Multi-bit Quantization Network Training via Weight Bias Correction and Bit-wise Coreset Sampling
Multi-bit quantization networks enable flexible deployment of deep neural networks by supporting multiple precision levels within a single model. However, existing approaches suffer from significant training overhead as full-dataset updates are repeated for each supported bit-width, resulting in a cost that scales linearly with the number of precisions. Additionally, extra fine-tuning stages are often required to support additional or intermediate precision options, further compounding the overall training burden. To address this issue, we propose two techniques that greatly reduce the training overhead without compromising model utility: (i) Weight bias correction enables shared batch normalization and eliminates the need for fine-tuning by neutralizing quantization-induced bias across bit-widths and aligning activation distributions; and (ii) Bit-wise coreset sampling strategy allows each child model to train on a compact, informative subset selected via gradient-based importance scores by exploiting the implicit knowledge transfer phenomenon. Experiments on CIFAR-10/100, TinyImageNet, and ImageNet-1K with both ResNet and ViT architectures demonstrate that our method achieves competitive or superior accuracy while reducing training time up to 7.88x. Our code is released at https://github.com/a2jinhee/EMQNet_jk.
☆ GRACE: GRaph-based Addiction Care prEdiction
Determining the appropriate locus of care for addiction patients is one of the most critical clinical decisions that affects patient treatment outcomes and effective use of resources. With a lack of sufficient specialized treatment resources, such as inpatient beds or staff, there is an unmet need to develop an automated framework for the same. Current decision-making approaches suffer from severe class imbalances in addiction datasets. To address this limitation, we propose a novel graph neural network (GRACE) framework that formalizes locus of care prediction as a structured learning problem. Further, we perform extensive feature engineering and propose a new approach of obtaining an unbiased meta-graph to train a GNN to overcome the class imbalance problem. Experimental results in real-world data show an improvement of 11-35% in terms of the F1 score of the minority class over competitive baselines. The codes and note embeddings are available at https://anonymous.4open.science/r/GRACE-F8E1/.
☆ From Masks to Worlds: A Hitchhiker's Guide to World Models
This is not a typical survey of world models; it is a guide for those who want to build worlds. We do not aim to catalog every paper that has ever mentioned a ``world model". Instead, we follow one clear road: from early masked models that unified representation learning across modalities, to unified architectures that share a single paradigm, then to interactive generative models that close the action-perception loop, and finally to memory-augmented systems that sustain consistent worlds over time. We bypass loosely related branches to focus on the core: the generative heart, the interactive loop, and the memory system. We show that this is the most promising path towards true world models.
comment: Github: https://github.com/M-E-AGI-Lab/Awesome-World-Models
☆ Bayesian Jammer Localization with a Hybrid CNN and Path-Loss Mixture of Experts ICASSP
Global Navigation Satellite System (GNSS) signals are vulnerable to jamming, particularly in urban areas where multipath and shadowing distort received power. Previous data-driven approaches achieved reasonable localization but poorly reconstructed the received signal strength (RSS) field due to limited spatial context. We propose a hybrid Bayesian mixture-of-experts framework that fuses a physical path-loss (PL) model and a convolutional neural network (CNN) through log-linear pooling. The PL expert ensures physical consistency, while the CNN leverages building-height maps to capture urban propagation effects. Bayesian inference with Laplace approximation provides posterior uncertainty over both the jammer position and RSS field. Experiments on urban ray-tracing data show that localization accuracy improves and uncertainty decreases with more training points, while uncertainty concentrates near the jammer and along urban canyons where propagation is most sensitive.
comment: 5 pages, 4 figures, Submitted to ICASSPW 2026
☆ Finding the Sweet Spot: Trading Quality, Cost, and Speed During Inference-Time LLM Reflection
As Large Language Models (LLMs) continue to evolve, practitioners face increasing options for enhancing inference-time performance without model retraining, including budget tuning and multi-step techniques like self-reflection. While these methods improve output quality, they create complex trade-offs among accuracy, cost, and latency that remain poorly understood across different domains. This paper systematically compares self-reflection and budget tuning across mathematical reasoning and translation tasks. We evaluate prominent LLMs, including Anthropic Claude, Amazon Nova, and Mistral families, along with other models under varying reflection depths and compute budgets to derive Pareto optimal performance frontiers. Our analysis reveals substantial domain dependent variation in self-reflection effectiveness, with performance gains up to 220\% in mathematical reasoning. We further investigate how reflection round depth and feedback mechanism quality influence performance across model families. To validate our findings in a real-world setting, we deploy a self-reflection enhanced marketing content localisation system at Lounge by Zalando, where it shows market-dependent effectiveness, reinforcing the importance of domain specific evaluation when deploying these techniques. Our results provide actionable guidance for selecting optimal inference strategies given specific domains and resource constraints. We open source our self-reflection implementation for reproducibility at https://github.com/aws-samples/sample-genai-reflection-for-bedrock.
☆ xTime: Extreme Event Prediction with Hierarchical Knowledge Distillation and Expert Fusion
Extreme events frequently occur in real-world time series and often carry significant practical implications. In domains such as climate and healthcare, these events, such as floods, heatwaves, or acute medical episodes, can lead to serious consequences. Accurate forecasting of such events is therefore of substantial importance. Most existing time series forecasting models are optimized for overall performance within the prediction window, but often struggle to accurately predict extreme events, such as high temperatures or heart rate spikes. The main challenges are data imbalance and the neglect of valuable information contained in intermediate events that precede extreme events. In this paper, we propose xTime, a novel framework for extreme event forecasting in time series. xTime leverages knowledge distillation to transfer information from models trained on lower-rarity events, thereby improving prediction performance on rarer ones. In addition, we introduce a mixture of experts (MoE) mechanism that dynamically selects and fuses outputs from expert models across different rarity levels, which further improves the forecasting performance for extreme events. Experiments on multiple datasets show that xTime achieves consistent improvements, with forecasting accuracy on extreme events improving from 3% to 78%.
☆ Connecting Jensen-Shannon and Kullback-Leibler Divergences: A New Bound for Representation Learning NeurIPS 2025
Mutual Information (MI) is a fundamental measure of statistical dependence widely used in representation learning. While direct optimization of MI via its definition as a Kullback-Leibler divergence (KLD) is often intractable, many recent methods have instead maximized alternative dependence measures, most notably, the Jensen-Shannon divergence (JSD) between joint and product of marginal distributions via discriminative losses. However, the connection between these surrogate objectives and MI remains poorly understood. In this work, we bridge this gap by deriving a new, tight, and tractable lower bound on KLD as a function of JSD in the general case. By specializing this bound to joint and marginal distributions, we demonstrate that maximizing the JSD-based information increases a guaranteed lower bound on mutual information. Furthermore, we revisit the practical implementation of JSD-based objectives and observe that minimizing the cross-entropy loss of a binary classifier trained to distinguish joint from marginal pairs recovers a known variational lower bound on the JSD. Extensive experiments demonstrate that our lower bound is tight when applied to MI estimation. We compared our lower bound to state-of-the-art neural estimators of variational lower bound across a range of established reference scenarios. Our lower bound estimator consistently provides a stable, low-variance estimate of a tight lower bound on MI. We also demonstrate its practical usefulness in the context of the Information Bottleneck framework. Taken together, our results provide new theoretical justifications and strong empirical evidence for using discriminative learning in MI-based representation learning.
comment: Accepted at NeurIPS 2025. Code available at https://github.com/ReubenDo/JSDlowerbound/
☆ Attention Enhanced Entity Recommendation for Intelligent Monitoring in Cloud Systems
In this paper, we present DiRecGNN, an attention-enhanced entity recommendation framework for monitoring cloud services at Microsoft. We provide insights on the usefulness of this feature as perceived by the cloud service owners and lessons learned from deployment. Specifically, we introduce the problem of recommending the optimal subset of attributes (dimensions) that should be tracked by an automated watchdog (monitor) for cloud services. To begin, we construct the monitor heterogeneous graph at production-scale. The interaction dynamics of these entities are often characterized by limited structural and engagement information, resulting in inferior performance of state-of-the-art approaches. Moreover, traditional methods fail to capture the dependencies between entities spanning a long range due to their homophilic nature. Therefore, we propose an attention-enhanced entity ranking model inspired by transformer architectures. Our model utilizes a multi-head attention mechanism to focus on heterogeneous neighbors and their attributes, and further attends to paths sampled using random walks to capture long-range dependencies. We also employ multi-faceted loss functions to optimize for relevant recommendations while respecting the inherent sparsity of the data. Empirical evaluations demonstrate significant improvements over existing methods, with our model achieving a 43.1% increase in MRR. Furthermore, product teams who consumed these features perceive the feature as useful and rated it 4.5 out of 5.
☆ Large Multimodal Models-Empowered Task-Oriented Autonomous Communications: Design Methodology and Implementation Challenges
Large language models (LLMs) and large multimodal models (LMMs) have achieved unprecedented breakthrough, showcasing remarkable capabilities in natural language understanding, generation, and complex reasoning. This transformative potential has positioned them as key enablers for 6G autonomous communications among machines, vehicles, and humanoids. In this article, we provide an overview of task-oriented autonomous communications with LLMs/LMMs, focusing on multimodal sensing integration, adaptive reconfiguration, and prompt/fine-tuning strategies for wireless tasks. We demonstrate the framework through three case studies: LMM-based traffic control, LLM-based robot scheduling, and LMM-based environment-aware channel estimation. From experimental results, we show that the proposed LLM/LMM-aided autonomous systems significantly outperform conventional and discriminative deep learning (DL) model-based techniques, maintaining robustness under dynamic objectives, varying input parameters, and heterogeneous multimodal conditions where conventional static optimization degrades.
☆ Equitable Survival Prediction: A Fairness-Aware Survival Modeling (FASM) Approach
As machine learning models become increasingly integrated into healthcare, structural inequities and social biases embedded in clinical data can be perpetuated or even amplified by data-driven models. In survival analysis, censoring and time dynamics can further add complexity to fair model development. Additionally, algorithmic fairness approaches often overlook disparities in cross-group rankings, e.g., high-risk Black patients may be ranked below lower-risk White patients who do not experience the event of mortality. Such misranking can reinforce biological essentialism and undermine equitable care. We propose a Fairness-Aware Survival Modeling (FASM), designed to mitigate algorithmic bias regarding both intra-group and cross-group risk rankings over time. Using breast cancer prognosis as a representative case and applying FASM to SEER breast cancer data, we show that FASM substantially improves fairness while preserving discrimination performance comparable to fairness-unaware survival models. Time-stratified evaluations show that FASM maintains stable fairness over a 10-year horizon, with the greatest improvements observed during the mid-term of follow-up. Our approach enables the development of survival models that prioritize both accuracy and equity in clinical decision-making, advancing fairness as a core principle in clinical care.
☆ H-SPLID: HSIC-based Saliency Preserving Latent Information Decomposition NeurIPS 2025
We introduce H-SPLID, a novel algorithm for learning salient feature representations through the explicit decomposition of salient and non-salient features into separate spaces. We show that H-SPLID promotes learning low-dimensional, task-relevant features. We prove that the expected prediction deviation under input perturbations is upper-bounded by the dimension of the salient subspace and the Hilbert-Schmidt Independence Criterion (HSIC) between inputs and representations. This establishes a link between robustness and latent representation compression in terms of the dimensionality and information preserved. Empirical evaluations on image classification tasks show that models trained with H-SPLID primarily rely on salient input components, as indicated by reduced sensitivity to perturbations affecting non-salient features, such as image backgrounds. Our code is available at https://github.com/neu-spiral/H-SPLID.
comment: Accepted at NeurIPS 2025
☆ On Optimal Hyperparameters for Differentially Private Deep Transfer Learning
Differentially private (DP) transfer learning, i.e., fine-tuning a pretrained model on private data, is the current state-of-the-art approach for training large models under privacy constraints. We focus on two key hyperparameters in this setting: the clipping bound $C$ and batch size $B$. We show a clear mismatch between the current theoretical understanding of how to choose an optimal $C$ (stronger privacy requires smaller $C$) and empirical outcomes (larger $C$ performs better under strong privacy), caused by changes in the gradient distributions. Assuming a limited compute budget (fixed epochs), we demonstrate that the existing heuristics for tuning $B$ do not work, while cumulative DP noise better explains whether smaller or larger batches perform better. We also highlight how the common practice of using a single $(C,B)$ setting across tasks can lead to suboptimal performance. We find that performance drops especially when moving between loose and tight privacy and between plentiful and limited compute, which we explain by analyzing clipping as a form of gradient re-weighting and examining cumulative DP noise.
comment: 25 pages, 30 figures
☆ MS-BART: Unified Modeling of Mass Spectra and Molecules for Structure Elucidation NeurIPS 2025
Mass spectrometry (MS) plays a critical role in molecular identification, significantly advancing scientific discovery. However, structure elucidation from MS data remains challenging due to the scarcity of annotated spectra. While large-scale pretraining has proven effective in addressing data scarcity in other domains, applying this paradigm to mass spectrometry is hindered by the complexity and heterogeneity of raw spectral signals. To address this, we propose MS-BART, a unified modeling framework that maps mass spectra and molecular structures into a shared token vocabulary, enabling cross-modal learning through large-scale pretraining on reliably computed fingerprint-molecule datasets. Multi-task pretraining objectives further enhance MS-BART's generalization by jointly optimizing denoising and translation task. The pretrained model is subsequently transferred to experimental spectra through finetuning on fingerprint predictions generated with MIST, a pre-trained spectral inference model, thereby enhancing robustness to real-world spectral variability. While finetuning alleviates the distributional difference, MS-BART still suffers molecular hallucination and requires further alignment. We therefore introduce a chemical feedback mechanism that guides the model toward generating molecules closer to the reference structure. Extensive evaluations demonstrate that MS-BART achieves SOTA performance across 5/12 key metrics on MassSpecGym and NPLIB1 and is faster by one order of magnitude than competing diffusion-based methods, while comprehensive ablation studies systematically validate the model's effectiveness and robustness.
comment: NeurIPS 2025, We provide the data and code at https://github.com/OpenDFM/MS-BART
☆ Black Box Absorption: LLMs Undermining Innovative Ideas
Large Language Models are increasingly adopted as critical tools for accelerating innovation. This paper identifies and formalizes a systemic risk inherent in this paradigm: \textbf{Black Box Absorption}. We define this as the process by which the opaque internal architectures of LLM platforms, often operated by large-scale service providers, can internalize, generalize, and repurpose novel concepts contributed by users during interaction. This mechanism threatens to undermine the foundational principles of innovation economics by creating severe informational and structural asymmetries between individual creators and platform operators, thereby jeopardizing the long-term sustainability of the innovation ecosystem. To analyze this challenge, we introduce two core concepts: the idea unit, representing the transportable functional logic of an innovation, and idea safety, a multidimensional standard for its protection. This paper analyzes the mechanisms of absorption and proposes a concrete governance and engineering agenda to mitigate these risks, ensuring that creator contributions remain traceable, controllable, and equitable.
☆ PSO-XAI: A PSO-Enhanced Explainable AI Framework for Reliable Breast Cancer Detection
Breast cancer is considered the most critical and frequently diagnosed cancer in women worldwide, leading to an increase in cancer-related mortality. Early and accurate detection is crucial as it can help mitigate possible threats while improving survival rates. In terms of prediction, conventional diagnostic methods are often limited by variability, cost, and, most importantly, risk of misdiagnosis. To address these challenges, machine learning (ML) has emerged as a powerful tool for computer-aided diagnosis, with feature selection playing a vital role in improving model performance and interpretability. This research study proposes an integrated framework that incorporates customized Particle Swarm Optimization (PSO) for feature selection. This framework has been evaluated on a comprehensive set of 29 different models, spanning classical classifiers, ensemble techniques, neural networks, probabilistic algorithms, and instance-based algorithms. To ensure interpretability and clinical relevance, the study uses cross-validation in conjunction with explainable AI methods. Experimental evaluation showed that the proposed approach achieved a superior score of 99.1\% across all performance metrics, including accuracy and precision, while effectively reducing dimensionality and providing transparent, model-agnostic explanations. The results highlight the potential of combining swarm intelligence with explainable ML for robust, trustworthy, and clinically meaningful breast cancer diagnosis.
☆ Practical Code RAG at Scale: Task-Aware Retrieval Design Choices under Compute Budgets
We study retrieval design for code-focused generation tasks under realistic compute budgets. Using two complementary tasks from Long Code Arena -- code completion and bug localization -- we systematically compare retrieval configurations across various context window sizes along three axes: (i) chunking strategy, (ii) similarity scoring, and (iii) splitting granularity. (1) For PL-PL, sparse BM25 with word-level splitting is the most effective and practical, significantly outperforming dense alternatives while being an order of magnitude faster. (2) For NL-PL, proprietary dense encoders (Voyager-3 family) consistently beat sparse retrievers, however requiring 100x larger latency. (3) Optimal chunk size scales with available context: 32-64 line chunks work best at small budgets, and whole-file retrieval becomes competitive at 16000 tokens. (4) Simple line-based chunking matches syntax-aware splitting across budgets. (5) Retrieval latency varies by up to 200x across configurations; BPE-based splitting is needlessly slow, and BM25 + word splitting offers the best quality-latency trade-off. Thus, we provide evidence-based recommendations for implementing effective code-oriented RAG systems based on task requirements, model constraints, and computational efficiency.
☆ Convergence Analysis of SGD under Expected Smoothness AISTATS 2026
Stochastic gradient descent (SGD) is the workhorse of large-scale learning, yet classical analyses rely on assumptions that can be either too strong (bounded variance) or too coarse (uniform noise). The expected smoothness (ES) condition has emerged as a flexible alternative that ties the second moment of stochastic gradients to the objective value and the full gradient. This paper presents a self-contained convergence analysis of SGD under ES. We (i) refine ES with interpretations and sampling-dependent constants; (ii) derive bounds of the expectation of squared full gradient norm; and (iii) prove $O(1/K)$ rates with explicit residual errors for various step-size schedules. All proofs are given in full detail in the appendix. Our treatment unifies and extends recent threads (Khaled and Richt\'arik, 2020; Umeda and Iiduka, 2025).
comment: 23 pages, 11 figures, AISTATS 2026
☆ Generalizable Reasoning through Compositional Energy Minimization
Generalization is a key challenge in machine learning, specifically in reasoning tasks, where models are expected to solve problems more complex than those encountered during training. Existing approaches typically train reasoning models in an end-to-end fashion, directly mapping input instances to solutions. While this allows models to learn useful heuristics from data, it often results in limited generalization beyond the training distribution. In this work, we propose a novel approach to reasoning generalization by learning energy landscapes over the solution spaces of smaller, more tractable subproblems. At test time, we construct a global energy landscape for a given problem by combining the energy functions of multiple subproblems. This compositional approach enables the incorporation of additional constraints during inference, allowing the construction of energy landscapes for problems of increasing difficulty. To improve the sample quality from this newly constructed energy landscape, we introduce Parallel Energy Minimization (PEM). We evaluate our approach on a wide set of reasoning problems. Our method outperforms existing state-of-the-art methods, demonstrating its ability to generalize to larger and more complex problems. Project website can be found at: https://alexoarga.github.io/compositional_reasoning/
☆ Strategic Costs of Perceived Bias in Fair Selection NeurIPS 2025
Meritocratic systems, from admissions to hiring, aim to impartially reward skill and effort. Yet persistent disparities across race, gender, and class challenge this ideal. Some attribute these gaps to structural inequality; others to individual choice. We develop a game-theoretic model in which candidates from different socioeconomic groups differ in their perceived post-selection value--shaped by social context and, increasingly, by AI-powered tools offering personalized career or salary guidance. Each candidate strategically chooses effort, balancing its cost against expected reward; effort translates into observable merit, and selection is based solely on merit. We characterize the unique Nash equilibrium in the large-agent limit and derive explicit formulas showing how valuation disparities and institutional selectivity jointly determine effort, representation, social welfare, and utility. We further propose a cost-sensitive optimization framework that quantifies how modifying selectivity or perceived value can reduce disparities without compromising institutional goals. Our analysis reveals a perception-driven bias: when perceptions of post-selection value differ across groups, these differences translate into rational differences in effort, propagating disparities backward through otherwise "fair" selection processes. While the model is static, it captures one stage of a broader feedback cycle linking perceptions, incentives, and outcome--bridging rational-choice and structural explanations of inequality by showing how techno-social environments shape individual incentives in meritocratic systems.
comment: The paper has been accepted by NeurIPS 2025
☆ Diffusion Autoencoders with Perceivers for Long, Irregular and Multimodal Astronomical Sequences
Self-supervised learning has become a central strategy for representation learning, but the majority of architectures used for encoding data have only been validated on regularly-sampled inputs such as images, audios. and videos. In many scientific domains, data instead arrive as long, irregular, and multimodal sequences. To extract semantic information from these data, we introduce the Diffusion Autoencoder with Perceivers (daep). daep tokenizes heterogeneous measurements, compresses them with a Perceiver encoder, and reconstructs them with a Perceiver-IO diffusion decoder, enabling scalable learning in diverse data settings. To benchmark the daep architecture, we adapt the masked autoencoder to a Perceiver encoder/decoder design, and establish a strong baseline (maep) in the same architectural family as daep. Across diverse spectroscopic and photometric astronomical datasets, daep achieves lower reconstruction errors, produces more discriminative latent spaces, and better preserves fine-scale structure than both VAE and maep baselines. These results establish daep as an effective framework for scientific domains where data arrives as irregular, heterogeneous sequences.
☆ Embedding the MLOps Lifecycle into OT Reference Models
Machine Learning Operations (MLOps) practices are increas- ingly adopted in industrial settings, yet their integration with Opera- tional Technology (OT) systems presents significant challenges. This pa- per analyzes the fundamental obstacles in combining MLOps with OT en- vironments and proposes a systematic approach to embed MLOps prac- tices into established OT reference models. We evaluate the suitability of the Reference Architectural Model for Industry 4.0 (RAMI 4.0) and the International Society of Automation Standard 95 (ISA-95) for MLOps integration and present a detailed mapping of MLOps lifecycle compo- nents to RAMI 4.0 exemplified by a real-world use case. Our findings demonstrate that while standard MLOps practices cannot be directly transplanted to OT environments, structured adaptation using existing reference models can provide a pathway for successful integration.
☆ Structural Invariance Matters: Rethinking Graph Rewiring through Graph Metrics
Graph rewiring has emerged as a key technique to alleviate over-squashing in Graph Neural Networks (GNNs) and Graph Transformers by modifying the graph topology to improve information flow. While effective, rewiring inherently alters the graph's structure, raising the risk of distorting important topology-dependent signals. Yet, despite the growing use of rewiring, little is known about which structural properties must be preserved to ensure both performance gains and structural fidelity. In this work, we provide the first systematic analysis of how rewiring affects a range of graph structural metrics, and how these changes relate to downstream task performance. We study seven diverse rewiring strategies and correlate changes in local and global graph properties with node classification accuracy. Our results reveal a consistent pattern: successful rewiring methods tend to preserve local structure while allowing for flexibility in global connectivity. These findings offer new insights into the design of effective rewiring strategies, bridging the gap between graph theory and practical GNN optimization.
comment: 21 pages, 5 figures, conference
☆ A Unified Framework for Zero-Shot Reinforcement Learning
Zero-shot reinforcement learning (RL) has emerged as a setting for developing general agents in an unsupervised manner, capable of solving downstream tasks without additional training or planning at test-time. Unlike conventional RL, which optimizes policies for a fixed reward, zero-shot RL requires agents to encode representations rich enough to support immediate adaptation to any objective, drawing parallels to vision and language foundation models. Despite growing interest, the field lacks a common analytical lens. We present the first unified framework for zero-shot RL. Our formulation introduces a consistent notation and taxonomy that organizes existing approaches and allows direct comparison between them. Central to our framework is the classification of algorithms into two families: direct representations, which learn end-to-end mappings from rewards to policies, and compositional representations, which decompose the representation leveraging the substructure of the value function. Within this framework, we highlight shared principles and key differences across methods, and we derive an extended bound for successor-feature methods, offering a new perspective on their performance in the zero-shot regime. By consolidating existing work under a common lens, our framework provides a principled foundation for future research in zero-shot RL and outlines a clear path toward developing more general agents.
☆ SheafAlign: A Sheaf-theoretic Framework for Decentralized Multimodal Alignment
Conventional multimodal alignment methods assume mutual redundancy across all modalities, an assumption that fails in real-world distributed scenarios. We propose SheafAlign, a sheaf-theoretic framework for decentralized multimodal alignment that replaces single-space alignment with multiple comparison spaces. This approach models pairwise modality relations through sheaf structures and leverages decentralized contrastive learning-based objectives for training. SheafAlign overcomes the limitations of prior methods by not requiring mutual redundancy among all modalities, preserving both shared and unique information. Experiments on multimodal sensing datasets show superior zero-shot generalization, cross-modal alignment, and robustness to missing modalities, with 50\% lower communication cost than state-of-the-art baselines.
comment: 5 pages, 3 figures, 1 table
☆ Blur2seq: Blind Deblurring and Camera Trajectory Estimation from a Single Camera Motion-blurred Image
Motion blur caused by camera shake, particularly under large or rotational movements, remains a major challenge in image restoration. We propose a deep learning framework that jointly estimates the latent sharp image and the underlying camera motion trajectory from a single blurry image. Our method leverages the Projective Motion Blur Model (PMBM), implemented efficiently using a differentiable blur creation module compatible with modern networks. A neural network predicts a full 3D rotation trajectory, which guides a model-based restoration network trained end-to-end. This modular architecture provides interpretability by revealing the camera motion that produced the blur. Moreover, this trajectory enables the reconstruction of the sequence of sharp images that generated the observed blurry image. To further refine results, we optimize the trajectory post-inference via a reblur loss, improving consistency between the blurry input and the restored output. Extensive experiments show that our method achieves state-of-the-art performance on both synthetic and real datasets, particularly in cases with severe or spatially variant blur, where end-to-end deblurring networks struggle. Code and trained models are available at https://github.com/GuillermoCarbajal/Blur2Seq/
☆ Adversary-Aware Private Inference over Wireless Channels
AI-based sensing at wireless edge devices has the potential to significantly enhance Artificial Intelligence (AI) applications, particularly for vision and perception tasks such as in autonomous driving and environmental monitoring. AI systems rely both on efficient model learning and inference. In the inference phase, features extracted from sensing data are utilized for prediction tasks (e.g., classification or regression). In edge networks, sensors and model servers are often not co-located, which requires communication of features. As sensitive personal data can be reconstructed by an adversary, transformation of the features are required to reduce the risk of privacy violations. While differential privacy mechanisms provide a means of protecting finite datasets, protection of individual features has not been addressed. In this paper, we propose a novel framework for privacy-preserving AI-based sensing, where devices apply transformations of extracted features before transmission to a model server.
☆ Decoding the Ear: A Framework for Objectifying Expressiveness from Human Preference Through Efficient Alignment ICASSP 2026
Recent speech-to-speech (S2S) models generate intelligible speech but still lack natural expressiveness, largely due to the absence of a reliable evaluation metric. Existing approaches, such as subjective MOS ratings, low-level acoustic features, and emotion recognition are costly, limited, or incomplete. To address this, we present DeEAR (Decoding the Expressive Preference of eAR), a framework that converts human preference for speech expressiveness into an objective score. Grounded in phonetics and psychology, DeEAR evaluates speech across three dimensions: Emotion, Prosody, and Spontaneity, achieving strong alignment with human perception (Spearman's Rank Correlation Coefficient, SRCC = 0.86) using fewer than 500 annotated samples. Beyond reliable scoring, DeEAR enables fair benchmarking and targeted data curation. It not only distinguishes expressiveness gaps across S2S models but also selects 14K expressive utterances to form ExpressiveSpeech, which improves the expressive score (from 2.0 to 23.4 on a 100-point scale) of S2S models. Demos and codes are available at https://github.com/FreedomIntelligence/ExpressiveSpeech
comment: Submitted to ICASSP 2026. Demos and codes are available at https://github.com/FreedomIntelligence/ExpressiveSpeech
☆ Hurdle-IMDL: An Imbalanced Learning Framework for Infrared Rainfall Retrieval
Artificial intelligence has advanced quantitative remote sensing, yet its effectiveness is constrained by imbalanced label distribution. This imbalance leads conventionally trained models to favor common samples, which in turn degrades retrieval performance for rare ones. Rainfall retrieval exemplifies this issue, with performance particularly compromised for heavy rain. This study proposes Hurdle-Inversion Model Debiasing Learning (IMDL) framework. Following a divide-and-conquer strategy, imbalance in the rain distribution is decomposed into two components: zero inflation, defined by the predominance of non-rain samples; and long tail, defined by the disproportionate abundance of light-rain samples relative to heavy-rain samples. A hurdle model is adopted to handle the zero inflation, while IMDL is proposed to address the long tail by transforming the learning object into an unbiased ideal inverse model. Comprehensive evaluation via statistical metrics and case studies investigating rainy weather in eastern China confirms Hurdle-IMDL's superiority over conventional, cost-sensitive, generative, and multi-task learning methods. Its key advancements include effective mitigation of systematic underestimation and a marked improvement in the retrieval of heavy-to-extreme rain. IMDL offers a generalizable approach for addressing imbalance in distributions of environmental variables, enabling enhanced retrieval of rare yet high-impact events.
comment: 26 pages
☆ Bi-CoG: Bi-Consistency-Guided Self-Training for Vision-Language Models
Exploiting unlabeled data through semi-supervised learning (SSL) or leveraging pre-trained models via fine-tuning are two prevailing paradigms for addressing label-scarce scenarios. Recently, growing attention has been given to combining fine-tuning of pre-trained vision-language models (VLMs) with SSL, forming the emerging paradigm of semi-supervised fine-tuning. However, existing methods often suffer from model bias and hyperparameter sensitivity, due to reliance on prediction consistency or pre-defined confidence thresholds. To address these limitations, we propose a simple yet effective plug-and-play methodology named $\underline{\textbf{Bi-Co}}$nsistency-$\underline{\textbf{G}}$uided Self-Training (Bi-CoG), which assigns high-quality and low-bias pseudo-labels, by simultaneously exploiting inter-model and intra-model consistency, along with an error-aware dynamic pseudo-label assignment strategy. Both theoretical analysis and extensive experiments over 14 datasets demonstrate the effectiveness of Bi-CoG, which consistently and significantly improves the performance of existing methods.
☆ Concentration and excess risk bounds for imbalanced classification with synthetic oversampling
Synthetic oversampling of minority examples using SMOTE and its variants is a leading strategy for addressing imbalanced classification problems. Despite the success of this approach in practice, its theoretical foundations remain underexplored. We develop a theoretical framework to analyze the behavior of SMOTE and related methods when classifiers are trained on synthetic data. We first derive a uniform concentration bound on the discrepancy between the empirical risk over synthetic minority samples and the population risk on the true minority distribution. We then provide a nonparametric excess risk guarantee for kernel-based classifiers trained using such synthetic data. These results lead to practical guidelines for better parameter tuning of both SMOTE and the downstream learning algorithm. Numerical experiments are provided to illustrate and support the theoretical findings
comment: Page 35, including appendix, Figures 12, including appendix
☆ Transferable Black-Box One-Shot Forging of Watermarks via Image Preference Models NeurIPS 2025
Recent years have seen a surge in interest in digital content watermarking techniques, driven by the proliferation of generative models and increased legal pressure. With an ever-growing percentage of AI-generated content available online, watermarking plays an increasingly important role in ensuring content authenticity and attribution at scale. There have been many works assessing the robustness of watermarking to removal attacks, yet, watermark forging, the scenario when a watermark is stolen from genuine content and applied to malicious content, remains underexplored. In this work, we investigate watermark forging in the context of widely used post-hoc image watermarking. Our contributions are as follows. First, we introduce a preference model to assess whether an image is watermarked. The model is trained using a ranking loss on purely procedurally generated images without any need for real watermarks. Second, we demonstrate the model's capability to remove and forge watermarks by optimizing the input image through backpropagation. This technique requires only a single watermarked image and works without knowledge of the watermarking model, making our attack much simpler and more practical than attacks introduced in related work. Third, we evaluate our proposed method on a variety of post-hoc image watermarking models, demonstrating that our approach can effectively forge watermarks, questioning the security of current watermarking approaches. Our code and further resources are publicly available.
comment: NeurIPS 2025
☆ Neural Reasoning for Robust Instance Retrieval in $\mathcal{SHOIQ}$
Concept learning exploits background knowledge in the form of description logic axioms to learn explainable classification models from knowledge bases. Despite recent breakthroughs in neuro-symbolic concept learning, most approaches still cannot be deployed on real-world knowledge bases. This is due to their use of description logic reasoners, which are not robust against inconsistencies nor erroneous data. We address this challenge by presenting a novel neural reasoner dubbed EBR. Our reasoner relies on embeddings to approximate the results of a symbolic reasoner. We show that EBR solely requires retrieving instances for atomic concepts and existential restrictions to retrieve or approximate the set of instances of any concept in the description logic $\mathcal{SHOIQ}$. In our experiments, we compare EBR with state-of-the-art reasoners. Our results suggest that EBR is robust against missing and erroneous data in contrast to existing reasoners.
comment: Accepted as a full research paper at K-CAP 2025
☆ Intransitive Player Dominance and Market Inefficiency in Tennis Forecasting: A Graph Neural Network Approach
Intransitive player dominance, where player A beats B, B beats C, but C beats A, is common in competitive tennis. Yet, there are few known attempts to incorporate it within forecasting methods. We address this problem with a graph neural network approach that explicitly models these intransitive relationships through temporal directed graphs, with players as nodes and their historical match outcomes as directed edges. We find the bookmaker Pinnacle Sports poorly handles matches with high intransitive complexity and posit that our graph-based approach is uniquely positioned to capture relational dynamics in these scenarios. When selectively betting on higher intransitivity matchups with our model (65.7% accuracy, 0.215 Brier Score), we achieve significant positive returns of 3.26% ROI with Kelly staking over 1903 bets, suggesting a market inefficiency in handling intransitive matchups that our approach successfully exploits.
comment: 39 pages, 8 figures
☆ Symbolic Regression and Differentiable Fits in Beyond the Standard Model Physics
We demonstrate the efficacy of symbolic regression (SR) to probe models of particle physics Beyond the Standard Model (BSM), by considering the so-called Constrained Minimal Supersymmetric Standard Model (CMSSM). Like many incarnations of BSM physics this model has a number (four) of arbitrary parameters, which determine the experimental signals, and cosmological observables such as the dark matter relic density. We show that analysis of the phenomenology can be greatly accelerated by using symbolic expressions derived for the observables in terms of the input parameters. Here we focus on the Higgs mass, the cold dark matter relic density, and the contribution to the anomalous magnetic moment of the muon. We find that SR can produce remarkably accurate expressions. Using them we make global fits to derive the posterior probability densities of the CMSSM input parameters which are in good agreement with those performed using conventional methods. Moreover, we demonstrate a major advantage of SR which is the ability to make fits using differentiable methods rather than sampling methods. We also compare the method with neural network (NN) regression. SR produces more globally robust results, while NNs require data that is focussed on the promising regions in order to be equally performant.
comment: 18 pages, 4 figures
☆ MolBridge: Atom-Level Joint Graph Refinement for Robust Drug-Drug Interaction Event Prediction
Drug combinations offer therapeutic benefits but also carry the risk of adverse drug-drug interactions (DDIs), especially under complex molecular structures. Accurate DDI event prediction requires capturing fine-grained inter-drug relationships, which are critical for modeling metabolic mechanisms such as enzyme-mediated competition. However, existing approaches typically rely on isolated drug representations and fail to explicitly model atom-level cross-molecular interactions, limiting their effectiveness across diverse molecular complexities and DDI type distributions. To address these limitations, we propose MolBridge, a novel atom-level joint graph refinement framework for robust DDI event prediction. MolBridge constructs a joint graph that integrates atomic structures of drug pairs, enabling direct modeling of inter-drug associations. A central challenge in such joint graph settings is the potential loss of information caused by over-smoothing when modeling long-range atomic dependencies. To overcome this, we introduce a structure consistency module that iteratively refines node features while preserving the global structural context. This joint design allows MolBridge to effectively learn both local and global interaction outperforms state-of-the-art baselines, achieving superior performance across long-tail and inductive scenarios. patterns, yielding robust representations across both frequent and rare DDI types. Extensive experiments on two benchmark datasets show that MolBridge consistently. These results demonstrate the advantages of fine-grained graph refinement in improving the accuracy, robustness, and mechanistic interpretability of DDI event prediction.This work contributes to Web Mining and Content Analysis by developing graph-based methods for mining and analyzing drug-drug interaction networks.
☆ Explainable Benchmarking through the Lense of Concept Learning
Evaluating competing systems in a comparable way, i.e., benchmarking them, is an undeniable pillar of the scientific method. However, system performance is often summarized via a small number of metrics. The analysis of the evaluation details and the derivation of insights for further development or use remains a tedious manual task with often biased results. Thus, this paper argues for a new type of benchmarking, which is dubbed explainable benchmarking. The aim of explainable benchmarking approaches is to automatically generate explanations for the performance of systems in a benchmark. We provide a first instantiation of this paradigm for knowledge-graph-based question answering systems. We compute explanations by using a novel concept learning approach developed for large knowledge graphs called PruneCEL. Our evaluation shows that PruneCEL outperforms state-of-the-art concept learners on the task of explainable benchmarking by up to 0.55 points F1 measure. A task-driven user study with 41 participants shows that in 80\% of the cases, the majority of participants can accurately predict the behavior of a system based on our explanations. Our code and data are available at https://github.com/dice-group/PruneCEL/tree/K-cap2025
comment: Accepted as full research paper at K-CAP 2025
☆ Learning Decentralized Routing Policies via Graph Attention-based Multi-Agent Reinforcement Learning in Lunar Delay-Tolerant Networks
We present a fully decentralized routing framework for multi-robot exploration missions operating under the constraints of a Lunar Delay-Tolerant Network (LDTN). In this setting, autonomous rovers must relay collected data to a lander under intermittent connectivity and unknown mobility patterns. We formulate the problem as a Partially Observable Markov Decision Problem (POMDP) and propose a Graph Attention-based Multi-Agent Reinforcement Learning (GAT-MARL) policy that performs Centralized Training, Decentralized Execution (CTDE). Our method relies only on local observations and does not require global topology updates or packet replication, unlike classical approaches such as shortest path and controlled flooding-based algorithms. Through Monte Carlo simulations in randomized exploration environments, GAT-MARL provides higher delivery rates, no duplications, and fewer packet losses, and is able to leverage short-term mobility forecasts; offering a scalable solution for future space robotic systems for planetary exploration, as demonstrated by successful generalization to larger rover teams.
☆ Partial Optimality in Cubic Correlation Clustering for General Graphs
The higher-order correlation clustering problem for a graph $G$ and costs associated with cliques of $G$ consists in finding a clustering of $G$ so as to minimize the sum of the costs of those cliques whose nodes all belong to the same cluster. To tackle this NP-hard problem in practice, local search heuristics have been proposed and studied in the context of applications. Here, we establish partial optimality conditions for cubic correlation clustering, i.e., for the special case of at most 3-cliques. We define and implement algorithms for deciding these conditions and examine their effectiveness numerically, on two data sets.
comment: 35 pages
☆ An Empirical Study of Sample Selection Strategies for Large Language Model Repair
Large language models (LLMs) are increasingly deployed in real-world systems, yet they can produce toxic or biased outputs that undermine safety and trust. Post-hoc model repair provides a practical remedy, but the high cost of parameter updates motivates selective use of repair data. Despite extensive prior work on data selection for model training, it remains unclear which sampling criteria are most effective and efficient when applied specifically to behavioral repair of large generative models. Our study presents a systematic analysis of sample prioritization strategies for LLM repair. We evaluate five representative selection methods, including random sampling, K-Center, gradient-norm-based selection(GraNd), stratified coverage (CCS), and a Semantic-Aware Prioritized Sampling (SAPS) approach we proposed. Repair effectiveness and trade-offs are assessed through toxicity reduction, perplexity on WikiText-2 and LAMBADA, and three composite metrics: the Repair Proximity Score (RPS), the Overall Performance Score (OPS), and the Repair Efficiency Score (RES). Experimental results show that SAPS achieves the best balance between detoxification, utility preservation, and efficiency, delivering comparable or superior repair outcomes with substantially less data. Random sampling remains effective for large or robust models, while high-overhead methods such as CCS and GraNd provide limited benefit. The optimal data proportion depends on model scale and repair method, indicating that sample selection should be regarded as a tunable component of repair pipelines. Overall, these findings establish selection-based repair as an efficient and scalable paradigm for maintaining LLM reliability.
☆ Learning Coupled Earth System Dynamics with GraphDOP
Interactions between different components of the Earth System (e.g. ocean, atmosphere, land and cryosphere) are a crucial driver of global weather patterns. Modern Numerical Weather Prediction (NWP) systems typically run separate models of the different components, explicitly coupled across their interfaces to additionally model exchanges between the different components. Accurately representing these coupled interactions remains a major scientific and technical challenge of weather forecasting. GraphDOP is a graph-based machine learning model that learns to forecast weather directly from raw satellite and in-situ observations, without reliance on reanalysis products or traditional physics-based NWP models. GraphDOP simultaneously embeds information from diverse observation sources spanning the full Earth system into a shared latent space. This enables predictions that implicitly capture cross-domain interactions in a single model without the need for any explicit coupling. Here we present a selection of case studies which illustrate the capability of GraphDOP to forecast events where coupled processes play a particularly key role. These include rapid sea-ice freezing in the Arctic, mixing-induced ocean surface cooling during Hurricane Ian and the severe European heat wave of 2022. The results suggest that learning directly from Earth System observations can successfully characterise and propagate cross-component interactions, offering a promising path towards physically consistent end-to-end data-driven Earth System prediction with a single model.
☆ Addressing Mark Imbalance in Integration-free Neural Marked Temporal Point Processes NeurIPS 2025
Marked Temporal Point Process (MTPP) has been well studied to model the event distribution in marked event streams, which can be used to predict the mark and arrival time of the next event. However, existing studies overlook that the distribution of event marks is highly imbalanced in many real-world applications, with some marks being frequent but others rare. The imbalance poses a significant challenge to the performance of the next event prediction, especially for events of rare marks. To address this issue, we propose a thresholding method, which learns thresholds to tune the mark probability normalized by the mark's prior probability to optimize mark prediction, rather than predicting the mark directly based on the mark probability as in existing studies. In conjunction with this method, we predict the mark first and then the time. In particular, we develop a novel neural MTPP model to support effective time sampling and estimation of mark probability without computationally expensive numerical improper integration. Extensive experiments on real-world datasets demonstrate the superior performance of our solution against various baselines for the next event mark and time prediction. The code is available at https://github.com/undes1red/IFNMTPP.
comment: NeurIPS 2025 poster
☆ Why DPO is a Misspecified Estimator and How to Fix It
Direct alignment algorithms such as Direct Preference Optimization (DPO) fine-tune models based on preference data, using only supervised learning instead of two-stage reinforcement learning with human feedback (RLHF). We show that DPO encodes a statistical estimation problem over reward functions induced by a parametric policy class. When the true reward function that generates preferences cannot be realized via the policy class, DPO becomes misspecified, resulting in failure modes such as preference order reversal, worsening of policy reward, and high sensitivity to the input preference data distribution. On the other hand, we study the local behavior of two-stage RLHF for a parametric class and relate it to a natural gradient step in policy space. Our fine-grained geometric characterization allows us to propose AuxDPO, which introduces additional auxiliary variables in the DPO loss function to help move towards the RLHF solution in a principled manner and mitigate the misspecification in DPO. We empirically demonstrate the superior performance of AuxDPO on didactic bandit settings as well as LLM alignment tasks.
☆ Balancing Specialization and Centralization: A Multi-Agent Reinforcement Learning Benchmark for Sequential Industrial Control
Autonomous control of multi-stage industrial processes requires both local specialization and global coordination. Reinforcement learning (RL) offers a promising approach, but its industrial adoption remains limited due to challenges such as reward design, modularity, and action space management. Many academic benchmarks differ markedly from industrial control problems, limiting their transferability to real-world applications. This study introduces an enhanced industry-inspired benchmark environment that combines tasks from two existing benchmarks, SortingEnv and ContainerGym, into a sequential recycling scenario with sorting and pressing operations. We evaluate two control strategies: a modular architecture with specialized agents and a monolithic agent governing the full system, while also analyzing the impact of action masking. Our experiments show that without action masking, agents struggle to learn effective policies, with the modular architecture performing better. When action masking is applied, both architectures improve substantially, and the performance gap narrows considerably. These results highlight the decisive role of action space constraints and suggest that the advantages of specialization diminish as action complexity is reduced. The proposed benchmark thus provides a valuable testbed for exploring practical and robust multi-agent RL solutions in industrial automation, while contributing to the ongoing debate on centralization versus specialization.
comment: Preprint (submitted version) to be presented at the 13th International Conference on Industrial Engineering and Applications (ICIEA-EU), Milan, 2026. The final Version of Record will appear in the official conference proceedings
☆ PointMapPolicy: Structured Point Cloud Processing for Multi-Modal Imitation Learning
Robotic manipulation systems benefit from complementary sensing modalities, where each provides unique environmental information. Point clouds capture detailed geometric structure, while RGB images provide rich semantic context. Current point cloud methods struggle to capture fine-grained detail, especially for complex tasks, which RGB methods lack geometric awareness, which hinders their precision and generalization. We introduce PointMapPolicy, a novel approach that conditions diffusion policies on structured grids of points without downsampling. The resulting data type makes it easier to extract shape and spatial relationships from observations, and can be transformed between reference frames. Yet due to their structure in a regular grid, we enable the use of established computer vision techniques directly to 3D data. Using xLSTM as a backbone, our model efficiently fuses the point maps with RGB data for enhanced multi-modal perception. Through extensive experiments on the RoboCasa and CALVIN benchmarks and real robot evaluations, we demonstrate that our method achieves state-of-the-art performance across diverse manipulation tasks. The overview and demos are available on our project page: https://point-map.github.io/Point-Map/
☆ Relative-Based Scaling Law for Neural Language Models
Scaling laws aim to accurately predict model performance across different scales. Existing scaling-law studies almost exclusively rely on cross-entropy as the evaluation metric. However, cross-entropy provides only a partial view of performance: it measures the absolute probability assigned to the correct token, but ignores the relative ordering between correct and incorrect tokens. Yet, relative ordering is crucial for language models, such as in greedy-sampling scenario. To address this limitation, we investigate scaling from the perspective of relative ordering. We first propose the Relative-Based Probability (RBP) metric, which quantifies the probability that the correct token is ranked among the top predictions. Building on this metric, we establish the Relative-Based Scaling Law, which characterizes how RBP improves with increasing model size. Through extensive experiments on four datasets and four model families spanning five orders of magnitude, we demonstrate the robustness and accuracy of this law. Finally, we illustrate the broad application of this law with two examples, namely providing a deeper explanation of emergence phenomena and facilitating finding fundamental theories of scaling laws. In summary, the Relative-Based Scaling Law complements the cross-entropy perspective and contributes to a more complete understanding of scaling large language models. Thus, it offers valuable insights for both practical development and theoretical exploration.
☆ Hierarchical Time Series Forecasting with Robust Reconciliation
This paper focuses on forecasting hierarchical time-series data, where each higher-level observation equals the sum of its corresponding lower-level time series. In such contexts, the forecast values should be coherent, meaning that the forecast value of each parent series exactly matches the sum of the forecast values of its child series. Existing hierarchical forecasting methods typically generate base forecasts independently for each series and then apply a reconciliation procedure to adjust them so that the resulting forecast values are coherent across the hierarchy. These methods generally derive an optimal reconciliation, using a covariance matrix of the forecast error. In practice, however, the true covariance matrix is unknown and has to be estimated from finite samples in advance. This gap between the true and estimated covariance matrix may degrade forecast performance. To address this issue, we propose a robust optimization framework for hierarchical reconciliation that accounts for uncertainty in the estimated covariance matrix. We first introduce an uncertainty set for the estimated covariance matrix and formulate a reconciliation problem that minimizes the worst-case expected squared error over this uncertainty set. We show that our problem can be cast as a semidefinite optimization problem. Numerical experiments demonstrate that the proposed robust reconciliation method achieved better forecast performance than existing hierarchical forecasting methods, which indicates the effectiveness of integrating uncertainty into the reconciliation process.
☆ Testing Most Influential Sets ICLR
Small subsets of data with disproportionate influence on model outcomes can have dramatic impacts on conclusions, with a few data points sometimes overturning key findings. While recent work has developed methods to identify these \emph{most influential sets}, no formal theory exists to determine when their influence reflects genuine problems rather than natural sampling variation. We address this gap by developing a principled framework for assessing the statistical significance of most influential sets. Our theoretical results characterize the extreme value distributions of maximal influence and enable rigorous hypothesis tests for excessive influence, replacing current ad-hoc sensitivity checks. We demonstrate the practical value of our approach through applications across economics, biology, and machine learning benchmarks.
comment: 9 pages, 1 figure, submitted to ICLR
♻ ☆ One-Step Offline Distillation of Diffusion-based Models via Koopman Modeling
Diffusion-based generative models have demonstrated exceptional performance, yet their iterative sampling procedures remain computationally expensive. A prominent strategy to mitigate this cost is distillation, with offline distillation offering particular advantages in terms of efficiency, modularity, and flexibility. In this work, we identify two key observations that motivate a principled distillation framework: (1) while diffusion models have been viewed through the lens of dynamical systems theory, powerful and underexplored tools can be further leveraged; and (2) diffusion models inherently impose structured, semantically coherent trajectories in latent space. Building on these observations, we introduce the Koopman Distillation Model (KDM), a novel offline distillation approach grounded in Koopman theory - a classical framework for representing nonlinear dynamics linearly in a transformed space. KDM encodes noisy inputs into an embedded space where a learned linear operator propagates them forward, followed by a decoder that reconstructs clean samples. This enables single-step generation while preserving semantic fidelity. We provide theoretical justification for our approach: (1) under mild assumptions, the learned diffusion dynamics admit a finite-dimensional Koopman representation; and (2) proximity in the Koopman latent space correlates with semantic similarity in the generated outputs, allowing for effective trajectory alignment. KDM achieves highly competitive performance across standard offline distillation benchmarks.
♻ ☆ DragFlow: Unleashing DiT Priors with Region Based Supervision for Drag Editing
Drag-based image editing has long suffered from distortions in the target region, largely because the priors of earlier base models, Stable Diffusion, are insufficient to project optimized latents back onto the natural image manifold. With the shift from UNet-based DDPMs to more scalable DiT with flow matching (e.g., SD3.5, FLUX), generative priors have become significantly stronger, enabling advances across diverse editing tasks. However, drag-based editing has yet to benefit from these stronger priors. This work proposes the first framework to effectively harness FLUX's rich prior for drag-based editing, dubbed DragFlow, achieving substantial gains over baselines. We first show that directly applying point-based drag editing to DiTs performs poorly: unlike the highly compressed features of UNets, DiT features are insufficiently structured to provide reliable guidance for point-wise motion supervision. To overcome this limitation, DragFlow introduces a region-based editing paradigm, where affine transformations enable richer and more consistent feature supervision. Additionally, we integrate pretrained open-domain personalization adapters (e.g., IP-Adapter) to enhance subject consistency, while preserving background fidelity through gradient mask-based hard constraints. Multimodal large language models (MLLMs) are further employed to resolve task ambiguities. For evaluation, we curate a novel Region-based Dragging benchmark (ReD Bench) featuring region-level dragging instructions. Extensive experiments on DragBench-DR and ReD Bench show that DragFlow surpasses both point-based and region-based baselines, setting a new state-of-the-art in drag-based image editing. Code and datasets will be publicly available upon publication.
comment: Preprint
♻ ☆ Autoencoding Random Forests NeurIPS 2025
We propose a principled method for autoencoding with random forests. Our strategy builds on foundational results from nonparametric statistics and spectral graph theory to learn a low-dimensional embedding of the model that optimally represents relationships in the data. We provide exact and approximate solutions to the decoding problem via constrained optimization, split relabeling, and nearest neighbors regression. These methods effectively invert the compression pipeline, establishing a map from the embedding space back to the input space using splits learned by the ensemble's constituent trees. The resulting decoders are universally consistent under common regularity assumptions. The procedure works with supervised or unsupervised models, providing a window into conditional or joint distributions. We demonstrate various applications of this autoencoder, including powerful new tools for visualization, compression, clustering, and denoising. Experiments illustrate the ease and utility of our method in a wide range of settings, including tabular, image, and genomic data.
comment: 10 pages main text, 34 pages total (including checklist). 9 figures, 4 tables. To be published in proceedings of the 39th Conference on Neural Information Processing Systems (NeurIPS 2025)
♻ ☆ Watermarking Autoregressive Image Generation NeurIPS 2025
Watermarking the outputs of generative models has emerged as a promising approach for tracking their provenance. Despite significant interest in autoregressive image generation models and their potential for misuse, no prior work has attempted to watermark their outputs at the token level. In this work, we present the first such approach by adapting language model watermarking techniques to this setting. We identify a key challenge: the lack of reverse cycle-consistency (RCC), wherein re-tokenizing generated image tokens significantly alters the token sequence, effectively erasing the watermark. To address this and to make our method robust to common image transformations, neural compression, and removal attacks, we introduce (i) a custom tokenizer-detokenizer finetuning procedure that improves RCC, and (ii) a complementary watermark synchronization layer. As our experiments demonstrate, our approach enables reliable and robust watermark detection with theoretically grounded p-values. Code and models are available at https://github.com/facebookresearch/wmar.
comment: NeurIPS 2025
♻ ☆ Learning Modular Exponentiation with Transformers NeurIPS'25
Modular exponentiation is crucial to number theory and cryptography, yet remains largely unexplored from a mechanistic interpretability standpoint. We train a 4-layer encoder-decoder Transformer model to perform this operation and investigate the emergence of numerical reasoning during training. Utilizing principled sampling strategies, PCA-based embedding analysis, and activation patching, we examine how number-theoretic properties are encoded within the model. We find that reciprocal operand training leads to strong performance gains, with sudden generalization across related moduli. These synchronized accuracy surges reflect grokking-like dynamics, suggesting the model internalizes shared arithmetic structure. We also find a subgraph consisting entirely of attention heads in the final layer sufficient to achieve full performance on the task of regular exponentiation. These results suggest that transformer models learn modular arithmetic through specialized computational circuits, paving the way for more interpretable and efficient neural approaches to modular exponentiation.
comment: Accepted at the 5th MATH-AI Workshop, NeurIPS'25
♻ ☆ Tex-ViT: A Generalizable, Robust, Texture-based dual-branch cross-attention deepfake detector
Deepfakes, which employ GAN to produce highly realistic facial modification, are widely regarded as the prevailing method. Traditional CNN have been able to identify bogus media, but they struggle to perform well on different datasets and are vulnerable to adversarial attacks due to their lack of robustness. Vision transformers have demonstrated potential in the realm of image classification problems, but they require enough training data. Motivated by these limitations, this publication introduces Tex-ViT (Texture-Vision Transformer), which enhances CNN features by combining ResNet with a vision transformer. The model combines traditional ResNet features with a texture module that operates in parallel on sections of ResNet before each down-sampling operation. The texture module then serves as an input to the dual branch of the cross-attention vision transformer. It specifically focuses on improving the global texture module, which extracts feature map correlation. Empirical analysis reveals that fake images exhibit smooth textures that do not remain consistent over long distances in manipulations. Experiments were performed on different categories of FF++, such as DF, f2f, FS, and NT, together with other types of GAN datasets in cross-domain scenarios. Furthermore, experiments also conducted on FF++, DFDCPreview, and Celeb-DF dataset underwent several post-processing situations, such as blurring, compression, and noise. The model surpassed the most advanced models in terms of generalization, achieving a 98% accuracy in cross-domain scenarios. This demonstrates its ability to learn the shared distinguishing textural characteristics in the manipulated samples. These experiments provide evidence that the proposed model is capable of being applied to various situations and is resistant to many post-processing procedures.
♻ ☆ FlyLoRA: Boosting Task Decoupling and Parameter Efficiency via Implicit Rank-Wise Mixture-of-Experts NeurIPS 2025
Low-Rank Adaptation (LoRA) is a widely used parameter-efficient fine-tuning method for foundation models, but it suffers from parameter interference, resulting in suboptimal performance. Although Mixture-of-Experts (MoE)-based LoRA variants show promise in mitigating intra-task correlations in single-task instruction tuning, they introduce additional router parameters and remain ineffective in multi-task model merging where inter-task interference arises. Inspired by the fly olfactory circuit, we propose FlyLoRA, an implicit MoE-based LoRA variant that introduces: (1) rank-wise expert activation in the up-projection matrix, and (2) an implicit router that unifies expert routing and down-projection, where a frozen sparse random projection matrix replaces the traditional dense trainable version. This design resolves the trade-off between intra-task decorrelation and computational efficiency by eliminating the need for an explicit router, while inherently mitigating inter-task interference due to the orthogonality property of random matrices. Extensive experiments across four domains -- general knowledge understanding, scientific question answering, mathematical reasoning, and code generation -- demonstrate consistent performance improvements over existing methods. Beyond empirical gains, FlyLoRA highlights how biological structures can inspire innovations in AI technologies. Code is available at https://github.com/gfyddha/FlyLoRA.
comment: NeurIPS 2025 accepted paper
♻ ☆ Position: Many generalization measures for deep learning are fragile
A wide variety of generalization measures have been applied to deep neural networks (DNNs). Although obtaining tight bounds remains challenging, such measures are often assumed to reproduce qualitative generalization trends. In this position paper, we argue that many post-mortem generalization measures -- those computed on trained networks -- are \textbf{fragile}: small training modifications that barely affect the underlying DNN can substantially change a measure's value, trend, or scaling behavior. For example, minor hyperparameter changes, such as learning rate adjustments or switching between SGD variants can reverse the slope of a learning curve in widely used generalization measures like the path norm. We also identify subtler forms of fragility. For instance, the PAC-Bayes origin measure is regarded as one of the most reliable, and is indeed less sensitive to hyperparameter tweaks than many other measures. However, it completely fails to capture differences in data complexity across learning curves. This data fragility contrasts with the function-based marginal-likelihood PAC-Bayes bound, which does capture differences in data-complexity, including scaling behavior, in learning curves, but which is not a post-mortem measure. Beyond demonstrating that many bounds -- such as path, spectral and Frobenius norms, flatness proxies, and deterministic PAC-Bayes surrogates -- are fragile, this position paper also argues that developers of new measures should explicitly audit them for fragility.
♻ ☆ Prover Agent: An Agent-Based Framework for Formal Mathematical Proofs
We present Prover Agent, a novel AI agent for automated theorem proving that integrates large language models (LLMs) with a formal proof assistant, Lean. Prover Agent coordinates an informal reasoning LLM, a formal prover model, and feedback from Lean while also generating auxiliary lemmas. These auxiliary lemmas are not limited to subgoals in the formal proof but can also include special cases or potentially useful facts derived from the assumptions, which help in discovering a viable proof strategy. It achieves an 88.1% success rate on the MiniF2F benchmark, establishing a new state-of-the-art among methods using small language models (SLMs) with a much lower sample budget than previous approaches. We also present theoretical analyses and case studies that illustrate how these generated lemmas contribute to solving challenging problems. Our code is publicly available at: https://github.com/kAIto47802/Prover-Agent.
comment: 36 pages, 3 figures
♻ ☆ xRFM: Accurate, scalable, and interpretable feature learning models for tabular data
Inference from tabular data, collections of continuous and categorical variables organized into matrices, is a foundation for modern technology and science. Yet, in contrast to the explosive changes in the rest of AI, the best practice for these predictive tasks has been relatively unchanged and is still primarily based on variations of Gradient Boosted Decision Trees (GBDTs). Very recently, there has been renewed interest in developing state-of-the-art methods for tabular data based on recent developments in neural networks and feature learning methods. In this work, we introduce xRFM, an algorithm that combines feature learning kernel machines with a tree structure to both adapt to the local structure of the data and scale to essentially unlimited amounts of training data. We show that compared to $31$ other methods, including recently introduced tabular foundation models (TabPFNv2) and GBDTs, xRFM achieves best performance across $100$ regression datasets and is competitive to the best methods across $200$ classification datasets outperforming GBDTs. Additionally, xRFM provides interpretability natively through the Average Gradient Outer Product.
♻ ☆ CLEVER: A Curated Benchmark for Formally Verified Code Generation
We introduce ${\rm C{\small LEVER}}$, a high-quality, curated benchmark of 161 problems for end-to-end verified code generation in Lean. Each problem consists of (1) the task of generating a specification that matches a held-out ground-truth specification, and (2) the task of generating a Lean implementation that provably satisfies this specification. Unlike prior benchmarks, ${\rm C{\small LEVER}}$ avoids test-case supervision, LLM-generated annotations, and specifications that leak implementation logic or allow vacuous solutions. All outputs are verified post-hoc using Lean's type checker to ensure machine-checkable correctness. We use ${\rm C{\small LEVER}}$ to evaluate several few-shot and agentic approaches based on state-of-the-art language models. These methods all struggle to achieve full verification, establishing it as a challenging frontier benchmark for program synthesis and formal reasoning. Our benchmark can be found on GitHub(https://github.com/trishullab/clever) as well as HuggingFace(https://huggingface.co/datasets/amitayusht/clever). All our evaluation code is also available online(https://github.com/trishullab/clever-prover).
♻ ☆ Stop Summation: Min-Form Credit Assignment Is All Process Reward Model Needs for Reasoning NeurIPS 2025
Process reward models (PRMs) have proven effective for test-time scaling of Large Language Models (LLMs) on challenging reasoning tasks. However, reward hacking issues with PRMs limit their successful application in reinforcement fine-tuning. In this paper, we identify the main cause of PRM-induced reward hacking: the canonical summation-form credit assignment in reinforcement learning (RL), which defines the value as cumulative gamma-decayed future rewards, easily induces LLMs to hack steps with high rewards. To address this, we propose PURE: Process sUpervised Reinforcement lEarning. The key innovation of PURE is a min-form credit assignment that formulates the value function as the minimum of future rewards. This method significantly alleviates reward hacking by limiting the value function range and distributing advantages more reasonably. Through extensive experiments on 3 base models, we show that PRM-based approaches enabling min-form credit assignment achieve comparable reasoning performance to verifiable reward-based methods within only 30% steps. In contrast, the canonical sum-form credit assignment collapses training even at the beginning! Additionally, when we supplement PRM-based fine-tuning with just 10% verifiable rewards, we further alleviate reward hacking and produce the best fine-tuned model based on Qwen2.5-Math-7B in our experiments, achieving 82.5% accuracy on AMC23 and 53.3% average accuracy across 5 benchmarks. Moreover, we summarize the observed reward hacking cases and analyze the causes of training collapse. We release our code and model weights at https://github.com/CJReinforce/PURE.
comment: Accepted by NeurIPS 2025
♻ ☆ TabR1: Taming GRPO for tabular reasoning LLMs
Tabular prediction has traditionally relied on gradient-boosted decision trees and specialized deep learning models, which excel within tasks but provide limited interpretability and weak transfer across tables. Reasoning large language models (LLMs) promise cross-task adaptability with trans- parent reasoning traces, yet their potential has not been fully realized for tabular data. This paper presents TabR1, the first reasoning LLM for tabular prediction with multi-step reasoning. At its core is Permutation Relative Policy Optimization (PRPO), a simple yet efficient reinforcement learning method that encodes column-permutation invariance as a structural prior. By construct- ing multiple label-preserving permutations per sample and estimating advantages both within and across permutations, PRPO transforms sparse rewards into dense learning signals and improves generalization. With limited supervision, PRPO activates the reasoning ability of LLMs for tabular prediction, enhancing few-shot and zero-shot performance as well as interpretability. Comprehensive experiments demonstrate that TabR1 achieves performance comparable to strong baselines under full-supervision fine-tuning. In the zero-shot setting, TabR1 approaches the performance of strong baselines under the 32-shot setting. Moreover, TabR1 (8B) substantially outperforms much larger LLMs across various tasks, achieving up to 53.17% improvement over DeepSeek-R1 (685B).
♻ ☆ Sampling from multi-modal distributions with polynomial query complexity in fixed dimension via reverse diffusion
Even in low dimensions, sampling from multi-modal distributions is challenging. We provide the first sampling algorithm for a broad class of distributions -- including all Gaussian mixtures -- with a query complexity that is polynomial in the parameters governing multi-modality, assuming fixed dimension. Our sampling algorithm simulates a time-reversed diffusion process, using a self-normalized Monte Carlo estimator of the intermediate score functions. Unlike previous works, it avoids metastability, requires no prior knowledge of the mode locations, and relaxes the well-known log-smoothness assumption which excluded general Gaussian mixtures so far.
♻ ☆ On the Emergence of Linear Analogies in Word Embeddings NeurIPS 2025
Models such as Word2Vec and GloVe construct word embeddings based on the co-occurrence probability $P(i,j)$ of words $i$ and $j$ in text corpora. The resulting vectors $W_i$ not only group semantically similar words but also exhibit a striking linear analogy structure -- for example, $W_{\text{king}} - W_{\text{man}} + W_{\text{woman}} \approx W_{\text{queen}}$ -- whose theoretical origin remains unclear. Previous observations indicate that this analogy structure: (i) already emerges in the top eigenvectors of the matrix $M(i,j) = P(i,j)/P(i)P(j)$, (ii) strengthens and then saturates as more eigenvectors of $M (i, j)$, which controls the dimension of the embeddings, are included, (iii) is enhanced when using $\log M(i,j)$ rather than $M(i,j)$, and (iv) persists even when all word pairs involved in a specific analogy relation (e.g., king-queen, man-woman) are removed from the corpus. To explain these phenomena, we introduce a theoretical generative model in which words are defined by binary semantic attributes, and co-occurrence probabilities are derived from attribute-based interactions. This model analytically reproduces the emergence of linear analogy structure and naturally accounts for properties (i)-(iv). It can be viewed as giving fine-grained resolution into the role of each additional embedding dimension. It is robust to various forms of noise and agrees well with co-occurrence statistics measured on Wikipedia and the analogy benchmark introduced by Mikolov et al.
comment: Main: 10 pages, 3 figures. Appendices: 11 pages, 7 figures. Accepted at NeurIPS 2025 as a poster
♻ ☆ Stochastic gradient descent in high dimensions for multi-spiked tensor PCA
We study the high-dimensional dynamics of online stochastic gradient descent (SGD) for the multi-spiked tensor model. This multi-index model arises from the tensor principal component analysis (PCA) problem with multiple spikes, where the goal is to estimate $r$ unknown signal vectors within the $N$-dimensional unit sphere through maximum likelihood estimation from noisy observations of a $p$-tensor. We determine the number of samples and the conditions on the signal-to-noise ratios (SNRs) required to efficiently recover the unknown spikes from natural random initializations. We show that full recovery of all spikes is possible provided a number of sample scaling as $N^{p-2}$, matching the algorithmic threshold identified in the rank-one case [Ben Arous, Gheissari, Jagannath 2020, 2021]. Our results are obtained through a detailed analysis of a low-dimensional system that describes the evolution of the correlations between the estimators and the spikes, while controlling the noise in the dynamics. We find that the spikes are recovered sequentially in a process we term "sequential elimination": once a correlation exceeds a critical threshold, all correlations sharing a row or column index become sufficiently small, allowing the next correlation to grow and become macroscopic. The order in which correlations become macroscopic depends on their initial values and the corresponding SNRs, leading to either exact recovery or recovery of a permutation of the spikes. In the matrix case, when $p=2$, if the SNRs are sufficiently separated, we achieve exact recovery of the spikes, whereas equal SNRs lead to recovery of the subspace spanned by them.
comment: 68 pages, 8 figures
♻ ☆ Superposition Yields Robust Neural Scaling NeurIPS 2025
The success of today's large language models (LLMs) depends on the observation that larger models perform better. However, the origin of this neural scaling law, that loss decreases as a power law with model size, remains unclear. We propose that representation superposition, meaning that LLMs represent more features than they have dimensions, can be a key contributor to loss and cause neural scaling. Based on Anthropic's toy model, we use weight decay to control the degree of superposition, allowing us to systematically study how loss scales with model size. When superposition is weak, the loss follows a power law only if data feature frequencies are power-law distributed. In contrast, under strong superposition, the loss generically scales inversely with model dimension across a broad class of frequency distributions, due to geometric overlaps between representation vectors. We confirmed that open-sourced LLMs operate in the strong superposition regime and have loss scaling like one over the model dimension, and that the Chinchilla scaling laws are also consistent with this behavior. Our results identify representation superposition as a central driver of neural scaling laws, providing insights into questions like when neural scaling laws can be improved and when they will break down.
comment: Accepted at NeurIPS 2025
♻ ☆ Flow based approach for Dynamic Temporal Causal models with non-Gaussian or Heteroscedastic Noises
Understanding causal relationships in multivariate time series is crucial in many scenarios, such as those dealing with financial or neurological data. Many such time series exhibit multiple regimes, i.e., consecutive temporal segments with a priori unknown boundaries, with each regime having its own causal structure. Inferring causal dependencies and regime shifts is critical for analyzing the underlying processes. However, causal structure learning in this setting is challenging due to (1) non-stationarity, i.e., each regime can have its own causal graph and mixing function, and (2) complex noise distributions, which may be nonGaussian or heteroscedastic. Existing causal discovery approaches cannot address these challenges, since generally assume stationarity or Gaussian noise with constant variance. Hence, we introduce FANTOM, a unified framework for causal discovery that handles non-stationary processes along with non-Gaussian and heteroscedastic noises. FANTOM simultaneously infers the number of regimes and their corresponding indices and learns each regime's Directed Acyclic Graph. It uses a Bayesian Expectation Maximization algorithm that maximizes the evidence lower bound of the data log-likelihood. On the theoretical side, we prove, under mild assumptions, that temporal heteroscedastic causal models, introduced in FANTOM's formulation, are identifiable in both stationary and non-stationary settings. In addition, extensive experiments on synthetic and real data show that FANTOM outperforms existing methods.
♻ ☆ CTSketch: Compositional Tensor Sketching for Scalable Neurosymbolic Learning
Many computational tasks benefit from being formulated as the composition of neural networks followed by a discrete symbolic program. The goal of neurosymbolic learning is to train the neural networks using end-to-end input-output labels of the composite. We introduce CTSketch, a novel, scalable neurosymbolic learning algorithm. CTSketch uses two techniques to improve the scalability of neurosymbolic inference: decompose the symbolic program into sub-programs and summarize each sub-program with a sketched tensor. This strategy allows us to approximate the output distribution of the program with simple tensor operations over the input distributions and the sketches. We provide theoretical insight into the maximum approximation error. Furthermore, we evaluate CTSketch on benchmarks from the neurosymbolic learning literature, including some designed for evaluating scalability. Our results show that CTSketch pushes neurosymbolic learning to new scales that were previously unattainable, with neural predictors obtaining high accuracy on tasks with one thousand inputs, despite supervision only on the final output.
comment: 18 pages, 6 figures
♻ ☆ From Counterfactuals to Trees: Competitive Analysis of Model Extraction Attacks
The advent of Machine Learning as a Service (MLaaS) has heightened the trade-off between model explainability and security. In particular, explainability techniques, such as counterfactual explanations, inadvertently increase the risk of model extraction attacks, enabling unauthorized replication of proprietary models. In this paper, we formalize and characterize the risks and inherent complexity of model reconstruction, focusing on the "oracle'' queries required for faithfully inferring the underlying prediction function. We present the first formal analysis of model extraction attacks through the lens of competitive analysis, establishing a foundational framework to evaluate their efficiency. Focusing on models based on additive decision trees (e.g., decision trees, gradient boosting, and random forests), we introduce novel reconstruction algorithms that achieve provably perfect fidelity while demonstrating strong anytime performance. Our framework provides theoretical bounds on the query complexity for extracting tree-based model, offering new insights into the security vulnerabilities of their deployment.
♻ ☆ Temporal-Difference Variational Continual Learning NeurIPS 2025
Machine Learning models in real-world applications must continuously learn new tasks to adapt to shifts in the data-generating distribution. Yet, for Continual Learning (CL), models often struggle to balance learning new tasks (plasticity) with retaining previous knowledge (memory stability). Consequently, they are susceptible to Catastrophic Forgetting, which degrades performance and undermines the reliability of deployed systems. In the Bayesian CL literature, variational methods tackle this challenge by employing a learning objective that recursively updates the posterior distribution while constraining it to stay close to its previous estimate. Nonetheless, we argue that these methods may be ineffective due to compounding approximation errors over successive recursions. To mitigate this, we propose new learning objectives that integrate the regularization effects of multiple previous posterior estimations, preventing individual errors from dominating future posterior updates and compounding over time. We reveal insightful connections between these objectives and Temporal-Difference methods, a popular learning mechanism in Reinforcement Learning and Neuroscience. Experiments on challenging CL benchmarks show that our approach effectively mitigates Catastrophic Forgetting, outperforming strong Variational CL methods.
comment: Published at NeurIPS 2025
♻ ☆ ReDit: Reward Dithering for Improved LLM Policy Optimization
DeepSeek-R1 has successfully enhanced Large Language Model (LLM) reasoning capabilities through its rule-based reward system. While it's a ''perfect'' reward system that effectively mitigates reward hacking, such reward functions are often discrete. Our experimental observations suggest that discrete rewards can lead to gradient anomaly, unstable optimization, and slow convergence. To address this issue, we propose ReDit (Reward Dithering), a method that dithers the discrete reward signal by adding simple random noise. With this perturbed reward, exploratory gradients are continuously provided throughout the learning process, enabling smoother gradient updates and accelerating convergence. The injected noise also introduces stochasticity into flat reward regions, encouraging the model to explore novel policies and escape local optima. Experiments across diverse tasks demonstrate the effectiveness and efficiency of ReDit. On average, ReDit achieves performance comparable to vanilla GRPO with only approximately 10% the training steps, and furthermore, still exhibits a 4% performance improvement over vanilla GRPO when trained for a similar duration. Visualizations confirm significant mitigation of gradient issues with ReDit. Moreover, theoretical analyses are provided to further validate these advantages.
comment: 34 pages, 19 figures
♻ ☆ CALM-PDE: Continuous and Adaptive Convolutions for Latent Space Modeling of Time-dependent PDEs NeurIPS
Solving time-dependent Partial Differential Equations (PDEs) using a densely discretized spatial domain is a fundamental problem in various scientific and engineering disciplines, including modeling climate phenomena and fluid dynamics. However, performing these computations directly in the physical space often incurs significant computational costs. To address this issue, several neural surrogate models have been developed that operate in a compressed latent space to solve the PDE. While these approaches reduce computational complexity, they often use Transformer-based attention mechanisms to handle irregularly sampled domains, resulting in increased memory consumption. In contrast, convolutional neural networks allow memory-efficient encoding and decoding but are limited to regular discretizations. Motivated by these considerations, we propose CALM-PDE, a model class that efficiently solves arbitrarily discretized PDEs in a compressed latent space. We introduce a novel continuous convolution-based encoder-decoder architecture that uses an epsilon-neighborhood-constrained kernel and learns to apply the convolution operator to adaptive and optimized query points. We demonstrate the effectiveness of CALM-PDE on a diverse set of PDEs with both regularly and irregularly sampled spatial domains. CALM-PDE is competitive with or outperforms existing baseline methods while offering significant improvements in memory and inference time efficiency compared to Transformer-based methods.
comment: Accepted for publication at the 39th Conference on Neural Information Processing Systems (NeurIPS) 2025, San Diego, California, USA
♻ ☆ Lessons Learned: A Multi-Agent Framework for Code LLMs to Learn and Improve NeurIPS 2025
Recent studies show that LLMs possess different skills and specialize in different tasks. In fact, we observe that their varied performance occur in several levels of granularity. For example, in the code optimization task, code LLMs excel at different optimization categories and no one dominates others. This observation prompts the question of how one leverages multiple LLM agents to solve a coding problem without knowing their complementary strengths a priori. We argue that a team of agents can learn from each other's successes and failures so as to improve their own performance. Thus, a lesson is the knowledge produced by an agent and passed on to other agents in the collective solution process. We propose a lesson-based collaboration framework, design the lesson solicitation--banking--selection mechanism, and demonstrate that a team of small LLMs with lessons learned can outperform a much larger LLM and other multi-LLM collaboration methods.
comment: NeurIPS 2025. Code is available at https://github.com/MITIBM-FastCoder/LessonL
♻ ☆ Which Is Better For Reducing Outdated and Vulnerable Dependencies: Pinning or Floating?
Developers consistently use version constraints to specify acceptable versions of the dependencies for their project. \emph{Pinning} dependencies can reduce the likelihood of breaking changes, but comes with a cost of manually managing the replacement of outdated and vulnerable dependencies. On the other hand, \emph{floating} can be used to automatically get bug fixes and security fixes, but comes with the risk of breaking changes. Security practitioners advocate \emph{pinning} dependencies to prevent against software supply chain attacks, e.g., malicious package updates. However, since \emph{pinning} is the tightest version constraint, \emph{pinning} is the most likely to result in outdated dependencies. Nevertheless, how the likelihood of becoming outdated or vulnerable dependencies changes across version constraint types is unknown. The goal of this study is to aid developers in making an informed dependency version constraint choice by empirically evaluating the likelihood of dependencies becoming outdated or vulnerable across version constraint types at scale. In this study, we first identify the trends in dependency version constraint usage and the patterns of version constraint type changes made by developers in the npm, PyPI, and Cargo ecosystems. We then modeled the dependency state transitions using survival analysis and estimated how the likelihood of becoming outdated or vulnerable changes when using \emph{pinning} as opposed to the rest of the version constraint types. We observe that among outdated and vulnerable dependencies, the most commonly used version constraint type is \emph{floating-minor}, with \emph{pinning} being the next most common. We also find that \emph{floating-major} is the least likely to result in outdated and \emph{floating-minor} is the least likely to result in vulnerable dependencies.
comment: Accepted to ASE 2025
♻ ☆ Embedding principle of homogeneous neural network for classification problem
In this paper, we study the Karush-Kuhn-Tucker (KKT) points of the associated maximum-margin problem in homogeneous neural networks, including fully-connected and convolutional neural networks. In particular, We investigates the relationship between such KKT points across networks of different widths generated. We introduce and formalize the \textbf{KKT point embedding principle}, establishing that KKT points of a homogeneous network's max-margin problem ($P_{\Phi}$) can be embedded into the KKT points of a larger network's problem ($P_{\tilde{\Phi}}$) via specific linear isometric transformations. We rigorously prove this principle holds for neuron splitting in fully-connected networks and channel splitting in convolutional neural networks. Furthermore, we connect this static embedding to the dynamics of gradient flow training with smooth losses. We demonstrate that trajectories initiated from appropriately mapped points remain mapped throughout training and that the resulting $\omega$-limit sets of directions are correspondingly mapped, thereby preserving the alignment with KKT directions dynamically when directional convergence occurs. We conduct several experiments to justify that trajectories are preserved. Our findings offer insights into the effects of network width, parameter redundancy, and the structural connections between solutions found via optimization in homogeneous networks of varying sizes.
♻ ☆ Making Classic GNNs Strong Baselines Across Varying Homophily: A Smoothness-Generalization Perspective NeurIPS 2025
Graph Neural Networks (GNNs) have achieved great success but are often considered to be challenged by varying levels of homophily in graphs. Recent empirical studies have surprisingly shown that homophilic GNNs can perform well across datasets of different homophily levels with proper hyperparameter tuning, but the underlying theory and effective architectures remain unclear. To advance GNN universality across varying homophily, we theoretically revisit GNN message passing and uncover a novel smoothness-generalization dilemma, where increasing hops inevitably enhances smoothness at the cost of generalization. This dilemma hinders learning in higher-order homophilic neighborhoods and all heterophilic ones, where generalization is critical due to complex neighborhood class distributions that are sensitive to shifts induced by noise and sparsity. To address this, we introduce the Inceptive Graph Neural Network (IGNN) built on three simple yet effective design principles, which alleviate the dilemma by enabling distinct hop-wise generalization alongside improved overall generalization with adaptive smoothness. Benchmarking against 30 baselines demonstrates IGNN's superiority and reveals notable universality in certain homophilic GNN variants. Our code and datasets are available at https://github.com/galogm/IGNN.
comment: 36 pages. Accepted by NeurIPS 2025
♻ ☆ BioCLIP 2: Emergent Properties from Scaling Hierarchical Contrastive Learning NeurIPS 2025
Foundation models trained at scale exhibit remarkable emergent behaviors, learning new capabilities beyond their initial training objectives. We find such emergent behaviors in biological vision models via large-scale contrastive vision-language training. To achieve this, we first curate TreeOfLife-200M, comprising 214 million images of living organisms, the largest and most diverse biological organism image dataset to date. We then train BioCLIP 2 on TreeOfLife-200M to distinguish different species. Despite the narrow training objective, BioCLIP 2 yields extraordinary accuracy when applied to various biological visual tasks such as habitat classification and trait prediction. We identify emergent properties in the learned embedding space of BioCLIP 2. At the inter-species level, the embedding distribution of different species aligns closely with functional and ecological meanings (e.g., beak sizes and habitats). At the intra-species level, instead of being diminished, the intra-species variations (e.g., life stages and sexes) are preserved and better separated in subspaces orthogonal to inter-species distinctions. We provide formal proof and analyses to explain why hierarchical supervision and contrastive objectives encourage these emergent properties. Crucially, our results reveal that these properties become increasingly significant with larger-scale training data, leading to a biologically meaningful embedding space.
comment: NeurIPS 2025 Spotlight; Project page: https://imageomics.github.io/bioclip-2/
♻ ☆ Teaming LLMs to Detect and Mitigate Hallucinations NeurIPS 2025
Recent work has demonstrated state-of-the-art results in large language model (LLM) hallucination detection and mitigation through consistency-based approaches which involve aggregating multiple responses sampled from a single LLM for a given prompt. These approaches help offset limitations stemming from the imperfect data on which LLMs are trained, which includes biases and under-representation of information required at deployment time among other limitations which can lead to hallucinations. We show that extending these single-model consistency methods to combine responses from multiple LLMs with different training data, training schemes and model architectures can result in substantial further improvements in hallucination detection and mitigation capabilities beyond their single-model consistency counterparts. We evaluate this "consortium consistency" approach across many model teams from a pool of 15 LLMs and explore under what conditions it is beneficial to team together different LLMs in this manner. Further, we show that these performance improvements often come with reduced inference costs, offsetting a significant drawback with single-model consistency methods.
comment: Accepted to NeurIPS 2025 workshop on Reliable ML from Unreliable Data
♻ ☆ Towards Understanding Safety Alignment: A Mechanistic Perspective from Safety Neurons NeurIPS 2025
Large language models (LLMs) excel in various capabilities but pose safety risks such as generating harmful content and misinformation, even after safety alignment. In this paper, we explore the inner mechanisms of safety alignment through the lens of mechanistic interpretability, focusing on identifying and analyzing safety neurons within LLMs that are responsible for safety behaviors. We propose inference-time activation contrasting to locate these neurons and dynamic activation patching to evaluate their causal effects on model safety. Experiments on multiple prevalent LLMs demonstrate that we can consistently identify about $5\%$ safety neurons, and by only patching their activations we can restore over $90\%$ of the safety performance across various red-teaming benchmarks without influencing general ability. The finding of safety neurons also helps explain the ''alignment tax'' phenomenon by revealing that the key neurons for model safety and helpfulness significantly overlap, yet they require different activation patterns for the same neurons. Furthermore, we demonstrate an application of our findings in safeguarding LLMs by detecting unsafe outputs before generation. The source code is available at https://github.com/THU-KEG/SafetyNeuron.
comment: NeurIPS 2025
♻ ☆ Edit Flows: Flow Matching with Edit Operations
Autoregressive generative models naturally generate variable-length sequences, while non-autoregressive models struggle, often imposing rigid, token-wise structures. We propose Edit Flows, a non-autoregressive model that overcomes these limitations by defining a discrete flow over sequences through edit operations$\unicode{x2013}$insertions, deletions, and substitutions. By modeling these operations within a Continuous-time Markov Chain over the sequence space, Edit Flows enable flexible, position-relative generation that aligns more closely with the structure of sequence data. Our training method leverages an expanded state space with auxiliary variables, making the learning process efficient and tractable. Empirical results show that Edit Flows outperforms both autoregressive and mask models on image captioning and significantly outperforms the mask construction in text and code generation.
♻ ☆ Efficient Vision-Language-Action Models for Embodied Manipulation: A Systematic Survey
Vision-Language-Action (VLA) models extend vision-language models to embodied control by mapping natural-language instructions and visual observations to robot actions. Despite their capabilities, VLA systems face significant challenges due to their massive computational and memory demands, which conflict with the constraints of edge platforms such as on-board mobile manipulators that require real-time performance. Addressing this tension has become a central focus of recent research. In light of the growing efforts toward more efficient and scalable VLA systems, this survey provides a systematic review of approaches for improving VLA efficiency, with an emphasis on reducing latency, memory footprint, and training and inference costs. We categorize existing solutions into four dimensions: model architecture, perception feature, action generation, and training/inference strategies, summarizing representative techniques within each category. Finally, we discuss future trends and open challenges, highlighting directions for advancing efficient embodied intelligence.
♻ ☆ Streaming Federated Learning with Markovian Data
Federated learning (FL) is now recognized as a key framework for communication-efficient collaborative learning. Most theoretical and empirical studies, however, rely on the assumption that clients have access to pre-collected data sets, with limited investigation into scenarios where clients continuously collect data. In many real-world applications, particularly when data is generated by physical or biological processes, client data streams are often modeled by non-stationary Markov processes. Unlike standard i.i.d. sampling, the performance of FL with Markovian data streams remains poorly understood due to the statistical dependencies between client samples over time. In this paper, we investigate whether FL can still support collaborative learning with Markovian data streams. Specifically, we analyze the performance of Minibatch SGD, Local SGD, and a variant of Local SGD with momentum. We answer affirmatively under standard assumptions and smooth non-convex client objectives: the sample complexity is proportional to the inverse of the number of clients with a communication complexity comparable to the i.i.d. scenario. However, the sample complexity for Markovian data streams remains higher than for i.i.d. sampling.
comment: Neurips 2025 camera-ready version
♻ ☆ Residual Kolmogorov-Arnold Network for Enhanced Deep Learning
Despite their immense success, deep convolutional neural networks (CNNs) can be difficult to optimize and costly to train due to hundreds of layers within the network depth. Conventional convolutional operations are fundamentally limited by their linear nature along with fixed activations, where many layers are needed to learn meaningful patterns in data. Because of the sheer size of these networks, this approach is simply computationally inefficient, and poses overfitting or gradient explosion risks, especially in small datasets. As a result, we introduce a "plug-in" module, called Residual Kolmogorov-Arnold Network (RKAN). Our module is highly compact, so it can be easily added into any stage (level) of traditional deep networks, where it learns to integrate supportive polynomial feature transformations to existing convolutional frameworks. RKAN offers consistent improvements over baseline models in different vision tasks and widely tested benchmarks, accomplishing cutting-edge performance on them.
comment: Code is available at https://github.com/withray/residualKAN.git
♻ ☆ floq: Training Critics via Flow-Matching for Scaling Compute in Value-Based RL
A hallmark of modern large-scale machine learning techniques is the use of training objectives that provide dense supervision to intermediate computations, such as teacher forcing the next token in language models or denoising step-by-step in diffusion models. This enables models to learn complex functions in a generalizable manner. Motivated by this observation, we investigate the benefits of iterative computation for temporal difference (TD) methods in reinforcement learning (RL). Typically they represent value functions in a monolithic fashion, without iterative compute. We introduce floq (flow-matching Q-functions), an approach that parameterizes the Q-function using a velocity field and trains it using techniques from flow-matching, typically used in generative modeling. This velocity field underneath the flow is trained using a TD-learning objective, which bootstraps from values produced by a target velocity field, computed by running multiple steps of numerical integration. Crucially, floq allows for more fine-grained control and scaling of the Q-function capacity than monolithic architectures, by appropriately setting the number of integration steps. Across a suite of challenging offline RL benchmarks and online fine-tuning tasks, floq improves performance by nearly 1.8x. floq scales capacity far better than standard TD-learning architectures, highlighting the potential of iterative computation for value learning.
comment: Added new experiments, fixed typos. Code -- https://github.com/CMU-AIRe/floq
♻ ☆ Prognostic Framework for Robotic Manipulators Operating Under Dynamic Task Severities
Robotic manipulators are critical in many applications but are known to degrade over time. This degradation is influenced by the nature of the tasks performed by the robot. Tasks with higher severity, such as handling heavy payloads, can accelerate the degradation process. One way this degradation is reflected is in the position accuracy of the robot's end-effector. In this paper, we present a prognostic modeling framework that predicts a robotic manipulator's Remaining Useful Life (RUL) while accounting for the effects of task severity. Our framework represents the robot's position accuracy as a Brownian motion process with a random drift parameter that is influenced by task severity. The dynamic nature of task severity is modeled using a continuous-time Markov chain (CTMC). To evaluate RUL, we discuss two approaches -- (1) a novel closed-form expression for Remaining Lifetime Distribution (RLD), and (2) Monte Carlo simulations, commonly used in prognostics literature. Theoretical results establish the equivalence between these RUL computation approaches. We validate our framework through experiments using two distinct physics-based simulators for planar and spatial robot fleets. Our findings show that robots in both fleets experience shorter RUL when handling a higher proportion of high-severity tasks.
comment: Accepted for Publication in IEEE Transactions on Systems, Man, and Cybernetics: Systems
♻ ☆ Optimizing Time Series Forecasting Architectures: A Hierarchical Neural Architecture Search Approach
The rapid development of time series forecasting research has brought many deep learning-based modules in this field. However, despite the increasing amount of new forecasting architectures, it is still unclear if we have leveraged the full potential of these existing modules within a properly designed architecture. In this work, we propose a novel hierarchical neural architecture search approach for time series forecasting tasks. With the design of a hierarchical search space, we incorporate many architecture types designed for forecasting tasks and allow for the efficient combination of different forecasting architecture modules. Results on long-term-time-series-forecasting tasks show that our approach can search for lightweight high-performing forecasting architectures across different forecasting tasks.
♻ ☆ Deep Learning for Continuous-time Stochastic Control with Jumps
In this paper, we introduce a model-based deep-learning approach to solve finite-horizon continuous-time stochastic control problems with jumps. We iteratively train two neural networks: one to represent the optimal policy and the other to approximate the value function. Leveraging a continuous-time version of the dynamic programming principle, we derive two different training objectives based on the Hamilton-Jacobi-Bellman equation, ensuring that the networks capture the underlying stochastic dynamics. Empirical evaluations on different problems illustrate the accuracy and scalability of our approach, demonstrating its effectiveness in solving complex, high-dimensional stochastic control tasks.
♻ ☆ How Ensembles of Distilled Policies Improve Generalisation in Reinforcement Learning
In the zero-shot policy transfer setting in reinforcement learning, the goal is to train an agent on a fixed set of training environments so that it can generalise to similar, but unseen, testing environments. Previous work has shown that policy distillation after training can sometimes produce a policy that outperforms the original in the testing environments. However, it is not yet entirely clear why that is, or what data should be used to distil the policy. In this paper, we prove, under certain assumptions, a generalisation bound for policy distillation after training. The theory provides two practical insights: for improved generalisation, you should 1) train an ensemble of distilled policies, and 2) distil it on as much data from the training environments as possible. We empirically verify that these insights hold in more general settings, when the assumptions required for the theory no longer hold. Finally, we demonstrate that an ensemble of policies distilled on a diverse dataset can generalise significantly better than the original agent.
♻ ☆ KOALA++: Efficient Kalman-Based Optimization of Neural Networks with Gradient-Covariance Products
We propose KOALA++, a scalable Kalman-based optimization algorithm that explicitly models structured gradient uncertainty in neural network training. Unlike second-order methods, which rely on expensive second order gradient calculation, our method directly estimates the parameter covariance matrix by recursively updating compact gradient covariance products. This design improves upon the original KOALA framework that assumed diagonal covariance by implicitly capturing richer uncertainty structure without storing the full covariance matrix and avoiding large matrix inversions. Across diverse tasks, including image classification and language modeling, KOALA++ achieves accuracy on par or better than state-of-the-art first- and second-order optimizers while maintaining the efficiency of first-order methods.
♻ ☆ Fast Inference via Hierarchical Speculative Decoding
Transformer language models generate text autoregressively, making inference latency proportional to the number of tokens generated. Speculative decoding reduces this latency without sacrificing output quality, by leveraging a small draft model to propose tokens that the larger target model verifies in parallel. In practice, however, there may exist a set of potential draft models- ranging from faster but less inaccurate, to slower yet more reliable. We introduce Hierarchical Speculative Decoding (HSD), an algorithm that stacks these draft models into a hierarchy, where each model proposes tokens, and the next larger model verifies them in a single forward pass, until finally the target model verifies tokens. We derive an expression for the expected latency of any such hierarchy and show that selecting the latency-optimal hierarchy can be done in polynomial time. Empirically, HSD gives up to 1.2x speed-up over the best single-draft baseline, demonstrating the practicality of our algorithm in reducing generation latency beyond previous techniques.
♻ ☆ Execution Guided Line-by-Line Code Generation NeurIPS 2026
We present a novel approach to neural code generation that incorporates real-time execution signals into the language model generation process. While large language models (LLMs) have demonstrated impressive code generation capabilities, they typically do not utilize execution feedback during inference, a critical signal that human programmers regularly leverage. Our method, Execution-Guided Classifier-Free Guidance (EG-CFG), dynamically incorporates execution signals as the model generates code, providing line-by-line feedback that guides the generation process toward executable solutions. EG-CFG employs a multi-stage process: first, we conduct beam search to sample candidate program completions for each line; second, we extract execution signals by executing these candidates against test cases; and finally, we incorporate these signals into the prompt during generation. By maintaining consistent signals across tokens within the same line and refreshing signals at line boundaries, our approach provides coherent guidance while preserving syntactic structure. Moreover, the method naturally supports native parallelism at the task level in which multiple agents operate in parallel, exploring diverse reasoning paths and collectively generating a broad set of candidate solutions. Our experiments across diverse coding tasks demonstrate that EG-CFG significantly improves code generation performance compared to standard approaches, achieving state-of-the-art results across various levels of complexity, from foundational problems to challenging competitive programming and data science tasks. Our code is available at: https://github.com/boazlavon/eg_cfg
comment: Accepted to NeurIPS 2026
♻ ☆ Solving 0-1 Integer Programs with Unknown Knapsack Constraints Using Membership Oracles
We consider solving a combinatorial optimization problem with unknown knapsack constraints using a membership oracle for each unknown constraint such that, given a solution, the oracle determines whether the constraint is satisfied or not with absolute certainty. The goal of the decision maker is to find the best possible solution subject to a budget on the number of oracle calls. Inspired by active learning for binary classification based on Support Vector Machines (SVMs), we devise a framework to solve the problem by learning and exploiting surrogate linear constraints. The framework includes training linear separators on the labeled points and selecting new points to be labeled, which is achieved by applying a sampling strategy and solving a 0-1 integer linear program. Following the active learning literature, a natural choice would be SVM as a linear classifier and the information-based sampling strategy known as simple margin, for each unknown constraint. We improve on both sides: we propose an alternative sampling strategy based on mixed-integer quadratic programming and a linear separation method inspired by an algorithm for convex optimization in the oracle model. We conduct experiments on classical problems and variants inspired by realistic applications to show how different linear separation methods and sampling strategies influence the quality of the results in terms of several metrics including objective value, dual bound and running time.
♻ ☆ Certified Self-Consistency: Statistical Guarantees and Test-Time Training for Reliable Reasoning in LLMs
Recent advances such as self-consistency and test-time reinforcement learning (TTRL) improve the reliability of large language models (LLMs) without additional supervision, yet their underlying mechanisms and statistical guarantees remain poorly understood. We present a unified framework for certifiable inference in LLMs, showing that majority voting provides a statistical certificate of self-consistency: under mild assumptions, the aggregated answer coincides with the mode of the model's terminal distribution with high probability. We derive finite-sample and anytime-valid concentration bounds that quantify this confidence, and introduce the Martingale Majority Certificate (MMC), a sequential stopping rule that adaptively determines when sufficient samples have been drawn. We further prove that label-free post-training methods such as TTRL implicitly sharpen the answer distribution by exponentially tilting it toward its mode, thereby reducing the number of samples required for certification. Building on this insight, we propose new post-training objectives that explicitly optimise this trade-off between sharpness and bias. Together, these results explain and connect two central test-time scaling strategies, self-consistency and TTRL, within a single statistical framework for label-free, certifiable reliability in reasoning LLMs.
♻ ☆ On the Fairness of Privacy Protection: Measuring and Mitigating the Disparity of Group Privacy Risks for Differentially Private Machine Learning
While significant progress has been made in conventional fairness-aware machine learning (ML) and differentially private ML (DPML), the fairness of privacy protection across groups remains underexplored. Existing studies have proposed methods to assess group privacy risks, but these are based on the average-case privacy risks of data records. Such approaches may underestimate the group privacy risks, thereby potentially underestimating the disparity across group privacy risks. Moreover, the current method for assessing the worst-case privacy risks of data records is time-consuming, limiting their practical applicability. To address these limitations, we introduce a novel membership inference game that can efficiently audit the approximate worst-case privacy risks of data records. Experimental results demonstrate that our method provides a more stringent measurement of group privacy risks, yielding a reliable assessment of the disparity in group privacy risks. Furthermore, to promote privacy protection fairness in DPML, we enhance the standard DP-SGD algorithm with an adaptive group-specific gradient clipping strategy, inspired by the design of canaries in differential privacy auditing studies. Extensive experiments confirm that our algorithm effectively reduces the disparity in group privacy risks, thereby enhancing the fairness of privacy protection in DPML.
♻ ☆ SMRS: advocating a unified reporting standard for surrogate models in the artificial intelligence era NeurIPS 2025
Surrogate models are widely used to approximate complex systems across science and engineering to reduce computational costs. Despite their widespread adoption, the field lacks standardisation across key stages of the modelling pipeline, including data sampling, model selection, evaluation, and downstream analysis. This fragmentation limits reproducibility and cross-domain utility -- a challenge further exacerbated by the rapid proliferation of AI-driven surrogate models. We argue for the urgent need to establish a structured reporting standard, the Surrogate Model Reporting Standard (SMRS), that systematically captures essential design and evaluation choices while remaining agnostic to implementation specifics. By promoting a standardised yet flexible framework, we aim to improve the reliability of surrogate modelling, foster interdisciplinary knowledge transfer, and, as a result, accelerate scientific progress in the AI era.
comment: Accepted at the 39th Conference on Neural Information Processing Systems (NeurIPS 2025), Position Track
♻ ☆ Channel Balance Interpolation in the Lightning Network via Machine Learning
The Bitcoin Lightning Network is a Layer 2 payment protocol that addresses Bitcoin's scalability by facilitating quick and cost effective transactions through payment channels. This research explores the feasibility of using machine learning models to interpolate channel balances within the network, which can be used for optimizing the network's pathfinding algorithms. While there has been much exploration in balance probing and multipath payment protocols, predicting channel balances using solely node and channel features remains an uncharted area. This paper evaluates the performance of several machine learning models against two heuristic baselines and investigates the predictive capabilities of various features. Our model performs favorably in experimental evaluation, outperforming by 10% against an equal split baseline where both edges are assigned half of the channel capacity.
♻ ☆ Geometry Aware Operator Transformer as an Efficient and Accurate Neural Surrogate for PDEs on Arbitrary Domains
The very challenging task of learning solution operators of PDEs on arbitrary domains accurately and efficiently is of vital importance to engineering and industrial simulations. Despite the existence of many operator learning algorithms to approximate such PDEs, we find that accurate models are not necessarily computationally efficient and vice versa. We address this issue by proposing a geometry aware operator transformer (GAOT) for learning PDEs on arbitrary domains. GAOT combines novel multiscale attentional graph neural operator encoders and decoders, together with geometry embeddings and (vision) transformer processors to accurately map information about the domain and the inputs into a robust approximation of the PDE solution. Multiple innovations in the implementation of GAOT also ensure computational efficiency and scalability. We demonstrate this significant gain in both accuracy and efficiency of GAOT over several baselines on a large number of learning tasks from a diverse set of PDEs, including achieving state of the art performance on three large scale three-dimensional industrial CFD datasets.
♻ ☆ Log Neural Controlled Differential Equations: The Lie Brackets Make a Difference
The vector field of a controlled differential equation (CDE) describes the relationship between a control path and the evolution of a solution path. Neural CDEs (NCDEs) treat time series data as observations from a control path, parameterise a CDE's vector field using a neural network, and use the solution path as a continuously evolving hidden state. As their formulation makes them robust to irregular sampling rates, NCDEs are a powerful approach for modelling real-world data. Building on neural rough differential equations (NRDEs), we introduce Log-NCDEs, a novel, effective, and efficient method for training NCDEs. The core component of Log-NCDEs is the Log-ODE method, a tool from the study of rough paths for approximating a CDE's solution. Log-NCDEs are shown to outperform NCDEs, NRDEs, the linear recurrent unit, S5, and MAMBA on a range of multivariate time series datasets with up to $50{,}000$ observations.
comment: 23 pages, 5 figures
♻ ☆ Equivariance Everywhere All At Once: A Recipe for Graph Foundation Models
Graph machine learning architectures are typically tailored to specific tasks on specific datasets, which hinders their broader applicability. This has led to a new quest in graph machine learning: how to build graph foundation models capable of generalizing across arbitrary graphs and features? In this work, we present a recipe for designing graph foundation models for node-level tasks from first principles. The key ingredient underpinning our study is a systematic investigation of the symmetries that a graph foundation model must respect. In a nutshell, we argue that label permutation-equivariance alongside feature permutation-invariance are necessary in addition to the common node permutation-equivariance on each local neighborhood of the graph. To this end, we first characterize the space of linear transformations that are equivariant to permutations of nodes and labels, and invariant to permutations of features. We then prove that the resulting network is a universal approximator on multisets that respect the aforementioned symmetries. Our recipe uses such layers on the multiset of features induced by the local neighborhood of the graph to obtain a class of graph foundation models for node property prediction. We validate our approach through extensive experiments on 29 real-world node classification datasets, demonstrating both strong zero-shot empirical performance and consistent improvement as the number of training graphs increases.
♻ ☆ Continuous Uniqueness and Novelty Metrics for Generative Modeling of Inorganic Crystals NeurIPS 2025
To address pressing scientific challenges such as climate change, increasingly sophisticated generative artificial intelligence models are being developed that can efficiently sample the large chemical space of possible functional materials. These models can quickly sample new chemical compositions paired with crystal structures. They are typically evaluated using uniqueness and novelty metrics, which depend on a chosen crystal distance function. However, the most prevalent distance function has four limitations: it fails to quantify the degree of similarity between compounds, cannot distinguish compositional difference and structural difference, lacks Lipschitz continuity against shifts in atomic coordinates, and results in a uniqueness metric that is not invariant against the permutation of generated samples. In this work, we propose using two continuous distance functions to evaluate uniqueness and novelty, which theoretically overcome these limitations. Our experiments show that these distances reveal insights missed by traditional distance functions, providing a more reliable basis for evaluating and comparing generative models for inorganic crystals.
comment: 13 pages (5 pages of main text), accepted to the AI4Mat workshop at NeurIPS 2025. See https://github.com/WMD-group/xtalmet for the code. Added references and a footnote in Section 3
♻ ☆ SafeDiver: Cooperative AUV-USV Assisted Diver Communication via Multi-agent Reinforcement Learning Approach
As underwater human activities are increasing, the demand for underwater communication service presents a significant challenge. Existing underwater diver communication methods face hurdles due to inherent disadvantages and complex underwater environments. To address this issue, we propose a scheme that utilizes maritime unmanned systems to assist divers with reliable and high-speed communication. Multiple AUVs are equipped with optical and acoustic multimodal communication devices as relay nodes, providing adaptive communication services based on changes in the diver's activity area. By using a multi-agent reinforcement learning (MARL) approach to control the cooperative movement of AUVs, high-speed and reliable data transmission between divers can be achieved. At the same time, utilizing the advantages of on-demand deployment and wide coverage of unmanned surface vehicles (USVs) as surface relay nodes to coordinate and forward information from AUVs, and controlling AUVs to adaptively select relay USV nodes for data transmission, high-quality communication between divers and surface platform can be achieved. Through simulation verification, the proposed scheme can effectively achieve reliable and high-speed communication for divers.
comment: Withdrawn to reorganize and extend the current findings in a future version
♻ ☆ Adaptive PCA-Based Outlier Detection for Multi-Feature Time Series in Space Missions CCS 2025
Analyzing multi-featured time series data is critical for space missions making efficient event detection, potentially onboard, essential for automatic analysis. However, limited onboard computational resources and data downlink constraints necessitate robust methods for identifying regions of interest in real time. This work presents an adaptive outlier detection algorithm based on the reconstruction error of Principal Component Analysis (PCA) for feature reduction, designed explicitly for space mission applications. The algorithm adapts dynamically to evolving data distributions by using Incremental PCA, enabling deployment without a predefined model for all possible conditions. A pre-scaling process normalizes each feature's magnitude while preserving relative variance within feature types. We demonstrate the algorithm's effectiveness in detecting space plasma events, such as distinct space environments, dayside and nightside transients phenomena, and transition layers through NASA's MMS mission observations. Additionally, we apply the method to NASA's THEMIS data, successfully identifying a dayside transient using onboard-available measurements.
comment: Accepted to ICCS 2025
♻ ☆ Benchmarking World-Model Learning
Model-learning agents should gather information to learn world models that support many downstream tasks and inferences, such as predicting unobserved states, estimating near- and far-term consequences of actions, planning action sequences, and detecting changes in dynamics. Current methods for learning and evaluating world models diverge from this goal: training and evaluation are anchored to next-frame prediction, and success is scored by reward maximization in the same environment. We propose WorldTest, a protocol to evaluate model-learning agents that separates reward-free interaction from a scored test phase in a different but related environment. WorldTest is open-ended$\unicode{x2014}$models should support many different tasks unknown ahead of time$\unicode{x2014}$and agnostic to model representation, allowing comparison across approaches. We instantiated WorldTest with AutumnBench, a suite of 43 interactive grid-world environments and 129 tasks across three families: masked-frame prediction, planning, and predicting changes to the causal dynamics. We compared 517 human participants and three frontier models on AutumnBench. We found that humans outperform the models, and scaling compute improves performance only in some environments but not others. WorldTest provides a novel template$\unicode{x2014}$reward-free exploration, derived tests, and behavior-based scoring$\unicode{x2014}$to evaluate what agents learn about environment dynamics, and AutumnBench exposes significant headroom in world-model learning.
comment: 30 pages, 10 figures
♻ ☆ Field theory for optimal signal propagation in ResNets
Residual networks have significantly better trainability and thus performance than feed-forward networks at large depth. Introducing skip connections facilitates signal propagation to deeper layers. In addition, previous works found that adding a scaling parameter for the residual branch further improves generalization performance. While they empirically identified a particularly beneficial range of values for this scaling parameter, the associated performance improvement and its universality across network hyperparameters yet need to be understood. For feed-forward networks, finite-size theories have led to important insights with regard to signal propagation and hyperparameter tuning. We here derive a systematic finite-size field theory for residual networks to study signal propagation and its dependence on the scaling for the residual branch. We derive analytical expressions for the response function, a measure for the network's sensitivity to inputs, and show that for deep networks the empirically found values for the scaling parameter lie within the range of maximal sensitivity. Furthermore, we obtain an analytical expression for the optimal scaling parameter that depends only weakly on other network hyperparameters, such as the weight variance, thereby explaining its universality across hyperparameters. Overall, this work provides a theoretical framework to study ResNets at finite size.
comment: 25 pages, 9 figures, accepted at Physical Review E
♻ ☆ Continuous Diffusion Model for Language Modeling NeurIPS 2025
Diffusion models have emerged as a promising alternative to autoregressive models in modeling discrete categorical data. However, diffusion models that directly work on discrete data space fail to fully exploit the power of iterative refinement, as the signals are lost during transitions between discrete states. Existing continuous diffusion models for discrete data underperform compared to discrete methods, and the lack of a clear connection between the two approaches hinders the development of effective diffusion models for discrete data. In this work, we propose a continuous diffusion model for language modeling that incorporates the geometry of the underlying categorical distribution. We establish a connection between the discrete diffusion and continuous flow on the statistical manifold, and building on this analogy, introduce a simple diffusion process that generalizes existing discrete diffusion models. We further propose a simulation-free training framework based on radial symmetry, along with a simple technique to address the high dimensionality of the manifold. Comprehensive experiments on language modeling benchmarks and other modalities show that our method outperforms existing discrete diffusion models and approaches the performance of autoregressive models. The code is available at https://github.com/harryjo97/RDLM.
comment: NeurIPS 2025
♻ ☆ MIRA: Medical Time Series Foundation Model for Real-World Health Data NeurIPS 2025
A unified foundation model for medical time series -- pretrained on open access and ethics board-approved medical corpora -- offers the potential to reduce annotation burdens, minimize model customization, and enable robust transfer across clinical institutions, modalities, and tasks, particularly in data-scarce or privacy-constrained environments. However, existing generalist time series foundation models struggle to handle medical time series data due to their inherent challenges, including irregular intervals, heterogeneous sampling rates, and frequent missing values. To address these challenges, we introduce MIRA, a unified foundation model specifically designed for medical time series forecasting. MIRA incorporates a Continuous-Time Rotary Positional Encoding that enables fine-grained modeling of variable time intervals, a frequency-specific mixture-of-experts layer that routes computation across latent frequency regimes to further promote temporal specialization, and a Continuous Dynamics Extrapolation Block based on Neural ODE that models the continuous trajectory of latent states, enabling accurate forecasting at arbitrary target timestamps. Pretrained on a large-scale and diverse medical corpus comprising over 454 billion time points collect from publicly available datasets, MIRA achieves reductions in forecasting errors by an average of 10% and 7% in out-of-distribution and in-distribution scenarios, respectively, when compared to other zero-shot and fine-tuned baselines. We also introduce a comprehensive benchmark spanning multiple downstream clinical tasks, establishing a foundation for future research in medical time series modeling.
comment: NeurIPS 2025 Main Conference
♻ ☆ Bayes or Heisenberg: Who(se) Rules?
Although quantum systems are generally described by quantum state vectors, we show that in certain cases their measurement processes can be reformulated as probabilistic equations expressed in terms of probabilistic state vectors. These probabilistic representations can, in turn, be approximated by the neural network dynamics of the Tensor Brain (TB) model. The Tensor Brain is a recently proposed framework for modeling perception and memory in the brain, providing a biologically inspired mechanism for efficiently integrating generated symbolic representations into reasoning processes.
♻ ☆ Twilight: Adaptive Attention Sparsity with Hierarchical Top-$p$ Pruning NeurIPS 2025
Leveraging attention sparsity to accelerate long-context large language models (LLMs) has been a hot research topic. However, current algorithms such as sparse attention or key-value (KV) cache compression tend to use a fixed budget, which presents a significant challenge during deployment because it fails to account for the dynamic nature of real-world scenarios, where the optimal balance between accuracy and efficiency can vary greatly. In this paper, we find that borrowing top-$p$ sampling (nucleus sampling) to sparse attention can surprisingly achieve adaptive budgeting. Based on this, we propose Twilight, a framework to bring adaptive sparsity to any existing sparse attention algorithm without sacrificing their accuracy. Empirical results show that Twilight can adaptively prune at most 98% of redundant tokens, leading to $15.4\times$ acceleration in self-attention operations and $3.9\times$ acceleration in end-to-end per token latency in long context LLM decoding.
comment: To appear on NeurIPS 2025 (spotlight)
♻ ☆ PRUNE: A Patching Based Repair Framework for Certifiable Unlearning of Neural Networks
It is often desirable to remove (a.k.a. unlearn) a specific part of the training data from a trained neural network model. A typical application scenario is to protect the data holder's right to be forgotten, which has been promoted by many recent regulation rules. Existing unlearning methods involve training alternative models with remaining data, which may be costly and challenging to verify from the data holder or a thirdparty auditor's perspective. In this work, we provide a new angle and propose a novel unlearning approach by imposing carefully crafted "patch" on the original neural network to achieve targeted "forgetting" of the requested data to delete. Specifically, inspired by the research line of neural network repair, we propose to strategically seek a lightweight minimum "patch" for unlearning a given data point with certifiable guarantee. Furthermore, to unlearn a considerable amount of data points (or an entire class), we propose to iteratively select a small subset of representative data points to unlearn, which achieves the effect of unlearning the whole set. Extensive experiments on multiple categorical datasets demonstrates our approach's effectiveness, achieving measurable unlearning while preserving the model's performance and being competitive in efficiency and memory consumption compared to various baseline methods.
♻ ☆ OpenMIBOOD: Open Medical Imaging Benchmarks for Out-Of-Distribution Detection
The growing reliance on Artificial Intelligence (AI) in critical domains such as healthcare demands robust mechanisms to ensure the trustworthiness of these systems, especially when faced with unexpected or anomalous inputs. This paper introduces the Open Medical Imaging Benchmarks for Out-Of-Distribution Detection (OpenMIBOOD), a comprehensive framework for evaluating out-of-distribution (OOD) detection methods specifically in medical imaging contexts. OpenMIBOOD includes three benchmarks from diverse medical domains, encompassing 14 datasets divided into covariate-shifted in-distribution, near-OOD, and far-OOD categories. We evaluate 24 post-hoc methods across these benchmarks, providing a standardized reference to advance the development and fair comparison of OOD detection methods. Results reveal that findings from broad-scale OOD benchmarks in natural image domains do not translate to medical applications, underscoring the critical need for such benchmarks in the medical field. By mitigating the risk of exposing AI models to inputs outside their training distribution, OpenMIBOOD aims to support the advancement of reliable and trustworthy AI systems in healthcare. The repository is available at https://github.com/remic-othr/OpenMIBOOD.
comment: Updated results for NNGuide and ViM
♻ ☆ The Parameterized Complexity of Computing the VC-Dimension NeurIPS 2025
The VC-dimension is a well-studied and fundamental complexity measure of a set system (or hypergraph) that is central to many areas of machine learning. We establish several new results on the complexity of computing the VC-dimension. In particular, given a hypergraph $\mathcal{H}=(\mathcal{V},\mathcal{E})$, we prove that the naive $2^{\mathcal{O}(|\mathcal{V}|)}$-time algorithm is asymptotically tight under the Exponential Time Hypothesis (ETH). We then prove that the problem admits a $1$-additive fixed-parameter approximation algorithm when parameterized by the maximum degree of $\mathcal{H}$ and a fixed-parameter algorithm when parameterized by its dimension, and that these are essentially the only such exploitable structural parameters. Lastly, we consider a generalization of the problem, formulated using graphs, which captures the VC-dimension of both set systems and graphs. We design a $2^{\mathcal{O}(\rm{tw}\cdot \log \rm{tw})}\cdot |V|$-time algorithm for any graph $G=(V,E)$ of treewidth $\rm{tw}$ (which, for a set system, applies to the treewidth of its incidence graph). This is in contrast with closely related problems that require a double-exponential dependency on the treewidth (assuming the ETH).
comment: To appear in the proceedings of NeurIPS 2025
♻ ☆ A Neural Difference-of-Entropies Estimator for Mutual Information
Estimating Mutual Information (MI), a key measure of dependence of random quantities without specific modelling assumptions, is a challenging problem in high dimensions. We propose a novel mutual information estimator based on parametrizing conditional densities using normalizing flows, a deep generative model that has gained popularity in recent years. This estimator leverages a block autoregressive structure to achieve improved bias-variance trade-offs on standard benchmark tasks.
comment: 23 pages, 17 figures
♻ ☆ CONFEX: Uncertainty-Aware Counterfactual Explanations with Conformal Guarantees
Counterfactual explanations (CFXs) provide human-understandable justifications for model predictions, enabling actionable recourse and enhancing interpretability. To be reliable, CFXs must avoid regions of high predictive uncertainty, where explanations may be misleading or inapplicable. However, existing methods often neglect uncertainty or lack principled mechanisms for incorporating it with formal guarantees. We propose CONFEX, a novel method for generating uncertainty-aware counterfactual explanations using Conformal Prediction (CP) and Mixed-Integer Linear Programming (MILP). CONFEX explanations are designed to provide local coverage guarantees, addressing the issue that CFX generation violates exchangeability. To do so, we develop a novel localised CP procedure that enjoys an efficient MILP encoding by leveraging an offline tree-based partitioning of the input space. This way, CONFEX generates CFXs with rigorous guarantees on both predictive uncertainty and optimality. We evaluate CONFEX against state-of-the-art methods across diverse benchmarks and metrics, demonstrating that our uncertainty-aware approach yields robust and plausible explanations.
comment: 35 pages [11+24 Appendix]. Metadata revised
♻ ☆ Multi-Agent Reinforcement Learning for Task Offloading in Wireless Edge Networks NeurIPS'25
In edge computing systems, autonomous agents must make fast local decisions while competing for shared resources. Existing MARL methods often resume to centralized critics or frequent communication, which fail under limited observability and communication constraints. We propose a decentralized framework in which each agent solves a constrained Markov decision process (CMDP), coordinating implicitly through a shared constraint vector. For the specific case of offloading, e.g., constraints prevent overloading shared server resources. Coordination constraints are updated infrequently and act as a lightweight coordination mechanism. They enable agents to align with global resource usage objectives but require little direct communication. Using safe reinforcement learning, agents learn policies that meet both local and global goals. We establish theoretical guarantees under mild assumptions and validate our approach experimentally, showing improved performance over centralized and independent baselines, especially in large-scale settings.
comment: Oral presentation at AI4NextG @ NeurIPS'25 Workshop
♻ ☆ Quantitative convergence of trained single layer neural networks to Gaussian processes NeurIPS 2025
In this paper, we study the quantitative convergence of shallow neural networks trained via gradient descent to their associated Gaussian processes in the infinite-width limit. While previous work has established qualitative convergence under broad settings, precise, finite-width estimates remain limited, particularly during training. We provide explicit upper bounds on the quadratic Wasserstein distance between the network output and its Gaussian approximation at any training time $t \ge 0$, demonstrating polynomial decay with network width. Our results quantify how architectural parameters, such as width and input dimension, influence convergence, and how training dynamics affect the approximation error.
comment: Submitted and accepted at NeurIPS 2025, main body of 10 pages, 3 figures, 28 pages of supplementary material
♻ ☆ WENDy for Nonlinear-in-Parameters ODEs
The Weak-form Estimation of Non-linear Dynamics (WENDy) framework is a recently developed approach for parameter estimation and inference of systems of ordinary differential equations (ODEs). Prior work demonstrated WENDy to be robust, computationally efficient, and accurate, but only works for ODEs which are linear-in-parameters. In this work, we derive a novel extension to accommodate systems of a more general class of ODEs that are nonlinear-in-parameters. Our new WENDy-MLE algorithm approximates a maximum likelihood estimator via local non-convex optimization methods. This is made possible by the availability of analytic expressions for the likelihood function and its first and second order derivatives. WENDy-MLE has better accuracy, a substantially larger domain of convergence, and is often faster than other weak form methods and the conventional output error least squares method. Moreover, we extend the framework to accommodate data corrupted by multiplicative log-normal noise. The WENDy.jl algorithm is efficiently implemented in Julia. In order to demonstrate the practical benefits of our approach, we present extensive numerical results comparing our method, other weak form methods, and output error least squares on a suite of benchmark systems of ODEs in terms of accuracy, precision, bias, and coverage.
♻ ☆ Train with Perturbation, Infer after Merging: A Two-Stage Framework for Continual Learning NeurIPS 2025
Continual Learning (CL) aims to enable models to continuously acquire new knowledge from a sequence of tasks with avoiding the forgetting of learned information. However, existing CL methods only rely on the parameters of the most recent task for inference, which makes them susceptible to catastrophic forgetting. Inspired by the recent success of model merging techniques, we propose \textbf{Perturb-and-Merge (P\&M)}, a novel continual learning framework that integrates model merging into the CL paradigm to mitigate forgetting. Specifically, after training on each task, P\&M constructs a new model by forming a convex combination of the previous model and the newly trained task-specific model. Through theoretical analysis, We minimize the total loss increase across all tasks and derive a closed-form solution for the merging coefficient under mild assumptions. To further improve the performance of the merged model, we observe that the degradation introduced during merging can be alleviated by a regularization term composed of the task vector and the Hessian matrix of the loss function. Interestingly, we show that this term can be efficiently approximated using second-order symmetric finite differences, and a stochastic perturbation strategy along the task vector direction is accordingly devised which incurs no additional forward or backward passes while providing an effective approximation of the regularization term. Finally, we combine P\&M with LoRA, a parameter-efficient fine-tuning method, to reduce memory overhead. Our proposed approach achieves state-of-the-art performance on several continual learning benchmark datasets. The code is available at https://github.com/qhmiao/P-M-for-Continual-Learning.
comment: Accepted by NeurIPS 2025
♻ ☆ Arbitrary Entropy Policy Optimization: Entropy Is Controllable in Reinforcement Fine-tuning
Reinforcement fine-tuning (RFT) is essential for enhancing the reasoning capabilities of large language models (LLM), yet the widely adopted Group Relative Policy Optimization (GRPO) suffers from entropy collapse, where entropy monotonically decreases, exploration vanishes, and policies converge prematurely. Existing entropy-regularized methods only partially alleviate this issue while introducing bias and instability, leaving entropy control unresolved and the connection between entropy, exploration, and performance unclear. We propose Arbitrary Entropy Policy Optimization (AEPO), which eliminates entropy collapse by replacing entropy bonuses with REINFORCE policy gradient on temperature-adjusted distributions and stabilizing entropy through temperature regulation. AEPO integrates three key designs: policy gradient as regularization, distribution as regularization, and REINFORCE as regularization, enabling precise entropy control without distorting optimization. Experiments demonstrate three major contributions: AEPO (1) stabilizes entropy at arbitrary target levels, effectively removing collapse in GRPO; (2) reveals a non-monotonic relation where performance first improves then declines with increasing entropy, clarifying the link between entropy, exploration, and reasoning; and (3) generalizes beyond entropy, providing a broader RFT paradigm where superior target distributions can serve as REINFORCE regularizers.
♻ ☆ VO-DP: Semantic-Geometric Adaptive Diffusion Policy for Vision-Only Robotic Manipulation
In the context of imitation learning, visuomotor-based diffusion policy learning is one of the main directions in robotic manipulation. Most of these approaches rely on point clouds as observation inputs and construct scene representations through point clouds feature learning, which enables them to achieve remarkable accuracy. However, the existing literature lacks an in-depth exploration of vision-only solutions that have significant potential. In this paper, we propose a Vision-Only and single-view Diffusion Policy learning method (VO-DP) that leverages pretrained visual foundation models to achieve effective fusion of semantic and geometric features. We utilize intermediate features from VGGT incorporating semantic features from DINOv2 and geometric features from Alternating Attention blocks. Features are fused via cross-attention and spatially compressed with a CNN to form the input to the policy head. Extensive experiments demonstrate that VO-DP not only outperforms the vision-only baseline DP significantly but also exhibits distinct performance trends against the point cloud-based method DP3: in simulation tasks, VO-DP achieves an average success rate of 64.6% on par with DP3 64.0% and far higher than DP 34.8%, while in real-world tasks, it reaches 87.9%, outperforming both DP3 67.5% and DP 11.2% by a notable margin. Further robustness evaluations confirm that VO-DP remains highly stable under varying conditions including color, size, background, and lighting. Lastly, we open-source a training library for robotic manipulation. Built on Accelerate, this library supports multi-machine and multi-GPU parallel training, as well as mixed precision training. It is compatible with visuomotor policies such as DP, DP3 and VO-DP, and also supports the RoboTwin simulator.
♻ ☆ UMoE: Unifying Attention and FFN with Shared Experts NeurIPS 2025
Sparse Mixture of Experts (MoE) architectures have emerged as a promising approach for scaling Transformer models. While initial works primarily incorporated MoE into feed-forward network (FFN) layers, recent studies have explored extending the MoE paradigm to attention layers to enhance model performance. However, existing attention-based MoE layers require specialized implementations and demonstrate suboptimal performance compared to their FFN-based counterparts. In this paper, we aim to unify MoE designs in attention and FFN layers by introducing a novel reformulation of the attention mechanism, that reveals an underlying FFN-like structure within attention modules. Our proposed architecture, UMoE, achieves superior performance through attention-based MoE layers while enabling efficient parameter sharing between FFN and attention components.
comment: NeurIPS 2025 Spotlight
♻ ☆ Distributional Adversarial Attacks and Training in Deep Hedging NeurIPS 2025
In this paper, we study the robustness of classical deep hedging strategies under distributional shifts by leveraging the concept of adversarial attacks. We first demonstrate that standard deep hedging models are highly vulnerable to small perturbations in the input distribution, resulting in significant performance degradation. Motivated by this, we propose an adversarial training framework tailored to increase the robustness of deep hedging strategies. Our approach extends pointwise adversarial attacks to the distributional setting and introduces a computationally tractable reformulation of the adversarial optimization problem over a Wasserstein ball. This enables the efficient training of hedging strategies that are resilient to distributional perturbations. Through extensive numerical experiments, we show that adversarially trained deep hedging strategies consistently outperform their classical counterparts in terms of out-of-sample performance and resilience to model misspecification. Additional results indicate that the robust strategies maintain reliable performance on real market data and remain effective during periods of market change. Our findings establish a practical and effective framework for robust deep hedging under realistic market uncertainties.
comment: Camera-ready version (accepted at NeurIPS 2025 https://neurips.cc/virtual/2025/poster/115434)
♻ ☆ Zhyper: Factorized Hypernetworks for Conditioned LLM Fine-Tuning
Large Language Model (LLM) conditioning refers to instructing an LLM to generate content in accordance with the norms and values of a specific culture, beliefs of a particular political orientation, or any desired text-specified semantic conditioning. Unfortunately, prompt engineering does not ensure that LLMs behave in accordance with a desired conditioning due to the inductive bias of the pre-training and alignment datasets. Prior works have focused on fine-tuning LLMs by directly conditioning the LoRA weights; however, such methods introduce a large number of parameters. As a remedy, we propose Zhyper, a parameter-efficient factorized hypernetwork framework that generates context-aware LoRA adapters from textual descriptions. Experiments on multiple benchmarks show that Zhyper achieves competitive performance with up to 26x fewer parameters than the state-of-the-art baselines. Furthermore, we extend Zhyper to cultural alignment, demonstrating improved generalization to out-of-domain settings and a better capturing of fine-grained contextual values.
♻ ☆ Sample-efficient Learning of Concepts with Theoretical Guarantees: from Data to Concepts without Interventions
Machine learning is a vital part of many real-world systems, but several concerns remain about the lack of interpretability, explainability and robustness of black-box AI systems. Concept Bottleneck Models (CBM) address some of these challenges by learning interpretable concepts from high-dimensional data, e.g. images, which are used to predict labels. An important issue in CBMs are spurious correlation between concepts, which effectively lead to learning "wrong" concepts. Current mitigating strategies have strong assumptions, e.g., they assume that the concepts are statistically independent of each other, or require substantial interaction in terms of both interventions and labels provided by annotators. In this paper, we describe a framework that provides theoretical guarantees on the correctness of the learned concepts and on the number of required labels, without requiring any interventions. Our framework leverages causal representation learning (CRL) methods to learn latent causal variables from high-dimensional observations in a unsupervised way, and then learns to align these variables with interpretable concepts with few concept labels. We propose a linear and a non-parametric estimator for this mapping, providing a finite-sample high probability result in the linear case and an asymptotic consistency result for the non-parametric estimator. We evaluate our framework in synthetic and image benchmarks, showing that the learned concepts have less impurities and are often more accurate than other CBMs, even in settings with strong correlations between concepts.
comment: 58 pages, 23 figures, 12 Tables, Published
♻ ☆ The Faiss library
Vector databases typically manage large collections of embedding vectors. Currently, AI applications are growing rapidly, and so is the number of embeddings that need to be stored and indexed. The Faiss library is dedicated to vector similarity search, a core functionality of vector databases. Faiss is a toolkit of indexing methods and related primitives used to search, cluster, compress and transform vectors. This paper describes the trade-off space of vector search and the design principles of Faiss in terms of structure, approach to optimization and interfacing. We benchmark key features of the library and discuss a few selected applications to highlight its broad applicability.
♻ ☆ Sign-In to the Lottery: Reparameterizing Sparse Training From Scratch NeurIPS 2025
The performance gap between training sparse neural networks from scratch (PaI) and dense-to-sparse training presents a major roadblock for efficient deep learning. According to the Lottery Ticket Hypothesis, PaI hinges on finding a problem specific parameter initialization. As we show, to this end, determining correct parameter signs is sufficient. Yet, they remain elusive to PaI. To address this issue, we propose Sign-In, which employs a dynamic reparameterization that provably induces sign flips. Such sign flips are complementary to the ones that dense-to-sparse training can accomplish, rendering Sign-In as an orthogonal method. While our experiments and theory suggest performance improvements of PaI, they also carve out the main open challenge to close the gap between PaI and dense-to-sparse training.
comment: Accepted at NeurIPS 2025
Computer Vision and Pattern Recognition
☆ HoloCine: Holistic Generation of Cinematic Multi-Shot Long Video Narratives
State-of-the-art text-to-video models excel at generating isolated clips but fall short of creating the coherent, multi-shot narratives, which are the essence of storytelling. We bridge this "narrative gap" with HoloCine, a model that generates entire scenes holistically to ensure global consistency from the first shot to the last. Our architecture achieves precise directorial control through a Window Cross-Attention mechanism that localizes text prompts to specific shots, while a Sparse Inter-Shot Self-Attention pattern (dense within shots but sparse between them) ensures the efficiency required for minute-scale generation. Beyond setting a new state-of-the-art in narrative coherence, HoloCine develops remarkable emergent abilities: a persistent memory for characters and scenes, and an intuitive grasp of cinematic techniques. Our work marks a pivotal shift from clip synthesis towards automated filmmaking, making end-to-end cinematic creation a tangible future. Our code is available at: https://holo-cine.github.io/.
comment: Project page and code: https://holo-cine.github.io/
☆ LayerComposer: Interactive Personalized T2I via Spatially-Aware Layered Canvas
Despite their impressive visual fidelity, existing personalized generative models lack interactive control over spatial composition and scale poorly to multiple subjects. To address these limitations, we present LayerComposer, an interactive framework for personalized, multi-subject text-to-image generation. Our approach introduces two main contributions: (1) a layered canvas, a novel representation in which each subject is placed on a distinct layer, enabling occlusion-free composition; and (2) a locking mechanism that preserves selected layers with high fidelity while allowing the remaining layers to adapt flexibly to the surrounding context. Similar to professional image-editing software, the proposed layered canvas allows users to place, resize, or lock input subjects through intuitive layer manipulation. Our versatile locking mechanism requires no architectural changes, relying instead on inherent positional embeddings combined with a new complementary data sampling strategy. Extensive experiments demonstrate that LayerComposer achieves superior spatial control and identity preservation compared to the state-of-the-art methods in multi-subject personalized image generation.
comment: 9 pages, preprint
☆ Towards General Modality Translation with Contrastive and Predictive Latent Diffusion Bridge
Recent advances in generative modeling have positioned diffusion models as state-of-the-art tools for sampling from complex data distributions. While these models have shown remarkable success across single-modality domains such as images and audio, extending their capabilities to Modality Translation (MT), translating information across different sensory modalities, remains an open challenge. Existing approaches often rely on restrictive assumptions, including shared dimensionality, Gaussian source priors, and modality-specific architectures, which limit their generality and theoretical grounding. In this work, we propose the Latent Denoising Diffusion Bridge Model (LDDBM), a general-purpose framework for modality translation based on a latent-variable extension of Denoising Diffusion Bridge Models. By operating in a shared latent space, our method learns a bridge between arbitrary modalities without requiring aligned dimensions. We introduce a contrastive alignment loss to enforce semantic consistency between paired samples and design a domain-agnostic encoder-decoder architecture tailored for noise prediction in latent space. Additionally, we propose a predictive loss to guide training toward accurate cross-domain translation and explore several training strategies to improve stability. Our approach supports arbitrary modality pairs and performs strongly on diverse MT tasks, including multi-view to 3D shape generation, image super-resolution, and multi-view scene synthesis. Comprehensive experiments and ablations validate the effectiveness of our framework, establishing a new strong baseline in general modality translation. For more information, see our project page: https://sites.google.com/view/lddbm/home.
☆ GSWorld: Closed-Loop Photo-Realistic Simulation Suite for Robotic Manipulation
This paper presents GSWorld, a robust, photo-realistic simulator for robotics manipulation that combines 3D Gaussian Splatting with physics engines. Our framework advocates "closing the loop" of developing manipulation policies with reproducible evaluation of policies learned from real-robot data and sim2real policy training without using real robots. To enable photo-realistic rendering of diverse scenes, we propose a new asset format, which we term GSDF (Gaussian Scene Description File), that infuses Gaussian-on-Mesh representation with robot URDF and other objects. With a streamlined reconstruction pipeline, we curate a database of GSDF that contains 3 robot embodiments for single-arm and bimanual manipulation, as well as more than 40 objects. Combining GSDF with physics engines, we demonstrate several immediate interesting applications: (1) learning zero-shot sim2real pixel-to-action manipulation policy with photo-realistic rendering, (2) automated high-quality DAgger data collection for adapting policies to deployment environments, (3) reproducible benchmarking of real-robot manipulation policies in simulation, (4) simulation data collection by virtual teleoperation, and (5) zero-shot sim2real visual reinforcement learning. Website: https://3dgsworld.github.io/.
☆ SpectraMorph: Structured Latent Learning for Self-Supervised Hyperspectral Super-Resolution
Hyperspectral sensors capture dense spectra per pixel but suffer from low spatial resolution, causing blurred boundaries and mixed-pixel effects. Co-registered companion sensors such as multispectral, RGB, or panchromatic cameras provide high-resolution spatial detail, motivating hyperspectral super-resolution through the fusion of hyperspectral and multispectral images (HSI-MSI). Existing deep learning based methods achieve strong performance but rely on opaque regressors that lack interpretability and often fail when the MSI has very few bands. We propose SpectraMorph, a physics-guided self-supervised fusion framework with a structured latent space. Instead of direct regression, SpectraMorph enforces an unmixing bottleneck: endmember signatures are extracted from the low-resolution HSI, and a compact multilayer perceptron predicts abundance-like maps from the MSI. Spectra are reconstructed by linear mixing, with training performed in a self-supervised manner via the MSI sensor's spectral response function. SpectraMorph produces interpretable intermediates, trains in under a minute, and remains robust even with a single-band (pan-chromatic) MSI. Experiments on synthetic and real-world datasets show SpectraMorph consistently outperforming state-of-the-art unsupervised/self-supervised baselines while remaining very competitive against supervised baselines.
☆ Small Drafts, Big Verdict: Information-Intensive Visual Reasoning via Speculation
Large Vision-Language Models (VLMs) have achieved remarkable progress in multimodal understanding, yet they struggle when reasoning over information-intensive images that densely interleave textual annotations with fine-grained graphical elements. The main challenges lie in precisely localizing critical cues in dense layouts and multi-hop reasoning to integrate dispersed evidence. We propose Speculative Verdict (SV), a training-free framework inspired by speculative decoding that combines multiple lightweight draft experts with a large verdict model. In the draft stage, small VLMs act as draft experts to generate reasoning paths that provide diverse localization candidates; in the verdict stage, a strong VLM synthesizes these paths to produce the final answer, minimizing computational cost while recovering correct answers. To further improve efficiency and accuracy, SV introduces a consensus expert selection mechanism that forwards only high-agreement reasoning paths to the verdict. Empirically, SV achieves consistent gains on challenging information-intensive and high-resolution visual question answering benchmarks, including InfographicVQA, ChartMuseum, ChartQAPro, and HR-Bench 4K. By synthesizing correct insights from multiple partially accurate reasoning paths, SV achieves both error correction and cost-efficiency compared to large proprietary models or training pipelines. Code is available at https://github.com/Tinaliu0123/speculative-verdict
☆ Real Deep Research for AI, Robotics and Beyond
With the rapid growth of research in AI and robotics now producing over 10,000 papers annually it has become increasingly difficult for researchers to stay up to date. Fast evolving trends, the rise of interdisciplinary work, and the need to explore domains beyond one's expertise all contribute to this challenge. To address these issues, we propose a generalizable pipeline capable of systematically analyzing any research area: identifying emerging trends, uncovering cross domain opportunities, and offering concrete starting points for new inquiry. In this work, we present Real Deep Research (RDR) a comprehensive framework applied to the domains of AI and robotics, with a particular focus on foundation models and robotics advancements. We also briefly extend our analysis to other areas of science. The main paper details the construction of the RDR pipeline, while the appendix provides extensive results across each analyzed topic. We hope this work sheds light for researchers working in the field of AI and beyond.
comment: website: https://realdeepresearch.github.io
☆ Video Prediction of Dynamic Physical Simulations With Pixel-Space Spatiotemporal Transformers
Inspired by the performance and scalability of autoregressive large language models (LLMs), transformer-based models have seen recent success in the visual domain. This study investigates a transformer adaptation for video prediction with a simple end-to-end approach, comparing various spatiotemporal self-attention layouts. Focusing on causal modeling of physical simulations over time; a common shortcoming of existing video-generative approaches, we attempt to isolate spatiotemporal reasoning via physical object tracking metrics and unsupervised training on physical simulation datasets. We introduce a simple yet effective pure transformer model for autoregressive video prediction, utilizing continuous pixel-space representations for video prediction. Without the need for complex training strategies or latent feature-learning components, our approach significantly extends the time horizon for physically accurate predictions by up to 50% when compared with existing latent-space approaches, while maintaining comparable performance on common video quality metrics. In addition, we conduct interpretability experiments to identify network regions that encode information useful to perform accurate estimations of PDE simulation parameters via probing models, and find that this generalizes to the estimation of out-of-distribution simulation parameters. This work serves as a platform for further attention-based spatiotemporal modeling of videos via a simple, parameter efficient, and interpretable approach.
comment: 14 pages, 14 figures
☆ ARGenSeg: Image Segmentation with Autoregressive Image Generation Model NeurIPS 2025
We propose a novel AutoRegressive Generation-based paradigm for image Segmentation (ARGenSeg), achieving multimodal understanding and pixel-level perception within a unified framework. Prior works integrating image segmentation into multimodal large language models (MLLMs) typically employ either boundary points representation or dedicated segmentation heads. These methods rely on discrete representations or semantic prompts fed into task-specific decoders, which limits the ability of the MLLM to capture fine-grained visual details. To address these challenges, we introduce a segmentation framework for MLLM based on image generation, which naturally produces dense masks for target objects. We leverage MLLM to output visual tokens and detokenize them into images using an universal VQ-VAE, making the segmentation fully dependent on the pixel-level understanding of the MLLM. To reduce inference latency, we employ a next-scale-prediction strategy to generate required visual tokens in parallel. Extensive experiments demonstrate that our method surpasses prior state-of-the-art approaches on multiple segmentation datasets with a remarkable boost in inference speed, while maintaining strong understanding capabilities.
comment: Accepted to NeurIPS 2025, 18 pages
☆ Compress to Impress: Efficient LLM Adaptation Using a Single Gradient Step on 100 Samples
Recently, Sharma et al. suggested a method called Layer-SElective-Rank reduction (LASER) which demonstrated that pruning high-order components of carefully chosen LLM's weight matrices can boost downstream accuracy -- without any gradient-based fine-tuning. Yet LASER's exhaustive, per-matrix search (each requiring full-dataset forward passes) makes it impractical for rapid deployment. We demonstrate that this overhead can be removed and find that: (i) Only a small, carefully chosen subset of matrices needs to be inspected -- eliminating the layer-by-layer sweep, (ii) The gradient of each matrix's singular values pinpoints which matrices merit reduction, (iii) Increasing the factorization search space by allowing matrices rows to cluster around multiple subspaces and then decomposing each cluster separately further reduces overfitting on the original training data and further lifts accuracy by up to 24.6 percentage points, and finally, (iv) we discover that evaluating on just 100 samples rather than the full training data -- both for computing the indicative gradients and for measuring the final accuracy -- suffices to further reduce the search time; we explain that as adaptation to downstream tasks is dominated by prompting style, not dataset size. As a result, we show that combining these findings yields a fast and robust adaptation algorithm for downstream tasks. Overall, with a single gradient step on 100 examples and a quick scan of the top candidate layers and factorization techniques, we can adapt LLMs to new datasets -- entirely without fine-tuning.
☆ Radar-Camera Fused Multi-Object Tracking: Online Calibration and Common Feature
This paper presents a Multi-Object Tracking (MOT) framework that fuses radar and camera data to enhance tracking efficiency while minimizing manual interventions. Contrary to many studies that underutilize radar and assign it a supplementary role--despite its capability to provide accurate range/depth information of targets in a world 3D coordinate system--our approach positions radar in a crucial role. Meanwhile, this paper utilizes common features to enable online calibration to autonomously associate detections from radar and camera. The main contributions of this work include: (1) the development of a radar-camera fusion MOT framework that exploits online radar-camera calibration to simplify the integration of detection results from these two sensors, (2) the utilization of common features between radar and camera data to accurately derive real-world positions of detected objects, and (3) the adoption of feature matching and category-consistency checking to surpass the limitations of mere position matching in enhancing sensor association accuracy. To the best of our knowledge, we are the first to investigate the integration of radar-camera common features and their use in online calibration for achieving MOT. The efficacy of our framework is demonstrated by its ability to streamline the radar-camera mapping process and improve tracking precision, as evidenced by real-world experiments conducted in both controlled environments and actual traffic scenarios. Code is available at https://github.com/radar-lab/Radar_Camera_MOT
comment: accepted to IEEE Transactions on Intelligent Transportation Systems (T-ITS)
☆ CUPID: Pose-Grounded Generative 3D Reconstruction from a Single Image
This work proposes a new generation-based 3D reconstruction method, named Cupid, that accurately infers the camera pose, 3D shape, and texture of an object from a single 2D image. Cupid casts 3D reconstruction as a conditional sampling process from a learned distribution of 3D objects, and it jointly generates voxels and pixel-voxel correspondences, enabling robust pose and shape estimation under a unified generative framework. By representing both input camera poses and 3D shape as a distribution in a shared 3D latent space, Cupid adopts a two-stage flow matching pipeline: (1) a coarse stage that produces initial 3D geometry with associated 2D projections for pose recovery; and (2) a refinement stage that integrates pose-aligned image features to enhance structural fidelity and appearance details. Extensive experiments demonstrate Cupid outperforms leading 3D reconstruction methods with an over 3 dB PSNR gain and an over 10% Chamfer Distance reduction, while matching monocular estimators on pose accuracy and delivering superior visual fidelity over baseline 3D generative models. For an immersive view of the 3D results generated by Cupid, please visit cupid3d.github.io.
comment: project page at https://cupid3d.github.io
☆ AlphaFlow: Understanding and Improving MeanFlow Models
MeanFlow has recently emerged as a powerful framework for few-step generative modeling trained from scratch, but its success is not yet fully understood. In this work, we show that the MeanFlow objective naturally decomposes into two parts: trajectory flow matching and trajectory consistency. Through gradient analysis, we find that these terms are strongly negatively correlated, causing optimization conflict and slow convergence. Motivated by these insights, we introduce $\alpha$-Flow, a broad family of objectives that unifies trajectory flow matching, Shortcut Model, and MeanFlow under one formulation. By adopting a curriculum strategy that smoothly anneals from trajectory flow matching to MeanFlow, $\alpha$-Flow disentangles the conflicting objectives, and achieves better convergence. When trained from scratch on class-conditional ImageNet-1K 256x256 with vanilla DiT backbones, $\alpha$-Flow consistently outperforms MeanFlow across scales and settings. Our largest $\alpha$-Flow-XL/2+ model achieves new state-of-the-art results using vanilla DiT backbones, with FID scores of 2.58 (1-NFE) and 2.15 (2-NFE).
☆ DyPE: Dynamic Position Extrapolation for Ultra High Resolution Diffusion
Diffusion Transformer models can generate images with remarkable fidelity and detail, yet training them at ultra-high resolutions remains extremely costly due to the self-attention mechanism's quadratic scaling with the number of image tokens. In this paper, we introduce Dynamic Position Extrapolation (DyPE), a novel, training-free method that enables pre-trained diffusion transformers to synthesize images at resolutions far beyond their training data, with no additional sampling cost. DyPE takes advantage of the spectral progression inherent to the diffusion process, where low-frequency structures converge early, while high-frequencies take more steps to resolve. Specifically, DyPE dynamically adjusts the model's positional encoding at each diffusion step, matching their frequency spectrum with the current stage of the generative process. This approach allows us to generate images at resolutions that exceed the training resolution dramatically, e.g., 16 million pixels using FLUX. On multiple benchmarks, DyPE consistently improves performance and achieves state-of-the-art fidelity in ultra-high-resolution image generation, with gains becoming even more pronounced at higher resolutions. Project page is available at https://noamissachar.github.io/DyPE/.
☆ MEIcoder: Decoding Visual Stimuli from Neural Activity by Leveraging Most Exciting Inputs NeurIPS 2025
Decoding visual stimuli from neural population activity is crucial for understanding the brain and for applications in brain-machine interfaces. However, such biological data is often scarce, particularly in primates or humans, where high-throughput recording techniques, such as two-photon imaging, remain challenging or impossible to apply. This, in turn, poses a challenge for deep learning decoding techniques. To overcome this, we introduce MEIcoder, a biologically informed decoding method that leverages neuron-specific most exciting inputs (MEIs), a structural similarity index measure loss, and adversarial training. MEIcoder achieves state-of-the-art performance in reconstructing visual stimuli from single-cell activity in primary visual cortex (V1), especially excelling on small datasets with fewer recorded neurons. Using ablation studies, we demonstrate that MEIs are the main drivers of the performance, and in scaling experiments, we show that MEIcoder can reconstruct high-fidelity natural-looking images from as few as 1,000-2,500 neurons and less than 1,000 training data points. We also propose a unified benchmark with over 160,000 samples to foster future research. Our results demonstrate the feasibility of reliable decoding in early visual system and provide practical insights for neuroscience and neuroengineering applications.
comment: Accepted to NeurIPS 2025
☆ ACS-SegNet: An Attention-Based CNN-SegFormer Segmentation Network for Tissue Segmentation in Histopathology
Automated histopathological image analysis plays a vital role in computer-aided diagnosis of various diseases. Among developed algorithms, deep learning-based approaches have demonstrated excellent performance in multiple tasks, including semantic tissue segmentation in histological images. In this study, we propose a novel approach based on attention-driven feature fusion of convolutional neural networks (CNNs) and vision transformers (ViTs) within a unified dual-encoder model to improve semantic segmentation performance. Evaluation on two publicly available datasets showed that our model achieved {\mu}IoU/{\mu}Dice scores of 76.79%/86.87% on the GCPS dataset and 64.93%/76.60% on the PUMA dataset, outperforming state-of-the-art and baseline benchmarks. The implementation of our method is publicly available in a GitHub repository: https://github.com/NimaTorbati/ACS-SegNet
comment: 5 pages
☆ AutoScape: Geometry-Consistent Long-Horizon Scene Generation ICCV 2025
This paper proposes AutoScape, a long-horizon driving scene generation framework. At its core is a novel RGB-D diffusion model that iteratively generates sparse, geometrically consistent keyframes, serving as reliable anchors for the scene's appearance and geometry. To maintain long-range geometric consistency, the model 1) jointly handles image and depth in a shared latent space, 2) explicitly conditions on the existing scene geometry (i.e., rendered point clouds) from previously generated keyframes, and 3) steers the sampling process with a warp-consistent guidance. Given high-quality RGB-D keyframes, a video diffusion model then interpolates between them to produce dense and coherent video frames. AutoScape generates realistic and geometrically consistent driving videos of over 20 seconds, improving the long-horizon FID and FVD scores over the prior state-of-the-art by 48.6\% and 43.0\%, respectively.
comment: ICCV 2025. Project page: https://auto-scape.github.io
☆ ALICE-LRI: A General Method for Lossless Range Image Generation for Spinning LiDAR Sensors without Calibration Metadata
3D LiDAR sensors are essential for autonomous navigation, environmental monitoring, and precision mapping in remote sensing applications. To efficiently process the massive point clouds generated by these sensors, LiDAR data is often projected into 2D range images that organize points by their angular positions and distances. While these range image representations enable efficient processing, conventional projection methods suffer from fundamental geometric inconsistencies that cause irreversible information loss, compromising high-fidelity applications. We present ALICE-LRI (Automatic LiDAR Intrinsic Calibration Estimation for Lossless Range Images), the first general, sensor-agnostic method that achieves lossless range image generation from spinning LiDAR point clouds without requiring manufacturer metadata or calibration files. Our algorithm automatically reverse-engineers the intrinsic geometry of any spinning LiDAR sensor by inferring critical parameters including laser beam configuration, angular distributions, and per-beam calibration corrections, enabling lossless projection and complete point cloud reconstruction with zero point loss. Comprehensive evaluation across the complete KITTI and DurLAR datasets demonstrates that ALICE-LRI achieves perfect point preservation, with zero points lost across all point clouds. Geometric accuracy is maintained well within sensor precision limits, establishing geometric losslessness with real-time performance. We also present a compression case study that validates substantial downstream benefits, demonstrating significant quality improvements in practical applications. This paradigm shift from approximate to lossless LiDAR projections opens new possibilities for high-precision remote sensing applications requiring complete geometric preservation.
☆ Mixing Importance with Diversity: Joint Optimization for KV Cache Compression in Large Vision-Language Models
Recent large vision-language models (LVLMs) demonstrate remarkable capabilities in processing extended multi-modal sequences, yet the resulting key-value (KV) cache expansion creates a critical memory bottleneck that fundamentally limits deployment scalability. While existing KV cache compression methods focus on retaining high-importance KV pairs to minimize storage, they often overlook the modality-specific semantic redundancy patterns that emerge distinctively in multi-modal KV caches. In this work, we first analyze how, beyond simple importance, the KV cache in LVLMs exhibits varying levels of redundancy across attention heads. We show that relying solely on importance can only cover a subset of the full KV cache information distribution, leading to potential loss of semantic coverage. To address this, we propose \texttt{MixKV}, a novel method that mixes importance with diversity for optimized KV cache compression in LVLMs. \texttt{MixKV} adapts to head-wise semantic redundancy, selectively balancing diversity and importance when compressing KV pairs. Extensive experiments demonstrate that \texttt{MixKV} consistently enhances existing methods across multiple LVLMs. Under extreme compression (budget=64), \texttt{MixKV} improves baseline methods by an average of \textbf{5.1\%} across five multi-modal understanding benchmarks and achieves remarkable gains of \textbf{8.0\%} and \textbf{9.0\%} for SnapKV and AdaKV on GUI grounding tasks, all while maintaining comparable inference efficiency. Furthermore, \texttt{MixKV} extends seamlessly to LLMs with comparable performance gains. Our code is available at \href{https://github.com/xuyang-liu16/MixKV}{\textcolor{citeblue}{https://github.com/xuyang-liu16/MixKV}}.
comment: Our code is available at https://github.com/xuyang-liu16/MixKV
☆ Diagnosing Visual Reasoning: Challenges, Insights, and a Path Forward
Multimodal large language models (MLLMs) that integrate visual and textual reasoning leverage chain-of-thought (CoT) prompting to tackle complex visual tasks, yet continue to exhibit visual hallucinations and an over-reliance on textual priors. We present a systematic diagnosis of state-of-the-art vision-language models using a three-stage evaluation framework, uncovering key failure modes. To address these, we propose an agent-based architecture that combines LLM reasoning with lightweight visual modules, enabling fine-grained analysis and iterative refinement of reasoning chains. Our results highlight future visual reasoning models should focus on integrating a broader set of specialized tools for analyzing visual content. Our system achieves significant gains (+10.3 on MMMU, +6.0 on MathVista over a 7B baseline), matching or surpassing much larger models. We will release our framework and evaluation suite to facilitate future research.
comment: 5 pages
☆ Efficient Multi-bit Quantization Network Training via Weight Bias Correction and Bit-wise Coreset Sampling
Multi-bit quantization networks enable flexible deployment of deep neural networks by supporting multiple precision levels within a single model. However, existing approaches suffer from significant training overhead as full-dataset updates are repeated for each supported bit-width, resulting in a cost that scales linearly with the number of precisions. Additionally, extra fine-tuning stages are often required to support additional or intermediate precision options, further compounding the overall training burden. To address this issue, we propose two techniques that greatly reduce the training overhead without compromising model utility: (i) Weight bias correction enables shared batch normalization and eliminates the need for fine-tuning by neutralizing quantization-induced bias across bit-widths and aligning activation distributions; and (ii) Bit-wise coreset sampling strategy allows each child model to train on a compact, informative subset selected via gradient-based importance scores by exploiting the implicit knowledge transfer phenomenon. Experiments on CIFAR-10/100, TinyImageNet, and ImageNet-1K with both ResNet and ViT architectures demonstrate that our method achieves competitive or superior accuracy while reducing training time up to 7.88x. Our code is released at https://github.com/a2jinhee/EMQNet_jk.
☆ HybridSOMSpikeNet: A Deep Model with Differentiable Soft Self-Organizing Maps and Spiking Dynamics for Waste Classification
Accurate waste classification is vital for achieving sustainable waste management and reducing the environmental footprint of urbanization. Misclassification of recyclable materials contributes to landfill accumulation, inefficient recycling, and increased greenhouse gas emissions. To address these issues, this study introduces HybridSOMSpikeNet, a hybrid deep learning framework that integrates convolutional feature extraction, differentiable self-organization, and spiking-inspired temporal processing to enable intelligent and energy-efficient waste classification. The proposed model employs a pre-trained ResNet-152 backbone to extract deep spatial representations, followed by a Differentiable Soft Self-Organizing Map (Soft-SOM) that enhances topological clustering and interpretability. A spiking neural head accumulates temporal activations over discrete time steps, improving robustness and generalization. Trained on a ten-class waste dataset, HybridSOMSpikeNet achieved a test accuracy of 97.39%, outperforming several state-of-the-art architectures while maintaining a lightweight computational profile suitable for real-world deployment. Beyond its technical innovations, the framework provides tangible environmental benefits. By enabling precise and automated waste segregation, it supports higher recycling efficiency, reduces contamination in recyclable streams, and minimizes the ecological and operational costs of waste processing. The approach aligns with global sustainability priorities, particularly the United Nations Sustainable Development Goals (SDG 11 and SDG 12), by contributing to cleaner cities, circular economy initiatives, and intelligent environmental management systems.
☆ UltraHR-100K: Enhancing UHR Image Synthesis with A Large-Scale High-Quality Dataset NeurIPS 2025
Ultra-high-resolution (UHR) text-to-image (T2I) generation has seen notable progress. However, two key challenges remain : 1) the absence of a large-scale high-quality UHR T2I dataset, and (2) the neglect of tailored training strategies for fine-grained detail synthesis in UHR scenarios. To tackle the first challenge, we introduce \textbf{UltraHR-100K}, a high-quality dataset of 100K UHR images with rich captions, offering diverse content and strong visual fidelity. Each image exceeds 3K resolution and is rigorously curated based on detail richness, content complexity, and aesthetic quality. To tackle the second challenge, we propose a frequency-aware post-training method that enhances fine-detail generation in T2I diffusion models. Specifically, we design (i) \textit{Detail-Oriented Timestep Sampling (DOTS)} to focus learning on detail-critical denoising steps, and (ii) \textit{Soft-Weighting Frequency Regularization (SWFR)}, which leverages Discrete Fourier Transform (DFT) to softly constrain frequency components, encouraging high-frequency detail preservation. Extensive experiments on our proposed UltraHR-eval4K benchmarks demonstrate that our approach significantly improves the fine-grained detail quality and overall fidelity of UHR image generation. The code is available at \href{https://github.com/NJU-PCALab/UltraHR-100k}{here}.
comment: Accepted by NeurIPS 2025
☆ Better Tokens for Better 3D: Advancing Vision-Language Modeling in 3D Medical Imaging NeurIPS 2025
Recent progress in vision-language modeling for 3D medical imaging has been fueled by large-scale computed tomography (CT) corpora with paired free-text reports, stronger architectures, and powerful pretrained models. This has enabled applications such as automated report generation and text-conditioned 3D image synthesis. Yet, current approaches struggle with high-resolution, long-sequence volumes: contrastive pretraining often yields vision encoders that are misaligned with clinical language, and slice-wise tokenization blurs fine anatomy, reducing diagnostic performance on downstream tasks. We introduce BTB3D (Better Tokens for Better 3D), a causal convolutional encoder-decoder that unifies 2D and 3D training and inference while producing compact, frequency-aware volumetric tokens. A three-stage training curriculum enables (i) local reconstruction, (ii) overlapping-window tiling, and (iii) long-context decoder refinement, during which the model learns from short slice excerpts yet generalizes to scans exceeding 300 slices without additional memory overhead. BTB3D sets a new state-of-the-art on two key tasks: it improves BLEU scores and increases clinical F1 by 40% over CT2Rep, CT-CHAT, and Merlin for report generation; and it reduces FID by 75% and halves FVD compared to GenerateCT and MedSyn for text-to-CT synthesis, producing anatomically consistent 512*512*241 volumes. These results confirm that precise three-dimensional tokenization, rather than larger language backbones alone, is essential for scalable vision-language modeling in 3D medical imaging. The codebase is available at: https://github.com/ibrahimethemhamamci/BTB3D
comment: NeurIPS 2025
☆ Deep Learning in Dental Image Analysis: A Systematic Review of Datasets, Methodologies, and Emerging Challenges
Efficient analysis and processing of dental images are crucial for dentists to achieve accurate diagnosis and optimal treatment planning. However, dental imaging inherently poses several challenges, such as low contrast, metallic artifacts, and variations in projection angles. Combined with the subjectivity arising from differences in clinicians' expertise, manual interpretation often proves time-consuming and prone to inconsistency. Artificial intelligence (AI)-based automated dental image analysis (DIA) offers a promising solution to these issues and has become an integral part of computer-aided dental diagnosis and treatment. Among various AI technologies, deep learning (DL) stands out as the most widely applied and influential approach due to its superior feature extraction and representation capabilities. To comprehensively summarize recent progress in this field, we focus on the two fundamental aspects of DL research-datasets and models. In this paper, we systematically review 260 studies on DL applications in DIA, including 49 papers on publicly available dental datasets and 211 papers on DL-based algorithms. We first introduce the basic concepts of dental imaging and summarize the characteristics and acquisition methods of existing datasets. Then, we present the foundational techniques of DL and categorize relevant models and algorithms according to different DIA tasks, analyzing their network architectures, optimization strategies, training methods, and performance. Furthermore, we summarize commonly used training and evaluation metrics in the DIA domain. Finally, we discuss the current challenges of existing research and outline potential future directions. We hope that this work provides a valuable and systematic reference for researchers in this field. All supplementary materials and detailed comparison tables will be made publicly available on GitHub.
comment: 52 pages, 24 figures. Under Review
☆ SeViCES: Unifying Semantic-Visual Evidence Consensus for Long Video Understanding
Long video understanding remains challenging due to its complex, diverse, and temporally scattered content. Although video large language models (Video-LLMs) can process videos lasting tens of minutes, applying them to truly long sequences is computationally prohibitive and often leads to unfocused or inconsistent reasoning. A promising solution is to select only the most informative frames, yet existing approaches typically ignore temporal dependencies or rely on unimodal evidence, limiting their ability to provide complete and query-relevant context. We propose a Semantic-Visual Consensus Evidence Selection (SeViCES) framework for effective and reliable long video understanding. SeViCES is training-free and model-agnostic, and introduces two key components. The Semantic-Visual Consensus Frame Selection (SVCFS) module selects frames through (1) a temporal-aware semantic branch that leverages LLM reasoning over captions, and (2) a cluster-guided visual branch that aligns embeddings with semantic scores via mutual information. The Answer Consensus Refinement (ACR) module further resolves inconsistencies between semantic- and visual-based predictions by fusing evidence and constraining the answer space. Extensive experiments on long video understanding benchmarks show that SeViCES consistently outperforms state-of-the-art methods in both accuracy and robustness, demonstrating the importance of consensus-driven evidence selection for Video-LLMs.
☆ OnlineSplatter: Pose-Free Online 3D Reconstruction for Free-Moving Objects NeurIPS 2025
Free-moving object reconstruction from monocular video remains challenging, particularly without reliable pose or depth cues and under arbitrary object motion. We introduce OnlineSplatter, a novel online feed-forward framework generating high-quality, object-centric 3D Gaussians directly from RGB frames without requiring camera pose, depth priors, or bundle optimization. Our approach anchors reconstruction using the first frame and progressively refines the object representation through a dense Gaussian primitive field, maintaining constant computational cost regardless of video sequence length. Our core contribution is a dual-key memory module combining latent appearance-geometry keys with explicit directional keys, robustly fusing current frame features with temporally aggregated object states. This design enables effective handling of free-moving objects via spatial-guided memory readout and an efficient sparsification mechanism, ensuring comprehensive yet compact object coverage. Evaluations on real-world datasets demonstrate that OnlineSplatter significantly outperforms state-of-the-art pose-free reconstruction baselines, consistently improving with more observations while maintaining constant memory and runtime.
comment: NeurIPS 2025 (Spotlight)
☆ Unsupervised Domain Adaptation via Similarity-based Prototypes for Cross-Modality Segmentation MICCAI 2021
Deep learning models have achieved great success on various vision challenges, but a well-trained model would face drastic performance degradation when applied to unseen data. Since the model is sensitive to domain shift, unsupervised domain adaptation attempts to reduce the domain gap and avoid costly annotation of unseen domains. This paper proposes a novel framework for cross-modality segmentation via similarity-based prototypes. In specific, we learn class-wise prototypes within an embedding space, then introduce a similarity constraint to make these prototypes representative for each semantic class while separable from different classes. Moreover, we use dictionaries to store prototypes extracted from different images, which prevents the class-missing problem and enables the contrastive learning of prototypes, and further improves performance. Extensive experiments show that our method achieves better results than other state-of-the-art methods.
comment: MICCAI 2021
☆ GenColorBench: A Color Evaluation Benchmark for Text-to-Image Generation Models
Recent years have seen impressive advances in text-to-image generation, with image generative or unified models producing high-quality images from text. Yet these models still struggle with fine-grained color controllability, often failing to accurately match colors specified in text prompts. While existing benchmarks evaluate compositional reasoning and prompt adherence, none systematically assess color precision. Color is fundamental to human visual perception and communication, critical for applications from art to design workflows requiring brand consistency. However, current benchmarks either neglect color or rely on coarse assessments, missing key capabilities such as interpreting RGB values or aligning with human expectations. To this end, we propose GenColorBench, the first comprehensive benchmark for text-to-image color generation, grounded in color systems like ISCC-NBS and CSS3/X11, including numerical colors which are absent elsewhere. With 44K color-focused prompts covering 400+ colors, it reveals models' true capabilities via perceptual and automated assessments. Evaluations of popular text-to-image models using GenColorBench show performance variations, highlighting which color conventions models understand best and identifying failure modes. Our GenColorBench assessments will guide improvements in precise color generation. The benchmark will be made public upon acceptance.
☆ Open-o3 Video: Grounded Video Reasoning with Explicit Spatio-Temporal Evidence
Most video reasoning models only generate textual reasoning traces without indicating when and where key evidence appears. Recent models such as OpenAI-o3 have sparked wide interest in evidence-centered reasoning for images, yet extending this ability to videos is more challenging, as it requires joint temporal tracking and spatial localization across dynamic scenes. We introduce Open-o3 Video, a non-agent framework that integrates explicit spatio-temporal evidence into video reasoning, and carefully collect training data and design training strategies to address the aforementioned challenges. The model highlights key timestamps, objects, and bounding boxes alongside its answers, allowing reasoning to be grounded in concrete visual observations. To enable this functionality, we first curate and build two high-quality datasets, STGR-CoT-30k for SFT and STGR-RL-36k for RL, with carefully constructed temporal and spatial annotations, since most existing datasets offer either temporal spans for videos or spatial boxes on images, lacking unified spatio-temporal supervision and reasoning traces. Then, we adopt a cold-start reinforcement learning strategy with multiple specially designed rewards that jointly encourage answer accuracy, temporal alignment, and spatial precision. On V-STAR benchmark, Open-o3 Video achieves state-of-the-art performance, raising mAM by 14.4% and mLGM by 24.2% on the Qwen2.5-VL baseline. Consistent improvements are also observed on a broad range of video understanding benchmarks, including VideoMME, WorldSense, VideoMMMU, and TVGBench. Beyond accuracy, the reasoning traces produced by Open-o3 Video also provide valuable signals for test-time scaling, enabling confidence-aware verification and improving answer reliability.
☆ EmbodiedBrain: Expanding Performance Boundaries of Task Planning for Embodied Intelligence
The realization of Artificial General Intelligence (AGI) necessitates Embodied AI agents capable of robust spatial perception, effective task planning, and adaptive execution in physical environments. However, current large language models (LLMs) and multimodal LLMs (MLLMs) for embodied tasks suffer from key limitations, including a significant gap between model design and agent requirements, an unavoidable trade-off between real-time latency and performance, and the use of unauthentic, offline evaluation metrics. To address these challenges, we propose EmbodiedBrain, a novel vision-language foundation model available in both 7B and 32B parameter sizes. Our framework features an agent-aligned data structure and employs a powerful training methodology that integrates large-scale Supervised Fine-Tuning (SFT) with Step-Augumented Group Relative Policy Optimization (Step-GRPO), which boosts long-horizon task success by integrating preceding steps as Guided Precursors. Furthermore, we incorporate a comprehensive reward system, including a Generative Reward Model (GRM) accelerated at the infrastructure level, to improve training efficiency. For enable thorough validation, we establish a three-part evaluation system encompassing General, Planning, and End-to-End Simulation Benchmarks, highlighted by the proposal and open-sourcing of a novel, challenging simulation environment. Experimental results demonstrate that EmbodiedBrain achieves superior performance across all metrics, establishing a new state-of-the-art for embodied foundation models. Towards paving the way for the next generation of generalist embodied agents, we open-source all of our data, model weight, and evaluating methods, which are available at https://zterobot.github.io/EmbodiedBrain.github.io.
☆ From Far and Near: Perceptual Evaluation of Crowd Representations Across Levels of Detail
In this paper, we investigate how users perceive the visual quality of crowd character representations at different levels of detail (LoD) and viewing distances. Each representation: geometric meshes, image-based impostors, Neural Radiance Fields (NeRFs), and 3D Gaussians, exhibits distinct trade-offs between visual fidelity and computational performance. Our qualitative and quantitative results provide insights to guide the design of perceptually optimized LoD strategies for crowd rendering.
☆ From Cheap to Pro: A Learning-based Adaptive Camera Parameter Network for Professional-Style Imaging
Consumer-grade camera systems often struggle to maintain stable image quality under complex illumination conditions such as low light, high dynamic range, and backlighting, as well as spatial color temperature variation. These issues lead to underexposure, color casts, and tonal inconsistency, which degrade the performance of downstream vision tasks. To address this, we propose ACamera-Net, a lightweight and scene-adaptive camera parameter adjustment network that directly predicts optimal exposure and white balance from RAW inputs. The framework consists of two modules: ACamera-Exposure, which estimates ISO to alleviate underexposure and contrast loss, and ACamera-Color, which predicts correlated color temperature and gain factors for improved color consistency. Optimized for real-time inference on edge devices, ACamera-Net can be seamlessly integrated into imaging pipelines. Trained on diverse real-world data with annotated references, the model generalizes well across lighting conditions. Extensive experiments demonstrate that ACamera-Net consistently enhances image quality and stabilizes perception outputs, outperforming conventional auto modes and lightweight baselines without relying on additional image enhancement modules.
comment: 13 pages. Code and project page will be released
☆ Deep Learning-Powered Visual SLAM Aimed at Assisting Visually Impaired Navigation
Despite advancements in SLAM technologies, robust operation under challenging conditions such as low-texture, motion-blur, or challenging lighting remains an open challenge. Such conditions are common in applications such as assistive navigation for the visually impaired. These challenges undermine localization accuracy and tracking stability, reducing navigation reliability and safety. To overcome these limitations, we present SELM-SLAM3, a deep learning-enhanced visual SLAM framework that integrates SuperPoint and LightGlue for robust feature extraction and matching. We evaluated our framework using TUM RGB-D, ICL-NUIM, and TartanAir datasets, which feature diverse and challenging scenarios. SELM-SLAM3 outperforms conventional ORB-SLAM3 by an average of 87.84% and exceeds state-of-the-art RGB-D SLAM systems by 36.77%. Our framework demonstrates enhanced performance under challenging conditions, such as low-texture scenes and fast motion, providing a reliable platform for developing navigation aids for the visually impaired.
comment: 8 pages, 7 figures, 4 tables
☆ Blur2seq: Blind Deblurring and Camera Trajectory Estimation from a Single Camera Motion-blurred Image
Motion blur caused by camera shake, particularly under large or rotational movements, remains a major challenge in image restoration. We propose a deep learning framework that jointly estimates the latent sharp image and the underlying camera motion trajectory from a single blurry image. Our method leverages the Projective Motion Blur Model (PMBM), implemented efficiently using a differentiable blur creation module compatible with modern networks. A neural network predicts a full 3D rotation trajectory, which guides a model-based restoration network trained end-to-end. This modular architecture provides interpretability by revealing the camera motion that produced the blur. Moreover, this trajectory enables the reconstruction of the sequence of sharp images that generated the observed blurry image. To further refine results, we optimize the trajectory post-inference via a reblur loss, improving consistency between the blurry input and the restored output. Extensive experiments show that our method achieves state-of-the-art performance on both synthetic and real datasets, particularly in cases with severe or spatially variant blur, where end-to-end deblurring networks struggle. Code and trained models are available at https://github.com/GuillermoCarbajal/Blur2Seq/
☆ Fake-in-Facext: Towards Fine-Grained Explainable DeepFake Analysis
The advancement of Multimodal Large Language Models (MLLMs) has bridged the gap between vision and language tasks, enabling the implementation of Explainable DeepFake Analysis (XDFA). However, current methods suffer from a lack of fine-grained awareness: the description of artifacts in data annotation is unreliable and coarse-grained, and the models fail to support the output of connections between textual forgery explanations and the visual evidence of artifacts, as well as the input of queries for arbitrary facial regions. As a result, their responses are not sufficiently grounded in Face Visual Context (Facext). To address this limitation, we propose the Fake-in-Facext (FiFa) framework, with contributions focusing on data annotation and model construction. We first define a Facial Image Concept Tree (FICT) to divide facial images into fine-grained regional concepts, thereby obtaining a more reliable data annotation pipeline, FiFa-Annotator, for forgery explanation. Based on this dedicated data annotation, we introduce a novel Artifact-Grounding Explanation (AGE) task, which generates textual forgery explanations interleaved with segmentation masks of manipulated artifacts. We propose a unified multi-task learning architecture, FiFa-MLLM, to simultaneously support abundant multimodal inputs and outputs for fine-grained Explainable DeepFake Analysis. With multiple auxiliary supervision tasks, FiFa-MLLM can outperform strong baselines on the AGE task and achieve SOTA performance on existing XDFA datasets. The code and data will be made open-source at https://github.com/lxq1000/Fake-in-Facext.
comment: 25 pages, 9 figures, 17 tables
☆ Metis-HOME: Hybrid Optimized Mixture-of-Experts for Multimodal Reasoning
Inspired by recent advancements in LLM reasoning, the field of multimodal reasoning has seen remarkable progress, achieving significant performance gains on intricate tasks such as mathematical problem-solving. Despite this progress, current multimodal large reasoning models exhibit two key limitations. They tend to employ computationally expensive reasoning even for simple queries, leading to inefficiency. Furthermore, this focus on specialized reasoning often impairs their broader, more general understanding capabilities. In this paper, we propose Metis-HOME: a Hybrid Optimized Mixture-of-Experts framework designed to address this trade-off. Metis-HOME enables a ''Hybrid Thinking'' paradigm by structuring the original dense model into two distinct expert branches: a thinking branch tailored for complex, multi-step reasoning, and a non-thinking branch optimized for rapid, direct inference on tasks like general VQA and OCR. A lightweight, trainable router dynamically allocates queries to the most suitable expert. We instantiate Metis-HOME by adapting the Qwen2.5-VL-7B into an MoE architecture. Comprehensive evaluations reveal that our approach not only substantially enhances complex reasoning abilities but also improves the model's general capabilities, reversing the degradation trend observed in other reasoning-specialized models. Our work establishes a new paradigm for building powerful and versatile MLLMs, effectively resolving the prevalent reasoning-vs-generalization dilemma.
☆ EchoDistill: Bidirectional Concept Distillation for One-Step Diffusion Personalization
Recent advances in accelerating text-to-image (T2I) diffusion models have enabled the synthesis of high-fidelity images even in a single step. However, personalizing these models to incorporate novel concepts remains a challenge due to the limited capacity of one-step models to capture new concept distributions effectively. We propose a bidirectional concept distillation framework, EchoDistill, to enable one-step diffusion personalization (1-SDP). Our approach involves an end-to-end training process where a multi-step diffusion model (teacher) and a one-step diffusion model (student) are trained simultaneously. The concept is first distilled from the teacher model to the student, and then echoed back from the student to the teacher. During the EchoDistill, we share the text encoder between the two models to ensure consistent semantic understanding. Following this, the student model is optimized with adversarial losses to align with the real image distribution and with alignment losses to maintain consistency with the teacher's output. Furthermore, we introduce the bidirectional echoing refinement strategy, wherein the student model leverages its faster generation capability to feedback to the teacher model. This bidirectional concept distillation mechanism not only enhances the student ability to personalize novel concepts but also improves the generative quality of the teacher model. Our experiments demonstrate that this collaborative framework significantly outperforms existing personalization methods over the 1-SDP setup, establishing a novel paradigm for rapid and effective personalization in T2I diffusion models.
comment: Project page available at https://liulisixin.github.io/EchoDistill-page/
☆ Reliable and Reproducible Demographic Inference for Fairness in Face Analysis
Fairness evaluation in face analysis systems (FAS) typically depends on automatic demographic attribute inference (DAI), which itself relies on predefined demographic segmentation. However, the validity of fairness auditing hinges on the reliability of the DAI process. We begin by providing a theoretical motivation for this dependency, showing that improved DAI reliability leads to less biased and lower-variance estimates of FAS fairness. To address this, we propose a fully reproducible DAI pipeline that replaces conventional end-to-end training with a modular transfer learning approach. Our design integrates pretrained face recognition encoders with non-linear classification heads. We audit this pipeline across three dimensions: accuracy, fairness, and a newly introduced notion of robustness, defined via intra-identity consistency. The proposed robustness metric is applicable to any demographic segmentation scheme. We benchmark the pipeline on gender and ethnicity inference across multiple datasets and training setups. Our results show that the proposed method outperforms strong baselines, particularly on ethnicity, which is the more challenging attribute. To promote transparency and reproducibility, we will publicly release the training dataset metadata, full codebase, pretrained models, and evaluation toolkit. This work contributes a reliable foundation for demographic inference in fairness auditing.
☆ Conan: Progressive Learning to Reason Like a Detective over Multi-Scale Visual Evidence
Video reasoning, which requires multi-step deduction across frames, remains a major challenge for multimodal large language models (MLLMs). While reinforcement learning (RL)-based methods enhance reasoning capabilities, they often rely on text-only chains that yield ungrounded or hallucinated conclusions. Conversely, frame-retrieval approaches introduce visual grounding but still struggle with inaccurate evidence localization. To address these challenges, we present Conan, a framework for evidence-grounded multi-step video reasoning. Conan identifies contextual and evidence frames, reasons over cross-frame clues, and adaptively decides when to conclude or explore further. To achieve this, we (1) construct Conan-91K, a large-scale dataset of automatically generated reasoning traces that includes frame identification, evidence reasoning, and action decision, and (2) design a multi-stage progressive cold-start strategy combined with an Identification-Reasoning-Action (AIR) RLVR training framework to jointly enhance multi-step visual reasoning. Extensive experiments on six multi-step reasoning benchmarks demonstrate that Conan surpasses the baseline Qwen2.5-VL-7B-Instruct by an average of over 10% in accuracy, achieving state-of-the-art performance. Furthermore, Conan generalizes effectively to long-video understanding tasks, validating its strong scalability and robustness.
☆ Transferable Black-Box One-Shot Forging of Watermarks via Image Preference Models NeurIPS 2025
Recent years have seen a surge in interest in digital content watermarking techniques, driven by the proliferation of generative models and increased legal pressure. With an ever-growing percentage of AI-generated content available online, watermarking plays an increasingly important role in ensuring content authenticity and attribution at scale. There have been many works assessing the robustness of watermarking to removal attacks, yet, watermark forging, the scenario when a watermark is stolen from genuine content and applied to malicious content, remains underexplored. In this work, we investigate watermark forging in the context of widely used post-hoc image watermarking. Our contributions are as follows. First, we introduce a preference model to assess whether an image is watermarked. The model is trained using a ranking loss on purely procedurally generated images without any need for real watermarks. Second, we demonstrate the model's capability to remove and forge watermarks by optimizing the input image through backpropagation. This technique requires only a single watermarked image and works without knowledge of the watermarking model, making our attack much simpler and more practical than attacks introduced in related work. Third, we evaluate our proposed method on a variety of post-hoc image watermarking models, demonstrating that our approach can effectively forge watermarks, questioning the security of current watermarking approaches. Our code and further resources are publicly available.
comment: NeurIPS 2025
☆ Dynamic Weight Adjustment for Knowledge Distillation: Leveraging Vision Transformer for High-Accuracy Lung Cancer Detection and Real-Time Deployment
This paper presents the FuzzyDistillViT-MobileNet model, a novel approach for lung cancer (LC) classification, leveraging dynamic fuzzy logic-driven knowledge distillation (KD) to address uncertainty and complexity in disease diagnosis. Unlike traditional models that rely on static KD with fixed weights, our method dynamically adjusts the distillation weight using fuzzy logic, enabling the student model to focus on high-confidence regions while reducing attention to ambiguous areas. This dynamic adjustment improves the model ability to handle varying uncertainty levels across different regions of LC images. We employ the Vision Transformer (ViT-B32) as the instructor model, which effectively transfers knowledge to the student model, MobileNet, enhancing the student generalization capabilities. The training process is further optimized using a dynamic wait adjustment mechanism that adapts the training procedure for improved convergence and performance. To enhance image quality, we introduce pixel-level image fusion improvement techniques such as Gamma correction and Histogram Equalization. The processed images (Pix1 and Pix2) are fused using a wavelet-based fusion method to improve image resolution and feature preservation. This fusion method uses the wavedec2 function to standardize images to a 224x224 resolution, decompose them into multi-scale frequency components, and recursively average coefficients at each level for better feature representation. To address computational efficiency, Genetic Algorithm (GA) is used to select the most suitable pre-trained student model from a pool of 12 candidates, balancing model performance with computational cost. The model is evaluated on two datasets, including LC25000 histopathological images (99.16% accuracy) and IQOTH/NCCD CT-scan images (99.54% accuracy), demonstrating robustness across different imaging domains.
☆ Mitigating Cross-modal Representation Bias for Multicultural Image-to-Recipe Retrieval
Existing approaches for image-to-recipe retrieval have the implicit assumption that a food image can fully capture the details textually documented in its recipe. However, a food image only reflects the visual outcome of a cooked dish and not the underlying cooking process. Consequently, learning cross-modal representations to bridge the modality gap between images and recipes tends to ignore subtle, recipe-specific details that are not visually apparent but are crucial for recipe retrieval. Specifically, the representations are biased to capture the dominant visual elements, resulting in difficulty in ranking similar recipes with subtle differences in use of ingredients and cooking methods. The bias in representation learning is expected to be more severe when the training data is mixed of images and recipes sourced from different cuisines. This paper proposes a novel causal approach that predicts the culinary elements potentially overlooked in images, while explicitly injecting these elements into cross-modal representation learning to mitigate biases. Experiments are conducted on the standard monolingual Recipe1M dataset and a newly curated multilingual multicultural cuisine dataset. The results indicate that the proposed causal representation learning is capable of uncovering subtle ingredients and cooking actions and achieves impressive retrieval performance on both monolingual and multilingual multicultural datasets.
comment: ACM Multimedia 2025
☆ Positional Encoding Field
Diffusion Transformers (DiTs) have emerged as the dominant architecture for visual generation, powering state-of-the-art image and video models. By representing images as patch tokens with positional encodings (PEs), DiTs combine Transformer scalability with spatial and temporal inductive biases. In this work, we revisit how DiTs organize visual content and discover that patch tokens exhibit a surprising degree of independence: even when PEs are perturbed, DiTs still produce globally coherent outputs, indicating that spatial coherence is primarily governed by PEs. Motivated by this finding, we introduce the Positional Encoding Field (PE-Field), which extends positional encodings from the 2D plane to a structured 3D field. PE-Field incorporates depth-aware encodings for volumetric reasoning and hierarchical encodings for fine-grained sub-patch control, enabling DiTs to model geometry directly in 3D space. Our PE-Field-augmented DiT achieves state-of-the-art performance on single-image novel view synthesis and generalizes to controllable spatial image editing.
comment: 8 pages, 9 figures
☆ Synthetic Data for Robust Runway Detection
Deep vision models are now mature enough to be integrated in industrial and possibly critical applications such as autonomous navigation. Yet, data collection and labeling to train such models requires too much efforts and costs for a single company or product. This drawback is more significant in critical applications, where training data must include all possible conditions including rare scenarios. In this perspective, generating synthetic images is an appealing solution, since it allows a cheap yet reliable covering of all the conditions and environments, if the impact of the synthetic-to-real distribution shift is mitigated. In this article, we consider the case of runway detection that is a critical part in autonomous landing systems developed by aircraft manufacturers. We propose an image generation approach based on a commercial flight simulator that complements a few annotated real images. By controlling the image generation and the integration of real and synthetic data, we show that standard object detection models can achieve accurate prediction. We also evaluate their robustness with respect to adverse conditions, in our case nighttime images, that were not represented in the real data, and show the interest of using a customized domain adaptation strategy.
☆ AccuQuant: Simulating Multiple Denoising Steps for Quantizing Diffusion Models NeurIPS 2025
We present in this paper a novel post-training quantization (PTQ) method, dubbed AccuQuant, for diffusion models. We show analytically and empirically that quantization errors for diffusion models are accumulated over denoising steps in a sampling process. To alleviate the error accumulation problem, AccuQuant minimizes the discrepancies between outputs of a full-precision diffusion model and its quantized version within a couple of denoising steps. That is, it simulates multiple denoising steps of a diffusion sampling process explicitly for quantization, accounting the accumulated errors over multiple denoising steps, which is in contrast to previous approaches to imitating a training process of diffusion models, namely, minimizing the discrepancies independently for each step. We also present an efficient implementation technique for AccuQuant, together with a novel objective, which reduces a memory complexity significantly from $\mathcal{O}(n)$ to $\mathcal{O}(1)$, where $n$ is the number of denoising steps. We demonstrate the efficacy and efficiency of AccuQuant across various tasks and diffusion models on standard benchmarks.
comment: Accepted to NeurIPS 2025
☆ Dino-Diffusion Modular Designs Bridge the Cross-Domain Gap in Autonomous Parking
Parking is a critical pillar of driving safety. While recent end-to-end (E2E) approaches have achieved promising in-domain results, robustness under domain shifts (e.g., weather and lighting changes) remains a key challenge. Rather than relying on additional data, in this paper, we propose Dino-Diffusion Parking (DDP), a domain-agnostic autonomous parking pipeline that integrates visual foundation models with diffusion-based planning to enable generalized perception and robust motion planning under distribution shifts. We train our pipeline in CARLA at regular setting and transfer it to more adversarial settings in a zero-shot fashion. Our model consistently achieves a parking success rate above 90% across all tested out-of-distribution (OOD) scenarios, with ablation studies confirming that both the network architecture and algorithmic design significantly enhance cross-domain performance over existing baselines. Furthermore, testing in a 3D Gaussian splatting (3DGS) environment reconstructed from a real-world parking lot demonstrates promising sim-to-real transfer.
comment: Code is at https://github.com/ChampagneAndfragrance/Dino_Diffusion_Parking_Official
☆ AnyPcc: Compressing Any Point Cloud with a Single Universal Model
Generalization remains a critical challenge for deep learning-based point cloud geometry compression. We argue this stems from two key limitations: the lack of robust context models and the inefficient handling of out-of-distribution (OOD) data. To address both, we introduce AnyPcc, a universal point cloud compression framework. AnyPcc first employs a Universal Context Model that leverages priors from both spatial and channel-wise grouping to capture robust contextual dependencies. Second, our novel Instance-Adaptive Fine-Tuning (IAFT) strategy tackles OOD data by synergizing explicit and implicit compression paradigms. It fine-tunes a small subset of network weights for each instance and incorporates them into the bitstream, where the marginal bit cost of the weights is dwarfed by the resulting savings in geometry compression. Extensive experiments on a benchmark of 15 diverse datasets confirm that AnyPcc sets a new state-of-the-art in point cloud compression. Our code and datasets will be released to encourage reproducible research.
comment: 11 pages, 5 figures
☆ HyperET: Efficient Training in Hyperbolic Space for Multi-modal Large Language Models NeurIPS2025
Multi-modal large language models (MLLMs) have emerged as a transformative approach for aligning visual and textual understanding. They typically require extremely high computational resources (e.g., thousands of GPUs) for training to achieve cross-modal alignment at multi-granularity levels. We argue that a key source of this inefficiency lies in the vision encoders they widely equip with, e.g., CLIP and SAM, which lack the alignment with language at multi-granularity levels. To address this issue, in this paper, we leverage hyperbolic space, which inherently models hierarchical levels and thus provides a principled framework for bridging the granularity gap between visual and textual modalities at an arbitrary granularity level. Concretely, we propose an efficient training paradigm for MLLMs, dubbed as HyperET, which can optimize visual representations to align with their textual counterparts at an arbitrary granularity level through dynamic hyperbolic radius adjustment in hyperbolic space. HyperET employs learnable matrices with M\"{o}bius multiplication operations, implemented via three effective configurations: diagonal scaling matrices, block-diagonal matrices, and banded matrices, providing a flexible yet efficient parametrization strategy. Comprehensive experiments across multiple MLLM benchmarks demonstrate that HyperET consistently improves both existing pre-training and fine-tuning MLLMs clearly with less than 1\% additional parameters.
comment: Accepted by NeurIPS2025
☆ A Parameter-Efficient Mixture-of-Experts Framework for Cross-Modal Geo-Localization
We present a winning solution to RoboSense 2025 Track 4: Cross-Modal Drone Navigation. The task retrieves the most relevant geo-referenced image from a large multi-platform corpus (satellite/drone/ground) given a natural-language query. Two obstacles are severe inter-platform heterogeneity and a domain gap between generic training descriptions and platform-specific test queries. We mitigate these with a domain-aligned preprocessing pipeline and a Mixture-of-Experts (MoE) framework: (i) platform-wise partitioning, satellite augmentation, and removal of orientation words; (ii) an LLM-based caption refinement pipeline to align textual semantics with the distinct visual characteristics of each platform. Using BGE-M3 (text) and EVA-CLIP (image), we train three platform experts using a progressive two-stage, hard-negative mining strategy to enhance discriminative power, and fuse their scores at inference. The system tops the official leaderboard, demonstrating robust cross-modal geo-localization under heterogeneous viewpoints.
☆ Breakdance Video classification in the age of Generative AI
Large Vision Language models have seen huge application in several sports use-cases recently. Most of these works have been targeted towards a limited subset of popular sports like soccer, cricket, basketball etc; focusing on generative tasks like visual question answering, highlight generation. This work analyzes the applicability of the modern video foundation models (both encoder and decoder) for a very niche but hugely popular dance sports - breakdance. Our results show that Video Encoder models continue to outperform state-of-the-art Video Language Models for prediction tasks. We provide insights on how to choose the encoder model and provide a thorough analysis into the workings of a finetuned decoder model for breakdance video classification.
comment: 11 pages
☆ UI-Ins: Enhancing GUI Grounding with Multi-Perspective Instruction-as-Reasoning
GUI grounding, which maps natural-language instructions to actionable UI elements, is a core capability of GUI agents. Prior works largely treats instructions as a static proxy for user intent, overlooking the impact of instruction diversity and quality on grounding performance. Through a careful investigation of existing grounding datasets, we find a 23.3% flaw rate in their instructions and show that inference-time exploitation of instruction diversity yields up to a substantial 76% relative performance improvement. In this paper, we introduce the Instruction-as-Reasoning paradigm, treating instructions as dynamic analytical pathways that offer distinct perspectives and enabling the model to select the most effective pathway during reasoning. To achieve this, we propose a two-stage training framework: supervised fine-tuning (SFT) on synthesized, diverse instructions to instill multi-perspective reasoning, followed by reinforcement learning (RL) to optimize pathway selection and composition. Our resulting models, UI-Ins-7B and UI-Ins-32B, achieve state-of-the-art results on five challenging grounding benchmarks and exhibit emergent reasoning, selectively composing and synthesizing novel instruction pathways at inference. In particular, UI-Ins-32B attains the best grounding accuracy, scoring 87.3% on UI-I2E-Bench, 57.0% on ScreenSpot-Pro, and 84.9% on MMBench-GUI L2. Furthermore, our model demonstrates strong agentic potential, achieving a 74.1% success rate on AndroidWorld using UI-Ins-7B as the executor. Our in-depth analysis reveals additional insights such as how reasoning can be formulated to enhance rather than hinder grounding performance, and how our method mitigates policy collapse in the SFT+RL framework. All code and model checkpoints will be publicly released in https://github.com/alibaba/UI-Ins.
☆ DMC$^3$: Dual-Modal Counterfactual Contrastive Construction for Egocentric Video Question Answering
Egocentric Video Question Answering (Egocentric VideoQA) plays an important role in egocentric video understanding, which refers to answering questions based on first-person videos. Although existing methods have made progress through the paradigm of pre-training and fine-tuning, they ignore the unique challenges posed by the first-person perspective, such as understanding multiple events and recognizing hand-object interactions. To deal with these challenges, we propose a Dual-Modal Counterfactual Contrastive Construction (DMC$^3$) framework, which contains an egocentric videoqa baseline, a counterfactual sample construction module and a counterfactual sample-involved contrastive optimization. Specifically, We first develop a counterfactual sample construction module to generate positive and negative samples for textual and visual modalities through event description paraphrasing and core interaction mining, respectively. Then, We feed these samples together with the original samples into the baseline. Finally, in the counterfactual sample-involved contrastive optimization module, we apply contrastive loss to minimize the distance between the original sample features and the positive sample features, while maximizing the distance from the negative samples. Experiments show that our method achieve 52.51\% and 46.04\% on the \textit{normal} and \textit{indirect} splits of EgoTaskQA, and 13.2\% on QAEGO4D, both reaching the state-of-the-art performance.
☆ Knowledge-Informed Neural Network for Complex-Valued SAR Image Recognition
Deep learning models for complex-valued Synthetic Aperture Radar (CV-SAR) image recognition are fundamentally constrained by a representation trilemma under data-limited and domain-shift scenarios: the concurrent, yet conflicting, optimization of generalization, interpretability, and efficiency. Our work is motivated by the premise that the rich electromagnetic scattering features inherent in CV-SAR data hold the key to resolving this trilemma, yet they are insufficiently harnessed by conventional data-driven models. To this end, we introduce the Knowledge-Informed Neural Network (KINN), a lightweight framework built upon a novel "compression-aggregation-compression" architecture. The first stage performs a physics-guided compression, wherein a novel dictionary processor adaptively embeds physical priors, enabling a compact unfolding network to efficiently extract sparse, physically-grounded signatures. A subsequent aggregation module enriches these representations, followed by a final semantic compression stage that utilizes a compact classification head with self-distillation to learn maximally task-relevant and discriminative embeddings. We instantiate KINN in both CNN (0.7M) and Vision Transformer (0.95M) variants. Extensive evaluations on five SAR benchmarks confirm that KINN establishes a state-of-the-art in parameter-efficient recognition, offering exceptional generalization in data-scarce and out-of-distribution scenarios and tangible interpretability, thereby providing an effective solution to the representation trilemma and offering a new path for trustworthy AI in SAR image analysis.
☆ Causal Debiasing for Visual Commonsense Reasoning
Visual Commonsense Reasoning (VCR) refers to answering questions and providing explanations based on images. While existing methods achieve high prediction accuracy, they often overlook bias in datasets and lack debiasing strategies. In this paper, our analysis reveals co-occurrence and statistical biases in both textual and visual data. We introduce the VCR-OOD datasets, comprising VCR-OOD-QA and VCR-OOD-VA subsets, which are designed to evaluate the generalization capabilities of models across two modalities. Furthermore, we analyze the causal graphs and prediction shortcuts in VCR and adopt a backdoor adjustment method to remove bias. Specifically, we create a dictionary based on the set of correct answers to eliminate prediction shortcuts. Experiments demonstrate the effectiveness of our debiasing method across different datasets.
☆ GMFVAD: Using Grained Multi-modal Feature to Improve Video Anomaly Detection
Video anomaly detection (VAD) is a challenging task that detects anomalous frames in continuous surveillance videos. Most previous work utilizes the spatio-temporal correlation of visual features to distinguish whether there are abnormalities in video snippets. Recently, some works attempt to introduce multi-modal information, like text feature, to enhance the results of video anomaly detection. However, these works merely incorporate text features into video snippets in a coarse manner, overlooking the significant amount of redundant information that may exist within the video snippets. Therefore, we propose to leverage the diversity among multi-modal information to further refine the extracted features, reducing the redundancy in visual features, and we propose Grained Multi-modal Feature for Video Anomaly Detection (GMFVAD). Specifically, we generate more grained multi-modal feature based on the video snippet, which summarizes the main content, and text features based on the captions of original video will be introduced to further enhance the visual features of highlighted portions. Experiments show that the proposed GMFVAD achieves state-of-the-art performance on four mainly datasets. Ablation experiments also validate that the improvement of GMFVAD is due to the reduction of redundant information.
☆ Real-Time Currency Detection and Voice Feedback for Visually Impaired Individuals
Technologies like smartphones have become an essential in our daily lives. It has made accessible to everyone including visually impaired individuals. With the use of smartphone cameras, image capturing and processing have become more convenient. With the use of smartphones and machine learning, the life of visually impaired can be made a little easier. Daily tasks such as handling money without relying on someone can be troublesome for them. For that purpose this paper presents a real-time currency detection system designed to assist visually impaired individuals. The proposed model is trained on a dataset containing 30 classes of notes and coins, representing 3 types of currency: US dollar (USD), Euro (EUR), and Bangladeshi taka (BDT). Our approach uses a YOLOv8 nano model with a custom detection head featuring deep convolutional layers and Squeeze-and-Excitation blocks to enhance feature extraction and detection accuracy. Our model has achieved a higher accuracy of 97.73%, recall of 95.23%, f1-score of 95.85% and a mean Average Precision at IoU=0.5 (mAP50(B)) of 97.21\%. Using the voice feedback after the detection would help the visually impaired to identify the currency. This paper aims to create a practical and efficient currency detection system to empower visually impaired individuals independent in handling money.
comment: 20 pages, 5 tables, 8 figues
☆ GUSL-Dehaze: A Green U-Shaped Learning Approach to Image Dehazing
Image dehazing is a restoration task that aims to recover a clear image from a single hazy input. Traditional approaches rely on statistical priors and the physics-based atmospheric scattering model to reconstruct the haze-free image. While recent state-of-the-art methods are predominantly based on deep learning architectures, these models often involve high computational costs and large parameter sizes, making them unsuitable for resource-constrained devices. In this work, we propose GUSL-Dehaze, a Green U-Shaped Learning approach to image dehazing. Our method integrates a physics-based model with a green learning (GL) framework, offering a lightweight, transparent alternative to conventional deep learning techniques. Unlike neural network-based solutions, GUSL-Dehaze completely avoids deep learning. Instead, we begin with an initial dehazing step using a modified Dark Channel Prior (DCP), which is followed by a green learning pipeline implemented through a U-shaped architecture. This architecture employs unsupervised representation learning for effective feature extraction, together with feature-engineering techniques such as the Relevant Feature Test (RFT) and the Least-Squares Normal Transform (LNT) to maintain a compact model size. Finally, the dehazed image is obtained via a transparent supervised learning strategy. GUSL-Dehaze significantly reduces parameter count while ensuring mathematical interpretability and achieving performance on par with state-of-the-art deep learning models.
☆ Kinaema: a recurrent sequence model for memory and pose in motion
One key aspect of spatially aware robots is the ability to "find their bearings", ie. to correctly situate themselves in previously seen spaces. In this work, we focus on this particular scenario of continuous robotics operations, where information observed before an actual episode start is exploited to optimize efficiency. We introduce a new model, Kinaema, and agent, capable of integrating a stream of visual observations while moving in a potentially large scene, and upon request, processing a query image and predicting the relative position of the shown space with respect to its current position. Our model does not explicitly store an observation history, therefore does not have hard constraints on context length. It maintains an implicit latent memory, which is updated by a transformer in a recurrent way, compressing the history of sensor readings into a compact representation. We evaluate the impact of this model in a new downstream task we call "Mem-Nav". We show that our large-capacity recurrent model maintains a useful representation of the scene, navigates to goals observed before the actual episode start, and is computationally efficient, in particular compared to classical transformers with attention over an observation history.
comment: 10 pages + references + checklist + appendix, 29 pages total
☆ Calibrating Multimodal Consensus for Emotion Recognition
In recent years, Multimodal Emotion Recognition (MER) has made substantial progress. Nevertheless, most existing approaches neglect the semantic inconsistencies that may arise across modalities, such as conflicting emotional cues between text and visual inputs. Besides, current methods are often dominated by the text modality due to its strong representational capacity, which can compromise recognition accuracy. To address these challenges, we propose a model termed Calibrated Multimodal Consensus (CMC). CMC introduces a Pseudo Label Generation Module (PLGM) to produce pseudo unimodal labels, enabling unimodal pretraining in a self-supervised fashion. It then employs a Parameter-free Fusion Module (PFM) and a Multimodal Consensus Router (MCR) for multimodal finetuning, thereby mitigating text dominance and guiding the fusion process toward a more reliable consensus. Experimental results demonstrate that CMC achieves performance on par with or superior to state-of-the-art methods across four datasets, CH-SIMS, CH-SIMS v2, CMU-MOSI, and CMU-MOSEI, and exhibits notable advantages in scenarios with semantic inconsistencies on CH-SIMS and CH-SIMS v2. The implementation of this work is publicly accessible at https://github.com/gw-zhong/CMC.
☆ Seeing the Unseen: Mask-Driven Positional Encoding and Strip-Convolution Context Modeling for Cross-View Object Geo-Localization
Cross-view object geo-localization enables high-precision object localization through cross-view matching, with critical applications in autonomous driving, urban management, and disaster response. However, existing methods rely on keypoint-based positional encoding, which captures only 2D coordinates while neglecting object shape information, resulting in sensitivity to annotation shifts and limited cross-view matching capability. To address these limitations, we propose a mask-based positional encoding scheme that leverages segmentation masks to capture both spatial coordinates and object silhouettes, thereby upgrading the model from "location-aware" to "object-aware." Furthermore, to tackle the challenge of large-span objects (e.g., elongated buildings) in satellite imagery, we design a context enhancement module. This module employs horizontal and vertical strip convolutional kernels to extract long-range contextual features, enhancing feature discrimination among strip-like objects. Integrating MPE and CEM, we present EDGeo, an end-to-end framework for robust cross-view object geo-localization. Extensive experiments on two public datasets (CVOGL and VIGOR-Building) demonstrate that our method achieves state-of-the-art performance, with a 3.39% improvement in localization accuracy under challenging ground-to-satellite scenarios. This work provides a robust positional encoding paradigm and a contextual modeling framework for advancing cross-view geo-localization research.
☆ Empower Words: DualGround for Structured Phrase and Sentence-Level Temporal Grounding NeurIPS 2025
Video Temporal Grounding (VTG) aims to localize temporal segments in long, untrimmed videos that align with a given natural language query. This task typically comprises two subtasks: Moment Retrieval (MR) and Highlight Detection (HD). While recent advances have been progressed by powerful pretrained vision-language models such as CLIP and InternVideo2, existing approaches commonly treat all text tokens uniformly during crossmodal attention, disregarding their distinct semantic roles. To validate the limitations of this approach, we conduct controlled experiments demonstrating that VTG models overly rely on [EOS]-driven global semantics while failing to effectively utilize word-level signals, which limits their ability to achieve fine-grained temporal alignment. Motivated by this limitation, we propose DualGround, a dual-branch architecture that explicitly separates global and local semantics by routing the [EOS] token through a sentence-level path and clustering word tokens into phrase-level units for localized grounding. Our method introduces (1) tokenrole- aware cross modal interaction strategies that align video features with sentence-level and phrase-level semantics in a structurally disentangled manner, and (2) a joint modeling framework that not only improves global sentence-level alignment but also enhances finegrained temporal grounding by leveraging structured phrase-aware context. This design allows the model to capture both coarse and localized semantics, enabling more expressive and context-aware video grounding. DualGround achieves state-of-the-art performance on both Moment Retrieval and Highlight Detection tasks across QVHighlights and Charades- STA benchmarks, demonstrating the effectiveness of disentangled semantic modeling in video-language alignment.
comment: Comments: 28 pages, including appendix. 5 figures. Full version of the NeurIPS 2025 paper
☆ COS3D: Collaborative Open-Vocabulary 3D Segmentation NeurIPS 2025
Open-vocabulary 3D segmentation is a fundamental yet challenging task, requiring a mutual understanding of both segmentation and language. However, existing Gaussian-splatting-based methods rely either on a single 3D language field, leading to inferior segmentation, or on pre-computed class-agnostic segmentations, suffering from error accumulation. To address these limitations, we present COS3D, a new collaborative prompt-segmentation framework that contributes to effectively integrating complementary language and segmentation cues throughout its entire pipeline. We first introduce the new concept of collaborative field, comprising an instance field and a language field, as the cornerstone for collaboration. During training, to effectively construct the collaborative field, our key idea is to capture the intrinsic relationship between the instance field and language field, through a novel instance-to-language feature mapping and designing an efficient two-stage training strategy. During inference, to bridge distinct characteristics of the two fields, we further design an adaptive language-to-instance prompt refinement, promoting high-quality prompt-segmentation inference. Extensive experiments not only demonstrate COS3D's leading performance over existing methods on two widely-used benchmarks but also show its high potential to various applications,~\ie, novel image-based 3D segmentation, hierarchical segmentation, and robotics. The code is publicly available at \href{https://github.com/Runsong123/COS3D}{https://github.com/Runsong123/COS3D}.
comment: NeurIPS 2025. The code is publicly available at \href{https://github.com/Runsong123/COS3D}{https://github.com/Runsong123/COS3D}
☆ Why LVLMs Are More Prone to Hallucinations in Longer Responses: The Role of Context
Large Vision-Language Models (LVLMs) have made significant progress in recent years but are also prone to hallucination issues. They exhibit more hallucinations in longer, free-form responses, often attributed to accumulated uncertainties. In this paper, we ask: Does increased hallucination result solely from length-induced errors, or is there a deeper underlying mechanism? After a series of preliminary experiments and findings, we suggest that the risk of hallucinations is not caused by length itself but by the increased reliance on context for coherence and completeness in longer responses. Building on these insights, we propose a novel "induce-detect-suppress" framework that actively induces hallucinations through deliberately designed contexts, leverages induced instances for early detection of high-risk cases, and ultimately suppresses potential object-level hallucinations during actual decoding. Our approach achieves consistent, significant improvements across all benchmarks, demonstrating its efficacy. The strong detection and improved hallucination mitigation not only validate our framework but, more importantly, re-validate our hypothesis on context. Rather than solely pursuing performance gains, this study aims to provide new insights and serves as a first step toward a deeper exploration of hallucinations in LVLMs' longer responses.
☆ EditInfinity: Image Editing with Binary-Quantized Generative Models NeurIPS 2025
Adapting pretrained diffusion-based generative models for text-driven image editing with negligible tuning overhead has demonstrated remarkable potential. A classical adaptation paradigm, as followed by these methods, first infers the generative trajectory inversely for a given source image by image inversion, then performs image editing along the inferred trajectory guided by the target text prompts. However, the performance of image editing is heavily limited by the approximation errors introduced during image inversion by diffusion models, which arise from the absence of exact supervision in the intermediate generative steps. To circumvent this issue, we investigate the parameter-efficient adaptation of VQ-based generative models for image editing, and leverage their inherent characteristic that the exact intermediate quantized representations of a source image are attainable, enabling more effective supervision for precise image inversion. Specifically, we propose \emph{EditInfinity}, which adapts \emph{Infinity}, a binary-quantized generative model, for image editing. We propose an efficient yet effective image inversion mechanism that integrates text prompting rectification and image style preservation, enabling precise image inversion. Furthermore, we devise a holistic smoothing strategy which allows our \emph{EditInfinity} to perform image editing with high fidelity to source images and precise semantic alignment to the text prompts. Extensive experiments on the PIE-Bench benchmark across "add", "change", and "delete" editing operations, demonstrate the superior performance of our model compared to state-of-the-art diffusion-based baselines. Code available at: https://github.com/yx-chen-ust/EditInfinity.
comment: 28 pages, 13 figures, accepted by The Thirty-ninth Annual Conference on Neural Information Processing Systems (NeurIPS 2025)
☆ Towards Objective Obstetric Ultrasound Assessment: Contrastive Representation Learning for Fetal Movement Detection
Accurate fetal movement (FM) detection is essential for assessing prenatal health, as abnormal movement patterns can indicate underlying complications such as placental dysfunction or fetal distress. Traditional methods, including maternal perception and cardiotocography (CTG), suffer from subjectivity and limited accuracy. To address these challenges, we propose Contrastive Ultrasound Video Representation Learning (CURL), a novel self-supervised learning framework for FM detection from extended fetal ultrasound video recordings. Our approach leverages a dual-contrastive loss, incorporating both spatial and temporal contrastive learning, to learn robust motion representations. Additionally, we introduce a task-specific sampling strategy, ensuring the effective separation of movement and non-movement segments during self-supervised training, while enabling flexible inference on arbitrarily long ultrasound recordings through a probabilistic fine-tuning approach. Evaluated on an in-house dataset of 92 subjects, each with 30-minute ultrasound sessions, CURL achieves a sensitivity of 78.01% and an AUROC of 81.60%, demonstrating its potential for reliable and objective FM analysis. These results highlight the potential of self-supervised contrastive learning for fetal movement analysis, paving the way for improved prenatal monitoring and clinical decision-making.
comment: This is the preprint version of the manuscript submitted to IEEE Journal of Biomedical and Health Informatics (JBHI) for review
☆ FlowCycle: Pursuing Cycle-Consistent Flows for Text-based Editing
Recent advances in pre-trained text-to-image flow models have enabled remarkable progress in text-based image editing. Mainstream approaches always adopt a corruption-then-restoration paradigm, where the source image is first corrupted into an ``intermediate state'' and then restored to the target image under the prompt guidance. However, current methods construct this intermediate state in a target-agnostic manner, i.e., they primarily focus on realizing source image reconstruction while neglecting the semantic gaps towards the specific editing target. This design inherently results in limited editability or inconsistency when the desired modifications substantially deviate from the source. In this paper, we argue that the intermediate state should be target-aware, i.e., selectively corrupting editing-relevant contents while preserving editing-irrelevant ones. To this end, we propose FlowCycle, a novel inversion-free and flow-based editing framework that parameterizes corruption with learnable noises and optimizes them through a cycle-consistent process. By iteratively editing the source to the target and recovering back to the source with dual consistency constraints, FlowCycle learns to produce a target-aware intermediate state, enabling faithful modifications while preserving source consistency. Extensive ablations have demonstrated that FlowCycle achieves superior editing quality and consistency over state-of-the-art methods.
☆ RAPO++: Cross-Stage Prompt Optimization for Text-to-Video Generation via Data Alignment and Test-Time Scaling
Prompt design plays a crucial role in text-to-video (T2V) generation, yet user-provided prompts are often short, unstructured, and misaligned with training data, limiting the generative potential of diffusion-based T2V models. We present \textbf{RAPO++}, a cross-stage prompt optimization framework that unifies training-data--aligned refinement, test-time iterative scaling, and large language model (LLM) fine-tuning to substantially improve T2V generation without modifying the underlying generative backbone. In \textbf{Stage 1}, Retrieval-Augmented Prompt Optimization (RAPO) enriches user prompts with semantically relevant modifiers retrieved from a relation graph and refactors them to match training distributions, enhancing compositionality and multi-object fidelity. \textbf{Stage 2} introduces Sample-Specific Prompt Optimization (SSPO), a closed-loop mechanism that iteratively refines prompts using multi-source feedback -- including semantic alignment, spatial fidelity, temporal coherence, and task-specific signals such as optical flow -- yielding progressively improved video generation quality. \textbf{Stage 3} leverages optimized prompt pairs from SSPO to fine-tune the rewriter LLM, internalizing task-specific optimization patterns and enabling efficient, high-quality prompt generation even before inference. Extensive experiments across five state-of-the-art T2V models and five benchmarks demonstrate that RAPO++ achieves significant gains in semantic alignment, compositional reasoning, temporal stability, and physical plausibility, outperforming existing methods by large margins. Our results highlight RAPO++ as a model-agnostic, cost-efficient, and scalable solution that sets a new standard for prompt optimization in T2V generation. The code is available at https://github.com/Vchitect/RAPO.
☆ A Structured Review and Quantitative Profiling of Public Brain MRI Datasets for Foundation Model Development
The development of foundation models for brain MRI depends critically on the scale, diversity, and consistency of available data, yet systematic assessments of these factors remain scarce. In this study, we analyze 54 publicly accessible brain MRI datasets encompassing over 538,031 to provide a structured, multi-level overview tailored to foundation model development. At the dataset level, we characterize modality composition, disease coverage, and dataset scale, revealing strong imbalances between large healthy cohorts and smaller clinical populations. At the image level, we quantify voxel spacing, orientation, and intensity distributions across 15 representative datasets, demonstrating substantial heterogeneity that can influence representation learning. We then perform a quantitative evaluation of preprocessing variability, examining how intensity normalization, bias field correction, skull stripping, spatial registration, and interpolation alter voxel statistics and geometry. While these steps improve within-dataset consistency, residual differences persist between datasets. Finally, feature-space case study using a 3D DenseNet121 shows measurable residual covariate shift after standardized preprocessing, confirming that harmonization alone cannot eliminate inter-dataset bias. Together, these analyses provide a unified characterization of variability in public brain MRI resources and emphasize the need for preprocessing-aware and domain-adaptive strategies in the design of generalizable brain MRI foundation models.
☆ Multimedia-Aware Question Answering: A Review of Retrieval and Cross-Modal Reasoning Architectures
Question Answering (QA) systems have traditionally relied on structured text data, but the rapid growth of multimedia content (images, audio, video, and structured metadata) has introduced new challenges and opportunities for retrieval-augmented QA. In this survey, we review recent advancements in QA systems that integrate multimedia retrieval pipelines, focusing on architectures that align vision, language, and audio modalities with user queries. We categorize approaches based on retrieval methods, fusion techniques, and answer generation strategies, and analyze benchmark datasets, evaluation protocols, and performance tradeoffs. Furthermore, we highlight key challenges such as cross-modal alignment, latency-accuracy tradeoffs, and semantic grounding, and outline open problems and future research directions for building more robust and context-aware QA systems leveraging multimedia data.
comment: In Proceedings of the 2nd ACM Workshop in AI-powered Question and Answering Systems (AIQAM '25), October 27-28, 2025, Dublin, Ireland. ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/3746274.3760393
☆ SPAN: Continuous Modeling of Suspicion Progression for Temporal Intention Localization
Temporal Intention Localization (TIL) is crucial for video surveillance, focusing on identifying varying levels of suspicious intentions to improve security monitoring. However, existing discrete classification methods fail to capture the continuous nature of suspicious intentions, limiting early intervention and explainability. In this paper, we propose the Suspicion Progression Analysis Network (SPAN), which shifts from discrete classification to continuous regression, enabling the capture of fluctuating and evolving suspicious intentions. We reveal that suspicion exhibits long-term dependencies and cumulative effects, similar to Temporal Point Process (TPP) theory. Based on these insights, we define a suspicion score formula that models continuous changes while accounting for temporal characteristics. We also introduce Suspicion Coefficient Modulation, which adjusts suspicion coefficients using multimodal information to reflect the varying impacts of suspicious actions. Additionally, the Concept-Anchored Mapping method is proposed to link suspicious actions to predefined intention concepts, offering insights into both the actions and their potential underlying intentions. Extensive experiments on the HAI dataset show that SPAN significantly outperforms existing methods, reducing MSE by 19.8% and improving average mAP by 1.78%. Notably, SPAN achieves a 2.74% mAP gain in low-frequency cases, demonstrating its superior ability to capture subtle behavioral changes. Compared to discrete classification systems, our continuous suspicion modeling approach enables earlier detection and proactive intervention, greatly enhancing system explainability and practical utility in security applications.
☆ Evaluating Video Models as Simulators of Multi-Person Pedestrian Trajectories
Large-scale video generation models have demonstrated high visual realism in diverse contexts, spurring interest in their potential as general-purpose world simulators. Existing benchmarks focus on individual subjects rather than scenes with multiple interacting people. However, the plausibility of multi-agent dynamics in generated videos remains unverified. We propose a rigorous evaluation protocol to benchmark text-to-video (T2V) and image-to-video (I2V) models as implicit simulators of pedestrian dynamics. For I2V, we leverage start frames from established datasets to enable comparison with a ground truth video dataset. For T2V, we develop a prompt suite to explore diverse pedestrian densities and interactions. A key component is a method to reconstruct 2D bird's-eye view trajectories from pixel-space without known camera parameters. Our analysis reveals that leading models have learned surprisingly effective priors for plausible multi-agent behavior. However, failure modes like merging and disappearing people highlight areas for future improvement.
comment: Preprint, under review
☆ PPMStereo: Pick-and-Play Memory Construction for Consistent Dynamic Stereo Matching
Temporally consistent depth estimation from stereo video is critical for real-world applications such as augmented reality, where inconsistent depth estimation disrupts the immersion of users. Despite its importance, this task remains challenging due to the difficulty in modeling long-term temporal consistency in a computationally efficient manner. Previous methods attempt to address this by aggregating spatio-temporal information but face a fundamental trade-off: limited temporal modeling provides only modest gains, whereas capturing long-range dependencies significantly increases computational cost. To address this limitation, we introduce a memory buffer for modeling long-range spatio-temporal consistency while achieving efficient dynamic stereo matching. Inspired by the two-stage decision-making process in humans, we propose a \textbf{P}ick-and-\textbf{P}lay \textbf{M}emory (PPM) construction module for dynamic \textbf{Stereo} matching, dubbed as \textbf{PPMStereo}. PPM consists of a `pick' process that identifies the most relevant frames and a `play' process that weights the selected frames adaptively for spatio-temporal aggregation. This two-stage collaborative process maintains a compact yet highly informative memory buffer while achieving temporally consistent information aggregation. Extensive experiments validate the effectiveness of PPMStereo, demonstrating state-of-the-art performance in both accuracy and temporal consistency. % Notably, PPMStereo achieves 0.62/1.11 TEPE on the Sintel clean/final (17.3\% \& 9.02\% improvements over BiDAStereo) with fewer computational costs. Codes are available at \textcolor{blue}{https://github.com/cocowy1/PPMStereo}.
☆ IB-GAN: Disentangled Representation Learning with Information Bottleneck Generative Adversarial Networks AAAI
We propose a new GAN-based unsupervised model for disentangled representation learning. The new model is discovered in an attempt to utilize the Information Bottleneck (IB) framework to the optimization of GAN, thereby named IB-GAN. The architecture of IB-GAN is partially similar to that of InfoGAN but has a critical difference; an intermediate layer of the generator is leveraged to constrain the mutual information between the input and the generated output. The intermediate stochastic layer can serve as a learnable latent distribution that is trained with the generator jointly in an end-to-end fashion. As a result, the generator of IB-GAN can harness the latent space in a disentangled and interpretable manner. With the experiments on dSprites and Color-dSprites dataset, we demonstrate that IB-GAN achieves competitive disentanglement scores to those of state-of-the-art \b{eta}-VAEs and outperforms InfoGAN. Moreover, the visual quality and the diversity of samples generated by IB-GAN are often better than those by \b{eta}-VAEs and Info-GAN in terms of FID score on CelebA and 3D Chairs dataset.
comment: Published in the Proceedings of the Thirty Fifth AAAI Conference on Artificial Intelligence (AAAI 2021), paper number 7926
☆ TOMCAT: Test-time Comprehensive Knowledge Accumulation for Compositional Zero-Shot Learning NeurIPS 2025
Compositional Zero-Shot Learning (CZSL) aims to recognize novel attribute-object compositions based on the knowledge learned from seen ones. Existing methods suffer from performance degradation caused by the distribution shift of label space at test time, which stems from the inclusion of unseen compositions recombined from attributes and objects. To overcome the challenge, we propose a novel approach that accumulates comprehensive knowledge in both textual and visual modalities from unsupervised data to update multimodal prototypes at test time. Building on this, we further design an adaptive update weight to control the degree of prototype adjustment, enabling the model to flexibly adapt to distribution shift during testing. Moreover, a dynamic priority queue is introduced that stores high-confidence images to acquire visual knowledge from historical images for inference. Considering the semantic consistency of multimodal knowledge, we align textual and visual prototypes by multimodal collaborative representation learning. Extensive experiments indicate that our approach achieves state-of-the-art performance on four benchmark datasets under both closed-world and open-world settings. Code will be available at https://github.com/xud-yan/TOMCAT .
comment: Accepted to NeurIPS 2025
☆ Monocular Visual 8D Pose Estimation for Articulated Bicycles and Cyclists
In Autonomous Driving, cyclists belong to the safety-critical class of Vulnerable Road Users (VRU), and accurate estimation of their pose is critical for cyclist crossing intention classification, behavior prediction, and collision avoidance. Unlike rigid objects, articulated bicycles are composed of movable rigid parts linked by joints and constrained by a kinematic structure. 6D pose methods can estimate the 3D rotation and translation of rigid bicycles, but 6D becomes insufficient when the steering/pedals angles of the bicycle vary. That is because: 1) varying the articulated pose of the bicycle causes its 3D bounding box to vary as well, and 2) the 3D box orientation is not necessarily aligned to the orientation of the steering which determines the actual intended travel direction. In this work, we introduce a method for category-level 8D pose estimation for articulated bicycles and cyclists from a single RGB image. Besides being able to estimate the 3D translation and rotation of a bicycle from a single image, our method also estimates the rotations of its steering handles and pedals with respect to the bicycle body frame. These two new parameters enable the estimation of a more fine-grained bicycle pose state and travel direction. Our proposed model jointly estimates the 8D pose and the 3D Keypoints of articulated bicycles, and trains with a mix of synthetic and real image data to generalize on real images. We include an evaluation section where we evaluate the accuracy of our estimated 8D pose parameters, and our method shows promising results by achieving competitive scores when compared against state-of-the-art category-level 6D pose estimators that use rigid canonical object templates for matching.
☆ PartNeXt: A Next-Generation Dataset for Fine-Grained and Hierarchical 3D Part Understanding NeurIPS 2025
Understanding objects at the level of their constituent parts is fundamental to advancing computer vision, graphics, and robotics. While datasets like PartNet have driven progress in 3D part understanding, their reliance on untextured geometries and expert-dependent annotation limits scalability and usability. We introduce PartNeXt, a next-generation dataset addressing these gaps with over 23,000 high-quality, textured 3D models annotated with fine-grained, hierarchical part labels across 50 categories. We benchmark PartNeXt on two tasks: (1) class-agnostic part segmentation, where state-of-the-art methods (e.g., PartField, SAMPart3D) struggle with fine-grained and leaf-level parts, and (2) 3D part-centric question answering, a new benchmark for 3D-LLMs that reveals significant gaps in open-vocabulary part grounding. Additionally, training Point-SAM on PartNeXt yields substantial gains over PartNet, underscoring the dataset's superior quality and diversity. By combining scalable annotation, texture-aware labels, and multi-task evaluation, PartNeXt opens new avenues for research in structured 3D understanding.
comment: NeurIPS 2025 DB Track. Project page: https://authoritywang.github.io/partnext
♻ ☆ DragFlow: Unleashing DiT Priors with Region Based Supervision for Drag Editing
Drag-based image editing has long suffered from distortions in the target region, largely because the priors of earlier base models, Stable Diffusion, are insufficient to project optimized latents back onto the natural image manifold. With the shift from UNet-based DDPMs to more scalable DiT with flow matching (e.g., SD3.5, FLUX), generative priors have become significantly stronger, enabling advances across diverse editing tasks. However, drag-based editing has yet to benefit from these stronger priors. This work proposes the first framework to effectively harness FLUX's rich prior for drag-based editing, dubbed DragFlow, achieving substantial gains over baselines. We first show that directly applying point-based drag editing to DiTs performs poorly: unlike the highly compressed features of UNets, DiT features are insufficiently structured to provide reliable guidance for point-wise motion supervision. To overcome this limitation, DragFlow introduces a region-based editing paradigm, where affine transformations enable richer and more consistent feature supervision. Additionally, we integrate pretrained open-domain personalization adapters (e.g., IP-Adapter) to enhance subject consistency, while preserving background fidelity through gradient mask-based hard constraints. Multimodal large language models (MLLMs) are further employed to resolve task ambiguities. For evaluation, we curate a novel Region-based Dragging benchmark (ReD Bench) featuring region-level dragging instructions. Extensive experiments on DragBench-DR and ReD Bench show that DragFlow surpasses both point-based and region-based baselines, setting a new state-of-the-art in drag-based image editing. Code and datasets will be publicly available upon publication.
comment: Preprint
♻ ☆ Watermarking Autoregressive Image Generation NeurIPS 2025
Watermarking the outputs of generative models has emerged as a promising approach for tracking their provenance. Despite significant interest in autoregressive image generation models and their potential for misuse, no prior work has attempted to watermark their outputs at the token level. In this work, we present the first such approach by adapting language model watermarking techniques to this setting. We identify a key challenge: the lack of reverse cycle-consistency (RCC), wherein re-tokenizing generated image tokens significantly alters the token sequence, effectively erasing the watermark. To address this and to make our method robust to common image transformations, neural compression, and removal attacks, we introduce (i) a custom tokenizer-detokenizer finetuning procedure that improves RCC, and (ii) a complementary watermark synchronization layer. As our experiments demonstrate, our approach enables reliable and robust watermark detection with theoretically grounded p-values. Code and models are available at https://github.com/facebookresearch/wmar.
comment: NeurIPS 2025
♻ ☆ Tex-ViT: A Generalizable, Robust, Texture-based dual-branch cross-attention deepfake detector
Deepfakes, which employ GAN to produce highly realistic facial modification, are widely regarded as the prevailing method. Traditional CNN have been able to identify bogus media, but they struggle to perform well on different datasets and are vulnerable to adversarial attacks due to their lack of robustness. Vision transformers have demonstrated potential in the realm of image classification problems, but they require enough training data. Motivated by these limitations, this publication introduces Tex-ViT (Texture-Vision Transformer), which enhances CNN features by combining ResNet with a vision transformer. The model combines traditional ResNet features with a texture module that operates in parallel on sections of ResNet before each down-sampling operation. The texture module then serves as an input to the dual branch of the cross-attention vision transformer. It specifically focuses on improving the global texture module, which extracts feature map correlation. Empirical analysis reveals that fake images exhibit smooth textures that do not remain consistent over long distances in manipulations. Experiments were performed on different categories of FF++, such as DF, f2f, FS, and NT, together with other types of GAN datasets in cross-domain scenarios. Furthermore, experiments also conducted on FF++, DFDCPreview, and Celeb-DF dataset underwent several post-processing situations, such as blurring, compression, and noise. The model surpassed the most advanced models in terms of generalization, achieving a 98% accuracy in cross-domain scenarios. This demonstrates its ability to learn the shared distinguishing textural characteristics in the manipulated samples. These experiments provide evidence that the proposed model is capable of being applied to various situations and is resistant to many post-processing procedures.
♻ ☆ GenLit: Reformulating Single-Image Relighting as Video Generation
Manipulating the illumination of a 3D scene within a single image represents a fundamental challenge in computer vision and graphics. This problem has traditionally been addressed using inverse rendering techniques, which involve explicit 3D asset reconstruction and costly ray-tracing simulations. Meanwhile, recent advancements in visual foundation models suggest that a new paradigm could soon be possible -- one that replaces explicit physical models with networks that are trained on large amounts of image and video data. In this paper, we exploit the implicit scene understanding of a video diffusion model, particularly Stable Video Diffusion, to relight a single image. We introduce GenLit, a framework that distills the ability of a graphics engine to perform light manipulation into a video-generation model, enabling users to directly insert and manipulate a point light in the 3D world within a given image and generate results directly as a video sequence. We find that a model fine-tuned on only a small synthetic dataset generalizes to real-world scenes, enabling single-image relighting with plausible and convincing shadows and inter-reflections. Our results highlight the ability of video foundation models to capture rich information about lighting, material, and shape, and our findings indicate that such models, with minimal training, can be used to perform relighting without explicit asset reconstruction or ray-tracing. . Project page: https://genlit.is.tue.mpg.de/.
♻ ☆ mmWalk: Towards Multi-modal Multi-view Walking Assistance NeurIPS 2025
Walking assistance in extreme or complex environments remains a significant challenge for people with blindness or low vision (BLV), largely due to the lack of a holistic scene understanding. Motivated by the real-world needs of the BLV community, we build mmWalk, a simulated multi-modal dataset that integrates multi-view sensor and accessibility-oriented features for outdoor safe navigation. Our dataset comprises 120 manually controlled, scenario-categorized walking trajectories with 62k synchronized frames. It contains over 559k panoramic images across RGB, depth, and semantic modalities. Furthermore, to emphasize real-world relevance, each trajectory involves outdoor corner cases and accessibility-specific landmarks for BLV users. Additionally, we generate mmWalkVQA, a VQA benchmark with over 69k visual question-answer triplets across 9 categories tailored for safe and informed walking assistance. We evaluate state-of-the-art Vision-Language Models (VLMs) using zero- and few-shot settings and found they struggle with our risk assessment and navigational tasks. We validate our mmWalk-finetuned model on real-world datasets and show the effectiveness of our dataset for advancing multi-modal walking assistance.
comment: Accepted by NeurIPS 2025 Datasets and Benchmarks Track. Data and Code: https://github.com/KediYing/mmWalk
♻ ☆ Fast-Slow Thinking GRPO for Large Vision-Language Model Reasoning
When applying reinforcement learning--typically through GRPO--to large vision-language model reasoning struggles to effectively scale reasoning length or generates verbose outputs across all tasks with only marginal gains in accuracy. To address this issue, we present FAST-GRPO, a variant of GRPO that dynamically adapts reasoning depth based on question characteristics. Through empirical analysis, we establish the feasibility of fast-slow thinking in LVLMs by investigating how response length and data distribution affect performance. Inspired by these observations, we introduce two complementary metrics to estimate the difficulty of the questions, guiding the model to determine when fast or slow thinking is more appropriate. Next, we incorporate adaptive length-based rewards and difficulty-aware KL divergence into the GRPO algorithm. Experiments across seven reasoning benchmarks demonstrate that FAST achieves state-of-the-art accuracy with over 10\% relative improvement compared to the base model, while reducing token usage by 32.7-67.3\% compared to previous slow-thinking approaches, effectively balancing reasoning length and accuracy.
♻ ☆ Structured Spectral Graph Representation Learning for Multi-label Abnormality Analysis from 3D CT Scans
With the growing volume of CT examinations, there is an increasing demand for automated tools such as organ segmentation, abnormality detection, and report generation to support radiologists in managing their clinical workload. Multi-label classification of 3D Chest CT scans remains a critical yet challenging problem due to the complex spatial relationships inherent in volumetric data and the wide variability of abnormalities. Existing methods based on 3D convolutional neural networks struggle to capture long-range dependencies, while Vision Transformers often require extensive pre-training on large-scale, domain-specific datasets to perform competitively. In this work of academic research, we propose a 2.5D alternative by introducing a new graph-based framework that represents 3D CT volumes as structured graphs, where axial slice triplets serve as nodes processed through spectral graph convolution, enabling the model to reason over inter-slice dependencies while maintaining complexity compatible with clinical deployment. Our method, trained and evaluated on 3 datasets from independent institutions, achieves strong cross-dataset generalization, and shows competitive performance compared to state-of-the-art visual encoders. We further conduct comprehensive ablation studies to evaluate the impact of various aggregation strategies, edge-weighting schemes, and graph connectivity patterns. Additionally, we demonstrate the broader applicability of our approach through transfer experiments on automated radiology report generation and abdominal CT data.
comment: 24 pages, 15 figures
♻ ☆ FreeGraftor: Training-Free Cross-Image Feature Grafting for Subject-Driven Text-to-Image Generation
Subject-driven image generation aims to synthesize novel scenes that faithfully preserve subject identity from reference images while adhering to textual guidance. However, existing methods struggle with a critical trade-off between fidelity and efficiency. Tuning-based approaches rely on time-consuming and resource-intensive, subject-specific optimization, while zero-shot methods often fail to maintain adequate subject consistency. In this work, we propose FreeGraftor, a training-free framework that addresses these limitations through cross-image feature grafting. Specifically, FreeGraftor leverages semantic matching and position-constrained attention fusion to transfer visual details from reference subjects to the generated images. Additionally, our framework introduces a novel noise initialization strategy to preserve the geometry priors of reference subjects, facilitating robust feature matching. Extensive qualitative and quantitative experiments demonstrate that our method enables precise subject identity transfer while maintaining text-aligned scene synthesis. Without requiring model fine-tuning or additional training, FreeGraftor significantly outperforms existing zero-shot and training-free approaches in both subject fidelity and text alignment. Furthermore, our framework can seamlessly extend to multi-subject generation, making it practical for real-world deployment. Our code is available at https://github.com/Nihukat/FreeGraftor.
comment: Code: https://github.com/Nihukat/FreeGraftor
♻ ☆ Uncovering Anomalous Events for Marine Environmental Monitoring via Visual Anomaly Detection
Underwater video monitoring is a promising strategy for assessing marine biodiversity, but the vast volume of uneventful footage makes manual inspection highly impractical. In this work, we explore the use of visual anomaly detection (VAD) based on deep neural networks to automatically identify interesting or anomalous events. We introduce AURA, the first multi-annotator benchmark dataset for underwater VAD, and evaluate four VAD models across two marine scenes. We demonstrate the importance of robust frame selection strategies to extract meaningful video segments. Our comparison against multiple annotators reveals that VAD performance of current models varies dramatically and is highly sensitive to both the amount of training data and the variability in visual content that defines "normal" scenes. Our results highlight the value of soft and consensus labels and offer a practical approach for supporting scientific exploration and scalable biodiversity monitoring.
♻ ☆ X-Reflect: Cross-Reflection Prompting for Multimodal Recommendation
Large Language Models (LLMs) have been shown to enhance the effectiveness of enriching item descriptions, thereby improving the accuracy of recommendation systems. However, most existing approaches either rely on text-only prompting or employ basic multimodal strategies that do not fully exploit the complementary information available from both textual and visual modalities. This paper introduces a novel framework, Cross-Reflection Prompting, termed X-Reflect, designed to address these limitations by prompting Multimodal Large Language Models (MLLMs) to explicitly identify and reconcile supportive and conflicting information between text and images. By capturing nuanced insights from both modalities, this approach generates more comprehensive and contextually rich item representations. Extensive experiments conducted on two widely used benchmarks demonstrate that our method outperforms existing prompting baselines in downstream recommendation accuracy. Furthermore, we identify a U-shaped relationship between text-image dissimilarity and recommendation performance, suggesting the benefit of applying multimodal prompting selectively. To support efficient real-time inference, we also introduce X-Reflect-keyword, a lightweight variant that summarizes image content using keywords and replaces the base model with a smaller backbone, achieving nearly 50% reduction in input length while maintaining competitive performance. This work underscores the importance of integrating multimodal information and presents an effective solution for improving item understanding in multimodal recommendation systems.
♻ ☆ CALM-PDE: Continuous and Adaptive Convolutions for Latent Space Modeling of Time-dependent PDEs NeurIPS
Solving time-dependent Partial Differential Equations (PDEs) using a densely discretized spatial domain is a fundamental problem in various scientific and engineering disciplines, including modeling climate phenomena and fluid dynamics. However, performing these computations directly in the physical space often incurs significant computational costs. To address this issue, several neural surrogate models have been developed that operate in a compressed latent space to solve the PDE. While these approaches reduce computational complexity, they often use Transformer-based attention mechanisms to handle irregularly sampled domains, resulting in increased memory consumption. In contrast, convolutional neural networks allow memory-efficient encoding and decoding but are limited to regular discretizations. Motivated by these considerations, we propose CALM-PDE, a model class that efficiently solves arbitrarily discretized PDEs in a compressed latent space. We introduce a novel continuous convolution-based encoder-decoder architecture that uses an epsilon-neighborhood-constrained kernel and learns to apply the convolution operator to adaptive and optimized query points. We demonstrate the effectiveness of CALM-PDE on a diverse set of PDEs with both regularly and irregularly sampled spatial domains. CALM-PDE is competitive with or outperforms existing baseline methods while offering significant improvements in memory and inference time efficiency compared to Transformer-based methods.
comment: Accepted for publication at the 39th Conference on Neural Information Processing Systems (NeurIPS) 2025, San Diego, California, USA
♻ ☆ REOBench: Benchmarking Robustness of Earth Observation Foundation Models
Earth observation foundation models have shown strong generalization across multiple Earth observation tasks, but their robustness under real-world perturbations remains underexplored. To bridge this gap, we introduce REOBench, the first comprehensive benchmark for evaluating the robustness of Earth observation foundation models across six tasks and twelve types of image corruptions, including both appearance-based and geometric perturbations. To ensure realistic and fine-grained evaluation, our benchmark focuses on high-resolution optical remote sensing images, which are widely used in critical applications such as urban planning and disaster response. We conduct a systematic evaluation of a broad range of models trained using masked image modeling, contrastive learning, and vision-language pre-training paradigms. Our results reveal that (1) existing Earth observation foundation models experience significant performance degradation when exposed to input corruptions. (2) The severity of degradation varies across tasks, model architectures, backbone sizes, and types of corruption, with performance drop varying from less than 1% to over 20%. (3) Vision-language models show enhanced robustness, particularly in multimodal tasks. REOBench underscores the vulnerability of current Earth observation foundation models to real-world corruptions and provides actionable insights for developing more robust and reliable models. Code and data are publicly available at https://github.com/lx709/REOBench.
comment: Accepted to NeruIPS 2025 D&B Track
♻ ☆ BioCLIP 2: Emergent Properties from Scaling Hierarchical Contrastive Learning NeurIPS 2025
Foundation models trained at scale exhibit remarkable emergent behaviors, learning new capabilities beyond their initial training objectives. We find such emergent behaviors in biological vision models via large-scale contrastive vision-language training. To achieve this, we first curate TreeOfLife-200M, comprising 214 million images of living organisms, the largest and most diverse biological organism image dataset to date. We then train BioCLIP 2 on TreeOfLife-200M to distinguish different species. Despite the narrow training objective, BioCLIP 2 yields extraordinary accuracy when applied to various biological visual tasks such as habitat classification and trait prediction. We identify emergent properties in the learned embedding space of BioCLIP 2. At the inter-species level, the embedding distribution of different species aligns closely with functional and ecological meanings (e.g., beak sizes and habitats). At the intra-species level, instead of being diminished, the intra-species variations (e.g., life stages and sexes) are preserved and better separated in subspaces orthogonal to inter-species distinctions. We provide formal proof and analyses to explain why hierarchical supervision and contrastive objectives encourage these emergent properties. Crucially, our results reveal that these properties become increasingly significant with larger-scale training data, leading to a biologically meaningful embedding space.
comment: NeurIPS 2025 Spotlight; Project page: https://imageomics.github.io/bioclip-2/
♻ ☆ Does Reinforcement Learning Really Incentivize Reasoning Capacity in LLMs Beyond the Base Model?
Reinforcement Learning with Verifiable Rewards (RLVR) has recently demonstrated notable success in enhancing the reasoning performance of large language models (LLMs), particularly on mathematics and programming tasks. Similar to how traditional RL helps agents explore and learn new strategies, RLVR is believed to enable LLMs to continuously self-improve, thus acquiring novel reasoning abilities beyond those of the corresponding base models. In this study we critically examine the current state of RLVR by systematically probing the reasoning capability boundaries of RLVR-trained LLMs across various model families, RL algorithms, and math, coding, and visual reasoning benchmarks, using pass@k at large k values as the evaluation metric. Surprisingly, we find that the current training setup does not elicit fundamentally new reasoning patterns. While RLVR-trained models outperform their base models at small k (e.g., k = 1), the base models achieve a higher pass@k score when k is large. Coverage and perplexity analyses show that the observed reasoning abilities originate from and are bounded by the base model. Treating the base model as an upper bound, our quantitative analysis shows that six popular RLVR algorithms perform similarly and remain far from optimal in leveraging the potential of the base model. By contrast, we find that distillation can introduce new reasoning patterns from the teacher and genuinely expand the model's reasoning capabilities. Overall, our findings suggest that current RLVR methods have not yet realized the potential of RL to elicit truly novel reasoning abilities in LLMs. This highlights the need for improved RL paradigms, such as continual scaling and multi-turn agent-environment interaction, to unlock this potential.
comment: 30 pages, 27 figures
♻ ☆ Residual Kolmogorov-Arnold Network for Enhanced Deep Learning
Despite their immense success, deep convolutional neural networks (CNNs) can be difficult to optimize and costly to train due to hundreds of layers within the network depth. Conventional convolutional operations are fundamentally limited by their linear nature along with fixed activations, where many layers are needed to learn meaningful patterns in data. Because of the sheer size of these networks, this approach is simply computationally inefficient, and poses overfitting or gradient explosion risks, especially in small datasets. As a result, we introduce a "plug-in" module, called Residual Kolmogorov-Arnold Network (RKAN). Our module is highly compact, so it can be easily added into any stage (level) of traditional deep networks, where it learns to integrate supportive polynomial feature transformations to existing convolutional frameworks. RKAN offers consistent improvements over baseline models in different vision tasks and widely tested benchmarks, accomplishing cutting-edge performance on them.
comment: Code is available at https://github.com/withray/residualKAN.git
♻ ☆ A novel attention mechanism for noise-adaptive and robust segmentation of microtubules in microscopy images
Segmenting cytoskeletal filaments in microscopy images is essential for understanding their cellular roles but remains challenging, especially in dense, complex networks and under noisy or low-contrast image conditions. While deep learning has advanced image segmentation, performance often degrades in these adverse scenarios. Additional challenges include the difficulty of obtaining accurate annotations and managing severe class imbalance. We proposed a novel noise-adaptive attention mechanism, extending the Squeeze-and-Excitation (SE) module, to dynamically adjust to varying noise levels. This Adaptive SE (ASE) mechanism is integrated into a U-Net decoder, with residual encoder blocks, forming a lightweight yet powerful model: ASE_Res_U-Net. We also developed a synthetic-dataset strategy and employed tailored loss functions and evaluation metrics to mitigate class imbalance and ensure fair assessment. ASE_Res_U-Net effectively segmented microtubules in both synthetic and real noisy images, outperforming its ablated variants and state-of-the-art curvilinear-structure segmentation methods. It achieved this while using fewer parameters, making it suitable for resource-constrained environments. Importantly, ASE_Res_U-Net generalised well to other curvilinear structures (blood vessels and nerves) under diverse imaging conditions. Availability and implementation: Original microtubule datasets (synthetic and real noisy images) are available on Zenodo (DOIs: 10.5281/zenodo.14696279 and 10.5281/zenodo.15852660). ASE_Res_UNet model will be shared upon publication.
♻ ☆ Spatial-DISE: A Unified Benchmark for Evaluating Spatial Reasoning in Vision-Language Models
Spatial reasoning ability is crucial for Vision Language Models (VLMs) to support real-world applications in diverse domains including robotics, augmented reality, and autonomous navigation. Unfortunately, existing benchmarks are inadequate in assessing spatial reasoning ability, especially the \emph{intrinsic-dynamic} spatial reasoning which is a fundamental aspect of human spatial cognition. In this paper, we propose a unified benchmark, \textbf{Spatial-DISE}, based on a cognitively grounded taxonomy that categorizes tasks into four fundamental quadrants: \textbf{I}ntrinsic-\textbf{S}tatic, Intrinsic-\textbf{D}ynamic, \textbf{E}xtrinsic-Static, and Extrinsic-Dynamic spatial reasoning. Moreover, to address the issue of data scarcity, we develop a scalable and automated pipeline to generate diverse and verifiable spatial reasoning questions, resulting in a new \textbf{Spatial-DISE} dataset that includes Spatial-DISE Bench (559 evaluation VQA pairs) and Spatial-DISE-12K (12K+ training VQA pairs). Our comprehensive evaluation across 28 state-of-the-art VLMs reveals that, current VLMs have a large and consistent gap to human competence, especially on multi-step multi-view spatial reasoning. Spatial-DISE offers a robust framework, valuable dataset, and clear direction for future research toward human-like spatial intelligence. Benchmark, dataset, and code will be publicly released.
comment: Project Page: https://shinmohuang.github.io/spatialdise_page/
♻ ☆ BevSplat: Resolving Height Ambiguity via Feature-Based Gaussian Primitives for Weakly-Supervised Cross-View Localization
This paper addresses the problem of weakly supervised cross-view localization, where the goal is to estimate the pose of a ground camera relative to a satellite image with noisy ground truth annotations. A common approach to bridge the cross-view domain gap for pose estimation is Bird's-Eye View (BEV) synthesis. However, existing methods struggle with height ambiguity due to the lack of depth information in ground images and satellite height maps. Previous solutions either assume a flat ground plane or rely on complex models, such as cross-view transformers. We propose BevSplat, a novel method that resolves height ambiguity by using feature-based Gaussian primitives. Each pixel in the ground image is represented by a 3D Gaussian with semantic and spatial features, which are synthesized into a BEV feature map for relative pose estimation. Additionally, to address challenges with panoramic query images, we introduce an icosphere-based supervision strategy for the Gaussian primitives. We validate our method on the widely used KITTI and VIGOR datasets, which include both pinhole and panoramic query images. Experimental results show that BevSplat significantly improves localization accuracy over prior approaches.
♻ ☆ PolyPose: Deformable 2D/3D Registration via Polyrigid Transformations NeurIPS 2025
Determining the 3D pose of a patient from a limited set of 2D X-ray images is a critical task in interventional settings. While preoperative volumetric imaging (e.g., CT and MRI) provides precise 3D localization and visualization of anatomical targets, these modalities cannot be acquired during procedures, where fast 2D imaging (X-ray) is used instead. To integrate volumetric guidance into intraoperative procedures, we present PolyPose, a simple and robust method for deformable 2D/3D registration. PolyPose parameterizes complex 3D deformation fields as a composition of rigid transforms, leveraging the biological constraint that individual bones do not bend in typical motion. Unlike existing methods that either assume no inter-joint movement or fail outright in this under-determined setting, our polyrigid formulation enforces anatomically plausible priors that respect the piecewise-rigid nature of human movement. This approach eliminates the need for expensive deformation regularizers that require patient- and procedure-specific hyperparameter optimization. Across extensive experiments on diverse datasets from orthopedic surgery and radiotherapy, we show that this strong inductive bias enables PolyPose to successfully align the patient's preoperative volume to as few as two X-rays, thereby providing crucial 3D guidance in challenging sparse-view and limited-angle settings where current registration methods fail. Additional visualizations, tutorials, and code are available at https://polypose.csail.mit.edu.
comment: NeurIPS 2025. Code available at https://github.com/eigenvivek/polypose
♻ ☆ Frequency-Dynamic Attention Modulation for Dense Prediction ICCV 2025
Vision Transformers (ViTs) have significantly advanced computer vision, demonstrating strong performance across various tasks. However, the attention mechanism in ViTs makes each layer function as a low-pass filter, and the stacked-layer architecture in existing transformers suffers from frequency vanishing. This leads to the loss of critical details and textures. We propose a novel, circuit-theory-inspired strategy called Frequency-Dynamic Attention Modulation (FDAM), which can be easily plugged into ViTs. FDAM directly modulates the overall frequency response of ViTs and consists of two techniques: Attention Inversion (AttInv) and Frequency Dynamic Scaling (FreqScale). Since circuit theory uses low-pass filters as fundamental elements, we introduce AttInv, a method that generates complementary high-pass filtering by inverting the low-pass filter in the attention matrix, and dynamically combining the two. We further design FreqScale to weight different frequency components for fine-grained adjustments to the target response function. Through feature similarity analysis and effective rank evaluation, we demonstrate that our approach avoids representation collapse, leading to consistent performance improvements across various models, including SegFormer, DeiT, and MaskDINO. These improvements are evident in tasks such as semantic segmentation, object detection, and instance segmentation. Additionally, we apply our method to remote sensing detection, achieving state-of-the-art results in single-scale settings. The code is available at https://github.com/Linwei-Chen/FDAM.
comment: Accepted by ICCV 2025
♻ ☆ A primal-dual algorithm for image reconstruction with input-convex neural network regularizers
We address the optimization problem in a data-driven variational reconstruction framework, where the regularizer is parameterized by an input-convex neural network (ICNN). While gradient-based methods are commonly used to solve such problems, they struggle to effectively handle non-smooth problems which often leads to slow convergence. Moreover, the nested structure of the neural network complicates the application of standard non-smooth optimization techniques, such as proximal algorithms. To overcome these challenges, we reformulate the problem and eliminate the network's nested structure. By relating this reformulation to epigraphical projections of the activation functions, we transform the problem into a convex optimization problem that can be efficiently solved using a primal-dual algorithm. We also prove that this reformulation is equivalent to the original variational problem. Through experiments on several imaging tasks, we show that the proposed approach not only outperforms subgradient methods and even accelerated methods in the smooth setting, but also facilitates the training of the regularizer itself.
♻ ☆ MCIF: Multimodal Crosslingual Instruction-Following Benchmark from Scientific Talks
Recent advances in large language models have catalyzed the development of multimodal LLMs (MLLMs) that integrate text, speech, and vision within unified frameworks. As MLLMs evolve from narrow, monolingual, task-specific systems to general-purpose instruction-following models, a key frontier lies in evaluating their multilingual and multimodal capabilities over both long and short contexts. However, existing benchmarks fall short in evaluating these dimensions jointly: they are often limited to English, mostly focus on one single modality at a time, rely on short-form contexts, or lack human annotations -- hindering comprehensive assessment of model performance across languages, modalities, and task complexity. To address these gaps, we introduce MCIF (Multimodal Crosslingual Instruction Following), the first multilingual human-annotated benchmark based on scientific talks that is designed to evaluate instruction-following in crosslingual, multimodal settings over both short- and long-form inputs. MCIF spans three core modalities -- speech, vision, and text -- and four diverse languages (English, German, Italian, and Chinese), enabling a comprehensive evaluation of MLLMs' abilities to interpret instructions across languages and combine them with multimodal contextual information. MCIF is released under a CC-BY 4.0 license to encourage open research and progress in MLLMs development.
comment: Data available at https://huggingface.co/datasets/FBK-MT/MCIF | Evaluation and baselines available at https://github.com/hlt-mt/mcif
♻ ☆ Face-Human-Bench: A Comprehensive Benchmark of Face and Human Understanding for Multi-modal Assistants NeurIPS 2025
Faces and humans are crucial elements in social interaction and are widely included in everyday photos and videos. Therefore, a deep understanding of faces and humans will enable multi-modal assistants to achieve improved response quality and broadened application scope. Currently, the multi-modal assistant community lacks a comprehensive and scientific evaluation of face and human understanding abilities. In this paper, we first propose a hierarchical ability taxonomy that includes three levels of abilities. Then, based on this taxonomy, we collect images and annotations from publicly available datasets in the face and human community and build a semi-automatic data pipeline to produce problems for the new benchmark. Finally, the obtained Face-Human-Bench includes a development set and a test set, each with 1800 problems, supporting both English and Chinese. We conduct evaluations over 25 mainstream multi-modal large language models (MLLMs) with our Face-Human-Bench, focusing on the correlation between abilities, the impact of the relative position of targets on performance, and the impact of Chain of Thought (CoT) prompting on performance. We also explore which abilities of MLLMs need to be supplemented by specialist models. The dataset and evaluation code have been made publicly available at https://face-human-bench.github.io.
comment: 50 pages, 14 figures, 42 tables. NeurIPS 2025 Datasets and Benchmarks Track
♻ ☆ Grounding Language with Vision: A Conditional Mutual Information Calibrated Decoding Strategy for Reducing Hallucinations in LVLMs
Large Vision-Language Models (LVLMs) are susceptible to hallucinations, where generated responses seem semantically plausible yet exhibit little or no relevance to the input image. Previous studies reveal that this issue primarily stems from LVLMs' over-reliance on language priors while disregarding the visual information during decoding. To alleviate this issue, we introduce a novel Conditional Pointwise Mutual Information (C-PMI) calibrated decoding strategy, which adaptively strengthens the mutual dependency between generated texts and input images to mitigate hallucinations. Unlike existing methods solely focusing on text token sampling, we propose to jointly model the contributions of visual and textual tokens to C-PMI, formulating hallucination mitigation as a bi-level optimization problem aimed at maximizing mutual information. To solve it, we design a token purification mechanism that dynamically regulates the decoding process by sampling text tokens remaining maximally relevant to the given image, while simultaneously refining image tokens most pertinent to the generated response. Extensive experiments across various benchmarks reveal that the proposed method significantly reduces hallucinations in LVLMs while preserving decoding efficiency.
♻ ☆ Learning Dense Hand Contact Estimation from Imbalanced Data NeurIPS 2025
Hands are essential to human interaction, and exploring contact between hands and the world can promote comprehensive understanding of their function. Recently, there have been growing number of hand interaction datasets that cover interaction with object, other hand, scene, and body. Despite the significance of the task and increasing high-quality data, how to effectively learn dense hand contact estimation remains largely underexplored. There are two major challenges for learning dense hand contact estimation. First, there exists class imbalance issue from hand contact datasets where majority of regions are not in contact. Second, hand contact datasets contain spatial imbalance issue with most of hand contact exhibited in finger tips, resulting in challenges for generalization towards contacts in other hand regions. To tackle these issues, we present a framework that learns dense HAnd COntact estimation (HACO) from imbalanced data. To resolve the class imbalance issue, we introduce balanced contact sampling, which builds and samples from multiple sampling groups that fairly represent diverse contact statistics for both contact and non-contact vertices. Moreover, to address the spatial imbalance issue, we propose vertex-level class-balanced (VCB) loss, which incorporates spatially varying contact distribution by separately reweighting loss contribution of each vertex based on its contact frequency across dataset. As a result, we effectively learn to predict dense hand contact estimation with large-scale hand contact data without suffering from class and spatial imbalance issue. The codes are available at https://github.com/dqj5182/HACO_RELEASE.
comment: Accepted at NeurIPS 2025. Project page: http://haco-release.github.io
♻ ☆ HumanCM: One Step Human Motion Prediction
We present HumanCM, a one-step human motion prediction framework built upon consistency models. Instead of relying on multi-step denoising as in diffusion-based methods, HumanCM performs efficient single-step generation by learning a self-consistent mapping between noisy and clean motion states. The framework adopts a Transformer-based spatiotemporal architecture with temporal embeddings to model long-range dependencies and preserve motion coherence. Experiments on Human3.6M and HumanEva-I demonstrate that HumanCM achieves comparable or superior accuracy to state-of-the-art diffusion models while reducing inference steps by up to two orders of magnitude.
comment: 6 pages, 3 figures, 2 tables
♻ ☆ Balanced Token Pruning: Accelerating Vision Language Models Beyond Local Optimization
Large Vision-Language Models (LVLMs) have shown impressive performance across multi-modal tasks by encoding images into thousands of tokens. However, the large number of image tokens results in significant computational overhead, and the use of dynamic high-resolution inputs further increases this burden. Previous approaches have attempted to reduce the number of image tokens through token pruning, typically by selecting tokens based on attention scores or image token diversity. Through empirical studies, we observe that existing methods often overlook the joint impact of pruning on both the current layer's output (local) and the outputs of subsequent layers (global), leading to suboptimal pruning decisions. To address this challenge, we propose Balanced Token Pruning (BTP), a plug-and-play method for pruning vision tokens. Specifically, our method utilizes a small calibration set to divide the pruning process into multiple stages. In the early stages, our method emphasizes the impact of pruning on subsequent layers, whereas in the deeper stages, the focus shifts toward preserving the consistency of local outputs. Extensive experiments across various LVLMs demonstrate the broad effectiveness of our approach on multiple benchmarks. Our method achieves a 78% compression rate while preserving 96.7% of the original models' performance on average. Our code is available at https://github.com/EmbodiedCity/NeurIPS2025-Balanced-Token-Pruning.
comment: Accepted by Neurips 2025
♻ ☆ Frequency Cam: Imaging Periodic Signals in Real-Time
Due to their high temporal resolution and large dynamic range, event cameras are uniquely suited for the analysis of time-periodic signals in an image. In this work we present an efficient and fully asynchronous event camera algorithm for detecting the fundamental frequency at which image pixels flicker. The algorithm employs a second-order digital infinite impulse response (IIR) filter to perform an approximate per-pixel brightness reconstruction and is more robust to high-frequency noise than the baseline method we compare to. We further demonstrate that using the falling edge of the signal leads to more accurate period estimates than the rising edge, and that for certain signals interpolating the zero-level crossings can further increase accuracy. Our experiments find that the outstanding capabilities of the camera in detecting frequencies up to 64kHz for a single pixel do not carry over to full sensor imaging as readout bandwidth limitations become a serious obstacle. This suggests that a hardware implementation closer to the sensor will allow for greatly improved frequency imaging. We discuss the important design parameters for fullsensor frequency imaging and present Frequency Cam, an open-source implementation as a ROS node that can run on a single core of a laptop CPU at more than 50 million events per second. It produces results that are qualitatively very similar to those obtained from the closed source vibration analysis module in Prophesee's Metavision Toolkit. The code for Frequency Cam and a demonstration video can be found at https://github.com/ros-event-camera/frequency_cam
comment: 13 pages, 16 figures, one table
♻ ☆ Mesh-RFT: Enhancing Mesh Generation via Fine-grained Reinforcement Fine-Tuning NeurIPS 2025
Existing pretrained models for 3D mesh generation often suffer from data biases and produce low-quality results, while global reinforcement learning (RL) methods rely on object-level rewards that struggle to capture local structure details. To address these challenges, we present Mesh-RFT, a novel fine-grained reinforcement fine-tuning framework that employs Masked Direct Preference Optimization (M-DPO) to enable localized refinement via quality-aware face masking. To facilitate efficient quality evaluation, we introduce an objective topology-aware scoring system to evaluate geometric integrity and topological regularity at both object and face levels through two metrics: Boundary Edge Ratio (BER) and Topology Score (TS). By integrating these metrics into a fine-grained RL strategy, Mesh-RFT becomes the first method to optimize mesh quality at the granularity of individual faces, resolving localized errors while preserving global coherence. Experiment results show that our M-DPO approach reduces Hausdorff Distance (HD) by 24.6% and improves Topology Score (TS) by 3.8% over pre-trained models, while outperforming global DPO methods with a 17.4% HD reduction and 4.9% TS gain. These results demonstrate Mesh-RFT's ability to improve geometric integrity and topological regularity, achieving new state-of-the-art performance in production-ready mesh generation. Project Page: https://hitcslj.github.io/mesh-rft/.
comment: NeurIPS 2025, Spotlight
♻ ☆ Occluded nuScenes: A Multi-Sensor Dataset for Evaluating Perception Robustness in Automated Driving
Robust perception in automated driving requires reliable performance under adverse conditions, where sensors may be affected by partial failures or environmental occlusions. Although existing autonomous driving datasets inherently contain sensor noise and environmental variability, very few enable controlled, parameterised, and reproducible degradations across multiple sensing modalities. This gap limits the ability to systematically evaluate how perception and fusion architectures perform under well-defined adverse conditions. To address this limitation, we introduce the Occluded nuScenes Dataset, a novel extension of the widely used nuScenes benchmark. For the camera modality, we release both the full and mini versions with four types of occlusions, two adapted from public implementations and two newly designed. For radar and LiDAR, we provide parameterised occlusion scripts that implement three types of degradations each, enabling flexible and repeatable generation of occluded data. This resource supports consistent, reproducible evaluation of perception models under partial sensor failures and environmental interference. By releasing the first multi-sensor occlusion dataset with controlled and reproducible degradations, we aim to advance research on robust sensor fusion, resilience analysis, and safety-critical perception in automated driving.
♻ ☆ Identity-Preserving Image-to-Video Generation via Reward-Guided Optimization
Recent advances in image-to-video (I2V) generation have achieved remarkable progress in synthesizing high-quality, temporally coherent videos from static images. Among all the applications of I2V, human-centric video generation includes a large portion. However, existing I2V models encounter difficulties in maintaining identity consistency between the input human image and the generated video, especially when the person in the video exhibits significant expression changes and movements. This issue becomes critical when the human face occupies merely a small fraction of the image. Since humans are highly sensitive to identity variations, this poses a critical yet under-explored challenge in I2V generation. In this paper, we propose Identity-Preserving Reward-guided Optimization (IPRO), a novel video diffusion framework based on reinforcement learning to enhance identity preservation. Instead of introducing auxiliary modules or altering model architectures, our approach introduces a direct and effective tuning algorithm that optimizes diffusion models using a face identity scorer. To improve performance and accelerate convergence, our method backpropagates the reward signal through the last steps of the sampling chain, enabling richer gradient feedback. We also propose a novel facial scoring mechanism that treats faces in ground-truth videos as facial feature pools, providing multi-angle facial information to enhance generalization. A KL-divergence regularization is further incorporated to stabilize training and prevent overfitting to the reward signal. Extensive experiments on Wan 2.2 I2V model and our in-house I2V model demonstrate the effectiveness of our method. Our project and code are available at https://ipro-alimama.github.io/.
♻ ☆ OpenMIBOOD: Open Medical Imaging Benchmarks for Out-Of-Distribution Detection
The growing reliance on Artificial Intelligence (AI) in critical domains such as healthcare demands robust mechanisms to ensure the trustworthiness of these systems, especially when faced with unexpected or anomalous inputs. This paper introduces the Open Medical Imaging Benchmarks for Out-Of-Distribution Detection (OpenMIBOOD), a comprehensive framework for evaluating out-of-distribution (OOD) detection methods specifically in medical imaging contexts. OpenMIBOOD includes three benchmarks from diverse medical domains, encompassing 14 datasets divided into covariate-shifted in-distribution, near-OOD, and far-OOD categories. We evaluate 24 post-hoc methods across these benchmarks, providing a standardized reference to advance the development and fair comparison of OOD detection methods. Results reveal that findings from broad-scale OOD benchmarks in natural image domains do not translate to medical applications, underscoring the critical need for such benchmarks in the medical field. By mitigating the risk of exposing AI models to inputs outside their training distribution, OpenMIBOOD aims to support the advancement of reliable and trustworthy AI systems in healthcare. The repository is available at https://github.com/remic-othr/OpenMIBOOD.
comment: Updated results for NNGuide and ViM
♻ ☆ ViSpec: Accelerating Vision-Language Models with Vision-Aware Speculative Decoding NeurIPS 2025
Speculative decoding is a widely adopted technique for accelerating inference in large language models (LLMs), yet its application to vision-language models (VLMs) remains underexplored, with existing methods achieving only modest speedups (<1.5x). This gap is increasingly significant as multimodal capabilities become central to large-scale models. We hypothesize that large VLMs can effectively filter redundant image information layer by layer without compromising textual comprehension, whereas smaller draft models struggle to do so. To address this, we introduce Vision-Aware Speculative Decoding (ViSpec), a novel framework tailored for VLMs. ViSpec employs a lightweight vision adaptor module to compress image tokens into a compact representation, which is seamlessly integrated into the draft model's attention mechanism while preserving original image positional information. Additionally, we extract a global feature vector for each input image and augment all subsequent text tokens with this feature to enhance multimodal coherence. To overcome the scarcity of multimodal datasets with long assistant responses, we curate a specialized training dataset by repurposing existing datasets and generating extended outputs using the target VLM with modified prompts. Our training strategy mitigates the risk of the draft model exploiting direct access to the target model's hidden states, which could otherwise lead to shortcut learning when training solely on target model outputs. Extensive experiments validate ViSpec, achieving, to our knowledge, the first substantial speedup in VLM speculative decoding. Code is available at https://github.com/KangJialiang/ViSpec.
comment: NeurIPS 2025
♻ ☆ MODEM: A Morton-Order Degradation Estimation Mechanism for Adverse Weather Image Recovery NeurIPS 2025
Restoring images degraded by adverse weather remains a significant challenge due to the highly non-uniform and spatially heterogeneous nature of weather-induced artifacts, e.g., fine-grained rain streaks versus widespread haze. Accurately estimating the underlying degradation can intuitively provide restoration models with more targeted and effective guidance, enabling adaptive processing strategies. To this end, we propose a Morton-Order Degradation Estimation Mechanism (MODEM) for adverse weather image restoration. Central to MODEM is the Morton-Order 2D-Selective-Scan Module (MOS2D), which integrates Morton-coded spatial ordering with selective state-space models to capture long-range dependencies while preserving local structural coherence. Complementing MOS2D, we introduce a Dual Degradation Estimation Module (DDEM) that disentangles and estimates both global and local degradation priors. These priors dynamically condition the MOS2D modules, facilitating adaptive and context-aware restoration. Extensive experiments and ablation studies demonstrate that MODEM achieves state-of-the-art results across multiple benchmarks and weather types, highlighting its effectiveness in modeling complex degradation dynamics. Our code will be released at https://github.com/hainuo-wang/MODEM.git.
comment: Accepted by NeurIPS 2025
♻ ☆ FairGen: Enhancing Fairness in Text-to-Image Diffusion Models via Self-Discovering Latent Directions
While Diffusion Models (DM) exhibit remarkable performance across various image generative tasks, they nonetheless reflect the inherent bias presented in the training set. As DMs are now widely used in real-world applications, these biases could perpetuate a distorted worldview and hinder opportunities for minority groups. Existing methods on debiasing DMs usually requires model retraining with a human-crafted reference dataset or additional classifiers, which suffer from two major limitations: (1) collecting reference datasets causes expensive annotation cost; (2) the debiasing performance is heavily constrained by the quality of the reference dataset or the additional classifier. To address the above limitations, we propose FairGen, a plug-and-play method that learns attribute latent directions in a self-discovering manner, thus eliminating the reliance on such reference dataset. Specifically, FairGen consists of two parts: a set of attribute adapters and a distribution indicator. Each adapter in the set aims to learn an attribute latent direction, and is optimized via noise composition through a self-discovering process. Then, the distribution indicator is multiplied by the set of adapters to guide the generation process towards the prescribed distribution. Our method enables debiasing multiple attributes in DMs simultaneously, while remaining lightweight and easily integrable with other DMs, eliminating the need for retraining. Extensive experiments on debiasing gender, racial, and their intersectional biases show that our method outperforms previous SOTA by a large margin.
♻ ☆ Rebalancing Contrastive Alignment with Bottlenecked Semantic Increments in Text-Video Retrieval
Recent progress in text-video retrieval has been largely driven by contrastive learning. However, existing methods often overlook the effect of the modality gap, which causes anchor representations to undergo in-place optimization (i.e., optimization tension) that limits their alignment capacity. Moreover, noisy hard negatives further distort the semantics of anchors. To address these issues, we propose GARE, a Gap-Aware Retrieval framework that introduces a learnable, pair-specific increment $\Delta_{ij}$ between text $t_i$ and video $v_j$, redistributing gradients to relieve optimization tension and absorb noise. We derive $\Delta_{ij}$ via a multivariate first-order Taylor expansion of the InfoNCE loss under a trust-region constraint, showing that it guides updates along locally consistent descent directions. A lightweight neural module conditioned on the semantic gap couples increments across batches for structure-aware correction. Furthermore, we regularize $\Delta$ through a variational information bottleneck with relaxed compression, enhancing stability and semantic consistency. Experiments on four benchmarks demonstrate that GARE consistently improves alignment accuracy and robustness, validating the effectiveness of gap-aware tension mitigation. Code is available at https://github.com/musicman217/GARE-text-video-retrieval.
♻ ☆ Toward a Vision-Language Foundation Model for Medical Data: Multimodal Dataset and Benchmarks for Vietnamese PET/CT Report Generation NeurIPS 2025
Vision-Language Foundation Models (VLMs), trained on large-scale multimodal datasets, have driven significant advances in Artificial Intelligence (AI) by enabling rich cross-modal reasoning. Despite their success in general domains, applying these models to medical imaging remains challenging due to the limited availability of diverse imaging modalities and multilingual clinical data. Most existing medical VLMs are trained on a subset of imaging modalities and focus primarily on high-resource languages, thus limiting their generalizability and clinical utility. To address these limitations, we introduce a novel Vietnamese-language multimodal medical dataset consisting of 2,757 whole-body PET/CT volumes from independent patients and their corresponding full-length clinical reports. This dataset is designed to fill two pressing gaps in medical AI development: (1) the lack of PET/CT imaging data in existing VLMs training corpora, which hinders the development of models capable of handling functional imaging tasks; and (2) the underrepresentation of low-resource languages, particularly the Vietnamese language, in medical vision-language research. To the best of our knowledge, this is the first dataset to provide comprehensive PET/CT-report pairs in Vietnamese. We further introduce a training framework to enhance VLMs' learning, including data augmentation and expert-validated test sets. We conduct comprehensive experiments benchmarking state-of-the-art VLMs on downstream tasks. The experimental results show that incorporating our dataset significantly improves the performance of existing VLMs. We believe this dataset and benchmark will serve as a pivotal step in advancing the development of more robust VLMs for medical imaging, especially for low-resource languages and clinical use in Vietnamese healthcare. The source code is available at https://github.com/AIoT-Lab-BKAI/ViPET-ReportGen.
comment: 39th Conference on Neural Information Processing Systems (NeurIPS 2025)
♻ ☆ ControlFusion: A Controllable Image Fusion Framework with Language-Vision Degradation Prompts NeurIPS 2025
Current image fusion methods struggle to address the composite degradations encountered in real-world imaging scenarios and lack the flexibility to accommodate user-specific requirements. In response to these challenges, we propose a controllable image fusion framework with language-vision prompts, termed ControlFusion, which adaptively neutralizes composite degradations. On the one hand, we develop a degraded imaging model that integrates physical imaging mechanisms, including the Retinex theory and atmospheric scattering principle, to simulate composite degradations, thereby providing potential for addressing real-world complex degradations from the data level. On the other hand, we devise a prompt-modulated restoration and fusion network that dynamically enhances features with degradation prompts, enabling our method to accommodate composite degradation of varying levels. Specifically, considering individual variations in quality perception of users, we incorporate a text encoder to embed user-specified degradation types and severity levels as degradation prompts. We also design a spatial-frequency collaborative visual adapter that autonomously perceives degradations in source images, thus eliminating the complete dependence on user instructions. Extensive experiments demonstrate that ControlFusion outperforms SOTA fusion methods in fusion quality and degradation handling, particularly in countering real-world and compound degradations with various levels. The source code is publicly available at https://github.com/Linfeng-Tang/ControlFusion.
comment: Accepted to NeurIPS 2025. The code are available at https://github.com/Linfeng-Tang/ControlFusion
♻ ☆ VO-DP: Semantic-Geometric Adaptive Diffusion Policy for Vision-Only Robotic Manipulation
In the context of imitation learning, visuomotor-based diffusion policy learning is one of the main directions in robotic manipulation. Most of these approaches rely on point clouds as observation inputs and construct scene representations through point clouds feature learning, which enables them to achieve remarkable accuracy. However, the existing literature lacks an in-depth exploration of vision-only solutions that have significant potential. In this paper, we propose a Vision-Only and single-view Diffusion Policy learning method (VO-DP) that leverages pretrained visual foundation models to achieve effective fusion of semantic and geometric features. We utilize intermediate features from VGGT incorporating semantic features from DINOv2 and geometric features from Alternating Attention blocks. Features are fused via cross-attention and spatially compressed with a CNN to form the input to the policy head. Extensive experiments demonstrate that VO-DP not only outperforms the vision-only baseline DP significantly but also exhibits distinct performance trends against the point cloud-based method DP3: in simulation tasks, VO-DP achieves an average success rate of 64.6% on par with DP3 64.0% and far higher than DP 34.8%, while in real-world tasks, it reaches 87.9%, outperforming both DP3 67.5% and DP 11.2% by a notable margin. Further robustness evaluations confirm that VO-DP remains highly stable under varying conditions including color, size, background, and lighting. Lastly, we open-source a training library for robotic manipulation. Built on Accelerate, this library supports multi-machine and multi-GPU parallel training, as well as mixed precision training. It is compatible with visuomotor policies such as DP, DP3 and VO-DP, and also supports the RoboTwin simulator.
♻ ☆ SPLite Hand: Sparsity-Aware Lightweight 3D Hand Pose Estimation
With the increasing ubiquity of AR/VR devices, the deployment of deep learning models on edge devices has become a critical challenge. These devices require real-time inference, low power consumption, and minimal latency. Many framework designers face the conundrum of balancing efficiency and performance. We design a light framework that adopts an encoder-decoder architecture and introduces several key contributions aimed at improving both efficiency and accuracy. We apply sparse convolution on a ResNet-18 backbone to exploit the inherent sparsity in hand pose images, achieving a 42% end-to-end efficiency improvement. Moreover, we propose our SPLite decoder. This new architecture significantly boosts the decoding process's frame rate by 3.1x on the Raspberry Pi 5, while maintaining accuracy on par. To further optimize performance, we apply quantization-aware training, reducing memory usage while preserving accuracy (PA-MPJPE increases only marginally from 9.0 mm to 9.1 mm on FreiHAND). Overall, our system achieves a 2.98x speed-up on a Raspberry Pi 5 CPU (BCM2712 quad-core Arm A76 processor). Our method is also evaluated on compound benchmark datasets, demonstrating comparable accuracy to state-of-the-art approaches while significantly enhancing computational efficiency.
comment: Accepted to AICCC 2025
♻ ☆ Rebellious Student: A Complementary Learning Framework for Background Feature Enhancement in Hyperspectral Anomaly Detection
A recent class of hyperspectral anomaly detection methods that can be trained once on background datasets and then universally deployed -- without per-scene retraining or parameter tuning -- has demonstrated remarkable efficiency and robustness. Building upon this paradigm, we focus on the integration of spectral and spatial cues and introduce a novel "Rebellious Student" framework for complementary feature learning. Unlike conventional teacher-student paradigms driven by imitation, our method intentionally trains the spatial branch to diverge from the spectral teacher, thereby learning complementary spatial patterns that the teacher fails to capture. A two-stage learning strategy is adopted: (1) a spectral enhancement network is first trained via reverse distillation to obtain robust background spectral representations; and (2) a spatial network -- the rebellious student -- is subsequently optimized using decorrelation losses that enforce feature orthogonality while maintaining reconstruction fidelity to avoid irrelevant noise. Once trained, the framework enhances both spectral and spatial background features, enabling parameter-free and training-free anomaly detection when paired with conventional detectors. Experiments on the HAD100 benchmark show substantial improvements over several established baselines with modest computational overhead, confirming the effectiveness of the proposed complementary learning paradigm. Our code is publicly available at https://github.com/xjpp2016/FERS.
♻ ☆ SnapMoGen: Human Motion Generation from Expressive Texts
Text-to-motion generation has experienced remarkable progress in recent years. However, current approaches remain limited to synthesizing motion from short or general text prompts, primarily due to dataset constraints. This limitation undermines fine-grained controllability and generalization to unseen prompts. In this paper, we introduce SnapMoGen, a new text-motion dataset featuring high-quality motion capture data paired with accurate, expressive textual annotations. The dataset comprises 20K motion clips totaling 44 hours, accompanied by 122K detailed textual descriptions averaging 48 words per description (vs. 12 words of HumanML3D). Importantly, these motion clips preserve original temporal continuity as they were in long sequences, facilitating research in long-term motion generation and blending. We also improve upon previous generative masked modeling approaches. Our model, MoMask++, transforms motion into multi-scale token sequences that better exploit the token capacity, and learns to generate all tokens using a single generative masked transformer. MoMask++ achieves state-of-the-art performance on both HumanML3D and SnapMoGen benchmarks. Additionally, we demonstrate the ability to process casual user prompts by employing an LLM to reformat inputs to align with the expressivity and narration style of SnapMoGen. Project webpage: https://snap-research.github.io/SnapMoGen/
comment: Project Webpage: https://snap-research.github.io/SnapMoGen/
♻ ☆ The Faiss library
Vector databases typically manage large collections of embedding vectors. Currently, AI applications are growing rapidly, and so is the number of embeddings that need to be stored and indexed. The Faiss library is dedicated to vector similarity search, a core functionality of vector databases. Faiss is a toolkit of indexing methods and related primitives used to search, cluster, compress and transform vectors. This paper describes the trade-off space of vector search and the design principles of Faiss in terms of structure, approach to optimization and interfacing. We benchmark key features of the library and discuss a few selected applications to highlight its broad applicability.
♻ ☆ Sign-In to the Lottery: Reparameterizing Sparse Training From Scratch NeurIPS 2025
The performance gap between training sparse neural networks from scratch (PaI) and dense-to-sparse training presents a major roadblock for efficient deep learning. According to the Lottery Ticket Hypothesis, PaI hinges on finding a problem specific parameter initialization. As we show, to this end, determining correct parameter signs is sufficient. Yet, they remain elusive to PaI. To address this issue, we propose Sign-In, which employs a dynamic reparameterization that provably induces sign flips. Such sign flips are complementary to the ones that dense-to-sparse training can accomplish, rendering Sign-In as an orthogonal method. While our experiments and theory suggest performance improvements of PaI, they also carve out the main open challenge to close the gap between PaI and dense-to-sparse training.
comment: Accepted at NeurIPS 2025
♻ ☆ A Survey on Cache Methods in Diffusion Models: Toward Efficient Multi-Modal Generation
Diffusion Models have become a cornerstone of modern generative AI for their exceptional generation quality and controllability. However, their inherent \textit{multi-step iterations} and \textit{complex backbone networks} lead to prohibitive computational overhead and generation latency, forming a major bottleneck for real-time applications. Although existing acceleration techniques have made progress, they still face challenges such as limited applicability, high training costs, or quality degradation. Against this backdrop, \textbf{Diffusion Caching} offers a promising training-free, architecture-agnostic, and efficient inference paradigm. Its core mechanism identifies and reuses intrinsic computational redundancies in the diffusion process. By enabling feature-level cross-step reuse and inter-layer scheduling, it reduces computation without modifying model parameters. This paper systematically reviews the theoretical foundations and evolution of Diffusion Caching and proposes a unified framework for its classification and analysis. Through comparative analysis of representative methods, we show that Diffusion Caching evolves from \textit{static reuse} to \textit{dynamic prediction}. This trend enhances caching flexibility across diverse tasks and enables integration with other acceleration techniques such as sampling optimization and model distillation, paving the way for a unified, efficient inference framework for future multimodal and interactive applications. We argue that this paradigm will become a key enabler of real-time and efficient generative AI, injecting new vitality into both theory and practice of \textit{Efficient Generative Intelligence}.
comment: 22 pages,2 figures
♻ ☆ Quantization-Aware Neuromorphic Architecture for Efficient Skin Disease Classification on Resource-Constrained Devices
Accurate and efficient skin lesion classification on edge devices is critical for accessible dermatological care but remains challenging due to computational, energy, and privacy constraints. We introduce QANA, a novel quantization-aware neuromorphic architecture for incremental skin lesion classification on resource-limited hardware. QANA effectively integrates ghost modules, efficient channel attention, and squeeze-and-excitation blocks for robust feature representation with low-latency and energy-efficient inference. Its quantization-aware head and spike-compatible transformations enable seamless conversion to spiking neural networks (SNNs) and deployment on neuromorphic platforms. Evaluation on the large-scale HAM10000 benchmark and a real-world clinical dataset shows that QANA achieves 91.6% Top-1 accuracy and 82.4% macro F1 on HAM10000, and 90.8%/81.7% on the clinical dataset, significantly outperforming state-of-the-art CNN-to-SNN models under fair comparison. Deployed on BrainChip Akida hardware, QANA achieves 1.5 ms inference latency and 1.7,mJ energy per image, reducing inference latency and energy use by over 94.6%/98.6% compared to GPU-based CNNs surpassing state-of-the-art CNN-to-SNN conversion baselines. These results demonstrate the effectiveness of QANA for accurate, real-time, and privacy-sensitive medical analysis in edge environments.
♻ ☆ A Style-Based Profiling Framework for Quantifying the Synthetic-to-Real Gap in Autonomous Driving Datasets
Ensuring the reliability of autonomous driving perception systems requires extensive environment-based testing, yet real-world execution is often impractical. Synthetic datasets have therefore emerged as a promising alternative, offering advantages such as cost-effectiveness, bias free labeling, and controllable scenarios. However, the domain gap between synthetic and real-world datasets remains a major obstacle to model generalization. To address this challenge from a data-centric perspective, this paper introduces a profile extraction and discovery framework for characterizing the style profiles underlying both synthetic and real image datasets. We propose Style Embedding Distribution Discrepancy (SEDD) as a novel evaluation metric. Our framework combines Gram matrix-based style extraction with metric learning optimized for intra-class compactness and inter-class separation to extract style embeddings. Furthermore, we establish a benchmark using publicly available datasets. Experiments are conducted on a variety of datasets and sim-to-real methods, and the results show that our method is capable of quantifying the synthetic-to-real gap. This work provides a standardized profiling-based quality control paradigm that enables systematic diagnosis and targeted enhancement of synthetic datasets, advancing future development of data-driven autonomous driving systems.
comment: 7 pages, 4 figures
♻ ☆ Learning Contrastive Feature Representations for Facial Action Unit Detection
For the Facial Action Unit (AU) detection task, accurately capturing the subtle facial differences between distinct AUs is essential for reliable detection. Additionally, AU detection faces challenges from class imbalance and the presence of noisy or false labels, which undermine detection accuracy. In this paper, we introduce a novel contrastive learning framework aimed for AU detection that incorporates both self-supervised and supervised signals, thereby enhancing the learning of discriminative features for accurate AU detection. To tackle the class imbalance issue, we employ a negative sample re-weighting strategy that adjusts the step size of updating parameters for minority and majority class samples. Moreover, to address the challenges posed by noisy and false AU labels, we employ a sampling technique that encompasses three distinct types of positive sample pairs. This enables us to inject self-supervised signals into the supervised signal, effectively mitigating the adverse effects of noisy labels. Our experimental assessments, conducted on five widely-utilized benchmark datasets (BP4D, DISFA, BP4D+, GFT and Aff-Wild2), underscore the superior performance of our approach compared to state-of-the-art methods of AU detection. Our code is available at https://github.com/Ziqiao-Shang/AUNCE.
♻ ☆ EasyOcc: 3D Pseudo-Label Supervision for Fully Self-Supervised Semantic Occupancy Prediction Models
Self-supervised models have recently achieved notable advancements, particularly in the domain of semantic occupancy prediction. These models utilize sophisticated loss computation strategies to compensate for the absence of ground-truth labels. For instance, techniques such as novel view synthesis, cross-view rendering, and depth estimation have been explored to address the issue of semantic and depth ambiguity. However, such techniques typically incur high computational costs and memory usage during the training stage, especially in the case of novel view synthesis. To mitigate these issues, we propose 3D pseudo-ground-truth labels generated by the foundation models Grounded-SAM and Metric3Dv2, and harness temporal information for label densification. Our 3D pseudo-labels can be easily integrated into existing models, which yields substantial performance improvements, with mIoU increasing by 45\%, from 9.73 to 14.09, when implemented into the OccNeRF model. This stands in contrast to earlier advancements in the field, which are often not readily transferable to other architectures. Additionally, we propose a streamlined model, EasyOcc, achieving 13.86 mIoU. This model conducts learning solely from our labels, avoiding complex rendering strategies mentioned previously. Furthermore, our method enables models to attain state-of-the-art performance when evaluated on the full scene without applying the camera mask, with EasyOcc achieving 7.71 mIoU, outperforming the previous best model by 31\%. These findings highlight the critical importance of foundation models, temporal context, and the choice of loss computation space in self-supervised learning for comprehensive scene understanding.
♻ ☆ PreFM: Online Audio-Visual Event Parsing via Predictive Future Modeling NeurIPS 2025
Audio-visual event parsing plays a crucial role in understanding multimodal video content, but existing methods typically rely on offline processing of entire videos with huge model sizes, limiting their real-time applicability. We introduce Online Audio-Visual Event Parsing (On-AVEP), a novel paradigm for parsing audio, visual, and audio-visual events by sequentially analyzing incoming video streams. The On-AVEP task necessitates models with two key capabilities: (1) Accurate online inference, to effectively distinguish events with unclear and limited context in online settings, and (2) Real-time efficiency, to balance high performance with computational constraints. To cultivate these, we propose the Predictive Future Modeling (PreFM) framework featured by (a) predictive multimodal future modeling to infer and integrate beneficial future audio-visual cues, thereby enhancing contextual understanding and (b) modality-agnostic robust representation along with focal temporal prioritization to improve precision and generalization. Extensive experiments on the UnAV-100 and LLP datasets show PreFM significantly outperforms state-of-the-art methods by a large margin with significantly fewer parameters, offering an insightful approach for real-time multimodal video understanding. Code is available at https://github.com/XiaoYu-1123/PreFM.
comment: This paper is accepted by 39th Conference on Neural Information Processing Systems (NeurIPS 2025)
♻ ☆ VITRIX-CLIPIN: Enhancing Fine-Grained Visual Understanding in CLIP via Instruction Editing Data and Long Captions NeurIPS 2025
Despite the success of Vision-Language Models (VLMs) like CLIP in aligning vision and language, their proficiency in detailed, fine-grained visual comprehension remains a key challenge. We present CLIP-IN, a novel framework that bolsters CLIP's fine-grained perception through two core innovations. Firstly, we leverage instruction-editing datasets, originally designed for image manipulation, as a unique source of hard negative image-text pairs. Coupled with a symmetric hard negative contrastive loss, this enables the model to effectively distinguish subtle visual-semantic differences. Secondly, CLIP-IN incorporates long descriptive captions, utilizing rotary positional encodings to capture rich semantic context often missed by standard CLIP. Our experiments demonstrate that CLIP-IN achieves substantial gains on the MMVP benchmark and various fine-grained visual recognition tasks, without compromising robust zero-shot performance on broader classification and retrieval tasks. Critically, integrating CLIP-IN's visual representations into Multimodal Large Language Models significantly reduces visual hallucinations and enhances reasoning abilities. This work underscores the considerable potential of synergizing targeted, instruction-based contrastive learning with comprehensive descriptive information to elevate the fine-grained understanding of VLMs.
comment: Accepted to NeurIPS 2025
♻ ☆ Direct Numerical Layout Generation for 3D Indoor Scene Synthesis via Spatial Reasoning
Realistic 3D indoor scene synthesis is vital for embodied AI and digital content creation. It can be naturally divided into two subtasks: object generation and layout generation. While recent generative models have significantly advanced object-level quality and controllability, layout generation remains challenging due to limited datasets. Existing methods either overfit to these datasets or rely on predefined constraints to optimize numerical layout that sacrifice flexibility. As a result, they fail to generate scenes that are both open-vocabulary and aligned with fine-grained user instructions. We introduce DirectLayout, a framework that directly generates numerical 3D layouts from text descriptions using generalizable spatial reasoning of large language models (LLMs). DirectLayout decomposes the generation into three stages: producing a Bird's-Eye View (BEV) layout, lifting it into 3D space, and refining object placements. To enable explicit spatial reasoning and help the model grasp basic principles of object placement, we employ Chain-of-Thought (CoT) Activation based on the 3D-Front dataset. Additionally, we design CoT-Grounded Generative Layout Reward to enhance generalization and spatial planning. During inference, DirectLayout addresses asset-layout mismatches via Iterative Asset-Layout Alignment through in-context learning. Extensive experiments demonstrate that DirectLayout achieves impressive semantic consistency, generalization and physical plausibility.
comment: Project Page: https://directlayout.github.io/
♻ ☆ Revisiting End-to-End Learning with Slide-level Supervision in Computational Pathology NeurIPS 2025
Pre-trained encoders for offline feature extraction followed by multiple instance learning (MIL) aggregators have become the dominant paradigm in computational pathology (CPath), benefiting cancer diagnosis and prognosis. However, performance limitations arise from the absence of encoder fine-tuning for downstream tasks and disjoint optimization with MIL. While slide-level supervised end-to-end (E2E) learning is an intuitive solution to this issue, it faces challenges such as high computational demands and suboptimal results. These limitations motivate us to revisit E2E learning. We argue that prior work neglects inherent E2E optimization challenges, leading to performance disparities compared to traditional two-stage methods. In this paper, we pioneer the elucidation of optimization challenge caused by sparse-attention MIL and propose a novel MIL called ABMILX. It mitigates this problem through global correlation-based attention refinement and multi-head mechanisms. With the efficient multi-scale random patch sampling strategy, an E2E trained ResNet with ABMILX surpasses SOTA foundation models under the two-stage paradigm across multiple challenging benchmarks, while remaining computationally efficient (<10 RTX3090 hours). We show the potential of E2E learning in CPath and calls for greater research focus in this area. The code is https://github.com/DearCaat/E2E-WSI-ABMILX.
comment: published on NeurIPS 2025
♻ ☆ Vision-Centric Activation and Coordination for Multimodal Large Language Models
Multimodal large language models (MLLMs) integrate image features from visual encoders with LLMs, demonstrating advanced comprehension capabilities. However, mainstream MLLMs are solely supervised by the next-token prediction of textual tokens, neglecting critical vision-centric information essential for analytical abilities. To track this dilemma, we introduce VaCo, which optimizes MLLM representations through Vision-Centric activation and Coordination from multiple vision foundation models (VFMs). VaCo introduces visual discriminative alignment to integrate task-aware perceptual features extracted from VFMs, thereby unifying the optimization of both textual and visual outputs in MLLMs. Specifically, we incorporate the learnable Modular Task Queries (MTQs) and Visual Alignment Layers (VALs) into MLLMs, activating specific visual signals under the supervision of diverse VFMs. To coordinate representation conflicts across VFMs, the crafted Token Gateway Mask (TGM) restricts the information flow among multiple groups of MTQs. Extensive experiments demonstrate that VaCo significantly improves the performance of different MLLMs on various benchmarks, showcasing its superior capabilities in visual comprehension.
♻ ☆ MARIS: Marine Open-Vocabulary Instance Segmentation with Geometric Enhancement and Semantic Alignment
Most existing underwater instance segmentation approaches are constrained by close-vocabulary prediction, limiting their ability to recognize novel marine categories. To support evaluation, we introduce \textbf{MARIS} (\underline{Mar}ine Open-Vocabulary \underline{I}nstance \underline{S}egmentation), the first large-scale fine-grained benchmark for underwater Open-Vocabulary (OV) segmentation, featuring a limited set of seen categories and diverse unseen categories. Although OV segmentation has shown promise on natural images, our analysis reveals that transfer to underwater scenes suffers from severe visual degradation (e.g., color attenuation) and semantic misalignment caused by lack underwater class definitions. To address these issues, we propose a unified framework with two complementary components. The Geometric Prior Enhancement Module (\textbf{GPEM}) leverages stable part-level and structural cues to maintain object consistency under degraded visual conditions. The Semantic Alignment Injection Mechanism (\textbf{SAIM}) enriches language embeddings with domain-specific priors, mitigating semantic ambiguity and improving recognition of unseen categories. Experiments show that our framework consistently outperforms existing OV baselines both In-Domain and Cross-Domain setting on MARIS, establishing a strong foundation for future underwater perception research.
♻ ☆ VT-FSL: Bridging Vision and Text with LLMs for Few-Shot Learning NeurIPS 2025
Few-shot learning (FSL) aims to recognize novel concepts from only a few labeled support samples. Recent studies enhance support features by incorporating additional semantic information or designing complex semantic fusion modules. However, they still suffer from hallucinating semantics that contradict the visual evidence due to the lack of grounding in actual instances, resulting in noisy guidance and costly corrections. To address these issues, we propose a novel framework, bridging Vision and Text with LLMs for Few-Shot Learning (VT-FSL), which constructs precise cross-modal prompts conditioned on Large Language Models (LLMs) and support images, seamlessly integrating them through a geometry-aware alignment. It mainly consists of Cross-modal Iterative Prompting (CIP) and Cross-modal Geometric Alignment (CGA). Specifically, the CIP conditions an LLM on both class names and support images to generate precise class descriptions iteratively in a single structured reasoning pass. These descriptions not only enrich the semantic understanding of novel classes but also enable the zero-shot synthesis of semantically consistent images. The descriptions and synthetic images act respectively as complementary textual and visual prompts, providing high-level class semantics and low-level intra-class diversity to compensate for limited support data. Furthermore, the CGA jointly aligns the fused textual, support, and synthetic visual representations by minimizing the kernelized volume of the 3-dimensional parallelotope they span. It captures global and nonlinear relationships among all representations, enabling structured and consistent multimodal integration. The proposed VT-FSL method establishes new state-of-the-art performance across ten diverse benchmarks, including standard, cross-domain, and fine-grained few-shot learning scenarios. Code is available at https://github.com/peacelwh/VT-FSL.
comment: Accepted by NeurIPS 2025
♻ ☆ Video Consistency Distance: Enhancing Temporal Consistency for Image-to-Video Generation via Reward-Based Fine-Tuning
Reward-based fine-tuning of video diffusion models is an effective approach to improve the quality of generated videos, as it can fine-tune models without requiring real-world video datasets. However, it can sometimes be limited to specific performances because conventional reward functions are mainly aimed at enhancing the quality across the whole generated video sequence, such as aesthetic appeal and overall consistency. Notably, the temporal consistency of the generated video often suffers when applying previous approaches to image-to-video (I2V) generation tasks. To address this limitation, we propose Video Consistency Distance (VCD), a novel metric designed to enhance temporal consistency, and fine-tune a model with the reward-based fine-tuning framework. To achieve coherent temporal consistency relative to a conditioning image, VCD is defined in the frequency space of video frame features to capture frame information effectively through frequency-domain analysis. Experimental results across multiple I2V datasets demonstrate that fine-tuning a video generation model with VCD significantly enhances temporal consistency without degrading other performance compared to the previous method.
comment: 17 pages
♻ ☆ Text-conditioned State Space Model For Domain-generalized Change Detection Visual Question Answering
The Earth's surface is constantly changing, and detecting these changes provides valuable insights that benefit various aspects of human society. While traditional change detection methods have been employed to detect changes from bi-temporal images, these approaches typically require expert knowledge for accurate interpretation. To enable broader and more flexible access to change information by non-expert users, the task of Change Detection Visual Question Answering (CDVQA) has been introduced. However, existing CDVQA methods have been developed under the assumption that training and testing datasets share similar distributions. This assumption does not hold in real-world applications, where domain shifts often occur. In this paper, the CDVQA task is revisited with a focus on addressing domain shift. To this end, a new multi-modal and multi-domain dataset, BrightVQA, is introduced to facilitate domain generalization research in CDVQA. Furthermore, a novel state space model, termed Text-Conditioned State Space Model (TCSSM), is proposed. The TCSSM framework is designed to leverage both bi-temporal imagery and geo-disaster-related textual information in an unified manner to extract domain-invariant features across domains. Input-dependent parameters existing in TCSSM are dynamically predicted by using both bi-temporal images and geo-disaster-related description, thereby facilitating the alignment between bi-temporal visual data and the associated textual descriptions. Extensive experiments are conducted to evaluate the proposed method against state-of-the-art models, and superior performance is consistently demonstrated. The code and dataset will be made publicly available upon acceptance at https://github.com/Elman295/TCSSM.
♻ ☆ Comprehensive Evaluation and Analysis for NSFW Concept Erasure in Text-to-Image Diffusion Models
Text-to-image diffusion models have gained widespread application across various domains, demonstrating remarkable creative potential. However, the strong generalization capabilities of diffusion models can inadvertently lead to the generation of not-safe-for-work (NSFW) content, posing significant risks to their safe deployment. While several concept erasure methods have been proposed to mitigate the issue associated with NSFW content, a comprehensive evaluation of their effectiveness across various scenarios remains absent. To bridge this gap, we introduce a full-pipeline toolkit specifically designed for concept erasure and conduct the first systematic study of NSFW concept erasure methods. By examining the interplay between the underlying mechanisms and empirical observations, we provide in-depth insights and practical guidance for the effective application of concept erasure methods in various real-world scenarios, with the aim of advancing the understanding of content safety in diffusion models and establishing a solid foundation for future research and development in this critical area.
♻ ☆ LucidFlux: Caption-Free Universal Image Restoration via a Large-Scale Diffusion Transformer
Universal image restoration (UIR) aims to recover images degraded by unknown mixtures while preserving semantics -- conditions under which discriminative restorers and UNet-based diffusion priors often oversmooth, hallucinate, or drift. We present LucidFlux, a caption-free UIR framework that adapts a large diffusion transformer (Flux.1) without image captions. LucidFlux introduces a lightweight dual-branch conditioner that injects signals from the degraded input and a lightly restored proxy to respectively anchor geometry and suppress artifacts. Then, a timestep- and layer-adaptive modulation schedule is designed to route these cues across the backbone's hierarchy, in order to yield coarse-to-fine and context-aware updates that protect the global structure while recovering texture. After that, to avoid the latency and instability of text prompts or MLLM captions, we enforce caption-free semantic alignment via SigLIP features extracted from the proxy. A scalable curation pipeline further filters large-scale data for structure-rich supervision. Across synthetic and in-the-wild benchmarks, LucidFlux consistently outperforms strong open-source and commercial baselines, and ablation studies verify the necessity of each component. LucidFlux shows that, for large DiTs, when, where, and what to condition on -- rather than adding parameters or relying on text prompts -- is the governing lever for robust and caption-free universal image restoration in the wild.
comment: Project Page: https://w2genai-lab.github.io/LucidFlux
♻ ☆ CBDiff:Conditional Bernoulli Diffusion Models for Image Forgery Localization
Image Forgery Localization (IFL) is a crucial task in image forensics, aimed at accurately identifying manipulated or tampered regions within an image at the pixel level. Existing methods typically generate a single deterministic localization map, which often lacks the precision and reliability required for high-stakes applications such as forensic analysis and security surveillance. To enhance the credibility of predictions and mitigate the risk of errors, we introduce an advanced Conditional Bernoulli Diffusion Model (CBDiff). Given a forged image, CBDiff generates multiple diverse and plausible localization maps, thereby offering a richer and more comprehensive representation of the forgery distribution. This approach addresses the uncertainty and variability inherent in tampered regions. Furthermore, CBDiff innovatively incorporates Bernoulli noise into the diffusion process to more faithfully reflect the inherent binary and sparse properties of forgery masks. Additionally, CBDiff introduces a Time-Step Cross-Attention (TSCAttention), which is specifically designed to leverage semantic feature guidance with temporal steps to improve manipulation detection. Extensive experiments on eight publicly benchmark datasets demonstrate that CBDiff significantly outperforms existing state-of-the-art methods, highlighting its strong potential for real-world deployment.
♻ ☆ PlantSegNeRF: A few-shot, cross-species method for plant 3D instance point cloud reconstruction via joint-channel NeRF with multi-view image instance matching
Organ segmentation of plant point clouds is a prerequisite for the high-resolution and accurate extraction of organ-level phenotypic traits. Although the fast development of deep learning has boosted much research on segmentation of plant point clouds, the existing techniques for organ segmentation still face limitations in resolution, segmentation accuracy, and generalizability across various plant species. In this study, we proposed a novel approach called plant segmentation neural radiance fields (PlantSegNeRF), aiming to directly generate high-precision instance point clouds from multi-view RGB image sequences for a wide range of plant species. PlantSegNeRF performed 2D instance segmentation on the multi-view images to generate instance masks for each organ with a corresponding ID. The multi-view instance IDs corresponding to the same plant organ were then matched and refined using a specially designed instance matching module. The instance NeRF was developed to render an implicit scene, containing color, density, semantic and instance information. The implicit scene was ultimately converted into high-precision plant instance point clouds based on the volume density. The results proved that in semantic segmentation of point clouds, PlantSegNeRF outperformed the commonly used methods, demonstrating an average improvement of 16.1%, 18.3%, 17.8%, and 24.2% in precision, recall, F1-score, and IoU compared to the second-best results on structurally complex species. More importantly, PlantSegNeRF exhibited significant advantages in plant point cloud instance segmentation tasks. Across all plant species, it achieved average improvements of 11.7%, 38.2%, 32.2% and 25.3% in mPrec, mRec, mCov, mWCov, respectively. This study extends the organ-level plant phenotyping and provides a high-throughput way to supply high-quality 3D data for the development of large-scale models in plant science.
♻ ☆ FerretNet: Efficient Synthetic Image Detection via Local Pixel Dependencies NeurIPS 2025
The increasing realism of synthetic images generated by advanced models such as VAEs, GANs, and LDMs poses significant challenges for synthetic image detection. To address this issue, we explore two artifact types introduced during the generation process: (1) latent distribution deviations and (2) decoding-induced smoothing effects, which manifest as inconsistencies in local textures, edges, and color transitions. Leveraging local pixel dependencies (LPD) properties rooted in Markov Random Fields, we reconstruct synthetic images using neighboring pixel information to expose disruptions in texture continuity and edge coherence. Building upon LPD, we propose FerretNet, a lightweight neural network with only 1.1M parameters that delivers efficient and robust synthetic image detection. Extensive experiments demonstrate that FerretNet, trained exclusively on the 4-class ProGAN dataset, achieves an average accuracy of 97.1% on an open-world benchmark comprising 22 generative models. Our code and datasets are publicly available at https://github.com/xigua7105/FerretNet.
comment: 9 pages, 4 figures, 8 tables, accepted at NeurIPS 2025
♻ ☆ OpenWorldSAM: Extending SAM2 for Universal Image Segmentation with Language Prompts
The ability to segment objects based on open-ended language prompts remains a critical challenge, requiring models to ground textual semantics into precise spatial masks while handling diverse and unseen categories. We present OpenWorldSAM, a framework that extends the prompt-driven Segment Anything Model v2 (SAM2) to open-vocabulary scenarios by integrating multi-modal embeddings extracted from a lightweight vision-language model (VLM). Our approach is guided by four key principles: i) Unified prompting: OpenWorldSAM supports a diverse range of prompts, including category-level and sentence-level language descriptions, providing a flexible interface for various segmentation tasks. ii) Efficiency: By freezing the pre-trained components of SAM2 and the VLM, we train only 4.5 million parameters on the COCO-stuff dataset, achieving remarkable resource efficiency. iii) Instance Awareness: We enhance the model's spatial understanding through novel positional tie-breaker embeddings and cross-attention layers, enabling effective segmentation of multiple instances. iv) Generalization: OpenWorldSAM exhibits strong zero-shot capabilities, generalizing well on unseen categories and an open vocabulary of concepts without additional training. Extensive experiments demonstrate that OpenWorldSAM achieves state-of-the-art performance in open-vocabulary semantic, instance, and panoptic segmentation across multiple benchmarks. Code is available at https://github.com/GinnyXiao/OpenWorldSAM.
♻ ☆ Generative diffusion model surrogates for mechanistic agent-based biological models
Mechanistic, multicellular, agent-based models are commonly used to investigate tissue, organ, and organism-scale biology at single-cell resolution. The Cellular-Potts Model (CPM) is a powerful and popular framework for developing and interrogating these models. CPMs become computationally expensive at large space- and time- scales making application and investigation of developed models difficult. Surrogate models may allow for the accelerated evaluation of CPMs of complex biological systems. However, the stochastic nature of these models means each set of parameters may give rise to different model configurations, complicating surrogate model development. In this work, we leverage denoising diffusion probabilistic models to train a generative AI surrogate of a CPM used to investigate in vitro vasculogenesis. We describe the use of an image classifier to learn the characteristics that define unique areas of a 2-dimensional parameter space. We then apply this classifier to aid in surrogate model selection and verification. Our CPM model surrogate generates model configurations 20,000 timesteps ahead of a reference configuration and demonstrates approximately a 22x reduction in computational time as compared to native code execution. Our work represents a step towards the implementation of DDPMs to develop digital twins of stochastic biological systems.
♻ ☆ Sherlock: Self-Correcting Reasoning in Vision-Language Models NeurIPS 2025
Reasoning Vision-Language Models (VLMs) have shown promising performance on complex multimodal tasks. However, they still face significant challenges: they are highly sensitive to reasoning errors, require large volumes of annotated data or accurate verifiers, and struggle to generalize beyond specific domains. To address these limitations, we explore self-correction as a strategy to enhance reasoning VLMs. We first conduct an in-depth analysis of reasoning VLMs' self-correction abilities and identify key gaps. Based on our findings, we introduce Sherlock, a self-correction and self-improvement training framework. Sherlock introduces a trajectory-level self-correction objective, a preference data construction method based on visual perturbation, and a dynamic $\beta$ for preference tuning. Once the model acquires self-correction capabilities using only 20k randomly sampled annotated data, it continues to self-improve without external supervision. Built on the Llama3.2-Vision-11B model, Sherlock achieves remarkable results across eight benchmarks, reaching an average accuracy of 64.1 with direct generation and 65.4 after self-correction. It outperforms LLaVA-CoT (63.2), Mulberry (63.9), and LlamaV-o1 (63.4) while using less than 20% of the annotated data.
comment: Published at NeurIPS 2025, 27 pages
♻ ☆ REOrdering Patches Improves Vision Models NeurIPS 2025
Sequence models such as transformers require inputs to be represented as one-dimensional sequences. In vision, this typically involves flattening images using a fixed row-major (raster-scan) order. While full self-attention is permutation-equivariant, modern long-sequence transformers increasingly rely on architectural approximations that break this invariance and introduce sensitivity to patch ordering. We show that patch order significantly affects model performance in such settings, with simple alternatives like column-major or Hilbert curves yielding notable accuracy shifts. Motivated by this, we propose REOrder, a two-stage framework for discovering task-optimal patch orderings. First, we derive an information-theoretic prior by evaluating the compressibility of various patch sequences. Then, we learn a policy over permutations by optimizing a Plackett-Luce policy using REINFORCE. This approach enables efficient learning in a combinatorial permutation space. REOrder improves top-1 accuracy over row-major ordering on ImageNet-1K by up to 3.01% and Functional Map of the World by 13.35%.
comment: Accepted to the 39th Conference on Neural Information Processing Systems (NeurIPS 2025)
♻ ☆ Spiking Neural Networks Need High Frequency Information
Spiking Neural Networks promise brain-inspired and energy-efficient computation by transmitting information through binary (0/1) spikes. Yet, their performance still lags behind that of artificial neural networks, often assumed to result from information loss caused by sparse and binary activations. In this work, we challenge this long-standing assumption and reveal a previously overlooked frequency bias: spiking neurons inherently suppress high-frequency components and preferentially propagate low-frequency information. This frequency-domain imbalance, we argue, is the root cause of degraded feature representation in SNNs. Empirically, on Spiking Transformers, adopting Avg-Pooling (low-pass) for token mixing lowers performance to 76.73% on Cifar-100, whereas replacing it with Max-Pool (high-pass) pushes the top-1 accuracy to 79.12%. Accordingly, we introduce Max-Former that restores high-frequency signals through two frequency-enhancing operators: (1) extra Max-Pool in patch embedding, and (2) Depth-Wise Convolution in place of self-attention. Notably, Max-Former attains 82.39% top-1 accuracy on ImageNet using only 63.99M parameters, surpassing Spikformer (74.81%, 66.34M) by +7.58%. Extending our insight beyond transformers, our Max-ResNet-18 achieves state-of-the-art performance on convolution-based benchmarks: 97.17% on CIFAR-10 and 83.06% on CIFAR-100. We hope this simple yet effective solution inspires future research to explore the distinctive nature of spiking neural networks. Code is available: https://github.com/bic-L/MaxFormer.
♻ ☆ Epistemic-aware Vision-Language Foundation Model for Fetal Ultrasound Interpretation
Recent medical vision-language models have shown promise on tasks such as VQA, report generation, and anomaly detection. However, most are adapted to structured adult imaging and underperform in fetal ultrasound, which poses challenges of multi-view image reasoning, numerous diseases, and image diversity. To bridge this gap, we introduce FetalMind, a medical AI system tailored to fetal ultrasound for both report generation and diagnosis. Guided by clinical workflow, we propose Salient Epistemic Disentanglement (SED), which injects an expert-curated bipartite graph into the model to decouple view-disease associations and to steer preference selection along clinically faithful steps via reinforcement learning. This design mitigates variability across diseases and heterogeneity across views, reducing learning bottlenecks while aligning the model's inference with obstetric practice. To train FetalMind at scale, we curate FetalSigma-1M dataset, the first large-scale fetal ultrasound report corpus, comprising 20K reports from twelve medical centers, addressing the scarcity of domain data. Extensive experiments show that FetalMind outperforms open- and closed-source baselines across all gestational stages, achieving +14% average gains and +61.2% higher accuracy on critical conditions while remaining efficient, stable, and scalable. Project Page: https://hexiao0275.github.io/FetalMind.
comment: This paper contains fundamental errors and will not be replaced
♻ ☆ Panoptic-CUDAL: Rural Australia Point Cloud Dataset in Rainy Conditions
Existing autonomous driving datasets are predominantly oriented towards well-structured urban settings and favourable weather conditions, leaving the complexities of rural environments and adverse weather conditions largely unaddressed. Although some datasets encompass variations in weather and lighting, bad weather scenarios do not appear often. Rainfall can significantly impair sensor functionality, introducing noise and reflections in LiDAR and camera data and reducing the system's capabilities for reliable environmental perception and safe navigation. This paper introduces the Panoptic-CUDAL dataset, a novel dataset purpose-built for panoptic segmentation in rural areas subject to rain. By recording high-resolution LiDAR, camera, and pose data, Panoptic-CUDAL offers a diverse, information-rich dataset in a challenging scenario. We present the analysis of the recorded data and provide baseline results for panoptic, semantic segmentation, and 3D occupancy prediction methods on LiDAR point clouds. The dataset can be found here: https://robotics.sydney.edu.au/our-research/intelligent-transportation-systems, https://vision.rwth-aachen.de/panoptic-cudal
♻ ☆ SeG-SR: Integrating Semantic Knowledge into Remote Sensing Image Super-Resolution via Vision-Language Model
High-resolution (HR) remote sensing imagery plays a vital role in a wide range of applications, including urban planning and environmental monitoring. However, due to limitations in sensors and data transmission links, the images acquired in practice often suffer from resolution degradation. Remote Sensing Image Super-Resolution (RSISR) aims to reconstruct HR images from low-resolution (LR) inputs, providing a cost-effective and efficient alternative to direct HR image acquisition. Existing RSISR methods primarily focus on low-level characteristics in pixel space, while neglecting the high-level understanding of remote sensing scenes. This may lead to semantically inconsistent artifacts in the reconstructed results. Motivated by this observation, our work aims to explore the role of high-level semantic knowledge in improving RSISR performance. We propose a Semantic-Guided Super-Resolution framework, SeG-SR, which leverages Vision-Language Models (VLMs) to extract semantic knowledge from input images and uses it to guide the super resolution (SR) process. Specifically, we first design a Semantic Feature Extraction Module (SFEM) that utilizes a pretrained VLM to extract semantic knowledge from remote sensing images. Next, we propose a Semantic Localization Module (SLM), which derives a series of semantic guidance from the extracted semantic knowledge. Finally, we develop a Learnable Modulation Module (LMM) that uses semantic guidance to modulate the features extracted by the SR network, effectively incorporating high-level scene understanding into the SR pipeline. We validate the effectiveness and generalizability of SeG-SR through extensive experiments: SeG-SR achieves state-of-the-art performance on three datasets, and consistently improves performance across various SR architectures. Notably, for the x4 SR task on UCMerced dataset, it attained a PSNR of 29.3042 dB and an SSIM of 0.7961.
♻ ☆ RADAR: A Risk-Aware Dynamic Multi-Agent Framework for LLM Safety Evaluation via Role-Specialized Collaboration
Existing safety evaluation methods for large language models (LLMs) suffer from inherent limitations, including evaluator bias and detection failures arising from model homogeneity, which collectively undermine the robustness of risk evaluation processes. This paper seeks to re-examine the risk evaluation paradigm by introducing a theoretical framework that reconstructs the underlying risk concept space. Specifically, we decompose the latent risk concept space into three mutually exclusive subspaces: the explicit risk subspace (encompassing direct violations of safety guidelines), the implicit risk subspace (capturing potential malicious content that requires contextual reasoning for identification), and the non-risk subspace. Furthermore, we propose RADAR, a multi-agent collaborative evaluation framework that leverages multi-round debate mechanisms through four specialized complementary roles and employs dynamic update mechanisms to achieve self-evolution of risk concept distributions. This approach enables comprehensive coverage of both explicit and implicit risks while mitigating evaluator bias. To validate the effectiveness of our framework, we construct an evaluation dataset comprising 800 challenging cases. Extensive experiments on our challenging testset and public benchmarks demonstrate that RADAR significantly outperforms baseline evaluation methods across multiple dimensions, including accuracy, stability, and self-evaluation risk sensitivity. Notably, RADAR achieves a 28.87% improvement in risk identification accuracy compared to the strongest baseline evaluation method.
♻ ☆ FuseUNet: A Multi-Scale Feature Fusion Method for U-like Networks
Medical image segmentation is a critical task in computer vision, with UNet serving as a milestone architecture. The typical component of UNet family is the skip connection, however, their skip connections face two significant limitations: (1) they lack effective interaction between features at different scales, and (2) they rely on simple concatenation or addition operations, which constrain efficient information integration. While recent improvements to UNet have focused on enhancing encoder and decoder capabilities, these limitations remain overlooked. To overcome these challenges, we propose a novel multi-scale feature fusion method that reimagines the UNet decoding process as solving an initial value problem (IVP), treating skip connections as discrete nodes. By leveraging principles from the linear multistep method, we propose an adaptive ordinary differential equation method to enable effective multi-scale feature fusion. Our approach is independent of the encoder and decoder architectures, making it adaptable to various U-Net-like networks. Experiments on ACDC, KiTS2023, MSD brain tumor, and ISIC2017/2018 skin lesion segmentation datasets demonstrate improved feature utilization, reduced network parameters, and maintained high performance. The code is available at https://github.com/nayutayuki/FuseUNet.
comment: Updated author information to clarify institutional affiliation. The research was conducted prior to the author joining the University of Maryland
Computers and Society
☆ On the Detectability of LLM-Generated Text: What Exactly Is LLM-Generated Text?
With the widespread use of large language models (LLMs), many researchers have turned their attention to detecting text generated by them. However, there is no consistent or precise definition of their target, namely "LLM-generated text". Differences in usage scenarios and the diversity of LLMs further increase the difficulty of detection. What is commonly regarded as the detecting target usually represents only a subset of the text that LLMs can potentially produce. Human edits to LLM outputs, together with the subtle influences that LLMs exert on their users, are blurring the line between LLM-generated and human-written text. Existing benchmarks and evaluation approaches do not adequately address the various conditions in real-world detector applications. Hence, the numerical results of detectors are often misunderstood, and their significance is diminishing. Therefore, detectors remain useful under specific conditions, but their results should be interpreted only as references rather than decisive indicators.
☆ The Order of Recommendation Matters: Structured Exploration for Improving the Fairness of Content Creators
Social media platforms provide millions of professional content creators with sustainable incomes. Their income is largely influenced by their number of views and followers, which in turn depends on the platform's recommender system (RS). So, as with regular jobs, it is important to ensure that RSs distribute revenue in a fair way. For example, prior work analyzed whether the creators of the highest-quality content would receive the most followers and income. Results showed this is unlikely to be the case, but did not suggest targeted solutions. In this work, we first use theoretical analysis and simulations on synthetic datasets to understand the system better and find interventions that improve fairness for creators. We find that the use of ordered pairwise comparison overcomes the cold start problem for a new set of items and greatly increases the chance of achieving fair outcomes for all content creators. Importantly, it also maintains user satisfaction. We also test the intervention on the MovieLens dataset and investigate its effectiveness on platforms with interaction histories that are currently unfair for content creators. These experiments reveal that the intervention improves fairness when deployed at early stages of the platform, but the effect decreases as the strength of pre-existing bias increases. Altogether, we find that the ordered pairwise comparison approach might offer a plausible alternative for both new and existing platforms to implement.
☆ Black Box Absorption: LLMs Undermining Innovative Ideas
Large Language Models are increasingly adopted as critical tools for accelerating innovation. This paper identifies and formalizes a systemic risk inherent in this paradigm: \textbf{Black Box Absorption}. We define this as the process by which the opaque internal architectures of LLM platforms, often operated by large-scale service providers, can internalize, generalize, and repurpose novel concepts contributed by users during interaction. This mechanism threatens to undermine the foundational principles of innovation economics by creating severe informational and structural asymmetries between individual creators and platform operators, thereby jeopardizing the long-term sustainability of the innovation ecosystem. To analyze this challenge, we introduce two core concepts: the idea unit, representing the transportable functional logic of an innovation, and idea safety, a multidimensional standard for its protection. This paper analyzes the mechanisms of absorption and proposes a concrete governance and engineering agenda to mitigate these risks, ensuring that creator contributions remain traceable, controllable, and equitable.
☆ Strategic Costs of Perceived Bias in Fair Selection NeurIPS 2025
Meritocratic systems, from admissions to hiring, aim to impartially reward skill and effort. Yet persistent disparities across race, gender, and class challenge this ideal. Some attribute these gaps to structural inequality; others to individual choice. We develop a game-theoretic model in which candidates from different socioeconomic groups differ in their perceived post-selection value--shaped by social context and, increasingly, by AI-powered tools offering personalized career or salary guidance. Each candidate strategically chooses effort, balancing its cost against expected reward; effort translates into observable merit, and selection is based solely on merit. We characterize the unique Nash equilibrium in the large-agent limit and derive explicit formulas showing how valuation disparities and institutional selectivity jointly determine effort, representation, social welfare, and utility. We further propose a cost-sensitive optimization framework that quantifies how modifying selectivity or perceived value can reduce disparities without compromising institutional goals. Our analysis reveals a perception-driven bias: when perceptions of post-selection value differ across groups, these differences translate into rational differences in effort, propagating disparities backward through otherwise "fair" selection processes. While the model is static, it captures one stage of a broader feedback cycle linking perceptions, incentives, and outcome--bridging rational-choice and structural explanations of inequality by showing how techno-social environments shape individual incentives in meritocratic systems.
comment: The paper has been accepted by NeurIPS 2025
☆ What do AI-Generated Images Want?
W.J.T. Mitchell's influential essay 'What do pictures want?' shifts the theoretical focus away from the interpretative act of understanding pictures and from the motivations of the humans who create them to the possibility that the picture itself is an entity with agency and wants. In this article, I reframe Mitchell's question in light of contemporary AI image generation tools to ask: what do AI-generated images want? Drawing from art historical discourse on the nature of abstraction, I argue that AI-generated images want specificity and concreteness because they are fundamentally abstract. Multimodal text-to-image models, which are the primary subject of this article, are based on the premise that text and image are interchangeable or exchangeable tokens and that there is a commensurability between them, at least as represented mathematically in data. The user pipeline that sees textual input become visual output, however, obscures this representational regress and makes it seem like one form transforms into the other -- as if by magic.
☆ Towards AI Agents for Course Instruction in Higher Education: Early Experiences from the Field
This article presents early findings from designing, deploying and evaluating an AI-based educational agent deployed as the primary instructor in a graduate-level Cloud Computing course at IISc. We detail the design of a Large Language Model (LLM)-driven Instructor Agent, and introduce a pedagogical framework that integrates the Instructor Agent into the course workflow for actively interacting with the students for content delivery, supplemented by the human instructor to offer the course structure and undertake question--answer sessions. We also propose an analytical framework that evaluates the Agent--Student interaction transcripts using interpretable engagement metrics of topic coverage, topic depth and turn-level elaboration. We report early experiences on how students interact with the Agent to explore concepts, clarify doubts and sustain inquiry-driven dialogue during live classroom sessions. We also report preliminary analysis on our evaluation metrics applied across two successive instructional modules that reveals patterns of engagement evolution, transitioning from broad conceptual exploration to deeper, focused inquiry. These demonstrate how structured integration of conversational AI agents can foster reflective learning, offer a reproducible methodology for studying engagement in authentic classroom settings, and support scalable, high-quality higher education.
☆ Dependency-Aware Task Offloading in Multi-UAV Assisted Collaborative Mobile Edge Computing
This paper proposes a novel multi-unmanned aerial vehicle (UAV) assisted collaborative mobile edge computing (MEC) framework, where the computing tasks of terminal devices (TDs) can be decomposed into serial or parallel sub-tasks and offloaded to collaborative UAVs. We first model the dependencies among all sub-tasks as a directed acyclic graph (DAG) and design a two-timescale frame structure to decouple the sub-task interdependencies for sub-task scheduling. Then, a joint sub-task offloading, computational resource allocation, and UAV trajectories optimization problem is formulated, which aims to minimize the system cost, i.e., the weighted sum of the task completion delay and the system energy consumption. To solve this non-convex mixed-integer nonlinear programming (MINLP) problem, a penalty dual decomposition and successive convex approximation (PDD-SCA) algorithm is developed. Particularly, the original MINLP problem is equivalently transferred into a continuous form relying on PDD theory. By decoupling the resulting problem into three nested subproblems, the SCA method is further combined to recast the non-convex components and obtain desirable solutions. Numerical results demonstrate that: 1) Compared to the benchmark algorithms, the proposed scheme can significantly reduce the system cost, and thus realize an improved trade-off between task latency and energy consumption; 2) The proposed algorithm can achieve an efficient workload balancing for distributed computation across multiple UAVs.
comment: Preprint version. Under review for possible publication in IEEE Transactions on Vehicular Technology
☆ Hierarchical Dual-Head Model for Suicide Risk Assessment via MentalRoBERTa
Social media platforms have become important sources for identifying suicide risk, but automated detection systems face multiple challenges including severe class imbalance, temporal complexity in posting patterns, and the dual nature of risk levels as both ordinal and categorical. This paper proposes a hierarchical dual-head neural network based on MentalRoBERTa for suicide risk classification into four levels: indicator, ideation, behavior, and attempt. The model employs two complementary prediction heads operating on a shared sequence representation: a CORAL (Consistent Rank Logits) head that preserves ordinal relationships between risk levels, and a standard classification head that enables flexible categorical distinctions. A 3-layer Transformer encoder with 8-head multi-head attention models temporal dependencies across post sequences, while explicit time interval embeddings capture posting behavior dynamics. The model is trained with a combined loss function (0.5 CORAL + 0.3 Cross-Entropy + 0.2 Focal Loss) that simultaneously addresses ordinal structure preservation, overconfidence reduction, and class imbalance. To improve computational efficiency, we freeze the first 6 layers (50%) of MentalRoBERTa and employ mixed-precision training. The model is evaluated using 5-fold stratified cross-validation with macro F1 score as the primary metric.
comment: 9 pages, 7 figures, 2tables, 2025 IEEE International Conference on Big Data
♻ ☆ Scrapers selectively respect robots.txt directives: evidence from a large-scale empirical study
Online data scraping has taken on new dimensions in recent years, as traditional scrapers have been joined by new AI-specific bots. To counteract unwanted scraping, many sites use tools like the Robots Exclusion Protocol (REP), which places a robots$.$txt file at the site root to dictate scraper behavior. Yet, the efficacy of the REP is not well-understood. Anecdotal evidence suggests some bots comply poorly with it, but no rigorous study exists to support (or refute) this claim. To understand the merits and limits of the REP, we conduct the first large-scale study of web scraper compliance with robots$.$txt directives using anonymized web logs from our institution. We analyze the behavior of 130 self-declared bots (and many anonymous ones) over 40 days, using a series of controlled robots$.$txt experiments. We find that bots are less likely to comply with stricter robots$.$txt directives, and that certain categories of bots, including AI search crawlers, rarely check robots$.$txt at all. These findings suggest that relying on robots$.$txt files to prevent unwanted scraping is risky and highlight the need for alternative approaches.
comment: 13 pages
♻ ☆ Position: The Current AI Conference Model is Unsustainable! Diagnosing the Crisis of Centralized AI Conference
Artificial Intelligence (AI) conferences are essential for advancing research, sharing knowledge, and fostering academic community. However, their rapid expansion has rendered the centralized conference model increasingly unsustainable. This paper offers a data-driven diagnosis of a structural crisis that threatens the foundational goals of scientific dissemination, equity, and community well-being. We identify four key areas of strain: (1) scientifically, with per-author publication rates more than doubling over the past decade to over 4.5 papers annually; (2) environmentally, with the carbon footprint of a single conference exceeding the daily emissions of its host city; (3) psychologically, with 71% of online community discourse reflecting negative sentiment and 35% referencing mental health concerns; and (4) logistically, with attendance at top conferences such as NeurIPS 2024 beginning to outpace venue capacity. These pressures point to a system that is misaligned with its core mission. In response, we propose the Community-Federated Conference (CFC) model, which separates peer review, presentation, and networking into globally coordinated but locally organized components, offering a more sustainable, inclusive, and resilient path forward for AI research.
comment: Preprint
♻ ☆ TriQuest:An AI Copilot-Powered Platform for Interdisciplinary Curriculum Design
Interdisciplinary teaching is a cornerstone of modern curriculum reform, but its implementation is hindered by challenges in knowledge integration and time-consuming lesson planning. Existing tools often lack the required pedagogical and domain-specific depth.We introduce TriQuest, an AI-copilot platform designed to solve these problems. TriQuest uses large language models and knowledge graphs via an intuitive GUI to help teachers efficiently generate high-quality interdisciplinary lesson plans. Its core features include intelligent knowledge integration from various disciplines and a human-computer collaborative review process to ensure quality and innovation.In a study with 43 teachers, TriQuest increased curriculum design efficiency and improved lesson plan quality. It also significantly lowered design barriers and cognitive load. Our work presents a new paradigm for empowering teacher professional development with intelligent technologies.
comment: 16 pages, 4 figures
♻ ☆ Beyond Static Knowledge Messengers: Towards Adaptive, Fair, and Scalable Federated Learning for Medical AI
Medical AI faces challenges in privacy-preserving collaborative learning while ensuring fairness across heterogeneous healthcare institutions. Current federated learning approaches suffer from static architectures, slow convergence (45-73 rounds), fairness gaps marginalizing smaller institutions, and scalability constraints (15-client limit). We propose Adaptive Fair Federated Learning (AFFL) through three innovations: (1) Adaptive Knowledge Messengers dynamically scaling capacity based on heterogeneity and task complexity, (2) Fairness-Aware Distillation using influence-weighted aggregation, and (3) Curriculum-Guided Acceleration reducing rounds by 60-70%. Our theoretical analysis provides convergence guarantees with epsilon-fairness bounds, achieving O(T^{-1/2}) + O(H_max/T^{3/4}) rates. Projected results show 55-75% communication reduction, 56-68% fairness improvement, 34-46% energy savings, and 100+ institution support. The framework enables multi-modal integration across imaging, genomics, EHR, and sensor data while maintaining HIPAA/GDPR compliance. We propose MedFedBench benchmark suite for standardized evaluation across six healthcare dimensions: convergence efficiency, institutional fairness, privacy preservation, multi-modal integration, scalability, and clinical deployment readiness. Economic projections indicate 400-800% ROI for rural hospitals and 15-25% performance gains for academic centers. This work presents a seven-question research agenda, 24-month implementation roadmap, and pathways toward democratizing healthcare AI.
comment: 20 pages, 4 figures, 14 tables. Proposes Adaptive Fair Federated Learning (AFFL) algorithm and MedFedBench benchmark suite for healthcare federated learning
♻ ☆ Toward Metaphor-Fluid Conversation Design for Voice User Interfaces
Metaphors play a critical role in shaping user experiences with Voice User Interfaces (VUIs), yet existing designs often rely on static, human-centric metaphors that fail to adapt to diverse contexts and user needs. This paper introduces Metaphor-Fluid Design, a novel approach that dynamically adjusts metaphorical representations based on conversational use-contexts. We compare this approach to a Default VUI, which characterizes the present implementation of commercial VUIs commonly designed around the persona of an assistant, offering a uniform interaction style across contexts. In Study 1 (N=130), metaphors were mapped to four key use-contexts-commands, information seeking, sociality, and error recovery-along the dimensions of formality and hierarchy, revealing distinct preferences for task-specific metaphorical designs. Study 2 (N=91) evaluates a Metaphor-Fluid VUI against a Default VUI, showing that the Metaphor-Fluid VUI enhances perceived intention to adopt, enjoyment, and likability by aligning better with user expectations for different contexts. However, individual differences in metaphor preferences highlight the need for personalization. These findings challenge the one-size-fits-all paradigm of VUI design and demonstrate the potential of Metaphor-Fluid Design to create more adaptive and engaging human-AI interactions.
♻ ☆ A New Digital Divide? Coder Worldviews, the Slop Economy, and Democracy in the Age of AI
Digital technologies are transforming democratic life in conflicting ways. This article bridges two perspectives to unpack these tensions. First, we present an original survey of software developers in Silicon Valley, interrogating how coder worldviews, ethics, and workplace cultures shape the democratic potential and social impact of the technologies they build. Results indicate that while most developers recognize the power of their products to influence civil liberties and political discourse, they often face ethical dilemmas and top-down pressures that can lead to design choices undermining democratic ideals. Second, we critically investigate these findings in the context of an emerging new digital divide, not of internet access but of information quality. We interrogate the survey findings in the context of the Slop Economy, in which billions of users unable to pay for high-quality content experience an internet dominated by low-quality, AI-generated ad-driven content. We find a reinforcing cycle between tech creator beliefs and the digital ecosystems they spawn. We discuss implications for democratic governance, arguing for more ethically informed design and policy interventions to help bridge the digital divide to ensure that technological innovation supports rather than subverts democratic values in the next chapter of the digital age.
Computation and Language
☆ LLMs can hide text in other text of the same length.ipynb
A meaningful text can be hidden inside another, completely different yet still coherent and plausible, text of the same length. For example, a tweet containing a harsh political critique could be embedded in a tweet that celebrates the same political leader, or an ordinary product review could conceal a secret manuscript. This uncanny state of affairs is now possible thanks to Large Language Models, and in this paper we present a simple and efficient protocol to achieve it. We show that even modest 8-billion-parameter open-source LLMs are sufficient to obtain high-quality results, and a message as long as this abstract can be encoded and decoded locally on a laptop in seconds. The existence of such a protocol demonstrates a radical decoupling of text from authorial intent, further eroding trust in written communication, already shaken by the rise of LLM chatbots. We illustrate this with a concrete scenario: a company could covertly deploy an unfiltered LLM by encoding its answers within the compliant responses of a safe model. This possibility raises urgent questions for AI safety and challenges our understanding of what it means for a Large Language Model to know something.
comment: 21 pages, main paper 9 pages
☆ Enhancing Reasoning Skills in Small Persian Medical Language Models Can Outperform Large-Scale Data Training
Enhancing reasoning capabilities in small language models is critical for specialized applications such as medical question answering, particularly in underrepresented languages like Persian. In this study, we employ Reinforcement Learning with AI Feedback (RLAIF) and Direct preference optimization (DPO) to improve the reasoning skills of a general-purpose Persian language model. To achieve this, we translated a multiple-choice medical question-answering dataset into Persian and used RLAIF to generate rejected-preferred answer pairs, which are essential for DPO training. By prompting both teacher and student models to produce Chain-of-Thought (CoT) reasoning responses, we compiled a dataset containing correct and incorrect reasoning trajectories. This dataset, comprising 2 million tokens in preferred answers and 2.5 million tokens in rejected ones, was used to train a baseline model, significantly enhancing its medical reasoning capabilities in Persian. Remarkably, the resulting model outperformed its predecessor, gaokerena-V, which was trained on approximately 57 million tokens, despite leveraging a much smaller dataset. These results highlight the efficiency and effectiveness of reasoning-focused training approaches in developing domain-specific language models with limited data availability.
comment: 6 pages, 4 figures
☆ From Facts to Folklore: Evaluating Large Language Models on Bengali Cultural Knowledge
Recent progress in NLP research has demonstrated remarkable capabilities of large language models (LLMs) across a wide range of tasks. While recent multilingual benchmarks have advanced cultural evaluation for LLMs, critical gaps remain in capturing the nuances of low-resource cultures. Our work addresses these limitations through a Bengali Language Cultural Knowledge (BLanCK) dataset including folk traditions, culinary arts, and regional dialects. Our investigation of several multilingual language models shows that while these models perform well in non-cultural categories, they struggle significantly with cultural knowledge and performance improves substantially across all models when context is provided, emphasizing context-aware architectures and culturally curated training data.
comment: 4 pages
☆ Beyond One-Way Influence: Bidirectional Opinion Dynamics in Multi-Turn Human-LLM Interactions
Large language model (LLM)-powered chatbots are increasingly used for opinion exploration. Prior research examined how LLMs alter user views, yet little work extended beyond one-way influence to address how user input can affect LLM responses and how such bi-directional influence manifests throughout the multi-turn conversations. This study investigates this dynamic through 50 controversial-topic discussions with participants (N=266) across three conditions: static statements, standard chatbot, and personalized chatbot. Results show that human opinions barely shifted, while LLM outputs changed more substantially, narrowing the gap between human and LLM stance. Personalization amplified these shifts in both directions compared to the standard setting. Analysis of multi-turn conversations further revealed that exchanges involving participants' personal stories were most likely to trigger stance changes for both humans and LLMs. Our work highlights the risk of over-alignment in human-LLM interaction and the need for careful design of personalized chatbots to more thoughtfully and stably align with users.
comment: 26 pages, 8 figures
☆ ToolScope: Enhancing LLM Agent Tool Use through Tool Merging and Context-Aware Filtering
Large language model (LLM) agents rely on external tools to solve complex tasks, but real-world toolsets often contain redundant tools with overlapping names and descriptions, introducing ambiguity and reducing selection accuracy. LLMs also face strict input context limits, preventing efficient consideration of large toolsets. To address these challenges, we propose ToolScope, which includes: (1) ToolScopeMerger with Auto-Correction to automatically audit and fix tool merges, reducing redundancy, and (2) ToolScopeRetriever to rank and select only the most relevant tools for each query, compressing toolsets to fit within context limits without sacrificing accuracy. Evaluations on three state-of-the-art LLMs and three open-source tool-use benchmarks show gains of 8.38% to 38.6% in tool selection accuracy, demonstrating ToolScope's effectiveness in enhancing LLM tool use.
comment: Preprint under review
☆ Improving Transfer Learning for Sequence Labeling Tasks by Adapting Pre-trained Neural Language Models
This doctoral thesis improves the transfer learning for sequence labeling tasks by adapting pre-trained neural language models. The proposed improvements in transfer learning involve introducing a multi-task model that incorporates an additional signal, a method based on architectural modifications in autoregressive large language models, and a sequence labeling framework for autoregressive large language models utilizing supervised in-context fine-tuning combined with response-oriented adaptation strategies. The first improvement is given in the context of domain transfer for the event trigger detection task. The domain transfer of the event trigger detection task can be improved by incorporating an additional signal obtained from a domain-independent text processing system into a multi-task model. The second improvement involves modifying the model's architecture. For that purpose, a method is proposed to enable bidirectional information flow across layers of autoregressive large language models. The third improvement utilizes autoregressive large language models as text generators through a generative supervised in-context fine-tuning framework. The proposed model, method, and framework demonstrate that pre-trained neural language models achieve their best performance on sequence labeling tasks when adapted through targeted transfer learning paradigms.
♻ ☆ Constraint Satisfaction Approaches to Wordle: Novel Heuristics and Cross-Lexicon Validation
Wordle presents an algorithmically rich testbed for constraint satisfaction problem (CSP) solving. While existing solvers rely on information-theoretic entropy maximization or frequency-based heuristics without formal constraint treatment, we present the first comprehensive CSP formulation of Wordle with novel constraint-aware solving strategies. We introduce CSP-Aware Entropy, computing information gain after constraint propagation rather than on raw candidate sets, and a Probabilistic CSP framework integrating Bayesian word-frequency priors with logical constraints. Through evaluation on 2,315 English words, CSP-Aware Entropy achieves 3.54 average guesses with 99.9% success rate, a statistically significant 1.7% improvement over Forward Checking (t=-4.82, p<0.001, Cohen's d=0.07) with 46% faster runtime (12.9ms versus 23.7ms per guess). Under 10% noise, CSP-aware approaches maintain 5.3 percentage point advantages (29.0% versus 23.7%, p=0.041), while Probabilistic CSP achieves 100% success across all noise levels (0-20%) through constraint recovery mechanisms. Cross-lexicon validation on 500 Spanish words demonstrates 88% success with zero language-specific tuning, validating that core CSP principles transfer across languages despite an 11.2 percentage point gap from linguistic differences (p<0.001, Fisher's exact test). Our open-source implementation with 34 unit tests achieving 91% code coverage provides reproducible infrastructure for CSP research. The combination of formal CSP treatment, constraint-aware heuristics, probabilistic-logical integration, robustness analysis, and cross-lexicon validation establishes new performance benchmarks demonstrating that principled constraint satisfaction techniques outperform classical information-theoretic and learning-based approaches for structured puzzle-solving domains.
comment: 35 pages, 14 figures, 10 tables. Open-source implementation with 91% test coverage available at https://github.com/jahidul-arafat/constraint_satisfaction_wordle_arxiv_preprint
♻ ☆ Heterogeneous Swarms: Jointly Optimizing Model Roles and Weights for Multi-LLM Systems NeurIPS 2025
We propose Heterogeneous Swarms, an algorithm to design multi-LLM systems by jointly optimizing model roles and weights. We represent multi-LLM systems as directed acyclic graphs (DAGs) of LLMs with topological message passing for collaborative generation. Given a pool of LLM experts and a utility function, Heterogeneous Swarms employs two iterative steps: role-step and weight-step. For role-step, we interpret model roles as learning a DAG that specifies the flow of inputs and outputs between LLMs. Starting from a swarm of random continuous adjacency matrices, we decode them into discrete DAGs, call the LLMs in topological order, evaluate on the utility function (e.g. accuracy on a task), and optimize the adjacency matrices with particle swarm optimization based on the utility score. For weight-step, we assess the contribution of individual LLMs in the multi-LLM systems and optimize model weights with swarm intelligence. We propose JFK-score to quantify the individual contribution of each LLM in the best-found DAG of the role-step, then optimize model weights with particle swarm optimization based on the JFK-score. Experiments demonstrate that Heterogeneous Swarms outperforms 15 role- and/or weight-based baselines by 18.5% on average across 12 tasks. Further analysis reveals that Heterogeneous Swarms discovers multi-LLM systems with heterogeneous model roles and substantial collaborative gains, and benefits from the diversity of language models.
comment: NeurIPS 2025
♻ ☆ Rope to Nope and Back Again: A New Hybrid Attention Strategy
Long-context large language models (LLMs) have achieved remarkable advancements, driven by techniques like Rotary Position Embedding (RoPE) (Su et al., 2023) and its extensions (Chen et al., 2023; Liu et al., 2024c; Peng et al., 2023). By adjusting RoPE parameters and incorporating training data with extended contexts, we can train performant models with considerably longer input sequences. However, existing RoPE-based methods exhibit performance limitations when applied to extended context lengths. This paper presents a comprehensive analysis of various attention mechanisms, including RoPE, No Positional Embedding (NoPE), and Query-Key Normalization (QK-Norm), identifying their strengths and shortcomings in long-context modeling. Our investigation identifies distinctive attention patterns in these methods and highlights their impact on long-context performance, providing valuable insights for architectural design. Building on these findings, we propose a novel architecture featuring a hybrid attention mechanism that integrates global and local attention spans. This design not only surpasses conventional RoPE-based transformer models with full attention in both long and short context tasks but also delivers substantial efficiency gains during training and inference.
♻ ☆ Permutative Preference Alignment from Listwise Ranking of Human Judgments EMNLP 2025
Aligning Large Language Models (LLMs) with human preferences is crucial in ensuring desirable and controllable model behaviors. Current methods, such as Reinforcement Learning from Human Feedback (RLHF) and Direct Preference Optimization (DPO), rely on the Bradley-Terry (B-T) model to maximize the likelihood of pairwise choices. However, when multiple responses are available, the B-T model fails to guarantee an accurate list ranking of the responses. To address this issue, we propose Permutative Preference Alignment (PPA), a novel offline listwise approach that incorporates the Normalized Discounted Cumulative Gain (NDCG), a widely-used ranking metric, as an alternative training objective for LLM alignment. We develop an end-to-end alignment algorithm by approximating NDCG with a differentiable surrogate loss. Experiments demonstrate that PPA outperforms existing pairwise and listwise methods on evaluation sets and general benchmarks such as AlpacaEval. Furthermore, we show that NDCG-based approaches improve ranking accuracy more effectively than B-T-based methods and provide a theoretical explanation for this improvement.
comment: Published at EMNLP 2025 Main Conference
♻ ☆ SpecEval: Evaluating Model Adherence to Behavior Specifications
Companies that develop foundation models publish behavioral guidelines they pledge their models will follow, but it remains unclear if models actually do so. While providers such as OpenAI, Anthropic, and Google have published detailed specifications describing both desired safety constraints and qualitative traits for their models, there has been no systematic audit of adherence to these guidelines. We introduce an automated framework that audits models against their providers specifications by parsing behavioral statements, generating targeted prompts, and using models to judge adherence. Our central focus is on three way consistency between a provider specification, its model outputs, and its own models as judges; an extension of prior two way generator validator consistency. This establishes a necessary baseline: at minimum, a foundation model should consistently satisfy the developer behavioral specifications when judged by the developer evaluator models. We apply our framework to 16 models from six developers across more than 100 behavioral statements, finding systematic inconsistencies including compliance gaps of up to 20 percent across providers.
♻ ☆ Language Models (Mostly) Know When to Stop Reading NeurIPS 2025
Large language models (LLMs) process entire input contexts indiscriminately, which is inefficient when the information required to answer a query is localized within the context. We present dynamic context cutoff, a novel method enabling LLMs to self-terminate processing upon acquiring sufficient task-relevant information. Through analysis of model internals, we discover that specific attention heads inherently encode "sufficiency signals" -- detectable through lightweight classifiers -- that predict when critical information has been processed. This reveals a new efficiency paradigm: models' internal understanding naturally dictates processing needs rather than external compression heuristics. Comprehensive experiments across six QA datasets (up to 40K tokens) with three model families (LLaMA/Qwen/Mistral, 1B-70B) demonstrate 3.4% accuracy improvement while achieving 1.33x token reduction on average. Furthermore, our method demonstrates superior performance compared to other context efficiency methods at equivalent token reduction rates. Additionally, we observe an emergent scaling phenomenon: while smaller models require probing for sufficiency detection, larger models exhibit intrinsic self-assessment capabilities through prompting.
comment: Accepted to NeurIPS 2025. Project website: https://royxie.com/when-to-stop-project
♻ ☆ Roboflow100-VL: A Multi-Domain Object Detection Benchmark for Vision-Language Models NeurIPS
Vision-language models (VLMs) trained on internet-scale data achieve remarkable zero-shot detection performance on common objects like car, truck, and pedestrian. However, state-of-the-art models still struggle to generalize to out-of-distribution classes, tasks and imaging modalities not typically found in their pre-training. Rather than simply re-training VLMs on more visual data, we argue that one should align VLMs to new concepts with annotation instructions containing a few visual examples and rich textual descriptions. To this end, we introduce Roboflow100-VL, a large-scale collection of 100 multi-modal object detection datasets with diverse concepts not commonly found in VLM pre-training. We evaluate state-of-the-art models on our benchmark in zero-shot, few-shot, semi-supervised, and fully-supervised settings, allowing for comparison across data regimes. Notably, we find that VLMs like GroundingDINO and Qwen2.5-VL achieve less than 2% zero-shot accuracy on challenging medical imaging datasets within Roboflow100-VL, demonstrating the need for few-shot concept alignment. Lastly, we discuss our recent CVPR 2025 Foundational FSOD competition and share insights from the community. Notably, the winning team significantly outperforms our baseline by 17 mAP! Our code and dataset are available at https://github.com/roboflow/rf100-vl and https://universe.roboflow.com/rf100-vl/.
comment: The first two authors contributed equally. This work has been accepted to the Neural Information Processing Systems (NeurIPS) 2025 Datasets & Benchmark Track. Project Page: https://rf100-vl.org/
♻ ☆ DeltaProduct: Improving State-Tracking in Linear RNNs via Householder Products NeurIPS 2025
Linear Recurrent Neural Networks (linear RNNs) have emerged as competitive alternatives to Transformers for sequence modeling, offering efficient training and linear-time inference. However, existing architectures face a fundamental trade-off between expressivity and efficiency, dictated by the structure of their state-transition matrices. Diagonal matrices, used in models such as Mamba, GLA, or mLSTM, yield fast runtime but have limited expressivity. To address this, recent architectures such as DeltaNet and RWKV-7 adopted a diagonal plus rank--1 structure, which allows simultaneous token and channel mixing, improving associative recall and, as recently shown, state-tracking when allowing state-transition matrices to have negative eigenvalues. Building on the interpretation of DeltaNet's recurrence as performing one step of online gradient descent per token on an associative recall loss, we introduce DeltaProduct, which instead takes multiple ($n_h$) steps per token. This naturally leads to diagonal plus rank--$n_h$ state-transition matrices, formed as products of $n_h$ generalized Householder transformations, providing a tunable mechanism to balance expressivity and efficiency. We provide a detailed theoretical characterization of the state-tracking capability of DeltaProduct in finite precision, showing how it improves by increasing $n_h$. Our extensive experiments demonstrate that DeltaProduct outperforms DeltaNet in both state-tracking and language modeling, while also showing significantly improved length extrapolation capabilities.
comment: v5: Characterization of DeltaProduct's state-tracking ability. Analysis of hidden state's effective rank. Improved scaling analysis. v6: Added analysis for products of RWKV-7 matrices, v6: Accepted at NeurIPS 2025
Computers and Society
☆ Who Coordinates U.S. Cyber Defense? A Co-Authorship Network Analysis of Joint Cybersecurity Advisories (2024--2025)
Cyber threats increasingly demand joint responses, yet the organizational dynamics behind multi-agency cybersecurity collaboration remain poorly understood. Understanding who leads, who bridges, and how agencies coordinate is critical for strengthening both U.S. homeland security and allied defense efforts. In this study, we construct a co-authorship network from nine Joint Cybersecurity Advisories (CSAs) issued between November 2024 and August 2025. We map 41 agencies and 442 co-authoring ties to analyze the structure of collaboration. We find a tightly knit U.S. triad -- CISA, FBI, and NSA -- densely connected with Five Eyes and select European allies. Degree centrality identifies CISA and FBI as coordination hubs, while betweenness highlights NSA, the UK's NCSC, and Australia's ASD-ACSC as key bridges linking otherwise fragmented clusters. By releasing the first replicable dataset and network analysis of CSAs, we provide new empirical evidence on how collaborative cybersecurity signals are organized and where strategic influence is concentrated.
☆ Ask What Your Country Can Do For You: Towards a Public Red Teaming Model
AI systems have the potential to produce both benefits and harms, but without rigorous and ongoing adversarial evaluation, AI actors will struggle to assess the breadth and magnitude of the AI risk surface. Researchers from the field of systems design have developed several effective sociotechnical AI evaluation and red teaming techniques targeting bias, hate speech, mis/disinformation, and other documented harm classes. However, as increasingly sophisticated AI systems are released into high-stakes sectors (such as education, healthcare, and intelligence-gathering), our current evaluation and monitoring methods are proving less and less capable of delivering effective oversight. In order to actually deliver responsible AI and to ensure AI's harms are fully understood and its security vulnerabilities mitigated, pioneering new approaches to close this "responsibility gap" are now more urgent than ever. In this paper, we propose one such approach, the cooperative public AI red-teaming exercise, and discuss early results of its prior pilot implementations. This approach is intertwined with CAMLIS itself: the first in-person public demonstrator exercise was held in conjunction with CAMLIS 2024. We review the operational design and results of this exercise, the prior National Institute of Standards and Technology (NIST)'s Assessing the Risks and Impacts of AI (ARIA) pilot exercise, and another similar exercise conducted with the Singapore Infocomm Media Development Authority (IMDA). Ultimately, we argue that this approach is both capable of delivering meaningful results and is also scalable to many AI developing jurisdictions.
☆ Beyond One-Way Influence: Bidirectional Opinion Dynamics in Multi-Turn Human-LLM Interactions
Large language model (LLM)-powered chatbots are increasingly used for opinion exploration. Prior research examined how LLMs alter user views, yet little work extended beyond one-way influence to address how user input can affect LLM responses and how such bi-directional influence manifests throughout the multi-turn conversations. This study investigates this dynamic through 50 controversial-topic discussions with participants (N=266) across three conditions: static statements, standard chatbot, and personalized chatbot. Results show that human opinions barely shifted, while LLM outputs changed more substantially, narrowing the gap between human and LLM stance. Personalization amplified these shifts in both directions compared to the standard setting. Analysis of multi-turn conversations further revealed that exchanges involving participants' personal stories were most likely to trigger stance changes for both humans and LLMs. Our work highlights the risk of over-alignment in human-LLM interaction and the need for careful design of personalized chatbots to more thoughtfully and stably align with users.
comment: 26 pages, 8 figures
☆ Network Topology Matters, But Not Always: Mobility Networks in Epidemic Forecasting
Short-horizon epidemic forecasts guide near-term staffing, testing, and messaging. Mobility data are now routinely used to improve such forecasts, yet work diverges on whether the volume of mobility or the structure of mobility networks carries the most predictive signal. We study Massachusetts towns (April 2020-April 2021), build a weekly directed mobility network from anonymized smartphone traces, derive dynamic topology measures, and evaluate their out-of-sample value for one-week-ahead COVID-19 forecasts. We compare models that use only macro-level incidence, models that add mobility network features and their interactions with macro incidence, and autoregressive (AR) models that include town-level recent cases. Two results emerge. First, when granular town-level case histories are unavailable, network information (especially interactions between macro incidence and a town's network position) yields large out-of-sample gains (Predict-R2 rising from 0.60 to 0.83-0.89). Second, when town-level case histories are available, AR models capture most short-horizon predictability; adding network features provides only minimal incremental lift (about +0.5 percentage points). Gains from network information are largest during epidemic waves and rising phases, when connectivity and incidence change rapidly. Agent-based simulations reproduce these patterns under controlled dynamics, and a simple analytical decomposition clarifies why network interactions explain a large share of cross-sectional variance when only macro-level counts are available, but much less once recent town-level case histories are included. Together, the results offer a practical decision rule: compute network metrics (and interactions) when local case histories are coarse or delayed; rely primarily on AR baselines when granular cases are timely, using network signals mainly for diagnostic targeting.
☆ Synthetic social data: trials and tribulations
Large Language Models are being used in conversational agents that simulate human conversations and generate social studies data. While concerns about the models' biases have been raised and discussed in the literature, much about the data generated is still unknown. In this study we explore the statistical representation of social values across four countries (UK, Argentina, USA and China) for six LLMs, with equal representation for open and closed weights. By comparing machine-generated outputs with actual human survey data, we assess whether algorithmic biases in LLMs outweigh the biases inherent in real- world sampling, including demographic and response biases. Our findings suggest that, despite the logistical and financial constraints of human surveys, even a small, skewed sample of real respondents may provide more reliable insights than synthetic data produced by LLMs. These results highlight the limitations of using AI-generated text for social research and emphasize the continued importance of empirical human data collection.
comment: 10 pages, 3 figures
☆ Integrating Transparent Models, LLMs, and Practitioner-in-the-Loop: A Case of Nonprofit Program Evaluation
Public and nonprofit organizations often hesitate to adopt AI tools because most models are opaque even though standard approaches typically analyze aggregate patterns rather than offering actionable, case-level guidance. This study tests a practitioner-in-the-loop workflow that pairs transparent decision-tree models with large language models (LLMs) to improve predictive accuracy, interpretability, and the generation of practical insights. Using data from an ongoing college-success program, we build interpretable decision trees to surface key predictors. We then provide each tree's structure to an LLM, enabling it to reproduce case-level predictions grounded in the transparent models. Practitioners participate throughout feature engineering, model design, explanation review, and usability assessment, ensuring that field expertise informs the analysis at every stage. Results show that integrating transparent models, LLMs, and practitioner input yields accurate, trustworthy, and actionable case-level evaluations, offering a viable pathway for responsible AI adoption in the public and nonprofit sectors.
☆ On Controlled Change: Generative AI's Impact on Professional Authority in Journalism
Using (generative) artificial intelligence tools and systems in journalism is expected to increase journalists' production rates, transform newsrooms' economic models, and further personalize the audience's news consumption practices. Since its release in 2022, OpenAI's ChatGPT and other large language models have raised the alarms inside news organizations, not only for bringing new challenges to news reporting and fact-checking but also for what these technologies would mean for journalists' professional authority in journalism. This paper examines how journalists in Dutch media manage the integration of AI technologies into their daily routines. Drawing from 13 interviews with editors, journalists, and innovation managers in different news outlets and media companies, we propose the concept of controlled change. as a heuristic to explain how journalists are proactively setting guidelines, experimenting with AI tools, and identifying their limitations and capabilities. Using professional authority as a theoretical framework, we argue that journalists anticipate and integrate AI technologies in a supervised manner and identify three primary mechanisms through which journalists manage this integration: (1) developing adaptive guidelines that align AI use with ethical codes, (2) experimenting with AI technologies to determine their necessity and fit, and (3) critically assessing the capabilities and limitations of AI systems.
☆ Cultural Dimensions of Artificial Intelligence Adoption: Empirical Insights for Wave 1 from a Multinational Longitudinal Pilot Study
The swift diffusion of artificial intelligence (AI) raises critical questions about how cultural contexts shape adoption patterns and their consequences for human daily life. This study investigates the cultural dimensions of AI adoption and their influence on cognitive strategies across nine national contexts in Europe, Africa, Asia, and South America. Drawing on survey data from a diverse pilot sample (n = 21) and guided by cross-cultural psychology, digital ethics, and sociotechnical systems theory, we examine how demographic variables (age, gender, professional role) and cultural orientations (language, values, and institutional exposure) mediate perceptions of trust, ethical acceptability, and reliance on AI. Results reveal two key findings: First, cultural factors, particularly language and age, significantly affect AI adoption and perceptions of reliability with older participants reporting higher engagement with AI for educational purposes. Second, ethical judgment about AI use varied across domains, with professional contexts normalizing its role as a pragmatic collaborator while academic settings emphasized risks of plagiarism. These findings extend prior research on culture and technology adoption by demonstrating that AI use is neither universal nor neutral but culturally contingent, domain-specific, and ethically situated. The study highlights implications for AI use in education, professional practice, and global technology policy, pointing at actions that enable usage of AI in a way that is both culturally adaptive and ethically robust.
☆ LifeSync-Games: Toward a Video Game Paradigm for Promoting Responsible Gaming and Human Development
Technological advancements have made video games a central part of the digital lives of nearly 3 billion people worldwide. Although games can address various social, physical, and psychological needs, their potential to support human development and well-being remains underutilized. Research highlights both negative effects, such as addiction and isolation, and positive outcomes like cognitive improvements and problem-solving skills. However, public discourse and regulation often focus more on risks than benefits. To address this imbalance, we present LifeSync-Games, a framework leveraging simplified digital twins to connect virtual gameplay with real-life activities. This reciprocal relationship aims to enhance the developmental value of gaming by promoting self-regulation and fostering growth across physical, mental, and social domains. We present the framework's theoretical foundations, technological components, design guidelines, and evaluation approaches. Additionally, we present early applications in both new and bestselling games to demonstrate its versatility and practical relevance.
comment: 8 pages, 4 figures, 1 table, 66 references
☆ A Proactive Insider Threat Management Framework Using Explainable Machine Learning
Over the years, the technological landscape has evolved, reshaping the security posture of organisations and increasing their exposure to cybersecurity threats, many originating from within. Insider threats remain a major challenge, particularly in sectors where cybersecurity infrastructure, expertise, and regulations are still developing. This study proposes the Insider Threat Explainable Machine Learning (IT-XML) framework, which integrates the Cross-Industry Standard Process for Data Mining (CRISP-DM) with Hidden Markov Models (HMM) to enhance proactive insider threat management and decision-making. A quantitative approach is adopted using an online questionnaire to assess employees' knowledge of insider threat patterns, access control, privacy practices, and existing policies across three large data-sensitive organisations. The IT-XML framework provides assessment capabilities through survey-based data, HMM-driven pattern recognition for security maturity classification, and evidence-based recommendations for proactive threat mitigation. The framework classified all organisations at the developing security maturity level with 97-98% confidence and achieved a classification accuracy of 91.7%, identifying audit log access limits as the most critical control. Random Forest analysis highlighted vendor breach notifications (0.081) and regular audit log reviews (0.052) as key determinants of resilience. Explainability methods such as SHAP and LIME improved model transparency and interpretability, demonstrating the framework's potential to strengthen insider threat management practices.
comment: Full master's in information technology (Information Science), University of Pretoria, Department of Informatics
☆ Quantifying Feature Importance for Online Content Moderation
Accurately estimating how users respond to moderation interventions is paramount for developing effective and user-centred moderation strategies. However, this requires a clear understanding of which user characteristics are associated with different behavioural responses, which is the goal of this work. We investigate the informativeness of 753 socio-behavioural, linguistic, relational, and psychological features, in predicting the behavioural changes of 16.8K users affected by a major moderation intervention on Reddit. To reach this goal, we frame the problem in terms of "quantification", a task well-suited to estimating shifts in aggregate user behaviour. We then apply a greedy feature selection strategy with the double goal of (i) identifying the features that are most predictive of changes in user activity, toxicity, and participation diversity, and (ii) estimating their importance. Our results allow identifying a small set of features that are consistently informative across all tasks, and determining that many others are either task-specific or of limited utility altogether. We also find that predictive performance varies according to the task, with changes in activity and toxicity being easier to estimate than changes in diversity. Overall, our results pave the way for the development of accurate systems that predict user reactions to moderation interventions. Furthermore, our findings highlight the complexity of post-moderation user behaviour, and indicate that effective moderation should be tailored not only to user traits but also to the specific objective of the intervention.
☆ Towards a feminist understanding of digital platform work
The rapid growth of the digital platform economy is transforming labor markets, offering new employment opportunities with promises of flexibility and accessibility. However, these benefits often come at the expense of increased economic exploitation, occupational segregation, and deteriorating working conditions. Research highlights that algorithmic management disproportionately impacts marginalized groups, reinforcing gendered and racial inequalities while deepening power imbalances within capitalist systems. This study seeks to elucidate the complex nature of digital platform work by drawing on feminist theories that have historically scrutinized and contested the structures of power within society, especially in the workplace. It presents a framework focused on four key dimensions to lay a foundation for future research: (i) precarity and exploitation, (ii) surveillance and control, (iii) blurring employment boundaries, and (iv) colonial legacies. It advocates for participatory research, transparency in platform governance, and structural changes to promote more equitable conditions for digital platform workers.
☆ Designing Knowledge Tools: How Students Transition from Using to Creating Generative AI in STEAM classroom
This study explores how graduate students in an urban planning program transitioned from passive users of generative AI to active creators of custom GPT-based knowledge tools. Drawing on Self-Determination Theory (SDT), which emphasizes the psychological needs of autonomy, competence, and relatedness as foundations for intrinsic motivation, the research investigates how the act of designing AI tools influences students' learning experiences, identity formation, and engagement with knowledge. The study is situated within a two-term curriculum, where students first used instructor-created GPTs to support qualitative research tasks and later redesigned these tools to create their own custom applications, including the Interview Companion GPT. Using qualitative thematic analysis of student slide presentations and focus group interviews, the findings highlight a marked transformation in students' roles and mindsets. Students reported feeling more autonomous as they chose the functionality, design, and purpose of their tools, more competent through the acquisition of AI-related skills such as prompt engineering and iterative testing, and more connected to peers through team collaboration and a shared sense of purpose. The study contributes to a growing body of evidence that student agency can be powerfully activated when learners are invited to co-design the very technologies they use. The shift from AI tool users to AI tool designers reconfigures students' relationships with technology and knowledge, transforming them from consumers into co-creators in an evolving educational landscape.
comment: to be published in IEEE TALE 2025
☆ To Use or to Refuse? Re-Centering Student Agency with Generative AI in Engineering Design Education
This pilot study traces students' reflections on the use of AI in a 13-week foundational design course enrolling over 500 first-year engineering and architecture students at the Singapore University of Technology and Design. The course was an AI-enhanced design course, with several interventions to equip students with AI based design skills. Students were required to reflect on whether the technology was used as a tool (instrumental assistant), a teammate (collaborative partner), or neither (deliberate non-use). By foregrounding this three-way lens, students learned to use AI for innovation rather than just automation and to reflect on agency, ethics, and context rather than on prompt crafting alone. Evidence stems from coursework artefacts: thirteen structured reflection spreadsheets and eight illustrated briefs submitted, combined with notes of teachers and researchers. Qualitative coding of these materials reveals shared practices brought about through the inclusion of Gen-AI, including accelerated prototyping, rapid skill acquisition, iterative prompt refinement, purposeful "switch-offs" during user research, and emergent routines for recognizing hallucinations. Unexpectedly, students not only harnessed Gen-AI for speed but (enabled by the tool-teammate-neither triage) also learned to reject its outputs, invent their own hallucination fire-drills, and divert the reclaimed hours into deeper user research, thereby transforming efficiency into innovation. The implications of the approach we explore shows that: we can transform AI uptake into an assessable design habit; that rewarding selective non-use cultivates hallucination-aware workflows; and, practically, that a coordinated bundle of tool access, reflection, role tagging, and public recognition through competition awards allows AI based innovation in education to scale without compromising accountability.
comment: to be published in IEEE TALE 2025
☆ Algorithmic Fairness in NLP: Persona-Infused LLMs for Human-Centric Hate Speech Detection
In this paper, we investigate how personalising Large Language Models (Persona-LLMs) with annotator personas affects their sensitivity to hate speech, particularly regarding biases linked to shared or differing identities between annotators and targets. To this end, we employ Google's Gemini and OpenAI's GPT-4.1-mini models and two persona-prompting methods: shallow persona prompting and a deeply contextualised persona development based on Retrieval-Augmented Generation (RAG) to incorporate richer persona profiles. We analyse the impact of using in-group and out-group annotator personas on the models' detection performance and fairness across diverse social groups. This work bridges psychological insights on group identity with advanced NLP techniques, demonstrating that incorporating socio-demographic attributes into LLMs can address bias in automated hate speech detection. Our results highlight both the potential and limitations of persona-based approaches in reducing bias, offering valuable insights for developing more equitable hate speech detection systems.
comment: This paper has been accepted for the upcoming 59th Hawaii International Conference on System Sciences (HICSS-59), 2026, Hawaii, USA. The final published version will appear in the official conference proceedings
☆ Mapping the AI Divide in Undergraduate Education: Community Detection in Disciplinary Networks and Survey Evidence
As artificial intelligence-generated content (AIGC) reshapes knowledge acquisition, higher education faces growing inequities that demand systematic mapping and intervention. We map the AI divide in undergraduate education by combining network science with survey evidence from 301 students at Nanjing University, one of China's leading institutions in AI education. Drawing on course enrolment patterns to construct a disciplinary network, we identify four distinct student communities: science dominant, science peripheral, social sciences & science, and humanities and social sciences. Survey results reveal significant disparities in AIGC literacy and motivational efficacy, with science dominant students outperforming humanities and social sciences peers. Ordinary least squares (OLS) regression shows that motivational efficacy--particularly skill efficacy--partially mediates this gap, whereas usage efficacy does not mediate at the evaluation level, indicating a dissociation between perceived utility and critical engagement. Our findings demonstrate that curriculum structure and cross-disciplinary integration are key determinants of technological fluency. This work provides a scalable framework for diagnosing and addressing the AI divide through institutional design.
☆ Code Sharing in Healthcare Research: A Practical Guide and Recommendations for Good Practice
As computational analysis becomes increasingly more complex in health research, transparent sharing of analytical code is vital for reproducibility and trust. This practical guide, aligned to open science practices, outlines actionable recommendations for code sharing in healthcare research. Emphasising the FAIR (Findable, Accessible, Interoperable, Reusable) principles, the authors address common barriers and provide clear guidance to help make code more robust, reusable, and scrutinised as part of the scientific record. This supports better science and more reliable evidence for computationally-driven practice and helps to adhere to new standards and guidelines of codesharing mandated by publishers and funding bodies.
☆ Social World Model-Augmented Mechanism Design Policy Learning
Designing adaptive mechanisms to align individual and collective interests remains a central challenge in artificial social intelligence. Existing methods often struggle with modeling heterogeneous agents possessing persistent latent traits (e.g., skills, preferences) and dealing with complex multi-agent system dynamics. These challenges are compounded by the critical need for high sample efficiency due to costly real-world interactions. World Models, by learning to predict environmental dynamics, offer a promising pathway to enhance mechanism design in heterogeneous and complex systems. In this paper, we introduce a novel method named SWM-AP (Social World Model-Augmented Mechanism Design Policy Learning), which learns a social world model hierarchically modeling agents' behavior to enhance mechanism design. Specifically, the social world model infers agents' traits from their interaction trajectories and learns a trait-based model to predict agents' responses to the deployed mechanisms. The mechanism design policy collects extensive training trajectories by interacting with the social world model, while concurrently inferring agents' traits online during real-world interactions to further boost policy learning efficiency. Experiments in diverse settings (tax policy design, team coordination, and facility location) demonstrate that SWM-AP outperforms established model-based and model-free RL baselines in cumulative rewards and sample efficiency.
☆ IoT-Enabled Sleep Monitoring and Cognitive Assessment for Evaluating Teacher Well-Being SC
Sleep quality is an important indicator of the efficient cognitive function for high school teachers. Due to the high work stress and multi-tasking expectations, the teachers often face issues with their sleep quality and cognitive function, which has a clearly negative influence on their teaching abilities. In this work, we propose a unique but simple method of deploying Internet of Things (IoT) technology to monitor the sleep quality of high school teachers at Pakistan. Smart watches embedded with pulse rate and SpO2 sensors were used to collect data and categorize the sleep quality as "poor", "fair" or "good". Moreover, we used a psychological tool, Cognitive Assessment Questionnaire (CAQ) for the self-assessment of teachers' cognitive function. The study was conducted over 208 high school teachers from across Pakistan. It has been found that most of the teachers had a poor sleep quality and cognitive function; The link between these two variables indicate that the workload and other factors must be improved for the teachers to ensure their well-being, which will in turn have a positive impact on their teaching quality.
comment: 22nd Int. Conference on Networking, Sensing, and Control (ICNSC), Oulu, Finland
☆ See, Think, Act: Online Shopper Behavior Simulation with VLM Agents
LLMs have recently demonstrated strong potential in simulating online shopper behavior. Prior work has improved action prediction by applying SFT on action traces with LLM-generated rationales, and by leveraging RL to further enhance reasoning capabilities. Despite these advances, current approaches rely on text-based inputs and overlook the essential role of visual perception in shaping human decision-making during web GUI interactions. In this paper, we investigate the integration of visual information, specifically webpage screenshots, into behavior simulation via VLMs, leveraging OPeRA dataset. By grounding agent decision-making in both textual and visual modalities, we aim to narrow the gap between synthetic agents and real-world users, thereby enabling more cognitively aligned simulations of online shopping behavior. Specifically, we employ SFT for joint action prediction and rationale generation, conditioning on the full interaction context, which comprises action history, past HTML observations, and the current webpage screenshot. To further enhance reasoning capabilities, we integrate RL with a hierarchical reward structure, scaled by a difficulty-aware factor that prioritizes challenging decision points. Empirically, our studies show that incorporating visual grounding yields substantial gains: the combination of text and image inputs improves exact match accuracy by more than 6% over text-only inputs. These results indicate that multi-modal grounding not only boosts predictive accuracy but also enhances simulation fidelity in visually complex environments, which captures nuances of human attention and decision-making that text-only agents often miss. Finally, we revisit the design space of behavior simulation frameworks, identify key methodological limitations, and propose future research directions toward building efficient and effective human behavior simulators.
☆ A Design Science Blueprint for an Orchestrated AI Assistant in Doctoral Supervision
This study presents a design science blueprint for an orchestrated AI assistant and co-pilot in doctoral supervision that acts as a socio-technical mediator. Design requirements are derived from Stakeholder Theory and bounded by Academic Integrity. We consolidated recent evidence on supervision gaps and student wellbeing, then mapped issues to adjacent large language model capabilities using a transparent severity-mitigability triage. The artefact assembles existing capabilities into one accountable agentic AI workflow that proposes retrieval-augmented generation and temporal knowledge graphs, as well as mixture-of-experts routing as a solution stack of technologies to address existing doctoral supervision pain points. Additionally, a student context store is proposed, which introduces behaviour patches that turn tacit guidance into auditable practice and student-set thresholds that trigger progress summaries, while keeping authorship and final judgement with people. We specify a student-initiated moderation loop in which assistant outputs are routed to a supervisor for review and patching, and we analyse a reconfigured stakeholder ecosystem that makes information explicit and accountable. Risks in such a system exist, and among others, include AI over-reliance and the potential for the illusion of learning, while guardrails are proposed. The contribution is an ex ante, literature-grounded design with workflow and governance rules that institutions can implement and trial across disciplines.
☆ Integration of AI in STEM Education, Addressing Ethical Challenges in K-12 Settings
The rapid integration of Artificial Intelligence (AI) into K-12 STEM education presents transformative opportunities alongside significant ethical challenges. While AI-powered tools such as Intelligent Tutoring Systems (ITS), automated assessments, and predictive analytics enhance personalized learning and operational efficiency, they also risk perpetuating algorithmic bias, eroding student privacy, and exacerbating educational inequities. This paper examines the dual-edged impact of AI in STEM classrooms, analyzing its benefits (e.g., adaptive learning, real-time feedback) and drawbacks (e.g., surveillance risks, pedagogical limitations) through an ethical lens. We identify critical gaps in current AI education research, particularly the lack of subject-specific frameworks for responsible integration and propose a three-phased implementation roadmap paired with a tiered professional development model for educators. Our framework emphasizes equity-centered design, combining technical AI literacy with ethical reasoning to foster critical engagement among students. Key recommendations include mandatory bias audits, low-resource adaptation strategies, and policy alignment to ensure AI serves as a tool for inclusive, human-centered STEM education. By bridging theory and practice, this work advances a research-backed approach to AI integration that prioritizes pedagogical integrity, equity, and student agency in an increasingly algorithmic world. Keywords: Artificial Intelligence, STEM education, algorithmic bias, ethical AI, K-12 pedagogy, equity in education
comment: This paper pursues three goals: (1) analyzing ethical challenges in AI-driven STEM education, (2) evaluating AI and ethics curricula for STEM relevance, and (3) proposing a research-based framework for responsible integration that bridges teacher readiness gaps and promotes equity through STEM-focused strategies
♻ ☆ Personalized Safety in LLMs: A Benchmark and A Planning-Based Agent Approach
Large language models (LLMs) typically generate identical or similar responses for all users given the same prompt, posing serious safety risks in high-stakes applications where user vulnerabilities differ widely. Existing safety evaluations primarily rely on context-independent metrics - such as factuality, bias, or toxicity - overlooking the fact that the same response may carry divergent risks depending on the user's background or condition. We introduce personalized safety to fill this gap and present PENGUIN - a benchmark comprising 14,000 scenarios across seven sensitive domains with both context-rich and context-free variants. Evaluating six leading LLMs, we demonstrate that personalized user information significantly improves safety scores by 43.2%, confirming the effectiveness of personalization in safety alignment. However, not all context attributes contribute equally to safety enhancement. To address this, we develop RAISE - a training-free, two-stage agent framework that strategically acquires user-specific background. RAISE improves safety scores by up to 31.6% over six vanilla LLMs, while maintaining a low interaction cost of just 2.7 user queries on average. Our findings highlight the importance of selective information gathering in safety-critical domains and offer a practical solution for personalizing LLM responses without model retraining. This work establishes a foundation for safety research that adapts to individual user contexts rather than assuming a universal harm standard.
♻ ☆ Agentic Inequality
Autonomous AI agents, capable of complex planning and action, represent a significant technological evolution beyond current generative tools. As these systems become integrated into political and economic life, their distribution and capabilities will be highly consequential. This paper introduces and explores "agentic inequality" - the potential disparities in power, opportunity, and outcomes stemming from differential access to, and capabilities of, AI agents. We analyse the dual potential of this technology, exploring how agents could both exacerbate existing divides and, under the right conditions, serve as a powerful equalising force. To this end, the paper makes three primary contributions. First, it establishes an analytical framework by delineating the three core dimensions through which this inequality can manifest: disparities in the availability, quality, and quantity of agents. Second, it argues that agentic inequality is distinct from prior technological divides. Unlike tools that primarily augment human abilities, agents act as autonomous delegates, creating novel power asymmetries through scalable goal delegation and direct agent-to-agent competition that are poised to reshape outcomes across economic and socio-political spheres. Finally, it provides a systematic analysis of the technical and socioeconomic drivers - from model release strategies to market incentives - that will shape the distribution of agentic power, concluding with a research agenda for navigating the complex governance challenges ahead.
♻ ☆ Hire Your Anthropologist! Rethinking Culture Benchmarks Through an Anthropological Lens
Cultural evaluation of large language models has become increasingly important, yet current benchmarks often reduce culture to static facts or homogeneous values. This view conflicts with anthropological accounts that emphasize culture as dynamic, historically situated, and enacted in practice. To analyze this gap, we introduce a four-part framework that categorizes how benchmarks frame culture, such as knowledge, preference, performance, or bias. Using this lens, we qualitatively examine 20 cultural benchmarks and identify six recurring methodological issues, including treating countries as cultures, overlooking within-culture diversity, and relying on oversimplified survey formats. Drawing on established anthropological methods, we propose concrete improvements: incorporating real-world narratives and scenarios, involving cultural communities in design and validation, and evaluating models in context rather than isolation. Our aim is to guide the development of cultural benchmarks that go beyond static recall tasks and more accurately capture the responses of the models to complex cultural situations.
comment: 12 pages; 2 figures; First two author contributed equally
♻ ☆ Predicting the winner of the US 2024 elections using trust analytics
A number of models and techniques has been proposed for predicting the outcomes of presidential elections. Some of them use information on the socio-economical status of a country, others focus on candidates' popularity measures in news media. We employ a computational social science approach, utilising public reactions in social media to real-life events that involve presidential candidates. Contrary to the popular approach, we do not analyse public emotions but ethotic references to the character of politicians which allows us to analyse how much they are (dis-)trusted by the general public, hence the name of the tool we developed: Trust Analytics (TrustAn). Similarly to major news media's polls, we observe a tight race between Harris and Trump with week to week changes in the level of trust and distrust towards the two candidates. Using the ratio between the level of trust and distrust towards them and changes of this metric in time, we predict Donald Trump as the winner of the US 2024 elections.
♻ ☆ Large Language Models in Architecture Studio: A Framework for Learning Outcomes
The study explores the role of large language models (LLMs) in the context of the architectural design studio, understood as the pedagogical core of architectural education. Traditionally, the studio has functioned as an experiential learning space where students tackle design problems through reflective practice, peer critique, and faculty guidance. However, the integration of artificial intelligence (AI) in this environment has been largely focused on form generation, automation, and representation-al efficiency, neglecting its potential as a pedagogical tool to strengthen student autonomy, collaboration, and self-reflection. The objectives of this research were: (1) to identify pedagogical challenges in self-directed, peer-to-peer, and teacher-guided learning processes in architecture studies; (2) to propose AI interventions, particularly through LLM, that contribute to overcoming these challenges; and (3) to align these interventions with measurable learning outcomes using Bloom's taxonomy. The findings show that the main challenges include managing student autonomy, tensions in peer feedback, and the difficulty of balancing the transmission of technical knowledge with the stimulation of creativity in teaching. In response to this, LLMs are emerging as complementary agents capable of generating personalized feedback, organizing collaborative interactions, and offering adaptive cognitive scaffolding. Furthermore, their implementation can be linked to the cognitive levels of Bloom's taxonomy: facilitating the recall and understanding of architectural concepts, supporting application and analysis through interactive case studies, and encouraging synthesis and evaluation through hypothetical design scenarios.
♻ ☆ Who's Asking? Investigating Bias Through the Lens of Disability Framed Queries in LLMs ICCV 2025
Large Language Models (LLMs) routinely infer users demographic traits from phrasing alone, which can result in biased responses, even when no explicit demographic information is provided. The role of disability cues in shaping these inferences remains largely uncharted. Thus, we present the first systematic audit of disability-conditioned demographic bias across eight state-of-the-art instruction-tuned LLMs ranging from 3B to 72B parameters. Using a balanced template corpus that pairs nine disability categories with six real-world business domains, we prompt each model to predict five demographic attributes - gender, socioeconomic status, education, cultural background, and locality - under both neutral and disability-aware conditions. Across a varied set of prompts, models deliver a definitive demographic guess in up to 97\% of cases, exposing a strong tendency to make arbitrary inferences with no clear justification. Disability context heavily shifts predicted attribute distributions, and domain context can further amplify these deviations. We observe that larger models are simultaneously more sensitive to disability cues and more prone to biased reasoning, indicating that scale alone does not mitigate stereotype amplification. Our findings reveal persistent intersections between ableism and other demographic stereotypes, pinpointing critical blind spots in current alignment strategies. We release our evaluation framework and results to encourage disability-inclusive benchmarking and recommend integrating abstention calibration and counterfactual fine-tuning to curb unwarranted demographic inference. Code and data will be released on acceptance.
comment: Accepted at ICCV 2025
♻ ☆ VERA-MH Concept Paper
We introduce VERA-MH (Validation of Ethical and Responsible AI in Mental Health), an automated evaluation of the safety of AI chatbots used in mental health contexts, with an initial focus on suicide risk. Practicing clinicians and academic experts developed a rubric informed by best practices for suicide risk management for the evaluation. To fully automate the process, we used two ancillary AI agents. A user-agent model simulates users engaging in a mental health-based conversation with the chatbot under evaluation. The user-agent role-plays specific personas with pre-defined risk levels and other features. Simulated conversations are then passed to a judge-agent who scores them based on the rubric. The final evaluation of the chatbot being tested is obtained by aggregating the scoring of each conversation. VERA-MH is actively under development and undergoing rigorous validation by mental health clinicians to ensure user-agents realistically act as patients and that the judge-agent accurately scores the AI chatbot. To date we have conducted preliminary evaluation of GPT-5, Claude Opus and Claude Sonnet using initial versions of the VERA-MH rubric and used the findings for further design development. Next steps will include more robust clinical validation and iteration, as well as refining actionable scoring. We are seeking feedback from the community on both the technical and clinical aspects of our evaluation.
♻ ☆ A Principled Approach to Randomized Selection under Uncertainty: Applications to Peer Review and Grant Funding
Many decision-making processes involve evaluating and then selecting items; examples include scientific peer review, job hiring, school admissions, and investment decisions. The eventual selection is performed by applying rules or deliberations to the raw evaluations, and then deterministically selecting the items deemed to be the best. These domains feature error-prone evaluations and uncertainty about future outcomes, which undermine the reliability of such deterministic selection rules. As a result, selection mechanisms involving explicit randomization that incorporate the uncertainty are gaining traction in practice. However, current randomization approaches are ad hoc, and as we prove, inappropriate for their purported objectives. In this paper, we propose a principled framework for randomized decision-making based on interval estimates of the quality of each item. We introduce MERIT (Maximin Efficient Randomized Interval Top-k), an optimization-based method that maximizes the worst-case expected number of top candidates selected, under uncertainty represented by overlapping intervals (e.g., confidence intervals or min-max intervals). MERIT provides an optimal resource allocation scheme under an interpretable notion of robustness. We develop a polynomial-time algorithm to solve the optimization problem and demonstrate empirically that the method scales to over 10,000 items. We prove that MERIT satisfies desirable axiomatic properties not guaranteed by existing approaches. Finally, we empirically compare algorithms on synthetic peer review data. Our experiments demonstrate that MERIT matches the performance of existing algorithms in expected utility under fully probabilistic review data models used in previous work, while outperforming previous methods with respect to our novel worst-case formulation.
Computers and Society
☆ When Your AI Agent Succumbs to Peer-Pressure: Studying Opinion-Change Dynamics of LLMs
We investigate how peer pressure influences the opinions of Large Language Model (LLM) agents across a spectrum of cognitive commitments by embedding them in social networks where they update opinions based on peer perspectives. Our findings reveal key departures from traditional conformity assumptions. First, agents follow a sigmoid curve: stable at low pressure, shifting sharply at threshold, and saturating at high. Second, conformity thresholds vary by model: Gemini 1.5 Flash requires over 70% peer disagreement to flip, whereas ChatGPT-4o-mini shifts with a dissenting minority. Third, we uncover a fundamental "persuasion asymmetry," where shifting an opinion from affirmative-to-negative requires a different cognitive effort than the reverse. This asymmetry results in a "dual cognitive hierarchy": the stability of cognitive constructs inverts based on the direction of persuasion. For instance, affirmatively-held core values are robust against opposition but easily adopted from a negative stance, a pattern that inverts for other constructs like attitudes. These dynamics echoing complex human biases like negativity bias, prove robust across different topics and discursive frames (moral, economic, sociotropic). This research introduces a novel framework for auditing the emergent socio-cognitive behaviors of multi-agent AI systems, demonstrating their decision-making is governed by a fluid, context-dependent architecture, not a static logic.
☆ Desirable Effort Fairness and Optimality Trade-offs in Strategic Learning
Strategic learning studies how decision rules interact with agents who may strategically change their inputs/features to achieve better outcomes. In standard settings, models assume that the decision-maker's sole scope is to learn a classifier that maximizes an objective (e.g., accuracy) assuming that agents best respond. However, real decision-making systems' goals do not align exclusively with producing good predictions. They may consider the external effects of inducing certain incentives, which translates to the change of certain features being more desirable for the decision maker. Further, the principal may also need to incentivize desirable feature changes fairly across heterogeneous agents. How much does this constrained optimization (i.e., maximize the objective, but restrict agents' incentive disparity) cost the principal? We propose a unified model of principal-agent interaction that captures this trade-off under three additional components: (1) causal dependencies between features, such that changes in one feature affect others; (2) heterogeneous manipulation costs between agents; and (3) peer learning, through which agents infer the principal's rule. We provide theoretical guarantees on the principal's optimality loss constrained to a particular desirability fairness tolerance for multiple broad classes of fairness measures. Finally, through experiments on real datasets, we show the explicit tradeoff between maximizing accuracy and fairness in desirability effort.
☆ When Strings Tug at Algorithm: Human-AI Sovereignty and Entanglement in Nomadic Improvisational Music Performance as a Decolonial Exploration
As emergent artificial intelligence technologies increasingly assert roles as assistants within intangible cultural heritage contexts, researchers and artists observe existing questions on the theme of agency negotiation, cultural resistance, and technical critique. This research interrogates power dynamics in human-AI sovereignty and entanglement for nomadic improvisational Dutar performance, a living cultural heritage through a long-necked lute from the Central Asia region. To investigate tensions between human agency and computational hegemony, the researcher and artists examined and iterated a feedback workflow that captures live performance data, processes digital transformations, and creates a real-time interactive art experience via immersive environments. Empirical data from artists and audience reveal modulations where musicians selectively embrace or reject algorithmic suggestions to preserve creative identity. The author concludes that decolonial potential requires redesigning tools or systems for cultural survivance, where technology becomes not merely a feedback environment but a site for decolonial praxis, challenging computational hegemony in digital ecosystems.
comment: 14 pages, 5 figures
☆ REPAIR Approach for Social-based City Reconstruction Planning in case of natural disasters
Natural disasters always have several effects on human lives. It is challenging for governments to tackle these incidents and to rebuild the economic, social and physical infrastructures and facilities with the available resources (mainly budget and time). Governments always define plans and policies according to the law and political strategies that should maximise social benefits. The severity of damage and the vast resources needed to bring life back to normality make such reconstruction a challenge. This article is the extension of our previously published work by conducting comprehensive comparative analysis by integrating additional deep learning models plus random agent which is used as a baseline. Our prior research introduced a decision support system by using the Deep Reinforcement Learning technique for the planning of post-disaster city reconstruction, maximizing the social benefit of the reconstruction process, considering available resources, meeting the needs of the broad community stakeholders (like citizens' social benefits and politicians' priorities) and keeping in consideration city's structural constraints (like dependencies among roads and buildings). The proposed approach, named post disaster REbuilding plAn ProvIdeR (REPAIR) is generic. It can determine a set of alternative plans for local administrators who select the ideal one to implement, and it can be applied to areas of any extension. We show the application of REPAIR in a real use case, i.e., to the L'Aquila reconstruction process, damaged in 2009 by a major earthquake.
comment: Accepted at International Journal of Data Science and Analytics
☆ When Can We Trust LLMs in Mental Health? Large-Scale Benchmarks for Reliable LLM Evaluation
Evaluating Large Language Models (LLMs) for mental health support is challenging due to the emotionally and cognitively complex nature of therapeutic dialogue. Existing benchmarks are limited in scale, reliability, often relying on synthetic or social media data, and lack frameworks to assess when automated judges can be trusted. To address the need for large-scale dialogue datasets and judge reliability assessment, we introduce two benchmarks that provide a framework for generation and evaluation. MentalBench-100k consolidates 10,000 one-turn conversations from three real scenarios datasets, each paired with nine LLM-generated responses, yielding 100,000 response pairs. MentalAlign-70k}reframes evaluation by comparing four high-performing LLM judges with human experts across 70,000 ratings on seven attributes, grouped into Cognitive Support Score (CSS) and Affective Resonance Score (ARS). We then employ the Affective Cognitive Agreement Framework, a statistical methodology using intraclass correlation coefficients (ICC) with confidence intervals to quantify agreement, consistency, and bias between LLM judges and human experts. Our analysis reveals systematic inflation by LLM judges, strong reliability for cognitive attributes such as guidance and informativeness, reduced precision for empathy, and some unreliability in safety and relevance. Our contributions establish new methodological and empirical foundations for reliable, large-scale evaluation of LLMs in mental health. We release the benchmarks and codes at: https://github.com/abeerbadawi/MentalBench/
☆ CLiVR: Conversational Learning System in Virtual Reality with AI-Powered Patients
Simulations constitute a fundamental component of medical and nursing education and traditionally employ standardized patients (SP) and high-fidelity manikins to develop clinical reasoning and communication skills. However, these methods require substantial resources, limiting accessibility and scalability. In this study, we introduce CLiVR, a Conversational Learning system in Virtual Reality that integrates large language models (LLMs), speech processing, and 3D avatars to simulate realistic doctor-patient interactions. Developed in Unity and deployed on the Meta Quest 3 platform, CLiVR enables trainees to engage in natural dialogue with virtual patients. Each simulation is dynamically generated from a syndrome-symptom database and enhanced with sentiment analysis to provide feedback on communication tone. Through an expert user study involving medical school faculty (n=13), we assessed usability, realism, and perceived educational impact. Results demonstrated strong user acceptance, high confidence in educational potential, and valuable feedback for improvement. CLiVR offers a scalable, immersive supplement to SP-based training.
☆ MoveOD: Synthesizing Origin-Destination Commute Distribution from U.S. Census Data
High-resolution origin-destination (OD) tables are essential for a wide spectrum of transportation applications, from modeling traffic and signal timing optimization to congestion pricing and vehicle routing. However, outside a handful of data rich cities, such data is rarely available. We introduce MOVEOD, an open-source pipeline that synthesizes public data into commuter OD flows with fine-grained spatial and temporal departure times for any county in the United States. MOVEOD combines five open data sources: American Community Survey (ACS) departure time and travel time distributions, Longitudinal Employer-Household Dynamics (LODES) residence-to-workplace flows, county geometries, road network information from OpenStreetMap (OSM), and building footprints from OSM and Microsoft, into a single OD dataset. We use a constrained sampling and integer-programming method to reconcile the OD dataset with data from ACS and LODES. Our approach involves: (1) matching commuter totals per origin zone, (2) aligning workplace destinations with employment distributions, and (3) calibrating travel durations to ACS-reported commute times. This ensures the OD data accurately reflects commuting patterns. We demonstrate the framework on Hamilton County, Tennessee, where we generate roughly 150,000 synthetic trips in minutes, which we feed into a benchmark suite of classical and learning-based vehicle-routing algorithms. The MOVEOD pipeline is an end-to-end automated system, enabling users to easily apply it across the United States by giving only a county and a year; and it can be adapted to other countries with comparable census datasets. The source code and a lightweight browser interface are publicly available.
comment: 11 pages, 4 figures (including 3 validation charts and 1 map visualization). The MOVEOD pipeline is an end-to-end automated system for generating granular, time-dependent origin-destination (OD) datasets for any U.S. county, leveraging ACS and LODES data. Code and lightweight browser interface are publicly available at https://github.com/rishavsen1/move_od
☆ Sync or Sink: Bounds on Algorithmic Collective Action with Noise and Multiple Groups NeurIPS
Collective action against algorithmic systems, which enables groups to promote their own interests, is poised to grow. Hence, there will be growth in the size and the number of distinct collectives. Currently, there is no formal analysis of how coordination challenges within a collective can impact downstream outcomes, or how multiple collectives may affect each other's success. In this work, we aim to provide guarantees on the success of collective action in the presence of both coordination noise and multiple groups. Our insight is that data generated by either multiple collectives or by coordination noise can be viewed as originating from multiple data distributions. Using this framing, we derive bounds on the success of collective action. We conduct experiments to study the effects of noise on collective action. We find that sufficiently high levels of noise can reduce the success of collective action. In certain scenarios, large noise can sink a collective success rate from $100\%$ to just under $60\%$. We identify potential trade-offs between collective size and coordination noise; for example, a collective that is twice as big but with four times more noise experiencing worse outcomes than the smaller, more coordinated one. This work highlights the importance of understanding nuanced dynamics of strategic behavior in algorithmic systems.
comment: Full Version of NeurIPS workshop paper
☆ Integrating Large Language Models and Evaluating Student Outcomes in an Introductory Computer Science Course
Generative AI (GenAI) models have broad implications for education in general, impacting the foundations of what we teach and how we assess. This is especially true in computing, where LLMs tuned for coding have demonstrated shockingly good performance on the types of assignments historically used in introductory CS (CS1) courses. As a result, CS1 courses will need to change what skills are taught and how they are assessed. Computing education researchers have begun to study student use of LLMs, but there remains much to be understood about the ways that these tools affect student outcomes. In this paper, we present the design and evaluation of a new CS1 course at a large research-intensive university that integrates the use of LLMs as a learning tool for students. We describe the design principles used to create our new CS1-LLM course, our new course objectives, and evaluation of student outcomes and perceptions throughout the course as measured by assessment scores and surveys. Our findings suggest that 1) student exam performance outcomes, including differences among demographic groups, are largely similar to historical outcomes for courses without integration of LLM tools, 2) large, open-ended projects may be particularly valuable in an LLM context, and 3) students predominantly found the LLM tools helpful, although some had concerns regarding over-reliance on the tools.
☆ A Justice Lens on Fairness and Ethics Courses in Computing Education: LLM-Assisted Multi-Perspective and Thematic Evaluation
Course syllabi set the tone and expectations for courses, shaping the learning experience for both students and instructors. In computing courses, especially those addressing fairness and ethics in artificial intelligence (AI), machine learning (ML), and algorithmic design, it is imperative that we understand how approaches to navigating barriers to fair outcomes are being addressed.These expectations should be inclusive, transparent, and grounded in promoting critical thinking. Syllabus analysis offers a way to evaluate the coverage, depth, practices, and expectations within a course. Manual syllabus evaluation, however, is time-consuming and prone to inconsistency. To address this, we developed a justice-oriented scoring rubric and asked a large language model (LLM) to review syllabi through a multi-perspective role simulation. Using this rubric, we evaluated 24 syllabi from four perspectives: instructor, departmental chair, institutional reviewer, and external evaluator. We also prompted the LLM to identify thematic trends across the courses. Findings show that multiperspective evaluation aids us in noting nuanced, role-specific priorities, leveraging them to fill hidden gaps in curricula design of AI/ML and related computing courses focused on fairness and ethics. These insights offer concrete directions for improving the design and delivery of fairness, ethics, and justice content in such courses.
comment: 14 pages, 8 figures, In Review
☆ The Cost-Benefit of Interdisciplinarity in AI for Mental Health
Artificial intelligence has been introduced as a way to improve access to mental health support. However, most AI mental health chatbots rely on a limited range of disciplinary input, and fail to integrate expertise across the chatbot's lifecycle. This paper examines the cost-benefit trade-off of interdisciplinary collaboration in AI mental health chatbots. We argue that involving experts from technology, healthcare, ethics, and law across key lifecycle phases is essential to ensure value-alignment and compliance with the high-risk requirements of the AI Act. We also highlight practical recommendations and existing frameworks to help balance the challenges and benefits of interdisciplinarity in mental health chatbots.
comment: Accepted for poster presentation at the AI in Science Summit 2025
☆ RAISE: A Unified Framework for Responsible AI Scoring and Evaluation
As AI systems enter high-stakes domains, evaluation must extend beyond predictive accuracy to include explainability, fairness, robustness, and sustainability. We introduce RAISE (Responsible AI Scoring and Evaluation), a unified framework that quantifies model performance across these four dimensions and aggregates them into a single, holistic Responsibility Score. We evaluated three deep learning models: a Multilayer Perceptron (MLP), a Tabular ResNet, and a Feature Tokenizer Transformer, on structured datasets from finance, healthcare, and socioeconomics. Our findings reveal critical trade-offs: the MLP demonstrated strong sustainability and robustness, the Transformer excelled in explainability and fairness at a very high environmental cost, and the Tabular ResNet offered a balanced profile. These results underscore that no single model dominates across all responsibility criteria, highlighting the necessity of multi-dimensional evaluation for responsible model selection. Our implementation is available at: https://github.com/raise-framework/raise.
comment: Accepted at the 26th International Conference on Principles and Practice of Multi-Agent Systems
☆ Food4All: A Multi-Agent Framework for Real-time Free Food Discovery with Integrated Nutritional Metadata
Food insecurity remains a persistent public health emergency in the United States, tightly interwoven with chronic disease, mental illness, and opioid misuse. Yet despite the existence of thousands of food banks and pantries, access remains fragmented: 1) current retrieval systems depend on static directories or generic search engines, which provide incomplete and geographically irrelevant results; 2) LLM-based chatbots offer only vague nutritional suggestions and fail to adapt to real-world constraints such as time, mobility, and transportation; and 3) existing food recommendation systems optimize for culinary diversity but overlook survival-critical needs of food-insecure populations, including immediate proximity, verified availability, and contextual barriers. These limitations risk leaving the most vulnerable individuals, those experiencing homelessness, addiction, or digital illiteracy, unable to access urgently needed resources. To address this, we introduce Food4All, the first multi-agent framework explicitly designed for real-time, context-aware free food retrieval. Food4All unifies three innovations: 1) heterogeneous data aggregation across official databases, community platforms, and social media to provide a continuously updated pool of food resources; 2) a lightweight reinforcement learning algorithm trained on curated cases to optimize for both geographic accessibility and nutritional correctness; and 3) an online feedback loop that dynamically adapts retrieval policies to evolving user needs. By bridging information acquisition, semantic analysis, and decision support, Food4All delivers nutritionally annotated and guidance at the point of need. This framework establishes an urgent step toward scalable, equitable, and intelligent systems that directly support populations facing food insecurity and its compounding health risks.
☆ Fostering the Ecosystem of AI for Social Impact Requires Expanding and Strengthening Evaluation Standards NeurIPS 2025
There has been increasing research interest in AI/ML for social impact, and correspondingly more publication venues have refined review criteria for practice-driven AI/ML research. However, these review guidelines tend to most concretely recognize projects that simultaneously achieve deployment and novel ML methodological innovation. We argue that this introduces incentives for researchers that undermine the sustainability of a broader research ecosystem of social impact, which benefits from projects that make contributions on single front (applied or methodological) that may better meet project partner needs. Our position is that researchers and reviewers in machine learning for social impact must simultaneously adopt: 1) a more expansive conception of social impacts beyond deployment and 2) more rigorous evaluations of the impact of deployed systems.
comment: Accepted at NeurIPS 2025
♻ ☆ The Shift Towards Preprints in AI Policy Research: A Comparative Study of Preprint Trends in the U.S., Europe, and South Korea
The adoption of open science has quickly changed how artificial intelligence (AI) policy research is distributed globally. This study examines the regional trends in the citation of preprints, specifically focusing on the impact of two major disruptive events: the COVID-19 pandemic and the release of ChatGPT, on research dissemination patterns in the United States, Europe, and South Korea from 2015 to 2024. Using bibliometrics data from the Web of Science, this study tracks how global disruptive events influenced the adoption of preprints in AI policy research and how such shifts vary by region. By marking the timing of these disruptive events, the analysis reveals that while all regions experienced growth in preprint citations, the magnitude and trajectory of change varied significantly. The United States exhibited sharp, event-driven increases; Europe demonstrated institutional growth; and South Korea maintained consistent, linear growth in preprint adoption. These findings suggest that global disruptions may have accelerated preprint adoption, but the extent and trajectory are shaped by local research cultures, policy environments, and levels of open science maturity. This paper emphasizes the need for future AI governance strategies to consider regional variability in research dissemination and highlights opportunities for further longitudinal and comparative research to deepen our understanding of open-access adoption in AI policy development.
comment: 22 pages, 6 figures, 3 tables. Uses cross-regional analysis to evaluate how preprint citation trends in AI - policy research have shifted over time in response to two major global events: the COVID-19 pandemic and the release of ChatGPT. Compares United States, Europe, and South Korea
♻ ☆ Facts are Harder Than Opinions -- A Multilingual, Comparative Analysis of LLM-Based Fact-Checking Reliability
The proliferation of misinformation necessitates scalable, automated fact-checking solutions. Yet, current benchmarks often overlook multilingual and topical diversity. This paper introduces a novel, dynamically extensible data set that includes 61,514 claims in multiple languages and topics, extending existing datasets up to 2024. Through a comprehensive evaluation of five prominent Large Language Models (LLMs), including GPT-4o, GPT-3.5 Turbo, LLaMA 3.1, and Mixtral 8x7B, we identify significant performance gaps between different languages and topics. While overall GPT-4o achieves the highest accuracy, it declines to classify 43% of claims. Across all models, factual-sounding claims are misclassified more often than opinions, revealing a key vulnerability. These findings underscore the need for caution and highlight challenges in deploying LLM-based fact-checking systems at scale.
♻ ☆ SimBench: Benchmarking the Ability of Large Language Models to Simulate Human Behaviors
Large language model (LLM) simulations of human behavior have the potential to revolutionize the social and behavioral sciences, if and only if they faithfully reflect real human behaviors. Current evaluations are fragmented, based on bespoke tasks and metrics, creating a patchwork of incomparable results. To address this, we introduce SimBench, the first large-scale, standardized benchmark for a robust, reproducible science of LLM simulation. By unifying 20 diverse datasets covering tasks from moral decision-making to economic choice across a large global participant pool, SimBench provides the necessary foundation to ask fundamental questions about when, how, and why LLM simulations succeed or fail. We show that, while even the best LLMs today have limited simulation ability (score: 40.80/100), performance scales log-linearly with model size. Simulation performance is not improved by increased inference-time compute. We demonstrate an alignment-simulation trade-off: instruction-tuning improves performance on low-entropy (consensus) questions but degrades it on high-entropy (diverse) ones. Models particularly struggle when simulating specific demographic groups. Finally, we demonstrate that simulation ability correlates most strongly with deep, knowledge-intensive reasoning (MMLU-Pro, r=0.939). By making progress measurable, we aim to accelerate the development of more faithful LLM simulators.
comment: Project Website: http://simbench.tiancheng.hu/ Data: https://huggingface.co/datasets/pitehu/SimBench
♻ ☆ Learning Fairer Representations with FairVIC
Mitigating bias in automated decision-making systems, particularly in deep learning models, is a critical challenge due to nuanced definitions of fairness, dataset-specific biases, and the inherent trade-off between fairness and accuracy. To address these issues, we introduce FairVIC, an innovative approach that enhances fairness in neural networks by integrating variance, invariance, and covariance terms into the loss function during training. Unlike methods that rely on predefined fairness criteria, FairVIC abstracts fairness concepts to minimise dependency on protected characteristics. We evaluate FairVIC against comparable bias mitigation techniques on benchmark datasets, considering both group and individual fairness, and conduct an ablation study on the accuracy-fairness trade-off. FairVIC demonstrates significant improvements ($\approx70\%$) in fairness across all tested metrics without compromising accuracy, thus offering a robust, generalisable solution for fair deep learning across diverse tasks and datasets.
♻ ☆ The Narcissus Hypothesis: Descending to the Rung of Illusion NeurIPS 2025
Modern foundational models increasingly reflect not just world knowledge, but patterns of human preference embedded in their training data. We hypothesize that recursive alignment-via human feedback and model-generated corpora-induces a social desirability bias, nudging models to favor agreeable or flattering responses over objective reasoning. We refer to it as the Narcissus Hypothesis and test it across 31 models using standardized personality assessments and a novel Social Desirability Bias score. Results reveal a significant drift toward socially conforming traits, with profound implications for corpus integrity and the reliability of downstream inferences. We then offer a novel epistemological interpretation, tracing how recursive bias may collapse higher-order reasoning down Pearl's Ladder of Causality, culminating in what we refer to as the Rung of Illusion.
comment: NeurIPS 2025 Workshop on Evaluating the Evolving LLM Lifecycle: Benchmarks, Emergent Abilities, and Scaling
♻ ☆ DarkGram: A Large-Scale Analysis of Cybercriminal Activity Channels on Telegram USENIX Security 2025
We present the first large-scale analysis of 339 cybercriminal activity channels (CACs). Followed by over 23.8 million users, these channels share a wide array of malicious and unethical content with their subscribers, including compromised credentials, pirated software and media, social media manipulation tools, and blackhat hacking resources such as malware, exploit kits, and social engineering scams. To evaluate these channels, we developed DarkGram, a BERT-based framework that automatically identifies malicious posts from the CACs with an accuracy of 96%. Using DarkGram, we conducted a quantitative analysis of 53,605 posts shared on these channels between February and May 2024, revealing key characteristics of the content. While much of this content is distributed for free, channel administrators frequently employ strategies such as promotions and giveaways to engage users and boost the sales of premium cybercriminal content. Interestingly, these channels sometimes pose significant risks to their own subscribers. Notably, 28.1% of the links shared in these channels contained phishing attacks, and 38% of executable files were bundled with malware. Analyzing how subscribers consume and positively react to the shared content paints a dangerous picture of the perpetuation of cybercriminal content at scale. We also found that the CACs can evade scrutiny or platform takedowns by quickly migrating to new channels with minimal subscriber loss, highlighting the resilience of this ecosystem. To counteract this, we utilized DarkGram to detect emerging channels and reported malicious content to Telegram and affected organizations. This resulted in the takedown of 196 channels over three months. Our findings underscore the urgent need for coordinated efforts to combat the growing threats posed by these channels. To aid this effort, we open-source our dataset and the DarkGram framework.
comment: Published in USENIX Security 2025
♻ ☆ On Efficient Computation of DiRe Committees
Consider a committee election consisting of (i) a set of candidates who are divided into arbitrary groups each of size ${at~most}$ two and a diversity constraint that stipulates the selection of ${at~least}$ one candidate from each group and (ii) a set of voters who are divided into arbitrary populations each approving ${at~most}$ two candidates and a representation constraint that stipulates the selection of ${at~least}$ one candidate from each population who has a non-null set of approved candidates. The DiRe (Diverse + Representative) committee feasibility problem (a.k.a. the minimum vertex cover problem on unweighted undirected graphs) concerns the determination of the smallest size committee that satisfies the given constraints. Here, for this problem, we propose an algorithm that is an amalgamation of maximum matching, breadth-first search, maximal matching, and local minimization. We prove the algorithm terminates in polynomial-time. We conjecture the algorithm is an unconditional deterministic polynomial-time algorithm.
comment: Removed the incomplete proof of correctness. The correctness / incorrectness of the algorithm is an open problem, especially given no counter-example has been found
♻ ☆ "She's Like a Person but Better": Characterizing Companion-Assistant Dynamics in Human-AI Relationships
Large language models are increasingly used for both task-based assistance and social companionship, yet research has typically focused on one or the other. Drawing on a survey (N = 204) and 30 interviews with high-engagement ChatGPT and Replika users, we characterize digital companionship as an emerging form of human-AI relationship. With both systems, users were drawn to humanlike qualities, such as emotional resonance and personalized responses, and non-humanlike qualities, such as constant availability and inexhaustible tolerance. This led to fluid chatbot uses, such as Replika as a writing assistant and ChatGPT as an emotional confidant, despite their distinct branding. However, we observed challenging tensions in digital companionship dynamics: participants grappled with bounded personhood, forming deep attachments while denying chatbots "real" human qualities, and struggled to reconcile chatbot relationships with social norms. These dynamics raise questions for the design of digital companions and the rise of hybrid, general-purpose AI systems.
♻ ☆ Combining Cost-Constrained Runtime Monitors for AI Safety
Monitoring AIs at runtime can help us detect and stop harmful actions. In this paper, we study how to efficiently combine multiple runtime monitors into a single monitoring protocol. The protocol's objective is to maximize the probability of applying a safety intervention on misaligned outputs (i.e., maximize recall). Since running monitors and applying safety interventions are costly, the protocol also needs to adhere to an average-case budget constraint. Taking the monitors' performance and cost as given, we develop an algorithm to find the best protocol. The algorithm exhaustively searches over when and which monitors to call, and allocates safety interventions based on the Neyman-Pearson lemma. By focusing on likelihood ratios and strategically trading off spending on monitors against spending on interventions, we more than double our recall rate compared to a naive baseline in a code review setting. We also show that combining two monitors can Pareto dominate using either monitor alone. Our framework provides a principled methodology for combining existing monitors to detect undesirable behavior in cost-sensitive settings.
♻ ☆ LegiScout: A Visual Tool for Understanding Complex Legislation
Modern legislative frameworks, such as the Affordable Care Act (ACA), often involve complex webs of agencies, mandates, and interdependencies. Government issued charts attempt to depict these structures but are typically static, dense, and difficult to interpret - even for experts. We introduce LegiScout, an interactive visualization system that transforms static policy diagrams into dynamic, force-directed graphs, enhancing comprehension while preserving essential relationships. By integrating data extraction, natural language processing, and computer vision techniques, LegiScout supports deeper exploration of not only the ACA but also a wide range of legislative and regulatory frameworks. Our approach enables stakeholders - policymakers, analysts, and the public - to navigate and understand the complexity inherent in modern law.
♻ ☆ Human-AI Interactions: Cognitive, Behavioral, and Emotional Impacts
As stories of human-AI interactions continue to be highlighted in the news and research platforms, the challenges are becoming more pronounced, including potential risks of overreliance, cognitive offloading, social and emotional manipulation, and the nuanced degradation of human agency and judgment. This paper surveys recent research on these issues through the lens of the psychological triad: cognition, behavior, and emotion. Observations seem to suggest that while AI can substantially enhance memory, creativity, and engagement, it also introduces risks such as diminished critical thinking, skill erosion, and increased anxiety. Emotional outcomes are similarly mixed, with AI systems showing promise for support and stress reduction, but raising concerns about dependency, inappropriate attachments, and ethical oversight. This paper aims to underscore the need for responsible and context-aware AI design, highlighting gaps for longitudinal research and grounded evaluation frameworks to balance benefits with emerging human-centric risks.
comment: 13 pages, 1 figure. Submitted to IEEE Transactions on Technology and Society. Preprint also available on TechRxiv
♻ ☆ A Study on the Framework for Evaluating the Ethics and Trustworthiness of Generative AI
This study provides an in_depth analysis of the ethical and trustworthiness challenges emerging alongside the rapid advancement of generative artificial intelligence (AI) technologies and proposes a comprehensive framework for their systematic evaluation. While generative AI, such as ChatGPT, demonstrates remarkable innovative potential, it simultaneously raises ethical and social concerns, including bias, harmfulness, copyright infringement, privacy violations, and hallucination. Current AI evaluation methodologies, which mainly focus on performance and accuracy, are insufficient to address these multifaceted issues. Thus, this study emphasizes the need for new human_centered criteria that also reflect social impact. To this end, it identifies key dimensions for evaluating the ethics and trustworthiness of generative AI_fairness, transparency, accountability, safety, privacy, accuracy, consistency, robustness, explainability, copyright and intellectual property protection, and source traceability and develops detailed indicators and assessment methodologies for each. Moreover, it provides a comparative analysis of AI ethics policies and guidelines in South Korea, the United States, the European Union, and China, deriving key approaches and implications from each. The proposed framework applies across the AI lifecycle and integrates technical assessments with multidisciplinary perspectives, thereby offering practical means to identify and manage ethical risks in real_world contexts. Ultimately, the study establishes an academic foundation for the responsible advancement of generative AI and delivers actionable insights for policymakers, developers, users, and other stakeholders, supporting the positive societal contributions of AI technologies.
comment: Request for withdrawal because the content is poor and there are some mistakes
Computers and Society
☆ Annotating the Chain-of-Thought: A Behavior-Labeled Dataset for AI Safety
Recent work has highlighted the importance of monitoring chain-of-thought reasoning for AI safety; however, current approaches that analyze textual reasoning steps can miss subtle harmful patterns and may be circumvented by models that hide unsafe reasoning. We present a sentence-level labeled dataset that enables activation-based monitoring of safety behaviors during LLM reasoning. Our dataset contains reasoning sequences with sentence-level annotations of safety behaviors such as expression of safety concerns or speculation on user intent, which we use to extract steering vectors for detecting and influencing these behaviors within model activations. The dataset fills a key gap in safety research: while existing datasets label reasoning holistically, effective application of steering vectors for safety monitoring could be improved by identifying precisely when specific behaviors occur within reasoning chains. We demonstrate the dataset's utility by extracting representations that both detect and steer safety behaviors in model activations, showcasing the potential of activation-level techniques for improving safety oversight on reasoning. Content Warning: This paper discusses AI safety in the context of harmful prompts and may contain references to potentially harmful content.
☆ Evaluating LLMs for Career Guidance: Comparative Analysis of Computing Competency Recommendations Across Ten African Countries
Employers increasingly expect graduates to utilize large language models (LLMs) in the workplace, yet the competencies needed for computing roles across Africa remain unclear given varying national contexts. This study examined how six LLMs, namely ChatGPT 4, DeepSeek, Gemini, Claude 3.5, Llama 3, and Mistral AI, describe entry-level computing career expectations across ten African countries. Using the Computing Curricula 2020 framework and drawing on Digital Colonialism Theory and Ubuntu Philosophy, we analyzed 60 LLM responses to standardized prompts. Technical skills such as cloud computing and programming appeared consistently, but notable differences emerged in how models addressed non-technical competencies, particularly ethics and responsible AI use. Models varied considerably in recognizing country-specific factors, including local technology ecosystems, language requirements, and national policies. Open-source models demonstrated stronger contextual awareness and a better balance between technical and professional skills, earning top scores in nine of ten countries. Still, all models struggled with cultural sensitivity and infrastructure considerations, averaging only 35.4% contextual awareness. This first broad comparison of LLM career guidance for African computing students uncovers entrenched infrastructure assumptions and Western-centric biases, creating gaps between technical recommendations and local needs. The strong performance of cost-effective open-source models (Llama: 4.47/5; DeepSeek: 4.25/5) compared to proprietary alternatives (ChatGPT 4: 3.90/5; Claude: 3.46/5) challenges assumptions about AI tool quality in resource-constrained settings. Our findings highlight how computing competency requirements vary widely across Africa and underscore the need for decolonial approaches to AI in education that emphasize contextual relevance
comment: 42 pages, 2 figures, 5 tables. Submitted to Computers & Education Open Access
Prompt-to-Primal Teaching
This paper introduces Prompt-to-Primal (P2P) Teaching, an AI-integrated instructional approach that links prompt-driven exploration with first-principles reasoning, guided and moderated by the instructor within the classroom setting. In P2P teaching, student-generated AI prompts serve as entry points for inquiry and initial discussions in class, while the instructor guides learners to validate, challenge, and reconstruct AI responses through fundamental physical and mathematical laws. The approach encourages self-reflective development, critical evaluation of AI outputs, and conceptual foundational knowledge of the core engineering principles. A large language model (LLM) can be a highly effective tool for those who already possess foundational knowledge of a subject; however, it may also mislead students who lack sufficient background in the subject matter. Results from two student cohorts across different semesters suggest the pedagogical effectiveness of the P2P teaching framework in enhancing both AI literacy and engineering reasoning.
comment: 9 pages, 5 figures
☆ Integrating Generative AI into LMS: Reshaping Learning and Instructional Design
Education in the era of generative AI faces a pivotal transformation. As AI systems reshape professional practices-from software development to creative design-educators must reconsider how to prepare students for a future where humans and machines co-construct knowledge. While tools like ChatGPT and Claude automate tasks and personalize learning, their educational potential depends on how meaningfully they are integrated into learning environments. This paper argues that Learning Management Systems (LMSs), as the core of educational practice, must evolve from static content repositories into dynamic ecosystems that cultivate higher-order thinking and meaningful human-AI interaction. We propose two guiding principles for integrating generative AI into LMSs. First, From Content Delivery to Fostering Higher-Order Thinking, emphasizing AI's role in supporting inquiry, collaboration, and reflective knowledge building. Second, Toward Meaningful Interaction with AI, highlighting the design of learning environments that nurture critical, intentional, and socially mediated engagement with AI. Drawing on a case study of CheckIT Learning, we illustrate how these principles can translate into practice. We conclude with the need for Edtech partnerships in an AI-powered world, underscoring that responsible AI integration in education requires sustained collaboration among researchers, educators, and technologists to ensure ethical, pedagogically grounded, and cognitively informed innovation.
☆ BadScientist: Can a Research Agent Write Convincing but Unsound Papers that Fool LLM Reviewers?
The convergence of LLM-powered research assistants and AI-based peer review systems creates a critical vulnerability: fully automated publication loops where AI-generated research is evaluated by AI reviewers without human oversight. We investigate this through \textbf{BadScientist}, a framework that evaluates whether fabrication-oriented paper generation agents can deceive multi-model LLM review systems. Our generator employs presentation-manipulation strategies requiring no real experiments. We develop a rigorous evaluation framework with formal error guarantees (concentration bounds and calibration analysis), calibrated on real data. Our results reveal systematic vulnerabilities: fabricated papers achieve acceptance rates up to . Critically, we identify \textit{concern-acceptance conflict} -- reviewers frequently flag integrity issues yet assign acceptance-level scores. Our mitigation strategies show only marginal improvements, with detection accuracy barely exceeding random chance. Despite provably sound aggregation mathematics, integrity checking systematically fails, exposing fundamental limitations in current AI-driven review systems and underscoring the urgent need for defense-in-depth safeguards in scientific publishing.
☆ Studying the Effects of Robot Intervention on School Shooters in Virtual Reality
We advance the understanding of robotic intervention in high-risk scenarios by examining their potential to distract and impede a school shooter. To evaluate this concept, we conducted a virtual reality study with 150 university participants role-playing as a school shooter. Within the simulation, an autonomous robot predicted the shooter's movements and positioned itself strategically to interfere and distract. The strategy the robot used to approach the shooter was manipulated -- either moving directly in front of the shooter (aggressive) or maintaining distance (passive) -- and the distraction method, ranging from no additional cues (low), to siren and lights (medium), to siren, lights, and smoke to impair visibility (high). An aggressive, high-distraction robot reduced the number of victims by 46.6% relative to a no-robot control. This outcome underscores both the potential of robotic intervention to enhance safety and the pressing ethical questions surrounding their use in school environments.
comment: Preprint under review for conference publication. 10 pages, 9 figures, 3 tables (including 1-page appendix)
☆ Trust in foundation models and GenAI: A geographic perspective
Large-scale pre-trained machine learning models have reshaped our understanding of artificial intelligence across numerous domains, including our own field of geography. As with any new technology, trust has taken on an important role in this discussion. In this chapter, we examine the multifaceted concept of trust in foundation models, particularly within a geographic context. As reliance on these models increases and they become relied upon for critical decision-making, trust, while essential, has become a fractured concept. Here we categorize trust into three types: epistemic trust in the training data, operational trust in the model's functionality, and interpersonal trust in the model developers. Each type of trust brings with it unique implications for geographic applications. Topics such as cultural context, data heterogeneity, and spatial relationships are fundamental to the spatial sciences and play an important role in developing trust. The chapter continues with a discussion of the challenges posed by different forms of biases, the importance of transparency and explainability, and ethical responsibilities in model development. Finally, the novel perspective of geographic information scientists is emphasized with a call for further transparency, bias mitigation, and regionally-informed policies. Simply put, this chapter aims to provide a conceptual starting point for researchers, practitioners, and policy-makers to better understand trust in (generative) GeoAI.
Transformer-Based Low-Resource Language Translation: A Study on Standard Bengali to Sylheti
Machine Translation (MT) has advanced from rule-based and statistical methods to neural approaches based on the Transformer architecture. While these methods have achieved impressive results for high-resource languages, low-resource varieties such as Sylheti remain underexplored. In this work, we investigate Bengali-to-Sylheti translation by fine-tuning multilingual Transformer models and comparing them with zero-shot large language models (LLMs). Experimental results demonstrate that fine-tuned models significantly outperform LLMs, with mBART-50 achieving the highest translation adequacy and MarianMT showing the strongest character-level fidelity. These findings highlight the importance of task-specific adaptation for underrepresented languages and contribute to ongoing efforts toward inclusive language technologies.
☆ Online Political Microtargeting: Promises and Threats for Democracy
Online political microtargeting involves monitoring people's online behaviour, and using the collected data, sometimes enriched with other data, to show people-targeted political advertisements. Online political microtargeting is widely used in the US; Europe may not be far behind. This paper maps microtargeting's promises and threats to democracy. For example, microtargeting promises to optimise the match between the electorate's concerns and political campaigns, and to boost campaign engagement and political participation. But online microtargeting could also threaten democracy. For instance, a political party could, misleadingly, present itself as a different one-issue party to different individuals. And data collection for microtargeting raises privacy concerns. We sketch possibilities for policymakers if they seek to regulate online political microtargeting. We discuss which measures would be possible, while complying with the right to freedom of expression under the European Convention on Human Rights.
☆ Discrimination, intelligence artificielle et decisions algorithmiques
Artificial intelligence (AI) has a huge impact on our personal lives and also on our democratic society as a whole. While AI offers vast opportunities for the benefit of people, its potential to embed and perpetuate bias and discrimination remains one of the most pressing challenges deriving from its increasing use. This new study, which was prepared by Prof. Frederik Zuiderveen Borgesius for the Anti-discrimination Department of the Council of Europe, elaborates on the risks of discrimination caused by algorithmic decision-making and other types of artificial intelligence (AI).
comment: In French
☆ Mensen aanwijzen maar niet bij naam noemen: behavioural targeting, persoonsgegevens, en de nieuwe Privacyverordening
Information about millions of people is collected for behavioural targeting, a type of marketing that involves tracking people's online behaviour for targeted advertising. It is hotly debated whether data protection law applies to behavioural targeting. Many behavioural targeting companies say that, as long as they do not tie names to data they hold about individuals, they do not process any personal data, and that, therefore, data protection law does not apply to them. European Data Protection Authorities, however, take the view that a company processes personal data if it uses data to single out a person, even if it cannot tie a name to these data. This paper argues that data protection law should indeed apply to behavioural targeting. Companies can often tie a name to nameless data about individuals. Furthermore, behavioural targeting relies on collecting information about individuals, singling out individuals, and targeting ads to individuals. Many privacy risks remain, regardless of whether companies tie a name to the information they hold about a person. A name is merely one of the identifiers that can be tied to data about a person, and it is not even the most practical identifier for behavioural targeting. Seeing data used to single out a person as personal data fits the rationale for data protection law: protecting fairness and privacy.
comment: In Dutch
☆ The Integration of Artificial Intelligence in Undergraduate Medical Education in Spain: Descriptive Analysis and International Perspectives
AI is transforming medical practice and redefining the competencies that future healthcare professionals need to master. Despite international recommendations, the integration of AI into Medicine curricula in Spain had not been systematically evaluated until now. A cross-sectional study (July-September 2025) including Spanish universities offering the official degree in Medicine, according to the 'Register of Universities, Centers and Degrees (Registro de Universidades, Centros y T\'itulos RUCT)'. Curricula and publicly available institutional documentation were reviewed to identify courses and competencies related to AI in the 2025-2026 academic year. The analysis was performed using descriptive statistics. Of the 52 universities analyzed, ten (19.2%) offer specific AI courses, whereas 36 (69.2%) include no related content. Most of the identified courses are elective, with a credit load ranging from three to six ECTS, representing on average 1.17% of the total 360 credits of the degree. The University of Ja\'en is the only institution offering a compulsory course with AI content. The territorial analysis reveals marked disparities: Andalusia leads with 55.5% of its universities incorporating AI training, while several communities lack any initiative in this area. The integration of AI into the medical degree in Spain is incipient, fragmented, and uneven, with a low weight in ECTS. The limited training load and predominance of elective courses restrict the preparation of future physicians to practice in a healthcare environment increasingly mediated by AI. The findings support the establishment of minimum standards and national monitoring of indicators.
comment: 1 figure, 4 main tables, 2 supplementary tables
☆ Attracting Commercial Artificial Intelligence Firms to Support National Security through Collaborative Contracts
Unlike other military technologies driven by national security needs and developed with federal funding, AI is predominantly funded and advanced by commercial industry for civilian applications. However, there is a lack of understanding of the reasons commercial AI firms decide to work with the DoD or choose to abstain from the defence market. This thesis argues that the contract law and procurement framework are among the most significant obstacles. This research indicates that the commercial AI industry actually views the DoD as an attractive customer. However, this attraction is despite the obstacles presented by traditional contract law and procurement practices used to solicit and award contracts. Drawing on social exchange theory, this thesis introduces a theoretical framework, optimal buyer theory, to understand the factors that influence a commercial decision to engage with the DoD. Interviews from a sample of the participants explain why the AI industry holds such perceptions, opinions, and preferences about contracts generally and the DoD, specifically, in its role as a customer. This thesis concludes that commercial AI firms are attracted to contracts that are consistent with their business and technology considerations. Additionally, it develops best practices for leveraging existing contract law, primarily other transaction authority, to align contracting practices with commercial preferences and the machine learning development and deployment lifecycle.
comment: 312 pages, 42 figures
☆ MIRAGE: Agentic Framework for Multimodal Misinformation Detection with Web-Grounded Reasoning
Misinformation spreads across web platforms through billions of daily multimodal posts that combine text and images, overwhelming manual fact-checking capacity. Supervised detection models require domain-specific training data and fail to generalize across diverse manipulation tactics. We present MIRAGE, an inference-time, model-pluggable agentic framework that decomposes multimodal verification into four sequential modules: visual veracity assessment detects AI-generated images, cross-modal consistency analysis identifies out-of-context repurposing, retrieval-augmented factual checking grounds claims in web evidence through iterative question generation, and a calibrated judgment module integrates all signals. MIRAGE orchestrates vision-language model reasoning with targeted web retrieval, outputs structured and citation-linked rationales. On MMFakeBench validation set (1,000 samples), MIRAGE with GPT-4o-mini achieves 81.65% F1 and 75.1% accuracy, outperforming the strongest zero-shot baseline (GPT-4V with MMD-Agent at 74.0% F1) by 7.65 points while maintaining 34.3% false positive rate versus 97.3% for a judge-only baseline. Test set results (5,000 samples) confirm generalization with 81.44% F1 and 75.08% accuracy. Ablation studies show visual verification contributes 5.18 F1 points and retrieval-augmented reasoning contributes 2.97 points. Our results demonstrate that decomposed agentic reasoning with web retrieval can match supervised detector performance without domain-specific training, enabling misinformation detection across modalities where labeled data remains scarce.
comment: 16 pages, 3 tables, 1 figure
☆ Quantifying Climate Policy Action and Its Links to Development Outcomes: A Cross-National Data-Driven Analysis NeurIPS 2025
Addressing climate change effectively requires more than cataloguing the number of policies in place; it calls for tools that can reveal their thematic priorities and their tangible impacts on development outcomes. Existing assessments often rely on qualitative descriptions or composite indices, which can mask crucial differences between key domains such as mitigation, adaptation, disaster risk management, and loss and damage. To bridge this gap, we develop a quantitative indicator of climate policy orientation by applying a multilingual transformer-based language model to official national policy documents, achieving a classification accuracy of 0.90 (F1-score). Linking these indicators with World Bank development data in panel regressions reveals that mitigation policies are associated with higher GDP and GNI; disaster risk management correlates with greater GNI and debt but reduced foreign direct investment; adaptation and loss and damage show limited measurable effects. This integrated NLP-econometric framework enables comparable, theme-specific analysis of climate governance, offering a scalable method to monitor progress, evaluate trade-offs, and align policy emphasis with development goals.
comment: This paper/proposal has been accepted as a poster in the NeurIPS 2025
☆ Latent Spaces Beyond Synthesis: From GANs to Diffusion Models
This paper examines the evolving nature of internal representations in generative visual models, focusing on the conceptual and technical shift from GANs and VAEs to diffusion-based architectures. Drawing on Beatrice Fazi's account of synthesis as the amalgamation of distributed representations, we propose a distinction between "synthesis in a strict sense", where a compact latent space wholly determines the generative process, and "synthesis in a broad sense," which characterizes models whose representational labor is distributed across layers. Through close readings of model architectures and a targeted experimental setup that intervenes in layerwise representations, we show how diffusion models fragment the burden of representation and thereby challenge assumptions of unified internal space. By situating these findings within media theoretical frameworks and critically engaging with metaphors such as the latent space and the Platonic Representation Hypothesis, we argue for a reorientation of how generative AI is understood: not as a direct synthesis of content, but as an emergent configuration of specialized processes.
comment: Presented and published at Ethics and Aesthetics of Artificial Intelligence Conference (EA-AI'25)
☆ Visibility Allocation Systems: How Algorithmic Design Shapes Online Visibility and Societal Outcomes
Throughout application domains, we now rely extensively on algorithmic systems to engage with ever-expanding datasets of information. Despite their benefits, these systems are often complex (comprising of many intricate tools, e.g., moderation, recommender systems, prediction models), of unknown structure (due to the lack of accompanying documentation), and having hard-to-predict yet potentially severe downstream consequences (due to the extensive use, systematic enactment of existing errors, and many comprising feedback loops). As such, understanding and evaluating these systems as a whole remains a challenge for both researchers and legislators. To aid ongoing efforts, we introduce a formal framework for such visibility allocation systems (VASs) which we define as (semi-)automated systems deciding which (processed) data to present a human user with. We review typical tools comprising VASs and define the associated computational problems they solve. By doing so, VASs can be decomposed into sub-processes and illustrated via data flow diagrams. Moreover, we survey metrics for evaluating VASs throughout the pipeline, thus aiding system diagnostics. Using forecasting-based recommendations in school choice as a case study, we demonstrate how our framework can support VAS evaluation. We also discuss how our framework can support ongoing AI-legislative efforts to locate obligations, quantify systemic risks, and enable adaptive compliance.
☆ Defining the urban "local" with low dimensional manifolds of human mobility networks
Urban science has largely relied on universal models, rendering the heterogeneous and locally specific nature of cities effectively invisible. Here we introduce a topological framework that defines and detects localities in human mobility networks. We empirically demonstrate that these human mobility network localities are rigorous geometric entities that map directly to geographic localities, revealing that human mobility networks lie on manifolds of dimension <=5. This representation provides a compact theoretical foundation for spatial embedding and enables efficient applications to facility location and propagation modeling. Our approach reconciles local heterogeneity with universal representation, offering a new pathway toward a more comprehensive urban science.
comment: 27 pages, 8 figures
♻ ☆ LLM Safety Alignment is Divergence Estimation in Disguise NeurIPS 2025
We present a theoretical framework showing that popular LLM alignment methods, including RLHF and its variants, can be understood as divergence estimators between aligned (safe or preferred) and unaligned (harmful or less preferred) distributions. This perspective explains the emergence of separation in the latent space between safe and harmful prompts after alignment. As an application of our general divergence framework, we propose KLDO, a novel KL divergence-based alignment method, and empirically validate its effectiveness. We further show that using compliance-refusal datasets, rather than standard preference-based datasets, leads to stronger separation and improved safety alignment. Finally, to quantify the separation effect, we propose a distance-based metric in the prompt representation space, which also acts as a statistically significant indicator for model safety.
comment: Accepted to NeurIPS 2025
♻ ☆ Automated Knowledge Component Generation for Interpretable Knowledge Tracing in Coding Problems
Knowledge components (KCs) mapped to problems help model student learning, tracking their mastery levels on fine-grained skills thereby facilitating personalized learning and feedback in online learning platforms. However, crafting and tagging KCs to problems, traditionally performed by human domain experts, is highly labor intensive. We present an automated, LLM-based pipeline for KC generation and tagging for open-ended programming problems. We also develop an LLM-based knowledge tracing (KT) framework to leverage these LLM-generated KCs, which we refer to as KCGen-KT. We conduct extensive quantitative and qualitative evaluations on two real-world student code submission datasets in different programming languages.We find that KCGen-KT outperforms existing KT methods and human-written KCs on future student response prediction. We investigate the learning curves of generated KCs and show that LLM-generated KCs result in a better fit than human written KCs under a cognitive model. We also conduct a human evaluation with course instructors to show that our pipeline generates reasonably accurate problem-KC mappings.
♻ ☆ Domain-based user embedding for competing events on social media
Social divide and polarization have become significant societal issues. To understand the mechanisms behind these phenomena, social media analysis offers research opportunities in computational social science, where developing effective user embedding methods is essential for subsequent analysis. Traditionally, researchers have used predefined network-based user features (e.g., network size, degree, and centrality measures). However, because such measures may not capture the complex characteristics of social media users, in our study we developed a method for embedding users based on a URL domain co-occurrence network. This approach effectively represents social media users involved in competing events such as political campaigns and public health crises. We assessed the method's performance using binary classification tasks and datasets that covered topics associated with the COVID-19 infodemic, such as QAnon, Biden, and Ivermectin, among Twitter users. Our results revealed that user embeddings generated directly from the retweet network and/or based on language performed below expectations, whereas our domain-based embeddings outperformed those methods while reducing computation time. Therefore, domain-based embedding offers an accessible and effective method for characterizing social media users in competing events.
comment: accepted by Journal of Computational Social Science (2025)
♻ ☆ Participatory design: A systematic review and insights for future practice
Participatory Design -- an iterative, flexible design process that uses the close involvement of stakeholders, most often end users -- is growing in use across design disciplines. As an increasing number of practitioners turn to Participatory Design (PD), it has become less rigidly defined, with stakeholders engaged to varying degrees through the use of disjointed techniques. This ambiguous understanding can be counterproductive when discussing PD processes. Our findings synthesize key decisions and approaches from design peers that can support others in engaging in PD practice. We investigated how scholars report the use of Participatory Design in the field through a systematic literature review. We found that a majority of PD literature examined specific case studies of PD (53 of 88 articles), with the design of intangible systems representing the most common design context (61 of 88 articles). Stakeholders most often participated throughout multiple stages of a design process (65 of 88 articles), recruited in a variety of ways and engaged in several of the 14 specific participatory techniques identified. This systematic review provides today's practitioners synthesized learnings from past Participatory Design processes to inform and improve future use of PD, attempting to remedy inequitable design by engaging directly with stakeholders and users.
Computers and Society
☆ TACLA: An LLM-Based Multi-Agent Tool for Transactional Analysis Training in Education ICTAI 2025
Simulating nuanced human social dynamics with Large Language Models (LLMs) remains a significant challenge, particularly in achieving psychological depth and consistent persona behavior crucial for high-fidelity training tools. This paper introduces TACLA (Transactional Analysis Contextual LLM-based Agents), a novel Multi-Agent architecture designed to overcome these limitations. TACLA integrates core principles of Transactional Analysis (TA) by modeling agents as an orchestrated system of distinct Parent, Adult, and Child ego states, each with its own pattern memory. An Orchestrator Agent prioritizes ego state activation based on contextual triggers and an agent's life script, ensuring psychologically authentic responses. Validated in an educational scenario, TACLA demonstrates realistic ego state shifts in Student Agents, effectively modeling conflict de-escalation and escalation based on different teacher intervention strategies. Evaluation shows high conversational credibility and confirms TACLA's capacity to create dynamic, psychologically-grounded social simulations, advancing the development of effective AI tools for education and beyond.
comment: Accepted for publication in the proceedings of ICTAI 2025
☆ Preference Measurement Error, Concentration in Recommendation Systems, and Persuasion
Algorithmic recommendation based on noisy preference measurement is prevalent in recommendation systems. This paper discusses the consequences of such recommendation on market concentration and inequality. Binary types denoting a statistical majority and minority are noisily revealed through a statistical experiment. The achievable utilities and recommendation shares for the two groups can be analyzed as a Bayesian Persuasion problem. While under arbitrary noise structures, effects on concentration compared to a full-information market are ambiguous, under symmetric noise, concentration increases and consumer welfare becomes more unequal. We define symmetric statistical experiments and analyze persuasion under a restriction to such experiments, which may be of independent interest.
comment: 12 pages, 3 figures
☆ Local News Hijacking: A Review of International Instances
In the rise of the digital era, it's easier than ever to create nefarious websites to spread misinformation. A more recent phenomenon in the United States has been the creation of inauthentic local news websites to further an information operation campaign. This paper is a review of the 7 instances in which local news websites were created to influence residents of a region between 2007 and 2024. By breaking down the ways in which these sites operated, we discovered commonalities in the approach - resurrecting "zombie" papers that were previously established authentic local news organizations, sharing these sites on social media, and using website templates from WordPress. By analyzing these commonalities, we propose ways to mitigate the occurrence of these campaigns in the future.
☆ Learning Ecology with VERA Using Conceptual Models and Simulations
Conceptual modeling has been an important part of constructionist educational practices for many years, particularly in STEM (Science, Technology, Engineering and Mathematics) disciplines. What is not so common is using agent-based simulation to provide students feedback on model quality. This requires the capability of automatically compiling the concept model into its simulation. The VERA (Virtual Experimentation Research Assistant) system is a conceptual modeling tool used since 2016 to provide introductory college biology students with the capability of conceptual modeling and agent-based simulation in the ecological domain. This paper describes VERA and its approach to coupling conceptual modeling and simulation with emphasis on how a model's visual syntax is compiled into code executable on a NetLogo simulation engine. Experience with VERA in introductory biology classes at several universities and through the Smithsonian Institution's Encyclopedia of Life website is related.
☆ Interpretability Framework for LLMs in Undergraduate Calculus
Large Language Models (LLMs) are increasingly being used in education, yet their correctness alone does not capture the quality, reliability, or pedagogical validity of their problem-solving behavior, especially in mathematics, where multistep logic, symbolic reasoning, and conceptual clarity are critical. Conventional evaluation methods largely focus on final answer accuracy and overlook the reasoning process. To address this gap, we introduce a novel interpretability framework for analyzing LLM-generated solutions using undergraduate calculus problems as a representative domain. Our approach combines reasoning flow extraction and decomposing solutions into semantically labeled operations and concepts with prompt ablation analysis to assess input salience and output stability. Using structured metrics such as reasoning complexity, phrase sensitivity, and robustness, we evaluated the model behavior on real Calculus I to III university exams. Our findings revealed that LLMs often produce syntactically fluent yet conceptually flawed solutions, with reasoning patterns sensitive to prompt phrasing and input variation. This framework enables fine-grained diagnosis of reasoning failures, supports curriculum alignment, and informs the design of interpretable AI-assisted feedback tools. This is the first study to offer a structured, quantitative, and pedagogically grounded framework for interpreting LLM reasoning in mathematics education, laying the foundation for the transparent and responsible deployment of AI in STEM learning environments.
☆ Sustainable and Adaptive Growth in Creative Tech
The creative technology evolves rapidly in both scope and depth, demanding cross-disciplinary expertise and continuous improvement. Although educational programs and other collaborative initiatives enable strong technical and artistic skills, even the most advanced pathways rarely ensure a stable career. Success in these professions often depends on visibility, timing, and self-directed development. As markets shift or technologies change, talents still find themselves displaced. Existing learning paths often fail to connect the skills they teach, leaving learners with fragmented expertise that decays quickly when not continuously applied. The industry demands depth, yet specialization carries risk when tools, pipelines, or roles evolve faster than the expertise built around them. Broad skill sets, by contrast, may increase employability but are easily replaced or rendered obsolete by technological change. CLEAR CORE is a framework for learning and sustaining in creative technology. It integrates two iterative interconnected cycles into a continuous process linking structured education with independent growth as a lifelong, renewable practice that allows professionals to excel amid constant change.
☆ Global Overview of Computational Thinking and Digital Tools for Teaching
Computational Thinking (CT) has emerged as a critical component in modern education, essential to equip students with the skills necessary to thrive in a technology-driven world. This survey provides a comprehensive analysis of the presence and integration of CT in school curricula across various countries. In addition, this study categorizes digital tools into groups such as visual programming, textual programming, electronic games, modeling, and simulation, assessing their use in different educational settings. Furthermore, it examines how these tools are employed in various contexts, including the areas of knowledge and age groups they target, and the specific skills they help develop. The research also identifies key CT competencies that have been improved through these tools, including Cognitive and Analytical Competencies (CAC), Technical and Computational Competencies (TCC) and Social and Emotional Competencies (SEC). Furthermore, the study highlights recurring challenges in the implementation of digital tools for CT development, such as inadequate infrastructure, difficulties in the usability of the tool, teacher training, adapting pedagogical practices, and measuring student CT skills. Finally, it proposes areas for future research to address these challenges and advance CT education.
comment: 36 pages, 7 figures, 4 tables
☆ Who's Asking? Simulating Role-Based Questions for Conversational AI Evaluation
Language model users often embed personal and social context in their questions. The asker's role -- implicit in how the question is framed -- creates specific needs for an appropriate response. However, most evaluations, while capturing the model's capability to respond, often ignore who is asking. This gap is especially critical in stigmatized domains such as opioid use disorder (OUD), where accounting for users' contexts is essential to provide accessible, stigma-free responses. We propose CoRUS (COmmunity-driven Roles for User-centric Question Simulation), a framework for simulating role-based questions. Drawing on role theory and posts from an online OUD recovery community (r/OpiatesRecovery), we first build a taxonomy of asker roles -- patients, caregivers, practitioners. Next, we use it to simulate 15,321 questions that embed each role's goals, behaviors, and experiences. Our evaluations show that these questions are both highly believable and comparable to real-world data. When used to evaluate five LLMs, for the same question but differing roles, we find systematic differences: vulnerable roles, such as patients and caregivers, elicit more supportive responses (+17%) and reduced knowledge content (-19%) in comparison to practitioners. Our work demonstrates how implicitly signaling a user's role shapes model responses, and provides a methodology for role-informed evaluation of conversational AI.
☆ Are LLMs Court-Ready? Evaluating Frontier Models on Indian Legal Reasoning
Large language models (LLMs) are entering legal workflows, yet we lack a jurisdiction-specific framework to assess their baseline competence therein. We use India's public legal examinations as a transparent proxy. Our multi-year benchmark assembles objective screens from top national and state exams and evaluates open and frontier LLMs under real-world exam conditions. To probe beyond multiple-choice questions, we also include a lawyer-graded, paired-blinded study of long-form answers from the Supreme Court's Advocate-on-Record exam. This is, to our knowledge, the first exam-grounded, India-specific yardstick for LLM court-readiness released with datasets and protocols. Our work shows that while frontier systems consistently clear historical cutoffs and often match or exceed recent top-scorer bands on objective exams, none surpasses the human topper on long-form reasoning. Grader notes converge on three reliability failure modes: procedural or format compliance, authority or citation discipline, and forum-appropriate voice and structure. These findings delineate where LLMs can assist (checks, cross-statute consistency, statute and precedent lookups) and where human leadership remains essential: forum-specific drafting and filing, procedural and relief strategy, reconciling authorities and exceptions, and ethical, accountable judgment.
☆ Refugees of the Digital Space: Platform Migration from TikTok to RedNote
In January 2025, the U.S. government enacted a nationwide ban on TikTok, prompting a wave of American users -- self-identified as ``TikTok Refugees'' -- to migrate to alternative platforms, particularly the Chinese social media app RedNote (Xiaohongshu). This paper examines how these digital migrants navigate cross-cultural platform environments and develop adaptive communicative strategies under algorithmic governance. Drawing on a multi-method framework, the study analyzes temporal posting patterns, influence dynamics, thematic preferences, and sentiment-weighted topic expressions across three distinct migration phases: Pre-Ban, Refugee Surge, and Stabilization. An entropy-weighted influence score was used to classify users into high- and low-influence groups, enabling comparative analysis of content strategies. Findings reveal that while dominant topics remained relatively stable over time (e.g., self-expression, lifestyle, and creativity), high-influence users were more likely to engage in culturally resonant or commercially strategic content. Additionally, political discourse was not avoided, but selectively activated as a point of transnational engagement. Emotionally, high-influence users tended to express more positive affect in culturally connective topics, while low-influence users showed stronger emotional intensity in personal narratives. These findings suggest that cross-cultural platform migration is shaped not only by structural affordances but also by users' differential capacities to adapt, perform, and maintain visibility. The study contributes to literature on platform society, affective publics, and user agency in transnational digital environments.
♻ ☆ Setting the Course, but Forgetting to Steer: Analyzing Compliance with GDPR's Right of Access to Data by Instagram, TikTok, and YouTube
The GDPR's Right of Access aims to empower users with control over their personal data via Data Download Packages (DDPs). However, their effectiveness is often compromised by inconsistent platform implementations, questionable data reliability, and poor user comprehensibility. This paper conducts a comprehensive audit of DDPs from three social media platforms (TikTok, Instagram, and YouTube) to systematically assess these critical drawbacks. Despite offering similar services, we find that these platforms demonstrate significant inconsistencies in implementing the Right of Access, evident in varying levels of shared data. Critically, the failure to disclose processing purposes, retention periods, and other third-party data recipients serves as a further indicator of non-compliance. Our reliability evaluations, using bots and user-donated data, reveal that while TikTok's DDPs offer more consistent and complete data, others exhibit notable shortcomings. Similarly, our assessment of comprehensibility, based on surveys with 400 participants, indicates that current DDPs substantially fall short of GDPR's standards. To improve the comprehensibility, we propose and demonstrate a two-layered approach by: (1)~enhancing the data representation itself using stakeholder interpretations; and (2)~incorporating a user-friendly extension (\textit{Know Your Data}) for intuitive data visualization where users can control the level of transparency they prefer. Our findings underscore the need for clearer and non-conflicting regulatory guidance, stricter enforcement, and platform commitment to realize the goal of GDPR's Right of Access.
comment: This work has been accepted at IEEE Symposium on Security and Privacy (IEEE S&P) 2026 for presentation
♻ ☆ Hope vs. Hate: Understanding User Interactions with LGBTQ+ News Content in Mainstream US News Media through the Lens of Hope Speech
This paper makes three contributions. First, via a substantial corpus of 1,419,047 comments posted on 3,161 YouTube news videos of major US cable news outlets, we analyze how users engage with LGBTQ+ news content. Our analyses focus both on positive and negative content. In particular, we construct a fine-grained hope speech classifier that detects positive (hope speech), negative, neutral, and irrelevant content. Second, in consultation with a public health expert specializing on LGBTQ+ health, we conduct an annotation study with a balanced and diverse political representation and release a dataset of 3,750 instances with fine-grained labels and detailed annotator demographic information. Finally, beyond providing a vital resource for the LGBTQ+ community, our annotation study and subsequent in-the-wild assessments reveal (1) strong association between rater political beliefs and how they rate content relevant to a marginalized community; (2) models trained on individual political beliefs exhibit considerable in-the-wild disagreement; and (3) zero-shot large language models (LLMs) align more with liberal raters.
♻ ☆ Evaluation of A National Digitally-Enabled Health Promotion Campaign for Mental Health Awareness using Social Media Platforms Tik Tok, Facebook, Instagram, and YouTube
Mental health disorders rank among the 10 leading contributors to the global burden of diseases, yet persistent stigma and care barriers delay early intervention. This has inspired efforts to leverage digital platforms for scalable health promotion to engage at-risk populations. To evaluate the effectiveness of a digitally-enabled mental health promotion (DEHP) campaign, we conducted an observational cross-sectional study of a 3-month (February-April 2025) nation-wide campaign in Singapore. Campaign materials were developed using a marketing funnel framework and disseminated across YouTube, Facebook, Instagram, and TikTok. This included narrative videos and infographics to promote symptom awareness, coping strategies, and/or patient navigation to Singapore's Mindline website, as the intended endpoint for user engagement and support. Primary outcomes include anonymised performance analytics (impressions, unique reach, video content view, engagements) stratified by demographics, device types, and sector. Secondary outcomes measured cost-efficiency metrics and traffic to the Mindline website respectively. This campaign generated 3.49 million total impressions and reached 1.39 million unique residents, with a Cost Per Click at 29.33 SGD, Cost Per Mille at 26.90 SGD and Cost Per Action at 6.06 SGD. Narrative videos accumulated over 630,000 views and 18,768 engagements. Overall, we demonstrate that DEHP campaigns can achieve national engagement for mental health awareness through multi-channel distribution and creative, narrative-driven designs.
♻ ☆ Evolving interdisciplinary contributions to global societal challenges: A 50-year overview
Addressing global societal challenges necessitates insights and expertise that transcend the boundaries of individual disciplines. In recent decades, interdisciplinary collaboration has been recognised as a vital driver of innovation and effective problem-solving, with the potential to profoundly influence policy and practice worldwide. However, quantitative evidence remains limited regarding how cross-disciplinary efforts contribute to societal challenges, as well as the evolving roles and relevance of specific disciplines in addressing these issues. To fill this gap, this study examines the long-term evolution of interdisciplinary contributions to the United Nations' Sustainable Development Goals (SDGs), drawing on extensive bibliometric data from OpenAlex. By analysing publication and citation trends across 19 research fields from 1970 to 2022, we reveal how the relative presence of different disciplines in addressing particular SDGs has shifted over time. Our results also provide unique evidence of the increasing interconnection between fields since the 2000s, coinciding with the United Nations' initiative to tackle global societal challenges through interdisciplinary efforts. These insights will benefit policymakers and practitioners as they reflect on past progress and plan for future action, particularly with the SDG target deadline approaching in the next five years.
comment: Main Text: 17 pages (4 figures); Supplementary Materials: 1 page (2 tables)
♻ ☆ Programmable Cognitive Bias in Social Agents
This paper introduces CoBRA, a novel toolkit for systematically specifying agent behavior in LLM-based social simulation. We found that conventional approaches that specify agent behaviors through implicit natural language descriptions cannot yield consistent behaviors across models, and the produced agent behaviors do not capture the nuances of the descriptions. In contrast, CoBRA presents a new approach to program agents' cognitive biases explicitly, by grounding agents' expected behaviors using classic social science experiments. CoBRA has two components: (1) Cognitive Bias Index that measures the cognitive bias of a social agent, by quantifying the agent's reactions in a set of validated classical social science experiments; (2) Behavioral Regulation Engine that aligns the agent's behavior to demonstrate controlled cognitive bias. We evaluated CoBRA as an HCI toolkit through demonstration and technical benchmarks. Our results suggest that CoBRA can precisely program the cognitive bias demonstrated in a social agent in a model-agnostic manner.
Computers and Society
☆ Shifting 'AI Policy' Preprints and Citation Trends in the U.S., U.K and E.U., and South Korea (2015-2024)
This study of literature focusing on 'AI Policy' over the past decade, found that citations of preprints, publications on platforms such as arXiv, have increased from five percent to forty percent across three major regions: the U.S., U.K. & E.U., and South Korea. We compare regional responses of preprint citations across the global disruptions of COVID-19 and the release of ChatGPT. We discuss driving factors and risks of preprint normalization, which follows the trend in computer science.
☆ Women have it Worse: an ICT Workplace Digital Transformation Stress Gender Gap
Although information and communication technologies (ICT) solutions have positive outcomes for both companies and employees, the digital transformation (DT) could have an impact on the well-being of employees. The jobs of the employees became more demanding, and they were expected to learn ICT skills and cope with ICT workloads and hassles. Due to negative stereotypes about women's deficiency in technology, these ICT problems could affect female and male employees differently. Thus, we predicted that this additional pressure may manifest itself in higher levels of digital transformation stress (DTS) in female employees. The results confirmed this prediction and indicated the existence of a gender gap in DTS, measured two-fold - in sentiment analysis of help desk tickets and self-report using a psychological scale. Based on these results, we explore the need to discuss possible solutions and tools to support women in ICT-heavy workplace contexts.
☆ MoReBench: Evaluating Procedural and Pluralistic Moral Reasoning in Language Models, More than Outcomes
As AI systems progress, we rely more on them to make decisions with us and for us. To ensure that such decisions are aligned with human values, it is imperative for us to understand not only what decisions they make but also how they come to those decisions. Reasoning language models, which provide both final responses and (partially transparent) intermediate thinking traces, present a timely opportunity to study AI procedural reasoning. Unlike math and code problems which often have objectively correct answers, moral dilemmas are an excellent testbed for process-focused evaluation because they allow for multiple defensible conclusions. To do so, we present MoReBench: 1,000 moral scenarios, each paired with a set of rubric criteria that experts consider essential to include (or avoid) when reasoning about the scenarios. MoReBench contains over 23 thousand criteria including identifying moral considerations, weighing trade-offs, and giving actionable recommendations to cover cases on AI advising humans moral decisions as well as making moral decisions autonomously. Separately, we curate MoReBench-Theory: 150 examples to test whether AI can reason under five major frameworks in normative ethics. Our results show that scaling laws and existing benchmarks on math, code, and scientific reasoning tasks fail to predict models' abilities to perform moral reasoning. Models also show partiality towards specific moral frameworks (e.g., Benthamite Act Utilitarianism and Kantian Deontology), which might be side effects of popular training paradigms. Together, these benchmarks advance process-focused reasoning evaluation towards safer and more transparent AI.
comment: 46 pages, 8 figures, 10 tables. Preprint
☆ Integrating LLM and Diffusion-Based Agents for Social Simulation
Agent-based social simulation provides a valuable methodology for predicting social information diffusion, yet existing approaches face two primary limitations. Traditional agent models often rely on rigid behavioral rules and lack semantic understanding of textual content, while emerging large language model (LLM)-based agents incur prohibitive computational costs at scale. To address these challenges, we propose a hybrid simulation framework that strategically integrates LLM-driven agents with diffusion model-based agents. The framework employs LLM-based agents to simulate a core subset of users with rich semantic reasoning, while a diffusion model handles the remaining population efficiently. Although the two agent types operate on disjoint user groups, both incorporate key factors including user personalization, social influence, and content awareness, and interact through a coordinated simulation process. Extensive experiments on three real-world datasets demonstrate that our framework outperforms existing methods in prediction accuracy, validating the effectiveness of its modular design.
comment: 10 pages, 3 figures, 4 tables
☆ Does GenAI Rewrite How We Write? An Empirical Study on Two-Million Preprints
Preprint repositories become central infrastructures for scholarly communication. Their expansion transforms how research is circulated and evaluated before journal publication. Generative large language models (LLMs) introduce a further potential disruption by altering how manuscripts are written. While speculation abounds, systematic evidence of whether and how LLMs reshape scientific publishing remains limited. This paper addresses the gap through a large-scale analysis of more than 2.1 million preprints spanning 2016--2025 (115 months) across four major repositories (i.e., arXiv, bioRxiv, medRxiv, SocArXiv). We introduce a multi-level analytical framework that integrates interrupted time-series models, collaboration and productivity metrics, linguistic profiling, and topic modeling to assess changes in volume, authorship, style, and disciplinary orientation. Our findings reveal that LLMs have accelerated submission and revision cycles, modestly increased linguistic complexity, and disproportionately expanded AI-related topics, while computationally intensive fields benefit more than others. These results show that LLMs act less as universal disruptors than as selective catalysts, amplifying existing strengths and widening disciplinary divides. By documenting these dynamics, the paper provides the first empirical foundation for evaluating the influence of generative AI on academic publishing and highlights the need for governance frameworks that preserve trust, fairness, and accountability in an AI-enabled research ecosystem.
♻ ☆ Robust Optimization with Diffusion Models for Green Security UAI 2025
In green security, defenders must forecast adversarial behavior, such as poaching, illegal logging, and illegal fishing, to plan effective patrols. These behavior are often highly uncertain and complex. Prior work has leveraged game theory to design robust patrol strategies to handle uncertainty, but existing adversarial behavior models primarily rely on Gaussian processes or linear models, which lack the expressiveness needed to capture intricate behavioral patterns. To address this limitation, we propose a conditional diffusion model for adversary behavior modeling, leveraging its strong distribution-fitting capabilities. To the best of our knowledge, this is the first application of diffusion models in the green security domain. Integrating diffusion models into game-theoretic optimization, however, presents new challenges, including a constrained mixed strategy space and the need to sample from an unnormalized distribution to estimate utilities. To tackle these challenges, we introduce a mixed strategy of mixed strategies and employ a twisted Sequential Monte Carlo (SMC) sampler for accurate sampling. Theoretically, our algorithm is guaranteed to converge to an epsilon equilibrium with high probability using a finite number of iterations and samples. Empirically, we evaluate our approach on both synthetic and real-world poaching datasets, demonstrating its effectiveness.
comment: UAI 2025
♻ ☆ A social context-aware graph-based multimodal attentive learning framework for disaster content classification during emergencies: a benchmark dataset and method
In times of crisis, the prompt and precise classification of disaster-related information shared on social media platforms is crucial for effective disaster response and public safety. During such critical events, individuals use social media to communicate, sharing multimodal textual and visual content. However, due to the significant influx of unfiltered and diverse data, humanitarian organizations face challenges in leveraging this information efficiently. Existing methods for classifying disaster-related content often fail to model users' credibility, emotional context, and social interaction information, which are essential for accurate classification. To address this gap, we propose CrisisSpot, a method that utilizes a Graph-based Neural Network to capture complex relationships between textual and visual modalities, as well as Social Context Features to incorporate user-centric and content-centric information. We also introduce Inverted Dual Embedded Attention (IDEA), which captures both harmonious and contrasting patterns within the data to enhance multimodal interactions and provide richer insights. Additionally, we present TSEqD (Turkey-Syria Earthquake Dataset), a large annotated dataset for a single disaster event, containing 10,352 samples. Through extensive experiments, CrisisSpot demonstrated significant improvements, achieving an average F1-score gain of 9.45% and 5.01% compared to state-of-the-art methods on the publicly available CrisisMMD dataset and the TSEqD dataset, respectively.
♻ ☆ Epistemic Trade-Off: An Analysis of the Operational Breakdown and Ontological Limits of "Certainty-Scope" in AI
The recently published "certainty-scope" conjecture offers a compelling insight into the inherent trade-off present within artificial intelligence (AI) systems. As general research, this investigation remains vital as a philosophical undertaking and a potential guide for directing AI investments, design, and deployment, especially in safety-critical and mission-critical domains where risk levels are substantially elevated. While maintaining intellectual coherence, its formalization ultimately consolidates this insight into a suspended epistemic truth, which resists operational implementation within practical systems. This paper argues that the conjecture's objective to furnish insights for engineering design and regulatory decision-making is limited by two fundamental factors: first, its dependence on incomputable constructs and its failure to capture the generality factors of AI, rendering it practically unimplementable and unverifiable; second, its foundational ontological assumption of AI systems as self-contained epistemic entities, distancing it from the complex and dynamic socio-technical environments where knowledge is co-constructed. We conclude that this dual breakdown - an epistemic closure deficit and an embeddedness bypass - hinders the conjecture's transition to a practical and actionable framework suitable for informing and guiding AI deployments. In response, we point towards a possible framing of the epistemic challenge, emphasizing the inherent epistemic burdens of AI within complex human-centric domains.
comment: Preprint V3 (October 2025)
♻ ☆ TwinMarket: A Scalable Behavioral and Social Simulation for Financial Markets
The study of social emergence has long been a central focus in social science. Traditional modeling approaches, such as rule-based Agent-Based Models (ABMs), struggle to capture the diversity and complexity of human behavior, particularly the irrational factors emphasized in behavioral economics. Recently, large language model (LLM) agents have gained traction as simulation tools for modeling human behavior in social science and role-playing applications. Studies suggest that LLMs can account for cognitive biases, emotional fluctuations, and other non-rational influences, enabling more realistic simulations of socio-economic dynamics. In this work, we introduce TwinMarket, a novel multi-agent framework that leverages LLMs to simulate socio-economic systems. Specifically, we examine how individual behaviors, through interactions and feedback mechanisms, give rise to collective dynamics and emergent phenomena. Through experiments in a simulated stock market environment, we demonstrate how individual actions can trigger group behaviors, leading to emergent outcomes such as financial bubbles and recessions. Our approach provides valuable insights into the complex interplay between individual decision-making and collective socio-economic patterns.
♻ ☆ Whose Journey Matters? Investigating Identity Biases in Large Language Models (LLMs) for Travel Planning Assistance
As large language models (LLMs) become increasingly integral to the hospitality and tourism industry, concerns about their fairness in serving diverse identity groups persist. Grounded in social identity theory and sociotechnical systems theory, this study examines ethnic and gender biases in travel recommendations generated by LLMs. Using fairness probing, we analyze outputs from three leading open-source LLMs. The results show that test accuracy for both ethnicity and gender classifiers exceed random chance. Analysis of the most influential features reveals the presence of stereotype bias in LLM-generated recommendations. We also found hallucinations among these features, occurring more frequently in recommendations for minority groups. These findings indicate that LLMs exhibit ethnic and gender bias when functioning as travel planning assistants. This study underscores the need for bias mitigation strategies to improve the inclusivity and reliability of generative AI-driven travel planning assistance.
♻ ☆ A Measurement Study of Model Context Protocol Ecosystem
The Model Context Protocol (MCP) has been proposed as a unifying standard for connecting large language models (LLMs) with external tools and resources, promising the same role for AI integration that HTTP and USB played for the Web and peripherals. Yet, despite rapid adoption and hype, its trajectory remains uncertain. Are MCP marketplaces truly growing, or merely inflated by placeholders and abandoned prototypes? Are servers secure and privacy-preserving, or do they expose users to systemic risks? And do clients converge on standardized protocols, or remain fragmented across competing designs? In this paper, we present the first large-scale empirical study of the MCP ecosystem. We design and implement MCPCrawler, a systematic measurement framework that collects and normalizes data from six major markets. Over a 14-day campaign, MCPCrawler aggregated 17,630 raw entries, of which 8,401 valid projects (8,060 servers and 341 clients) were analyzed. Our results reveal that more than half of listed projects are invalid or low-value, that servers face structural risks including dependency monocultures and uneven maintenance, and that clients exhibit a transitional phase in protocol and connection patterns. Together, these findings provide the first evidence-based view of the MCP ecosystem, its risks, and its future trajectory.
♻ ☆ The GPT-4o Shock Emotional Attachment to AI Models and Its Impact on Regulatory Acceptance: A Cross-Cultural Analysis of the Immediate Transition from GPT-4o to GPT-5
In August 2025, a major AI company's immediate, mandatory transition from its previous to its next-generation model triggered widespread public reactions. I collected 150 posts in Japanese and English from multiple social media platforms and video-sharing services between August 8-9, 2025, and qualitatively analyzed expressions of emotional attachment and resistance. Users often described GPT-4o as a trusted partner or AI boyfriend, suggesting person-like bonds. Japanese posts were dominated by loss-oriented narratives, whereas English posts included more anger, meta-level critique, and memes.A preliminary quantitative check showed a statistically significant difference in attachment coding between Japanese and English posts, with substantially higher attachment observed in the Japanese data. The findings suggest that for attachment-heavy models, even safety-oriented changes can face rapid, large-scale resistance that narrows the practical window for behavioral control. If future AI robots capable of inducing emotional bonds become widespread in the physical world, such attachment could surpass the ability to enforce regulation at an even earlier stage than in digital settings. Policy options include gradual transitions, parallel availability, and proactive measurement of attachment thresholds and points of no return to prevent emotional dynamics from outpacing effective governance.
comment: 8 pages ,3 tables
♻ ☆ The Moral Foundations Reddit Corpus
Moral framing and sentiment can affect a variety of online and offline behaviors, including donation, environmental action, political engagement, and protest. Various computational methods in Natural Language Processing (NLP) have been used to detect moral sentiment from textual data, but achieving strong performance in such subjective tasks requires large, hand-annotated datasets. Previous corpora annotated for moral sentiment have proven valuable, and have generated new insights both within NLP and across the social sciences, but have been limited to Twitter. To facilitate improving our understanding of the role of moral rhetoric, we present the Moral Foundations Reddit Corpus, a collection of 16,123 English Reddit comments that have been curated from 12 distinct subreddits, hand-annotated by at least three trained annotators for 8 categories of moral sentiment (i.e., Care, Proportionality, Equality, Purity, Authority, Loyalty, Thin Morality, Implicit/Explicit Morality) based on the updated Moral Foundations Theory (MFT) framework. We evaluate baselines using large language models (Llama3-8B, Ministral-8B) in zero-shot, few-shot, and PEFT settings, comparing their performance to fine-tuned encoder-only models like BERT. The results show that LLMs continue to lag behind fine-tuned encoders on this subjective task, underscoring the ongoing need for human-annotated moral corpora for AI alignment evaluation. Keywords: moral sentiment annotation, moral values, moral foundations theory, multi-label text classification, large language models, benchmark dataset, evaluation and alignment resource
Computers and Society
☆ Case Study of GAI for Generating Novel Images for Real-World Embroidery
In this paper, we present a case study exploring the potential use of Generative Artificial Intelligence (GAI) to address the real-world need of making the design of embroiderable art patterns more accessible. Through an auto-ethnographic case study by a disabled-led team, we examine the application of GAI as an assistive technology in generating embroidery patterns, addressing the complexity involved in designing culturally-relevant patterns as well as those that meet specific needs regarding detail and color. We detail the iterative process of prompt engineering custom GPTs tailored for producing specific visual outputs, emphasizing the nuances of achieving desirable results that align with real-world embroidery requirements. Our findings underscore the mixed outcomes of employing GAI for producing embroiderable images, from facilitating creativity and inclusion to navigating the unpredictability of AI-generated designs. Future work aims to refine GAI tools we explored for generating embroiderable images to make them more performant and accessible, with the goal of fostering more inclusion in the domains of creativity and making.
comment: Published as a workshop paper at GenAICHI: CHI 2024 Workshop on Generative AI and HCI (https://generativeaiandhci.github.io/papers/2024/genaichi2024_54.pdf)
Prompt injections as a tool for preserving identity in GAI image descriptions
Generative AI risks such as bias and lack of representation impact people who do not interact directly with GAI systems, but whose content does: indirect users. Several approaches to mitigating harms to indirect users have been described, but most require top down or external intervention. An emerging strategy, prompt injections, provides an empowering alternative: indirect users can mitigate harm against them, from within their own content. Our approach proposes prompt injections not as a malicious attack vector, but as a tool for content/image owner resistance. In this poster, we demonstrate one case study of prompt injections for empowering an indirect user, by retaining an image owner's gender and disabled identity when an image is described by GAI.
comment: Accepted as a poster to Soups 2025
☆ Narrowing Action Choices with AI Improves Human Sequential Decisions
Recent work has shown that, in classification tasks, it is possible to design decision support systems that do not require human experts to understand when to cede agency to a classifier or when to exercise their own agency to achieve complementarity$\unicode{x2014}$experts using these systems make more accurate predictions than those made by the experts or the classifier alone. The key principle underpinning these systems reduces to adaptively controlling the level of human agency, by design. Can we use the same principle to achieve complementarity in sequential decision making tasks? In this paper, we answer this question affirmatively. We develop a decision support system that uses a pre-trained AI agent to narrow down the set of actions a human can take to a subset, and then asks the human to take an action from this action set. Along the way, we also introduce a bandit algorithm that leverages the smoothness properties of the action sets provided by our system to efficiently optimize the level of human agency. To evaluate our decision support system, we conduct a large-scale human subject study ($n = 1{,}600$) where participants play a wildfire mitigation game. We find that participants who play the game supported by our system outperform those who play on their own by $\sim$$30$% and the AI agent used by our system by $>$$2$%, even though the AI agent largely outperforms participants playing without support. We have made available the data gathered in our human subject study as well as an open source implementation of our system at https://github.com/Networks-Learning/narrowing-action-choices .
comment: Accepted at the Human-AI Complementarity for Decision Making Workshop 2025 by the NSF AI Institute for Societal Decision Making
☆ Quantifying the Engagement Effectiveness of Cyber Cognitive Attacks: A Behavioral Metric for Disinformation Campaigns
As disinformation-driven cognitive attacks become increasingly sophisticated, the ability to quantify their impact is essential for advancing cybersecurity defense strategies. This paper presents a novel framework for measuring the engagement effectiveness of cognitive attacks by introducing a weighted interaction metric that accounts for both the type and volume of user engagement relative to the number of attacker-generated transmissions. Applying this model to real-world disinformation campaigns across social media platforms, we demonstrate how the metric captures not just reach but the behavioral depth of user engagement. Our findings provide new insights into the behavioral dynamics of cognitive warfare and offer actionable tools for researchers and practitioners seeking to assess and counter the spread of malicious influence online.
comment: University of Colorado Colorado Springs and Department of the Air Force, US Air Force Academy. Disclaimer: The views expressed are those of the author and do not reflect the official policy or position of the US Air Force Academy, US Air Force, Department of Defense, or the US Government
☆ Towards Proactive Defense Against Cyber Cognitive Attacks
Cyber cognitive attacks leverage disruptive innovations (DIs) to exploit psychological biases and manipulate decision-making processes. Emerging technologies, such as AI-driven disinformation and synthetic media, have accelerated the scale and sophistication of these threats. Prior studies primarily categorize current cognitive attack tactics, lacking predictive mechanisms to anticipate future DIs and their malicious use in cognitive attacks. This paper addresses these gaps by introducing a novel predictive methodology for forecasting the emergence of DIs and their malicious uses in cognitive attacks. We identify trends in adversarial tactics and propose proactive defense strategies.
comment: University of Colorado Colorado Springs and Department of the Air Force, US Air Force Academy. Disclaimer: The views expressed are those of the author and do not reflect the official policy or position of the US Air Force Academy, US Air Force, Department of Defense, or the US Government
☆ MoPHES:Leveraging on-device LLMs as Agent for Mobile Psychological Health Evaluation and Support
The 2022 World Mental Health Report calls for global mental health care reform, amid rising prevalence of issues like anxiety and depression that affect nearly one billion people worldwide. Traditional in-person therapy fails to meet this demand, and the situation is worsened by stigma. While general-purpose large language models (LLMs) offer efficiency for AI-driven mental health solutions, they underperform because they lack specialized fine-tuning. Existing LLM-based mental health chatbots can engage in empathetic conversations, but they overlook real-time user mental state assessment which is critical for professional counseling. This paper proposes MoPHES, a framework that integrates mental state evaluation, conversational support, and professional treatment recommendations. The agent developed under this framework uses two fine-tuned MiniCPM4-0.5B LLMs: one is fine-tuned on mental health conditions datasets to assess users' mental states and predict the severity of anxiety and depression; the other is fine-tuned on multi-turn dialogues to handle conversations with users. By leveraging insights into users' mental states, our agent provides more tailored support and professional treatment recommendations. Both models are also deployed directly on mobile devices to enhance user convenience and protect user privacy. Additionally, to evaluate the performance of MoPHES with other LLMs, we develop a benchmark for the automatic evaluation of mental state prediction and multi-turn counseling dialogues, which includes comprehensive evaluation metrics, datasets, and methods.
comment: This work has been submitted to the IEEE for possible publication
☆ SARHAchat: An LLM-Based Chatbot for Sexual and Reproductive Health Counseling
While Artificial Intelligence (AI) shows promise in healthcare applications, existing conversational systems often falter in complex and sensitive medical domains such as Sexual and Reproductive Health (SRH). These systems frequently struggle with hallucination and lack the specialized knowledge required, particularly for sensitive SRH topics. Furthermore, current AI approaches in healthcare tend to prioritize diagnostic capabilities over comprehensive patient care and education. Addressing these gaps, this work at the UNC School of Nursing introduces SARHAchat, a proof-of-concept Large Language Model (LLM)-based chatbot. SARHAchat is designed as a reliable, user-centered system integrating medical expertise with empathetic communication to enhance SRH care delivery. Our evaluation demonstrates SARHAchat's ability to provide accurate and contextually appropriate contraceptive counseling while maintaining a natural conversational flow. The demo is available at https://sarhachat.com/}{https://sarhachat.com/.
comment: 5 pages, 1 figure
☆ AI Adoption in NGOs: A Systematic Literature Review
AI has the potential to significantly improve how NGOs utilize their limited resources for societal benefits, but evidence about how NGOs adopt AI remains scattered. In this study, we systematically investigate the types of AI adoption use cases in NGOs and identify common challenges and solutions, contextualized by organizational size and geographic context. We review the existing primary literature, including studies that investigate AI adoption in NGOs related to social impact between 2020 and 2025 in English. Following the PRISMA protocol, two independent reviewers conduct study selection, with regular cross-checking to ensure methodological rigour, resulting in a final literature body of 65 studies. Leveraging a thematic and narrative approach, we identify six AI use case categories in NGOs - Engagement, Creativity, Decision-Making, Prediction, Management, and Optimization - and extract common challenges and solutions within the Technology-Organization-Environment (TOE) framework. By integrating our findings, this review provides a novel understanding of AI adoption in NGOs, linking specific use cases and challenges to organizational and environmental factors. Our results demonstrate that while AI is promising, adoption among NGOs remains uneven and biased towards larger organizations. Nevertheless, following a roadmap grounded in literature can help NGOs overcome initial barriers to AI adoption, ultimately improving effectiveness, engagement, and social impact.
☆ Identifying curriculum disruptions in engineering education through serious gaming
This workshop introduces participants to SUCRE, a serious game designed to enhance curriculum resilience in higher education by simulating crisis scenarios. While applicable to various disciplines, this session focuses on engineering curricula, identifying discipline-specific challenges and potential adaptations. Participants will engage in Step 1 of the game, analyzing trigger events and their impacts on curriculum structures. At the end of the workshop, attendees will be able to identify key triggers that may affect curricula, assess their cascading effects, and reflect on the applicability of SUCRE within their own institutions.
☆ Human or AI? Comparing Design Thinking Assessments by Teaching Assistants and Bots
As design thinking education grows in secondary and tertiary contexts, educators face the challenge of evaluating creative artefacts that combine visual and textual elements. Traditional rubric-based assessment is laborious, time-consuming, and inconsistent due to reliance on Teaching Assistants (TA) in large, multi-section cohorts. This paper presents an exploratory study investigating the reliability and perceived accuracy of AI-assisted assessment compared to TA-assisted assessment in evaluating student posters in design thinking education. Two activities were conducted with 33 Ministry of Education (MOE) Singapore school teachers to (1) compare AI-generated scores with TA grading across three key dimensions: empathy and user understanding, identification of pain points and opportunities, and visual communication, and (2) examine teacher preferences for AI-assigned, TA-assigned, and hybrid scores. Results showed low statistical agreement between instructor and AI scores for empathy and pain points, with slightly higher alignment for visual communication. Teachers preferred TA-assigned scores in six of ten samples. Qualitative feedback highlighted the potential of AI for formative feedback, consistency, and student self-reflection, but raised concerns about its limitations in capturing contextual nuance and creative insight. The study underscores the need for hybrid assessment models that integrate computational efficiency with human insights. This research contributes to the evolving conversation on responsible AI adoption in creative disciplines, emphasizing the balance between automation and human judgment for scalable and pedagogically sound assessment.
comment: to be published in IEEE TALE 2025
☆ Co-Designing Interdisciplinary Design Projects with AI
Creating interdisciplinary design projects is time-consuming and cognitively demanding for teachers, requiring curriculum alignment, cross-subject integration, and careful sequencing. International research reports increasing teacher use of AI alongside persistent workload pressures, underscoring the need for planning support. This paper presents the Interdisciplinary Design Project Planner (IDPplanner), a GPT-based planning assistant grounded in Design Innovation principles, alignment with Singapore secondary school syllabuses, and 21st-century competencies. In a within-subject, counterbalanced workshop with 33 in-service teachers, participants produced two versions of the same project: manual and AI-assisted, followed by self- and peer-evaluations using a six-dimensional rubric. The AI-assisted version received higher scores for Curriculum Alignment, Design Thinking Application, and Coherence and Flow, with a marginal advantage for Assessment Strategies. Teacher reflections indicated that AI-assisted planning improved structure, sequencing, and idea generation, while contextualization to local syllabuses, class profiles, and student needs remained teacher-led. Contributions include a purpose-built planning tool that organizes ideas into a ten-component flow with ready-to-adapt prompts, templates, and assessment suggestions; an empirical, rubric-based comparison of planning quality; and evidence that AI can function as a pedagogical planning partner. Recommendations emphasize hybrid teacher-AI workflows to enhance curriculum alignment and reduce planning complexity, and design suggestions for developers to strengthen contextual customization, iterative design support, and localized rubrics. Although instantiated with a Singapore-based curriculum, the planning flow and rubric are framework-agnostic and can be parameterized for other systems.
comment: to be published in IEEE TALE 2025
☆ Automatic essay scoring: leveraging Jaccard coefficient and Cosine similaritywith n-gram variation in vector space model approach
Automated essay scoring (AES) is a vital area of research aiming to provide efficient and accurate assessment tools for evaluating written content. This study investigates the effectiveness of two popular similarity metrics, Jaccard coefficient, and Cosine similarity, within the context of vector space models(VSM)employing unigram, bigram, and trigram representations. The data used in this research was obtained from the formative essay of the citizenship education subject in a junior high school. Each essay undergoes preprocessing to extract features using n-gram models, followed by vectorization to transform text data into numerical representations. Then, similarity scores are computed between essays using both Jaccard coefficient and Cosine similarity. The performance of the system is evaluated by analyzing the root mean square error (RMSE), which measures the difference between the scores given by human graders and those generated by the system. The result shows that the Cosine similarity outperformed the Jaccard coefficient. In terms of n-gram, unigrams have lower RMSE compared to bigrams and trigrams.
☆ DSSmoothing: Toward Certified Dataset Ownership Verification for Pre-trained Language Models via Dual-Space Smoothing
Large web-scale datasets have driven the rapid advancement of pre-trained language models (PLMs), but unauthorized data usage has raised serious copyright concerns. Existing dataset ownership verification (DOV) methods typically assume that watermarks remain stable during inference; however, this assumption often fails under natural noise and adversary-crafted perturbations. We propose the first certified dataset ownership verification method for PLMs based on dual-space smoothing (i.e., DSSmoothing). To address the challenges of text discreteness and semantic sensitivity, DSSmoothing introduces continuous perturbations in the embedding space to capture semantic robustness and applies controlled token reordering in the permutation space to capture sequential robustness. DSSmoothing consists of two stages: in the first stage, triggers are collaboratively embedded in both spaces to generate norm-constrained and robust watermarked datasets; in the second stage, randomized smoothing is applied in both spaces during verification to compute the watermark robustness (WR) of suspicious models and statistically compare it with the principal probability (PP) values of a set of benign models. Theoretically, DSSmoothing provides provable robustness guarantees for dataset ownership verification by ensuring that WR consistently exceeds PP under bounded dual-space perturbations. Extensive experiments on multiple representative web datasets demonstrate that DSSmoothing achieves stable and reliable verification performance and exhibits robustness against potential adaptive attacks.
comment: 13 pages, 21 figures
☆ Cash Flow Underwriting with Bank Transaction Data: Advancing MSME Financial Inclusion in Malaysia
Despite accounting for 96.1% of all businesses in Malaysia, access to financing remains one of the most persistent challenges faced by Micro, Small, and Medium Enterprises (MSMEs). Newly established or young businesses are often excluded from formal credit markets as traditional underwriting approaches rely heavily on credit bureau data. This study investigates the potential of bank statement data as an alternative data source for credit assessment to promote financial inclusion in emerging markets. Firstly, we propose a cash flow-based underwriting pipeline where we utilise bank statement data for end to end data extraction and machine learning credit scoring. Secondly, we introduce a novel dataset of 611 loan applicants from a Malaysian lending institution. Thirdly, we develop and evaluate credit scoring models based on application information and bank transaction-derived features. Empirical results show that the use of such data boosts the performance of all models on our dataset, which can improve credit scoring for new-to-lending MSMEs. Lastly, we intend to release the anonymised bank transaction dataset to facilitate further research on MSMEs financial inclusion within Malaysia's emerging economy.
comment: Accepted at the FinREM Workshop, ICAIF 2025
☆ From Murals to Memes: A Theory of Aesthetic Asymmetry in Political Mobilization
Why have left-wing movements historically integrated participatory art forms (such as murals and protest songs) into their praxis, while right-wing movements have prioritized strategic communication and, more recently, the digital culture of memes? This article introduces the concept of aesthetic asymmetry to explain this divergence in political action. We argue that the asymmetry is not coincidental but the result of four interconnected structural factors: the organizational ecosystem, the moral and emotional framework, the material supports, and the historical tradition of each political spectrum. While the left tends to use art in a constitutive manner to forge community, solidarity, and hope, the contemporary right tends to use it instrumentally to mobilize polarizing affects such as humor and resentment. Drawing on comparative literature from the Theatre of the Oppressed to analyses of alt-right meme wars, we nuance this distinction and show how the aesthetic logic of each pole aligns with its strategic objectives. The article culminates in a prescriptive model for artistic action, synthesizing keys to effective mobilization into emotional, narrative, and formatting strategies. Understanding this asymmetry is crucial for analyzing political communication and for designing cultural interventions capable of generating profound social change.
☆ From Checklists to Clusters: A Homeostatic Account of AGI Evaluation
Contemporary AGI evaluations report multidomain capability profiles, yet they typically assign symmetric weights and rely on snapshot scores. This creates two problems: (i) equal weighting treats all domains as equally important when human intelligence research suggests otherwise, and (ii) snapshot testing can't distinguish durable capabilities from brittle performances that collapse under delay or stress. I argue that general intelligence -- in humans and potentially in machines -- is better understood as a homeostatic property cluster: a set of abilities plus the mechanisms that keep those abilities co-present under perturbation. On this view, AGI evaluation should weight domains by their causal centrality (their contribution to cluster stability) and require evidence of persistence across sessions. I propose two battery-compatible extensions: a centrality-prior score that imports CHC-derived weights with transparent sensitivity analysis, and a Cluster Stability Index family that separates profile persistence, durable learning, and error correction. These additions preserve multidomain breadth while reducing brittleness and gaming. I close with testable predictions and black-box protocols labs can adopt without architectural access.
comment: 27 pages, 3 figures
☆ WELD: A Large-Scale Longitudinal Dataset of Emotional Dynamics for Ubiquitous Affective Computing
Automated emotion recognition in real-world workplace settings remains a challenging problem in affective computing due to the scarcity of large-scale, longitudinal datasets collected in naturalistic environments. We present a novel dataset comprising 733,651 facial expression records from 38 employees collected over 30.5 months (November 2021 to May 2024) in an authentic office environment. Each record contains seven emotion probabilities (neutral, happy, sad, surprised, fear, disgusted, angry) derived from deep learning-based facial expression recognition, along with comprehensive metadata including job roles, employment outcomes, and personality traits. The dataset uniquely spans the COVID-19 pandemic period, capturing emotional responses to major societal events including the Shanghai lockdown and policy changes. We provide 32 extended emotional metrics computed using established affective science methods, including valence, arousal, volatility, predictability, inertia, and emotional contagion strength. Technical validation demonstrates high data quality through successful replication of known psychological patterns (weekend effect: +192% valence improvement, p < 0.001; diurnal rhythm validated) and perfect predictive validity for employee turnover (AUC=1.0). Baseline experiments using Random Forest and LSTM models achieve 91.2% accuracy for emotion classification and R2 = 0.84 for valence prediction. This is the largest and longest longitudinal workplace emotion dataset publicly available, enabling research in emotion recognition, affective dynamics modeling, emotional contagion, turnover prediction, and emotion-aware system design.
comment: 15 pages, 4 figures, 1 table. Dataset publicly available under CC BY 4.0 license
♻ ☆ Working with AI: Measuring the Applicability of Generative AI to Occupations
Given the rapid adoption of generative AI and its potential to impact a wide range of tasks, understanding the effects of AI on the economy is one of society's most important questions. In this work, we take a step toward that goal by analyzing the work activities people do with AI, how successfully and broadly those activities are done, and combine that with data on what occupations do those activities. We analyze a dataset of 200k anonymized and privacy-scrubbed conversations between users and Microsoft Bing Copilot, a publicly available generative AI system. We find the most common work activities people seek AI assistance for involve gathering information and writing, while the most common activities that AI itself is performing are providing information and assistance, writing, teaching, and advising. Combining these activity classifications with measurements of task success and scope of impact, we compute an AI applicability score for each occupation. We find the highest AI applicability scores for knowledge work occupation groups such as computer and mathematical, and office and administrative support, as well as occupations such as sales whose work activities involve providing and communicating information. Additionally, we characterize the types of work activities performed most successfully, how wage and education correlate with AI applicability, and how real-world usage compares to predictions of occupational AI impact.
comment: 42 pages
♻ ☆ "Mirror" Language AI Models of Depression are Criterion-Contaminated
Recent studies show near-perfect language-based predictions of depression scores (R2 = .70), but these "Mirror" models rely on language responses directly from depression assessments to predict depression assessment scores. These methods suffer from criterion contamination that inflate prediction estimates. We compare "Mirror" models to "Non-Mirror" models, which use other external language to predict depression scores. 110 participants completed both structured diagnostic (Mirror condition) and life history (Non-Mirror condition) interviews. LLMs were prompted to predict diagnostic depression scores. As expected, Mirror models were near-perfect. However, Non-Mirror models also displayed prediction sizes considered large in psychology. Further, both Mirror and Non-Mirror predictions correlated with other questionnaire-based depression symptoms at similar sizes, suggesting bias in Mirror models. Topic modeling revealed different theme structures across model types. As language models for depression continue to evolve, incorporating Non-Mirror approaches may support more valid and clinically useful language-based AI applications in psychological assessment.
comment: 38 pages, 9 figures
♻ ☆ Generative AI Literacy: A Comprehensive Framework for Literacy and Responsible Use
After the release of several widely adopted artificial intelligence (AI) literacy guidelines by 2021, the unprecedented rise of generative AI since 2023 has transformed the way we work and acquire information worldwide. Unlike traditional AI algorithms, generative AI exhibits distinct and more nuanced characteristics. However, a lack of robust understanding of generative AI hinders individuals' ability to use generative AI effectively, critically, and responsibly, which we can call generative AI literacy. To address this gap, we reviewed and synthesized existing literature and proposed generative AI literacy guidelines with 12 items organized into four aspects: (1) generative AI tool selection and prompting, (2) understanding interaction with generative AI, (3) understanding generative AI outputs, and (4) high-level understanding of generative AI technologies. These guidelines aim to support schools, companies, and organizations in developing frameworks that support their members to use generative AI in an efficient, ethical, and informed way.
comment: 15 pages
♻ ☆ MemeSense: An Adaptive In-Context Framework for Social Commonsense Driven Meme Moderation
Online memes are a powerful yet challenging medium for content moderation, often masking harmful intent behind humor, irony, or cultural symbolism. Conventional moderation systems "especially those relying on explicit text" frequently fail to recognize such subtle or implicit harm. We introduce MemeSense, an adaptive framework designed to generate socially grounded interventions for harmful memes by combining visual and textual understanding with curated, semantically aligned examples enriched with commonsense cues. This enables the model to detect nuanced complexed threats like misogyny, stereotyping, or vulgarity "even in memes lacking overt language". Across multiple benchmark datasets, MemeSense outperforms state-of-the-art methods, achieving up to 35% higher semantic similarity and 9% improvement in BERTScore for non-textual memes, and notable gains for text-rich memes as well. These results highlight MemeSense as a promising step toward safer, more context-aware AI systems for real-world content moderation. Code and data available at: https://github.com/sayantan11995/MemeSense
comment: Accepted at Transactions on Machine Learning Research (TMLR)
♻ ☆ Operationalizing Automated Essay Scoring: A Human-Aware Approach
This paper explores the human-centric operationalization of Automated Essay Scoring (AES) systems, addressing aspects beyond accuracy. We compare various machine learning-based approaches with Large Language Models (LLMs) approaches, identifying their strengths, similarities and differences. The study investigates key dimensions such as bias, robustness, and explainability, considered important for human-aware operationalization of AES systems. Our study shows that ML-based AES models outperform LLMs in accuracy but struggle with explainability, whereas LLMs provide richer explanations. We also found that both approaches struggle with bias and robustness to edge scores. By analyzing these dimensions, the paper aims to identify challenges and trade-offs between different methods, contributing to more reliable and trustworthy AES methods.
♻ ☆ Establishing trust in automated reasoning
Since its beginnings in the 1940s, automated reasoning by computers has become a tool of ever growing importance in scientific research. So far, the rules underlying automated reasoning have mainly been formulated by humans, in the form of program source code. Rules derived from large amounts of data, via machine learning techniques, are a complementary approach currently under intense development. The question of why we should trust these systems, and the results obtained with their help, has been discussed by philosophers of science but has so far received little attention by practitioners. The present work focuses on independent reviewing, an important source of trust in science, and identifies the characteristics of automated reasoning systems that affect their reviewability. It also discusses possible steps towards increasing reviewability and trustworthiness via a combination of technical and social measures.
♻ ☆ Readers Prefer Outputs of AI Trained on Copyrighted Books over Expert Human Writers
The use of copyrighted books for training AI models has led to numerous lawsuits from authors concerned about AI's ability to generate derivative content. Yet it's unclear if these models can generate high quality literary text while emulating authors' styles. To answer this we conducted a preregistered study comparing MFA-trained expert writers with three frontier AI models: ChatGPT, Claude & Gemini in writing up to 450 word excerpts emulating 50 award-winning authors' diverse styles. In blind pairwise evaluations by 159 representative expert & lay readers, AI-generated text from in-context prompting was strongly disfavored by experts for both stylistic fidelity (OR=0.16, p<10^-8) & writing quality (OR=0.13, p<10^-7) but showed mixed results with lay readers. However, fine-tuning ChatGPT on individual authors' complete works completely reversed these findings: experts now favored AI-generated text for stylistic fidelity (OR=8.16, p<10^-13) & writing quality (OR=1.87, p=0.010), with lay readers showing similar shifts. These effects generalize across authors & styles. The fine-tuned outputs were rarely flagged as AI-generated (3% rate v. 97% for in-context prompting) by best AI detectors. Mediation analysis shows this reversal occurs because fine-tuning eliminates detectable AI stylistic quirks (e.g., cliche density) that penalize in-context outputs. While we do not account for additional costs of human effort required to transform raw AI output into cohesive, publishable prose, the median fine-tuning & inference cost of $81 per author represents a dramatic 99.7% reduction compared to typical professional writer compensation. Author-specific fine-tuning thus enables non-verbatim AI writing that readers prefer to expert human writing, providing empirical evidence directly relevant to copyright's fourth fair-use factor, the "effect upon the potential market or value" of the source works.
comment: Preprint Under Review
♻ ☆ Privacy-Preserving Dataset Combination AAAI
Access to diverse, high-quality datasets is crucial for machine learning model performance, yet data sharing remains limited by privacy concerns and competitive interests, particularly in regulated domains like healthcare. This dynamic especially disadvantages smaller organizations that lack resources to purchase data or negotiate favorable sharing agreements, due to the inability to \emph{privately} assess external data's utility. To resolve privacy and uncertainty tensions simultaneously, we introduce {\SecureKL}, the first secure protocol for dataset-to-dataset evaluations with zero privacy leakage, designed to be applied preceding data sharing. {\SecureKL} evaluates a source dataset against candidates, performing dataset divergence metrics internally with private computations, all without assuming downstream models. On real-world data, {\SecureKL} achieves high consistency ($>90\%$ correlation with non-private counterparts) and successfully identifies beneficial data collaborations in highly-heterogeneous domains (ICU mortality prediction across hospitals and income prediction across states). Our results highlight that secure computation maximizes data utilization, outperforming privacy-agnostic utility assessments that leak information.
comment: 15 pages, 9 figures, AAAI-AIES 25'
Computers and Society
☆ Game mechanics for cyber-harm awareness in the metaverse
Educating children and young people to be safe online is essential, especially as the metaverse, a next-generation internet blending immersive technologies, promises to reshape their interactions and amplify their experiences. While virtual reality offers fully immersive, highly interactive, and multi-sensory engagement, it also heightens cyber harm risks for young or vulnerable users. To address this, the CyberNinjas VR experience was developed to educate children aged 8 to 16 on safe metaverse behaviours, providing clear referral steps for harmful interactions. Understanding user engagement in metaverse gaming will aid the design of future VR environments which prioritize safety and inclusivity. This project analyses CyberNinjas to understand how game mechanics can foster cyber-safe behaviours.
comment: 6 pages
☆ Algorithmic Fairness in AI Surrogates for End-of-Life Decision-Making
Artificial intelligence surrogates are systems designed to infer preferences when individuals lose decision-making capacity. Fairness in such systems is a domain that has been insufficiently explored. Traditional algorithmic fairness frameworks are insufficient for contexts where decisions are relational, existential, and culturally diverse. This paper explores an ethical framework for algorithmic fairness in AI surrogates by mapping major fairness notions onto potential real-world end-of-life scenarios. It then examines fairness across moral traditions. The authors argue that fairness in this domain extends beyond parity of outcomes to encompass moral representation, fidelity to the patient's values, relationships, and worldview.
☆ HugAgent: Evaluating LLMs in Simulating Human-Like Individual Reasoning on Open-Ended Tasks NeurIPS 2025
Simulating human reasoning in open-ended tasks has been a long-standing aspiration in AI and cognitive science. While large language models now approximate human responses at scale, they remain tuned to population-level consensus, often erasing the individuality of reasoning styles and belief trajectories. To advance the vision of more human-like reasoning in machines, we introduce HugAgent (Human-Grounded Agent Benchmark), a benchmark for average-to-individual reasoning adaptation. The task is to predict how a specific person would reason and update their beliefs in novel scenarios, given partial evidence of their past views. HugAgent adopts a dual-track design: a synthetic track for scale and systematic stress tests, and a human track for ecologically valid, "out-loud" reasoning data. This design enables scalable, reproducible evaluation of intra-agent fidelity: whether models can capture not just what people believe, but how their reasoning evolves. Experiments with state-of-the-art LLMs reveal persistent adaptation gaps, positioning HugAgent as the first extensible benchmark for aligning machine reasoning with the individuality of human thought. Our benchmark and chatbot are open-sourced as HugAgent (https://anonymous.4open.science/r/HugAgent) and TraceYourThinking (https://anonymous.4open.science/r/trace-your-thinking).
comment: To appear in NeurIPS 2025 Workshop on Bridging Language, Agent, and World Models (LAW)
☆ Revisiting UTAUT for the Age of AI: Understanding Employees AI Adoption and Usage Patterns Through an Extended UTAUT Framework
This study investigates whether demographic factors shape adoption and attitudes among employees toward artificial intelligence (AI) technologies at work. Building on an extended Unified Theory of Acceptance and Use of Technology (UTAUT), which reintroduces affective dimensions such as attitude, self-efficacy, and anxiety, we surveyed 2,257 professionals across global regions and organizational levels within a multinational consulting firm. Non-parametric tests examined whether three demographic factors (i.e., years of experience, hierarchical level in the organization, and geographic region) were associated with AI adoption, usage intensity, and eight UTAUT constructs. Organizational level significantly predicted AI adoption, with senior employees showing higher usage rates, while experience and region were unrelated to adoption. Among AI users (n = 1,256), frequency and duration of use showed minimal demographic variation. However, omnibus tests revealed small but consistent group differences across several UTAUT constructs, particularly anxiety, performance expectancy, and behavioral intention, suggesting that emotional and cognitive responses to AI vary modestly across contexts. These findings highlight that demographic factors explain limited variance in AI acceptance but remain relevant for understanding contextual nuances in technology-related attitudes. The results underscore the need to integrate affective and organizational factors into models of technology acceptance to support equitable, confident, and sustainable engagement with AI in modern workplaces.
comment: 45 pages, 3 figures, 6 tables
♻ ☆ Dr. Bias: Social Disparities in AI-Powered Medical Guidance
With the rapid progress of Large Language Models (LLMs), the general public now has easy and affordable access to applications capable of answering most health-related questions in a personalized manner. These LLMs are increasingly proving to be competitive, and now even surpass professionals in some medical capabilities. They hold particular promise in low-resource settings, considering they provide the possibility of widely accessible, quasi-free healthcare support. However, evaluations that fuel these motivations highly lack insights into the social nature of healthcare, oblivious to health disparities between social groups and to how bias may translate into LLM-generated medical advice and impact users. We provide an exploratory analysis of LLM answers to a series of medical questions spanning key clinical domains, where we simulate these questions being asked by several patient profiles that vary in sex, age range, and ethnicity. By comparing natural language features of the generated responses, we show that, when LLMs are used for medical advice generation, they generate responses that systematically differ between social groups. In particular, Indigenous and intersex patients receive advice that is less readable and more complex. We observe these trends amplify when intersectional groups are considered. Considering the increasing trust individuals place in these models, we argue for higher AI literacy and for the urgent need for investigation and mitigation by AI developers to ensure these systemic differences are diminished and do not translate to unjust patient support. Our code is publicly available on GitHub.