MyArxiv
Computation and Language
☆ Strategic Innovation Management in the Age of Large Language Models Market Intelligence, Adaptive R&D, and Ethical Governance
This study analyzes the multiple functions of Large Language Models (LLMs) in transforming research and development (R&D) processes. By automating knowledge discovery, boosting hypothesis creation, integrating transdisciplinary insights, and enabling cooperation within innovation ecosystems, LLMs dramatically improve the efficiency and effectiveness of research processes. Through extensive analysis of scientific literature, patent databases, and experimental data, these models enable more flexible and informed R&D workflows, ultimately accelerating innovation cycles and lowering time-to-market for breakthrough ideas.
☆ Subword Tokenization Strategies for Kurdish Word Embeddings
We investigate tokenization strategies for Kurdish word embeddings by comparing word-level, morpheme-based, and BPE approaches on morphological similarity preservation tasks. We develop a BiLSTM-CRF morphological segmenter using bootstrapped training from minimal manual annotation and evaluate Word2Vec embeddings across comprehensive metrics including similarity preservation, clustering quality, and semantic organization. Our analysis reveals critical evaluation biases in tokenization comparison. While BPE initially appears superior in morphological similarity, it evaluates only 28.6\% of test cases compared to 68.7\% for morpheme model, creating artificial performance inflation. When assessed comprehensively, morpheme-based tokenization demonstrates superior embedding space organization, better semantic neighborhood structure, and more balanced coverage across morphological complexity levels. These findings highlight the importance of coverage-aware evaluation in low-resource language processing and offers different tokenization methods for low-resourced language processing.
☆ Talk, Snap, Complain: Validation-Aware Multimodal Expert Framework for Fine-Grained Customer Grievances AAAI
Existing approaches to complaint analysis largely rely on unimodal, short-form content such as tweets or product reviews. This work advances the field by leveraging multimodal, multi-turn customer support dialogues, where users often share both textual complaints and visual evidence (e.g., screenshots, product photos) to enable fine-grained classification of complaint aspects and severity. We introduce VALOR, a Validation-Aware Learner with Expert Routing, tailored for this multimodal setting. It employs a multi-expert reasoning setup using large-scale generative models with Chain-of-Thought (CoT) prompting for nuanced decision-making. To ensure coherence between modalities, a semantic alignment score is computed and integrated into the final classification through a meta-fusion strategy. In alignment with the United Nations Sustainable Development Goals (UN SDGs), the proposed framework supports SDG 9 (Industry, Innovation and Infrastructure) by advancing AI-driven tools for robust, scalable, and context-aware service infrastructure. Further, by enabling structured analysis of complaint narratives and visual context, it contributes to SDG 12 (Responsible Consumption and Production) by promoting more responsive product design and improved accountability in consumer services. We evaluate VALOR on a curated multimodal complaint dataset annotated with fine-grained aspect and severity labels, showing that it consistently outperforms baseline models, especially in complex complaint scenarios where information is distributed across text and images. This study underscores the value of multimodal interaction and expert validation in practical complaint understanding systems. Resources related to data and codes are available here: https://github.com/sarmistha-D/VALOR
comment: To be published in the Proceedings of the 40th Annual AAAI Conference on Artificial Intelligence (AAAI 2026 Special Track on AI for Social Impact )
☆ Ground Truth Generation for Multilingual Historical NLP using LLMs
Historical and low-resource NLP remains challenging due to limited annotated data and domain mismatches with modern, web-sourced corpora. This paper outlines our work in using large language models (LLMs) to create ground-truth annotations for historical French (16th-20th centuries) and Chinese (1900-1950) texts. By leveraging LLM-generated ground truth on a subset of our corpus, we were able to fine-tune spaCy to achieve significant gains on period-specific tests for part-of-speech (POS) annotations, lemmatization, and named entity recognition (NER). Our results underscore the importance of domain-specific models and demonstrate that even relatively limited amounts of synthetic data can improve NLP tools for under-resourced corpora in computational humanities research.
comment: 13 pages, 5 tables, 1 figure
☆ Encoding and Understanding Astrophysical Information in Large Language Model-Generated Summaries NeurIPS 2025
Large Language Models have demonstrated the ability to generalize well at many levels across domains, modalities, and even shown in-context learning capabilities. This enables research questions regarding how they can be used to encode physical information that is usually only available from scientific measurements, and loosely encoded in textual descriptions. Using astrophysics as a test bed, we investigate if LLM embeddings can codify physical summary statistics that are obtained from scientific measurements through two main questions: 1) Does prompting play a role on how those quantities are codified by the LLM? and 2) What aspects of language are most important in encoding the physics represented by the measurement? We investigate this using sparse autoencoders that extract interpretable features from the text.
comment: Accepted to the Machine Learning and the Physical Sciences Workshop at NeurIPS 2025, 11 pages, 4 figures
☆ SMRC: Aligning Large Language Models with Student Reasoning for Mathematical Error Correction
Large language models (LLMs) often make reasoning errors when solving mathematical problems, and how to automatically detect and correct these errors has become an important research direction. However, existing approaches \textit{mainly focus on self-correction within the model}, which falls short of the ``teacher-style`` correction required in educational settings, \textit{i.e.}, systematically guiding and revising a student's problem-solving process. To address this gap, we propose \texttt{SMRC} (\textit{\underline{S}tudent \underline{M}athematical \underline{R}easoning \underline{C}orrection}), a novel method that aligns LLMs with student reasoning. Specifically, \texttt{SMRC} formulates student reasoning as a multi-step sequential decision problem and introduces Monte Carlo Tree Search (MCTS) to explore optimal correction paths. To reduce the cost of the annotating process-level rewards, we leverage breadth-first search (BFS) guided by LLMs and final-answer evaluation to generate reward signals, which are then distributed across intermediate reasoning steps via a back-propagation mechanism, enabling fine-grained process supervision. Additionally, we construct a benchmark for high school mathematics, MSEB (Multi-Solution Error Benchmark), consisting of 158 instances that include problem statements, student solutions, and correct reasoning steps. We further propose a dual evaluation protocol centered on \textbf{solution accuracy} and \textbf{correct-step retention}, offering a comprehensive measure of educational applicability. Experiments demonstrate that \texttt{SMRC} significantly outperforms existing methods on two public datasets (ProcessBench and MR-GSM8K) and our MSEB in terms of effectiveness and overall performance. The code and data are available at https://github.com/Mind-Lab-ECNU/SMRC.
comment: 13 pages, 3 figures
☆ Quadratic Term Correction on Heaps' Law
Heaps' or Herdan's law characterizes the word-type vs. word-token relation by a power-law function, which is concave in linear-linear scale but a straight line in log-log scale. However, it has been observed that even in log-log scale, the type-token curve is still slightly concave, invalidating the power-law relation. At the next-order approximation, we have shown, by twenty English novels or writings (some are translated from another language to English), that quadratic functions in log-log scale fit the type-token data perfectly. Regression analyses of log(type)-log(token) data with both a linear and quadratic term consistently lead to a linear coefficient of slightly larger than 1, and a quadratic coefficient around -0.02. Using the ``random drawing colored ball from the bag with replacement" model, we have shown that the curvature of the log-log scale is identical to a ``pseudo-variance" which is negative. Although a pseudo-variance calculation may encounter numeric instability when the number of tokens is large, due to the large values of pseudo-weights, this formalism provides a rough estimation of the curvature when the number of tokens is small.
comment: 3 figures
☆ Streamlining Industrial Contract Management with Retrieval-Augmented LLMs
Contract management involves reviewing and negotiating provisions, individual clauses that define rights, obligations, and terms of agreement. During this process, revisions to provisions are proposed and iteratively refined, some of which may be problematic or unacceptable. Automating this workflow is challenging due to the scarcity of labeled data and the abundance of unstructured legacy contracts. In this paper, we present a modular framework designed to streamline contract management through a retrieval-augmented generation (RAG) pipeline. Our system integrates synthetic data generation, semantic clause retrieval, acceptability classification, and reward-based alignment to flag problematic revisions and generate improved alternatives. Developed and evaluated in collaboration with an industry partner, our system achieves over 80% accuracy in both identifying and optimizing problematic revisions, demonstrating strong performance under real-world, low-resource conditions and offering a practical means of accelerating contract revision workflows.
☆ Bias in, Bias out: Annotation Bias in Multilingual Large Language Models
Annotation bias in NLP datasets remains a major challenge for developing multilingual Large Language Models (LLMs), particularly in culturally diverse settings. Bias from task framing, annotator subjectivity, and cultural mismatches can distort model outputs and exacerbate social harms. We propose a comprehensive framework for understanding annotation bias, distinguishing among instruction bias, annotator bias, and contextual and cultural bias. We review detection methods (including inter-annotator agreement, model disagreement, and metadata analysis) and highlight emerging techniques such as multilingual model divergence and cultural inference. We further outline proactive and reactive mitigation strategies, including diverse annotator recruitment, iterative guideline refinement, and post-hoc model adjustments. Our contributions include: (1) a typology of annotation bias; (2) a synthesis of detection metrics; (3) an ensemble-based bias mitigation approach adapted for multilingual settings, and (4) an ethical analysis of annotation processes. Together, these insights aim to inform more equitable and culturally grounded annotation pipelines for LLMs.
☆ Graded strength of comparative illusions is explained by Bayesian inference
Like visual processing, language processing is susceptible to illusions in which people systematically misperceive stimuli. In one such case--the comparative illusion (CI), e.g., More students have been to Russia than I have--comprehenders tend to judge the sentence as acceptable despite its underlying nonsensical comparison. Prior research has argued that this phenomenon can be explained as Bayesian inference over a noisy channel: the posterior probability of an interpretation of a sentence is proportional to both the prior probability of that interpretation and the likelihood of corruption into the observed (CI) sentence. Initial behavioral work has supported this claim by evaluating a narrow set of alternative interpretations of CI sentences and showing that comprehenders favor interpretations that are more likely to have been corrupted into the illusory sentence. In this study, we replicate and go substantially beyond this earlier work by directly predicting the strength of illusion with a quantitative model of the posterior probability of plausible interpretations, which we derive through a novel synthesis of statistical language models with human behavioral data. Our model explains not only the fine gradations in the strength of CI effects, but also a previously unexplained effect caused by pronominal vs. full noun phrase than-clause subjects. These findings support a noisy-channel theory of sentence comprehension by demonstrating that the theory makes novel predictions about the comparative illusion that bear out empirically. This outcome joins related evidence of noisy channel processing in both illusory and non-illusory contexts to support noisy channel inference as a unified computational-level theory of diverse language processing phenomena.
comment: 49 pages, 7 figures
☆ A Specialized Large Language Model for Clinical Reasoning and Diagnosis in Rare Diseases
Rare diseases affect hundreds of millions worldwide, yet diagnosis often spans years. Convectional pipelines decouple noisy evidence extraction from downstream inferential diagnosis, and general/medical large language models (LLMs) face scarce real world electronic health records (EHRs), stale domain knowledge, and hallucinations. We assemble a large, domain specialized clinical corpus and a clinician validated reasoning set, and develop RareSeek R1 via staged instruction tuning, chain of thought learning, and graph grounded retrieval. Across multicenter EHR narratives and public benchmarks, RareSeek R1 attains state of the art accuracy, robust generalization, and stability under noisy or overlapping phenotypes. Augmented retrieval yields the largest gains when narratives pair with prioritized variants by resolving ambiguity and aligning candidates to mechanisms. Human studies show performance on par with experienced physicians and consistent gains in assistive use. Notably, transparent reasoning highlights decisive non phenotypic evidence (median 23.1%, such as imaging, interventions, functional tests) underpinning many correct diagnoses. This work advances a narrative first, knowledge integrated reasoning paradigm that shortens the diagnostic odyssey and enables auditable, clinically translatable decision support.
comment: 50 pages, 5 figures
☆ Enhancing Agentic Autonomous Scientific Discovery with Vision-Language Model Capabilities
We show that multi-agent systems guided by vision-language models (VLMs) improve end-to-end autonomous scientific discovery. By treating plots as verifiable checkpoints, a VLM-as-a-judge evaluates figures against dynamically generated domain-specific rubrics, enabling agents to correct their own errors and steer exploratory data analysis in real-time. Case studies in cosmology and astrochemistry demonstrate recovery from faulty reasoning paths and adaptation to new datasets without human intervention. On a 10-task benchmark for data-driven discovery, VLM-augmented systems achieve pass at 1 scores of 0.7-0.8, compared to 0.2-0.3 for code-only and 0.4-0.5 for code-and-text baselines, while also providing auditable reasoning traces that improve interpretability. Code available here: https://github.com/CMBAgents/cmbagent
☆ Bridging Human and Model Perspectives: A Comparative Analysis of Political Bias Detection in News Media Using Large Language Models
Detecting political bias in news media is a complex task that requires interpreting subtle linguistic and contextual cues. Although recent advances in Natural Language Processing (NLP) have enabled automatic bias classification, the extent to which large language models (LLMs) align with human judgment still remains relatively underexplored and not yet well understood. This study aims to present a comparative framework for evaluating the detection of political bias across human annotations and multiple LLMs, including GPT, BERT, RoBERTa, and FLAN. We construct a manually annotated dataset of news articles and assess annotation consistency, bias polarity, and inter-model agreement to quantify divergence between human and model perceptions of bias. Experimental results show that among traditional transformer-based models, RoBERTa achieves the highest alignment with human labels, whereas generative models such as GPT demonstrate the strongest overall agreement with human annotations in a zero-shot setting. Among all transformer-based baselines, our fine-tuned RoBERTa model acquired the highest accuracy and the strongest alignment with human-annotated labels. Our findings highlight systematic differences in how humans and LLMs perceive political slant, underscoring the need for hybrid evaluation frameworks that combine human interpretability with model scalability in automated media bias detection.
☆ A Method for Characterizing Disease Progression from Acute Kidney Injury to Chronic Kidney Disease
Patients with acute kidney injury (AKI) are at high risk of developing chronic kidney disease (CKD), but identifying those at greatest risk remains challenging. We used electronic health record (EHR) data to dynamically track AKI patients' clinical evolution and characterize AKI-to-CKD progression. Post-AKI clinical states were identified by clustering patient vectors derived from longitudinal medical codes and creatinine measurements. Transition probabilities between states and progression to CKD were estimated using multi-state modeling. After identifying common post-AKI trajectories, CKD risk factors in AKI subpopulations were identified through survival analysis. Of 20,699 patients with AKI at admission, 3,491 (17%) developed CKD. We identified fifteen distinct post-AKI states, each with different probabilities of CKD development. Most patients (75%, n=15,607) remained in a single state or made only one transition during the study period. Both established (e.g., AKI severity, diabetes, hypertension, heart failure, liver disease) and novel CKD risk factors, with their impact varying across these clinical states. This study demonstrates a data-driven approach for identifying high-risk AKI patients, supporting the development of decision-support tools for early CKD detection and intervention.
☆ Leveraging Digitized Newspapers to Collect Summarization Data in Low-Resource Languages
High quality summarization data remains scarce in under-represented languages. However, historical newspapers, made available through recent digitization efforts, offer an abundant source of untapped, naturally annotated data. In this work, we present a novel method for collecting naturally occurring summaries via Front-Page Teasers, where editors summarize full length articles. We show that this phenomenon is common across seven diverse languages and supports multi-document summarization. To scale data collection, we develop an automatic process, suited to varying linguistic resource levels. Finally, we apply this process to a Hebrew newspaper title, producing HEBTEASESUM, the first dedicated multi-document summarization dataset in Hebrew.
☆ Examining the Metrics for Document-Level Claim Extraction in Czech and Slovak
Document-level claim extraction remains an open challenge in the field of fact-checking, and subsequently, methods for evaluating extracted claims have received limited attention. In this work, we explore approaches to aligning two sets of claims pertaining to the same source document and computing their similarity through an alignment score. We investigate techniques to identify the best possible alignment and evaluation method between claim sets, with the aim of providing a reliable evaluation framework. Our approach enables comparison between model-extracted and human-annotated claim sets, serving as a metric for assessing the extraction performance of models and also as a possible measure of inter-annotator agreement. We conduct experiments on newly collected dataset-claims extracted from comments under Czech and Slovak news articles-domains that pose additional challenges due to the informal language, strong local context, and subtleties of these closely related languages. The results draw attention to the limitations of current evaluation approaches when applied to document-level claim extraction and highlight the need for more advanced methods-ones able to correctly capture semantic similarity and evaluate essential claim properties such as atomicity, checkworthiness, and decontextualization.
☆ LiveRAG: A diverse Q&A dataset with varying difficulty level for RAG evaluation
With Retrieval Augmented Generation (RAG) becoming more and more prominent in generative AI solutions, there is an emerging need for systematically evaluating their effectiveness. We introduce the LiveRAG benchmark, a publicly available dataset of 895 synthetic questions and answers designed to support systematic evaluation of RAG-based Q&A systems. This synthetic benchmark is derived from the one used during the SIGIR'2025 LiveRAG Challenge, where competitors were evaluated under strict time constraints. It is augmented with information that was not made available to competitors during the Challenge, such as the ground-truth answers, together with their associated supporting claims which were used for evaluating competitors' answers. In addition, each question is associated with estimated difficulty and discriminability scores, derived from applying an Item Response Theory model to competitors' responses. Our analysis highlights the benchmark's questions diversity, the wide range of their difficulty levels, and their usefulness in differentiating between system capabilities. The LiveRAG benchmark will hopefully help the community advance RAG research, conduct systematic evaluation, and develop more robust Q&A systems.
comment: 14 pages, 4 figures, 5 tables
☆ Agent-R1: Training Powerful LLM Agents with End-to-End Reinforcement Learning
Large Language Models (LLMs) are increasingly being explored for building Agents capable of active environmental interaction (e.g., via tool use) to solve complex problems. Reinforcement Learning (RL) is considered a key technology with significant potential for training such Agents; however, the effective application of RL to LLM Agents is still in its nascent stages and faces considerable challenges. Currently, this emerging field lacks in-depth exploration into RL approaches specifically tailored for the LLM Agent context, alongside a scarcity of flexible and easily extensible training frameworks designed for this purpose. To help advance this area, this paper first revisits and clarifies Reinforcement Learning methodologies for LLM Agents by systematically extending the Markov Decision Process (MDP) framework to comprehensively define the key components of an LLM Agent. Secondly, we introduce Agent-R1, a modular, flexible, and user-friendly training framework for RL-based LLM Agents, designed for straightforward adaptation across diverse task scenarios and interactive environments. We conducted experiments on Multihop QA benchmark tasks, providing initial validation for the effectiveness of our proposed methods and framework.
comment: This paper serves as the technical report of the Agent-R1 project
☆ Tell Me: An LLM-powered Mental Well-being Assistant with RAG, Synthetic Dialogue Generation, and Agentic Planning ACL
We present Tell Me, a mental well-being system that leverages advances in large language models to provide accessible, context-aware support for users and researchers. The system integrates three components: (i) a retrieval-augmented generation (RAG) assistant for personalized, knowledge-grounded dialogue; (ii) a synthetic client-therapist dialogue generator conditioned on client profiles to facilitate research on therapeutic language and data augmentation; and (iii) a Well-being AI crew, implemented with CrewAI, that produces weekly self-care plans and guided meditation audio. The system is designed as a reflective space for emotional processing rather than a substitute for professional therapy. It illustrates how conversational assistants can lower barriers to support, complement existing care, and broaden access to mental health resources. To address the shortage of confidential therapeutic data, we introduce synthetic client-therapist dialogue generation conditioned on client profiles. Finally, the planner demonstrates an innovative agentic workflow for dynamically adaptive, personalized self-care, bridging the limitations of static well-being tools. We describe the architecture, demonstrate its functionalities, and report evaluation of the RAG assistant in curated well-being scenarios using both automatic LLM-based judgments and a human-user study. This work highlights opportunities for interdisciplinary collaboration between NLP researchers and mental health professionals to advance responsible innovation in human-AI interaction for well-being.
comment: 8 pages, 2 figures, 1 Table. Submitted to the Computation and Language (cs.CL) category. Uses the ACL-style template. Code and demo will be released at: https://github.com/trystine/Tell_Me_Mental_Wellbeing_System
☆ MedBench v4: A Robust and Scalable Benchmark for Evaluating Chinese Medical Language Models, Multimodal Models, and Intelligent Agents
Recent advances in medical large language models (LLMs), multimodal models, and agents demand evaluation frameworks that reflect real clinical workflows and safety constraints. We present MedBench v4, a nationwide, cloud-based benchmarking infrastructure comprising over 700,000 expert-curated tasks spanning 24 primary and 91 secondary specialties, with dedicated tracks for LLMs, multimodal models, and agents. Items undergo multi-stage refinement and multi-round review by clinicians from more than 500 institutions, and open-ended responses are scored by an LLM-as-a-judge calibrated to human ratings. We evaluate 15 frontier models. Base LLMs reach a mean overall score of 54.1/100 (best: Claude Sonnet 4.5, 62.5/100), but safety and ethics remain low (18.4/100). Multimodal models perform worse overall (mean 47.5/100; best: GPT-5, 54.9/100), with solid perception yet weaker cross-modal reasoning. Agents built on the same backbones substantially improve end-to-end performance (mean 79.8/100), with Claude Sonnet 4.5-based agents achieving up to 85.3/100 overall and 88.9/100 on safety tasks. MedBench v4 thus reveals persisting gaps in multimodal reasoning and safety for base models, while showing that governance-aware agentic orchestration can markedly enhance benchmarked clinical readiness without sacrificing capability. By aligning tasks with Chinese clinical guidelines and regulatory priorities, the platform offers a practical reference for hospitals, developers, and policymakers auditing medical AI.
☆ Unified Defense for Large Language Models against Jailbreak and Fine-Tuning Attacks in Education
Large Language Models (LLMs) are increasingly integrated into educational applications. However, they remain vulnerable to jailbreak and fine-tuning attacks, which can compromise safety alignment and lead to harmful outputs. Existing studies mainly focus on general safety evaluations, with limited attention to the unique safety requirements of educational scenarios. To address this gap, we construct EduHarm, a benchmark containing safe-unsafe instruction pairs across five representative educational scenarios, enabling systematic safety evaluation of educational LLMs. Furthermore, we propose a three-stage shield framework (TSSF) for educational LLMs that simultaneously mitigates both jailbreak and fine-tuning attacks. First, safety-aware attention realignment redirects attention toward critical unsafe tokens, thereby restoring the harmfulness feature that discriminates between unsafe and safe inputs. Second, layer-wise safety judgment identifies harmfulness features by aggregating safety cues across multiple layers to detect unsafe instructions. Finally, defense-driven dual routing separates safe and unsafe queries, ensuring normal processing for benign inputs and guarded responses for harmful ones. Extensive experiments across eight jailbreak attack strategies demonstrate that TSSF effectively strengthens safety while preventing over-refusal of benign queries. Evaluations on three fine-tuning attack datasets further show that it consistently achieves robust defense against harmful queries while maintaining preserving utility gains from benign fine-tuning.
☆ Mitigating Label Length Bias in Large Language Models AACL 2025
Large language models (LLMs) are powerful zero- and few-shot learners. However, when predicting over a set of candidate options, LLMs suffer from label biases, and existing calibration methods overlook biases arising from multi-token class labels. We tackle an issue we call label length bias, where labels of different lengths are treated inconsistently, even after standard length normalization. To mitigate it, we propose normalized contextual calibration (NCC), an effective method that normalizes and calibrates predictions at the full-label level. NCC achieves statistically significant improvements over prior approaches across multiple datasets and models, with gains of up to 10% F1. Moreover, NCC extends bias mitigation to broader tasks such as multiple-choice question answering. Our analysis shows that, when combined with in-context learning, NCC is less sensitive to few-shot example selection, requires fewer examples for competitive performance, and produces more reliable confidence estimates. These findings highlight the importance of mitigating full-label biases to improve the performance and robustness of LLM-based methods, particularly in real-world applications where class labels naturally consist of multiple tokens.
comment: Accepted to AACL 2025 (Main)
☆ O3SLM: Open Weight, Open Data, and Open Vocabulary Sketch-Language Model AAAI 2026
While Large Vision Language Models (LVLMs) are increasingly deployed in real-world applications, their ability to interpret abstract visual inputs remains limited. Specifically, they struggle to comprehend hand-drawn sketches, a modality that offers an intuitive means of expressing concepts that are difficult to describe textually. We identify the primary bottleneck as the absence of a large-scale dataset that jointly models sketches, photorealistic images, and corresponding natural language instructions. To address this, we present two key contributions: (1) a new, large-scale dataset of image-sketch-instruction triplets designed to facilitate both pretraining and instruction tuning, and (2) O3SLM, an LVLM trained on this dataset. Comprehensive evaluations on multiple sketch-based tasks: (a) object localization, (b) counting, (c) image retrieval i.e., (SBIR and fine-grained SBIR), and (d) visual question answering (VQA); while incorporating the three existing sketch datasets, namely QuickDraw!, Sketchy, and Tu Berlin, along with our generated SketchVCL dataset, show that O3SLM achieves state-of-the-art performance, substantially outperforming existing LVLMs in sketch comprehension and reasoning.
comment: Accepted to AAAI 2026
☆ ATLAS: A High-Difficulty, Multidisciplinary Benchmark for Frontier Scientific Reasoning
The rapid advancement of Large Language Models (LLMs) has led to performance saturation on many established benchmarks, questioning their ability to distinguish frontier models. Concurrently, existing high-difficulty benchmarks often suffer from narrow disciplinary focus, oversimplified answer formats, and vulnerability to data contamination, creating a fidelity gap with real-world scientific inquiry. To address these challenges, we introduce ATLAS (AGI-Oriented Testbed for Logical Application in Science), a large-scale, high-difficulty, and cross-disciplinary evaluation suite composed of approximately 800 original problems. Developed by domain experts (PhD-level and above), ATLAS spans seven core scientific fields: mathematics, physics, chemistry, biology, computer science, earth science, and materials science. Its key features include: (1) High Originality and Contamination Resistance, with all questions newly created or substantially adapted to prevent test data leakage; (2) Cross-Disciplinary Focus, designed to assess models' ability to integrate knowledge and reason across scientific domains; (3) High-Fidelity Answers, prioritizing complex, open-ended answers involving multi-step reasoning and LaTeX-formatted expressions over simple multiple-choice questions; and (4) Rigorous Quality Control, employing a multi-stage process of expert peer review and adversarial testing to ensure question difficulty, scientific value, and correctness. We also propose a robust evaluation paradigm using a panel of LLM judges for automated, nuanced assessment of complex answers. Preliminary results on leading models demonstrate ATLAS's effectiveness in differentiating their advanced scientific reasoning capabilities. We plan to develop ATLAS into a long-term, open, community-driven platform to provide a reliable "ruler" for progress toward Artificial General Intelligence.
comment: 39 pages
☆ The Tokenization Bottleneck: How Vocabulary Extension Improves Chemistry Representation Learning in Pretrained Language Models
The application of large language models (LLMs) to chemistry is frequently hampered by a "tokenization bottleneck", where tokenizers tuned on general-domain text tend to fragment chemical representations such as SMILES into semantically uninformative sub-tokens. This paper introduces a principled methodology to resolve this bottleneck by unifying the representation of natural language and molecular structures within a single model. Our approach involves targeted vocabulary extension-augmenting a pretrained LLM's vocabulary with chemically salient tokens, followed by continued pretraining on chemistry-domain text to integrate this new knowledge. We provide an empirical demonstration of the effectiveness of this strategy, showing that our methodology leads to superior performance on a range of downstream chemical tasks.
☆ SciRAG: Adaptive, Citation-Aware, and Outline-Guided Retrieval and Synthesis for Scientific Literature
The accelerating growth of scientific publications has intensified the need for scalable, trustworthy systems to synthesize knowledge across diverse literature. While recent retrieval-augmented generation (RAG) methods have improved access to scientific information, they often overlook citation graph structure, adapt poorly to complex queries, and yield fragmented, hard-to-verify syntheses. We introduce SciRAG, an open-source framework for scientific literature exploration that addresses these gaps through three key innovations: (1) adaptive retrieval that flexibly alternates between sequential and parallel evidence gathering; (2) citation-aware symbolic reasoning that leverages citation graphs to organize and filter supporting documents; and (3) outline-guided synthesis that plans, critiques, and refines answers to ensure coherence and transparent attribution. Extensive experiments across multiple benchmarks such as QASA and ScholarQA demonstrate that SciRAG outperforms prior systems in factual accuracy and synthesis quality, establishing a new foundation for reliable, large-scale scientific knowledge aggregation.
☆ ConInstruct: Evaluating Large Language Models on Conflict Detection and Resolution in Instructions AAAI 2026
Instruction-following is a critical capability of Large Language Models (LLMs). While existing works primarily focus on assessing how well LLMs adhere to user instructions, they often overlook scenarios where instructions contain conflicting constraints-a common occurrence in complex prompts. The behavior of LLMs under such conditions remains under-explored. To bridge this gap, we introduce ConInstruct, a benchmark specifically designed to assess LLMs' ability to detect and resolve conflicts within user instructions. Using this dataset, we evaluate LLMs' conflict detection performance and analyze their conflict resolution behavior. Our experiments reveal two key findings: (1) Most proprietary LLMs exhibit strong conflict detection capabilities, whereas among open-source models, only DeepSeek-R1 demonstrates similarly strong performance. DeepSeek-R1 and Claude-4.5-Sonnet achieve the highest average F1-scores at 91.5% and 87.3%, respectively, ranking first and second overall. (2) Despite their strong conflict detection abilities, LLMs rarely explicitly notify users about the conflicts or request clarification when faced with conflicting constraints. These results underscore a critical shortcoming in current LLMs and highlight an important area for future improvement when designing instruction-following LLMs.
comment: Accepted to AAAI 2026
☆ Steganographic Backdoor Attacks in NLP: Ultra-Low Poisoning and Defense Evasion
Transformer models are foundational to natural language processing (NLP) applications, yet remain vulnerable to backdoor attacks introduced through poisoned data, which implant hidden behaviors during training. To strengthen the ability to prevent such compromises, recent research has focused on designing increasingly stealthy attacks to stress-test existing defenses, pairing backdoor behaviors with stylized artifact or token-level perturbation triggers. However, this trend diverts attention from the harder and more realistic case: making the model respond to semantic triggers such as specific names or entities, where a successful backdoor could manipulate outputs tied to real people or events in deployed systems. Motivated by this growing disconnect, we introduce SteganoBackdoor, bringing stealth techniques back into line with practical threat models. Leveraging innocuous properties from natural-language steganography, SteganoBackdoor applies a gradient-guided data optimization process to transform semantic trigger seeds into steganographic carriers that embed a high backdoor payload, remain fluent, and exhibit no representational resemblance to the trigger. Across diverse experimental settings, SteganoBackdoor achieves over 99% attack success at an order-of-magnitude lower data-poisoning rate than prior approaches while maintaining unparalleled evasion against a comprehensive suite of data-level defenses. By revealing this practical and covert attack, SteganoBackdoor highlights an urgent blind spot in current defenses and demands immediate attention to adversarial data defenses and real-world threat modeling.
☆ DataSage: Multi-agent Collaboration for Insight Discovery with External Knowledge Retrieval, Multi-role Debating, and Multi-path Reasoning
In today's data-driven era, fully automated end-to-end data analytics, particularly insight discovery, is critical for discovering actionable insights that assist organizations in making effective decisions. With the rapid advancement of large language models (LLMs), LLM-driven agents have emerged as a promising paradigm for automating data analysis and insight discovery. However, existing data insight agents remain limited in several key aspects, often failing to deliver satisfactory results due to: (1) insufficient utilization of domain knowledge, (2) shallow analytical depth, and (3) error-prone code generation during insight generation. To address these issues, we propose DataSage, a novel multi-agent framework that incorporates three innovative features including external knowledge retrieval to enrich the analytical context, a multi-role debating mechanism to simulate diverse analytical perspectives and deepen analytical depth, and multi-path reasoning to improve the accuracy of the generated code and insights. Extensive experiments on InsightBench demonstrate that DataSage consistently outperforms existing data insight agents across all difficulty levels, offering an effective solution for automated data insight discovery.
☆ AraLingBench A Human-Annotated Benchmark for Evaluating Arabic Linguistic Capabilities of Large Language Models
We present AraLingBench: a fully human annotated benchmark for evaluating the Arabic linguistic competence of large language models (LLMs). The benchmark spans five core categories: grammar, morphology, spelling, reading comprehension, and syntax, through 150 expert-designed multiple choice questions that directly assess structural language understanding. Evaluating 35 Arabic and bilingual LLMs reveals that current models demonstrate strong surface level proficiency but struggle with deeper grammatical and syntactic reasoning. AraLingBench highlights a persistent gap between high scores on knowledge-based benchmarks and true linguistic mastery, showing that many models succeed through memorization or pattern recognition rather than authentic comprehension. By isolating and measuring fundamental linguistic skills, AraLingBench provides a diagnostic framework for developing Arabic LLMs. The full evaluation code is publicly available on GitHub.
☆ Don't Miss the Forest for the Trees: In-Depth Confidence Estimation for LLMs via Reasoning over the Answer Space
Knowing the reliability of a model's response is essential in application. With the strong generation capabilities of LLMs, research has focused on generating verbalized confidence. This is further enhanced by combining chain-of-thought reasoning, which provides logical and transparent estimation. However, how reasoning strategies affect the estimated confidence is still under-explored. In this work, we demonstrate that predicting a verbalized probability distribution can effectively encourage in-depth reasoning for confidence estimation. Intuitively, it requires an LLM to consider all candidates within the answer space instead of basing on a single guess, and to carefully assign confidence scores to meet the requirements of a distribution. This method shows an advantage across different models and various tasks, regardless of whether the answer space is known. Its advantage is maintained even after reinforcement learning, and further analysis shows its reasoning patterns are aligned with human expectations.
☆ Entropy-Guided Reasoning Compression
Large reasoning models have demonstrated remarkable performance on complex reasoning tasks, yet the excessive length of their chain-of-thought outputs remains a major practical bottleneck due to high computation cost and poor deployability. Existing compression methods have achieved partial success but overlook a crucial phenomenon in the training process -- the entropy conflict. During compression training, entropy decreases, leading to shorter reasoning but limited exploration, while accuracy-oriented objectives increase entropy, lengthening reasoning chains. This can cause the model to get stuck in a local dilemma. Our analysis further reveals the origin of the entropy conflict: many high-entropy tokens are logical connectors that receive larger gradients and are encouraged under the performance objective, while the compression objective simultaneously penalizes these potentially redundant connectors. This opposing pressure creates a direct source of entropy conflict. To address these issues, we adopt an entropy-guided training framework. As entropy descends, the model is guided toward efficient reasoning by encouraging concise thought steps; as entropy rises, exploration is reinforced under the compact reasoning mode to improve robustness. Experiments on six mathematical benchmarks show that our method compresses reasoning length to 20% of the original while maintaining or even surpassing baseline accuracy. Code and models will be released publicly.
comment: 10pages, 4 figures
☆ AfriSpeech-MultiBench: A Verticalized Multidomain Multicountry Benchmark Suite for African Accented English ASR AACL 2025
Recent advances in speech-enabled AI, including Google's NotebookLM and OpenAI's speech-to-speech API, are driving widespread interest in voice interfaces globally. Despite this momentum, there exists no publicly available application-specific model evaluation that caters to Africa's linguistic diversity. We present AfriSpeech-MultiBench, the first domain-specific evaluation suite for over 100 African English accents across 10+ countries and seven application domains: Finance, Legal, Medical, General dialogue, Call Center, Named Entities and Hallucination Robustness. We benchmark a diverse range of open, closed, unimodal ASR and multimodal LLM-based speech recognition systems using both spontaneous and non-spontaneous speech conversation drawn from various open African accented English speech datasets. Our empirical analysis reveals systematic variation: open-source ASR models excels in spontaneous speech contexts but degrades on noisy, non-native dialogue; multimodal LLMs are more accent-robust yet struggle with domain-specific named entities; proprietary models deliver high accuracy on clean speech but vary significantly by country and domain. Models fine-tuned on African English achieve competitive accuracy with lower latency, a practical advantage for deployment, hallucinations still remain a big problem for most SOTA models. By releasing this comprehensive benchmark, we empower practitioners and researchers to select voice technologies suited to African use-cases, fostering inclusive voice applications for underserved communities.
comment: Accepted As a Conference Paper IJCNLP-AACL 2025
☆ Towards Authentic Movie Dubbing with Retrieve-Augmented Director-Actor Interaction Learning AAAI 2026
The automatic movie dubbing model generates vivid speech from given scripts, replicating a speaker's timbre from a brief timbre prompt while ensuring lip-sync with the silent video. Existing approaches simulate a simplified workflow where actors dub directly without preparation, overlooking the critical director-actor interaction. In contrast, authentic workflows involve a dynamic collaboration: directors actively engage with actors, guiding them to internalize the context cues, specifically emotion, before performance. To address this issue, we propose a new Retrieve-Augmented Director-Actor Interaction Learning scheme to achieve authentic movie dubbing, termed Authentic-Dubber, which contains three novel mechanisms: (1) We construct a multimodal Reference Footage library to simulate the learning footage provided by directors. Note that we integrate Large Language Models (LLMs) to achieve deep comprehension of emotional representations across multimodal signals. (2) To emulate how actors efficiently and comprehensively internalize director-provided footage during dubbing, we propose an Emotion-Similarity-based Retrieval-Augmentation strategy. This strategy retrieves the most relevant multimodal information that aligns with the target silent video. (3) We develop a Progressive Graph-based speech generation approach that incrementally incorporates the retrieved multimodal emotional knowledge, thereby simulating the actor's final dubbing process. The above mechanisms enable the Authentic-Dubber to faithfully replicate the authentic dubbing workflow, achieving comprehensive improvements in emotional expressiveness. Both subjective and objective evaluations on the V2C Animation benchmark dataset validate the effectiveness. The code and demos are available at https://github.com/AI-S2-Lab/Authentic-Dubber.
comment: Accepted by AAAI 2026
☆ MuCPT: Music-related Natural Language Model Continued Pretraining
Large language models perform strongly on general tasks but remain constrained in specialized settings such as music, particularly in the music-entertainment domain, where corpus scale, purity, and the match between data and training objectives are critical. We address this by constructing a large, music-related natural language corpus (40B tokens) that combines open source and in-house data, and by implementing a domain-first data pipeline: a lightweight classifier filters and weights in-domain text, followed by multi-stage cleaning, de-duplication, and privacy-preserving masking. We further integrate multi-source music text with associated metadata to form a broader, better-structured foundation of domain knowledge. On the training side, we introduce reference-model (RM)-based token-level soft scoring for quality control: a unified loss-ratio criterion is used both for data selection and for dynamic down-weighting during optimization, reducing noise gradients and amplifying task-aligned signals, thereby enabling more effective music-domain continued pretraining and alignment. To assess factuality, we design the MusicSimpleQA benchmark, which adopts short, single-answer prompts with automated agreement scoring. Beyond the benchmark design, we conduct systematic comparisons along the axes of data composition. Overall, this work advances both the right corpus and the right objective, offering a scalable data-training framework and a reusable evaluation tool for building domain LLMs in the music field.
☆ ArbESC+: Arabic Enhanced Edit Selection System Combination for Grammatical Error Correction Resolving conflict and improving system combination in Arabic GEC
Grammatical Error Correction (GEC) is an important aspect of natural language processing. Arabic has a complicated morphological and syntactic structure, posing a greater challenge than other languages. Even though modern neural models have improved greatly in recent years, the majority of previous attempts used individual models without taking into account the potential benefits of combining different systems. In this paper, we present one of the first multi-system approaches for correcting grammatical errors in Arabic, the Arab Enhanced Edit Selection System Complication (ArbESC+). Several models are used to collect correction proposals, which are represented as numerical features in the framework. A classifier determines and implements the appropriate corrections based on these features. In order to improve output quality, the framework uses support techniques to filter overlapping corrections and estimate decision reliability. A combination of AraT5, ByT5, mT5, AraBART, AraBART+Morph+GEC, and Text editing systems gave better results than a single model alone, with F0.5 at 82.63% on QALB-14 test data, 84.64% on QALB-15 L1 data, and 65.55% on QALB-15 L2 data. As one of the most significant contributions of this work, it's the first Arab attempt to integrate linguistic error correction. Improving existing models provides a practical step towards developing advanced tools that will benefit users and researchers of Arabic text processing.
comment: 26 pages
☆ Harnessing Deep LLM Participation for Robust Entity Linking
Entity Linking (EL), the task of mapping textual entity mentions to their corresponding entries in knowledge bases, constitutes a fundamental component of natural language understanding. Recent advancements in Large Language Models (LLMs) have demonstrated remarkable potential for enhancing EL performance. Prior research has leveraged LLMs to improve entity disambiguation and input representation, yielding significant gains in accuracy and robustness. However, these approaches typically apply LLMs to isolated stages of the EL task, failing to fully integrate their capabilities throughout the entire process. In this work, we introduce DeepEL, a comprehensive framework that incorporates LLMs into every stage of the entity linking task. Furthermore, we identify that disambiguating entities in isolation is insufficient for optimal performance. To address this limitation, we propose a novel self-validation mechanism that utilizes global contextual information, enabling LLMs to rectify their own predictions and better recognize cohesive relationships among entities within the same sentence. Extensive empirical evaluation across ten benchmark datasets demonstrates that DeepEL substantially outperforms existing state-of-the-art methods, achieving an average improvement of 2.6\% in overall F1 score and a remarkable 4% gain on out-of-domain datasets. These results underscore the efficacy of deep LLM integration in advancing the state-of-the-art in entity linking.
☆ SymLoc: Symbolic Localization of Hallucination across HaluEval and TruthfulQA
LLMs still struggle with hallucination, especially when confronted with symbolic triggers like modifiers, negation, numbers, exceptions, and named entities. Yet, we lack a clear understanding of where these symbolic hallucinations originate, making it crucial to systematically handle such triggers and localize the emergence of hallucination inside the model. While prior work explored localization using statistical techniques like LSC and activation variance analysis, these methods treat all tokens equally and overlook the role symbolic linguistic knowledge plays in triggering hallucinations. So far, no approach has investigated how symbolic elements specifically drive hallucination failures across model layers, nor has symbolic linguistic knowledge been used as the foundation for a localization framework. We propose the first symbolic localization framework that leverages symbolic linguistic and semantic knowledge to meaningfully trace the development of hallucinations across all model layers. By focusing on how models process symbolic triggers, we analyze five models using HaluEval and TruthfulQA. Our symbolic knowledge approach reveals that attention variance for these linguistic elements explodes to critical instability in early layers (2-4), with negation triggering catastrophic variance levels, demonstrating that symbolic semantic processing breaks down from the very beginning. Through the lens of symbolic linguistic knowledge, despite larger model sizes, hallucination rates remain consistently high (78.3%-83.7% across Gemma variants), with steep attention drops for symbolic semantic triggers throughout deeper layers. Our findings demonstrate that hallucination is fundamentally a symbolic linguistic processing failure, not a general generation problem, revealing that symbolic semantic knowledge provides the key to understanding and localizing hallucination mechanisms in LLMs.
☆ Selective Weak-to-Strong Generalization AAAI2025
Future superhuman models will surpass the ability of humans and humans will only be able to \textit{weakly} supervise superhuman models. To alleviate the issue of lacking high-quality data for model alignment, some works on weak-to-strong generalization (W2SG) finetune a strong pretrained model with a weak supervisor so that it can generalize beyond weak supervision. However, the invariable use of weak supervision in existing methods exposes issues in robustness, with a proportion of weak labels proving harmful to models. In this paper, we propose a selective W2SG framework to avoid using weak supervision when unnecessary. We train a binary classifier P(IK) to identify questions that a strong model can answer and use its self-generated labels for alignment. We further refine weak labels with a graph smoothing method. Extensive experiments on three benchmarks show that our method consistently outperforms competitive baselines. Further analyses show that P(IK) can generalize across tasks and difficulties, which indicates selective W2SG can help superalignment.
comment: AAAI2025 Special Track on AI Alignment
☆ Applying Relation Extraction and Graph Matching to Answering Multiple Choice Questions KR
In this research, we combine Transformer-based relation extraction with matching of knowledge graphs (KGs) and apply them to answering multiple-choice questions (MCQs) while maintaining the traceability of the output process. KGs are structured representations of factual knowledge consisting of entities and relations. Due to the high construction cost, they had been regarded as static databases with validated links. However, the recent development of Transformer-based relation extraction (RE) methods has enabled us to generate KGs dynamically by giving them natural language texts, and thereby opened the possibility for representing the meaning of the input sentences with the created KGs. Using this effect, we propose a method that answers MCQs in the "fill-in-the-blank" format, taking care of the point that RE methods generate KGs that represent false information if provided with factually incorrect texts. We measure the truthfulness of each question sentence by (i) converting the sentence into a relational graph using an RE method and (ii) verifying it against factually correct KGs under the closed-world assumption. The experimental results demonstrate that our method correctly answers up to around 70% of the questions, while providing traceability of the procedure. We also highlight that the question category has a vast influence on the accuracy.
comment: Presented at NeLaMKRR@KR, 2025 (arXiv:2511.09575)
☆ From Graphs to Hypergraphs: Enhancing Aspect-Based Sentiment Analysis via Multi-Level Relational Modeling
Aspect-Based Sentiment Analysis (ABSA) predicts sentiment polarity for specific aspect terms, a task made difficult by conflicting sentiments across aspects and the sparse context of short texts. Prior graph-based approaches model only pairwise dependencies, forcing them to construct multiple graphs for different relational views. These introduce redundancy, parameter overhead, and error propagation during fusion, limiting robustness in short-text, low-resource settings. We present HyperABSA, a dynamic hypergraph framework that induces aspect-opinion structures through sample-specific hierarchical clustering. To construct these hyperedges, we introduce a novel acceleration-fallback cutoff for hierarchical clustering, which adaptively determines the level of granularity. Experiments on three benchmarks (Lap14, Rest14, MAMS) show consistent improvements over strong graph baselines, with substantial gains when paired with RoBERTa backbones. These results position dynamic hypergraph construction as an efficient, powerful alternative for ABSA, with potential extensions to other short-text NLP tasks.
☆ PRISM: Prompt-Refined In-Context System Modelling for Financial Retrieval
With the rapid progress of large language models (LLMs), financial information retrieval has become a critical industrial application. Extracting task-relevant information from lengthy financial filings is essential for both operational and analytical decision-making. The FinAgentBench dataset formalizes this problem through two tasks: document ranking and chunk ranking. We present PRISM, a training-free framework that integrates refined system prompting, in-context learning (ICL), and a lightweight multi-agent system. Each component is examined extensively to reveal their synergies: prompt engineering provides precise task instructions, ICL supplies semantically relevant few-shot examples, and the multi-agent system models coordinated scoring behaviour. Our best configuration achieves an NDCG@5 of 0.71818 on the restricted validation split. We further demonstrate that PRISM is feasible and robust for production-scale financial retrieval. Its modular, inference-only design makes it practical for real-world use cases. The source code is released at https://bit.ly/prism-ailens.
comment: 3rd-place solution for the ACM ICAIF 2025 Agentic Retrieval Grand Challenge
☆ Synthetic Clinical Notes for Rare ICD Codes: A Data-Centric Framework for Long-Tail Medical Coding
Automatic ICD coding from clinical text is a critical task in medical NLP but remains hindered by the extreme long-tail distribution of diagnostic codes. Thousands of rare and zero-shot ICD codes are severely underrepresented in datasets like MIMIC-III, leading to low macro-F1 scores. In this work, we propose a data-centric framework that generates high-quality synthetic discharge summaries to mitigate this imbalance. Our method constructs realistic multi-label code sets anchored on rare codes by leveraging real-world co-occurrence patterns, ICD descriptions, synonyms, taxonomy, and similar clinical notes. Using these structured prompts, we generate 90,000 synthetic notes covering 7,902 ICD codes, significantly expanding the training distribution. We fine-tune two state-of-the-art transformer-based models, PLM-ICD and GKI-ICD, on both the original and extended datasets. Experiments show that our approach modestly improves macro-F1 while maintaining strong micro-F1, outperforming prior SOTA. While the gain may seem marginal relative to the computational cost, our results demonstrate that carefully crafted synthetic data can enhance equity in long-tail ICD code prediction.
comment: 4 page-short paper
☆ Stealth Fine-Tuning: Efficiently Breaking Alignment in RVLMs Using Self-Generated CoT
Reasoning-augmented Vision-Language Models (RVLMs) rely on safety alignment to prevent harmful behavior, yet their exposed chain-of-thought (CoT) traces introduce new attack surfaces. In this work, we find that the safety alignment of RVLMs can be easily break through a novel attack method termed \textbf{Stealth Fine-Tuning}. Our method elicits harmful reasoning traces through \textbf{segment-level interference} and reuses the self-generated outputs as supervised fine-tuning data. Through a \textbf{turn-based weighted} loss design, yielding a lightweight, distribution-consistent finetuning method. In our experiment, with only 499 samples and under 3 hours on a single A100 (QLoRA), Stealth Fine-Tuning outperforms IDEATOR by 38.52\% ASR while preserving general reasoning ability, as the tuned model retains the original representation distribution. Experiments on AdvBench and several general benchmarks demonstrate that Stealth Fine-Tuning is a low-cost and highly effective way to bypass alignment defenses. \textcolor{red}{\textbf{Disclaimer: This paper contains content that may be disturbing or offensive.}}
comment: 10 pages, 7 figures
☆ Error-Driven Scene Editing for 3D Grounding in Large Language Models
Despite recent progress in 3D-LLMs, they remain limited in accurately grounding language to visual and spatial elements in 3D environments. This limitation stems in part from training data that focuses on language reasoning rather than spatial understanding due to scarce 3D resources, leaving inherent grounding biases unresolved. To address this, we propose 3D scene editing as a key mechanism to generate precise visual counterfactuals that mitigate these biases through fine-grained spatial manipulation, without requiring costly scene reconstruction or large-scale 3D data collection. Furthermore, to make these edits targeted and directly address the specific weaknesses of the model, we introduce DEER-3D, an error-driven framework following a structured "Decompose, Diagnostic Evaluation, Edit, and Re-train" workflow, rather than broadly or randomly augmenting data as in conventional approaches. Specifically, upon identifying a grounding failure of the 3D-LLM, our framework first diagnoses the exact predicate-level error (e.g., attribute or spatial relation). It then executes minimal, predicate-aligned 3D scene edits, such as recoloring or repositioning, to produce targeted counterfactual supervision for iterative model fine-tuning, significantly enhancing grounding accuracy. We evaluate our editing pipeline across multiple benchmarks for 3D grounding and scene understanding tasks, consistently demonstrating improvements across all evaluated datasets through iterative refinement. DEER-3D underscores the effectiveness of targeted, error-driven scene editing in bridging linguistic reasoning capabilities with spatial grounding in 3D LLMs.
comment: Code: https://github.com/zhangyuejoslin/Deer-3D
☆ Based on Data Balancing and Model Improvement for Multi-Label Sentiment Classification Performance Enhancement
Multi-label sentiment classification plays a vital role in natural language processing by detecting multiple emotions within a single text. However, existing datasets like GoEmotions often suffer from severe class imbalance, which hampers model performance, especially for underrepresented emotions. To address this, we constructed a balanced multi-label sentiment dataset by integrating the original GoEmotions data, emotion-labeled samples from Sentiment140 using a RoBERTa-base-GoEmotions model, and manually annotated texts generated by GPT-4 mini. Our data balancing strategy ensured an even distribution across 28 emotion categories. Based on this dataset, we developed an enhanced multi-label classification model that combines pre-trained FastText embeddings, convolutional layers for local feature extraction, bidirectional LSTM for contextual learning, and an attention mechanism to highlight sentiment-relevant words. A sigmoid-activated output layer enables multi-label prediction, and mixed precision training improves computational efficiency. Experimental results demonstrate significant improvements in accuracy, precision, recall, F1-score, and AUC compared to models trained on imbalanced data, highlighting the effectiveness of our approach.
comment: 12 pages, 8 figures, 5 tables. Dataset and code available at https://doi.org/10.5281/zenodo.16890154 and https://doi.org/10.5281/zenodo.15837871
☆ GRPO Privacy Is at Risk: A Membership Inference Attack Against Reinforcement Learning With Verifiable Rewards
Membership inference attacks (MIAs) on large language models (LLMs) pose significant privacy risks across various stages of model training. Recent advances in Reinforcement Learning with Verifiable Rewards (RLVR) have brought a profound paradigm shift in LLM training, particularly for complex reasoning tasks. However, the on-policy nature of RLVR introduces a unique privacy leakage pattern: since training relies on self-generated responses without fixed ground-truth outputs, membership inference must now determine whether a given prompt (independent of any specific response) is used during fine-tuning. This creates a threat where leakage arises not from answer memorization. To audit this novel privacy risk, we propose Divergence-in-Behavior Attack (DIBA), the first membership inference framework specifically designed for RLVR. DIBA shifts the focus from memorization to behavioral change, leveraging measurable shifts in model behavior across two axes: advantage-side improvement (e.g., correctness gain) and logit-side divergence (e.g., policy drift). Through comprehensive evaluations, we demonstrate that DIBA significantly outperforms existing baselines, achieving around 0.8 AUC and an order-of-magnitude higher TPR@0.1%FPR. We validate DIBA's superiority across multiple settings--including in-distribution, cross-dataset, cross-algorithm, black-box scenarios, and extensions to vision-language models. Furthermore, our attack remains robust under moderate defensive measures. To the best of our knowledge, this is the first work to systematically analyze privacy vulnerabilities in RLVR, revealing that even in the absence of explicit supervision, training data exposure can be reliably inferred through behavioral traces.
☆ AISAC: An Integrated multi-agent System for Transparent, Retrieval-Grounded Scientific Assistance
AI Scientific Assistant Core (AISAC) is an integrated multi-agent system developed at Argonne National Laboratory for scientific and engineering workflows. AISAC builds on established technologies - LangGraph for orchestration, FAISS for vector search, and SQLite for persistence - and integrates them into a unified system prototype focused on transparency, provenance tracking, and scientific adaptability. The system implements a Router-Planner-Coordinator workflow and an optional Evaluator role, using prompt-engineered agents coordinated via LangGraph's StateGraph and supported by helper agents such as a Researcher. Each role is defined through custom system prompts that enforce structured JSON outputs. A hybrid memory approach (FAISS + SQLite) enables both semantic retrieval and structured conversation history. An incremental indexing strategy based on file hashing minimizes redundant re-embedding when scientific corpora evolve. A configuration-driven project bootstrap layer allows research teams to customize tools, prompts, and data sources without modifying core code. All agent decisions, tool invocations, and retrievals are logged and visualized through a custom Gradio interface, providing step-by-step transparency for each reasoning episode. The authors have applied AISAC to multiple research areas at Argonne, including specialized deployments for waste-to-products research and energy process safety, as well as general-purpose scientific assistance, demonstrating its cross-domain applicability.
☆ HiEAG: Evidence-Augmented Generation for Out-of-Context Misinformation Detection
Recent advancements in multimodal out-of-context (OOC) misinformation detection have made remarkable progress in checking the consistencies between different modalities for supporting or refuting image-text pairs. However, existing OOC misinformation detection methods tend to emphasize the role of internal consistency, ignoring the significant of external consistency between image-text pairs and external evidence. In this paper, we propose HiEAG, a novel Hierarchical Evidence-Augmented Generation framework to refine external consistency checking through leveraging the extensive knowledge of multimodal large language models (MLLMs). Our approach decomposes external consistency checking into a comprehensive engine pipeline, which integrates reranking and rewriting, apart from retrieval. Evidence reranking module utilizes Automatic Evidence Selection Prompting (AESP) that acquires the relevant evidence item from the products of evidence retrieval. Subsequently, evidence rewriting module leverages Automatic Evidence Generation Prompting (AEGP) to improve task adaptation on MLLM-based OOC misinformation detectors. Furthermore, our approach enables explanation for judgment, and achieves impressive performance with instruction tuning. Experimental results on different benchmark datasets demonstrate that our proposed HiEAG surpasses previous state-of-the-art (SOTA) methods in the accuracy over all samples.
☆ Knowledge-Grounded Agentic Large Language Models for Multi-Hazard Understanding from Reconnaissance Reports
Post-disaster reconnaissance reports contain critical evidence for understanding multi-hazard interactions, yet their unstructured narratives make systematic knowledge transfer difficult. Large language models (LLMs) offer new potential for analyzing these reports, but often generate unreliable or hallucinated outputs when domain grounding is absent. This study introduces the Mixture-of-Retrieval Agentic RAG (MoRA-RAG), a knowledge-grounded LLM framework that transforms reconnaissance reports into a structured foundation for multi-hazard reasoning. The framework integrates a Mixture-of-Retrieval mechanism that dynamically routes queries across hazard-specific databases while using agentic chunking to preserve contextual coherence during retrieval. It also includes a verification loop that assesses evidence sufficiency, refines queries, and initiates targeted searches when information remains incomplete. We construct HazardRecQA by deriving question-answer pairs from GEER reconnaissance reports, which document 90 global events across seven major hazard types. MoRA-RAG achieves up to 94.5 percent accuracy, outperforming zero-shot LLMs by 30 percent and state-of-the-art RAG systems by 10 percent, while reducing hallucinations across diverse LLM architectures. MoRA-RAG also enables open-weight LLMs to achieve performance comparable to proprietary models. It establishes a new paradigm for transforming post-disaster documentation into actionable, trustworthy intelligence for hazard resilience.
comment: 17 pages, 5 figures
♻ ☆ Towards Efficient Medical Reasoning with Minimal Fine-Tuning Data
Supervised Fine-Tuning (SFT) plays a pivotal role in adapting Large Language Models (LLMs) to specialized domains such as medical reasoning. However, existing SFT practices often rely on unfiltered datasets that contain redundant and low-quality samples, leading to substantial computational costs and suboptimal performance. Although existing methods attempt to alleviate this problem by selecting data based on sample difficulty, defined by knowledge and reasoning complexity, they overlook each sample's optimization utility reflected in its gradient. Interestingly, we find that gradient-based influence alone favors easy-to-optimize samples that cause large parameter shifts but lack deep reasoning chains, while difficulty alone selects noisy or overly complex cases that fail to guide stable optimization. Based on this observation, we propose a data selection strategy, Difficulty-Influence Quadrant (DIQ), which prioritizes samples in the high-difficulty-high-influence quadrant to balance complex clinical reasoning with substantial gradient influence, enabling efficient medical reasoning with minimal fine-tuning data. Furthermore, Human and LLM-as-a-judge evaluations show that DIQ-selected subsets demonstrate higher data quality and generate clinical reasoning that is more aligned with expert practices in differential diagnosis, safety check, and evidence citation, as DIQ emphasizes samples that foster expert-like reasoning patterns. Extensive experiments on medical reasoning benchmarks demonstrate that DIQ enables models fine-tuned on only 1% of selected data to match full-dataset performance, while using 10% consistently outperforms baseline methods, highlighting the superiority of principled data selection over brute-force scaling. The code and data are available at https://github.com/mihara-bot/DIQ.
comment: preprint, under review
♻ ☆ SpiderGen: Towards Procedure Generation For Carbon Life Cycle Assessments with Generative AI
Investigating the effects of climate change and global warming caused by GHG emissions have been a key concern worldwide. These emissions are largely contributed to by the production, use and disposal of consumer products. Thus, it is important to build tools to estimate the environmental impact of consumer goods, an essential part of which is conducting Life Cycle Assessments (LCAs). LCAs specify and account for the appropriate processes involved with the production, use, and disposal of the products. We present SpiderGen, an LLM-based workflow which integrates the taxonomy and methodology of traditional LCA with the reasoning capabilities and world knowledge of LLMs to generate graphical representations of the key procedural information used for LCA, known as Product Category Rules Process Flow Graphs (PCR PFGs). We additionally evaluate the output of SpiderGen by comparing it with 65 real-world LCA documents. We find that SpiderGen provides accurate LCA process information that is either fully correct or has minor errors, achieving an F1-Score of 65% across 10 sample data points, as compared to 53% using a one-shot prompting method. We observe that the remaining errors occur primarily due to differences in detail between LCA documents, as well as differences in the "scope" of which auxiliary processes must also be included. We also demonstrate that SpiderGen performs better than several baselines techniques, such as chain-of-thought prompting and one-shot prompting. Finally, we highlight SpiderGen's potential to reduce the human effort and costs for estimating carbon impact, as it is able to produce LCA process information for less than \$1 USD in under 10 minutes as compared to the status quo LCA, which can cost over \$25000 USD and take up to 21-person days.
♻ ☆ MajinBook: An open catalogue of digital world literature with likes
This data paper introduces MajinBook, an open catalogue designed to facilitate the use of shadow libraries--such as Library Genesis and Z-Library--for computational social science and cultural analytics. By linking metadata from these vast, crowd-sourced archives with structured bibliographic data from Goodreads, we create a high-precision corpus of over 539,000 references to English-language books spanning three centuries, enriched with first publication dates, genres, and popularity metrics like ratings and reviews. Our methodology prioritizes natively digital EPUB files to ensure machine-readable quality, while addressing biases in traditional corpora like HathiTrust, and includes secondary datasets for French, German, and Spanish. We evaluate the linkage strategy for accuracy, release all underlying data openly, and discuss the project's legal permissibility under EU and US frameworks for text and data mining in research.
comment: 9 pages, 5 figures, 1 table
♻ ☆ Surprisingly Fragile: Assessing and Addressing Prompt Instability in Multimodal Foundation Models
Multimodal foundation models (MFMs) such as OFASys show the potential to unlock analysis of complex data such as images, videos, and audio data via text prompts alone. However, their performance may suffer in the face of text input that differs even slightly from their training distribution, which is surprising considering the use of modality-specific data to "ground" the text input. This study demonstrates that prompt instability is a major concern for MFMs, leading to a consistent drop in performance across all modalities, but that instability can be mitigated with additional training with augmented data. We evaluate several methods for grounded prompt perturbation, where we generate perturbations and filter based on similarity to text and/or modality data. After re-training the models on the augmented data, we find improved accuracy and more stable performance on the perturbed test data regardless of perturbation condition, suggesting that the data augmentation strategy helps the models handle domain shifts more effectively. In error analysis, we find consistent patterns of performance improvement across domains, suggesting that retraining on prompt perturbations tends to help general reasoning capabilities in MFMs.
comment: arxiv
♻ ☆ Automatic Fact-checking in English and Telugu
False information poses a significant global challenge, and manually verifying claims is a time-consuming and resource-intensive process. In this research paper, we experiment with different approaches to investigate the effectiveness of large language models (LLMs) in classifying factual claims by their veracity and generating justifications in English and Telugu. The key contributions of this work include the creation of a bilingual English-Telugu dataset and the benchmarking of different veracity classification approaches based on LLMs.
comment: Proceedings of the First Workshop on Advancing NLP for Low Resource Languages associated with RANLP 2025 Varna Bulgaria September 13 2025 pages 140-151
♻ ☆ OptScale: Probabilistic Optimality for Inference-time Scaling AAAI-2026
Inference-time scaling has emerged as a powerful technique for enhancing the reasoning performance of Large Language Models (LLMs). However, existing approaches often rely on heuristic strategies for parallel sampling, lacking a principled foundation. To address this gap, we propose a probabilistic framework that formalizes the optimality of inference-time scaling under the assumption that parallel samples are independently and identically distributed (i.i.d.), and where the Best-of-N selection strategy follows a probability distribution that can be estimated. Within this framework, we derive a theoretical lower bound on the required number of samples to achieve a target performance level, providing the first principled guidance for compute-efficient scaling. Leveraging this insight, we develop \textsc{OptScale}, a practical algorithm that dynamically determines the optimal number of sampled responses. \textsc{OptScale} employs a language model-based predictor to estimate probabilistic prior parameters, enabling the decision of the minimal number of samples needed that satisfy predefined performance thresholds and confidence levels. Extensive experiments on representative reasoning benchmarks (including MATH-500, GSM8K, AIME, and AMC) demonstrate that \textsc{OptScale} significantly reduces sampling overhead while remaining better or on par with state-of-the-art reasoning performance. Our work offers both a theoretical foundation and a practical solution for principled inference-time scaling, addressing a critical gap in the efficient deployment of LLMs for complex reasoning. The source code is publicly available at https://github.com/Albertwyk/OptScale.
comment: Accepted by AAAI-2026
♻ ☆ IntelliProof: An Argumentation Network-based Conversational Helper for Organized Reflection AAAI
We present IntelliProof, an interactive system for analyzing argumentative essays through LLMs. IntelliProof structures an essay as an argumentation graph, where claims are represented as nodes, supporting evidence is attached as node properties, and edges encode supporting or attacking relations. Unlike existing automated essay scoring systems, IntelliProof emphasizes the user experience: each relation is initially classified and scored by an LLM, then visualized for enhanced understanding. The system provides justifications for classifications and produces quantitative measures for essay coherence. It enables rapid exploration of argumentative quality while retaining human oversight. In addition, IntelliProof provides a set of tools for a better understanding of an argumentative essay and its corresponding graph in natural language, bridging the gap between the structural semantics of argumentative essays and the user's understanding of a given text.
comment: Accepted for the 40th Annual AAAI Conference on Artificial Intelligence (2026) - Demonstration Track
♻ ☆ Model Editing as a Double-Edged Sword: Steering Agent Ethical Behavior Toward Beneficence or Harm AAAI 2026
Agents based on Large Language Models (LLMs) have demonstrated strong capabilities across a wide range of tasks. However, deploying LLM-based agents in high-stakes domains comes with significant safety and ethical risks. Unethical behavior by these agents can directly result in serious real-world consequences, including physical harm and financial loss. To efficiently steer the ethical behavior of agents, we frame agent behavior steering as a model editing task, which we term Behavior Editing. Model editing is an emerging area of research that enables precise and efficient modifications to LLMs while preserving their overall capabilities. To systematically study and evaluate this approach, we introduce BehaviorBench, a multi-tier benchmark grounded in psychological moral theories. This benchmark supports both the evaluation and editing of agent behaviors across a variety of scenarios, with each tier introducing more complex and ambiguous scenarios. We first demonstrate that Behavior Editing can dynamically steer agents toward the target behavior within specific scenarios. Moreover, Behavior Editing enables not only scenario-specific local adjustments but also more extensive shifts in an agent's global moral alignment. We demonstrate that Behavior Editing can be used to promote ethical and benevolent behavior or, conversely, to induce harmful or malicious behavior. Through extensive evaluations of agents built on frontier LLMs, BehaviorBench validates the effectiveness of behavior editing across a wide range of models and scenarios. Our findings offer key insights into a new paradigm for steering agent behavior, highlighting both the promise and perils of Behavior Editing.
comment: AAAI 2026 Oral. 14 pages (including appendix), 11 figures. Code, data, results, and additional resources are available at: https://model-editing.github.io
♻ ☆ AI use in American newspapers is widespread, uneven, and rarely disclosed
AI is rapidly transforming journalism, but the extent of its use in published newspaper articles remains unclear. We address this gap by auditing a large-scale dataset of 186K articles from online editions of 1.5K American newspapers published in the summer of 2025. Using Pangram, a state-of-the-art AI detector, we discover that approximately 9% of newly-published articles are either partially or fully AI-generated. This AI use is unevenly distributed, appearing more frequently in smaller, local outlets, in specific topics such as weather and technology, and within certain ownership groups. We also analyze 45K opinion pieces from Washington Post, New York Times, and Wall Street Journal, finding that they are 6.4 times more likely to contain AI-generated content than news articles from the same publications, with many AI-flagged op-eds authored by prominent public figures. Despite this prevalence, we find that AI use is rarely disclosed: a manual audit of 100 AI-flagged articles found only five disclosures of AI use. Overall, our audit highlights the immediate need for greater transparency and updated editorial standards regarding the use of AI in journalism to maintain public trust.
♻ ☆ MiroThinker: Pushing the Performance Boundaries of Open-Source Research Agents via Model, Context, and Interactive Scaling
We present MiroThinker v1.0, an open-source research agent designed to advance tool-augmented reasoning and information-seeking capabilities. Unlike previous agents that only scale up model size or context length, MiroThinker explores interaction scaling at the model level, systematically training the model to handle deeper and more frequent agent-environment interactions as a third dimension of performance improvement. Unlike LLM test-time scaling, which operates in isolation and risks degradation with longer reasoning chains, interactive scaling leverages environment feedback and external information acquisition to correct errors and refine trajectories. Through reinforcement learning, the model achieves efficient interaction scaling: with a 256K context window, it can perform up to 600 tool calls per task, enabling sustained multi-turn reasoning and complex real-world research workflows. Across four representative benchmarks-GAIA, HLE, BrowseComp, and BrowseComp-ZH-the 72B variant achieves up to 81.9%, 37.7%, 47.1%, and 55.6% accuracy respectively, surpassing previous open-source agents and approaching commercial counterparts such as GPT-5-high. Our analysis reveals that MiroThinker benefits from interactive scaling consistently: research performance improves predictably as the model engages in deeper and more frequent agent-environment interactions, demonstrating that interaction depth exhibits scaling behaviors analogous to model size and context length. These findings establish interaction scaling as a third critical dimension for building next-generation open research agents, complementing model capacity and context windows.
comment: Technical Report
♻ ☆ GenRecal: Generation after Recalibration from Large to Small Vision-Language Models
Recent advancements in vision-language models (VLMs) have leveraged large language models (LLMs) to achieve performance on par with closed-source systems like GPT-4V. However, deploying these models in real-world scenarios, particularly on resource-constrained devices, remains challenging due to their substantial computational demands. This has spurred interest in distilling knowledge from large VLMs into smaller, more efficient counterparts. A key challenge arises here from the diversity of VLM architectures, which are built on different LLMs and employ varying token types-differing in vocabulary size, token splits, and token index ordering. To address this challenge of limitation to a specific VLM type, we present Generation after Recalibration (GenRecal), a general-purpose distillation framework for VLMs. GenRecal incorporates a Recalibrator that aligns and adapts feature representations between heterogeneous VLMs, enabling effective knowledge transfer across different types of VLMs. Through extensive experiments on multiple challenging benchmarks, we demonstrate that GenRecal significantly improves baseline performances, eventually outperforming large-scale open- and closed-source VLMs.
comment: Project page: https://byungkwanlee.github.io/GenRecal-page/
♻ ☆ ACoRN: Noise-Robust Abstractive Compression in Retrieval-Augmented Language Models IJCNN 2025
Abstractive compression utilizes smaller langauge models to condense query-relevant context, reducing computational costs in retrieval-augmented generation (RAG). However,retrieved documents often include information that is either irrelevant to answering the query or misleading due to factual incorrect content, despite having high relevance scores. This behavior indicates that abstractive compressors are more likely to omit important information essential for the correct answer, especially in long contexts where attention dispersion occurs. To address this issue, we categorize retrieved documents in a more fine-grained manner and propose Abstractive Compression Robust against Noise (ACoRN), which introduces two novel training steps. First, we use offline data augmentation on the training dataset to enhance compressor robustness against two distinct types of retrieval noise. Second, since the language modelbased compressor cannot fully utilize information from multiple retrieved documents and exhibits positional bias, we perform finetuning to generate summaries centered around key information that directly supports the correct answer. Our experiments demonstrate that T5-large, trained with ACoRN as a compressor, improves EM and F1 scores while preserving the answer string, which could serve as direct evidence. ACoRN excels on datasets with many accuracy-reducing documents, making it highly useful in real-world scenarios.
comment: Accepted by IJCNN 2025
♻ ☆ O-Mem: Omni Memory System for Personalized, Long Horizon, Self-Evolving Agents
Recent advancements in LLM-powered agents have demonstrated significant potential in generating human-like responses; however, they continue to face challenges in maintaining long-term interactions within complex environments, primarily due to limitations in contextual consistency and dynamic personalization. Existing memory systems often depend on semantic grouping prior to retrieval, which can overlook semantically irrelevant yet critical user information and introduce retrieval noise. In this report, we propose the initial design of O-Mem, a novel memory framework based on active user profiling that dynamically extracts and updates user characteristics and event records from their proactive interactions with agents. O-Mem supports hierarchical retrieval of persona attributes and topic-related context, enabling more adaptive and coherent personalized responses. O-Mem achieves 51.67% on the public LoCoMo benchmark, a nearly 3% improvement upon LangMem,the previous state-of-the-art, and it achieves 62.99% on PERSONAMEM, a 3.5% improvement upon A-Mem,the previous state-of-the-art. O-Mem also boosts token and interaction response time efficiency compared to previous memory frameworks. Our work opens up promising directions for developing efficient and human-like personalized AI assistants in the future.
♻ ☆ Evaluating Large Language Models for Diacritic Restoration in Romanian Texts: A Comparative Study
Automatic diacritic restoration is crucial for text processing in languages with rich diacritical marks, such as Romanian. This study evaluates the performance of several large language models (LLMs) in restoring diacritics in Romanian texts. Using a comprehensive corpus, we tested models including OpenAI's GPT-3.5, GPT-4, GPT-4o, Google's Gemini 1.0 Pro, Meta's Llama 2 and Llama 3, MistralAI's Mixtral 8x7B Instruct, airoboros 70B, and OpenLLM-Ro's RoLlama 2 7B, under multiple prompt templates ranging from zero-shot to complex multi-shot instructions. Results show that models such as GPT-4o achieve high diacritic restoration accuracy, consistently surpassing a neutral echo baseline, while others, including Meta's Llama family, exhibit wider variability. These findings highlight the impact of model architecture, training data, and prompt design on diacritic restoration performance and outline promising directions for improving NLP tools for diacritic-rich languages.
comment: The original submission contained metadata errors and requires correction. A revised and complete version will be submitted as a replacement
♻ ☆ MoM: Linear Sequence Modeling with Mixture-of-Memories
Linear sequence modeling methods, such as linear attention, state space modeling, and linear RNNs, offer significant efficiency improvements by reducing the complexity of training and inference. However, these methods typically compress the entire input sequence into a single fixed-size memory state, which leads to suboptimal performance on recall-intensive tasks. To address this limitation, we introduce a novel architecture called Mixture-of-Memories (MoM). MoM utilizes multiple independent memory states, with a router network directing input tokens to specific memory states. This approach greatly enhances the overall memory capacity while minimizing memory interference. MoM serves as a general framework that can be seamlessly combined with diverse memory update mechanisms across linear models. As a result, MoM performs exceptionally well on recall-intensive tasks, surpassing existing linear sequence modeling techniques. Despite incorporating multiple memory states, the computation of each memory state remains linear in complexity, allowing MoM to retain the linear-complexity advantage during training, while constant-complexity during inference. Our experimental results show that MoM outperforms current linear sequence models on downstream language tasks, particularly recall-intensive tasks, and even achieves performance comparable to Transformer models. The code is released at https://github.com/OpenSparseLLMs/MoM and is also released as a part of https://github.com/OpenSparseLLMs/Linear-MoE.
comment: Technical report, 18 pages
♻ ☆ SpecEdge: Scalable Edge-Assisted Serving Framework for Interactive LLMs
Large language models (LLMs) power many modern applications, but serving them at scale remains costly and resource-intensive. Current server-centric systems overlook consumer-grade GPUs at the edge. We introduce SpecEdge, an edge-assisted inference framework that splits LLM workloads between edge and server GPUs using a speculative decoding scheme, exchanging only token outputs over the network. SpecEdge employs proactive edge drafting to overlap edge token creation with server verification and pipeline-aware scheduling that interleaves multiple user requests to increase server-side throughput. Experiments show SpecEdge enhances overall cost efficiency by 1.91x through achieving 2.22x server throughput, and reduces inter token latency by 11.24% compared to a server-only baseline, introducing a scalable, cost-effective paradigm for LLM serving. The code is available at https://github.com/kaist-ina/specedge
♻ ☆ Continuous sentiment scores for literary and multilingual contexts
Sentiment Analysis is widely used to quantify sentiment in text, but its application to literary texts poses unique challenges due to figurative language, stylistic ambiguity, as well as sentiment evocation strategies. Traditional dictionary-based tools often underperform, especially for low-resource languages, and transformer models, while promising, typically output coarse categorical labels that limit fine-grained analysis. We introduce a novel continuous sentiment scoring method based on concept vector projection, trained on multilingual literary data, which more effectively captures nuanced sentiment expressions across genres, languages, and historical periods. Our approach outperforms existing tools on English and Danish texts, producing sentiment scores whose distribution closely matches human ratings, enabling more accurate analysis and sentiment arc modeling in literature.
comment: 16 pages after compiling, 3025 words, 6 figures, 5 tables and an algorithm
♻ ☆ Categorical Emotions or Appraisals - Which Emotion Model Explains Argument Convincingness Better?
The convincingness of an argument does not only depend on its structure (logos), the person who makes the argument (ethos), but also on the emotion that it causes in the recipient (pathos). While the overall intensity and categorical values of emotions in arguments have received considerable attention in the research community, we argue that the emotion an argument evokes in a recipient is subjective. It depends on the recipient's goals, standards, prior knowledge, and stance. Appraisal theories lend themselves as a link between the subjective cognitive assessment of events and emotions. They have been used in event-centric emotion analysis, but their suitability for assessing argument convincingness remains unexplored. In this paper, we evaluate whether appraisal theories are suitable for emotion analysis in arguments by considering subjective cognitive evaluations of the importance and impact of an argument on its receiver. Based on the annotations in the recently published ContArgA corpus, we perform zero-shot prompting experiments to evaluate the importance of gold-annotated and predicted emotions and appraisals for the assessment of the subjective convincingness labels. We find that, while categorical emotion information does improve convincingness prediction, the improvement is more pronounced with appraisals. This work presents the first systematic comparison between emotion models for convincingness prediction, demonstrating the advantage of appraisals, providing insights for theoretical and practical applications in computational argumentation.
♻ ☆ Artificial intelligence contribution to translation industry: looking back and forward
This study provides a comprehensive analysis of artificial intelligence (AI) contribution to research in the translation industry (ACTI), synthesizing it over forty-five years from 1980-2024. 13220 articles were retrieved from three sources, namely WoS, Scopus, and Lens; 9836 were unique records, which were used for the analysis. We provided two types of analysis, viz., scientometric and thematic, focusing on Cluster, Subject categories, Keywords, Bursts, Centrality and Research Centers as for the former. For the latter, we provided a thematic review for 18 articles, selected purposefully from the articles involved, centering on purpose, approach, findings, and contribution to ACTI future directions. This study is significant for its valuable contribution to ACTI knowledge production over 45 years, emphasizing several trending issues and hotspots including Machine translation, Statistical machine translation, Low-resource language, Large language model, Arabic dialects, Translation quality, and Neural machine translation. The findings reveal that the more AI develops, the more it contributes to translation industry, as Neural Networking Algorithms have been incorporated and Deep Language Learning Models like ChatGPT have been launched. However, much rigorous research is still needed to overcome several problems encountering translation industry, specifically concerning low-resource, multi-dialectical and free word order languages, and cultural and religious registers.
comment: 30 pages, 13 figures
♻ ☆ Spark-Prover-X1: Formal Theorem Proving Through Diverse Data Training
Large Language Models (LLMs) have shown significant promise in automated theorem proving, yet progress is often constrained by the scarcity of diverse and high-quality formal language data. To address this issue, we introduce Spark-Prover-X1, a 7B parameter model trained via an three-stage framework designed to unlock the reasoning potential of more accessible and moderately-sized LLMs. The first stage infuses deep knowledge through continuous pre-training on a broad mathematical corpus, enhanced by a suite of novel data tasks. Key innovation is a "CoT-augmented state prediction" task to achieve fine-grained reasoning. The second stage employs Supervised Fine-tuning (SFT) within an expert iteration loop to specialize both the Spark-Prover-X1-7B and Spark-Formalizer-X1-7B models. Finally, a targeted round of Group Relative Policy Optimization (GRPO) is applied to sharpen the prover's capabilities on the most challenging problems. To facilitate robust evaluation, particularly on problems from real-world examinations, we also introduce ExamFormal-Bench, a new benchmark dataset of 402 formal problems. Experimental results demonstrate that Spark-Prover achieves state-of-the-art performance among similarly-sized open-source models within the "Whole-Proof Generation" paradigm. It shows exceptional performance on difficult competition benchmarks, notably solving 27 problems on PutnamBench (pass@32) and achieving 24.0\% on CombiBench (pass@32). Our work validates that this diverse training data and progressively refined training pipeline provides an effective path for enhancing the formal reasoning capabilities of lightweight LLMs. Both Spark-Prover-X1-7B and Spark-Formalizer-X1-7B, along with the ExamFormal-Bench dataset, are made publicly available at: https://www.modelscope.cn/organization/iflytek, https://gitcode.com/ifly_opensource.
♻ ☆ Segmentation Beyond Defaults: Asymmetrical Byte Pair Encoding for Optimal Machine Translation Performance
Existing Machine Translation (MT) research often suggests a single, fixed set of hyperparameters for word segmentation models, symmetric Byte Pair Encoding (BPE), which applies the same number of merge operations (NMO) to train tokenizers for both source and target languages. However, we demonstrate that this uniform approach doesn't guarantee optimal MT performance across different language pairs and data sizes. This work investigates BPE segmentation recipes across various data volumes and language pairs to evaluate MT system performance. We find that utilizing asymmetric BPE, where the source and target languages have different NMOs, significantly improves results over the symmetric approach, especially in low-resource settings (50K, 100K, and 500K sentence pairs). Specifically, asymmetric BPE yield statistically significant ($p<0.05$) average gains of 5.32, 4.46, and 0.7 CHRF++ on English-Hindi in low-resource setups (50K, 100K, and 500K sentence pairs, respectively). We validated this trend across six additional language pairs (English and Telugu, Shona, Norwegian, Kyrgyz, Hausa, and Inuktitut), observing statistically significant improvement in 10 out of 12 systems compared to symmetric BPE. Our findings indicate a high NMO for the source (4K to 32K) and a low NMO for the target (0.5K to 2K) provides optimal results, particularly benefiting low-resource MT.
comment: Accepted at WAT 2025 (Camera-Ready Version)
♻ ☆ Next-Generation Database Interfaces: A Survey of LLM-based Text-to-SQL
Generating accurate SQL from users' natural language questions (text-to-SQL) remains a long-standing challenge due to the complexities involved in user question understanding, database schema comprehension, and SQL generation. Traditional text-to-SQL systems, which combine human engineering and deep neural networks, have made significant progress. Subsequently, pre-trained language models (PLMs) have been developed for text-to-SQL tasks, achieving promising results. However, as modern databases and user questions grow more complex, PLMs with a limited parameter size often produce incorrect SQL. This necessitates more sophisticated and tailored optimization methods, which restricts the application of PLM-based systems. Recently, large language models (LLMs) have shown significant capabilities in natural language understanding as model scale increases. Thus, integrating LLM-based solutions can bring unique opportunities, improvements, and solutions to text-to-SQL research. In this survey, we provide a comprehensive review of existing LLM-based text-to-SQL studies. Specifically, we offer a brief overview of the technical challenges and evolutionary process of text-to-SQL. Next, we introduce the datasets and metrics designed to evaluate text-to-SQL systems. Subsequently, we present a systematic analysis of recent advances in LLM-based text-to-SQL. Finally, we make a summarization and discuss the remaining challenges in this field and suggest expectations for future research directions. All the related resources of LLM-based, including research papers, benchmarks, and open-source projects, are collected for the community in our repository: https://github.com/DEEP-PolyU/Awesome-LLM-based-Text2SQL.
comment: Accepted to IEEE TKDE2025
♻ ☆ Patent Language Model Pretraining with ModernBERT
Transformer-based language models such as BERT have become foundational in NLP, yet their performance degrades in specialized domains like patents, which contain long, technical, and legally structured text. Prior approaches to patent NLP have primarily relied on fine-tuning general-purpose models or domain-adapted variants pretrained with limited data. In this work, we pretrain 3 domain-specific masked language models for patents, using the ModernBERT architecture and a curated corpus of over 60 million patent records. Our approach incorporates architectural optimizations, including FlashAttention, rotary embeddings, and GLU feed-forward layers. We evaluate our models on four downstream patent classification tasks. Our model, ModernBERT-base-PT, consistently outperforms the general-purpose ModernBERT baseline on three out of four datasets and achieves competitive performance with a baseline PatentBERT. Additional experiments with ModernBERT-base-VX and Mosaic-BERT-large demonstrate that scaling the model size and customizing the tokenizer further enhance performance on selected tasks. Notably, all ModernBERT variants retain substantially faster inference over - 3x that of PatentBERT - underscoring their suitability for time-sensitive applications. These results underscore the benefits of domain-specific pretraining and architectural improvements for patent-focused NLP tasks.
comment: 7 pages, 5 figures, 4 tables
♻ ☆ Dialetto, ma Quanto Dialetto? Transcribing and Evaluating Dialects on a Continuum NAACL 2025
There is increasing interest in looking at dialects in NLP. However, most work to date still treats dialects as discrete categories. For instance, evaluative work in variation-oriented NLP for English often works with Indian English or African-American Venacular English as homogeneous categories (Faisal et al., 2024; Ziems et al., 2023), yet even within one variety there is substantial variation. We examine within-dialect variation and show that performance critically varies within categories. We measure speech-to-text performance on Italian dialects, and empirically observe a geographical performance disparity. This disparity correlates substantially (-0.5) with linguistic similarity to the highest performing dialect variety. We cross-examine our results against dialectometry methods, and interpret the performance disparity to be due to a bias towards dialects that are more similar to the standard variety in the speech-to-text model examined. We additionally leverage geostatistical methods to predict zero-shot performance at unseen sites, and find the incorporation of geographical information to substantially improve prediction performance, indicating there to be geographical structure in the performance distribution.
comment: Published in NAACL 2025 findings
♻ ☆ OpeNLGauge: An Explainable Metric for NLG Evaluation with Open-Weights LLMs
Large Language Models (LLMs) have demonstrated great potential as evaluators of NLG systems, allowing for high-quality, reference-free, and multi-aspect assessments. However, existing LLM-based metrics suffer from two major drawbacks: reliance on proprietary models to generate training data or perform evaluations, and a lack of fine-grained, explanatory feedback. In this paper, we introduce OpeNLGauge, a fully open-source, reference-free NLG evaluation metric that provides accurate explanations based on error spans. OpeNLGauge is available as a two-stage ensemble of larger open-weight LLMs, or as a small fine-tuned evaluation model, with confirmed generalizability to unseen tasks, domains and aspects. Our extensive meta-evaluation shows that OpeNLGauge achieves competitive correlation with human judgments, outperforming state-of-the-art models on certain tasks while maintaining full reproducibility and providing explanations more than twice as accurate.
comment: INLG 2025
♻ ☆ Are We Asking the Right Questions? On Ambiguity in Natural Language Queries for Tabular Data Analysis
Natural language interfaces to tabular data must handle ambiguities inherent to queries. Instead of treating ambiguity as a deficiency, we reframe it as a feature of cooperative interaction where users are intentional about the degree to which they specify queries. We develop a principled framework based on a shared responsibility of query specification between user and system, distinguishing unambiguous and ambiguous cooperative queries, which systems can resolve through reasonable inference, from uncooperative queries that cannot be resolved. Applying the framework to evaluations for tabular question answering and analysis, we analyze the queries in 15 popular datasets, and observe an uncontrolled mixing of query types neither adequate for evaluating a system's execution accuracy nor for evaluating interpretation capabilities. This conceptualization around cooperation in resolving queries informs how to design and evaluate natural language interfaces for tabular data analysis, for which we distill concrete directions for future research and broader implications.
comment: Accepted to the AI for Tabular Data workshop at EurIPS 2025
♻ ☆ Native Design Bias: Studying the Impact of English Nativeness on Language Model Performance AACL
Large Language Models (LLMs) excel at providing information acquired during pretraining on large-scale corpora and following instructions through user prompts. This study investigates whether the quality of LLM responses varies depending on the demographic profile of users. Considering English as the global lingua franca, along with the diversity of its dialects among speakers of different native languages, we explore whether non-native English speakers receive lower-quality or even factually incorrect responses from LLMs more frequently. Our results show that performance discrepancies occur when LLMs are prompted by native versus non-native English speakers and persist when comparing native speakers from Western countries with others. Additionally, we find a strong anchoring effect when the model recognizes or is made aware of the user's nativeness, which further degrades the response quality when interacting with non-native speakers. Our analysis is based on a newly collected dataset with over 12,000 unique annotations from 124 annotators, including information on their native language and English proficiency.
comment: Accepted at ICJNLP-AACL (findings)
♻ ☆ MCTSr-Zero: Self-Reflective Psychological Counseling Dialogues Generation via Principles and Adaptive Exploration AAAI-2026
The integration of Monte Carlo Tree Search (MCTS) with Large Language Models (LLMs) has demonstrated significant success in structured, problem-oriented tasks. However, applying these methods to open-ended dialogues, such as those in psychological counseling, presents unique challenges. Unlike tasks with objective correctness, success in therapeutic conversations depends on subjective factors like empathetic engagement, ethical adherence, and alignment with human preferences, for which strict "correctness" criteria are ill-defined. Existing result-oriented MCTS approaches can therefore produce misaligned responses. To address this, we introduce MCTSr-Zero, an MCTS framework designed for open-ended, human-centric dialogues. Its core innovation is "domain alignment", which shifts the MCTS search objective from predefined end-states towards conversational trajectories that conform to target domain principles (e.g., empathy in counseling). Furthermore, MCTSr-Zero incorporates "Regeneration" and "Meta-Prompt Adaptation" mechanisms to substantially broaden exploration by allowing the MCTS to consider fundamentally different initial dialogue strategies. We evaluate MCTSr-Zero in psychological counseling by generating multi-turn dialogue data, which is used to fine-tune an LLM, PsyLLM. We also introduce PsyEval, a benchmark for assessing multi-turn psychological counseling dialogues. Experiments demonstrate that PsyLLM achieves state-of-the-art performance on PsyEval and other relevant metrics, validating MCTSr-Zero's effectiveness in generating high-quality, principle-aligned conversational data for human-centric domains and addressing the LLM challenge of consistently adhering to complex psychological standards.
comment: 48 pages, 3 figures. Accepted in AAAI-2026 (Main Technical Track). For code and model, see this https://github.com/JianChengXingYun/Mctsr-Zero
♻ ☆ In-context Language Learning for Endangered Languages in Speech Recognition
With approximately 7,000 languages spoken worldwide, current large language models (LLMs) support only a small subset. Prior research indicates LLMs can learn new languages for certain tasks without supervised data. We extend this investigation to speech recognition, investigating whether LLMs can learn unseen, low-resource languages through in-context learning (ICL). With experiments on four diverse endangered languages that LLMs have not been trained on, we find that providing more relevant text samples enhances performance in both language modelling and Automatic Speech Recognition (ASR) tasks. Furthermore, we show that the probability-based approach outperforms the traditional instruction-based approach in language learning. Lastly, we show ICL enables LLMs to achieve ASR performance that is comparable to or even surpasses dedicated language models trained specifically for these languages, while preserving the original capabilities of the LLMs. Our code is publicly available.
comment: Interspeech2025
♻ ☆ Evaluation of OpenAI o1: Opportunities and Challenges of AGI
This comprehensive study evaluates the performance of OpenAI's o1-preview large language model across a diverse array of complex reasoning tasks, spanning multiple domains, including computer science, mathematics, natural sciences, medicine, linguistics, and social sciences. Through rigorous testing, o1-preview demonstrated remarkable capabilities, often achieving human-level or superior performance in areas ranging from coding challenges to scientific reasoning and from language processing to creative problem-solving. Key findings include: -83.3% success rate in solving complex competitive programming problems, surpassing many human experts. -Superior ability in generating coherent and accurate radiology reports, outperforming other evaluated models. -100% accuracy in high school-level mathematical reasoning tasks, providing detailed step-by-step solutions. -Advanced natural language inference capabilities across general and specialized domains like medicine. -Impressive performance in chip design tasks, outperforming specialized models in areas such as EDA script generation and bug analysis. -Remarkable proficiency in anthropology and geology, demonstrating deep understanding and reasoning in these specialized fields. -Strong capabilities in quantitative investing. O1 has comprehensive financial knowledge and statistical modeling skills. -Effective performance in social media analysis, including sentiment analysis and emotion recognition. The model excelled particularly in tasks requiring intricate reasoning and knowledge integration across various fields. While some limitations were observed, including occasional errors on simpler problems and challenges with certain highly specialized concepts, the overall results indicate significant progress towards artificial general intelligence.
♻ ☆ LoopTool: Closing the Data-Training Loop for Robust LLM Tool Calls
Augmenting Large Language Models (LLMs) with external tools enables them to execute complex, multi-step tasks. However, tool learning is hampered by the static synthetic data pipelines where data generation and model training are executed as two separate, non-interactive processes. This approach fails to adaptively focus on a model's specific weaknesses and allows noisy labels to persist, degrading training efficiency. We introduce LoopTool, a fully automated, model-aware data evolution framework that closes this loop by tightly integrating data synthesis and model training. LoopTool iteratively refines both the data and the model through three synergistic modules: (1) Greedy Capability Probing (GCP) diagnoses the model's mastered and failed capabilities; (2) Judgement-Guided Label Verification (JGLV) uses an open-source judge model to find and correct annotation errors, progressively purifying the dataset; and (3) Error-Driven Data Expansion (EDDE) generates new, challenging samples based on identified failures. This closed-loop process operates within a cost-effective, open-source ecosystem, eliminating dependence on expensive closed-source APIs. Experiments show that our 8B model trained with LoopTool significantly surpasses its 32B data generator and achieves new state-of-the-art results on the BFCL-v3 and ACEBench benchmarks for its scale. Our work demonstrates that closed-loop, self-refining data pipelines can dramatically enhance the tool-use capabilities of LLMs.
comment: The code is accessible at https://github.com/Rednote-DeepExperience/LoopTool. The LoopTool-8B is accessible at https://huggingface.co/zhuiguang-ning/LoopTool-8B
♻ ☆ EvoLM: In Search of Lost Language Model Training Dynamics NeurIPS 2025
Modern language model (LM) training has been divided into multiple stages, making it difficult for downstream developers to evaluate the impact of design choices made at each stage. We present EvoLM, a model suite that enables systematic and transparent analysis of LMs' training dynamics across pre-training, continued pre-training, supervised fine-tuning, and reinforcement learning. We train over 100 LMs with 1B and 4B parameters from scratch, and evaluate both upstream (language modeling) and downstream (problem-solving) capabilities, including considerations of both in-domain and out-of-domain generalization. Key insights highlight the diminishing returns from excessive pre-training and post-training, the importance and practices of mitigating forgetting during domain-specific continued pre-training, the crucial role of continued pre-training in bridging pre-training and post-training phases, and various intricate trade-offs when configuring supervised fine-tuning and reinforcement learning. To facilitate open research and reproducibility, we release all pre-trained and post-trained models, training datasets for all stages, and our entire training and evaluation pipeline.
comment: NeurIPS 2025 (Oral)
♻ ☆ GraphInstruct: Empowering Large Language Models with Graph Understanding and Reasoning Capability
Improving the general capabilities of large language models (LLMs) is an active research topic. As a common data structure in many real-world domains, understanding graph data is a crucial part of advancing general intelligence. To this end, we propose a dynamic benchmark named GraphInstruct in this paper, which comprehensively includes 21 classical graph reasoning tasks, providing diverse graph generation pipelines and detailed intermediate reasoning steps for each sample. Based on GraphInstruct, we develop GraphSolver via efficient instruction-tuning, which demonstrates prominent graph understanding capability compared to other open-sourced LLMs. To further endow LLMs with multi-step graph reasoning capability, we propose a label-mask training strategy and build GraphSolver+, which leverages masked supervision on intermediate reasoning tokens to emphasize crucial node-identification signals. As one of the pioneering efforts to enhance the graph understanding and reasoning abilities of LLMs, extensive experiments have demonstrated the superiority of GraphSolver and GraphSolver+ over other LLMs. We sincerely hope GraphInstruct will facilitate further research on applying LLMs to graph-structured data. Our code and data are released publicly at: https://github.com/CGCL-codes/GraphInstruct.
comment: The article has been accepted by Frontiers of Computer Science (FCS), with the DOI: {10.1007/s11704-025-51382-0}
♻ ☆ CoSense-LLM: Semantics at the Edge with Cost- and Uncertainty-Aware Cloud-Edge Cooperation
We present CoSense-LLM, an edge-first framework that turns continuous multimodal sensor streams (for example Wi-Fi CSI, IMU, audio, RFID, and lightweight vision) into compact, verifiable semantic tokens and coordinates with large language models under explicit latency, energy, bandwidth, and privacy constraints. CoSense-LLM has four parts: (i) SenseFusion, a lightweight encoder that aligns sensor embeddings with language and compresses them into short discrete code sequences; (ii) Edge-RAG, a local hybrid retrieval layer that grounds generation in site specific policies and notes; (iii) PromptRouter, a cost and uncertainty aware policy that selects edge only generation, edge plus retrieval, or compact cloud escalation; and (iv) Secure Execution, an auditable redaction path that enforces data minimization so raw waveforms never leave the device. The system works with modern serving optimizations, including paged or streaming KV caches, FlashAttention style kernels, speculative decoding, and quantized LoRA adapters, and supports on device personalization and federated updates under non IID drift. Across home, office, and clinic deployments, CoSense-LLM delivers grounded explanations while meeting tight service level objectives: it sustains sub second (p95) end to end latency on edge dominant paths, reduces inter tier token and bandwidth costs by preferring local retrieval grounded responses, and preserves privacy by transmitting only discrete codes and redacted metadata. Ablations show that Edge-RAG improves factual consistency and reduces contradictions, calibrated uncertainty enables selective abstention and controlled escalations, and KV plus decoding accelerators lower energy per decision. The results support an edge first design that treats semantics, privacy, and predictable latency as co equal goals for large model deployments in interference prone environments.
comment: 19 pages,8 figures
♻ ☆ Hidden in the Noise: Unveiling Backdoors in Audio LLMs Alignment through Latent Acoustic Pattern Triggers
As Audio Large Language Models (ALLMs) emerge as powerful tools for speech processing, their safety implications demand urgent attention. While considerable research has explored textual and vision safety, audio's distinct characteristics present significant challenges. This paper first investigates: Is ALLM vulnerable to backdoor attacks exploiting acoustic triggers? In response to this issue, we introduce Hidden in the Noise (HIN), a novel backdoor attack framework designed to exploit subtle, audio-specific features. HIN applies acoustic modifications to raw audio waveforms, such as alterations to temporal dynamics and strategic injection of spectrally tailored noise. These changes introduce consistent patterns that an ALLM's acoustic feature encoder captures, embedding robust triggers within the audio stream. To evaluate ALLM robustness against audio-feature-based triggers, we develop the AudioSafe benchmark, assessing nine distinct risk types. Extensive experiments on AudioSafe and three established safety datasets reveal critical vulnerabilities in existing ALLMs: (I) audio features like environment noise and speech rate variations achieve over 90% average attack success rate. (II) ALLMs exhibit significant sensitivity differences across acoustic features, particularly showing minimal response to volume as a trigger, and (III) poisoned sample inclusion causes only marginal loss curve fluctuations, highlighting the attack's stealth.
♻ ☆ From Perception to Reasoning: Deep Thinking Empowers Multimodal Large Language Models
With the remarkable success of Multimodal Large Language Models (MLLMs) in perception tasks, enhancing their complex reasoning capabilities has emerged as a critical research focus. Existing models still suffer from challenges such as opaque reasoning paths and insufficient generalization ability. Chain-of-Thought (CoT) reasoning, which has demonstrated significant efficacy in language models by enhancing reasoning transparency and output interpretability, holds promise for improving model reasoning capabilities when extended to the multimodal domain. This paper provides a systematic review centered on "Multimodal Chain-of-Thought" (MCoT). First, it analyzes the background and theoretical motivations for its inception from the perspectives of technical evolution and task demands. Then, it introduces mainstream MCoT methods from three aspects: CoT paradigms, the post-training stage, and the inference stage, while also analyzing their underlying mechanisms. Furthermore, the paper summarizes existing evaluation benchmarks and metrics, and discusses the application scenarios of MCoT. Finally, it analyzes the challenges currently facing MCoT and provides an outlook on its future research directions.
comment: Survey; 7 figures, 3 tables, 44 pages
♻ ☆ Deep Learning and Machine Learning -- Natural Language Processing: From Theory to Application
With a focus on natural language processing (NLP) and the role of large language models (LLMs), we explore the intersection of machine learning, deep learning, and artificial intelligence. As artificial intelligence continues to revolutionize fields from healthcare to finance, NLP techniques such as tokenization, text classification, and entity recognition are essential for processing and understanding human language. This paper discusses advanced data preprocessing techniques and the use of frameworks like Hugging Face for implementing transformer-based models. Additionally, it highlights challenges such as handling multilingual data, reducing bias, and ensuring model robustness. By addressing key aspects of data processing and model fine-tuning, this work aims to provide insights into deploying effective and ethically sound AI solutions.
comment: 252 pages
♻ ☆ Predicting the Performance of Black-box LLMs through Self-Queries NeurIPS 2025
As large language models (LLMs) are increasingly relied on in AI systems, predicting when they make mistakes is crucial. While a great deal of work in the field uses internal representations to interpret model behavior, these representations are inaccessible when given solely black-box access through an API. In this paper, we extract features of LLMs in a black-box manner by using follow-up prompts and taking the probabilities of different responses as representations to train reliable predictors of model behavior. We demonstrate that training a linear model on these low-dimensional representations produces reliable and generalizable predictors of model performance at the instance level (e.g., if a particular generation correctly answers a question). Remarkably, these can often outperform white-box linear predictors that operate over a model's hidden state or the full distribution over its vocabulary. In addition, we demonstrate that these extracted features can be used to evaluate more nuanced aspects of a language model's state. For instance, they can be used to distinguish between a clean version of GPT-4o-mini and a version that has been influenced via an adversarial system prompt that answers question-answering tasks incorrectly or introduces bugs into generated code. Furthermore, they can reliably distinguish between different model architectures and sizes, enabling the detection of misrepresented models provided through an API (e.g., identifying if GPT-3.5 is supplied instead of GPT-4o-mini).
comment: NeurIPS 2025
♻ ☆ IPAD: Inverse Prompt for AI Detection - A Robust and Interpretable LLM-Generated Text Detector
Large Language Models (LLMs) have attained human-level fluency in text generation, which complicates the distinguishing between human-written and LLM-generated texts. This increases the risk of misuse and highlights the need for reliable detectors. Yet, existing detectors exhibit poor robustness on out-of-distribution (OOD) data and attacked data, which is critical for real-world scenarios. Also, they struggle to provide interpretable evidence to support their decisions, thus undermining the reliability. In light of these challenges, we propose IPAD (Inverse Prompt for AI Detection), a novel framework consisting of a Prompt Inverter that identifies predicted prompts that could have generated the input text, and two Distinguishers that examine the probability that the input texts align with the predicted prompts. Empirical evaluations demonstrate that IPAD outperforms the strongest baselines by 9.05% (Average Recall) on in-distribution data, 12.93% (AUROC) on out-of-distribution data, and 5.48% (AUROC) on attacked data. IPAD also performs robustly on structured datasets. Furthermore, an interpretability assessment is conducted to illustrate that IPAD enhances the AI detection trustworthiness by allowing users to directly examine the decision-making evidence, which provides interpretable support for its state-of-the-art detection results.
♻ ☆ Crossing Borders: A Multimodal Challenge for Indian Poetry Translation and Image Generation
Indian poetry, known for its linguistic complexity and deep cultural resonance, has a rich and varied heritage spanning thousands of years. However, its layered meanings, cultural allusions, and sophisticated grammatical constructions often pose challenges for comprehension, especially for non-native speakers or readers unfamiliar with its context and language. Despite its cultural significance, existing works on poetry have largely overlooked Indian language poems. In this paper, we propose the Translation and Image Generation (TAI) framework, leveraging Large Language Models (LLMs) and Latent Diffusion Models through appropriate prompt tuning. Our framework supports the United Nations Sustainable Development Goals of Quality Education (SDG 4) and Reduced Inequalities (SDG 10) by enhancing the accessibility of culturally rich Indian-language poetry to a global audience. It includes (1) a translation module that uses an Odds Ratio Preference Alignment Algorithm to accurately translate morphologically rich poetry into English, and (2) an image generation module that employs a semantic graph to capture tokens, dependencies, and semantic relationships between metaphors and their meanings, to create visually meaningful representations of Indian poems. Our comprehensive experimental evaluation, including both human and quantitative assessments, demonstrates the superiority of TAI Diffusion in poem image generation tasks, outperforming strong baselines. To further address the scarcity of resources for Indian-language poetry, we introduce the Morphologically Rich Indian Language Poems MorphoVerse Dataset, comprising 1,570 poems across 21 low-resource Indian languages. By addressing the gap in poetry translation and visual comprehension, this work aims to broaden accessibility and enrich the reader's experience.
♻ ☆ KnowCoder-A1: Incentivizing Agentic Reasoning Capability with Outcome Supervision for KBQA
Knowledge Base Question Answering (KBQA) aims to answer natural-language questions over a structured Knowledge Base (KB). Recent work improves KBQA by adopting an agentic reasoning paradigm, in which Large Language Models (LLMs) iteratively decompose a question, generate its corresponding logical queries, and interact with the KB to derive the answer. However, these methods typically fine-tune LLMs on reasoning trajectories synthesized via process supervision, which offers weak incentives for exploration and thus fails to strengthen the agentic reasoning ability. In this paper, we propose KnowCoder-A1, an LLM that can autonomously perform agentic reasoning on KBs to obtain answers. To incentivize autonomous exploration, KnowCoder-A1 trains the LLM under outcome-only supervision via a multi-stage curriculum reinforcement learning with an easy-to-hard curriculum. To establish foundational agentic capabilities, KnowCoder-A1 first fine-tunes the LLM on a small set of high-quality trajectories obtained through outcome-based rejection sampling. Then, to alleviate the reward sparsity inherent in outcome-only supervision, it applies multi-stage curriculum RL with reward schedules that progress from easy to hard. Trained with outcome-only supervision, KnowCoder-A1 exhibits powerful reasoning behaviors and consistently outperforms prior approaches across three mainstream datasets. Notably, on the zero-shot subset of GrailQA, KnowCoder-A1 achieves up to an 11.1% relative improvement while using only one-twelfth of the training data, demonstrating strong agentic reasoning capabilities.
♻ ☆ AgentArmor: Enforcing Program Analysis on Agent Runtime Trace to Defend Against Prompt Injection
Large Language Model (LLM) agents offer a powerful new paradigm for solving various problems by combining natural language reasoning with the execution of external tools. However, their dynamic and non-transparent behavior introduces critical security risks, particularly in the presence of prompt injection attacks. In this work, we propose a novel insight that treats the agent runtime traces as structured programs with analyzable semantics. Thus, we present AgentArmor, a program analysis framework that converts agent traces into graph intermediate representation-based structured program dependency representations (e.g., CFG, DFG, and PDG) and enforces security policies via a type system. AgentArmor consists of three key components: (1) a graph constructor that reconstructs the agent's runtime traces as graph-based intermediate representations with control and data flow described within; (2) a property registry that attaches security-relevant metadata of interacted tools \& data, and (3) a type system that performs static inference and checking over the intermediate representation. By representing agent behavior as structured programs, AgentArmor enables program analysis for sensitive data flow, trust boundaries, and policy violations. We evaluate AgentArmor on the AgentDojo benchmark, the results show that AgentArmor can reduce the ASR to 3\%, with the utility drop only 1\%.
♻ ☆ Iris: Integrating Language into Diffusion-based Monocular Depth Estimation
Traditional monocular depth estimation suffers from inherent ambiguity and visual nuisances. We demonstrate that language can enhance monocular depth estimation by providing an additional condition (rather than images alone) aligned with plausible 3D scenes, thereby reducing the solution space for depth estimation. This conditional distribution is learned during the text-to-image pre-training of diffusion models. To generate images under various viewpoints and layouts that precisely reflect textual descriptions, the model implicitly models object sizes, shapes, and scales, their spatial relationships, and the overall scene structure. In this paper, Iris, we investigate the benefits of our strategy to integrate text descriptions into training and inference of diffusion-based depth estimation models. We experiment with three different diffusion-based monocular depth estimators (Marigold, Lotus, and E2E-FT) and their variants. By training on HyperSim and Virtual KITTI, and evaluating on NYUv2, KITTI, ETH3D, ScanNet, and DIODE, we find that our strategy improves the overall monocular depth estimation accuracy, especially in small areas. It also improves the model's depth perception of specific regions described in the text. We find that by providing more details in the text, the depth prediction can be iteratively refined. Simultaneously, we find that language can act as a constraint to accelerate the convergence of both training and the inference diffusion trajectory. Code and generated text data will be released upon acceptance.
♻ ☆ Do Retrieval Augmented Language Models Know When They Don't Know? AAAI 2026
Existing large language models (LLMs) occasionally generate plausible yet factually incorrect responses, known as hallucinations. Two main approaches have been proposed to mitigate hallucinations: retrieval-augmented language models (RALMs) and refusal post-training. However, current research predominantly focuses on their individual effectiveness while overlooking the evaluation of the refusal capability of RALMs. Ideally, if RALMs know when they do not know, they should refuse to answer.In this study, we ask the fundamental question: Do RALMs know when they don't know? Specifically, we investigate three questions. First, are RALMs well calibrated with respect to different internal and external knowledge states? We examine the influence of various factors. Contrary to expectations, when all retrieved documents are irrelevant, RALMs still tend to refuse questions they could have answered correctly. Next, given the model's pronounced \textbf{over-refusal} behavior, we raise a second question: How does a RALM's refusal ability align with its calibration quality? Our results show that the over-refusal problem can be mitigated through in-context fine-tuning. However, we observe that improved refusal behavior does not necessarily imply better calibration or higher overall accuracy. Finally, we ask: Can we combine refusal-aware RALMs with uncertainty-based answer abstention to mitigate over-refusal? We develop a simple yet effective refusal mechanism for refusal-post-trained RALMs that improves their overall answer quality by balancing refusal and correct answers. Our study provides a more comprehensive understanding of the factors influencing RALM behavior. Meanwhile, we emphasize that uncertainty estimation for RALMs remains an open problem deserving deeper investigation.
comment: AAAI 2026 camera ready version. Extended version with Appendix is coming soon
♻ ☆ Anti-adversarial Learning: Desensitizing Prompts for Large Language Models AAAI 2026
With the widespread use of LLMs, preserving privacy in user prompts has become crucial, as prompts risk exposing privacy and sensitive data to the cloud LLMs. Traditional techniques like homomorphic encryption, secure multi-party computation, and federated learning face challenges due to heavy computational costs and user participation requirements, limiting their applicability in LLM scenarios. In this paper, we propose PromptObfus, a novel method for desensitizing LLM prompts. The core idea of PromptObfus is "anti-adversarial" learning, which perturbs privacy words in the prompt to obscure sensitive information while retaining the stability of model predictions. Specifically, PromptObfus frames prompt desensitization as a masked language modeling task, replacing privacy-sensitive terms with a [MASK] token. A desensitization model is trained to generate candidate replacements for each masked position. These candidates are subsequently selected based on gradient feedback from a surrogate model, ensuring minimal disruption to the task output. We demonstrate the effectiveness of our approach on three NLP tasks. Results show that PromptObfus effectively prevents privacy inference from remote LLMs while preserving task performance.
comment: Accepted to AAAI 2026
♻ ☆ NAIST Academic Travelogue Dataset
We have constructed NAIST Academic Travelogue Dataset (ATD) and released it free of charge for academic research. This dataset is a Japanese text dataset with a total of over 31 million words, comprising 4,672 Japanese domestic travelogues and 9,607 overseas travelogues. Before providing our dataset, there was a scarcity of widely available travelogue data for research purposes, and each researcher had to prepare their own data. This hinders the replication of existing studies and fair comparative analysis of experimental results. Our dataset enables any researchers to conduct investigation on the same data and to ensure transparency and reproducibility in research. In this paper, we describe the academic significance, characteristics, and prospects of our dataset.
comment: Updated version with revised manuscript
♻ ☆ Beyond Benchmark: LLMs Evaluation with an Anthropomorphic and Value-oriented Roadmap
For Large Language Models (LLMs), a disconnect persists between benchmark performance and real-world utility. Current evaluation frameworks remain fragmented, prioritizing technical metrics while neglecting holistic assessment for deployment. This survey introduces an anthropomorphic evaluation paradigm through the lens of human intelligence, proposing a novel three-dimensional taxonomy: Intelligence Quotient (IQ)-General Intelligence for foundational capacity, Emotional Quotient (EQ)-Alignment Ability for value-based interactions, and Professional Quotient (PQ)-Professional Expertise for specialized proficiency. For practical value, we pioneer a Value-oriented Evaluation (VQ) framework assessing economic viability, social impact, ethical alignment, and environmental sustainability. Our modular architecture integrates six components with an implementation roadmap. Through analysis of 200+ benchmarks, we identify key challenges including dynamic assessment needs and interpretability gaps. It provides actionable guidance for developing LLMs that are technically proficient, contextually relevant, and ethically sound. We maintain a curated repository of open-source evaluation resources at: https://github.com/onejune2018/Awesome-LLM-Eval.
comment: Preprint. Under Review
♻ ☆ PromptGuard at BLP-2025 Task 1: A Few-Shot Classification Framework Using Majority Voting and Keyword Similarity for Bengali Hate Speech Detection AACL
The BLP-2025 Task 1A requires Bengali hate speech classification into six categories. Traditional supervised approaches need extensive labeled datasets that are expensive for low-resource languages. We developed PromptGuard, a few-shot framework combining chi-square statistical analysis for keyword extraction with adaptive majority voting for decision-making. We explore statistical keyword selection versus random approaches and adaptive voting mechanisms that extend classification based on consensus quality. Chi-square keywords provide consistent improvements across categories, while adaptive voting benefits ambiguous cases requiring extended classification rounds. PromptGuard achieves a micro-F1 of 67.61, outperforming n-gram baselines (60.75) and random approaches (14.65). Ablation studies confirm chi-square-based keywords show the most consistent impact across all categories.
comment: Accepted to BLP at AACL-IJCNLP 2025
♻ ☆ Scaling Textual Gradients via Sampling-Based Momentum
LLM-based prompt optimization, that uses LLM-provided "textual gradients" (feedback) to refine prompts, has emerged an effective method for automatic prompt engineering. However, its scalability and stability are unclear when using more data in training. We systematically investigate the potential and challenges of scaling training data in textual gradient descent. We show that naively scaling training examples is infeasible due to both explicit context-length limits and an implicit context wall, where long-context degradation yields diminishing returns. Inspired by prior wisdom in stochastic gradient descent, we propose Textual Stochastic Gradient Descent with Momentum (TSGD-M), which reweights updates through momentum sampling, using bootstrapped minibatch validation accuracy as importance weights over historical prompts. We introduce Gumbel-Top-$k$ sampling for prompt generation, balancing exploration--exploitation and improving sampling efficiency while maintaining a low-variance running mean estimator. TSGD-M integrates seamlessly into existing prompt optimization frameworks, including TextGrad, DSPy-COPRO, and AdalFlow, and achieves consistent gains across 5 benchmarks.
Artificial Intelligence
☆ ARC Is a Vision Problem!
The Abstraction and Reasoning Corpus (ARC) is designed to promote research on abstract reasoning, a fundamental aspect of human intelligence. Common approaches to ARC treat it as a language-oriented problem, addressed by large language models (LLMs) or recurrent reasoning models. However, although the puzzle-like tasks in ARC are inherently visual, existing research has rarely approached the problem from a vision-centric perspective. In this work, we formulate ARC within a vision paradigm, framing it as an image-to-image translation problem. To incorporate visual priors, we represent the inputs on a "canvas" that can be processed like natural images. It is then natural for us to apply standard vision architectures, such as a vanilla Vision Transformer (ViT), to perform image-to-image mapping. Our model is trained from scratch solely on ARC data and generalizes to unseen tasks through test-time training. Our framework, termed Vision ARC (VARC), achieves 60.4% accuracy on the ARC-1 benchmark, substantially outperforming existing methods that are also trained from scratch. Our results are competitive with those of leading LLMs and close the gap to average human performance.
comment: Technical Report. Project webpage: https://github.com/lillian039/VARC
☆ Heterogeneous Multi-Agent Proximal Policy Optimization for Power Distribution System Restoration
Restoring power distribution systems (PDS) after large-scale outages requires sequential switching operations that reconfigure feeder topology and coordinate distributed energy resources (DERs) under nonlinear constraints such as power balance, voltage limits, and thermal ratings. These challenges make conventional optimization and value-based RL approaches computationally inefficient and difficult to scale. This paper applies a Heterogeneous-Agent Reinforcement Learning (HARL) framework, instantiated through Heterogeneous-Agent Proximal Policy Optimization (HAPPO), to enable coordinated restoration across interconnected microgrids. Each agent controls a distinct microgrid with different loads, DER capacities, and switch counts, introducing practical structural heterogeneity. Decentralized actor policies are trained with a centralized critic to compute advantage values for stable on-policy updates. A physics-informed OpenDSS environment provides full power flow feedback and enforces operational limits via differentiable penalty signals rather than invalid action masking. The total DER generation is capped at 2400 kW, and each microgrid must satisfy local supply-demand feasibility. Experiments on the IEEE 123-bus and IEEE 8500-node systems show that HAPPO achieves faster convergence, higher restored power, and smoother multi-seed training than DQN, PPO, MAES, MAGDPG, MADQN, Mean-Field RL, and QMIX. Results demonstrate that incorporating microgrid-level heterogeneity within the HARL framework yields a scalable, stable, and constraint-aware solution for complex PDS restoration.
comment: 6 pages, 4 figures, TPEC 2025 Conference
☆ Automated proving in planar geometry based on the complex number identity method and elimination
We improve the complex number identity proving method to a fully automated procedure, based on elimination ideals. By using declarative equations or rewriting each real-relational hypothesis $h_i$ to $h_i-r_i$, and the thesis $t$ to $t-r$, clearing the denominators and introducing an extra expression with a slack variable, we eliminate all free and relational point variables. From the obtained ideal $I$ in $\mathbb{Q}[r,r_1,r_2,\ldots]$ we can find a conclusive result. It plays an important role that if $r_1,r_2,\ldots$ are real, $r$ must also be real if there is a linear polynomial $p(r)\in I$, unless division by zero occurs when expressing $r$. Our results are presented in Mathematica, Maple and in a new version of the Giac computer algebra system. Finally, we present a prototype of the automated procedure in an experimental version of the dynamic geometry software GeoGebra.
comment: 15 pages, 4 figures
☆ Zero-shot Synthetic Video Realism Enhancement via Structure-aware Denoising
We propose an approach to enhancing synthetic video realism, which can re-render synthetic videos from a simulator in photorealistic fashion. Our realism enhancement approach is a zero-shot framework that focuses on preserving the multi-level structures from synthetic videos into the enhanced one in both spatial and temporal domains, built upon a diffusion video foundational model without further fine-tuning. Specifically, we incorporate an effective modification to have the generation/denoising process conditioned on estimated structure-aware information from the synthetic video, such as depth maps, semantic maps, and edge maps, by an auxiliary model, rather than extracting the information from a simulator. This guidance ensures that the enhanced videos are consistent with the original synthetic video at both the structural and semantic levels. Our approach is a simple yet general and powerful approach to enhancing synthetic video realism: we show that our approach outperforms existing baselines in structural consistency with the original video while maintaining state-of-the-art photorealism quality in our experiments.
comment: Project Page: https://wyf0824.github.io/Video_Realism_Enhancement/
☆ \textit{FLARE}: Adaptive Multi-Dimensional Reputation for Robust Client Reliability in Federated Learning
Federated learning (FL) enables collaborative model training while preserving data privacy. However, it remains vulnerable to malicious clients who compromise model integrity through Byzantine attacks, data poisoning, or adaptive adversarial behaviors. Existing defense mechanisms rely on static thresholds and binary classification, failing to adapt to evolving client behaviors in real-world deployments. We propose FLARE, an adaptive reputation-based framework that transforms client reliability assessment from binary decisions to a continuous, multi-dimensional trust evaluation. FLARE integrates: (i) a multi-dimensional reputation score capturing performance consistency, statistical anomaly indicators, and temporal behavior, (ii) a self-calibrating adaptive threshold mechanism that adjusts security strictness based on model convergence and recent attack intensity, (iii) reputation-weighted aggregation with soft exclusion to proportionally limit suspicious contributions rather than eliminating clients outright, and (iv) a Local Differential Privacy (LDP) mechanism enabling reputation scoring on privatized client updates. We further introduce a highly evasive Statistical Mimicry (SM) attack, a benchmark adversary that blends honest gradients with synthetic perturbations and persistent drift to remain undetected by traditional filters. Extensive experiments with 100 clients on MNIST, CIFAR-10, and SVHN demonstrate that FLARE maintains high model accuracy and converges faster than state-of-the-art Byzantine-robust methods under diverse attack types, including label flipping, gradient scaling, adaptive attacks, ALIE, and SM. FLARE improves robustness by up to 16% and preserves model convergence within 30% of the non-attacked baseline, while achieving strong malicious-client detection performance with minimal computational overhead. https://github.com/Anonymous0-0paper/FLARE
comment: Under Review
☆ Seeing Beyond the Image: ECG and Anatomical Knowledge-Guided Myocardial Scar Segmentation from Late Gadolinium-Enhanced Images
Accurate segmentation of myocardial scar from late gadolinium enhanced (LGE) cardiac MRI is essential for evaluating tissue viability, yet remains challenging due to variable contrast and imaging artifacts. Electrocardiogram (ECG) signals provide complementary physiological information, as conduction abnormalities can help localize or suggest scarred myocardial regions. In this work, we propose a novel multimodal framework that integrates ECG-derived electrophysiological information with anatomical priors from the AHA-17 atlas for physiologically consistent LGE-based scar segmentation. As ECGs and LGE-MRIs are not acquired simultaneously, we introduce a Temporal Aware Feature Fusion (TAFF) mechanism that dynamically weights and fuses features based on their acquisition time difference. Our method was evaluated on a clinical dataset and achieved substantial gains over the state-of-the-art image-only baseline (nnU-Net), increasing the average Dice score for scars from 0.6149 to 0.8463 and achieving high performance in both precision (0.9115) and sensitivity (0.9043). These results show that integrating physiological and anatomical knowledge allows the model to "see beyond the image", setting a new direction for robust and physiologically grounded cardiac scar segmentation.
☆ Near-Lossless Model Compression Enables Longer Context Inference in DNA Large Language Models
Trained on massive cross-species DNA corpora, DNA large language models (LLMs) learn the fundamental "grammar" and evolutionary patterns of genomic sequences. This makes them powerful priors for DNA sequence modeling, particularly over long ranges. However, two major constraints hinder their use in practice: the quadratic computational cost of self-attention and the growing memory required for key-value (KV) caches during autoregressive decoding. These constraints force the use of heuristics such as fixed-window truncation or sliding windows, which compromise fidelity on ultra-long sequences by discarding distant information. We introduce FOCUS (Feature-Oriented Compression for Ultra-long Self-attention), a progressive context-compression module that can be plugged into pretrained DNA LLMs. FOCUS combines the established k-mer representation in genomics with learnable hierarchical compression: it inserts summary tokens at k-mer granularity and progressively compresses attention key and value activations across multiple Transformer layers, retaining only the summary KV states across windows while discarding ordinary-token KV. A shared-boundary windowing scheme yields a stationary cross-window interface that propagates long-range information with minimal loss. We validate FOCUS on an Evo-2-based DNA LLM fine-tuned on GRCh38 chromosome 1 with self-supervised training and randomized compression schedules to promote robustness across compression ratios. On held-out human chromosomes, FOCUS achieves near-lossless fidelity: compressing a 1 kb context into only 10 summary tokens (about 100x) shifts the average per-nucleotide probability by only about 0.0004. Compared to a baseline without compression, FOCUS reduces KV-cache memory and converts effective inference scaling from O(N^2) to near-linear O(N), enabling about 100x longer inference windows on commodity GPUs with near-lossless fidelity.
☆ Attention via Synaptic Plasticity is All You Need: A Biologically Inspired Spiking Neuromorphic Transformer
Attention is the brain's ability to selectively focus on a few specific aspects while ignoring irrelevant ones. This biological principle inspired the attention mechanism in modern Transformers. Transformers now underpin large language models (LLMs) such as GPT, but at the cost of massive training and inference energy, leading to a large carbon footprint. While brain attention emerges from neural circuits, Transformer attention relies on dot-product similarity to weight elements in the input sequence. Neuromorphic computing, especially spiking neural networks (SNNs), offers a brain-inspired path to energy-efficient intelligence. Despite recent work on attention-based spiking Transformers, the core attention layer remains non-neuromorphic. Current spiking attention (i) relies on dot-product or element-wise similarity suited to floating-point operations, not event-driven spikes; (ii) keeps attention matrices that suffer from the von Neumann bottleneck, limiting in-memory computing; and (iii) still diverges from brain-like computation. To address these issues, we propose the Spiking STDP Transformer (S$^{2}$TDPT), a neuromorphic Transformer that implements self-attention through spike-timing-dependent plasticity (STDP), embedding query--key correlations in synaptic weights. STDP, a core mechanism of memory and learning in the brain and widely studied in neuromorphic devices, naturally enables in-memory computing and supports non-von Neumann hardware. On CIFAR-10 and CIFAR-100, our model achieves 94.35\% and 78.08\% accuracy with only four timesteps and 0.49 mJ on CIFAR-100, an 88.47\% energy reduction compared to a standard ANN Transformer. Grad-CAM shows that the model attends to semantically relevant regions, enhancing interpretability. Overall, S$^{2}$TDPT illustrates how biologically inspired attention can yield energy-efficient, hardware-friendly, and explainable neuromorphic models.
comment: 21 Pages, 5 Figures, 3 Table
☆ Impact of Image Resolution on Age Estimation with DeepFace and InsightFace
Automatic age estimation is widely used for age verification, where input images often vary considerably in resolution. This study evaluates the effect of image resolution on age estimation accuracy using DeepFace and InsightFace. A total of 1000 images from the IMDB-Clean dataset were processed in seven resolutions, resulting in 7000 test samples. Performance was evaluated using Mean Absolute Error (MAE), Standard Deviation (SD), and Median Absolute Error (MedAE). Based on this study, we conclude that input image resolution has a clear and consistent impact on the accuracy of age estimation in both DeepFace and InsightFace. Both frameworks achieve optimal performance at 224x224 pixels, with an MAE of 10.83 years (DeepFace) and 7.46 years (InsightFace). At low resolutions, MAE increases substantially, while very high resolutions also degrade accuracy. InsightFace is consistently faster than DeepFace across all resolutions.
comment: 6 pages, 7 figures, 7 tables. Evaluation of DeepFace and InsightFace age estimation across seven image resolutions (64 to 1080 px)
☆ Ground Truth Generation for Multilingual Historical NLP using LLMs
Historical and low-resource NLP remains challenging due to limited annotated data and domain mismatches with modern, web-sourced corpora. This paper outlines our work in using large language models (LLMs) to create ground-truth annotations for historical French (16th-20th centuries) and Chinese (1900-1950) texts. By leveraging LLM-generated ground truth on a subset of our corpus, we were able to fine-tune spaCy to achieve significant gains on period-specific tests for part-of-speech (POS) annotations, lemmatization, and named entity recognition (NER). Our results underscore the importance of domain-specific models and demonstrate that even relatively limited amounts of synthetic data can improve NLP tools for under-resourced corpora in computational humanities research.
comment: 13 pages, 5 tables, 1 figure
☆ SkillGen: Learning Domain Skills for In-Context Sequential Decision Making
Large language models (LLMs) are increasingly applied to sequential decision-making through in-context learning (ICL), yet their effectiveness is highly sensitive to prompt quality. Effective prompts should meet three principles: focus on decision-critical information, provide step-level granularity, and minimize reliance on expert annotations through label efficiency. However, existing ICL methods often fail to satisfy all three criteria simultaneously. Motivated by these challenges, we introduce SkillGen, a skill-based ICL framework for structured sequential reasoning. It constructs an action-centric, domain-level graph from sampled trajectories, identifies high-utility actions via temporal-difference credit assignment, and retrieves step-wise skills to generate fine-grained, context-aware prompts. We further present a theoretical analysis showing that focusing on high-utility segments supports task identifiability and informs more effective ICL prompt design. Experiments on ALFWorld, BabyAI, and ScienceWorld, using both open-source and proprietary LLMs, show that SkillGen achieves consistent gains, improving progress rate by 5.9%-16.5% on average across models.
☆ NORA-1.5: A Vision-Language-Action Model Trained using World Model- and Action-based Preference Rewards
Vision--language--action (VLA) models have recently shown promising performance on a variety of embodied tasks, yet they still fall short in reliability and generalization, especially when deployed across different embodiments or real-world environments. In this work, we introduce NORA-1.5, a VLA model built from the pre-trained NORA backbone by adding to it a flow-matching-based action expert. This architectural enhancement alone yields substantial performance gains, enabling NORA-1.5 to outperform NORA and several state-of-the-art VLA models across both simulated and real-world benchmarks. To further improve robustness and task success, we develop a set of reward models for post-training VLA policies. Our rewards combine (i) an action-conditioned world model (WM) that evaluates whether generated actions lead toward the desired goal, and (ii) a deviation-from-ground-truth heuristic that distinguishes good actions from poor ones. Using these reward signals, we construct preference datasets and adapt NORA-1.5 to target embodiments through direct preference optimization (DPO). Extensive evaluations show that reward-driven post-training consistently improves performance in both simulation and real-robot settings, demonstrating significant VLA model-reliability gains through simple yet effective reward models. Our findings highlight NORA-1.5 and reward-guided post-training as a viable path toward more dependable embodied agents suitable for real-world deployment.
comment: https://declare-lab.github.io/nora-1.5
☆ Improving segmentation of retinal arteries and veins using cardiac signal in doppler holograms
Doppler holography is an emerging retinal imaging technique that captures the dynamic behavior of blood flow with high temporal resolution, enabling quantitative assessment of retinal hemodynamics. This requires accurate segmentation of retinal arteries and veins, but traditional segmentation methods focus solely on spatial information and overlook the temporal richness of holographic data. In this work, we propose a simple yet effective approach for artery-vein segmentation in temporal Doppler holograms using standard segmentation architectures. By incorporating features derived from a dedicated pulse analysis pipeline, our method allows conventional U-Nets to exploit temporal dynamics and achieve performance comparable to more complex attention- or iteration-based models. These findings demonstrate that time-resolved preprocessing can unlock the full potential of deep learning for Doppler holography, opening new perspectives for quantitative exploration of retinal hemodynamics. The dataset is publicly available at https://huggingface.co/datasets/DigitalHolography/
comment: 5 pages, 3 figures, 1 table. Submitted to ISBI2026
☆ AutoTool: Efficient Tool Selection for Large Language Model Agents AAAI 2026
Large Language Model (LLM) agents have emerged as powerful tools for automating complex tasks by leveraging the reasoning and decision-making abilities of LLMs. However, a major bottleneck in current agent frameworks lies in the high inference cost of tool selection, especially in approaches like ReAct that repeatedly invoke the LLM to determine which tool to use at each step. In this work, we propose AutoTool, a novel graph-based framework that bypasses repeated LLM inference by exploiting a key empirical observation: tool usage inertia - the tendency of tool invocations to follow predictable sequential patterns. AutoTool constructs a directed graph from historical agent trajectories, where nodes represent tools and edges capture transition probabilities, effectively modeling the inertia in tool selection. It further integrates parameter-level information to refine tool input generation. By traversing this structured representation, AutoTool efficiently selects tools and their parameters with minimal reliance on LLM inference. Extensive experiments across diverse agent tasks demonstrate that AutoTool reduces inference costs by up to 30% while maintaining competitive task completion rates, offering a practical and scalable enhancement for inference-heavy frameworks. Our work highlights the promise of integrating statistical structure into LLM agent design for greater efficiency without sacrificing performance.
comment: Accepted by AAAI 2026, 18 pages, 11 figures, Code: https://github.com/jiajingyyyyyy/AutoTool
☆ Adapformer: Adaptive Channel Management for Multivariate Time Series Forecasting
In multivariate time series forecasting (MTSF), accurately modeling the intricate dependencies among multiple variables remains a significant challenge due to the inherent limitations of traditional approaches. Most existing models adopt either \textbf{channel-independent} (CI) or \textbf{channel-dependent} (CD) strategies, each presenting distinct drawbacks. CI methods fail to leverage the potential insights from inter-channel interactions, resulting in models that may not fully exploit the underlying statistical dependencies present in the data. Conversely, CD approaches often incorporate too much extraneous information, risking model overfitting and predictive inefficiency. To address these issues, we introduce the Adaptive Forecasting Transformer (\textbf{Adapformer}), an advanced Transformer-based framework that merges the benefits of CI and CD methodologies through effective channel management. The core of Adapformer lies in its dual-stage encoder-decoder architecture, which includes the \textbf{A}daptive \textbf{C}hannel \textbf{E}nhancer (\textbf{ACE}) for enriching embedding processes and the \textbf{A}daptive \textbf{C}hannel \textbf{F}orecaster (\textbf{ACF}) for refining the predictions. ACE enhances token representations by selectively incorporating essential dependencies, while ACF streamlines the decoding process by focusing on the most relevant covariates, substantially reducing noise and redundancy. Our rigorous testing on diverse datasets shows that Adapformer achieves superior performance over existing models, enhancing both predictive accuracy and computational efficiency, thus making it state-of-the-art in MTSF.
☆ Enhancing Agentic Autonomous Scientific Discovery with Vision-Language Model Capabilities
We show that multi-agent systems guided by vision-language models (VLMs) improve end-to-end autonomous scientific discovery. By treating plots as verifiable checkpoints, a VLM-as-a-judge evaluates figures against dynamically generated domain-specific rubrics, enabling agents to correct their own errors and steer exploratory data analysis in real-time. Case studies in cosmology and astrochemistry demonstrate recovery from faulty reasoning paths and adaptation to new datasets without human intervention. On a 10-task benchmark for data-driven discovery, VLM-augmented systems achieve pass at 1 scores of 0.7-0.8, compared to 0.2-0.3 for code-only and 0.4-0.5 for code-and-text baselines, while also providing auditable reasoning traces that improve interpretability. Code available here: https://github.com/CMBAgents/cmbagent
☆ Failure to Mix: Large language models struggle to answer according to desired probability distributions
Scientific idea generation and selection requires exploration following a target probability distribution. In contrast, current AI benchmarks have objectively correct answers, and training large language models (LLMs) via reinforcement learning against these benchmarks discourages probabilistic exploration. Here, we conducted systematic experiments requesting LLMs to produce outputs following simple probabilistic distributions, and found that all modern LLMs tested grossly fail to follow the distributions. For example, requesting a binary output of "1" 49% of the time produces an answer of "0" nearly 100% of the time. This step function-like behavior of near-exclusively generating the output with marginally highest probability even overrules even strong in-built LLM biases.
comment: 13 pages, 6 figures. Code and reproducibility package: https://github.com/BiostateAIresearch/failure-to-mix
☆ Active Matter as a framework for living systems-inspired Robophysics
Robophysics investigates the physical principles that govern living-like robots operating in complex, realworld environments. Despite remarkable technological advances, robots continue to face fundamental efficiency limitations. At the level of individual units, locomotion remains a challenge, while at the collective level, robot swarms struggle to achieve shared purpose, coordination, communication, and cost efficiency. This perspective article examines the key challenges faced by bio-inspired robotic collectives and highlights recent research efforts that incorporate principles from active-matter physics and biology into the modeling and design of robot swarms.
☆ Expert-Guided POMDP Learning for Data-Efficient Modeling in Healthcare
Learning the parameters of Partially Observable Markov Decision Processes (POMDPs) from limited data is a significant challenge. We introduce the Fuzzy MAP EM algorithm, a novel approach that incorporates expert knowledge into the parameter estimation process by enriching the Expectation Maximization (EM) framework with fuzzy pseudo-counts derived from an expert-defined fuzzy model. This integration naturally reformulates the problem as a Maximum A Posteriori (MAP) estimation, effectively guiding learning in environments with limited data. In synthetic medical simulations, our method consistently outperforms the standard EM algorithm under both low-data and high-noise conditions. Furthermore, a case study on Myasthenia Gravis illustrates the ability of the Fuzzy MAP EM algorithm to recover a clinically coherent POMDP, demonstrating its potential as a practical tool for data-efficient modeling in healthcare.
☆ A Method for Characterizing Disease Progression from Acute Kidney Injury to Chronic Kidney Disease
Patients with acute kidney injury (AKI) are at high risk of developing chronic kidney disease (CKD), but identifying those at greatest risk remains challenging. We used electronic health record (EHR) data to dynamically track AKI patients' clinical evolution and characterize AKI-to-CKD progression. Post-AKI clinical states were identified by clustering patient vectors derived from longitudinal medical codes and creatinine measurements. Transition probabilities between states and progression to CKD were estimated using multi-state modeling. After identifying common post-AKI trajectories, CKD risk factors in AKI subpopulations were identified through survival analysis. Of 20,699 patients with AKI at admission, 3,491 (17%) developed CKD. We identified fifteen distinct post-AKI states, each with different probabilities of CKD development. Most patients (75%, n=15,607) remained in a single state or made only one transition during the study period. Both established (e.g., AKI severity, diabetes, hypertension, heart failure, liver disease) and novel CKD risk factors, with their impact varying across these clinical states. This study demonstrates a data-driven approach for identifying high-risk AKI patients, supporting the development of decision-support tools for early CKD detection and intervention.
☆ MRI Embeddings Complement Clinical Predictors for Cognitive Decline Modeling in Alzheimer's Disease Cohorts SP
Accurate modeling of cognitive decline in Alzheimer's disease is essential for early stratification and personalized management. While tabular predictors provide robust markers of global risk, their ability to capture subtle brain changes remains limited. In this study, we evaluate the predictive contributions of tabular and imaging-based representations, with a focus on transformer-derived Magnetic Resonance Imaging (MRI) embeddings. We introduce a trajectory-aware labeling strategy based on Dynamic Time Warping clustering to capture heterogeneous patterns of cognitive change, and train a 3D Vision Transformer (ViT) via unsupervised reconstruction on harmonized and augmented MRI data to obtain anatomy-preserving embeddings without progression labels. The pretrained encoder embeddings are subsequently assessed using both traditional machine learning classifiers and deep learning heads, and compared against tabular representations and convolutional network baselines. Results highlight complementary strengths across modalities. Clinical and volumetric features achieved the highest AUCs of around 0.70 for predicting mild and severe progression, underscoring their utility in capturing global decline trajectories. In contrast, MRI embeddings from the ViT model were most effective in distinguishing cognitively stable individuals with an AUC of 0.71. However, all approaches struggled in the heterogeneous moderate group. These findings indicate that clinical features excel in identifying high-risk extremes, whereas transformer-based MRI embeddings are more sensitive to subtle markers of stability, motivating multimodal fusion strategies for AD progression modeling.
comment: Accepted at SPIE - Medical Imaging Conference 2026
☆ CCSD: Cross-Modal Compositional Self-Distillation for Robust Brain Tumor Segmentation with Missing Modalities
The accurate segmentation of brain tumors from multi-modal MRI is critical for clinical diagnosis and treatment planning. While integrating complementary information from various MRI sequences is a common practice, the frequent absence of one or more modalities in real-world clinical settings poses a significant challenge, severely compromising the performance and generalizability of deep learning-based segmentation models. To address this challenge, we propose a novel Cross-Modal Compositional Self-Distillation (CCSD) framework that can flexibly handle arbitrary combinations of input modalities. CCSD adopts a shared-specific encoder-decoder architecture and incorporates two self-distillation strategies: (i) a hierarchical modality self-distillation mechanism that transfers knowledge across modality hierarchies to reduce semantic discrepancies, and (ii) a progressive modality combination distillation approach that enhances robustness to missing modalities by simulating gradual modality dropout during training. Extensive experiments on public brain tumor segmentation benchmarks demonstrate that CCSD achieves state-of-the-art performance across various missing-modality scenarios, with strong generalization and stability.
comment: 9 pages, 5 figures
☆ Rate-Distortion Guided Knowledge Graph Construction from Lecture Notes Using Gromov-Wasserstein Optimal Transport
Task-oriented knowledge graphs (KGs) enable AI-powered learning assistant systems to automatically generate high-quality multiple-choice questions (MCQs). Yet converting unstructured educational materials, such as lecture notes and slides, into KGs that capture key pedagogical content remains difficult. We propose a framework for knowledge graph construction and refinement grounded in rate-distortion (RD) theory and optimal transport geometry. In the framework, lecture content is modeled as a metric-measure space, capturing semantic and relational structure, while candidate KGs are aligned using Fused Gromov-Wasserstein (FGW) couplings to quantify semantic distortion. The rate term, expressed via the size of KG, reflects complexity and compactness. Refinement operators (add, merge, split, remove, rewire) minimize the rate-distortion Lagrangian, yielding compact, information-preserving KGs. Our prototype applied to data science lectures yields interpretable RD curves and shows that MCQs generated from refined KGs consistently surpass those from raw notes on fifteen quality criteria. This study establishes a principled foundation for information-theoretic KG optimization in personalized and AI-assisted education.
comment: Accepted in the 5th Workshop on Knowledge Graphs and Big Data in Conjunction with IEEE Big Data 2025
☆ Is Your VLM for Autonomous Driving Safety-Ready? A Comprehensive Benchmark for Evaluating External and In-Cabin Risks
Vision-Language Models (VLMs) show great promise for autonomous driving, but their suitability for safety-critical scenarios is largely unexplored, raising safety concerns. This issue arises from the lack of comprehensive benchmarks that assess both external environmental risks and in-cabin driving behavior safety simultaneously. To bridge this critical gap, we introduce DSBench, the first comprehensive Driving Safety Benchmark designed to assess a VLM's awareness of various safety risks in a unified manner. DSBench encompasses two major categories: external environmental risks and in-cabin driving behavior safety, divided into 10 key categories and a total of 28 sub-categories. This comprehensive evaluation covers a wide range of scenarios, ensuring a thorough assessment of VLMs' performance in safety-critical contexts. Extensive evaluations across various mainstream open-source and closed-source VLMs reveal significant performance degradation under complex safety-critical situations, highlighting urgent safety concerns. To address this, we constructed a large dataset of 98K instances focused on in-cabin and external safety scenarios, showing that fine-tuning on this dataset significantly enhances the safety performance of existing VLMs and paves the way for advancing autonomous driving technology. The benchmark toolkit, code, and model checkpoints will be publicly accessible.
☆ Biased Minds Meet Biased AI: How Class Imbalance Shapes Appropriate Reliance and Interacts with Human Base Rate Neglect
Humans increasingly interact with artificial intelligence (AI) in decision-making. However, both AI and humans are prone to biases. While AI and human biases have been studied extensively in isolation, this paper examines their complex interaction. Specifically, we examined how class imbalance as an AI bias affects people's ability to appropriately rely on an AI-based decision-support system, and how it interacts with base rate neglect as a human bias. In a within-subject online study (N= 46), participants classified three diseases using an AI-based decision-support system trained on either a balanced or unbalanced dataset. We found that class imbalance disrupted participants' calibration of AI reliance. Moreover, we observed mutually reinforcing effects between class imbalance and base rate neglect, offering evidence of a compound human-AI bias. Based on these findings, we advocate for an interactionist perspective and further research into the mutually reinforcing effects of biases in human-AI interaction.
☆ Deep Learning-Based Regional White Matter Hyperintensity Mapping as a Robust Biomarker for Alzheimer's Disease SP
White matter hyperintensities (WMH) are key imaging markers in cognitive aging, Alzheimer's disease (AD), and related dementias. Although automated methods for WMH segmentation have advanced, most provide only global lesion load and overlook their spatial distribution across distinct white matter regions. We propose a deep learning framework for robust WMH segmentation and localization, evaluated across public datasets and an independent Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort. Our results show that the predicted lesion loads are in line with the reference WMH estimates, confirming the robustness to variations in lesion load, acquisition, and demographics. Beyond accurate segmentation, we quantify WMH load within anatomically defined regions and combine these measures with brain structure volumes to assess diagnostic value. Regional WMH volumes consistently outperform global lesion burden for disease classification, and integration with brain atrophy metrics further improves performance, reaching area under the curve (AUC) values up to 0.97. Several spatially distinct regions, particularly within anterior white matter tracts, are reproducibly associated with diagnostic status, indicating localized vulnerability in AD. These results highlight the added value of regional WMH quantification. Incorporating localized lesion metrics alongside atrophy markers may enhance early diagnosis and stratification in neurodegenerative disorders.
comment: Accepted at SPIE - Medical Imaging Conference 2026
☆ ReflexGrad: Three-Way Synergistic Architecture for Zero-Shot Generalization in LLM Agents
Enabling agents to learn from experience and generalize across diverse tasks without task-specific training remains a fundamental challenge in reinforcement learning and decision-making. While recent approaches have explored episodic memory (Reflexion), gradient-based prompt optimization (TextGrad),and hierarchical task decomposition independently, their potential for synergistic integration remains unexplored. We introduce ReflexGrad, a novel architecture that tightly couples three complementary mechanisms: (1) LLM-based hierarchical TODO decomposition for strategic planning, (2) history-aware causal reflection that analyzes recent action patterns to identify failure root causes and enable within-trial learning, and (3) gradient-based optimization for systematic improvement. Unlike prior work relying on few-shot demonstrations, our system achieves true zero-shot generalization through pure LLM semantic reasoning,requiring no task-specific examples, fine-tuning, or hardcoded similarity metrics. Evaluated on ALFWorld benchmark tasks, ReflexGrad demonstrates 67% zero-shot success rate on Trial 0 without any prior task experience or demonstrations, establishing effective performance on first exposure. Through empirical analysis, we identify the architectural mechanisms underlying stable convergence (zero action loops) and effective cross-task transfer (67% to 78% improvement).Our work demonstrates that synergistic integration of complementary learning mechanisms enables robust zero-shot generalization that approaches few-shot baselines from prior work.
☆ SweeperBot: Making 3D Browsing Accessible through View Analysis and Visual Question Answering
Accessing 3D models remains challenging for Screen Reader (SR) users. While some existing 3D viewers allow creators to provide alternative text, they often lack sufficient detail about the 3D models. Grounded on a formative study, this paper introduces SweeperBot, a system that enables SR users to leverage visual question answering to explore and compare 3D models. SweeperBot answers SR users' visual questions by combining an optimal view selection technique with the strength of generative- and recognition-based foundation models. An expert review with 10 Blind and Low-Vision (BLV) users with SR experience demonstrated the feasibility of using SweeperBot to assist BLV users in exploring and comparing 3D models. The quality of the descriptions generated by SweeperBot was validated by a second survey study with 30 sighted participants.
comment: 28 pages, 16 figures, this article has been accepted for publication in the International Journal of Human-Computer Interaction (IJHCI), published by Taylor and Francis
☆ Examining the Metrics for Document-Level Claim Extraction in Czech and Slovak
Document-level claim extraction remains an open challenge in the field of fact-checking, and subsequently, methods for evaluating extracted claims have received limited attention. In this work, we explore approaches to aligning two sets of claims pertaining to the same source document and computing their similarity through an alignment score. We investigate techniques to identify the best possible alignment and evaluation method between claim sets, with the aim of providing a reliable evaluation framework. Our approach enables comparison between model-extracted and human-annotated claim sets, serving as a metric for assessing the extraction performance of models and also as a possible measure of inter-annotator agreement. We conduct experiments on newly collected dataset-claims extracted from comments under Czech and Slovak news articles-domains that pose additional challenges due to the informal language, strong local context, and subtleties of these closely related languages. The results draw attention to the limitations of current evaluation approaches when applied to document-level claim extraction and highlight the need for more advanced methods-ones able to correctly capture semantic similarity and evaluate essential claim properties such as atomicity, checkworthiness, and decontextualization.
☆ Masked IRL: LLM-Guided Reward Disambiguation from Demonstrations and Language
Robots can adapt to user preferences by learning reward functions from demonstrations, but with limited data, reward models often overfit to spurious correlations and fail to generalize. This happens because demonstrations show robots how to do a task but not what matters for that task, causing the model to focus on irrelevant state details. Natural language can more directly specify what the robot should focus on, and, in principle, disambiguate between many reward functions consistent with the demonstrations. However, existing language-conditioned reward learning methods typically treat instructions as simple conditioning signals, without fully exploiting their potential to resolve ambiguity. Moreover, real instructions are often ambiguous themselves, so naive conditioning is unreliable. Our key insight is that these two input types carry complementary information: demonstrations show how to act, while language specifies what is important. We propose Masked Inverse Reinforcement Learning (Masked IRL), a framework that uses large language models (LLMs) to combine the strengths of both input types. Masked IRL infers state-relevance masks from language instructions and enforces invariance to irrelevant state components. When instructions are ambiguous, it uses LLM reasoning to clarify them in the context of the demonstrations. In simulation and on a real robot, Masked IRL outperforms prior language-conditioned IRL methods by up to 15% while using up to 4.7 times less data, demonstrating improved sample-efficiency, generalization, and robustness to ambiguous language. Project page: https://MIT-CLEAR-Lab.github.io/Masked-IRL and Code: https://github.com/MIT-CLEAR-Lab/Masked-IRL
☆ Apo2Mol: 3D Molecule Generation via Dynamic Pocket-Aware Diffusion Models AAAI 2026
Deep generative models are rapidly advancing structure-based drug design, offering substantial promise for generating small molecule ligands that bind to specific protein targets. However, most current approaches assume a rigid protein binding pocket, neglecting the intrinsic flexibility of proteins and the conformational rearrangements induced by ligand binding, limiting their applicability in practical drug discovery. Here, we propose Apo2Mol, a diffusion-based generative framework for 3D molecule design that explicitly accounts for conformational flexibility in protein binding pockets. To support this, we curate a dataset of over 24,000 experimentally resolved apo-holo structure pairs from the Protein Data Bank, enabling the characterization of protein structure changes associated with ligand binding. Apo2Mol employs a full-atom hierarchical graph-based diffusion model that simultaneously generates 3D ligand molecules and their corresponding holo pocket conformations from input apo states. Empirical studies demonstrate that Apo2Mol can achieve state-of-the-art performance in generating high-affinity ligands and accurately capture realistic protein pocket conformational changes.
comment: Accepted by AAAI 2026
☆ DecNefLab: A Modular and Interpretable Simulation Framework for Decoded Neurofeedback
Decoded Neurofeedback (DecNef) is a flourishing non-invasive approach to brain modulation with wide-ranging applications in neuromedicine and cognitive neuroscience. However, progress in DecNef research remains constrained by subject-dependent learning variability, reliance on indirect measures to quantify progress, and the high cost and time demands of experimentation. We present DecNefLab, a modular and interpretable simulation framework that formalizes DecNef as a machine learning problem. Beyond providing a virtual laboratory, DecNefLab enables researchers to model, analyze and understand neurofeedback dynamics. Using latent variable generative models as simulated participants, DecNefLab allows direct observation of internal cognitive states and systematic evaluation of how different protocol designs and subject characteristics influence learning. We demonstrate how this approach can (i) reproduce empirical phenomena of DecNef learning, (ii) identify conditions under which DecNef feedback fails to induce learning, and (iii) guide the design of more robust and reliable DecNef protocols in silico before human implementation. In summary, DecNefLab bridges computational modeling and cognitive neuroscience, offering a principled foundation for methodological innovation, robust protocol design, and ultimately, a deeper understanding of DecNef-based brain modulation.
☆ MissHDD: Hybrid Deterministic Diffusion for Hetrogeneous Incomplete Data Imputation
Incomplete data are common in real-world tabular applications, where numerical, categorical, and discrete attributes coexist within a single dataset. This heterogeneous structure presents significant challenges for existing diffusion-based imputation models, which typically assume a homogeneous feature space and rely on stochastic denoising trajectories. Such assumptions make it difficult to maintain conditional consistency, and they often lead to information collapse for categorical variables or instability when numerical variables require deterministic updates. These limitations indicate that a single diffusion process is insufficient for mixed-type tabular imputation. We propose a hybrid deterministic diffusion framework that separates heterogeneous features into two complementary generative channels. A continuous DDIM-based channel provides efficient and stable deterministic denoising for numerical variables, while a discrete latent-path diffusion channel, inspired by loopholing-based discrete diffusion, models categorical and discrete features without leaving their valid sample manifolds. The two channels are trained under a unified conditional imputation objective, enabling coherent reconstruction of mixed-type incomplete data. Extensive experiments on multiple real-world datasets show that the proposed framework achieves higher imputation accuracy, more stable sampling trajectories, and improved robustness across MCAR, MAR, and MNAR settings compared with existing diffusion-based and classical methods. These results demonstrate the importance of structure-aware diffusion processes for advancing deep learning approaches to incomplete tabular data.
☆ A Neuro-Symbolic Framework for Reasoning under Perceptual Uncertainty: Bridging Continuous Perception and Discrete Symbolic Planning
Bridging continuous perceptual signals and discrete symbolic reasoning is a fundamental challenge in AI systems that must operate under uncertainty. We present a neuro-symbolic framework that explicitly models and propagates uncertainty from perception to planning, providing a principled connection between these two abstraction levels. Our approach couples a transformer-based perceptual front-end with graph neural network (GNN) relational reasoning to extract probabilistic symbolic states from visual observations, and an uncertainty-aware symbolic planner that actively gathers information when confidence is low. We demonstrate the framework's effectiveness on tabletop robotic manipulation as a concrete application: the translator processes 10,047 PyBullet-generated scenes (3--10 objects) and outputs probabilistic predicates with calibrated confidences (overall F1=0.68). When embedded in the planner, the system achieves 94\%/90\%/88\% success on Simple Stack, Deep Stack, and Clear+Stack benchmarks (90.7\% average), exceeding the strongest POMDP baseline by 10--14 points while planning within 15\,ms. A probabilistic graphical-model analysis establishes a quantitative link between calibrated uncertainty and planning convergence, providing theoretical guarantees that are validated empirically. The framework is general-purpose and can be applied to any domain requiring uncertainty-aware reasoning from perceptual input to symbolic planning.
comment: 29 pages, 10 figures, 12 tables
☆ IMSE: Efficient U-Net-based Speech Enhancement using Inception Depthwise Convolution and Amplitude-Aware Linear Attention
Achieving a balance between lightweight design and high performance remains a significant challenge for speech enhancement (SE) tasks on resource-constrained devices. Existing state-of-the-art methods, such as MUSE, have established a strong baseline with only 0.51M parameters by introducing a Multi-path Enhanced Taylor (MET) transformer and Deformable Embedding (DE). However, an in-depth analysis reveals that MUSE still suffers from efficiency bottlenecks: the MET module relies on a complex "approximate-compensate" mechanism to mitigate the limitations of Taylor-expansion-based attention, while the offset calculation for deformable embedding introduces additional computational burden. This paper proposes IMSE, a systematically optimized and ultra-lightweight network. We introduce two core innovations: 1) Replacing the MET module with Amplitude-Aware Linear Attention (MALA). MALA fundamentally rectifies the "amplitude-ignoring" problem in linear attention by explicitly preserving the norm information of query vectors in the attention calculation, achieving efficient global modeling without an auxiliary compensation branch. 2) Replacing the DE module with Inception Depthwise Convolution (IDConv). IDConv borrows the Inception concept, decomposing large-kernel operations into efficient parallel branches (square, horizontal, and vertical strips), thereby capturing spectrogram features with extremely low parameter redundancy. Extensive experiments on the VoiceBank+DEMAND dataset demonstrate that, compared to the MUSE baseline, IMSE significantly reduces the parameter count by 16.8\% (from 0.513M to 0.427M) while achieving competitive performance comparable to the state-of-the-art on the PESQ metric (3.373). This study sets a new benchmark for the trade-off between model size and speech quality in ultra-lightweight speech enhancement.
☆ Towards Stable and Structured Time Series Generation with Perturbation-Aware Flow Matching
Time series generation is critical for a wide range of applications, which greatly supports downstream analytical and decision-making tasks. However, the inherent temporal heterogeneous induced by localized perturbations present significant challenges for generating structurally consistent time series. While flow matching provides a promising paradigm by modeling temporal dynamics through trajectory-level supervision, it fails to adequately capture abrupt transitions in perturbed time series, as the use of globally shared parameters constrains the velocity field to a unified representation. To address these limitations, we introduce \textbf{PAFM}, a \textbf{P}erturbation-\textbf{A}ware \textbf{F}low \textbf{M}atching framework that models perturbed trajectories to ensure stable and structurally consistent time series generation. The framework incorporates perturbation-guided training to simulate localized disturbances and leverages a dual-path velocity field to capture trajectory deviations under perturbation, enabling refined modeling of perturbed behavior to enhance the structural coherence. In order to further improve sensitivity to trajectory perturbations while enhancing expressiveness, a mixture-of-experts decoder with flow routing dynamically allocates modeling capacity in response to different trajectory dynamics. Extensive experiments on both unconditional and conditional generation tasks demonstrate that PAFM consistently outperforms strong baselines. Code is available at https://anonymous.4open.science/r/PAFM-03B2.
☆ Agentic AI Systems in Electrical Power Systems Engineering: Current State-of-the-Art and Challenges
Agentic AI systems have recently emerged as a critical and transformative approach in artificial intelligence, offering capabilities that extend far beyond traditional AI agents and contemporary generative AI models. This rapid evolution necessitates a clear conceptual and taxonomical understanding to differentiate this new paradigm. Our paper addresses this gap by providing a comprehensive review that establishes a precise definition and taxonomy for "agentic AI," with the aim of distinguishing it from previous AI paradigms. The concepts are gradually introduced, starting with a highlight of its diverse applications across the broader field of engineering. The paper then presents four detailed, state-of-the-art use case applications specifically within electrical engineering. These case studies demonstrate practical impact, ranging from an advanced agentic framework for streamlining complex power system studies and benchmarking to a novel system developed for survival analysis of dynamic pricing strategies in battery swapping stations. Finally, to ensure robust deployment, the paper provides detailed failure mode investigations. From these findings, we derive actionable recommendations for the design and implementation of safe, reliable, and accountable agentic AI systems, offering a critical resource for researchers and practitioners.
☆ Operationalizing Pluralistic Values in Large Language Model Alignment Reveals Trade-offs in Safety, Inclusivity, and Model Behavior
Although large language models (LLMs) are increasingly trained using human feedback for safety and alignment with human values, alignment decisions often overlook human social diversity. This study examines how incorporating pluralistic values affects LLM behavior by systematically evaluating demographic variation and design parameters in the alignment pipeline. We collected alignment data from US and German participants (N = 1,095, 27,375 ratings) who rated LLM responses across five dimensions: Toxicity, Emotional Awareness (EA), Sensitivity, Stereotypical Bias, and Helpfulness. We fine-tuned multiple Large Language Models and Large Reasoning Models using preferences from different social groups while varying rating scales, disagreement handling methods, and optimization techniques. The results revealed systematic demographic effects: male participants rated responses 18% less toxic than female participants; conservative and Black participants rated responses 27.9% and 44% more emotionally aware than liberal and White participants, respectively. Models fine-tuned on group-specific preferences exhibited distinct behaviors. Technical design choices showed strong effects: the preservation of rater disagreement achieved roughly 53% greater toxicity reduction than majority voting, and 5-point scales yielded about 22% more reduction than binary formats; and Direct Preference Optimization (DPO) consistently outperformed Group Relative Policy Optimization (GRPO) in multi-value optimization. These findings represent a preliminary step in answering a critical question: How should alignment balance expert-driven and user-driven signals to ensure both safety and fair representation?
☆ nnterp: A Standardized Interface for Mechanistic Interpretability of Transformers NeurIPS 2025
Mechanistic interpretability research requires reliable tools for analyzing transformer internals across diverse architectures. Current approaches face a fundamental tradeoff: custom implementations like TransformerLens ensure consistent interfaces but require coding a manual adaptation for each architecture, introducing numerical mismatch with the original models, while direct HuggingFace access through NNsight preserves exact behavior but lacks standardization across models. To bridge this gap, we develop nnterp, a lightweight wrapper around NNsight that provides a unified interface for transformer analysis while preserving original HuggingFace implementations. Through automatic module renaming and comprehensive validation testing, nnterp enables researchers to write intervention code once and deploy it across 50+ model variants spanning 16 architecture families. The library includes built-in implementations of common interpretability methods (logit lens, patchscope, activation steering) and provides direct access to attention probabilities for models that support it. By packaging validation tests with the library, researchers can verify compatibility with custom models locally. nnterp bridges the gap between correctness and usability in mechanistic interpretability tooling.
comment: 7 pages, 1 figure, accepted at the mechanistic interpretability workshop of NeurIPS 2025
☆ Effective Diversification of Multi-Carousel Book Recommendation
Using multiple carousels, lists that wrap around and can be scrolled, is the basis for offering content in most contemporary movie streaming platforms. Carousels allow for highlighting different aspects of users' taste, that fall in categories such as genres and authors. However, while carousels offer structure and greater ease of navigation, they alone do not increase diversity in recommendations, while this is essential to keep users engaged. In this work we propose several approaches to effectively increase item diversity within the domain of book recommendations, on top of a collaborative filtering algorithm. These approaches are intended to improve book recommendations in the web catalogs of public libraries. Furthermore, we introduce metrics to evaluate the resulting strategies, and show that the proposed system finds a suitable balance between accuracy and beyond-accuracy aspects.
comment: Accepted as a conference paper at BNAIC/BeNeLearn 2025; The 37th Benelux Conference on Artificial Intelligence and the 34th Belgian Dutch Conference on Machine Learning
☆ Analyzing the Impact of Participant Failures in Cross-Silo Federated Learning
Federated learning (FL) is a new paradigm for training machine learning (ML) models without sharing data. While applying FL in cross-silo scenarios, where organizations collaborate, it is necessary that the FL system is reliable; however, participants can fail due to various reasons (e.g., communication issues or misconfigurations). In order to provide a reliable system, it is necessary to analyze the impact of participant failures. While this problem received attention in cross-device FL where mobile devices with limited resources participate, there is comparatively little research in cross-silo FL. Therefore, we conduct an extensive study for analyzing the impact of participant failures on the model quality in the context of inter-organizational cross-silo FL with few participants. In our study, we focus on analyzing generally influential factors such as the impact of the timing and the data as well as the impact on the evaluation, which is important for deciding, if the model should be deployed. We show that under high skews the evaluation is optimistic and hides the real impact. Furthermore, we demonstrate that the timing impacts the quality of the trained model. Our results offer insights for researchers and software architects aiming to build robust FL systems.
comment: Accepted for publication in 3rd IEEE International Conference on Federated Learning Applications and Technologies (FLTA2025)
☆ Hybrid Modeling of Photoplethysmography for Non-invasive Monitoring of Cardiovascular Parameters
Continuous cardiovascular monitoring can play a key role in precision health. However, some fundamental cardiac biomarkers of interest, including stroke volume and cardiac output, require invasive measurements, e.g., arterial pressure waveforms (APW). As a non-invasive alternative, photoplethysmography (PPG) measurements are routinely collected in hospital settings. Unfortunately, the prediction of key cardiac biomarkers from PPG instead of APW remains an open challenge, further complicated by the scarcity of annotated PPG measurements. As a solution, we propose a hybrid approach that uses hemodynamic simulations and unlabeled clinical data to estimate cardiovascular biomarkers directly from PPG signals. Our hybrid model combines a conditional variational autoencoder trained on paired PPG-APW data with a conditional density estimator of cardiac biomarkers trained on labeled simulated APW segments. As a key result, our experiments demonstrate that the proposed approach can detect fluctuations of cardiac output and stroke volume and outperform a supervised baseline in monitoring temporal changes in these biomarkers.
☆ Agentic Video Intelligence: A Flexible Framework for Advanced Video Exploration and Understanding
Video understanding requires not only visual recognition but also complex reasoning. While Vision-Language Models (VLMs) demonstrate impressive capabilities, they typically process videos largely in a single-pass manner with limited support for evidence revisit and iterative refinement. While recently emerging agent-based methods enable long-horizon reasoning, they either depend heavily on expensive proprietary models or require extensive agentic RL training. To overcome these limitations, we propose Agentic Video Intelligence (AVI), a flexible and training-free framework that can mirror human video comprehension through system-level design and optimization. AVI introduces three key innovations: (1) a human-inspired three-phase reasoning process (Retrieve-Perceive-Review) that ensures both sufficient global exploration and focused local analysis, (2) a structured video knowledge base organized through entity graphs, along with multi-granularity integrated tools, constituting the agent's interaction environment, and (3) an open-source model ensemble combining reasoning LLMs with lightweight base CV models and VLM, eliminating dependence on proprietary APIs or RL training. Experiments on LVBench, VideoMME-Long, LongVideoBench, and Charades-STA demonstrate that AVI achieves competitive performance while offering superior interpretability.
☆ Tell Me: An LLM-powered Mental Well-being Assistant with RAG, Synthetic Dialogue Generation, and Agentic Planning ACL
We present Tell Me, a mental well-being system that leverages advances in large language models to provide accessible, context-aware support for users and researchers. The system integrates three components: (i) a retrieval-augmented generation (RAG) assistant for personalized, knowledge-grounded dialogue; (ii) a synthetic client-therapist dialogue generator conditioned on client profiles to facilitate research on therapeutic language and data augmentation; and (iii) a Well-being AI crew, implemented with CrewAI, that produces weekly self-care plans and guided meditation audio. The system is designed as a reflective space for emotional processing rather than a substitute for professional therapy. It illustrates how conversational assistants can lower barriers to support, complement existing care, and broaden access to mental health resources. To address the shortage of confidential therapeutic data, we introduce synthetic client-therapist dialogue generation conditioned on client profiles. Finally, the planner demonstrates an innovative agentic workflow for dynamically adaptive, personalized self-care, bridging the limitations of static well-being tools. We describe the architecture, demonstrate its functionalities, and report evaluation of the RAG assistant in curated well-being scenarios using both automatic LLM-based judgments and a human-user study. This work highlights opportunities for interdisciplinary collaboration between NLP researchers and mental health professionals to advance responsible innovation in human-AI interaction for well-being.
comment: 8 pages, 2 figures, 1 Table. Submitted to the Computation and Language (cs.CL) category. Uses the ACL-style template. Code and demo will be released at: https://github.com/trystine/Tell_Me_Mental_Wellbeing_System
☆ Watchdogs and Oracles: Runtime Verification Meets Large Language Models for Autonomous Systems
Assuring the safety and trustworthiness of autonomous systems is particularly difficult when learning-enabled components and open environments are involved. Formal methods provide strong guarantees but depend on complete models and static assumptions. Runtime verification (RV) complements them by monitoring executions at run time and, in its predictive variants, by anticipating potential violations. Large language models (LLMs), meanwhile, excel at translating natural language into formal artefacts and recognising patterns in data, yet they remain error-prone and lack formal guarantees. This vision paper argues for a symbiotic integration of RV and LLMs. RV can serve as a guardrail for LLM-driven autonomy, while LLMs can extend RV by assisting specification capture, supporting anticipatory reasoning, and helping to handle uncertainty. We outline how this mutual reinforcement differs from existing surveys and roadmaps, discuss challenges and certification implications, and identify future research directions towards dependable autonomy.
comment: In Proceedings FMAS 2025, arXiv:2511.13245
☆ Context-aware, Ante-hoc Explanations of Driving Behaviour
Autonomous vehicles (AVs) must be both safe and trustworthy to gain social acceptance and become a viable option for everyday public transportation. Explanations about the system behaviour can increase safety and trust in AVs. Unfortunately, explaining the system behaviour of AI-based driving functions is particularly challenging, as decision-making processes are often opaque. The field of Explainability Engineering tackles this challenge by developing explanation models at design time. These models are designed from system design artefacts and stakeholder needs to develop correct and good explanations. To support this field, we propose an approach that enables context-aware, ante-hoc explanations of (un)expectable driving manoeuvres at runtime. The visual yet formal language Traffic Sequence Charts is used to formalise explanation contexts, as well as corresponding (un)expectable driving manoeuvres. A dedicated runtime monitoring enables context-recognition and ante-hoc presentation of explanations at runtime. In combination, we aim to support the bridging of correct and good explanations. Our method is demonstrated in a simulated overtaking.
comment: In Proceedings FMAS 2025, arXiv:2511.13245
☆ MiAD: Mirage Atom Diffusion for De Novo Crystal Generation
In recent years, diffusion-based models have demonstrated exceptional performance in searching for simultaneously stable, unique, and novel (S.U.N.) crystalline materials. However, most of these models don't have the ability to change the number of atoms in the crystal during the generation process, which limits the variability of model sampling trajectories. In this paper, we demonstrate the severity of this restriction and introduce a simple yet powerful technique, mirage infusion, which enables diffusion models to change the state of the atoms that make up the crystal from existent to non-existent (mirage) and vice versa. We show that this technique improves model quality by up to $\times2.5$ compared to the same model without this modification. The resulting model, Mirage Atom Diffusion (MiAD), is an equivariant joint diffusion model for de novo crystal generation that is capable of altering the number of atoms during the generation process. MiAD achieves an $8.2\%$ S.U.N. rate on the MP-20 dataset, which substantially exceeds existing state-of-the-art approaches. The source code can be found at \href{https://github.com/andrey-okhotin/miad.git}{\texttt{github.com/andrey-okhotin/miad}}.
☆ Sigil: Server-Enforced Watermarking in U-Shaped Split Federated Learning via Gradient Injection
In decentralized machine learning paradigms such as Split Federated Learning (SFL) and its variant U-shaped SFL, the server's capabilities are severely restricted. Although this enhances client-side privacy, it also leaves the server highly vulnerable to model theft by malicious clients. Ensuring intellectual property protection for such capability-limited servers presents a dual challenge: watermarking schemes that depend on client cooperation are unreliable in adversarial settings, whereas traditional server-side watermarking schemes are technically infeasible because the server lacks access to critical elements such as model parameters or labels. To address this challenge, this paper proposes Sigil, a mandatory watermarking framework designed specifically for capability-limited servers. Sigil defines the watermark as a statistical constraint on the server-visible activation space and embeds the watermark into the client model via gradient injection, without requiring any knowledge of the data. Besides, we design an adaptive gradient clipping mechanism to ensure that our watermarking process remains both mandatory and stealthy, effectively countering existing gradient anomaly detection methods and a specifically designed adaptive subspace removal attack. Extensive experiments on multiple datasets and models demonstrate Sigil's fidelity, robustness, and stealthiness.
comment: 18 pages,8 figures
☆ Continuous Vision-Language-Action Co-Learning with Semantic-Physical Alignment for Behavioral Cloning AAAI 2026
Language-conditioned manipulation facilitates human-robot interaction via behavioral cloning (BC), which learns control policies from human demonstrations and serves as a cornerstone of embodied AI. Overcoming compounding errors in sequential action decisions remains a central challenge to improving BC performance. Existing approaches mitigate compounding errors through data augmentation, expressive representation, or temporal abstraction. However, they suffer from physical discontinuities and semantic-physical misalignment, leading to inaccurate action cloning and intermittent execution. In this paper, we present Continuous vision-language-action Co-Learning with Semantic-Physical Alignment (CCoL), a novel BC framework that ensures temporally consistent execution and fine-grained semantic grounding. It generates robust and smooth action execution trajectories through continuous co-learning across vision, language, and proprioceptive inputs (e.g., robot internal states). Meanwhile, we anchor language semantics to visuomotor representations by a bidirectional cross-attention to learn contextual information for action generation, successfully overcoming the problem of semantic-physical misalignment. Extensive experiments show that CCoL achieves an average 8.0% relative improvement across three simulation suites, with up to 19.2% relative gain in human-demonstrated bimanual insertion tasks. Real-world tests on a 7-DoF robot further confirm CCoL's generalization under unseen and noisy object states.
comment: Accepted at AAAI 2026, the Project website is available at https://qhemu.github.io/CCoL/
☆ Cheating Stereo Matching in Full-scale: Physical Adversarial Attack against Binocular Depth Estimation in Autonomous Driving
Though deep neural models adopted to realize the perception of autonomous driving have proven vulnerable to adversarial examples, known attacks often leverage 2D patches and target mostly monocular perception. Therefore, the effectiveness of Physical Adversarial Examples (PAEs) on stereo-based binocular depth estimation remains largely unexplored. To this end, we propose the first texture-enabled physical adversarial attack against stereo matching models in the context of autonomous driving. Our method employs a 3D PAE with global camouflage texture rather than a local 2D patch-based one, ensuring both visual consistency and attack effectiveness across different viewpoints of stereo cameras. To cope with the disparity effect of these cameras, we also propose a new 3D stereo matching rendering module that allows the PAE to be aligned with real-world positions and headings in binocular vision. We further propose a novel merging attack that seamlessly blends the target into the environment through fine-grained PAE optimization. It has significantly enhanced stealth and lethality upon existing hiding attacks that fail to get seamlessly merged into the background. Extensive evaluations show that our PAEs can successfully fool the stereo models into producing erroneous depth information.
☆ The Tokenization Bottleneck: How Vocabulary Extension Improves Chemistry Representation Learning in Pretrained Language Models
The application of large language models (LLMs) to chemistry is frequently hampered by a "tokenization bottleneck", where tokenizers tuned on general-domain text tend to fragment chemical representations such as SMILES into semantically uninformative sub-tokens. This paper introduces a principled methodology to resolve this bottleneck by unifying the representation of natural language and molecular structures within a single model. Our approach involves targeted vocabulary extension-augmenting a pretrained LLM's vocabulary with chemically salient tokens, followed by continued pretraining on chemistry-domain text to integrate this new knowledge. We provide an empirical demonstration of the effectiveness of this strategy, showing that our methodology leads to superior performance on a range of downstream chemical tasks.
☆ Clinically-Validated Innovative Mobile Application for Assessing Blinking and Eyelid Movements
Blinking is a vital physiological process that protects and maintains the health of the ocular surface. Objective assessment of eyelid movements remains challenging due to the complexity, cost, and limited clinical applicability of existing tools. This study presents the clinical validation of Bapp (Blink Application), a mobile application developed using the Flutter framework and integrated with Google ML Kit for on-device, real-time analysis of eyelid movements. The validation occurred using 45 videos from real patients, whose blinks were manually annotated by ophthalmology specialists from the Paulista School of Medicine of the Federal University of Sao Paulo (EPM-UNIFESP) to serve as the ground truth. Bapp's performance was evaluated using standard metrics, including Precision, Recall, and F1-Score, with results demonstrating 98.4% precision, 96.9% recall, and an overall accuracy of 98.3%. These outcomes confirm the reliability of Bapp as a portable, accessible, and objective tool for monitoring both normal and abnormal eyelid movements. The application offers a promising alternative to traditional manual blink counting, supporting continuous ocular health monitoring and postoperative evaluation in clinical environments.
comment: 14 pages, 8 figures
☆ Going Places: Place Recognition in Artificial and Natural Systems
Place recognition, the ability to identify previously visited locations, is critical for both biological navigation and autonomous systems. This review synthesizes findings from robotic systems, animal studies, and human research to explore how different systems encode and recall place. We examine the computational and representational strategies employed across artificial systems, animals, and humans, highlighting convergent solutions such as topological mapping, cue integration, and memory management. Animal systems reveal evolved mechanisms for multimodal navigation and environmental adaptation, while human studies provide unique insights into semantic place concepts, cultural influences, and introspective capabilities. Artificial systems showcase scalable architectures and data-driven models. We propose a unifying set of concepts by which to consider and develop place recognition mechanisms and identify key challenges such as generalization, robustness, and environmental variability. This review aims to foster innovations in artificial localization by connecting future developments in artificial place recognition systems to insights from both animal navigation research and human spatial cognition studies.
☆ When Words Change the Model: Sensitivity of LLMs for Constraint Programming Modelling
One of the long-standing goals in optimisation and constraint programming is to describe a problem in natural language and automatically obtain an executable, efficient model. Large language models appear to bring this vision closer, showing impressive results in automatically generating models for classical benchmarks. However, much of this apparent success may derive from data contamination rather than genuine reasoning: many standard CP problems are likely included in the training data of these models. To examine this hypothesis, we systematically rephrased and perturbed a set of well-known CSPLib problems to preserve their structure while modifying their context and introducing misleading elements. We then compared the models produced by three representative LLMs across original and modified descriptions. Our qualitative analysis shows that while LLMs can produce syntactically valid and semantically plausible models, their performance drops sharply under contextual and linguistic variation, revealing shallow understanding and sensitivity to wording.
☆ LSP-YOLO: A Lightweight Single-Stage Network for Sitting Posture Recognition on Embedded Devices
With the rise in sedentary behavior, health problems caused by poor sitting posture have drawn increasing attention. Most existing methods, whether using invasive sensors or computer vision, rely on two-stage pipelines, which result in high intrusiveness, intensive computation, and poor real-time performance on embedded edge devices. Inspired by YOLOv11-Pose, a lightweight single-stage network for sitting posture recognition on embedded edge devices termed LSP-YOLO was proposed. By integrating partial convolution(PConv) and Similarity-Aware Activation Module(SimAM), a lightweight module, Light-C3k2, was designed to reduce computational cost while maintaining feature extraction capability. In the recognition head, keypoints were directly mapped to posture classes through pointwise convolution, and intermediate supervision was employed to enable efficient fusion of pose estimation and classification. Furthermore, a dataset containing 5,000 images across six posture categories was constructed for model training and testing. The smallest trained model, LSP-YOLO-n, achieved 94.2% accuracy and 251 Fps on personal computer(PC) with a model size of only 1.9 MB. Meanwhile, real-time and high-accuracy inference under constrained computational resources was demonstrated on the SV830C + GC030A platform. The proposed approach is characterized by high efficiency, lightweight design and deployability, making it suitable for smart classrooms, rehabilitation, and human-computer interaction applications.
comment: Submitted to Engineering Applications of Artificial Intelligence (EAAI)
☆ H-LDM: Hierarchical Latent Diffusion Models for Controllable and Interpretable PCG Synthesis from Clinical Metadata
Phonocardiogram (PCG) analysis is vital for cardiovascular disease diagnosis, yet the scarcity of labeled pathological data hinders the capability of AI systems. To bridge this, we introduce H-LDM, a Hierarchical Latent Diffusion Model for generating clinically accurate and controllable PCG signals from structured metadata. Our approach features: (1) a multi-scale VAE that learns a physiologically-disentangled latent space, separating rhythm, heart sounds, and murmurs; (2) a hierarchical text-to-biosignal pipeline that leverages rich clinical metadata for fine-grained control over 17 distinct conditions; and (3) an interpretable diffusion process guided by a novel Medical Attention module. Experiments on the PhysioNet CirCor dataset demonstrate state-of-the-art performance, achieving a Fréchet Audio Distance of 9.7, a 92% attribute disentanglement score, and 87.1% clinical validity confirmed by cardiologists. Augmenting diagnostic models with our synthetic data improves the accuracy of rare disease classification by 11.3\%. H-LDM establishes a new direction for data augmentation in cardiac diagnostics, bridging data scarcity with interpretable clinical insights.
comment: This paper was accepted by IEEE BIBM 2025 conference
☆ SAM-Fed: SAM-Guided Federated Semi-Supervised Learning for Medical Image Segmentation
Medical image segmentation is clinically important, yet data privacy and the cost of expert annotation limit the availability of labeled data. Federated semi-supervised learning (FSSL) offers a solution but faces two challenges: pseudo-label reliability depends on the strength of local models, and client devices often require compact or heterogeneous architectures due to limited computational resources. These constraints reduce the quality and stability of pseudo-labels, while large models, though more accurate, cannot be trained or used for routine inference on client devices. We propose SAM-Fed, a federated semi-supervised framework that leverages a high-capacity segmentation foundation model to guide lightweight clients during training. SAM-Fed combines dual knowledge distillation with an adaptive agreement mechanism to refine pixel-level supervision. Experiments on skin lesion and polyp segmentation across homogeneous and heterogeneous settings show that SAM-Fed consistently outperforms state-of-the-art FSSL methods.
☆ DataSage: Multi-agent Collaboration for Insight Discovery with External Knowledge Retrieval, Multi-role Debating, and Multi-path Reasoning
In today's data-driven era, fully automated end-to-end data analytics, particularly insight discovery, is critical for discovering actionable insights that assist organizations in making effective decisions. With the rapid advancement of large language models (LLMs), LLM-driven agents have emerged as a promising paradigm for automating data analysis and insight discovery. However, existing data insight agents remain limited in several key aspects, often failing to deliver satisfactory results due to: (1) insufficient utilization of domain knowledge, (2) shallow analytical depth, and (3) error-prone code generation during insight generation. To address these issues, we propose DataSage, a novel multi-agent framework that incorporates three innovative features including external knowledge retrieval to enrich the analytical context, a multi-role debating mechanism to simulate diverse analytical perspectives and deepen analytical depth, and multi-path reasoning to improve the accuracy of the generated code and insights. Extensive experiments on InsightBench demonstrate that DataSage consistently outperforms existing data insight agents across all difficulty levels, offering an effective solution for automated data insight discovery.
☆ AraLingBench A Human-Annotated Benchmark for Evaluating Arabic Linguistic Capabilities of Large Language Models
We present AraLingBench: a fully human annotated benchmark for evaluating the Arabic linguistic competence of large language models (LLMs). The benchmark spans five core categories: grammar, morphology, spelling, reading comprehension, and syntax, through 150 expert-designed multiple choice questions that directly assess structural language understanding. Evaluating 35 Arabic and bilingual LLMs reveals that current models demonstrate strong surface level proficiency but struggle with deeper grammatical and syntactic reasoning. AraLingBench highlights a persistent gap between high scores on knowledge-based benchmarks and true linguistic mastery, showing that many models succeed through memorization or pattern recognition rather than authentic comprehension. By isolating and measuring fundamental linguistic skills, AraLingBench provides a diagnostic framework for developing Arabic LLMs. The full evaluation code is publicly available on GitHub.
☆ GEN3D: Generating Domain-Free 3D Scenes from a Single Image
Despite recent advancements in neural 3D reconstruction, the dependence on dense multi-view captures restricts their broader applicability. Additionally, 3D scene generation is vital for advancing embodied AI and world models, which depend on diverse, high-quality scenes for learning and evaluation. In this work, we propose Gen3d, a novel method for generation of high-quality, wide-scope, and generic 3D scenes from a single image. After the initial point cloud is created by lifting the RGBD image, Gen3d maintains and expands its world model. The 3D scene is finalized through optimizing a Gaussian splatting representation. Extensive experiments on diverse datasets demonstrate the strong generalization capability and superior performance of our method in generating a world model and Synthesizing high-fidelity and consistent novel views.
comment: 5 pages , 2 figures
☆ Weight Variance Amplifier Improves Accuracy in High-Sparsity One-Shot Pruning
Deep neural networks achieve outstanding performance in visual recognition tasks, yet their large number of parameters makes them less practical for real-world applications. Recently, one-shot pruning has emerged as an effective strategy for reducing model size without additional training. However, models trained with standard objective functions often suffer a significant drop in accuracy after aggressive pruning. Some existing pruning-robust optimizers, such as SAM, and CrAM, mitigate this accuracy drop by guiding the model toward flatter regions of the parameter space, but they inevitably incur non-negligible additional computations. We propose a Variance Amplifying Regularizer (VAR) that deliberately increases the variance of model parameters during training. Our study reveals an intriguing finding that parameters with higher variance exhibit greater pruning robustness. VAR exploits this property by promoting such variance in the weight distribution, thereby mitigating the adverse effects of pruning. We further provide a theoretical analysis of its convergence behavior, supported by extensive empirical results demonstrating the superior pruning robustness of VAR.
☆ Comparing Task-Agnostic Embedding Models for Tabular Data
Recent foundation models for tabular data achieve strong task-specific performance via in-context learning. Nevertheless, they focus on direct prediction by encapsulating both representation learning and task-specific inference inside a single, resource-intensive network. This work specifically focuses on representation learning, i.e., on transferable, task-agnostic embeddings. We systematically evaluate task-agnostic representations from tabular foundation models (TabPFN and TabICL) alongside with classical feature engineering (TableVectorizer) across a variety of application tasks as outlier detection (ADBench) and supervised learning (TabArena Lite). We find that simple TableVectorizer features achieve comparable or superior performance while being up to three orders of magnitude faster than tabular foundation models. The code is available at https://github.com/ContactSoftwareAI/TabEmbedBench.
comment: Accepted at AI for Tabular Data (EurIPS 2025 Workshop)
☆ Object-Centric World Models for Causality-Aware Reinforcement Learning AAAI-26
World models have been developed to support sample-efficient deep reinforcement learning agents. However, it remains challenging for world models to accurately replicate environments that are high-dimensional, non-stationary, and composed of multiple objects with rich interactions since most world models learn holistic representations of all environmental components. By contrast, humans perceive the environment by decomposing it into discrete objects, facilitating efficient decision-making. Motivated by this insight, we propose \emph{Slot Transformer Imagination with CAusality-aware reinforcement learning} (STICA), a unified framework in which object-centric Transformers serve as the world model and causality-aware policy and value networks. STICA represents each observation as a set of object-centric tokens, together with tokens for the agent action and the resulting reward, enabling the world model to predict token-level dynamics and interactions. The policy and value networks then estimate token-level cause--effect relations and use them in the attention layers, yielding causality-guided decision-making. Experiments on object-rich benchmarks demonstrate that STICA consistently outperforms state-of-the-art agents in both sample efficiency and final performance.
comment: Accepted by AAAI-26
☆ PathMind: A Retrieve-Prioritize-Reason Framework for Knowledge Graph Reasoning with Large Language Models AAAI 2026
Knowledge graph reasoning (KGR) is the task of inferring new knowledge by performing logical deductions on knowledge graphs. Recently, large language models (LLMs) have demonstrated remarkable performance in complex reasoning tasks. Despite promising success, current LLM-based KGR methods still face two critical limitations. First, existing methods often extract reasoning paths indiscriminately, without assessing their different importance, which may introduce irrelevant noise that misleads LLMs. Second, while many methods leverage LLMs to dynamically explore potential reasoning paths, they require high retrieval demands and frequent LLM calls. To address these limitations, we propose PathMind, a novel framework designed to enhance faithful and interpretable reasoning by selectively guiding LLMs with important reasoning paths. Specifically, PathMind follows a "Retrieve-Prioritize-Reason" paradigm. First, it retrieves a query subgraph from KG through the retrieval module. Next, it introduces a path prioritization mechanism that identifies important reasoning paths using a semantic-aware path priority function, which simultaneously considers the accumulative cost and the estimated future cost for reaching the target. Finally, PathMind generates accurate and logically consistent responses via a dual-phase training strategy, including task-specific instruction tuning and path-wise preference alignment. Extensive experiments on benchmark datasets demonstrate that PathMind consistently outperforms competitive baselines, particularly on complex reasoning tasks with fewer input tokens, by identifying essential reasoning paths.
comment: AAAI 2026, Long Paper, Oral
☆ Enhancing Regional Airbnb Trend Forecasting Using LLM-Based Embeddings of Accessibility and Human Mobility
The expansion of short-term rental platforms, such as Airbnb, has significantly disrupted local housing markets, often leading to increased rental prices and housing affordability issues. Accurately forecasting regional Airbnb market trends can thus offer critical insights for policymakers and urban planners aiming to mitigate these impacts. This study proposes a novel time-series forecasting framework to predict three key Airbnb indicators -- Revenue, Reservation Days, and Number of Reservations -- at the regional level. Using a sliding-window approach, the model forecasts trends 1 to 3 months ahead. Unlike prior studies that focus on individual listings at fixed time points, our approach constructs regional representations by integrating listing features with external contextual factors such as urban accessibility and human mobility. We convert structured tabular data into prompt-based inputs for a Large Language Model (LLM), producing comprehensive regional embeddings. These embeddings are then fed into advanced time-series models (RNN, LSTM, Transformer) to better capture complex spatio-temporal dynamics. Experiments on Seoul's Airbnb dataset show that our method reduces both average RMSE and MAE by approximately 48% compared to conventional baselines, including traditional statistical and machine learning models. Our framework not only improves forecasting accuracy but also offers practical insights for detecting oversupplied regions and supporting data-driven urban policy decisions.
comment: Accepted at ASONAM 2025
☆ ArbESC+: Arabic Enhanced Edit Selection System Combination for Grammatical Error Correction Resolving conflict and improving system combination in Arabic GEC
Grammatical Error Correction (GEC) is an important aspect of natural language processing. Arabic has a complicated morphological and syntactic structure, posing a greater challenge than other languages. Even though modern neural models have improved greatly in recent years, the majority of previous attempts used individual models without taking into account the potential benefits of combining different systems. In this paper, we present one of the first multi-system approaches for correcting grammatical errors in Arabic, the Arab Enhanced Edit Selection System Complication (ArbESC+). Several models are used to collect correction proposals, which are represented as numerical features in the framework. A classifier determines and implements the appropriate corrections based on these features. In order to improve output quality, the framework uses support techniques to filter overlapping corrections and estimate decision reliability. A combination of AraT5, ByT5, mT5, AraBART, AraBART+Morph+GEC, and Text editing systems gave better results than a single model alone, with F0.5 at 82.63% on QALB-14 test data, 84.64% on QALB-15 L1 data, and 65.55% on QALB-15 L2 data. As one of the most significant contributions of this work, it's the first Arab attempt to integrate linguistic error correction. Improving existing models provides a practical step towards developing advanced tools that will benefit users and researchers of Arabic text processing.
comment: 26 pages
☆ DevPiolt: Operation Recommendation for IoT Devices at Xiaomi Home
Operation recommendation for IoT devices refers to generating personalized device operations for users based on their context, such as historical operations, environment information, and device status. This task is crucial for enhancing user satisfaction and corporate profits. Existing recommendation models struggle with complex operation logic, diverse user preferences, and sensitive to suboptimal suggestions, limiting their applicability to IoT device operations. To address these issues, we propose DevPiolt, a LLM-based recommendation model for IoT device operations. Specifically, we first equip the LLM with fundamental domain knowledge of IoT operations via continual pre-training and multi-task fine-tuning. Then, we employ direct preference optimization to align the fine-tuned LLM with specific user preferences. Finally, we design a confidence-based exposure control mechanism to avoid negative user experiences from low-quality recommendations. Extensive experiments show that DevPiolt significantly outperforms baselines on all datasets, with an average improvement of 69.5% across all metrics. DevPiolt has been practically deployed in Xiaomi Home app for one quarter, providing daily operation recommendations to 255,000 users. Online experiment results indicate a 21.6% increase in unique visitor device coverage and a 29.1% increase in page view acceptance rates.
☆ LLM-Aligned Geographic Item Tokenization for Local-Life Recommendation
Recent advances in Large Language Models (LLMs) have enhanced text-based recommendation by enriching traditional ID-based methods with semantic generalization capabilities. Text-based methods typically encode item textual information via prompt design and generate discrete semantic IDs through item tokenization. However, in domain-specific tasks such as local-life services, simply injecting location information into prompts fails to capture fine-grained spatial characteristics and real-world distance awareness among items. To address this, we propose LGSID, an LLM-Aligned Geographic Item Tokenization Framework for Local-life Recommendation. This framework consists of two key components: (1) RL-based Geographic LLM Alignment, and (2) Hierarchical Geographic Item Tokenization. In the RL-based alignment module, we initially train a list-wise reward model to capture real-world spatial relationships among items. We then introduce a novel G-DPO algorithm that uses pre-trained reward model to inject generalized spatial knowledge and collaborative signals into LLMs while preserving their semantic understanding. Furthermore, we propose a hierarchical geographic item tokenization strategy, where primary tokens are derived from discrete spatial and content attributes, and residual tokens are refined using the aligned LLM's geographic representation vectors. Extensive experiments on real-world Kuaishou industry datasets show that LGSID consistently outperforms state-of-the-art discriminative and generative recommendation models. Ablation studies, visualizations, and case studies further validate its effectiveness.
☆ Parallelizing Tree Search with Twice Sequential Monte Carlo
Model-based reinforcement learning (RL) methods that leverage search are responsible for many milestone breakthroughs in RL. Sequential Monte Carlo (SMC) recently emerged as an alternative to the Monte Carlo Tree Search (MCTS) algorithm which drove these breakthroughs. SMC is easier to parallelize and more suitable to GPU acceleration. However, it also suffers from large variance and path degeneracy which prevent it from scaling well with increased search depth, i.e., increased sequential compute. To address these problems, we introduce Twice Sequential Monte Carlo Tree Search (TSMCTS). Across discrete and continuous environments TSMCTS outperforms the SMC baseline as well as a popular modern version of MCTS. Through variance reduction and mitigation of path degeneracy, TSMCTS scales favorably with sequential compute while retaining the properties that make SMC natural to parallelize.
☆ Listen Like a Teacher: Mitigating Whisper Hallucinations using Adaptive Layer Attention and Knowledge Distillation AAAI 2026
The Whisper model, an open-source automatic speech recognition system, is widely adopted for its strong performance across multilingual and zero-shot settings. However, it frequently suffers from hallucination errors, especially under noisy acoustic conditions. Previous works to reduce hallucinations in Whisper-style ASR systems have primarily focused on audio preprocessing or post-processing of transcriptions to filter out erroneous content. However, modifications to the Whisper model itself remain largely unexplored to mitigate hallucinations directly. To address this challenge, we present a two-stage architecture that first enhances encoder robustness through Adaptive Layer Attention (ALA) and further suppresses hallucinations using a multi-objective knowledge distillation (KD) framework. In the first stage, ALA groups encoder layers into semantically coherent blocks via inter-layer correlation analysis. A learnable multi-head attention module then fuses these block representations, enabling the model to jointly exploit low- and high-level features for more robust encoding. In the second stage, our KD framework trains the student model on noisy audio to align its semantic and attention distributions with a teacher model processing clean inputs. Our experiments on noisy speech benchmarks show notable reductions in hallucinations and word error rates, while preserving performance on clean speech. Together, ALA and KD offer a principled strategy to improve Whisper's reliability under real-world noisy conditions.
comment: Accepted at AAAI 2026 - Main Technical Track
☆ Bridging the Gap Between Bayesian Deep Learning and Ensemble Weather Forecasts
Weather forecasting is fundamentally challenged by the chaotic nature of the atmosphere, necessitating probabilistic approaches to quantify uncertainty. While traditional ensemble prediction (EPS) addresses this through computationally intensive simulations, recent advances in Bayesian Deep Learning (BDL) offer a promising but often disconnected alternative. We bridge these paradigms through a unified hybrid Bayesian Deep Learning framework for ensemble weather forecasting that explicitly decomposes predictive uncertainty into epistemic and aleatoric components, learned via variational inference and a physics-informed stochastic perturbation scheme modeling flow-dependent atmospheric dynamics, respectively. We further establish a unified theoretical framework that rigorously connects BDL and EPS, providing formal theorems that decompose total predictive uncertainty into epistemic and aleatoric components under the hybrid BDL framework. We validate our framework on the large-scale 40-year ERA5 reanalysis dataset (1979-2019) with 0.25° spatial resolution. Experimental results show that our method not only improves forecast accuracy and yields better-calibrated uncertainty quantification but also achieves superior computational efficiency compared to state-of-the-art probabilistic diffusion models. We commit to making our code open-source upon acceptance of this paper.
☆ Do Large Language Models (LLMs) Understand Chronology?
Large language models (LLMs) are increasingly used in finance and economics, where prompt-based attempts against look-ahead bias implicitly assume that models understand chronology. We test this fundamental question with a series of chronological ordering tasks with increasing complexities over facts the model already knows from pre-training. Our tasks cover (1) chronological ordering, (2) conditional sorting (filter, then order), and (3) anachronism detection. We evaluate GPT-4.1, Claude-3.7 Sonnet, with and without Extended Thinking (ET), and GPT-5 across multiple reasoning-effort settings. Across models, Exact match rate drops sharply as sequences lengthen even while rank correlations stay high as LLMs largely preserve local order but struggle to maintain a single globally consistent timeline. In conditional sorting, most failures stem from the filtering step rather than the ordering step, but GPT-5 and Claude-3.7 Sonnet with Extended Thinking outshine normal models significantly. Lastly, anachronism detection is found to be the easiest task for the LLMs but performance still declines with increasingly overlapping timelines or entities. Overall, our main contribution is showing that allocating explicit reasoning budget helps with chronological ordering with GPT-5 at medium/high reasoning effort achieving flawless ordering at all lengths and perfect conditional sorting (both self-filtered and given-subset), whereas low/minimal effort degrades with longer lists, mirroring earlier models. Our findings delineate limits of current LLMs on chronological tasks, providing insights into task complexity, and demonstrate scenarios in which reasoning helps. These patterns are important for the real-time application of LLMs in finance. We release all code and evaluation templates to support full reproducibility.
comment: 47 pages
☆ Orion: A Unified Visual Agent for Multimodal Perception, Advanced Visual Reasoning and Execution
We introduce Orion, a visual agent framework that can take in any modality and generate any modality. Using an agentic framework with multiple tool-calling capabilities, Orion is designed for visual AI tasks and achieves state-of-the-art results. Unlike traditional vision-language models that produce descriptive outputs, Orion orchestrates a suite of specialized computer vision tools, including object detection, keypoint localization, panoptic segmentation, Optical Character Recognition, and geometric analysis, to execute complex multi-step visual workflows. The system achieves competitive performance on MMMU, MMBench, DocVQA, and MMLongBench while extending monolithic vision-language models to production-grade visual intelligence. By combining neural perception with symbolic execution, Orion enables autonomous visual reasoning, marking a transition from passive visual understanding to active, tool-driven visual intelligence.
☆ Multi-Scale Correlation-Aware Transformer for Maritime Vessel Re-Identification
Maritime vessel re-identification (Re-ID) plays a crucial role in advancing maritime monitoring and intelligent situational awareness systems. However, some existing vessel Re-ID methods are directly adapted from pedestrian-focused algorithms, making them ill-suited for mitigating the unique problems present in vessel images, particularly the greater intra-identity variations and more severe missing of local parts, which lead to the emergence of outlier samples within the same identity. To address these challenges, we propose the Multi-scale Correlation-aware Transformer Network (MCFormer), which explicitly models multi-scale correlations across the entire input set to suppress the adverse effects of outlier samples with intra-identity variations or local missing, incorporating two novel modules, the Global Correlation Module (GCM), and the Local Correlation Module (LCM). Specifically, GCM constructs a global similarity affinity matrix across all input images to model global correlations through feature aggregation based on inter-image consistency, rather than solely learning features from individual images as in most existing approaches. Simultaneously, LCM mines and aligns local features of positive samples with contextual similarity to extract local correlations by maintaining a dynamic memory bank, effectively compensating for missing or occluded regions in individual images. To further enhance feature robustness, MCFormer integrates global and local features that have been respectively correlated across multiple scales, effectively capturing latent relationships among image features. Experiments on three benchmarks demonstrate that MCFormer achieves state-of-the-art performance.
☆ HFL-FlowLLM: Large Language Models for Network Traffic Flow Classification in Heterogeneous Federated Learning
In modern communication networks driven by 5G and the Internet of Things (IoT), effective network traffic flow classification is crucial for Quality of Service (QoS) management and security. Traditional centralized machine learning struggles with the distributed data and privacy concerns in these heterogeneous environments, while existing federated learning approaches suffer from high costs and poor generalization. To address these challenges, we propose HFL-FlowLLM, which to our knowledge is the first framework to apply large language models to network traffic flow classification in heterogeneous federated learning. Compared to state-of-the-art heterogeneous federated learning methods for network traffic flow classification, the proposed approach improves the average F1 score by approximately 13%, demonstrating compelling performance and strong robustness. When compared to existing large language models federated learning frameworks, as the number of clients participating in each training round increases, the proposed method achieves up to a 5% improvement in average F1 score while reducing the training costs by about 87%. These findings prove the potential and practical value of HFL-FlowLLM in modern communication networks security.
☆ DiverseClaire: Simulating Students to Improve Introductory Programming Course Materials for All CS1 Learners
Although CS programs are booming, introductory courses like CS1 still adopt a one-size-fits-all formats that can exacerbate cognitive load and discourage learners with autism, ADHD, dyslexia and other neurological conditions. These call for compassionate pedagogies and Universal Design For Learning (UDL) to create learning environments and materials where cognitive diversity is welcomed. To address this, we introduce DiverseClaire a pilot study, which simulates students including neurodiverse profiles using LLMs and diverse personas. By leveraging Bloom's Taxonomy and UDL, DiverseClaire compared UDL-transformed lecture slides with traditional formats. To evaluate DiverseClaire controlled experiments, we used the evaluation metric the average score. The findings revealed that the simulated neurodiverse students struggled with learning due to lecture slides that were in inaccessible formats. These results highlight the need to provide course materials in multiple formats for diverse learner preferences. Data from our pilot study will be made available to assist future CS1 instructors.
comment: 2 pages
☆ Few-Shot Precise Event Spotting via Unified Multi-Entity Graph and Distillation AAAI
Precise event spotting (PES) aims to recognize fine-grained events at exact moments and has become a key component of sports analytics. This task is particularly challenging due to rapid succession, motion blur, and subtle visual differences. Consequently, most existing methods rely on domain-specific, end-to-end training with large labeled datasets and often struggle in few-shot conditions due to their dependence on pixel- or pose-based inputs alone. However, obtaining large labeled datasets is practically hard. We propose a Unified Multi-Entity Graph Network (UMEG-Net) for few-shot PES. UMEG-Net integrates human skeletons and sport-specific object keypoints into a unified graph and features an efficient spatio-temporal extraction module based on advanced GCN and multi-scale temporal shift. To further enhance performance, we employ multimodal distillation to transfer knowledge from keypoint-based graphs to visual representations. Our approach achieves robust performance with limited labeled data and significantly outperforms baseline models in few-shot settings, providing a scalable and effective solution for few-shot PES. Code is publicly available at https://github.com/LZYAndy/UMEG-Net.
comment: The 40th Annual AAAI Conference on Artificial Intelligence (AAAI 2026)
☆ Towards Deploying VLA without Fine-Tuning: Plug-and-Play Inference-Time VLA Policy Steering via Embodied Evolutionary Diffusion
Vision-Language-Action (VLA) models have demonstrated significant potential in real-world robotic manipulation. However, pre-trained VLA policies still suffer from substantial performance degradation during downstream deployment. Although fine-tuning can mitigate this issue, its reliance on costly demonstration collection and intensive computation makes it impractical in real-world settings. In this work, we introduce VLA-Pilot, a plug-and-play inference-time policy steering method for zero-shot deployment of pre-trained VLA without any additional fine-tuning or data collection. We evaluate VLA-Pilot on six real-world downstream manipulation tasks across two distinct robotic embodiments, encompassing both in-distribution and out-of-distribution scenarios. Experimental results demonstrate that VLA-Pilot substantially boosts the success rates of off-the-shelf pre-trained VLA policies, enabling robust zero-shot generalization to diverse tasks and embodiments. Experimental videos and code are available at: https://rip4kobe.github.io/vla-pilot/.
comment: 9 pages, 8 figures, submitted to IEEE RA-L
☆ SymLoc: Symbolic Localization of Hallucination across HaluEval and TruthfulQA
LLMs still struggle with hallucination, especially when confronted with symbolic triggers like modifiers, negation, numbers, exceptions, and named entities. Yet, we lack a clear understanding of where these symbolic hallucinations originate, making it crucial to systematically handle such triggers and localize the emergence of hallucination inside the model. While prior work explored localization using statistical techniques like LSC and activation variance analysis, these methods treat all tokens equally and overlook the role symbolic linguistic knowledge plays in triggering hallucinations. So far, no approach has investigated how symbolic elements specifically drive hallucination failures across model layers, nor has symbolic linguistic knowledge been used as the foundation for a localization framework. We propose the first symbolic localization framework that leverages symbolic linguistic and semantic knowledge to meaningfully trace the development of hallucinations across all model layers. By focusing on how models process symbolic triggers, we analyze five models using HaluEval and TruthfulQA. Our symbolic knowledge approach reveals that attention variance for these linguistic elements explodes to critical instability in early layers (2-4), with negation triggering catastrophic variance levels, demonstrating that symbolic semantic processing breaks down from the very beginning. Through the lens of symbolic linguistic knowledge, despite larger model sizes, hallucination rates remain consistently high (78.3%-83.7% across Gemma variants), with steep attention drops for symbolic semantic triggers throughout deeper layers. Our findings demonstrate that hallucination is fundamentally a symbolic linguistic processing failure, not a general generation problem, revealing that symbolic semantic knowledge provides the key to understanding and localizing hallucination mechanisms in LLMs.
☆ AdaTok: Adaptive Token Compression with Object-Aware Representations for Efficient Multimodal LLMs
Multimodal Large Language Models (MLLMs) have demonstrated substantial value in unified text-image understanding and reasoning, primarily by converting images into sequences of patch-level tokens that align with their architectural paradigm. However, patch-level tokenization leads to a quadratic growth in image tokens, burdening MLLMs' understanding and reasoning with enormous computation and memory. Additionally, the traditional patch-wise scanning tokenization workflow misaligns with the human vision cognition system, further leading to hallucination and computational redundancy. To address this issue, we propose an object-level token merging strategy for Adaptive Token compression, revealing the consistency with human vision system. The experiments are conducted on multiple comprehensive benchmarks, which show that our approach averagely, utilizes only 10% tokens while achieving almost 96% of the vanilla model's performance. More extensive experimental results in comparison with relevant works demonstrate the superiority of our method in balancing compression ratio and performance. Our code will be available.
☆ Certified Signed Graph Unlearning
Signed graphs model complex relationships through positive and negative edges, with widespread real-world applications. Given the sensitive nature of such data, selective removal mechanisms have become essential for privacy protection. While graph unlearning enables the removal of specific data influences from Graph Neural Networks (GNNs), existing methods are designed for conventional GNNs and overlook the unique heterogeneous properties of signed graphs. When applied to Signed Graph Neural Networks (SGNNs), these methods lose critical sign information, degrading both model utility and unlearning effectiveness. To address these challenges, we propose Certified Signed Graph Unlearning (CSGU), which provides provable privacy guarantees while preserving the sociological principles underlying SGNNs. CSGU employs a three-stage method: (1) efficiently identifying minimal influenced neighborhoods via triangular structures, (2) applying sociological theories to quantify node importance for optimal privacy budget allocation, and (3) performing importance-weighted parameter updates to achieve certified modifications with minimal utility degradation. Extensive experiments demonstrate that CSGU outperforms existing methods, achieving superior performance in both utility preservation and unlearning effectiveness on SGNNs.
☆ Selective Weak-to-Strong Generalization AAAI2025
Future superhuman models will surpass the ability of humans and humans will only be able to \textit{weakly} supervise superhuman models. To alleviate the issue of lacking high-quality data for model alignment, some works on weak-to-strong generalization (W2SG) finetune a strong pretrained model with a weak supervisor so that it can generalize beyond weak supervision. However, the invariable use of weak supervision in existing methods exposes issues in robustness, with a proportion of weak labels proving harmful to models. In this paper, we propose a selective W2SG framework to avoid using weak supervision when unnecessary. We train a binary classifier P(IK) to identify questions that a strong model can answer and use its self-generated labels for alignment. We further refine weak labels with a graph smoothing method. Extensive experiments on three benchmarks show that our method consistently outperforms competitive baselines. Further analyses show that P(IK) can generalize across tasks and difficulties, which indicates selective W2SG can help superalignment.
comment: AAAI2025 Special Track on AI Alignment
☆ AsyncVLA: Asynchronous Flow Matching for Vision-Language-Action Models
Vision-language-action (VLA) models have recently emerged as a powerful paradigm for building generalist robots. However, traditional VLA models that generate actions through flow matching (FM) typically rely on rigid and uniform time schedules, i.e., synchronous FM (SFM). Without action context awareness and asynchronous self-correction, SFM becomes unstable in long-horizon tasks, where a single action error can cascade into failure. In this work, we propose asynchronous flow matching VLA (AsyncVLA), a novel framework that introduces temporal flexibility in asynchronous FM (AFM) and enables self-correction in action generation. AsyncVLA breaks from the vanilla SFM in VLA models by generating the action tokens in a non-uniform time schedule with action context awareness. Besides, our method introduces the confidence rater to extract confidence of the initially generated actions, enabling the model to selectively refine inaccurate action tokens before execution. Moreover, we propose a unified training procedure for SFM and AFM that endows a single model with both modes, improving KV-cache utilization. Extensive experiments on robotic manipulation benchmarks demonstrate that AsyncVLA is data-efficient and exhibits self-correction ability. AsyncVLA achieves state-of-the-art results across general embodied evaluations due to its asynchronous generation in AFM. Our code is available at https://github.com/YuhuaJiang2002/AsyncVLA.
☆ SMART: Shot-Aware Multimodal Video Moment Retrieval with Audio-Enhanced MLLM
Video Moment Retrieval is a task in video understanding that aims to localize a specific temporal segment in an untrimmed video based on a natural language query. Despite recent progress in moment retrieval from videos using both traditional techniques and Multimodal Large Language Models (MLLM), most existing methods still rely on coarse temporal understanding and a single visual modality, limiting performance on complex videos. To address this, we introduce \textit{S}hot-aware \textit{M}ultimodal \textit{A}udio-enhanced \textit{R}etrieval of \textit{T}emporal \textit{S}egments (SMART), an MLLM-based framework that integrates audio cues and leverages shot-level temporal structure. SMART enriches multimodal representations by combining audio and visual features while applying \textbf{Shot-aware Token Compression}, which selectively retains high-information tokens within each shot to reduce redundancy and preserve fine-grained temporal details. We also refine prompt design to better utilize audio-visual cues. Evaluations on Charades-STA and QVHighlights show that SMART achieves significant improvements over state-of-the-art methods, including a 1.61\% increase in R1@0.5 and 2.59\% gain in R1@0.7 on Charades-STA.
♻ ☆ VULPO: Context-Aware Vulnerability Detection via On-Policy LLM Optimization
The widespread reliance on open-source software dramatically increases the risk of vulnerability exploitation, underscoring the need for effective and scalable vulnerability detection (VD). Existing VD techniques, whether traditional machine learning-based or LLM-based approaches like prompt engineering, supervised fine-tuning, or off-policy preference optimization, remain fundamentally limited in their ability to perform context-aware analysis: They depend on fixed inputs or static preference datasets, cannot adaptively explore repository-level dependencies, and are constrained by function-level benchmarks that overlook critical vulnerability context. This paper introduces Vulnerability-Adaptive Policy Optimization (VULPO), an on-policy LLM reinforcement learning framework for context-aware VD. To support training and evaluation, we first construct ContextVul, a new dataset that augments high-quality function-level samples with lightweight method to extract repository-level context information. We then design multi-dimensional reward structuring that jointly captures prediction correctness, vulnerability localization accuracy, and the semantic relevance of vulnerability analysis, thereby guiding the model toward comprehensive contextual reasoning. To address the asymmetric difficulty of different vulnerability cases and mitigate reward hacking, VULPO incorporates label-level and sample-level difficulty-adaptive reward scaling, encouraging the model to explore challenging cases while maintaining balanced reward distribution. Extensive experiments demonstrate the superiority of our VULPO framework in context-aware VD: Our VULPO-4B substantially outperforms existing VD baselines based on prompt engineering and off-policy optimization, improving F1 by 85% over Qwen3-4B and achieving performance comparable to a 150x larger-scale model, DeepSeek-R1-0528.
♻ ☆ OG-VLA: Orthographic Image Generation for 3D-Aware Vision-Language Action Model
We introduce OG-VLA, a novel architecture and learning framework that combines the generalization strengths of Vision Language Action models (VLAs) with the robustness of 3D-aware policies. We address the challenge of mapping natural language instructions and one or more RGBD observations to quasi-static robot actions. 3D-aware robot policies achieve state-of-the-art performance on precise robot manipulation tasks, but struggle with generalization to unseen instructions, scenes, and objects. On the other hand, VLAs excel at generalizing across instructions and scenes, but can be sensitive to camera and robot pose variations. We leverage prior knowledge embedded in language and vision foundation models to improve generalization of 3D-aware keyframe policies. OG-VLA unprojects input observations from diverse views into a point cloud which is then rendered from canonical orthographic views, ensuring input view invariance and consistency between input and output spaces. These canonical views are processed with a vision backbone, a Large Language Model (LLM), and an image diffusion model to generate images that encode the next position and orientation of the end-effector on the input scene. Evaluations on the Arnold and Colosseum benchmarks demonstrate state-of-the-art generalization to unseen environments, with over 40% relative improvements while maintaining robust performance in seen settings. We also show real-world adaption in 3 to 5 demonstrations along with strong generalization. Videos and resources at https://og-vla.github.io/
comment: 13 pages
♻ ☆ Optimizing Federated Learning by Entropy-Based Client Selection
Although deep learning has revolutionized domains such as natural language processing and computer vision, its dependence on centralized datasets raises serious privacy concerns. Federated learning addresses this issue by enabling multiple clients to collaboratively train a global deep learning model without compromising their data privacy. However, the performance of such a model degrades under label skew, where the label distribution differs between clients. To overcome this issue, a novel method called FedEntOpt is proposed. In each round, it selects clients to maximize the entropy of the aggregated label distribution, ensuring that the global model is exposed to data from all available classes. Extensive experiments on multiple benchmark datasets show that the proposed method outperforms several state-of-the-art algorithms by up to 6% in classification accuracy under standard settings regardless of the model size, while achieving gains of over 30% in scenarios with low participation rates and client dropout. In addition, FedEntOpt offers the flexibility to be combined with existing algorithms, enhancing their classification accuracy by more than 40%. Importantly, its performance remains unaffected even when differential privacy is applied.
comment: Accepted at the 3rd IEEE International Conference on Federated Learning Technologies and Applications (FLTA 2025), Dubrovnik, Croatia, October 14-17, 2025
♻ ☆ GMAT: Grounded Multi-Agent Clinical Description Generation for Text Encoder in Vision-Language MIL for Whole Slide Image Classification MICCAI
Multiple Instance Learning (MIL) is the leading approach for whole slide image (WSI) classification, enabling efficient analysis of gigapixel pathology slides. Recent work has introduced vision-language models (VLMs) into MIL pipelines to incorporate medical knowledge through text-based class descriptions rather than simple class names. However, when these methods rely on large language models (LLMs) to generate clinical descriptions or use fixed-length prompts to represent complex pathology concepts, the limited token capacity of VLMs often constrains the expressiveness and richness of the encoded class information. Additionally, descriptions generated solely by LLMs may lack domain grounding and fine-grained medical specificity, leading to suboptimal alignment with visual features. To address these challenges, we propose a vision-language MIL framework with two key contributions: (1) A grounded multi-agent description generation system that leverages curated pathology textbooks and agent specialization (e.g., morphology, spatial context) to produce accurate and diverse clinical descriptions; (2) A text encoding strategy using a list of descriptions rather than a single prompt, capturing fine-grained and complementary clinical signals for better alignment with visual features. Integrated into a VLM-MIL pipeline, our approach shows improved performance over single-prompt class baselines and achieves results comparable to state-of-the-art models, as demonstrated on renal and lung cancer datasets.
comment: Acccepted in MICCAI Workshop 2025
♻ ☆ MOON: Generative MLLM-based Multimodal Representation Learning for E-commerce Product Understanding WSDM 2026
With the rapid advancement of e-commerce, exploring general representations rather than task-specific ones has attracted increasing research attention. For product understanding, although existing discriminative dual-flow architectures drive progress in this field, they inherently struggle to model the many-to-one alignment between multiple images and texts of products. Therefore, we argue that generative Multimodal Large Language Models (MLLMs) hold significant potential for improving product representation learning. Nevertheless, achieving this goal still remains non-trivial due to several key challenges: the lack of multimodal and aspect-aware modeling modules in typical LLMs; the common presence of background noise in product images; and the absence of a standard benchmark for evaluation. To address these issues, we propose the first generative MLLM-based model named MOON for product representation learning. Our method (1) employs a guided Mixture-of-Experts (MoE) module for targeted modeling of multimodal and aspect-specific product content; (2) effectively detects core semantic regions in product images to mitigate the distraction and interference caused by background noise; and (3) introduces the specialized negative sampling strategy to increase the difficulty and diversity of negative samples. In addition, we release a large-scale multimodal benchmark MBE for various product understanding tasks. Experimentally, our model demonstrates competitive zero-shot performance on both our benchmark and the public dataset, showcasing strong generalization across various downstream tasks, including cross-modal retrieval, product classification, and attribute prediction. Furthermore, the case study and visualization illustrate the effectiveness of MOON for product understanding.
comment: Accepted by WSDM 2026. 11 pages, 9 figures
♻ ☆ OptScale: Probabilistic Optimality for Inference-time Scaling AAAI-2026
Inference-time scaling has emerged as a powerful technique for enhancing the reasoning performance of Large Language Models (LLMs). However, existing approaches often rely on heuristic strategies for parallel sampling, lacking a principled foundation. To address this gap, we propose a probabilistic framework that formalizes the optimality of inference-time scaling under the assumption that parallel samples are independently and identically distributed (i.i.d.), and where the Best-of-N selection strategy follows a probability distribution that can be estimated. Within this framework, we derive a theoretical lower bound on the required number of samples to achieve a target performance level, providing the first principled guidance for compute-efficient scaling. Leveraging this insight, we develop \textsc{OptScale}, a practical algorithm that dynamically determines the optimal number of sampled responses. \textsc{OptScale} employs a language model-based predictor to estimate probabilistic prior parameters, enabling the decision of the minimal number of samples needed that satisfy predefined performance thresholds and confidence levels. Extensive experiments on representative reasoning benchmarks (including MATH-500, GSM8K, AIME, and AMC) demonstrate that \textsc{OptScale} significantly reduces sampling overhead while remaining better or on par with state-of-the-art reasoning performance. Our work offers both a theoretical foundation and a practical solution for principled inference-time scaling, addressing a critical gap in the efficient deployment of LLMs for complex reasoning. The source code is publicly available at https://github.com/Albertwyk/OptScale.
comment: Accepted by AAAI-2026
♻ ☆ MOON Embedding: Multimodal Representation Learning for E-commerce Search Advertising
We introduce MOON, our comprehensive set of sustainable iterative practices for multimodal representation learning for e-commerce applications. MOON has already been fully deployed across all stages of Taobao search advertising system, including retrieval, relevance, ranking, and so on. The performance gains are particularly significant on click-through rate (CTR) prediction task, which achieves an overall +20.00% online CTR improvement. Over the past three years, this project has delivered the largest improvement on CTR prediction task and undergone five full-scale iterations. Throughout the exploration and iteration of our MOON, we have accumulated valuable insights and practical experience that we believe will benefit the research community. MOON contains a three-stage training paradigm of "Pretraining, Post-training, and Application", allowing effective integration of multimodal representations with downstream tasks. Notably, to bridge the misalignment between the objectives of multimodal representation learning and downstream training, we define the exchange rate to quantify how effectively improvements in an intermediate metric can translate into downstream gains. Through this analysis, we identify the image-based search recall as a critical intermediate metric guiding the optimization of multimodal models. Over three years and five iterations, MOON has evolved along four critical dimensions: data processing, training strategy, model architecture, and downstream application. The lessons and insights gained through the iterative improvements will also be shared. As part of our exploration into scaling effects in the e-commerce field, we further conduct a systematic study of the scaling laws governing multimodal representation learning, examining multiple factors such as the number of training tokens, negative samples, and the length of user behavior sequences.
comment: 31 pages, 12 figures
♻ ☆ A More Realistic Evaluation of Cross-Frequency Transfer Learning and Foundation Forecasting Models NeurIPS 2025
Cross-frequency transfer learning (CFTL) has emerged as a popular framework for curating large-scale time series datasets to pre-train foundation forecasting models (FFMs). Although CFTL has shown promise, current benchmarking practices fall short of accurately assessing its performance. This shortcoming stems from many factors: an over-reliance on small-scale evaluation datasets; inadequate treatment of sample size when computing summary statistics; reporting of suboptimal statistical models; and failing to account for non-negligible risks of overlap between pre-training and test datasets. To address these limitations, we introduce a unified reimplementation of widely-adopted neural forecasting networks, adapting them for the CFTL setup; we pre-train only on proprietary and synthetic data, being careful to prevent test leakage; and we evaluate on 15 large, diverse public forecast competition datasets. Our empirical analysis reveals that statistical models' accuracy is frequently underreported. Notably, we confirm that statistical models and their ensembles consistently outperform existing FFMs by more than 8.2% in sCRPS, and by more than 20% MASE, across datasets. However, we also find that synthetic dataset pre-training does improve the accuracy of a FFM by 7% percent.
comment: NeurIPS 2025 Workshop on Recent Advances in Time Series Foundation Models (BERT2S)
♻ ☆ MI9: An Integrated Runtime Governance Framework for Agentic AI
Agentic AI systems capable of reasoning, planning, and executing actions present fundamentally distinct governance challenges compared to traditional AI models. Unlike conventional AI, these systems exhibit emergent and unexpected behaviors during runtime, introducing novel agent-related risks that cannot be fully anticipated through pre-deployment governance alone. To address this critical gap, we introduce MI9, the first fully integrated runtime governance framework designed specifically for safety and alignment of agentic AI systems. MI9 introduces real-time controls through six integrated components: agency-risk index, agent-semantic telemetry capture, continuous authorization monitoring, Finite-State-Machine (FSM)-based conformance engines, goal-conditioned drift detection, and graduated containment strategies. Operating transparently across heterogeneous agent architectures, MI9 enables the systematic, safe, and responsible deployment of agentic systems in production environments where conventional governance approaches fall short, providing the foundational infrastructure for safe agentic AI deployment at scale. Detailed analysis through a diverse set of scenarios demonstrates MI9's systematic coverage of governance challenges that existing approaches fail to address, establishing the technical foundation for comprehensive agentic AI oversight.
♻ ☆ Dimension vs. Precision: A Comparative Analysis of Autoencoders and Quantization for Efficient Vector Retrieval on BEIR SciFact
Dense retrieval models have become a standard for state-of-the-art information retrieval. However, their high-dimensional, high-precision (float32) vector embeddings create significant storage and memory challenges for real-world deployment. To address this, we conduct a rigorous empirical study on the BEIR SciFact benchmark, evaluating the trade-offs between two primary compression strategies: (1) Dimensionality Reduction via deep Autoencoders (AE), reducing original 384-dim vectors to latent spaces from 384 down to 12, and (2) Precision Reduction via Quantization (float16, int8, and binary). We systematically compare each method by measuring the "performance loss" (or gain) relative to a float32 baseline across a full suite of retrieval metrics (NDCG, MAP, MRR, Recall, Precision) at various k cutoffs. Our results show that int8 scalar quantization provides the most effective "sweet spot," achieving a 4x compression with a negligible [~1-2%] drop in nDCG@10. In contrast, Autoencoders show a graceful degradation but suffer a more significant performance loss at equivalent 4x compression ratios (AE-96). binary quantization was found to be unsuitable for this task due to catastrophic performance drops. This work provides a practical guide for deploying efficient, high-performance retrieval systems.
comment: 16 pages, 9 figures, 1 table
♻ ☆ Fine-Grained Representation for Lane Topology Reasoning AAAI 2026
Precise modeling of lane topology is essential for autonomous driving, as it directly impacts navigation and control decisions. Existing methods typically represent each lane with a single query and infer topological connectivity based on the similarity between lane queries. However, this kind of design struggles to accurately model complex lane structures, leading to unreliable topology prediction. In this view, we propose a Fine-Grained lane topology reasoning framework (TopoFG). It divides the procedure from bird's-eye-view (BEV) features to topology prediction via fine-grained queries into three phases, i.e., Hierarchical Prior Extractor (HPE), Region-Focused Decoder (RFD), and Robust Boundary-Point Topology Reasoning (RBTR). Specifically, HPE extracts global spatial priors from the BEV mask and local sequential priors from in-lane keypoint sequences to guide subsequent fine-grained query modeling. RFD constructs fine-grained queries by integrating the spatial and sequential priors. It then samples reference points in RoI regions of the mask and applies cross-attention with BEV features to refine the query representations of each lane. RBTR models lane connectivity based on boundary-point query features and further employs a topological denoising strategy to reduce matching ambiguity. By integrating spatial and sequential priors into fine-grained queries and applying a denoising strategy to boundary-point topology reasoning, our method precisely models complex lane structures and delivers trustworthy topology predictions. Extensive experiments on the OpenLane-V2 benchmark demonstrate that TopoFG achieves new state-of-the-art performance, with an OLS of 48.0 on subsetA and 45.4 on subsetB.
comment: Accepted by AAAI 2026
♻ ☆ Batch Acquisition Function Evaluations and Decouple Optimizer Updates for Faster Bayesian Optimization AAAI
Bayesian optimization (BO) efficiently finds high-performing parameters by maximizing an acquisition function, which models the promise of parameters. A major computational bottleneck arises in acquisition function optimization, where multi-start optimization (MSO) with quasi-Newton (QN) methods is required due to the non-convexity of the acquisition function. BoTorch, a widely used BO library, currently optimizes the summed acquisition function over multiple points, leading to the speedup of MSO owing to PyTorch batching. Nevertheless, this paper empirically demonstrates the suboptimality of this approach in terms of off-diagonal approximation errors in the inverse Hessian of a QN method, slowing down its convergence. To address this problem, we propose to decouple QN updates using a coroutine while batching the acquisition function calls. Our approach not only yields the theoretically identical convergence to the sequential MSO but also drastically reduces the wall-clock time compared to the previous approaches. Our approach is available in GPSampler in Optuna, effectively reducing its computational overhead.
comment: Accepted to 5th Annual AAAI Workshop on AI to Accelerate Science and Engineering (AI2ASE)
♻ ☆ ACoRN: Noise-Robust Abstractive Compression in Retrieval-Augmented Language Models IJCNN 2025
Abstractive compression utilizes smaller langauge models to condense query-relevant context, reducing computational costs in retrieval-augmented generation (RAG). However,retrieved documents often include information that is either irrelevant to answering the query or misleading due to factual incorrect content, despite having high relevance scores. This behavior indicates that abstractive compressors are more likely to omit important information essential for the correct answer, especially in long contexts where attention dispersion occurs. To address this issue, we categorize retrieved documents in a more fine-grained manner and propose Abstractive Compression Robust against Noise (ACoRN), which introduces two novel training steps. First, we use offline data augmentation on the training dataset to enhance compressor robustness against two distinct types of retrieval noise. Second, since the language modelbased compressor cannot fully utilize information from multiple retrieved documents and exhibits positional bias, we perform finetuning to generate summaries centered around key information that directly supports the correct answer. Our experiments demonstrate that T5-large, trained with ACoRN as a compressor, improves EM and F1 scores while preserving the answer string, which could serve as direct evidence. ACoRN excels on datasets with many accuracy-reducing documents, making it highly useful in real-world scenarios.
comment: Accepted by IJCNN 2025
♻ ☆ Explaining Similarity in Vision-Language Encoders with Weighted Banzhaf Interactions NeurIPS 2025
Language-image pre-training (LIP) enables the development of vision-language models capable of zero-shot classification, localization, multimodal retrieval, and semantic understanding. Various explanation methods have been proposed to visualize the importance of input image-text pairs on the model's similarity outputs. However, popular saliency maps are limited by capturing only first-order attributions, overlooking the complex cross-modal interactions intrinsic to such encoders. We introduce faithful interaction explanations of LIP models (FIxLIP) as a unified approach to decomposing the similarity in vision-language encoders. FIxLIP is rooted in game theory, where we analyze how using the weighted Banzhaf interaction index offers greater flexibility and improves computational efficiency over the Shapley interaction quantification framework. From a practical perspective, we propose how to naturally extend explanation evaluation metrics, such as the pointing game and area between the insertion/deletion curves, to second-order interaction explanations. Experiments on the MS COCO and ImageNet-1k benchmarks validate that second-order methods, such as FIxLIP, outperform first-order attribution methods. Beyond delivering high-quality explanations, we demonstrate the utility of FIxLIP in comparing different models, e.g. CLIP vs. SigLIP-2.
comment: NeurIPS 2025. Code: https://github.com/hbaniecki/fixlip
♻ ☆ Automatic Differentiation of Agent-Based Models
Agent-based models (ABMs) simulate complex systems by capturing the bottom-up interactions of individual agents comprising the system. Many complex systems of interest, such as epidemics or financial markets, involve thousands or even millions of agents. Consequently, ABMs often become computationally demanding and rely on the calibration of numerous free parameters, which has significantly hindered their widespread adoption. In this paper, we demonstrate that automatic differentiation (AD) techniques can effectively alleviate these computational burdens. By applying AD to ABMs, the gradients of the simulator become readily available, greatly facilitating essential tasks such as calibration and sensitivity analysis. Specifically, we show how AD enables variational inference (VI) techniques for efficient parameter calibration. Our experiments demonstrate substantial performance improvements and computational savings using VI on three prominent ABMs: Axtell's model of firms; Sugarscape; and the SIR epidemiological model. Our approach thus significantly enhances the practicality and scalability of ABMs for studying complex systems.
comment: Rev. 1: Updated references and code availability
♻ ☆ SlotMatch: Distilling Object-Centric Representations for Unsupervised Video Segmentation
Unsupervised video segmentation is a challenging computer vision task, especially due to the lack of supervisory signals coupled with the complexity of visual scenes. To overcome this challenge, state-of-the-art models based on slot attention often have to rely on large and computationally expensive neural architectures. To this end, we propose a simple knowledge distillation framework that effectively transfers object-centric representations to a lightweight student. The proposed framework, called SlotMatch, aligns corresponding teacher and student slots via the cosine similarity, requiring no additional distillation objectives or auxiliary supervision. The simplicity of SlotMatch is confirmed via theoretical and empirical evidence, both indicating that integrating additional losses is redundant. We conduct experiments on three datasets to compare the state-of-the-art teacher model, SlotContrast, with our distilled student. The results show that our student based on SlotMatch matches and even outperforms its teacher, while using 3.6x less parameters and running up to 2.7x faster. Moreover, our student surpasses all other state-of-the-art unsupervised video segmentation models.
♻ ☆ KWT-Tiny: RISC-V Accelerated, Embedded Keyword Spotting Transformer
This paper explores the adaptation of Transformerbased models for edge devices through the quantisation and hardware acceleration of the ARM Keyword Transformer (KWT) model on a RISC-V platform. The model was targeted to run on 64kB RAM in bare-metal C using a custom-developed edge AI library. KWT-1 was retrained to be 369 times smaller, with only a 10% loss in accuracy through reducing output classes from 35 to 2. The retraining and quantisation reduced model size from 2.42 MB to 1.65 kB. The integration of custom RISC-V instructions that accelerated GELU and SoftMax operations enabled a 5x speedup and thus ~5x power reduction in inference, with inference clock cycle counts decreasing from 26 million to 5.5 million clock cycles while incurring a small area overhead of approximately 29%. The results demonstrate a viable method for porting and accelerating Transformer-based models in low-power IoT devices.
comment: 6 pages, 7 figures, published in the IEEE SOCC 2024 conference
♻ ☆ Embedding Explainable AI in NHS Clinical Safety: The Explainability-Enabled Clinical Safety Framework (ECSF)
Artificial intelligence (AI) is increasingly embedded in NHS workflows, but its probabilistic and adaptive behaviour conflicts with the deterministic assumptions underpinning existing clinical-safety standards. DCB0129 and DCB0160 provide strong governance for conventional software yet do not define how AI-specific transparency, interpretability, or model drift should be evidenced within Safety Cases, Hazard Logs, or post-market monitoring. This paper proposes an Explainability-Enabled Clinical Safety Framework (ECSF) that integrates explainability into the DCB0129/0160 lifecycle, enabling Clinical Safety Officers to use interpretability outputs as structured safety evidence without altering compliance pathways. A cross-regulatory synthesis mapped DCB clauses to principles from Good Machine Learning Practice, the NHS AI Assurance and T.E.S.T. frameworks, and the EU AI Act. The resulting matrix links regulatory clauses, principles, ECSF checkpoints, and suitable explainability outputs. ECSF introduces five checkpoints: global transparency for hazard identification, case-level interpretability for verification, clinician usability for evaluation, traceable decision pathways for risk control, and longitudinal interpretability monitoring for post-market surveillance. Techniques such as SHAP, LIME, Integrated Gradients, saliency mapping, and attention visualisation are mapped to corresponding DCB artefacts. ECSF reframes explainability as a core element of clinical-safety assurance, bridging deterministic risk governance with the probabilistic behaviour of AI and supporting alignment with GMLP, the EU AI Act, and NHS AI Assurance principles.
comment: 33 pages, 5 figures
♻ ☆ Generating Streamlining Constraints with Large Language Models
Streamlining constraints (or streamliners, for short) narrow the search space, enhancing the speed and feasibility of solving complex constraint satisfaction problems. Traditionally, streamliners were crafted manually or generated through systematically combined atomic constraints with high-effort offline testing. Our approach utilizes the creativity of Large Language Models (LLMs) to propose effective streamliners for problems specified in the MiniZinc constraint programming language and integrates feedback to the LLM with quick empirical tests for validation. Evaluated across seven diverse constraint satisfaction problems, our method achieves substantial runtime reductions. We compare the results to obfuscated and disguised variants of the problem to see whether the results depend on LLM memorization. We also analyze whether longer off-line runs improve the quality of streamliners and whether the LLM can propose good combinations of streamliners.
comment: 23 page; deeper analysis of streamliners and statistics about benchmark instances added
♻ ☆ DepthVision: Enabling Robust Vision-Language Models with GAN-Based LiDAR-to-RGB Synthesis for Autonomous Driving
Ensuring reliable autonomous operation when visual input is degraded remains a key challenge in intelligent vehicles and robotics. We present DepthVision, a multimodal framework that enables Vision--Language Models (VLMs) to exploit LiDAR data without any architectural changes or retraining. DepthVision synthesizes dense, RGB-like images from sparse LiDAR point clouds using a conditional GAN with an integrated refiner, and feeds these into off-the-shelf VLMs through their standard visual interface. A Luminance-Aware Modality Adaptation (LAMA) module fuses synthesized and real camera images by dynamically weighting each modality based on ambient lighting, compensating for degradation such as darkness or motion blur. This design turns LiDAR into a drop-in visual surrogate when RGB becomes unreliable, effectively extending the operational envelope of existing VLMs. We evaluate DepthVision on real and simulated datasets across multiple VLMs and safety-critical tasks, including vehicle-in-the-loop experiments. The results show substantial improvements in low-light scene understanding over RGB-only baselines while preserving full compatibility with frozen VLM architectures. These findings demonstrate that LiDAR-guided RGB synthesis is a practical pathway for integrating range sensing into modern vision-language systems for autonomous driving.
♻ ☆ AGITB: A Signal-Level Benchmark for Evaluating Artificial General Intelligence
Current AI systems demonstrate remarkable capabilities yet remain specialised, in part because no unified measure of general intelligence has been established. Existing evaluation frameworks, which focus primarily on language or perception tasks, offer limited insight into generality. The Artificial General Intelligence Testbed (AGITB) introduces a complementary benchmarking suite of fourteen elementary tests, with thirteen implemented as fully automated procedures. AGITB evaluates models on their ability to forecast the next input in a temporal sequence, step by step, without pretraining, symbolic manipulation, or semantic grounding. The framework isolates core computational invariants, such as determinism, sensitivity, and generalisation, that parallel principles of biological information processing. Designed to resist brute-force or memorisation-based strategies, AGITB enforces unbiased and autonomous learning. The human cortex satisfies all tests, whereas no current AI system meets the full AGITB criteria, demonstrating its value as a rigorous, interpretable, and actionable benchmark for evaluating progress toward artificial general intelligence. A reference implementation of AGITB is freely available on GitHub.
comment: 18 pages, 2 figures
♻ ☆ Open Benchmarking for Click-Through Rate Prediction CIKM 2021
Click-through rate (CTR) prediction is a critical task for many applications, as its accuracy has a direct impact on user experience and platform revenue. In recent years, CTR prediction has been widely studied in both academia and industry, resulting in a wide variety of CTR prediction models. Unfortunately, there is still a lack of standardized benchmarks and uniform evaluation protocols for CTR prediction research. This leads to non-reproducible or even inconsistent experimental results among existing studies, which largely limits the practical value and potential impact of their research. In this work, we build an open benchmark for CTR prediction, namely BARS-CTR, and present a rigorous comparison of different models in a reproducible manner. To this end, we ran over 7,000 experiments for more than 12,000 GPU hours in total to re-evaluate 24 existing models on multiple datasets and settings. Surprisingly, our experiments show that with sufficient hyper-parameter search and model tuning, many deep models have smaller differences than expected. The results also reveal that making real progress on the modeling of CTR prediction is indeed a very challenging research task. We believe that our benchmarking work could not only allow researchers to gauge the effectiveness of new models conveniently but also make them fairly compare with the state of the arts. We have publicly released the benchmarking code, evaluation protocols, and hyper-parameter settings of our work to promote reproducible research in this field.
comment: Accepted by CIKM 2021. See BARS-CTR at https://openbenchmark.github.io/BARS/CTR
♻ ☆ MoM: Linear Sequence Modeling with Mixture-of-Memories
Linear sequence modeling methods, such as linear attention, state space modeling, and linear RNNs, offer significant efficiency improvements by reducing the complexity of training and inference. However, these methods typically compress the entire input sequence into a single fixed-size memory state, which leads to suboptimal performance on recall-intensive tasks. To address this limitation, we introduce a novel architecture called Mixture-of-Memories (MoM). MoM utilizes multiple independent memory states, with a router network directing input tokens to specific memory states. This approach greatly enhances the overall memory capacity while minimizing memory interference. MoM serves as a general framework that can be seamlessly combined with diverse memory update mechanisms across linear models. As a result, MoM performs exceptionally well on recall-intensive tasks, surpassing existing linear sequence modeling techniques. Despite incorporating multiple memory states, the computation of each memory state remains linear in complexity, allowing MoM to retain the linear-complexity advantage during training, while constant-complexity during inference. Our experimental results show that MoM outperforms current linear sequence models on downstream language tasks, particularly recall-intensive tasks, and even achieves performance comparable to Transformer models. The code is released at https://github.com/OpenSparseLLMs/MoM and is also released as a part of https://github.com/OpenSparseLLMs/Linear-MoE.
comment: Technical report, 18 pages
♻ ☆ The Energy Cost of Artificial Intelligence Lifecycle in Communication Networks
Artificial Intelligence (AI) is being incorporated in several optimization, scheduling, orchestration as well as in native communication network functions. This paradigm shift results in increased energy consumption, however, quantifying the end-to-end energy consumption of adding intelligence to communication systems remains an open challenge since conventional energy consumption metrics focus on either communication, computation infrastructure, or model development. To address this, we propose a new metric, the Energy Cost of AI Lifecycle (eCAL) of an AI model in a system. eCAL captures the energy consumption throughout the development, deployment and utilization of an AI-model providing intelligence in a communication network by (i) analyzing the complexity of data collection and manipulation in individual components and (ii) deriving overall and per-bit energy consumption. We show that as a trained AI model is used more frequently for inference, its energy cost per inference decreases, since the fixed training energy is amortized over a growing number of inferences. For a simple case study we show that eCAL for 100 inferences is 2.73 times higher than for 1000 inferences. Additionally, we have developed a modular and extendable open-source simulation tool to enable researchers, practitioners, and engineers to calculate the end-to-end energy cost with various configurations and across various systems, ensuring adaptability to diverse use cases.
comment: 16 pages, 13 figures
♻ ☆ SpecEdge: Scalable Edge-Assisted Serving Framework for Interactive LLMs
Large language models (LLMs) power many modern applications, but serving them at scale remains costly and resource-intensive. Current server-centric systems overlook consumer-grade GPUs at the edge. We introduce SpecEdge, an edge-assisted inference framework that splits LLM workloads between edge and server GPUs using a speculative decoding scheme, exchanging only token outputs over the network. SpecEdge employs proactive edge drafting to overlap edge token creation with server verification and pipeline-aware scheduling that interleaves multiple user requests to increase server-side throughput. Experiments show SpecEdge enhances overall cost efficiency by 1.91x through achieving 2.22x server throughput, and reduces inter token latency by 11.24% compared to a server-only baseline, introducing a scalable, cost-effective paradigm for LLM serving. The code is available at https://github.com/kaist-ina/specedge
♻ ☆ LLMDistill4Ads: Using Cross-Encoders to Distill from LLM Signals for Advertiser Keyphrase Recommendations
E-commerce sellers are advised to bid on keyphrases to boost their advertising campaigns. These keyphrases must be relevant to prevent irrelevant items from cluttering search systems and to maintain positive seller perception. It is vital that keyphrase suggestions align with seller, search and buyer judgments. Given the challenges in collecting negative feedback in these systems, LLMs have been used as a scalable proxy to human judgments. This paper presents an empirical study on a major ecommerce platform of a distillation framework involving an LLM teacher, a cross-encoder assistant and a bi-encoder Embedding Based Retrieval (EBR) student model, aimed at mitigating click-induced biases in keyphrase recommendations.
♻ ☆ RynnEC: Bringing MLLMs into Embodied World
We introduce RynnEC, a video multimodal large language model designed for embodied cognition. Built upon a general-purpose vision-language foundation model, RynnEC incorporates a region encoder and a mask decoder, enabling flexible region-level video interaction. Despite its compact architecture, RynnEC achieves state-of-the-art performance in object property understanding, object segmentation, and spatial reasoning. Conceptually, it offers a region-centric video paradigm for the brain of embodied agents, providing fine-grained perception of the physical world and enabling more precise interactions. To mitigate the scarcity of annotated 3D datasets, we propose an egocentric video based pipeline for generating embodied cognition data. Furthermore, we introduce RynnEC-Bench, a region-centered benchmark for evaluating embodied cognitive capabilities. We anticipate that RynnEC will advance the development of general-purpose cognitive cores for embodied agents and facilitate generalization across diverse embodied tasks. The code, model checkpoints, and benchmark are available at: https://github.com/alibaba-damo-academy/RynnEC
comment: The technical report of RynnEC, an embodied cognition MLLM
♻ ☆ Foundation Models in Medical Imaging: A Review and Outlook
Foundation models (FMs) are changing the way medical images are analyzed by learning from large collections of unlabeled data. Instead of relying on manually annotated examples, FMs are pre-trained to learn general-purpose visual features that can later be adapted to specific clinical tasks with little additional supervision. In this review, we examine how FMs are being developed and applied in pathology, radiology, and ophthalmology, drawing on evidence from over 150 studies. We explain the core components of FM pipelines, including model architectures, self-supervised learning methods, and strategies for downstream adaptation. We also review how FMs are being used in each imaging domain and compare design choices across applications. Finally, we discuss key challenges and open questions to guide future research.
♻ ☆ Physics-Informed Neural Networks for Real-Time Gas Crossover Prediction in PEM Electrolyzers: First Application with Multi-Membrane Validation
Green hydrogen production via polymer electrolyte membrane (PEM) water electrolysis is pivotal for energy transition, yet hydrogen crossover through membranes threatens safety and economic viability-approaching explosive limits (4 mol% H$_2$ in O$_2$) while reducing Faradaic efficiency by 2.5%. Current physics-based models require extensive calibration and computational resources that preclude real-time implementation, while purely data-driven approaches fail to extrapolate beyond training conditions-critical for dynamic electrolyzer operation. Here we present the first application of physics-informed neural networks (PINNs) for hydrogen crossover prediction, integrating mass conservation, Fick's diffusion law, and Henry's solubility law within a compact architecture (17,793 parameters). Validated across six membranes under industrially relevant conditions (0.05-5.0 A/cm$^2$, 1-200 bar, 25-85°C), our PINN achieves exceptional accuracy (R$^{2}$ = 99.84% $\pm$ 0.15\%, RMSE = 0.0932% $\pm$ 0.0438%) based on five-fold cross-validation, with sub-millisecond inference times suitable for real-time control. Remarkably, the model maintains R$^2$ > 86% when predicting crossover at pressures 2.5x beyond training range-substantially outperforming pure neural networks (R$^2$ = 43.4%). The hardware-agnostic deployment, from desktop CPUs to edge devices (Raspberry Pi 4), enables distributed safety monitoring essential for gigawatt-scale installations. By bridging physical rigor and computational efficiency, this work establishes a new paradigm for real-time electrolyzer monitoring, accelerating deployment of safe, efficient green hydrogen infrastructure crucial for net-zero emissions targets.
♻ ☆ Physics-Informed Neural Networks for Nonlinear Output Regulation
This work addresses the full-information output regulation problem for nonlinear systems, assuming the states of both the plant and the exosystem are known. In this setting, perfect tracking or rejection is achieved by constructing a zero-regulation-error manifold $π(w)$ and a feedforward input $c(w)$ that render such manifold invariant. The pair $(π(w), c(w))$ is characterized by the regulator equations, i.e., a system of PDEs with an algebraic constraint. We focus on accurately solving the regulator equations introducing a physics-informed neural network (PINN) approach that directly approximates $π(w)$ and $c(w)$ by minimizing the residuals under boundary and feasibility conditions, without requiring precomputed trajectories or labeled data. The learned operator maps exosystem states to steady state plant states and inputs, enables real-time inference and, critically, generalizes across families of the exosystem with varying initial conditions and parameters. The framework is validated on a regulation task that synchronizes a helicopter's vertical dynamics with a harmonically oscillating platform. The resulting PINN-based solver reconstructs the zero-error manifold with high fidelity and sustains regulation performance under exosystem variations, highlighting the potential of learning-enabled solvers for nonlinear output regulation. The proposed approach is broadly applicable to nonlinear systems that admit a solution to the output regulation problem.
♻ ☆ Next-Generation Database Interfaces: A Survey of LLM-based Text-to-SQL
Generating accurate SQL from users' natural language questions (text-to-SQL) remains a long-standing challenge due to the complexities involved in user question understanding, database schema comprehension, and SQL generation. Traditional text-to-SQL systems, which combine human engineering and deep neural networks, have made significant progress. Subsequently, pre-trained language models (PLMs) have been developed for text-to-SQL tasks, achieving promising results. However, as modern databases and user questions grow more complex, PLMs with a limited parameter size often produce incorrect SQL. This necessitates more sophisticated and tailored optimization methods, which restricts the application of PLM-based systems. Recently, large language models (LLMs) have shown significant capabilities in natural language understanding as model scale increases. Thus, integrating LLM-based solutions can bring unique opportunities, improvements, and solutions to text-to-SQL research. In this survey, we provide a comprehensive review of existing LLM-based text-to-SQL studies. Specifically, we offer a brief overview of the technical challenges and evolutionary process of text-to-SQL. Next, we introduce the datasets and metrics designed to evaluate text-to-SQL systems. Subsequently, we present a systematic analysis of recent advances in LLM-based text-to-SQL. Finally, we make a summarization and discuss the remaining challenges in this field and suggest expectations for future research directions. All the related resources of LLM-based, including research papers, benchmarks, and open-source projects, are collected for the community in our repository: https://github.com/DEEP-PolyU/Awesome-LLM-based-Text2SQL.
comment: Accepted to IEEE TKDE2025
♻ ☆ Patent Language Model Pretraining with ModernBERT
Transformer-based language models such as BERT have become foundational in NLP, yet their performance degrades in specialized domains like patents, which contain long, technical, and legally structured text. Prior approaches to patent NLP have primarily relied on fine-tuning general-purpose models or domain-adapted variants pretrained with limited data. In this work, we pretrain 3 domain-specific masked language models for patents, using the ModernBERT architecture and a curated corpus of over 60 million patent records. Our approach incorporates architectural optimizations, including FlashAttention, rotary embeddings, and GLU feed-forward layers. We evaluate our models on four downstream patent classification tasks. Our model, ModernBERT-base-PT, consistently outperforms the general-purpose ModernBERT baseline on three out of four datasets and achieves competitive performance with a baseline PatentBERT. Additional experiments with ModernBERT-base-VX and Mosaic-BERT-large demonstrate that scaling the model size and customizing the tokenizer further enhance performance on selected tasks. Notably, all ModernBERT variants retain substantially faster inference over - 3x that of PatentBERT - underscoring their suitability for time-sensitive applications. These results underscore the benefits of domain-specific pretraining and architectural improvements for patent-focused NLP tasks.
comment: 7 pages, 5 figures, 4 tables
♻ ☆ Resilient by Design -- Active Inference for Distributed Continuum Intelligence
Failures are the norm in highly complex and heterogeneous devices spanning the distributed computing continuum (DCC), from resource-constrained IoT and edge nodes to high-performance computing systems. Ensuring reliability and global consistency across these layers remains a major challenge, especially for AI-driven workloads requiring real-time, adaptive coordination. This work-in-progress paper introduces a Probabilistic Active Inference Resilience Agent (PAIR-Agent) to achieve resilience in DCC systems. PAIR-Agent performs three core operations: (i) constructing a causal fault graph from device logs, (ii) identifying faults while managing certainties and uncertainties using Markov blankets and the free energy principle, and (iii) autonomously healing issues through active inference. Through continuous monitoring and adaptive reconfiguration, the agent maintains service continuity and stability under diverse failure conditions. Theoretical validations confirm the reliability and effectiveness of the proposed framework.
♻ ☆ Efficient Reinforcement Learning for Zero-Shot Coordination in Evolving Games
Zero-shot coordination(ZSC), a key challenge in multi-agent game theory, has become a hot topic in reinforcement learning (RL) research recently, especially in complex evolving games. It focuses on the generalization ability of agents, requiring them to coordinate well with collaborators from a diverse, potentially evolving, pool of partners that are not seen before without any fine-tuning. Population-based training, which approximates such an evolving partner pool, has been proven to provide good zero-shot coordination performance; nevertheless, existing methods are limited by computational resources, mainly focusing on optimizing diversity in small populations while neglecting the potential performance gains from scaling population size. To address this issue, this paper proposes the Scalable Population Training (ScaPT), an efficient RL training framework comprising two key components: a meta-agent that efficiently realizes a population by selectively sharing parameters across agents, and a mutual information regularizer that guarantees population diversity. To empirically validate the effectiveness of ScaPT, this paper evaluates it along with representational frameworks in Hanabi cooperative game and confirms its superiority.
♻ ☆ Are We Asking the Right Questions? On Ambiguity in Natural Language Queries for Tabular Data Analysis
Natural language interfaces to tabular data must handle ambiguities inherent to queries. Instead of treating ambiguity as a deficiency, we reframe it as a feature of cooperative interaction where users are intentional about the degree to which they specify queries. We develop a principled framework based on a shared responsibility of query specification between user and system, distinguishing unambiguous and ambiguous cooperative queries, which systems can resolve through reasonable inference, from uncooperative queries that cannot be resolved. Applying the framework to evaluations for tabular question answering and analysis, we analyze the queries in 15 popular datasets, and observe an uncontrolled mixing of query types neither adequate for evaluating a system's execution accuracy nor for evaluating interpretation capabilities. This conceptualization around cooperation in resolving queries informs how to design and evaluate natural language interfaces for tabular data analysis, for which we distill concrete directions for future research and broader implications.
comment: Accepted to the AI for Tabular Data workshop at EurIPS 2025
♻ ☆ MCTSr-Zero: Self-Reflective Psychological Counseling Dialogues Generation via Principles and Adaptive Exploration AAAI-2026
The integration of Monte Carlo Tree Search (MCTS) with Large Language Models (LLMs) has demonstrated significant success in structured, problem-oriented tasks. However, applying these methods to open-ended dialogues, such as those in psychological counseling, presents unique challenges. Unlike tasks with objective correctness, success in therapeutic conversations depends on subjective factors like empathetic engagement, ethical adherence, and alignment with human preferences, for which strict "correctness" criteria are ill-defined. Existing result-oriented MCTS approaches can therefore produce misaligned responses. To address this, we introduce MCTSr-Zero, an MCTS framework designed for open-ended, human-centric dialogues. Its core innovation is "domain alignment", which shifts the MCTS search objective from predefined end-states towards conversational trajectories that conform to target domain principles (e.g., empathy in counseling). Furthermore, MCTSr-Zero incorporates "Regeneration" and "Meta-Prompt Adaptation" mechanisms to substantially broaden exploration by allowing the MCTS to consider fundamentally different initial dialogue strategies. We evaluate MCTSr-Zero in psychological counseling by generating multi-turn dialogue data, which is used to fine-tune an LLM, PsyLLM. We also introduce PsyEval, a benchmark for assessing multi-turn psychological counseling dialogues. Experiments demonstrate that PsyLLM achieves state-of-the-art performance on PsyEval and other relevant metrics, validating MCTSr-Zero's effectiveness in generating high-quality, principle-aligned conversational data for human-centric domains and addressing the LLM challenge of consistently adhering to complex psychological standards.
comment: 48 pages, 3 figures. Accepted in AAAI-2026 (Main Technical Track). For code and model, see this https://github.com/JianChengXingYun/Mctsr-Zero
♻ ☆ In-context Language Learning for Endangered Languages in Speech Recognition
With approximately 7,000 languages spoken worldwide, current large language models (LLMs) support only a small subset. Prior research indicates LLMs can learn new languages for certain tasks without supervised data. We extend this investigation to speech recognition, investigating whether LLMs can learn unseen, low-resource languages through in-context learning (ICL). With experiments on four diverse endangered languages that LLMs have not been trained on, we find that providing more relevant text samples enhances performance in both language modelling and Automatic Speech Recognition (ASR) tasks. Furthermore, we show that the probability-based approach outperforms the traditional instruction-based approach in language learning. Lastly, we show ICL enables LLMs to achieve ASR performance that is comparable to or even surpasses dedicated language models trained specifically for these languages, while preserving the original capabilities of the LLMs. Our code is publicly available.
comment: Interspeech2025
♻ ☆ Spatial Policy: Guiding Visuomotor Robotic Manipulation with Spatial-Aware Modeling and Reasoning
Vision-centric hierarchical embodied models have demonstrated strong potential. However, existing methods lack spatial awareness capabilities, limiting their effectiveness in bridging visual plans to actionable control in complex environments. To address this problem, we propose Spatial Policy (SP), a unified spatial-aware visuomotor robotic manipulation framework via explicit spatial modeling and reasoning. Specifically, we first design a spatial-conditioned embodied video generation module to model spatially guided predictions through the spatial plan table. Then, we propose a flow-based action prediction module to infer executable actions with coordination. Finally, we propose a spatial reasoning feedback policy to refine the spatial plan table via dual-stage replanning. Extensive experiments show that SP substantially outperforms state-of-the-art baselines, achieving over 33% improvement on Meta-World and over 25% improvement on iTHOR, demonstrating strong effectiveness across 23 embodied control tasks. We additionally evaluate SP in real-world robotic experiments to verify its practical viability. SP enhances the practicality of embodied models for robotic control applications. Code and checkpoints are maintained at https://plantpotatoonmoon.github.io/SpatialPolicy/.
♻ ☆ Effective Learning for Small Reasoning Models: An Empirical Study on 0.5B Reasoning LLMs
The ongoing evolution of language models has led to the development of large-scale architectures that demonstrate exceptional performance across a wide range of tasks. However, these models come with significant computational and energy demands, as well as potential privacy implications. In this context, Small Reasoning Language Models (SRLMs) with approximately 0.5 billion parameters present a compelling alternative due to their remarkable computational efficiency and cost-effectiveness, particularly in resource-constrained environments. Despite these advantages, the limited capacity of 0.5 billion parameter models poses challenges in handling complex tasks such as mathematical reasoning. This research investigates various training strategies, including supervised fine-tuning (SFT), knowledge distillation (KD), and reinforcement learning (RL), as well as their hybrid implementations, to enhance the performance of 0.5B SRLMs. We analyze effective methodologies to bridge the performance gap between SRLMS and larger models and present insights into optimal training pipelines tailored for these smaller architectures. Through extensive experimental validation and analysis, our work aims to provide actionable recommendations for maximizing the reasoning capabilities of 0.5B models.
comment: Under Review
♻ ☆ Virtual Human Generative Model: Masked Modeling Approach for Learning Human Characteristics
Virtual Human Generative Model (VHGM) is a generative model that approximates the joint probability over more than 2000 human healthcare-related attributes. This paper presents the core algorithm, VHGM-MAE, a masked autoencoder (MAE) tailored for handling high-dimensional, sparse healthcare data. VHGM-MAE tackles four key technical challenges: (1) heterogeneity of healthcare data types, (2) probability distribution modeling, (3) systematic missingness in the training dataset arising from multiple data sources, and (4) the high-dimensional, small-$n$-large-$p$ problem. To address these challenges, VHGM-MAE employs a likelihood-based approach to model distributions with heterogeneous types, a transformer-based MAE to capture complex dependencies among observed and missing attributes, and a novel training scheme that effectively leverages available samples with diverse missingness patterns to mitigate the small-n-large-p problem. Experimental results demonstrate that VHGM-MAE outperforms existing methods in both missing value imputation and synthetic data generation.
♻ ☆ Leveraging LLM-based agents for social science research: insights from citation network simulations SC
The emergence of Large Language Models (LLMs) demonstrates their potential to encapsulate the logic and patterns inherent in human behavior simulation by leveraging extensive web data pre-training. However, the boundaries of LLM capabilities in social simulation remain unclear. To further explore the social attributes of LLMs, we introduce the CiteAgent framework, designed to generate citation networks based on human-behavior simulation with LLM-based agents. CiteAgent successfully captures predominant phenomena in real-world citation networks, including power-law distribution, citational distortion, and shrinking diameter. Building on this realistic simulation, we establish two LLM-based research paradigms in social science: LLM-SE (LLM-based Survey Experiment) and LLM-LE (LLM-based Laboratory Experiment). These paradigms facilitate rigorous analyses of citation network phenomena, allowing us to validate and challenge existing theories. Additionally, we extend the research scope of traditional science of science studies through idealized social experiments, with the simulation experiment results providing valuable insights for real-world academic environments. Our work demonstrates the potential of LLMs for advancing science of science research in social science.
comment: accepted by HSSCOMMS'25
♻ ☆ MoHoBench: Assessing Honesty of Multimodal Large Language Models via Unanswerable Visual Questions AAAI2026
Recently Multimodal Large Language Models (MLLMs) have achieved considerable advancements in vision-language tasks, yet produce potentially harmful or untrustworthy content. Despite substantial work investigating the trustworthiness of language models, MMLMs' capability to act honestly, especially when faced with visually unanswerable questions, remains largely underexplored. This work presents the first systematic assessment of honesty behaviors across various MLLMs. We ground honesty in models' response behaviors to unanswerable visual questions, define four representative types of such questions, and construct MoHoBench, a large-scale MMLM honest benchmark, consisting of 12k+ visual question samples, whose quality is guaranteed by multi-stage filtering and human verification. Using MoHoBench, we benchmarked the honesty of 28 popular MMLMs and conducted a comprehensive analysis. Our findings show that: (1) most models fail to appropriately refuse to answer when necessary, and (2) MMLMs' honesty is not solely a language modeling issue, but is deeply influenced by visual information, necessitating the development of dedicated methods for multimodal honesty alignment. Therefore, we implemented initial alignment methods using supervised and preference learning to improve honesty behavior, providing a foundation for future work on trustworthy MLLMs. Our data and code can be found at https://github.com/yanxuzhu/MoHoBench.
comment: AAAI2026 Oral
♻ ☆ LENS: Learning to Segment Anything with Unified Reinforced Reasoning
Text-prompted image segmentation enables fine-grained visual understanding and is critical for applications such as human-computer interaction and robotics. However, existing supervised fine-tuning methods typically ignore explicit chain-of-thought (CoT) reasoning at test time, which limits their ability to generalize to unseen prompts and domains. To address this issue, we introduce LENS, a scalable reinforcement-learning framework that jointly optimizes the reasoning process and segmentation in an end-to-end manner. We propose unified reinforcement-learning rewards that span sentence-, box-, and segment-level cues, encouraging the model to generate informative CoT rationales while refining mask quality. Using a publicly available 3-billion-parameter vision-language model, i.e., Qwen2.5-VL-3B-Instruct, LENS achieves an average cIoU of 81.2% on the RefCOCO, RefCOCO+, and RefCOCOg benchmarks, outperforming the strong fine-tuned method, i.e., GLaMM, by up to 5.6%. These results demonstrate that RL-driven CoT reasoning significantly enhances text-prompted segmentation and offers a practical path toward more generalizable Segment Anything models (SAM). Code is available at https://github.com/hustvl/LENS.
comment: Code is released at https://github.com/hustvl/LENS
♻ ☆ SemCo: Toward Semantic Coherent Visual Relationship Forecasting
Visual Relationship Forecasting (VRF) aims to anticipate relations among objects without observing future visual content. The task relies on capturing and modeling the semantic coherence in object interactions, as it underpins the evolution of events and scenes in videos. However, existing VRF datasets offer limited support for learning such coherence due to noisy annotations in the datasets and weak correlations between different actions and relationship transitions in subject-object pair. Furthermore, existing methods struggle to distinguish similar relationships and overfit to unchanging relationships in consecutive frames. To address these challenges, we present SemCoBench, a benchmark that emphasizes semantic coherence for visual relationship forecasting. Based on action labels and short-term subject-object pairs, SemCoBench decomposes relationship categories and dynamics by cleaning and reorganizing video datasets to ensure predicting semantic coherence in object interactions. In addition, we also present Semantic Coherent Transformer method (SemCoFormer) to model the semantic coherence with a Relationship Augmented Module (RAM) and a Coherence Reasoning Module (CRM). RAM is designed to distinguish similar relationships, and CRM facilitates the model's focus on the dynamics in relationships. The experimental results on SemCoBench demonstrate that modeling the semantic coherence is a key step toward reasonable, fine-grained, and diverse visual relationship forecasting, contributing to a more comprehensive understanding of video scenes.
♻ ☆ Availability-aware Sensor Fusion via Unified Canonical Space NeurIPS 2025
Sensor fusion of camera, LiDAR, and 4-dimensional (4D) Radar has brought a significant performance improvement in autonomous driving. However, there still exist fundamental challenges: deeply coupled fusion methods assume continuous sensor availability, making them vulnerable to sensor degradation and failure, whereas sensor-wise cross-attention fusion methods struggle with computational cost and unified feature representation. This paper presents availability-aware sensor fusion (ASF), a novel method that employs unified canonical projection (UCP) to enable consistency in all sensor features for fusion and cross-attention across sensors along patches (CASAP) to enhance robustness of sensor fusion against sensor degradation and failure. As a result, the proposed ASF shows a superior object detection performance to the existing state-of-the-art fusion methods under various weather and sensor degradation (or failure) conditions. Extensive experiments on the K-Radar dataset demonstrate that ASF achieves improvements of 9.7% in AP BEV (87.2%) and 20.1% in AP 3D (73.6%) in object detection at IoU=0.5, while requiring a low computational cost. All codes are available at https://github.com/kaist-avelab/k-radar.
comment: Accepted at NeurIPS 2025
♻ ☆ Non-Uniform Class-Wise Coreset Selection for Vision Model Fine-tuning
Coreset selection aims to identify a small yet highly informative subset of data, thereby enabling more efficient model training while reducing storage overhead. Recently, this capability has been leveraged to tackle the challenges of fine-tuning large foundation models, offering a direct pathway to their efficient and practical deployment. However, most existing methods are class-agnostic, causing them to overlook significant difficulty variations among classes. This leads them to disproportionately prune samples from either overly easy or hard classes, resulting in a suboptimal allocation of the data budget that ultimately degrades the final coreset performance. To address this limitation, we propose Non-Uniform Class-Wise Coreset Selection (NUCS), a novel framework that both integrates class-level and sample-level difficulty. We propose a robust metric for global class difficulty, quantified as the winsorized average of per-sample difficulty scores. Guided by this metric, our method performs a theoretically-grounded, non-uniform allocation of data selection budgets inter-class, while adaptively selecting samples intra-class with optimal difficulty ranges. Extensive experiments on a wide range of visual classification tasks demonstrate that NUCS consistently outperforms state-of-the-art methods across 10 diverse datasets and pre-trained models, achieving both superior accuracy and computational efficiency, highlighting the promise of non-uniform class-wise selection strategy for advancing the efficient fine-tuning of large foundation models.
comment: 13pages
♻ ☆ GAIS: Frame-Level Gated Audio-Visual Integration with Semantic Variance-Scaled Perturbation for Text-Video Retrieval
Text-to-video retrieval requires precise alignment between language and temporally rich audio-video signals. However, existing methods often emphasize visual cues while underutilizing audio semantics or relying on coarse fusion strategies, resulting in suboptimal multimodal representations. We introduce GAIS, a retrieval framework that strengthens multimodal alignment from both representation and regularization perspectives. First, a Frame-level Gated Fusion (FGF) module adaptively integrates audio-visual features under textual guidance, enabling fine-grained temporal selection of informative frames. Second, a Semantic Variance-Scaled Perturbation (SVSP) mechanism regularizes the text embedding space by controlling perturbation magnitude in a semantics-aware manner. These two modules are complementary: FGF minimizes modality gaps through selective fusion, while SVSP improves embedding stability and discrimination. Extensive experiments on MSR-VTT, DiDeMo, LSMDC, and VATEX demonstrate that GAIS consistently outperforms strong baselines across multiple retrieval metrics while maintaining notable computational efficiency.
comment: 13 pages
♻ ☆ Rethinking Saliency Maps: A Cognitive Human Aligned Taxonomy and Evaluation Framework for Explanations
Saliency maps are widely used for visual explanations in deep learning, but a fundamental lack of consensus persists regarding their intended purpose and alignment with diverse user queries. This ambiguity hinders the effective evaluation and practical utility of explanation methods. We address this gap by introducing the Reference-Frame $\times$ Granularity (RFxG) taxonomy, a principled conceptual framework that organizes saliency explanations along two essential axes:Reference-Frame: Distinguishing between pointwise ("Why this prediction?") and contrastive ("Why this and not an alternative?") explanations. Granularity: Ranging from fine-grained class-level (e.g., "Why Husky?") to coarse-grained group-level (e.g., "Why Dog?") interpretations. Using the RFxG lens, we demonstrate critical limitations in existing evaluation metrics, which overwhelmingly prioritize pointwise faithfulness while neglecting contrastive reasoning and semantic granularity. To systematically assess explanation quality across both RFxG dimensions, we propose four novel faithfulness metrics. Our comprehensive evaluation framework applies these metrics to ten state-of-the-art saliency methods, four model architectures, and three datasets. By advocating a shift toward user-intent-driven evaluation, our work provides both the conceptual foundation and the practical tools necessary to develop visual explanations that are not only faithful to the underlying model behavior but are also meaningfully aligned with the complexity of human understanding and inquiry.
♻ ☆ MusRec: Zero-Shot Text-to-Music Editing via Rectified Flow and Diffusion Transformers
Music editing has emerged as an important and practical area of artificial intelligence, with applications ranging from video game and film music production to personalizing existing tracks according to user preferences. However, existing models face significant limitations, such as being restricted to editing synthesized music generated by their own models, requiring highly precise prompts, or necessitating task-specific retraining, thus lacking true zero-shot capability. leveraging recent advances in rectified flow and diffusion transformers, we introduce MusRec, a zero-shot text-to-music editing model capable of performing diverse editing tasks on real-world music efficiently and effectively. Experimental results demonstrate that our approach outperforms existing methods in preserving musical content, structural consistency, and editing fidelity, establishing a strong foundation for controllable music editing in real-world scenarios.
comment: This work has been submitted to the IEEE for possible publication
♻ ☆ Harnessing Diverse Perspectives: A Multi-Agent Framework for Enhanced Error Detection in Knowledge Graphs DASFAA 2025
Knowledge graphs are widely used in industrial applications, making error detection crucial for ensuring the reliability of downstream applications. Existing error detection methods often fail to effectively utilize fine-grained subgraph information and rely solely on fixed graph structures, while also lacking transparency in their decision-making processes, which results in suboptimal detection performance. In this paper, we propose a novel Multi-Agent framework for Knowledge Graph Error Detection (MAKGED) that utilizes multiple large language models (LLMs) in a collaborative setting. By concatenating fine-grained, bidirectional subgraph embeddings with LLM-based query embeddings during training, our framework integrates these representations to produce four specialized agents. These agents utilize subgraph information from different dimensions to engage in multi-round discussions, thereby improving error detection accuracy and ensuring a transparent decision-making process. Extensive experiments on FB15K and WN18RR demonstrate that MAKGED outperforms state-of-the-art methods, enhancing the accuracy and robustness of KG evaluation. For specific industrial scenarios, our framework can facilitate the training of specialized agents using domain-specific knowledge graphs for error detection, which highlights the potential industrial application value of our framework. Our code and datasets are available at https://github.com/kse-ElEvEn/MAKGED.
comment: This paper has been ACCEPTED as a FULL PAPER at DASFAA 2025 (Oral)
♻ ☆ LoopTool: Closing the Data-Training Loop for Robust LLM Tool Calls
Augmenting Large Language Models (LLMs) with external tools enables them to execute complex, multi-step tasks. However, tool learning is hampered by the static synthetic data pipelines where data generation and model training are executed as two separate, non-interactive processes. This approach fails to adaptively focus on a model's specific weaknesses and allows noisy labels to persist, degrading training efficiency. We introduce LoopTool, a fully automated, model-aware data evolution framework that closes this loop by tightly integrating data synthesis and model training. LoopTool iteratively refines both the data and the model through three synergistic modules: (1) Greedy Capability Probing (GCP) diagnoses the model's mastered and failed capabilities; (2) Judgement-Guided Label Verification (JGLV) uses an open-source judge model to find and correct annotation errors, progressively purifying the dataset; and (3) Error-Driven Data Expansion (EDDE) generates new, challenging samples based on identified failures. This closed-loop process operates within a cost-effective, open-source ecosystem, eliminating dependence on expensive closed-source APIs. Experiments show that our 8B model trained with LoopTool significantly surpasses its 32B data generator and achieves new state-of-the-art results on the BFCL-v3 and ACEBench benchmarks for its scale. Our work demonstrates that closed-loop, self-refining data pipelines can dramatically enhance the tool-use capabilities of LLMs.
comment: The code is accessible at https://github.com/Rednote-DeepExperience/LoopTool. The LoopTool-8B is accessible at https://huggingface.co/zhuiguang-ning/LoopTool-8B
♻ ☆ CTRL-ALT-DECEIT: Sabotage Evaluations for Automated AI R&D NeurIPS 2025
AI systems are increasingly able to autonomously conduct realistic software engineering tasks, and may soon be deployed to automate machine learning (ML) R&D itself. Frontier AI systems may be deployed in safety-critical settings, including to help ensure the safety of future systems. Unfortunately, frontier and future systems may not be sufficiently trustworthy, and there is evidence that these systems may even be misaligned with their developers or users. Therefore, we investigate the capabilities of AI agents to act against the interests of their users when conducting ML engineering, by sabotaging ML models, sandbagging their performance, and subverting oversight mechanisms. First, we extend MLE-Bench, a benchmark for realistic ML tasks, with code-sabotage tasks such as implanting backdoors and purposefully causing generalisation failures. Frontier agents make meaningful progress on our sabotage tasks. In addition, we study agent capabilities to sandbag on MLE-Bench. Agents can calibrate their performance to specified target levels below their actual capability. To mitigate sabotage, we use LM monitors to detect suspicious agent behaviour, and we measure model capability to sabotage and sandbag without being detected by these monitors. Overall, monitors are capable at detecting code-sabotage attempts but our results suggest that detecting sandbagging is more difficult. Additionally, aggregating multiple monitor predictions works well, but monitoring may not be sufficiently reliable to mitigate sabotage in high-stakes domains. Our benchmark is implemented in the UK AISI's Inspect framework and we make our code publicly available at https://github.com/TeunvdWeij/ctrl-alt-deceit
comment: 53 pages, 21 figures, 8 tables. Accepted as a spotlight at NeurIPS 2025
♻ ☆ Unlocking the Forgery Detection Potential of Vanilla MLLMs: A Novel Training-Free Pipeline
With the rapid advancement of artificial intelligence-generated content (AIGC) technologies, including multimodal large language models (MLLMs) and diffusion models, image generation and manipulation have become remarkably effortless. Existing image forgery detection and localization (IFDL) methods often struggle to generalize across diverse datasets and offer limited interpretability. Nowadays, MLLMs demonstrate strong generalization potential across diverse vision-language tasks, and some studies introduce this capability to IFDL via large-scale training. However, such approaches cost considerable computational resources, while failing to reveal the inherent generalization potential of vanilla MLLMs to address this problem. Inspired by this observation, we propose Foresee, a training-free MLLM-based pipeline tailored for image forgery analysis. It eliminates the need for additional training and enables a lightweight inference process, while surpassing existing MLLM-based methods in both tamper localization accuracy and the richness of textual explanations. Foresee employs a type-prior-driven strategy and utilizes a Flexible Feature Detector (FFD) module to specifically handle copy-move manipulations, thereby effectively unleashing the potential of vanilla MLLMs in the forensic domain. Extensive experiments demonstrate that our approach simultaneously achieves superior localization accuracy and provides more comprehensive textual explanations. Moreover, Foresee exhibits stronger generalization capability, outperforming existing IFDL methods across various tampering types, including copy-move, splicing, removal, local enhancement, deepfake, and AIGC-based editing. The code will be released in the final version.
♻ ☆ DIVER: A Multi-Stage Approach for Reasoning-intensive Information Retrieval
Retrieval-augmented generation has achieved strong performance on knowledge-intensive tasks where query-document relevance can be identified through direct lexical or semantic matches. However, many real-world queries involve abstract reasoning, analogical thinking, or multi-step inference, which existing retrievers often struggle to capture. To address this challenge, we present DIVER, a retrieval pipeline designed for reasoning-intensive information retrieval. It consists of four components. The document preprocessing stage enhances readability and preserves content by cleaning noisy texts and segmenting long documents. The query expansion stage leverages large language models to iteratively refine user queries with explicit reasoning and evidence from retrieved documents. The retrieval stage employs a model fine-tuned on synthetic data spanning medical and mathematical domains, along with hard negatives, enabling effective handling of reasoning-intensive queries. Finally, the reranking stage combines pointwise and listwise strategies to produce both fine-grained and globally consistent rankings. On the BRIGHT benchmark, DIVER achieves state-of-the-art nDCG@10 scores of 46.8 overall and 31.9 on original queries, consistently outperforming competitive reasoning-aware models. These results demonstrate the effectiveness of reasoning-aware retrieval strategies in complex real-world tasks.
♻ ☆ EvoLM: In Search of Lost Language Model Training Dynamics NeurIPS 2025
Modern language model (LM) training has been divided into multiple stages, making it difficult for downstream developers to evaluate the impact of design choices made at each stage. We present EvoLM, a model suite that enables systematic and transparent analysis of LMs' training dynamics across pre-training, continued pre-training, supervised fine-tuning, and reinforcement learning. We train over 100 LMs with 1B and 4B parameters from scratch, and evaluate both upstream (language modeling) and downstream (problem-solving) capabilities, including considerations of both in-domain and out-of-domain generalization. Key insights highlight the diminishing returns from excessive pre-training and post-training, the importance and practices of mitigating forgetting during domain-specific continued pre-training, the crucial role of continued pre-training in bridging pre-training and post-training phases, and various intricate trade-offs when configuring supervised fine-tuning and reinforcement learning. To facilitate open research and reproducibility, we release all pre-trained and post-trained models, training datasets for all stages, and our entire training and evaluation pipeline.
comment: NeurIPS 2025 (Oral)
♻ ☆ Benchmark on Drug Target Interaction Modeling from a Drug Structure Perspective
The prediction modeling of drug-target interactions is crucial to drug discovery and design, which has seen rapid advancements owing to deep learning technologies. Recently developed methods, such as those based on graph neural networks (GNNs) and Transformers, demonstrate exceptional performance across various datasets by effectively extracting structural information. However, the benchmarking of these novel methods often varies significantly in terms of hyperparameter settings and datasets, which limits algorithmic progress. In view of these, we conducted a comprehensive survey and benchmark for drug-target interaction modeling from a structural perspective via integrating tens of explicit (i.e., GNN-based) and implicit (i.e., Transformer-based) structure learning algorithms. We conducted a macroscopical comparison between these two classes of encoding strategies as well as the different featurization techniques that inform molecules' chemical and physical properties. We then carry out the microscopical comparison between all the integrated models across the six datasets via comprehensively benchmarking their effectiveness and efficiency. To ensure fairness, we investigate model performance under individually optimized configuration. Remarkably, the summarized insights from the benchmark studies lead to the design of model combos. We demonstrate that our combos can achieve new state-of-the-art performance on various datasets associated with cost-effective memory and computation.
♻ ☆ Rethinking Token-wise Feature Caching: Accelerating Diffusion Transformers with Dual Feature Caching
Diffusion Transformers (DiT) have become the dominant methods in image and video generation yet still suffer substantial computational costs. As an effective approach for DiT acceleration, feature caching methods are designed to cache the features of DiT in previous timesteps and reuse them in the next timesteps, allowing us to skip the computation in the next timesteps. Among them, token-wise feature caching has been introduced to perform different caching ratios for different tokens in DiTs, aiming to skip the computation for unimportant tokens while still computing the important ones. In this paper, we propose to carefully check the effectiveness in token-wise feature caching with the following two questions: (1) Is it really necessary to compute the so-called "important" tokens in each step? (2) Are so-called important tokens really important? Surprisingly, this paper gives some counter-intuition answers, demonstrating that consistently computing the selected ``important tokens'' in all steps is not necessary. The selection of the so-called ``important tokens'' is often ineffective, and even sometimes shows inferior performance than random selection. Based on these observations, this paper introduces dual feature caching referred to as DuCa, which performs aggressive caching strategy and conservative caching strategy iteratively and selects the tokens for computing randomly. Extensive experimental results demonstrate the effectiveness of our method in DiT, PixArt, FLUX, and OpenSora, demonstrating significant improvements than the previous token-wise feature caching.
♻ ☆ GraphInstruct: Empowering Large Language Models with Graph Understanding and Reasoning Capability
Improving the general capabilities of large language models (LLMs) is an active research topic. As a common data structure in many real-world domains, understanding graph data is a crucial part of advancing general intelligence. To this end, we propose a dynamic benchmark named GraphInstruct in this paper, which comprehensively includes 21 classical graph reasoning tasks, providing diverse graph generation pipelines and detailed intermediate reasoning steps for each sample. Based on GraphInstruct, we develop GraphSolver via efficient instruction-tuning, which demonstrates prominent graph understanding capability compared to other open-sourced LLMs. To further endow LLMs with multi-step graph reasoning capability, we propose a label-mask training strategy and build GraphSolver+, which leverages masked supervision on intermediate reasoning tokens to emphasize crucial node-identification signals. As one of the pioneering efforts to enhance the graph understanding and reasoning abilities of LLMs, extensive experiments have demonstrated the superiority of GraphSolver and GraphSolver+ over other LLMs. We sincerely hope GraphInstruct will facilitate further research on applying LLMs to graph-structured data. Our code and data are released publicly at: https://github.com/CGCL-codes/GraphInstruct.
comment: The article has been accepted by Frontiers of Computer Science (FCS), with the DOI: {10.1007/s11704-025-51382-0}
♻ ☆ LLM-based Agents Suffer from Hallucinations: A Survey of Taxonomy, Methods, and Directions
Driven by the rapid advancements of Large Language Models (LLMs), LLM-based agents have emerged as powerful intelligent systems capable of human-like cognition, reasoning, and interaction. These agents are increasingly being deployed across diverse real-world applications, including student education, scientific research, and financial analysis. However, despite their remarkable potential, LLM-based agents remain vulnerable to hallucination issues, which can result in erroneous task execution and undermine the reliability of the overall system design. Addressing this critical challenge requires a deep understanding and a systematic consolidation of recent advances on LLM-based agents. To this end, we present the first comprehensive survey of hallucinations in LLM-based agents. By carefully analyzing the complete workflow of agents, we propose a new taxonomy that identifies different types of agent hallucinations occurring at different stages. Furthermore, we conduct an in-depth examination of eighteen triggering causes underlying the emergence of agent hallucinations. Through a detailed review of a large number of existing studies, we summarize approaches for hallucination mitigation and detection, and highlight promising directions for future research. We hope this survey will inspire further efforts toward addressing hallucinations in LLM-based agents, ultimately contributing to the development of more robust and reliable agent systems.
♻ ☆ MedBuild AI: An Agent-Based Hybrid Intelligence Framework for Reshaping Agency in Healthcare Infrastructure Planning through Generative Design for Medical Architecture
Globally, disparities in healthcare infrastructure remain stark, leaving countless communities without access to even basic services. Traditional infrastructure planning is often slow and inaccessible, and although many architects are actively delivering humanitarian and aid-driven hospital projects worldwide, these vital efforts still fall far short of the sheer scale and urgency of demand. This paper introduces MedBuild AI, a hybrid-intelligence framework that integrates large language models (LLMs) with deterministic expert systems to rebalance the early design and conceptual planning stages. As a web-based platform, it enables any region with satellite internet access to obtain guidance on modular, low-tech, low-cost medical building designs. The system operates through three agents: the first gathers local health intelligence via conversational interaction; the second translates this input into an architectural functional program through rule-based computation; and the third generates layouts and 3D models. By embedding computational negotiation into the design process, MedBuild AI fosters a reciprocal, inclusive, and equitable approach to healthcare planning, empowering communities and redefining agency in global healthcare architecture.
comment: 25 pages, 16 figures. Submitted to the IJAC Special Issue "Rebalance and Reciprocity"
♻ ☆ PIXEL: Adaptive Steering Via Position-wise Injection with eXact Estimated Levels under Subspace Calibration
Reliable behavior control is central to deploying large language models (LLMs) on the web. Activation steering offers a tuning-free route to align attributes (e.g., truthfulness) that ensure trustworthy generation. Prevailing approaches rely on coarse heuristics and lack a principled account of where to steer and how strongly to intervene. To this end, we propose Position-wise Injection with eXact Estimated Levels (PIXEL), a position-wise activation steering framework that, in contrast to prior work, learns a property-aligned subspace from dual views (tail-averaged and end-token) and selects intervention strength via a constrained geometric objective with a closed-form solution, thereby adapting to token-level sensitivity without global hyperparameter tuning. PIXEL further performs sample-level orthogonal residual calibration to refine the global attribute direction and employs a lightweight position-scanning routine to identify receptive injection sites. We additionally provide representation-level guarantees for the minimal-intervention rule, supporting reliable alignment. Across diverse models and evaluation paradigms, PIXEL consistently improves attribute alignment while preserving model general capabilities, offering a practical and principled method for LLMs' controllable generation. Our code is available at https://github.com/V1centNevwake/PIXEL-Adaptive-Steering
comment: 20 pages,3 figures
♻ ☆ PFAvatar: Pose-Fusion 3D Personalized Avatar Reconstruction from Real-World Outfit-of-the-Day Photos AAAI 2026
We propose PFAvatar (Pose-Fusion Avatar), a new method that reconstructs high-quality 3D avatars from Outfit of the Day(OOTD) photos, which exhibit diverse poses, occlusions, and complex backgrounds. Our method consists of two stages: (1) fine-tuning a pose-aware diffusion model from few-shot OOTD examples and (2) distilling a 3D avatar represented by a neural radiance field (NeRF). In the first stage, unlike previous methods that segment images into assets (e.g., garments, accessories) for 3D assembly, which is prone to inconsistency, we avoid decomposition and directly model the full-body appearance. By integrating a pre-trained ControlNet for pose estimation and a novel Condition Prior Preservation Loss (CPPL), our method enables end-to-end learning of fine details while mitigating language drift in few-shot training. Our method completes personalization in just 5 minutes, achieving a 48x speed-up compared to previous approaches. In the second stage, we introduce a NeRF-based avatar representation optimized by canonical SMPL-X space sampling and Multi-Resolution 3D-SDS. Compared to mesh-based representations that suffer from resolution-dependent discretization and erroneous occluded geometry, our continuous radiance field can preserve high-frequency textures (e.g., hair) and handle occlusions correctly through transmittance. Experiments demonstrate that PFAvatar outperforms state-of-the-art methods in terms of reconstruction fidelity, detail preservation, and robustness to occlusions/truncations, advancing practical 3D avatar generation from real-world OOTD albums. In addition, the reconstructed 3D avatar supports downstream applications such as virtual try-on, animation, and human video reenactment, further demonstrating the versatility and practical value of our approach.
comment: Accepted by AAAI 2026
♻ ☆ FairDICE: Fairness-Driven Offline Multi-Objective Reinforcement Learning
Multi-objective reinforcement learning (MORL) aims to optimize policies in the presence of conflicting objectives, where linear scalarization is commonly used to reduce vector-valued returns into scalar signals. While effective for certain preferences, this approach cannot capture fairness-oriented goals such as Nash social welfare or max-min fairness, which require nonlinear and non-additive trade-offs. Although several online algorithms have been proposed for specific fairness objectives, a unified approach for optimizing nonlinear welfare criteria in the offline setting-where learning must proceed from a fixed dataset-remains unexplored. In this work, we present FairDICE, the first offline MORL framework that directly optimizes nonlinear welfare objective. FairDICE leverages distribution correction estimation to jointly account for welfare maximization and distributional regularization, enabling stable and sample-efficient learning without requiring explicit preference weights or exhaustive weight search. Across multiple offline benchmarks, FairDICE demonstrates strong fairness-aware performance compared to existing baselines.
comment: Multi-objective Reinforcement Learning
♻ ☆ FastDINOv2: Frequency Based Curriculum Learning Improves Robustness and Training Speed NeurIPS 2025
Large-scale vision foundation models such as DINOv2 boast impressive performances by leveraging massive architectures and training datasets. But numerous scenarios require practitioners to reproduce those pre-training solutions, such as on private data, new modalities, or simply for scientific questioning--which is currently extremely demanding computation-wise. We thus propose a novel pre-training strategy for DINOv2 that simultaneously accelerates convergence--and strengthens robustness to common corruptions as a by-product. Our approach involves a frequency filtering curriculum--low-frequency being seen first--and the Gaussian noise patching augmentation. Applied to a ViT-B/16 backbone trained on ImageNet-1K, while pre-training time and FLOPs are reduced by 1.6x and 2.25x, our method still achieves matching robustness in corruption benchmarks (ImageNet-C) and maintains competitive linear probing performance compared with baseline. This dual benefit of efficiency and robustness makes large-scale self-supervised foundation modeling more attainable, while opening the door to novel exploration around data curriculum and augmentation as means to improve self-supervised learning models robustness. The code is available at https://github.com/KevinZ0217/fast_dinov2
comment: Accepted by 39th Conference on Neural Information Processing Systems (NeurIPS 2025)
♻ ☆ 1-Lipschitz Network Initialization for Certifiably Robust Classification Applications: A Decay Problem
This paper discusses the weight parametrization of two standard 1-Lipschitz network architectures, the Almost-Orthogonal-Layers (AOL) and the SDP-based Lipschitz Layers (SLL). It examines their impact on initialization for deep 1-Lipschitz feedforward networks, and discusses underlying issues surrounding this initialization. These networks are mainly used in certifiably robust classification applications to combat adversarial attacks by limiting the impact of perturbations on the classification output. Exact and upper bounds for the parameterized weight variance were calculated assuming a standard Normal distribution initialization; additionally, an upper bound was computed assuming a Generalized Normal Distribution, generalizing the proof for Uniform, Laplace, and Normal distribution weight initializations. It is demonstrated that the weight variance holds no bearing on the output variance distribution and that only the dimension of the weight matrices matters. Additionally, this paper demonstrates that the weight initialization always causes deep 1-Lipschitz networks to decay to zero.
comment: 15 pages, 11 figures; added additional experimental results and formatted to Elsevier format
♻ ☆ Resource Efficient Sleep Staging via Multi-Level Masking and Prompt Learning AAAI 2026
Automatic sleep staging plays a vital role in assessing sleep quality and diagnosing sleep disorders. Most existing methods rely heavily on long and continuous EEG recordings, which poses significant challenges for data acquisition in resource-constrained systems, such as wearable or home-based monitoring systems. In this paper, we propose the task of resource-efficient sleep staging, which aims to reduce the amount of signal collected per sleep epoch while maintaining reliable classification performance. To solve this task, we adopt the masking and prompt learning strategy and propose a novel framework called Mask-Aware Sleep Staging (MASS). Specifically, we design a multi-level masking strategy to promote effective feature modeling under partial and irregular observations. To mitigate the loss of contextual information introduced by masking, we further propose a hierarchical prompt learning mechanism that aggregates unmasked data into a global prompt, serving as a semantic anchor for guiding both patch-level and epoch-level feature modeling. MASS is evaluated on four datasets, demonstrating state-of-the-art performance, especially when the amount of data is very limited. This result highlights its potential for efficient and scalable deployment in real-world low-resource sleep monitoring environments.
comment: 16 pages, 4 figures, to be published in AAAI 2026
Machine Learning
☆ ARC Is a Vision Problem!
The Abstraction and Reasoning Corpus (ARC) is designed to promote research on abstract reasoning, a fundamental aspect of human intelligence. Common approaches to ARC treat it as a language-oriented problem, addressed by large language models (LLMs) or recurrent reasoning models. However, although the puzzle-like tasks in ARC are inherently visual, existing research has rarely approached the problem from a vision-centric perspective. In this work, we formulate ARC within a vision paradigm, framing it as an image-to-image translation problem. To incorporate visual priors, we represent the inputs on a "canvas" that can be processed like natural images. It is then natural for us to apply standard vision architectures, such as a vanilla Vision Transformer (ViT), to perform image-to-image mapping. Our model is trained from scratch solely on ARC data and generalizes to unseen tasks through test-time training. Our framework, termed Vision ARC (VARC), achieves 60.4% accuracy on the ARC-1 benchmark, substantially outperforming existing methods that are also trained from scratch. Our results are competitive with those of leading LLMs and close the gap to average human performance.
comment: Technical Report. Project webpage: https://github.com/lillian039/VARC
☆ $π^{*}_{0.6}$: a VLA That Learns From Experience
We study how vision-language-action (VLA) models can improve through real-world deployments via reinforcement learning (RL). We present a general-purpose method, RL with Experience and Corrections via Advantage-conditioned Policies (RECAP), that provides for RL training of VLAs via advantage conditioning. Our method incorporates heterogeneous data into the self-improvement process, including demonstrations, data from on-policy collection, and expert teleoperated interventions provided during autonomous execution. RECAP starts by pre-training a generalist VLA with offline RL, which we call $π^{*}_{0.6}$, that can then be specialized to attain high performance on downstream tasks through on-robot data collection. We show that the $π^{*}_{0.6}$ model trained with the full RECAP method can fold laundry in real homes, reliably assemble boxes, and make espresso drinks using a professional espresso machine. On some of the hardest tasks, RECAP more than doubles task throughput and roughly halves the task failure rate.
☆ Robust Verification of Controllers under State Uncertainty via Hamilton-Jacobi Reachability Analysis
As perception-based controllers for autonomous systems become increasingly popular in the real world, it is important that we can formally verify their safety and performance despite perceptual uncertainty. Unfortunately, the verification of such systems remains challenging, largely due to the complexity of the controllers, which are often nonlinear, nonconvex, learning-based, and/or black-box. Prior works propose verification algorithms that are based on approximate reachability methods, but they often restrict the class of controllers and systems that can be handled or result in overly conservative analyses. Hamilton-Jacobi (HJ) reachability analysis is a popular formal verification tool for general nonlinear systems that can compute optimal reachable sets under worst-case system uncertainties; however, its application to perception-based systems is currently underexplored. In this work, we propose RoVer-CoRe, a framework for the Robust Verification of Controllers via HJ Reachability. To the best of our knowledge, RoVer-CoRe is the first HJ reachability-based framework for the verification of perception-based systems under perceptual uncertainty. Our key insight is to concatenate the system controller, observation function, and the state estimation modules to obtain an equivalent closed-loop system that is readily compatible with existing reachability frameworks. Within RoVer-CoRe, we propose novel methods for formal safety verification and robust controller design. We demonstrate the efficacy of the framework in case studies involving aircraft taxiing and NN-based rover navigation. Code is available at the link in the footnote.
comment: Submitted to the 8th Annual Learning for Dynamics & Control Conference
☆ SparseST: Exploiting Data Sparsity in Spatiotemporal Modeling and Prediction
Spatiotemporal data mining (STDM) has a wide range of applications in various complex physical systems (CPS), i.e., transportation, manufacturing, healthcare, etc. Among all the proposed methods, the Convolutional Long Short-Term Memory (ConvLSTM) has proved to be generalizable and extendable in different applications and has multiple variants achieving state-of-the-art performance in various STDM applications. However, ConvLSTM and its variants are computationally expensive, which makes them inapplicable in edge devices with limited computational resources. With the emerging need for edge computing in CPS, efficient AI is essential to reduce the computational cost while preserving the model performance. Common methods of efficient AI are developed to reduce redundancy in model capacity (i.e., model pruning, compression, etc.). However, spatiotemporal data mining naturally requires extensive model capacity, as the embedded dependencies in spatiotemporal data are complex and hard to capture, which limits the model redundancy. Instead, there is a fairly high level of data and feature redundancy that introduces an unnecessary computational burden, which has been largely overlooked in existing research. Therefore, we developed a novel framework SparseST, that pioneered in exploiting data sparsity to develop an efficient spatiotemporal model. In addition, we explore and approximate the Pareto front between model performance and computational efficiency by designing a multi-objective composite loss function, which provides a practical guide for practitioners to adjust the model according to computational resource constraints and the performance requirements of downstream tasks.
☆ Look-Ahead Reasoning on Learning Platforms NeurIPS 2025
On many learning platforms, the optimization criteria guiding model training reflect the priorities of the designer rather than those of the individuals they affect. Consequently, users may act strategically to obtain more favorable outcomes, effectively contesting the platform's predictions. While past work has studied strategic user behavior on learning platforms, the focus has largely been on strategic responses to a deployed model, without considering the behavior of other users. In contrast, look-ahead reasoning takes into account that user actions are coupled, and -- at scale -- impact future predictions. Within this framework, we first formalize level-$k$ thinking, a concept from behavioral economics, where users aim to outsmart their peers by looking one step ahead. We show that, while convergence to an equilibrium is accelerated, the equilibrium remains the same, providing no benefit of higher-level reasoning for individuals in the long run. Then, we focus on collective reasoning, where users take coordinated actions by optimizing through their joint impact on the model. By contrasting collective with selfish behavior, we characterize the benefits and limits of coordination; a new notion of alignment between the learner's and the users' utilities emerges as a key concept. We discuss connections to several related mathematical frameworks, including strategic classification, performative prediction, and algorithmic collective action.
comment: accepted to NeurIPS 2025
☆ Measuring AI Progress in Drug Discovery: A Reproducible Leaderboard for the Tox21 Challenge
Deep learning's rise since the early 2010s has transformed fields like computer vision and natural language processing and strongly influenced biomedical research. For drug discovery specifically, a key inflection - akin to vision's "ImageNet moment" - arrived in 2015, when deep neural networks surpassed traditional approaches on the Tox21 Data Challenge. This milestone accelerated the adoption of deep learning across the pharmaceutical industry, and today most major companies have integrated these methods into their research pipelines. After the Tox21 Challenge concluded, its dataset was included in several established benchmarks, such as MoleculeNet and the Open Graph Benchmark. However, during these integrations, the dataset was altered and labels were imputed or manufactured, resulting in a loss of comparability across studies. Consequently, the extent to which bioactivity and toxicity prediction methods have improved over the past decade remains unclear. To this end, we introduce a reproducible leaderboard, hosted on Hugging Face with the original Tox21 Challenge dataset, together with a set of baseline and representative methods. The current version of the leaderboard indicates that the original Tox21 winner - the ensemble-based DeepTox method - and the descriptor-based self-normalizing neural networks introduced in 2017, continue to perform competitively and rank among the top methods for toxicity prediction, leaving it unclear whether substantial progress in toxicity prediction has been achieved over the past decade. As part of this work, we make all baselines and evaluated models publicly accessible for inference via standardized API calls to Hugging Face Spaces.
☆ Beyond Means: A Dynamic Framework for Predicting Customer Satisfaction
Online ratings influence customer decision-making, yet standard aggregation methods, such as the sample mean, fail to adapt to quality changes over time and ignore review heterogeneity (e.g., review sentiment, a review's helpfulness). To address these challenges, we demonstrate the value of using the Gaussian process (GP) framework for rating aggregation. Specifically, we present a tailored GP model that captures the dynamics of ratings over time while additionally accounting for review heterogeneity. Based on 121,123 ratings from Yelp, we compare the predictive power of different rating aggregation methods in predicting future ratings, thereby finding that the GP model is considerably more accurate and reduces the mean absolute error by 10.2% compared to the sample mean. Our findings have important implications for marketing practitioners and customers. By moving beyond means, designers of online reputation systems can display more informative and adaptive aggregated rating scores that are accurate signals of expected customer satisfaction.
☆ LAUD: Integrating Large Language Models with Active Learning for Unlabeled Data
Large language models (LLMs) have shown a remarkable ability to generalize beyond their pre-training data, and fine-tuning LLMs can elevate performance to human-level and beyond. However, in real-world scenarios, lacking labeled data often prevents practitioners from obtaining well-performing models, thereby forcing practitioners to highly rely on prompt-based approaches that are often tedious, inefficient, and driven by trial and error. To alleviate this issue of lacking labeled data, we present a learning framework integrating LLMs with active learning for unlabeled dataset (LAUD). LAUD mitigates the cold-start problem by constructing an initial label set with zero-shot learning. Experimental results show that LLMs derived from LAUD outperform LLMs with zero-shot or few-shot learning on commodity name classification tasks, demonstrating the effectiveness of LAUD.
comment: 7 pages and one figure
☆ AdamHD: Decoupled Huber Decay Regularization for Language Model Pre-Training NeurIPS 2025
Adaptive optimizers with decoupled weight decay, such as AdamW, are the de facto standard for pre-training large transformer-based generative models. Yet the quadratic nature of the $\ell_2$ penalty embedded in weight decay drives all parameters toward the origin at the same rate, making the update vulnerable to rare but extreme gradient directions and often over-penalizing well-conditioned coordinates. We propose AdamHuberDecay, a drop-in replacement for AdamW that substitutes the $\ell_2$ penalty with a decoupled smooth Huber regularizer. The resulting update decays parameters quadratically while their magnitude remains below a threshold $δ$, and linearly ($\ell_1$-like) once they exceed $δ$, yielding (i) bounded regularization gradients, (ii) invariance to per-coordinate second-moment rescaling, and (iii) stronger sparsity pressure on overgrown weights. We derive the closed-form decoupled Huber decay step and show how to integrate it with any Adam-family optimizer at $O(1)$ extra cost. Extensive experiments on GPT-2 and GPT-3 pre-training demonstrate that AdamHuberDecay (a) converges 10-15% faster in wall-clock time, (b) reduces validation perplexity by up to 4 points, (c) delivers performance improvements of 2.5-4.7% across downstream tasks, and (d) yields visibly sparser weight histograms that translate into 20-30% memory savings after magnitude pruning, without tuning the decay coefficient beyond the default grid used for AdamW. Ablations confirm robustness to outlier gradients and large-batch regimes, together with theoretical analyses that bound the expected parameter norm under noisy updates. AdamHuberDecay therefore provides a simple, principled path toward more efficient and resilient training of next-generation foundational generative transformers.
comment: 39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: GPU-Accelerated and Scalable Optimization (ScaleOpt)
☆ \textit{FLARE}: Adaptive Multi-Dimensional Reputation for Robust Client Reliability in Federated Learning
Federated learning (FL) enables collaborative model training while preserving data privacy. However, it remains vulnerable to malicious clients who compromise model integrity through Byzantine attacks, data poisoning, or adaptive adversarial behaviors. Existing defense mechanisms rely on static thresholds and binary classification, failing to adapt to evolving client behaviors in real-world deployments. We propose FLARE, an adaptive reputation-based framework that transforms client reliability assessment from binary decisions to a continuous, multi-dimensional trust evaluation. FLARE integrates: (i) a multi-dimensional reputation score capturing performance consistency, statistical anomaly indicators, and temporal behavior, (ii) a self-calibrating adaptive threshold mechanism that adjusts security strictness based on model convergence and recent attack intensity, (iii) reputation-weighted aggregation with soft exclusion to proportionally limit suspicious contributions rather than eliminating clients outright, and (iv) a Local Differential Privacy (LDP) mechanism enabling reputation scoring on privatized client updates. We further introduce a highly evasive Statistical Mimicry (SM) attack, a benchmark adversary that blends honest gradients with synthetic perturbations and persistent drift to remain undetected by traditional filters. Extensive experiments with 100 clients on MNIST, CIFAR-10, and SVHN demonstrate that FLARE maintains high model accuracy and converges faster than state-of-the-art Byzantine-robust methods under diverse attack types, including label flipping, gradient scaling, adaptive attacks, ALIE, and SM. FLARE improves robustness by up to 16% and preserves model convergence within 30% of the non-attacked baseline, while achieving strong malicious-client detection performance with minimal computational overhead. https://github.com/Anonymous0-0paper/FLARE
comment: Under Review
☆ Towards a Unified Analysis of Neural Networks in Nonparametric Instrumental Variable Regression: Optimization and Generalization
We establish the first global convergence result of neural networks for two stage least squares (2SLS) approach in nonparametric instrumental variable regression (NPIV). This is achieved by adopting a lifted perspective through mean-field Langevin dynamics (MFLD), unlike standard MFLD, however, our setting of 2SLS entails a \emph{bilevel} optimization problem in the space of probability measures. To address this challenge, we leverage the penalty gradient approach recently developed for bilevel optimization which formulates bilevel optimization as a Lagrangian problem. This leads to a novel fully first-order algorithm, termed \texttt{F$^2$BMLD}. Apart from the convergence bound, we further provide a generalization bound, revealing an inherent trade-off in the choice of the Lagrange multiplier between optimization and statistical guarantees. Finally, we empirically validate the effectiveness of the proposed method on an offline reinforcement learning benchmark.
☆ HyMAD: A Hybrid Multi-Activity Detection Approach for Border Surveillance and Monitoring
Seismic sensing has emerged as a promising solution for border surveillance and monitoring; the seismic sensors that are often buried underground are small and cannot be noticed easily, making them difficult for intruders to detect, avoid, or vandalize. This significantly enhances their effectiveness compared to highly visible cameras or fences. However, accurately detecting and distinguishing between overlapping activities that are happening simultaneously, such as human intrusions, animal movements, and vehicle rumbling, remains a major challenge due to the complex and noisy nature of seismic signals. Correctly identifying simultaneous activities is critical because failing to separate them can lead to misclassification, missed detections, and an incomplete understanding of the situation, thereby reducing the reliability of surveillance systems. To tackle this problem, we propose HyMAD (Hybrid Multi-Activity Detection), a deep neural architecture based on spatio-temporal feature fusion. The framework integrates spectral features extracted with SincNet and temporal dependencies modeled by a recurrent neural network (RNN). In addition, HyMAD employs self-attention layers to strengthen intra-modal representations and a cross-modal fusion module to achieve robust multi-label classification of seismic events. e evaluate our approach on a dataset constructed from real-world field recordings collected in the context of border surveillance and monitoring, demonstrating its ability to generalize to complex, simultaneous activity scenarios involving humans, animals, and vehicles. Our method achieves competitive performance and offers a modular framework for extending seismic-based activity recognition in real-world security applications.
comment: Multi-label seismic signal classification using novel attention-based feature fusion. Submitting to cs.CV due to relevance to general pattern recognition and time-frequency (spectrogram) analysis
☆ Near-Lossless Model Compression Enables Longer Context Inference in DNA Large Language Models
Trained on massive cross-species DNA corpora, DNA large language models (LLMs) learn the fundamental "grammar" and evolutionary patterns of genomic sequences. This makes them powerful priors for DNA sequence modeling, particularly over long ranges. However, two major constraints hinder their use in practice: the quadratic computational cost of self-attention and the growing memory required for key-value (KV) caches during autoregressive decoding. These constraints force the use of heuristics such as fixed-window truncation or sliding windows, which compromise fidelity on ultra-long sequences by discarding distant information. We introduce FOCUS (Feature-Oriented Compression for Ultra-long Self-attention), a progressive context-compression module that can be plugged into pretrained DNA LLMs. FOCUS combines the established k-mer representation in genomics with learnable hierarchical compression: it inserts summary tokens at k-mer granularity and progressively compresses attention key and value activations across multiple Transformer layers, retaining only the summary KV states across windows while discarding ordinary-token KV. A shared-boundary windowing scheme yields a stationary cross-window interface that propagates long-range information with minimal loss. We validate FOCUS on an Evo-2-based DNA LLM fine-tuned on GRCh38 chromosome 1 with self-supervised training and randomized compression schedules to promote robustness across compression ratios. On held-out human chromosomes, FOCUS achieves near-lossless fidelity: compressing a 1 kb context into only 10 summary tokens (about 100x) shifts the average per-nucleotide probability by only about 0.0004. Compared to a baseline without compression, FOCUS reduces KV-cache memory and converts effective inference scaling from O(N^2) to near-linear O(N), enabling about 100x longer inference windows on commodity GPUs with near-lossless fidelity.
☆ Machine Learning Models for Predicting Smoking-Related Health Decline and Disease Risk
Smoking continues to be a major preventable cause of death worldwide, affecting millions through damage to the heart, metabolism, liver, and kidneys. However, current medical screening methods often miss the early warning signs of smoking-related health problems, leading to late-stage diagnoses when treatment options become limited. This study presents a systematic comparative evaluation of machine learning approaches for smoking-related health risk assessment, emphasizing clinical interpretability and practical deployment over algorithmic innovation. We analyzed health screening data from 55,691 individuals, examining various health indicators, including body measurements, blood tests, and demographic information. We tested three advanced prediction algorithms - Random Forest, XGBoost, and LightGBM - to determine which could most accurately identify people at high risk. This study employed a cross-sectional design to classify current smoking status based on health screening biomarkers, not to predict future disease development. Our Random Forest model performed best, achieving an Area Under the Curve (AUC) of 0.926, meaning it could reliably distinguish between high-risk and lower-risk individuals. Using SHAP (SHapley Additive exPlanations) analysis to understand what the model was detecting, we found that key health markers played crucial roles in prediction: blood pressure levels, triglyceride concentrations, liver enzyme readings, and kidney function indicators (serum creatinine) were the strongest signals of declining health in smokers.
comment: This paper has been officially accepted for publication in the Journal of Intelligent Medicine and Healthcare. Once the final published version is available online, this document will be updated accordingly
☆ Derivative of the truncated singular value and eigen decomposition
Recently developed applications in the field of machine learning and computational physics rely on automatic differentiation techniques, that require stable and efficient linear algebra gradient computations. This technical note provides a comprehensive and detailed discussion of the derivative of the truncated singular and eigenvalue decomposition. It summarizes previous work and builds on them with an extensive description of how to derive the relevant terms. A main focus is correctly expressing the derivative in terms of the truncated part, despite lacking knowledge of the full decomposition.
comment: Technical report
☆ Doppler Invariant CNN for Signal Classification
Radio spectrum monitoring in contested environments motivates the need for reliable automatic signal classification technology. Prior work highlights deep learning as a promising approach, but existing models depend on brute-force Doppler augmentation to achieve real-world generalization, which undermines both training efficiency and interpretability. In this paper, we propose a convolutional neural network (CNN) architecture with complex-valued layers that exploits convolutional shift equivariance in the frequency domain. To establish provable frequency bin shift invariance, we use adaptive polyphase sampling (APS) as pooling layers followed by a global average pooling layer at the end of the network. Using a synthetic dataset of common interference signals, experimental results demonstrate that unlike a vanilla CNN, our model maintains consistent classification accuracy with and without random Doppler shifts despite being trained on no Doppler-shifted examples. Overall, our method establishes an invariance-driven framework for signal classification that offers provable robustness against real-world effects.
☆ Adapformer: Adaptive Channel Management for Multivariate Time Series Forecasting
In multivariate time series forecasting (MTSF), accurately modeling the intricate dependencies among multiple variables remains a significant challenge due to the inherent limitations of traditional approaches. Most existing models adopt either \textbf{channel-independent} (CI) or \textbf{channel-dependent} (CD) strategies, each presenting distinct drawbacks. CI methods fail to leverage the potential insights from inter-channel interactions, resulting in models that may not fully exploit the underlying statistical dependencies present in the data. Conversely, CD approaches often incorporate too much extraneous information, risking model overfitting and predictive inefficiency. To address these issues, we introduce the Adaptive Forecasting Transformer (\textbf{Adapformer}), an advanced Transformer-based framework that merges the benefits of CI and CD methodologies through effective channel management. The core of Adapformer lies in its dual-stage encoder-decoder architecture, which includes the \textbf{A}daptive \textbf{C}hannel \textbf{E}nhancer (\textbf{ACE}) for enriching embedding processes and the \textbf{A}daptive \textbf{C}hannel \textbf{F}orecaster (\textbf{ACF}) for refining the predictions. ACE enhances token representations by selectively incorporating essential dependencies, while ACF streamlines the decoding process by focusing on the most relevant covariates, substantially reducing noise and redundancy. Our rigorous testing on diverse datasets shows that Adapformer achieves superior performance over existing models, enhancing both predictive accuracy and computational efficiency, thus making it state-of-the-art in MTSF.
☆ Failure to Mix: Large language models struggle to answer according to desired probability distributions
Scientific idea generation and selection requires exploration following a target probability distribution. In contrast, current AI benchmarks have objectively correct answers, and training large language models (LLMs) via reinforcement learning against these benchmarks discourages probabilistic exploration. Here, we conducted systematic experiments requesting LLMs to produce outputs following simple probabilistic distributions, and found that all modern LLMs tested grossly fail to follow the distributions. For example, requesting a binary output of "1" 49% of the time produces an answer of "0" nearly 100% of the time. This step function-like behavior of near-exclusively generating the output with marginally highest probability even overrules even strong in-built LLM biases.
comment: 13 pages, 6 figures. Code and reproducibility package: https://github.com/BiostateAIresearch/failure-to-mix
☆ Expert-Guided POMDP Learning for Data-Efficient Modeling in Healthcare
Learning the parameters of Partially Observable Markov Decision Processes (POMDPs) from limited data is a significant challenge. We introduce the Fuzzy MAP EM algorithm, a novel approach that incorporates expert knowledge into the parameter estimation process by enriching the Expectation Maximization (EM) framework with fuzzy pseudo-counts derived from an expert-defined fuzzy model. This integration naturally reformulates the problem as a Maximum A Posteriori (MAP) estimation, effectively guiding learning in environments with limited data. In synthetic medical simulations, our method consistently outperforms the standard EM algorithm under both low-data and high-noise conditions. Furthermore, a case study on Myasthenia Gravis illustrates the ability of the Fuzzy MAP EM algorithm to recover a clinically coherent POMDP, demonstrating its potential as a practical tool for data-efficient modeling in healthcare.
☆ Seer: Online Context Learning for Fast Synchronous LLM Reinforcement Learning
Reinforcement Learning (RL) has become critical for advancing modern Large Language Models (LLMs), yet existing synchronous RL systems face severe performance bottlenecks. The rollout phase, which dominates end-to-end iteration time, suffers from substantial long-tail latency and poor resource utilization due to inherent workload imbalance. We present Seer, a novel online context learning system that addresses these challenges by exploiting previously overlooked similarities in output lengths and generation patterns among requests sharing the same prompt. Seer introduces three key techniques: divided rollout for dynamic load balancing, context-aware scheduling, and adaptive grouped speculative decoding. Together, these mechanisms substantially reduce long-tail latency and improve resource efficiency during rollout. Evaluations on production-grade RL workloads demonstrate that Seer improves end-to-end rollout throughput by 74% to 97% and reduces long-tail latency by 75% to 93% compared to state-of-the-art synchronous RL systems, significantly accelerating RL training iterations.
comment: 16 pages, 12 figures, 6 tables
☆ Bridging Human and Model Perspectives: A Comparative Analysis of Political Bias Detection in News Media Using Large Language Models
Detecting political bias in news media is a complex task that requires interpreting subtle linguistic and contextual cues. Although recent advances in Natural Language Processing (NLP) have enabled automatic bias classification, the extent to which large language models (LLMs) align with human judgment still remains relatively underexplored and not yet well understood. This study aims to present a comparative framework for evaluating the detection of political bias across human annotations and multiple LLMs, including GPT, BERT, RoBERTa, and FLAN. We construct a manually annotated dataset of news articles and assess annotation consistency, bias polarity, and inter-model agreement to quantify divergence between human and model perceptions of bias. Experimental results show that among traditional transformer-based models, RoBERTa achieves the highest alignment with human labels, whereas generative models such as GPT demonstrate the strongest overall agreement with human annotations in a zero-shot setting. Among all transformer-based baselines, our fine-tuned RoBERTa model acquired the highest accuracy and the strongest alignment with human-annotated labels. Our findings highlight systematic differences in how humans and LLMs perceive political slant, underscoring the need for hybrid evaluation frameworks that combine human interpretability with model scalability in automated media bias detection.
☆ A Method for Characterizing Disease Progression from Acute Kidney Injury to Chronic Kidney Disease
Patients with acute kidney injury (AKI) are at high risk of developing chronic kidney disease (CKD), but identifying those at greatest risk remains challenging. We used electronic health record (EHR) data to dynamically track AKI patients' clinical evolution and characterize AKI-to-CKD progression. Post-AKI clinical states were identified by clustering patient vectors derived from longitudinal medical codes and creatinine measurements. Transition probabilities between states and progression to CKD were estimated using multi-state modeling. After identifying common post-AKI trajectories, CKD risk factors in AKI subpopulations were identified through survival analysis. Of 20,699 patients with AKI at admission, 3,491 (17%) developed CKD. We identified fifteen distinct post-AKI states, each with different probabilities of CKD development. Most patients (75%, n=15,607) remained in a single state or made only one transition during the study period. Both established (e.g., AKI severity, diabetes, hypertension, heart failure, liver disease) and novel CKD risk factors, with their impact varying across these clinical states. This study demonstrates a data-driven approach for identifying high-risk AKI patients, supporting the development of decision-support tools for early CKD detection and intervention.
☆ ReflexGrad: Three-Way Synergistic Architecture for Zero-Shot Generalization in LLM Agents
Enabling agents to learn from experience and generalize across diverse tasks without task-specific training remains a fundamental challenge in reinforcement learning and decision-making. While recent approaches have explored episodic memory (Reflexion), gradient-based prompt optimization (TextGrad),and hierarchical task decomposition independently, their potential for synergistic integration remains unexplored. We introduce ReflexGrad, a novel architecture that tightly couples three complementary mechanisms: (1) LLM-based hierarchical TODO decomposition for strategic planning, (2) history-aware causal reflection that analyzes recent action patterns to identify failure root causes and enable within-trial learning, and (3) gradient-based optimization for systematic improvement. Unlike prior work relying on few-shot demonstrations, our system achieves true zero-shot generalization through pure LLM semantic reasoning,requiring no task-specific examples, fine-tuning, or hardcoded similarity metrics. Evaluated on ALFWorld benchmark tasks, ReflexGrad demonstrates 67% zero-shot success rate on Trial 0 without any prior task experience or demonstrations, establishing effective performance on first exposure. Through empirical analysis, we identify the architectural mechanisms underlying stable convergence (zero action loops) and effective cross-task transfer (67% to 78% improvement).Our work demonstrates that synergistic integration of complementary learning mechanisms enables robust zero-shot generalization that approaches few-shot baselines from prior work.
☆ Online learning of subgrid-scale models for quasi-geostrophic turbulence in planetary interiors
The use of machine learning to represent subgrid-scale (SGS) dynamics is now well established in weather forecasting and climate modelling. Recent advances have demonstrated that SGS models trained via ``online'' end-to-end learning -- where the dynamical solver operating on the filtered equations participates in the training -- can outperform traditional physics-based approaches. Most studies, however, have focused on idealised periodic domains, neglecting the mechanical boundaries present e.g. in planetary interiors. To address this issue, we consider two-dimensional quasi-geostrophic turbulent flow in an axisymmetric bounded domain that we model using a pseudo-spectral differentiable solver, thereby enabling online learning. We examine three configurations, varying the geometry (between an exponential container and a spherical shell) and the rotation rate. Flow is driven by a prescribed analytical forcing, allowing for precise control over the energy injection scale and an exact estimate of the power input. We evaluate the accuracy of the online-trained SGS model against the reference direct numerical simulation using integral quantities and spectral diagnostics. In all configurations, we show that an SGS model trained on data spanning only one turnover time remains stable and accurate over integrations at least a hundred times longer than the training period. Moreover, we demonstrate the model's remarkable ability to reproduce slow processes occurring on time scales far exceeding the training duration, such as the inward drift of jets in the spherical shell. These results suggest a promising path towards developing SGS models for planetary and stellar interior dynamics, including dynamo processes.
comment: 33 pages, 11 figures, submitted for publication in Journal of Fluid Mechanics
☆ Task Addition and Weight Disentanglement in Closed-Vocabulary Models
Task arithmetic has recently emerged as a promising method for editing pre-trained \textit{open-vocabulary} models, offering a cost-effective alternative to standard multi-task fine-tuning. However, despite the abundance of \textit{closed-vocabulary} models that are not pre-trained with language supervision, applying task arithmetic to these models remains unexplored. In this paper, we deploy and study task addition in closed-vocabulary image classification models. We consider different pre-training schemes and find that \textit{weight disentanglement} -- the property enabling task arithmetic -- is a general consequence of pre-training, as it appears in different pre-trained closed-vocabulary models. In fact, we find that pre-trained closed-vocabulary vision transformers can also be edited with task arithmetic, achieving high task addition performance and enabling the efficient deployment of multi-task models. Finally, we demonstrate that simple linear probing is a competitive baseline to task addition. Overall, our findings expand the applicability of task arithmetic to a broader class of pre-trained models and open the way for more efficient use of pre-trained models in diverse settings.
☆ Apo2Mol: 3D Molecule Generation via Dynamic Pocket-Aware Diffusion Models AAAI 2026
Deep generative models are rapidly advancing structure-based drug design, offering substantial promise for generating small molecule ligands that bind to specific protein targets. However, most current approaches assume a rigid protein binding pocket, neglecting the intrinsic flexibility of proteins and the conformational rearrangements induced by ligand binding, limiting their applicability in practical drug discovery. Here, we propose Apo2Mol, a diffusion-based generative framework for 3D molecule design that explicitly accounts for conformational flexibility in protein binding pockets. To support this, we curate a dataset of over 24,000 experimentally resolved apo-holo structure pairs from the Protein Data Bank, enabling the characterization of protein structure changes associated with ligand binding. Apo2Mol employs a full-atom hierarchical graph-based diffusion model that simultaneously generates 3D ligand molecules and their corresponding holo pocket conformations from input apo states. Empirical studies demonstrate that Apo2Mol can achieve state-of-the-art performance in generating high-affinity ligands and accurately capture realistic protein pocket conformational changes.
comment: Accepted by AAAI 2026
☆ ForensicFlow: A Tri-Modal Adaptive Network for Robust Deepfake Detection
Deepfakes generated by advanced GANs and autoencoders severely threaten information integrity and societal stability. Single-stream CNNs fail to capture multi-scale forgery artifacts across spatial, texture, and frequency domains, limiting robustness and generalization. We introduce the ForensicFlow, a tri-modal forensic framework that synergistically fuses RGB, texture, and frequency evidence for video Deepfake detection. The RGB branch (ConvNeXt-tiny) extracts global visual inconsistencies; the texture branch (Swin Transformer-tiny) detects fine-grained blending artifacts; the frequency branch (CNN + SE) identifies periodic spectral noise. Attention-based temporal pooling dynamically prioritizes high-evidence frames, while adaptive attention fusion balances branch contributions.Trained on Celeb-DF (v2) with Focal Loss, ForensicFlow achieves AUC 0.9752, F1-Score 0.9408, and accuracy 0.9208, outperforming single-stream baselines. Ablation validates branch synergy; Grad-CAM confirms forensic focus. This comprehensive feature fusion provides superior resilience against subtle forgeries.
comment: 11 pages, 4 figures, 2 tables. Preprint. Submitted on November 18, 2025
☆ DeepBlip: Estimating Conditional Average Treatment Effects Over Time
Structural nested mean models (SNMMs) are a principled approach to estimate the treatment effects over time. A particular strength of SNMMs is to break the joint effect of treatment sequences over time into localized, time-specific ``blip effects''. This decomposition promotes interpretability through the incremental effects and enables the efficient offline evaluation of optimal treatment policies without re-computation. However, neural frameworks for SNMMs are lacking, as their inherently sequential g-estimation scheme prevents end-to-end, gradient-based training. Here, we propose DeepBlip, the first neural framework for SNMMs, which overcomes this limitation with a novel double optimization trick to enable simultaneous learning of all blip functions. Our DeepBlip seamlessly integrates sequential neural networks like LSTMs or transformers to capture complex temporal dependencies. By design, our method correctly adjusts for time-varying confounding to produce unbiased estimates, and its Neyman-orthogonal loss function ensures robustness to nuisance model misspecification. Finally, we evaluate our DeepBlip across various clinical datasets, where it achieves state-of-the-art performance.
comment: 42 pages
☆ Mind the Gaps: Measuring Visual Artifacts in Dimensionality Reduction
Dimensionality Reduction (DR) techniques are commonly used for the visual exploration and analysis of high-dimensional data due to their ability to project datasets of high-dimensional points onto the 2D plane. However, projecting datasets in lower dimensions often entails some distortion, which is not necessarily easy to recognize but can lead users to misleading conclusions. Several Projection Quality Metrics (PQMs) have been developed as tools to quantify the goodness-of-fit of a DR projection; however, they mostly focus on measuring how well the projection captures the global or local structure of the data, without taking into account the visual distortion of the resulting plots, thus often ignoring the presence of outliers or artifacts that can mislead a visual analysis of the projection. In this work, we introduce the Warping Index (WI), a new metric for measuring the quality of DR projections onto the 2D plane, based on the assumption that the correct preservation of empty regions between points is of crucial importance towards a faithful visual representation of the data.
☆ MissHDD: Hybrid Deterministic Diffusion for Hetrogeneous Incomplete Data Imputation
Incomplete data are common in real-world tabular applications, where numerical, categorical, and discrete attributes coexist within a single dataset. This heterogeneous structure presents significant challenges for existing diffusion-based imputation models, which typically assume a homogeneous feature space and rely on stochastic denoising trajectories. Such assumptions make it difficult to maintain conditional consistency, and they often lead to information collapse for categorical variables or instability when numerical variables require deterministic updates. These limitations indicate that a single diffusion process is insufficient for mixed-type tabular imputation. We propose a hybrid deterministic diffusion framework that separates heterogeneous features into two complementary generative channels. A continuous DDIM-based channel provides efficient and stable deterministic denoising for numerical variables, while a discrete latent-path diffusion channel, inspired by loopholing-based discrete diffusion, models categorical and discrete features without leaving their valid sample manifolds. The two channels are trained under a unified conditional imputation objective, enabling coherent reconstruction of mixed-type incomplete data. Extensive experiments on multiple real-world datasets show that the proposed framework achieves higher imputation accuracy, more stable sampling trajectories, and improved robustness across MCAR, MAR, and MNAR settings compared with existing diffusion-based and classical methods. These results demonstrate the importance of structure-aware diffusion processes for advancing deep learning approaches to incomplete tabular data.
☆ DeCo-VAE: Learning Compact Latents for Video Reconstruction via Decoupled Representation
Existing video Variational Autoencoders (VAEs) generally overlook the similarity between frame contents, leading to redundant latent modeling. In this paper, we propose decoupled VAE (DeCo-VAE) to achieve compact latent representation. Instead of encoding RGB pixels directly, we decompose video content into distinct components via explicit decoupling: keyframe, motion and residual, and learn dedicated latent representation for each. To avoid cross-component interference, we design dedicated encoders for each decoupled component and adopt a shared 3D decoder to maintain spatiotemporal consistency during reconstruction. We further utilize a decoupled adaptation strategy that freezes partial encoders while training the others sequentially, ensuring stable training and accurate learning of both static and dynamic features. Extensive quantitative and qualitative experiments demonstrate that DeCo-VAE achieves superior video reconstruction performance.
☆ Full Atom Peptide Design via Riemannian Euclidean Bayesian Flow Networks AAAI2026
Diffusion and flow matching models have recently emerged as promising approaches for peptide binder design. Despite their progress, these models still face two major challenges. First, categorical sampling of discrete residue types collapses their continuous parameters into onehot assignments, while continuous variables (e.g., atom positions) evolve smoothly throughout the generation process. This mismatch disrupts the update dynamics and results in suboptimal performance. Second, current models assume unimodal distributions for side-chain torsion angles, which conflicts with the inherently multimodal nature of side chain rotameric states and limits prediction accuracy. To address these limitations, we introduce PepBFN, the first Bayesian flow network for full atom peptide design that directly models parameter distributions in fully continuous space. Specifically, PepBFN models discrete residue types by learning their continuous parameter distributions, enabling joint and smooth Bayesian updates with other continuous structural parameters. It further employs a novel Gaussian mixture based Bayesian flow to capture the multimodal side chain rotameric states and a Matrix Fisher based Riemannian flow to directly model residue orientations on the $\mathrm{SO}(3)$ manifold. Together, these parameter distributions are progressively refined via Bayesian updates, yielding smooth and coherent peptide generation. Experiments on side chain packing, reverse folding, and binder design tasks demonstrate the strong potential of PepBFN in computational peptide design.
comment: 7pages, 4 figures, AAAI2026
☆ CLO: Efficient LLM Inference System with CPU-Light KVCache Offloading via Algorithm-System Co-Design
The growth of million-token LLMs exposes the scalability limits of inference systems, where the KVCache dominates memory usage and data transfer overhead. Recent offloading systems migrate the KVCache to CPU memory and incorporate top-k attention to reduce the volume of data transferred from the CPU, while further applying system-level optimizations such as on-GPU caching and prefetching to lower transfer overhead. However, they overlook the CPU bottleneck in three aspects: (1) substantial overhead of fine-grained dynamic cache management performed on the CPU side, (2) significant transfer overhead from poor PCIe bandwidth utilization caused by heavy gathering operations at the CPU side, and (3) GPU runtime bubbles introduced by coarse-grained CPU-centric synchronization. To address these challenges, we propose CLO, a CPU-light KVCache offloading system via algorithm-system co-design. CLO features: (1) a coarse-grained head-wise approximate on-GPU caching strategy with negligible cache management cost, (2) seamless combination of data prefetching and on-GPU persistent caching for lower transfer overhead, (3) a zero-copy transfer engine to fully exploit PCIe bandwidth, and a GPU-centric synchronization method to eliminate GPU stalls. Evaluation on two widely-used LLMs demonstrates that CLO achieves comparable accuracy to state-of-the-art systems, while substantially minimizing CPU overhead, fully utilizing PCIe bandwidth, thus improving decoding throughput by 9.3%-66.6%. Our results highlight that algorithm-system co-design is essential for memory-constrained LLM inference on modern GPU platforms. We open source CLO at https://github.com/CommediaJW/CLO.
☆ Improved Convergence in Parameter-Agnostic Error Feedback through Momentum
Communication compression is essential for scalable distributed training of modern machine learning models, but it often degrades convergence due to the noise it introduces. Error Feedback (EF) mechanisms are widely adopted to mitigate this issue of distributed compression algorithms. Despite their popularity and training efficiency, existing distributed EF algorithms often require prior knowledge of problem parameters (e.g., smoothness constants) to fine-tune stepsizes. This limits their practical applicability especially in large-scale neural network training. In this paper, we study normalized error feedback algorithms that combine EF with normalized updates, various momentum variants, and parameter-agnostic, time-varying stepsizes, thus eliminating the need for problem-dependent tuning. We analyze the convergence of these algorithms for minimizing smooth functions, and establish parameter-agnostic complexity bounds that are close to the best-known bounds with carefully-tuned problem-dependent stepsizes. Specifically, we show that normalized EF21 achieve the convergence rate of near ${O}(1/T^{1/4})$ for Polyak's heavy-ball momentum, ${O}(1/T^{2/7})$ for Iterative Gradient Transport (IGT), and ${O}(1/T^{1/3})$ for STORM and Hessian-corrected momentum. Our results hold with decreasing stepsizes and small mini-batches. Finally, our empirical experiments confirm our theoretical insights.
comment: 50 pages, 12 figures
☆ Towards Stable and Structured Time Series Generation with Perturbation-Aware Flow Matching
Time series generation is critical for a wide range of applications, which greatly supports downstream analytical and decision-making tasks. However, the inherent temporal heterogeneous induced by localized perturbations present significant challenges for generating structurally consistent time series. While flow matching provides a promising paradigm by modeling temporal dynamics through trajectory-level supervision, it fails to adequately capture abrupt transitions in perturbed time series, as the use of globally shared parameters constrains the velocity field to a unified representation. To address these limitations, we introduce \textbf{PAFM}, a \textbf{P}erturbation-\textbf{A}ware \textbf{F}low \textbf{M}atching framework that models perturbed trajectories to ensure stable and structurally consistent time series generation. The framework incorporates perturbation-guided training to simulate localized disturbances and leverages a dual-path velocity field to capture trajectory deviations under perturbation, enabling refined modeling of perturbed behavior to enhance the structural coherence. In order to further improve sensitivity to trajectory perturbations while enhancing expressiveness, a mixture-of-experts decoder with flow routing dynamically allocates modeling capacity in response to different trajectory dynamics. Extensive experiments on both unconditional and conditional generation tasks demonstrate that PAFM consistently outperforms strong baselines. Code is available at https://anonymous.4open.science/r/PAFM-03B2.
☆ Notes on Kernel Methods in Machine Learning
These notes provide a self-contained introduction to kernel methods and their geometric foundations in machine learning. Starting from the construction of Hilbert spaces, we develop the theory of positive definite kernels, reproducing kernel Hilbert spaces (RKHS), and Hilbert-Schmidt operators, emphasizing their role in statistical estimation and representation of probability measures. Classical concepts such as covariance, regression, and information measures are revisited through the lens of Hilbert space geometry. We also introduce kernel density estimation, kernel embeddings of distributions, and the Maximum Mean Discrepancy (MMD). The exposition is designed to serve as a foundation for more advanced topics, including Gaussian processes, kernel Bayesian inference, and functional analytic approaches to modern machine learning.
☆ Gradient-Based Join Ordering
Join ordering is the NP-hard problem of selecting the most efficient sequence in which to evaluate joins (conjunctive, binary operators) in a database query. As the performance of query execution critically depends on this choice, join ordering lies at the core of query optimization. Traditional approaches cast this problem as a discrete combinatorial search over binary trees guided by a cost model, but they often suffer from high computational complexity and limited scalability. We show that, when the cost model is differentiable, the query plans can be continuously relaxed into a soft adjacency matrix representing a superposition of plans. This continuous relaxation, together with a Gumbel-Softmax parameterization of the adjacency matrix and differentiable constraints enforcing plan validity, enables gradient-based search for plans within this relaxed space. Using a learned Graph Neural Network as the cost model, we demonstrate that this gradient-based approach can find comparable and even lower-cost plans compared to traditional discrete local search methods on two different graph datasets. Furthermore, we empirically show that the runtime of this approach scales linearly with query size, in contrast to quadratic or exponential runtimes of classical approaches. We believe this first step towards gradient-based join ordering can lead to more effective and efficient query optimizers in the future.
☆ nnterp: A Standardized Interface for Mechanistic Interpretability of Transformers NeurIPS 2025
Mechanistic interpretability research requires reliable tools for analyzing transformer internals across diverse architectures. Current approaches face a fundamental tradeoff: custom implementations like TransformerLens ensure consistent interfaces but require coding a manual adaptation for each architecture, introducing numerical mismatch with the original models, while direct HuggingFace access through NNsight preserves exact behavior but lacks standardization across models. To bridge this gap, we develop nnterp, a lightweight wrapper around NNsight that provides a unified interface for transformer analysis while preserving original HuggingFace implementations. Through automatic module renaming and comprehensive validation testing, nnterp enables researchers to write intervention code once and deploy it across 50+ model variants spanning 16 architecture families. The library includes built-in implementations of common interpretability methods (logit lens, patchscope, activation steering) and provides direct access to attention probabilities for models that support it. By packaging validation tests with the library, researchers can verify compatibility with custom models locally. nnterp bridges the gap between correctness and usability in mechanistic interpretability tooling.
comment: 7 pages, 1 figure, accepted at the mechanistic interpretability workshop of NeurIPS 2025
☆ Nonparametric estimation of conditional probability distributions using a generative approach based on conditional push-forward neural networks
We introduce conditional push-forward neural networks (CPFN), a generative framework for conditional distribution estimation. Instead of directly modeling the conditional density $f_{Y|X}$, CPFN learns a stochastic map $\varphi=\varphi(x,u)$ such that $\varphi(x,U)$ and $Y|X=x$ follow approximately the same law, with $U$ a suitable random vector of pre-defined latent variables. This enables efficient conditional sampling and straightforward estimation of conditional statistics through Monte Carlo methods. The model is trained via an objective function derived from a Kullback-Leibler formulation, without requiring invertibility or adversarial training. We establish a near-asymptotic consistency result and demonstrate experimentally that CPFN can achieve performance competitive with, or even superior to, state-of-the-art methods, including kernel estimators, tree-based algorithms, and popular deep learning techniques, all while remaining lightweight and easy to train.
☆ Hybrid Modeling of Photoplethysmography for Non-invasive Monitoring of Cardiovascular Parameters
Continuous cardiovascular monitoring can play a key role in precision health. However, some fundamental cardiac biomarkers of interest, including stroke volume and cardiac output, require invasive measurements, e.g., arterial pressure waveforms (APW). As a non-invasive alternative, photoplethysmography (PPG) measurements are routinely collected in hospital settings. Unfortunately, the prediction of key cardiac biomarkers from PPG instead of APW remains an open challenge, further complicated by the scarcity of annotated PPG measurements. As a solution, we propose a hybrid approach that uses hemodynamic simulations and unlabeled clinical data to estimate cardiovascular biomarkers directly from PPG signals. Our hybrid model combines a conditional variational autoencoder trained on paired PPG-APW data with a conditional density estimator of cardiac biomarkers trained on labeled simulated APW segments. As a key result, our experiments demonstrate that the proposed approach can detect fluctuations of cardiac output and stroke volume and outperform a supervised baseline in monitoring temporal changes in these biomarkers.
☆ Tell Me: An LLM-powered Mental Well-being Assistant with RAG, Synthetic Dialogue Generation, and Agentic Planning ACL
We present Tell Me, a mental well-being system that leverages advances in large language models to provide accessible, context-aware support for users and researchers. The system integrates three components: (i) a retrieval-augmented generation (RAG) assistant for personalized, knowledge-grounded dialogue; (ii) a synthetic client-therapist dialogue generator conditioned on client profiles to facilitate research on therapeutic language and data augmentation; and (iii) a Well-being AI crew, implemented with CrewAI, that produces weekly self-care plans and guided meditation audio. The system is designed as a reflective space for emotional processing rather than a substitute for professional therapy. It illustrates how conversational assistants can lower barriers to support, complement existing care, and broaden access to mental health resources. To address the shortage of confidential therapeutic data, we introduce synthetic client-therapist dialogue generation conditioned on client profiles. Finally, the planner demonstrates an innovative agentic workflow for dynamically adaptive, personalized self-care, bridging the limitations of static well-being tools. We describe the architecture, demonstrate its functionalities, and report evaluation of the RAG assistant in curated well-being scenarios using both automatic LLM-based judgments and a human-user study. This work highlights opportunities for interdisciplinary collaboration between NLP researchers and mental health professionals to advance responsible innovation in human-AI interaction for well-being.
comment: 8 pages, 2 figures, 1 Table. Submitted to the Computation and Language (cs.CL) category. Uses the ACL-style template. Code and demo will be released at: https://github.com/trystine/Tell_Me_Mental_Wellbeing_System
☆ Skewness-Robust Causal Discovery in Location-Scale Noise Models
To distinguish Markov equivalent graphs in causal discovery, it is necessary to restrict the structural causal model. Crucially, we need to be able to distinguish cause $X$ from effect $Y$ in bivariate models, that is, distinguish the two graphs $X \to Y$ and $Y \to X$. Location-scale noise models (LSNMs), in which the effect $Y$ is modeled based on the cause $X$ as $Y = f(X) + g(X)N$, form a flexible class of models that is general and identifiable in most cases. Estimating these models for arbitrary noise terms $N$, however, is challenging. Therefore, practical estimators are typically restricted to symmetric distributions, such as the normal distribution. As we showcase in this paper, when $N$ is a skewed random variable, which is likely in real-world domains, the reliability of these approaches decreases. To approach this limitation, we propose SkewD, a likelihood-based algorithm for bivariate causal discovery under LSNMs with skewed noise distributions. SkewD extends the usual normal-distribution framework to the skew-normal setting, enabling reliable inference under symmetric and skewed noise. For parameter estimation, we employ a combination of a heuristic search and an expectation conditional maximization algorithm. We evaluate SkewD on novel synthetically generated datasets with skewed noise as well as established benchmark datasets. Throughout our experiments, SkewD exhibits a strong performance and, in comparison to prior work, remains robust under high skewness.
Self-Supervised Multisensory Pretraining for Contact-Rich Robot Reinforcement Learning
Effective contact-rich manipulation requires robots to synergistically leverage vision, force, and proprioception. However, Reinforcement Learning agents struggle to learn in such multisensory settings, especially amidst sensory noise and dynamic changes. We propose MultiSensory Dynamic Pretraining (MSDP), a novel framework for learning expressive multisensory representations tailored for task-oriented policy learning. MSDP is based on masked autoencoding and trains a transformer-based encoder by reconstructing multisensory observations from only a subset of sensor embeddings, leading to cross-modal prediction and sensor fusion. For downstream policy learning, we introduce a novel asymmetric architecture, where a cross-attention mechanism allows the critic to extract dynamic, task-specific features from the frozen embeddings, while the actor receives a stable pooled representation to guide its actions. Our method demonstrates accelerated learning and robust performance under diverse perturbations, including sensor noise, and changes in object dynamics. Evaluations in multiple challenging, contact-rich robot manipulation tasks in simulation and the real world showcase the effectiveness of MSDP. Our approach exhibits strong robustness to perturbations and achieves high success rates on the real robot with as few as 6,000 online interactions, offering a simple yet powerful solution for complex multisensory robotic control.
comment: 9 pages, 10 figures, preprint
☆ MiAD: Mirage Atom Diffusion for De Novo Crystal Generation
In recent years, diffusion-based models have demonstrated exceptional performance in searching for simultaneously stable, unique, and novel (S.U.N.) crystalline materials. However, most of these models don't have the ability to change the number of atoms in the crystal during the generation process, which limits the variability of model sampling trajectories. In this paper, we demonstrate the severity of this restriction and introduce a simple yet powerful technique, mirage infusion, which enables diffusion models to change the state of the atoms that make up the crystal from existent to non-existent (mirage) and vice versa. We show that this technique improves model quality by up to $\times2.5$ compared to the same model without this modification. The resulting model, Mirage Atom Diffusion (MiAD), is an equivariant joint diffusion model for de novo crystal generation that is capable of altering the number of atoms during the generation process. MiAD achieves an $8.2\%$ S.U.N. rate on the MP-20 dataset, which substantially exceeds existing state-of-the-art approaches. The source code can be found at \href{https://github.com/andrey-okhotin/miad.git}{\texttt{github.com/andrey-okhotin/miad}}.
☆ Sigil: Server-Enforced Watermarking in U-Shaped Split Federated Learning via Gradient Injection
In decentralized machine learning paradigms such as Split Federated Learning (SFL) and its variant U-shaped SFL, the server's capabilities are severely restricted. Although this enhances client-side privacy, it also leaves the server highly vulnerable to model theft by malicious clients. Ensuring intellectual property protection for such capability-limited servers presents a dual challenge: watermarking schemes that depend on client cooperation are unreliable in adversarial settings, whereas traditional server-side watermarking schemes are technically infeasible because the server lacks access to critical elements such as model parameters or labels. To address this challenge, this paper proposes Sigil, a mandatory watermarking framework designed specifically for capability-limited servers. Sigil defines the watermark as a statistical constraint on the server-visible activation space and embeds the watermark into the client model via gradient injection, without requiring any knowledge of the data. Besides, we design an adaptive gradient clipping mechanism to ensure that our watermarking process remains both mandatory and stealthy, effectively countering existing gradient anomaly detection methods and a specifically designed adaptive subspace removal attack. Extensive experiments on multiple datasets and models demonstrate Sigil's fidelity, robustness, and stealthiness.
comment: 18 pages,8 figures
☆ FlowRoI A Fast Optical Flow Driven Region of Interest Extraction Framework for High-Throughput Image Compression in Immune Cell Migration Analysis
Autonomous migration is essential for the function of immune cells such as neutrophils and plays a pivotal role in diverse diseases. Recently, we introduced ComplexEye, a multi-lens array microscope comprising 16 independent aberration-corrected glass lenses arranged at the pitch of a 96-well plate, capable of capturing high-resolution movies of migrating cells. This architecture enables high-throughput live-cell video microscopy for migration analysis, supporting routine quantification of autonomous motility with strong potential for clinical translation. However, ComplexEye and similar high-throughput imaging platforms generate data at an exponential rate, imposing substantial burdens on storage and transmission. To address this challenge, we present FlowRoI, a fast optical-flow-based region of interest (RoI) extraction framework designed for high-throughput image compression in immune cell migration studies. FlowRoI estimates optical flow between consecutive frames and derives RoI masks that reliably cover nearly all migrating cells. The raw image and its corresponding RoI mask are then jointly encoded using JPEG2000 to enable RoI-aware compression. FlowRoI operates with high computational efficiency, achieving runtimes comparable to standard JPEG2000 and reaching an average throughput of about 30 frames per second on a modern laptop equipped with an Intel i7-1255U CPU. In terms of image quality, FlowRoI yields higher peak signal-to-noise ratio (PSNR) in cellular regions and achieves 2.0-2.2x higher compression rates at matched PSNR compared to standard JPEG2000.
comment: 12 pages, 9 figures, 2 tables
☆ Toward Robust and Harmonious Adaptation for Cross-modal Retrieval
Recently, the general-to-customized paradigm has emerged as the dominant approach for Cross-Modal Retrieval (CMR), which reconciles the distribution shift problem between the source domain and the target domain. However, existing general-to-customized CMR methods typically assume that the entire target-domain data is available, which is easily violated in real-world scenarios and thus inevitably suffer from the query shift (QS) problem. Specifically, query shift embraces the following two characteristics and thus poses new challenges to CMR. i) Online Shift: real-world queries always arrive in an online manner, rendering it impractical to access the entire query set beforehand for customization approaches; ii) Diverse Shift: even with domain customization, the CMR models struggle to satisfy queries from diverse users or scenarios, leaving an urgent need to accommodate diverse queries. In this paper, we observe that QS would not only undermine the well-structured common space inherited from the source model, but also steer the model toward forgetting the indispensable general knowledge for CMR. Inspired by the observations, we propose a novel method for achieving online and harmonious adaptation against QS, dubbed Robust adaptation with quEry ShifT (REST). To deal with online shift, REST first refines the retrieval results to formulate the query predictions and accordingly designs a QS-robust objective function on these predictions to preserve the well-established common space in an online manner. As for tackling the more challenging diverse shift, REST employs a gradient decoupling module to dexterously manipulate the gradients during the adaptation process, thus preventing the CMR model from forgetting the general knowledge. Extensive experiments on 20 benchmarks across three CMR tasks verify the effectiveness of our method against QS.
comment: 19 pages, 6 figures
☆ Watch Out for the Lifespan: Evaluating Backdoor Attacks Against Federated Model Adaptation
Large models adaptation through Federated Learning (FL) addresses a wide range of use cases and is enabled by Parameter-Efficient Fine-Tuning techniques such as Low-Rank Adaptation (LoRA). However, this distributed learning paradigm faces several security threats, particularly to its integrity, such as backdoor attacks that aim to inject malicious behavior during the local training steps of certain clients. We present the first analysis of the influence of LoRA on state-of-the-art backdoor attacks targeting model adaptation in FL. Specifically, we focus on backdoor lifespan, a critical characteristic in FL, that can vary depending on the attack scenario and the attacker's ability to effectively inject the backdoor. A key finding in our experiments is that for an optimally injected backdoor, the backdoor persistence after the attack is longer when the LoRA's rank is lower. Importantly, our work highlights evaluation issues of backdoor attacks against FL and contributes to the development of more robust and fair evaluations of backdoor attacks, enhancing the reliability of risk assessments for critical FL systems. Our code is publicly available.
comment: Accepted at FPS 2025
☆ O3SLM: Open Weight, Open Data, and Open Vocabulary Sketch-Language Model AAAI 2026
While Large Vision Language Models (LVLMs) are increasingly deployed in real-world applications, their ability to interpret abstract visual inputs remains limited. Specifically, they struggle to comprehend hand-drawn sketches, a modality that offers an intuitive means of expressing concepts that are difficult to describe textually. We identify the primary bottleneck as the absence of a large-scale dataset that jointly models sketches, photorealistic images, and corresponding natural language instructions. To address this, we present two key contributions: (1) a new, large-scale dataset of image-sketch-instruction triplets designed to facilitate both pretraining and instruction tuning, and (2) O3SLM, an LVLM trained on this dataset. Comprehensive evaluations on multiple sketch-based tasks: (a) object localization, (b) counting, (c) image retrieval i.e., (SBIR and fine-grained SBIR), and (d) visual question answering (VQA); while incorporating the three existing sketch datasets, namely QuickDraw!, Sketchy, and Tu Berlin, along with our generated SketchVCL dataset, show that O3SLM achieves state-of-the-art performance, substantially outperforming existing LVLMs in sketch comprehension and reasoning.
comment: Accepted to AAAI 2026
☆ Enforcing hidden physics in physics-informed neural networks
Physics-informed neural networks (PINNs) represent a new paradigm for solving partial differential equations (PDEs) by integrating physical laws into the learning process of neural networks. However, despite their foundational role, the hidden irreversibility implied by the Second Law of Thermodynamics is often neglected during training, leading to unphysical solutions or even training failures in conventional PINNs. In this paper, we identify this critical gap and introduce a simple, generalized, yet robust irreversibility-regularized strategy that enforces hidden physical laws as soft constraints during training. This approach ensures that the learned solutions consistently respect the intrinsic one-way nature of irreversible physical processes. Across a wide range of benchmarks spanning traveling wave propagation, steady combustion, ice melting, corrosion evolution, and crack propagation, we demonstrate that our regularization scheme reduces predictive errors by more than an order of magnitude, while requiring only minimal modification to existing PINN frameworks. We believe that the proposed framework is broadly applicable to a wide class of PDE-governed physical systems and will have significant impact within the scientific machine learning community.
☆ When Words Change the Model: Sensitivity of LLMs for Constraint Programming Modelling
One of the long-standing goals in optimisation and constraint programming is to describe a problem in natural language and automatically obtain an executable, efficient model. Large language models appear to bring this vision closer, showing impressive results in automatically generating models for classical benchmarks. However, much of this apparent success may derive from data contamination rather than genuine reasoning: many standard CP problems are likely included in the training data of these models. To examine this hypothesis, we systematically rephrased and perturbed a set of well-known CSPLib problems to preserve their structure while modifying their context and introducing misleading elements. We then compared the models produced by three representative LLMs across original and modified descriptions. Our qualitative analysis shows that while LLMs can produce syntactically valid and semantically plausible models, their performance drops sharply under contextual and linguistic variation, revealing shallow understanding and sensitivity to wording.
☆ Learning with Statistical Equality Constraints
As machine learning applications grow increasingly ubiquitous and complex, they face an increasing set of requirements beyond accuracy. The prevalent approach to handle this challenge is to aggregate a weighted combination of requirement violation penalties into the training objective. To be effective, this approach requires careful tuning of these hyperparameters (weights), involving trial-and-error and cross-validation, which becomes ineffective even for a moderate number of requirements. These issues are exacerbated when the requirements involve parities or equalities, as is the case in fairness and boundary value problems. An alternative technique uses constrained optimization to formulate these learning problems. Yet, existing approximation and generalization guarantees do not apply to problems involving equality constraints. In this work, we derive a generalization theory for equality-constrained statistical learning problems, showing that their solutions can be approximated using samples and rich parametrizations. Using these results, we propose a practical algorithm based on solving a sequence of unconstrained, empirical learning problems. We showcase its effectiveness and the new formulations enabled by equality constraints in fair learning, interpolating classifiers, and boundary value problems.
comment: to be published in the 39th Annual Conference on Neural Information Processing Systems
☆ Intervention Efficiency and Perturbation Validation Framework: Capacity-Aware and Robust Clinical Model Selection under the Rashomon Effect
In clinical machine learning, the coexistence of multiple models with comparable performance -- a manifestation of the Rashomon Effect -- poses fundamental challenges for trustworthy deployment and evaluation. Small, imbalanced, and noisy datasets, coupled with high-dimensional and weakly identified clinical features, amplify this multiplicity and make conventional validation schemes unreliable. As a result, selecting among equally performing models becomes uncertain, particularly when resource constraints and operational priorities are not considered by conventional metrics like F1 score. To address these issues, we propose two complementary tools for robust model assessment and selection: Intervention Efficiency (IE) and the Perturbation Validation Framework (PVF). IE is a capacity-aware metric that quantifies how efficiently a model identifies actionable true positives when only limited interventions are feasible, thereby linking predictive performance with clinical utility. PVF introduces a structured approach to assess the stability of models under data perturbations, identifying models whose performance remains most invariant across noisy or shifted validation sets. Empirical results on synthetic and real-world healthcare datasets show that using these tools facilitates the selection of models that generalize more robustly and align with capacity constraints, offering a new direction for tackling the Rashomon Effect in clinical settings.
☆ H-LDM: Hierarchical Latent Diffusion Models for Controllable and Interpretable PCG Synthesis from Clinical Metadata
Phonocardiogram (PCG) analysis is vital for cardiovascular disease diagnosis, yet the scarcity of labeled pathological data hinders the capability of AI systems. To bridge this, we introduce H-LDM, a Hierarchical Latent Diffusion Model for generating clinically accurate and controllable PCG signals from structured metadata. Our approach features: (1) a multi-scale VAE that learns a physiologically-disentangled latent space, separating rhythm, heart sounds, and murmurs; (2) a hierarchical text-to-biosignal pipeline that leverages rich clinical metadata for fine-grained control over 17 distinct conditions; and (3) an interpretable diffusion process guided by a novel Medical Attention module. Experiments on the PhysioNet CirCor dataset demonstrate state-of-the-art performance, achieving a Fréchet Audio Distance of 9.7, a 92% attribute disentanglement score, and 87.1% clinical validity confirmed by cardiologists. Augmenting diagnostic models with our synthetic data improves the accuracy of rare disease classification by 11.3\%. H-LDM establishes a new direction for data augmentation in cardiac diagnostics, bridging data scarcity with interpretable clinical insights.
comment: This paper was accepted by IEEE BIBM 2025 conference
☆ Audio Question Answering with GRPO-Based Fine-Tuning and Calibrated Segment-Level Predictions
In this report, we describe our submission to Track 5 of the DCASE 2025 Challenge for the task of Audio Question Answering(AQA). Our system leverages the SSL backbone BEATs to extract frame-level audio features, which are then processed by a classification head to generate segment-level predictions of acoustic events, following the Audioset ontology. These segment-level predictions are subsequently calibrated before producing event-level predictions. Finally, these predictions are incorporated into a structured prompt, along with the question and candidate answers. This prompt is then fed to a fine-tuned version of Qwen2.5-7B-Instruct, trained using the GRPO algorithm with a simple reward function. Our method achieves an accuracy of 62.6 % on the development set, demonstrating the effectiveness of combining acoustic event reasoning with instruction-tuned large language models for AQA.
comment: Submission to Track 5 of the DCASE 2025 Challenge
☆ Steganographic Backdoor Attacks in NLP: Ultra-Low Poisoning and Defense Evasion
Transformer models are foundational to natural language processing (NLP) applications, yet remain vulnerable to backdoor attacks introduced through poisoned data, which implant hidden behaviors during training. To strengthen the ability to prevent such compromises, recent research has focused on designing increasingly stealthy attacks to stress-test existing defenses, pairing backdoor behaviors with stylized artifact or token-level perturbation triggers. However, this trend diverts attention from the harder and more realistic case: making the model respond to semantic triggers such as specific names or entities, where a successful backdoor could manipulate outputs tied to real people or events in deployed systems. Motivated by this growing disconnect, we introduce SteganoBackdoor, bringing stealth techniques back into line with practical threat models. Leveraging innocuous properties from natural-language steganography, SteganoBackdoor applies a gradient-guided data optimization process to transform semantic trigger seeds into steganographic carriers that embed a high backdoor payload, remain fluent, and exhibit no representational resemblance to the trigger. Across diverse experimental settings, SteganoBackdoor achieves over 99% attack success at an order-of-magnitude lower data-poisoning rate than prior approaches while maintaining unparalleled evasion against a comprehensive suite of data-level defenses. By revealing this practical and covert attack, SteganoBackdoor highlights an urgent blind spot in current defenses and demands immediate attention to adversarial data defenses and real-world threat modeling.
☆ AraLingBench A Human-Annotated Benchmark for Evaluating Arabic Linguistic Capabilities of Large Language Models
We present AraLingBench: a fully human annotated benchmark for evaluating the Arabic linguistic competence of large language models (LLMs). The benchmark spans five core categories: grammar, morphology, spelling, reading comprehension, and syntax, through 150 expert-designed multiple choice questions that directly assess structural language understanding. Evaluating 35 Arabic and bilingual LLMs reveals that current models demonstrate strong surface level proficiency but struggle with deeper grammatical and syntactic reasoning. AraLingBench highlights a persistent gap between high scores on knowledge-based benchmarks and true linguistic mastery, showing that many models succeed through memorization or pattern recognition rather than authentic comprehension. By isolating and measuring fundamental linguistic skills, AraLingBench provides a diagnostic framework for developing Arabic LLMs. The full evaluation code is publicly available on GitHub.
☆ Segmentwise Pruning in Audio-Language Models ICASSP 2026
Recent audio-language models have shown impressive performance across a wide range of audio tasks and are increasingly capable of handling long audio inputs. However, the computing costs in these models heavily depend on sequence length, which can become very large given the nature of audio data. In the vision-language domain, token pruning methods have proven effective in reducing token counts while preserving strong performance on standard benchmarks. In this work, we investigate the relevance and effectiveness of such token selection strategies in the context of audio-language models. We also improve them by proposing a lightweight strategy that takes the time dimension into account. While retaining only a quarter of the initial tokens, our approach results in a relative maximum decrease of 2% in CIDEr on Clotho v2 and a relative maximum decrease of 4% in accuracy on MMAU.
comment: Submitted to ICASSP 2026 (under review)
☆ NeuralSSD: A Neural Solver for Signed Distance Surface Reconstruction
We proposed a generalized method, NeuralSSD, for reconstructing a 3D implicit surface from the widely-available point cloud data. NeuralSSD is a solver-based on the neural Galerkin method, aimed at reconstructing higher-quality and accurate surfaces from input point clouds. Implicit method is preferred due to its ability to accurately represent shapes and its robustness in handling topological changes. However, existing parameterizations of implicit fields lack explicit mechanisms to ensure a tight fit between the surface and input data. To address this, we propose a novel energy equation that balances the reliability of point cloud information. Additionally, we introduce a new convolutional network that learns three-dimensional information to achieve superior optimization results. This approach ensures that the reconstructed surface closely adheres to the raw input points and infers valuable inductive biases from point clouds, resulting in a highly accurate and stable surface reconstruction. NeuralSSD is evaluated on a variety of challenging datasets, including the ShapeNet and Matterport datasets, and achieves state-of-the-art results in terms of both surface reconstruction accuracy and generalizability.
comment: Under review
☆ Weight Variance Amplifier Improves Accuracy in High-Sparsity One-Shot Pruning
Deep neural networks achieve outstanding performance in visual recognition tasks, yet their large number of parameters makes them less practical for real-world applications. Recently, one-shot pruning has emerged as an effective strategy for reducing model size without additional training. However, models trained with standard objective functions often suffer a significant drop in accuracy after aggressive pruning. Some existing pruning-robust optimizers, such as SAM, and CrAM, mitigate this accuracy drop by guiding the model toward flatter regions of the parameter space, but they inevitably incur non-negligible additional computations. We propose a Variance Amplifying Regularizer (VAR) that deliberately increases the variance of model parameters during training. Our study reveals an intriguing finding that parameters with higher variance exhibit greater pruning robustness. VAR exploits this property by promoting such variance in the weight distribution, thereby mitigating the adverse effects of pruning. We further provide a theoretical analysis of its convergence behavior, supported by extensive empirical results demonstrating the superior pruning robustness of VAR.
☆ Comparing Task-Agnostic Embedding Models for Tabular Data
Recent foundation models for tabular data achieve strong task-specific performance via in-context learning. Nevertheless, they focus on direct prediction by encapsulating both representation learning and task-specific inference inside a single, resource-intensive network. This work specifically focuses on representation learning, i.e., on transferable, task-agnostic embeddings. We systematically evaluate task-agnostic representations from tabular foundation models (TabPFN and TabICL) alongside with classical feature engineering (TableVectorizer) across a variety of application tasks as outlier detection (ADBench) and supervised learning (TabArena Lite). We find that simple TableVectorizer features achieve comparable or superior performance while being up to three orders of magnitude faster than tabular foundation models. The code is available at https://github.com/ContactSoftwareAI/TabEmbedBench.
comment: Accepted at AI for Tabular Data (EurIPS 2025 Workshop)
☆ Statistically controllable microstructure reconstruction framework for heterogeneous materials using sliced-Wasserstein metric and neural networks
Heterogeneous porous materials play a crucial role in various engineering systems. Microstructure characterization and reconstruction provide effective means for modeling these materials, which are critical for conducting physical property simulations, structure-property linkage studies, and enhancing their performance across different applications. To achieve superior controllability and applicability with small sample sizes, we propose a statistically controllable microstructure reconstruction framework that integrates neural networks with sliced-Wasserstein metric. Specifically, our approach leverages local pattern distribution for microstructure characterization and employs a controlled sampling strategy to generate target distributions that satisfy given conditional parameters. A neural network-based model establishes the mapping from the input distribution to the target local pattern distribution, enabling microstructure reconstruction. Combinations of sliced-Wasserstein metric and gradient optimization techniques minimize the distance between these distributions, leading to a stable and reliable model. Our method can perform stochastic and controllable reconstruction tasks even with small sample sizes. Additionally, it can generate large-size (e.g. 512 and 1024) 3D microstructures using a chunking strategy. By introducing spatial location masks, our method excels at generating spatially heterogeneous and complex microstructures. We conducted experiments on stochastic reconstruction, controllable reconstruction, heterogeneous reconstruction, and large-size microstructure reconstruction across various materials. Comparative analysis through visualization, statistical measures, and physical property simulations demonstrates the effectiveness, providing new insights and possibilities for research on structure-property linkage and material inverse design.
☆ Unified Multimodal Vessel Trajectory Prediction with Explainable Navigation Intention
Vessel trajectory prediction is fundamental to intelligent maritime systems. Within this domain, short-term prediction of rapid behavioral changes in complex maritime environments has established multimodal trajectory prediction (MTP) as a promising research area. However, existing vessel MTP methods suffer from limited scenario applicability and insufficient explainability. To address these challenges, we propose a unified MTP framework incorporating explainable navigation intentions, which we classify into sustained and transient categories. Our method constructs sustained intention trees from historical trajectories and models dynamic transient intentions using a Conditional Variational Autoencoder (CVAE), while using a non-local attention mechanism to maintain global scenario consistency. Experiments on real Automatic Identification System (AIS) datasets demonstrates our method's broad applicability across diverse scenarios, achieving significant improvements in both ADE and FDE. Furthermore, our method improves explainability by explicitly revealing the navigational intentions underlying each predicted trajectory.
☆ Algebraformer: A Neural Approach to Linear Systems
Recent work in deep learning has opened new possibilities for solving classical algorithmic tasks using end-to-end learned models. In this work, we investigate the fundamental task of solving linear systems, particularly those that are ill-conditioned. Existing numerical methods for ill-conditioned systems often require careful parameter tuning, preconditioning, or domain-specific expertise to ensure accuracy and stability. In this work, we propose Algebraformer, a Transformer-based architecture that learns to solve linear systems end-to-end, even in the presence of severe ill-conditioning. Our model leverages a novel encoding scheme that enables efficient representation of matrix and vector inputs, with a memory complexity of $O(n^2)$, supporting scalable inference. We demonstrate its effectiveness on application-driven linear problems, including interpolation tasks from spectral methods for boundary value problems and acceleration of the Newton method. Algebraformer achieves competitive accuracy with significantly lower computational overhead at test time, demonstrating that general-purpose neural architectures can effectively reduce complexity in traditional scientific computing pipelines.
☆ Object-Centric World Models for Causality-Aware Reinforcement Learning AAAI-26
World models have been developed to support sample-efficient deep reinforcement learning agents. However, it remains challenging for world models to accurately replicate environments that are high-dimensional, non-stationary, and composed of multiple objects with rich interactions since most world models learn holistic representations of all environmental components. By contrast, humans perceive the environment by decomposing it into discrete objects, facilitating efficient decision-making. Motivated by this insight, we propose \emph{Slot Transformer Imagination with CAusality-aware reinforcement learning} (STICA), a unified framework in which object-centric Transformers serve as the world model and causality-aware policy and value networks. STICA represents each observation as a set of object-centric tokens, together with tokens for the agent action and the resulting reward, enabling the world model to predict token-level dynamics and interactions. The policy and value networks then estimate token-level cause--effect relations and use them in the attention layers, yielding causality-guided decision-making. Experiments on object-rich benchmarks demonstrate that STICA consistently outperforms state-of-the-art agents in both sample efficiency and final performance.
comment: Accepted by AAAI-26
☆ Count The Notes: Histogram-Based Supervision for Automatic Music Transcription
Automatic Music Transcription (AMT) converts audio recordings into symbolic musical representations. Training deep neural networks (DNNs) for AMT typically requires strongly aligned training pairs with precise frame-level annotations. Since creating such datasets is costly and impractical for many musical contexts, weakly aligned approaches using segment-level annotations have gained traction. However, existing methods often rely on Dynamic Time Warping (DTW) or soft alignment loss functions, both of which still require local semantic correspondences, making them error-prone and computationally expensive. In this article, we introduce CountEM, a novel AMT framework that eliminates the need for explicit local alignment by leveraging note event histograms as supervision, enabling lighter computations and greater flexibility. Using an Expectation-Maximization (EM) approach, CountEM iteratively refines predictions based solely on note occurrence counts, significantly reducing annotation efforts while maintaining high transcription accuracy. Experiments on piano, guitar, and multi-instrument datasets demonstrate that CountEM matches or surpasses existing weakly supervised methods, improving AMT's robustness, scalability, and efficiency. Our project page is available at https://yoni-yaffe.github.io/count-the-notes.
comment: ISMIR 2025
☆ Enhancing Generalization of Depth Estimation Foundation Model via Weakly-Supervised Adaptation with Regularization AAAI 2026
The emergence of foundation models has substantially advanced zero-shot generalization in monocular depth estimation (MDE), as exemplified by the Depth Anything series. However, given access to some data from downstream tasks, a natural question arises: can the performance of these models be further improved? To this end, we propose WeSTAR, a parameter-efficient framework that performs Weakly supervised Self-Training Adaptation with Regularization, designed to enhance the robustness of MDE foundation models in unseen and diverse domains. We first adopt a dense self-training objective as the primary source of structural self-supervision. To further improve robustness, we introduce semantically-aware hierarchical normalization, which exploits instance-level segmentation maps to perform more stable and multi-scale structural normalization. Beyond dense supervision, we introduce a cost-efficient weak supervision in the form of pairwise ordinal depth annotations to further guide the adaptation process, which enforces informative ordinal constraints to mitigate local topological errors. Finally, a weight regularization loss is employed to anchor the LoRA updates, ensuring training stability and preserving the model's generalizable knowledge. Extensive experiments on both realistic and corrupted out-of-distribution datasets under diverse and challenging scenarios demonstrate that WeSTAR consistently improves generalization and achieves state-of-the-art performance across a wide range of benchmarks.
comment: Accepted by AAAI 2026
☆ EBind: a practical approach to space binding
We simplify space binding by focusing on two core components, a single encoder per modality and high-quality data; enabling training state-of-the-art models on a single GPU in a few hours as opposed to multiple days. We present EBind, an Easy, data-centric, and parameter-efficient method to Bind the embedding spaces of multiple contrastive models. We demonstrate that a simple 1.8B-parameter image-text-video-audio-3D model can outperform models 4 to 17x the size. The key to achieving this is a carefully curated dataset of three complementary data sources: i) 6.7M fully-automated multimodal quintuples sourced via SOTA retrieval models, ii) 1M diverse, semi-automated triples annotated by humans as negative, partial, or positive matches, and iii) 3.4M pre-existing captioned data items. We use 13 different evaluations to demonstrate the value of each data source. Due to limitations with existing benchmarks, we further introduce the first high-quality, consensus-annotated zero-shot classification benchmark between audio and PCs. In contrast to related work, we will open-source our code, model weights, and datasets.
☆ DevPiolt: Operation Recommendation for IoT Devices at Xiaomi Home
Operation recommendation for IoT devices refers to generating personalized device operations for users based on their context, such as historical operations, environment information, and device status. This task is crucial for enhancing user satisfaction and corporate profits. Existing recommendation models struggle with complex operation logic, diverse user preferences, and sensitive to suboptimal suggestions, limiting their applicability to IoT device operations. To address these issues, we propose DevPiolt, a LLM-based recommendation model for IoT device operations. Specifically, we first equip the LLM with fundamental domain knowledge of IoT operations via continual pre-training and multi-task fine-tuning. Then, we employ direct preference optimization to align the fine-tuned LLM with specific user preferences. Finally, we design a confidence-based exposure control mechanism to avoid negative user experiences from low-quality recommendations. Extensive experiments show that DevPiolt significantly outperforms baselines on all datasets, with an average improvement of 69.5% across all metrics. DevPiolt has been practically deployed in Xiaomi Home app for one quarter, providing daily operation recommendations to 255,000 users. Online experiment results indicate a 21.6% increase in unique visitor device coverage and a 29.1% increase in page view acceptance rates.
☆ Parallelizing Tree Search with Twice Sequential Monte Carlo
Model-based reinforcement learning (RL) methods that leverage search are responsible for many milestone breakthroughs in RL. Sequential Monte Carlo (SMC) recently emerged as an alternative to the Monte Carlo Tree Search (MCTS) algorithm which drove these breakthroughs. SMC is easier to parallelize and more suitable to GPU acceleration. However, it also suffers from large variance and path degeneracy which prevent it from scaling well with increased search depth, i.e., increased sequential compute. To address these problems, we introduce Twice Sequential Monte Carlo Tree Search (TSMCTS). Across discrete and continuous environments TSMCTS outperforms the SMC baseline as well as a popular modern version of MCTS. Through variance reduction and mitigation of path degeneracy, TSMCTS scales favorably with sequential compute while retaining the properties that make SMC natural to parallelize.
☆ Bridging the Gap Between Bayesian Deep Learning and Ensemble Weather Forecasts
Weather forecasting is fundamentally challenged by the chaotic nature of the atmosphere, necessitating probabilistic approaches to quantify uncertainty. While traditional ensemble prediction (EPS) addresses this through computationally intensive simulations, recent advances in Bayesian Deep Learning (BDL) offer a promising but often disconnected alternative. We bridge these paradigms through a unified hybrid Bayesian Deep Learning framework for ensemble weather forecasting that explicitly decomposes predictive uncertainty into epistemic and aleatoric components, learned via variational inference and a physics-informed stochastic perturbation scheme modeling flow-dependent atmospheric dynamics, respectively. We further establish a unified theoretical framework that rigorously connects BDL and EPS, providing formal theorems that decompose total predictive uncertainty into epistemic and aleatoric components under the hybrid BDL framework. We validate our framework on the large-scale 40-year ERA5 reanalysis dataset (1979-2019) with 0.25° spatial resolution. Experimental results show that our method not only improves forecast accuracy and yields better-calibrated uncertainty quantification but also achieves superior computational efficiency compared to state-of-the-art probabilistic diffusion models. We commit to making our code open-source upon acceptance of this paper.
☆ Do Large Language Models (LLMs) Understand Chronology?
Large language models (LLMs) are increasingly used in finance and economics, where prompt-based attempts against look-ahead bias implicitly assume that models understand chronology. We test this fundamental question with a series of chronological ordering tasks with increasing complexities over facts the model already knows from pre-training. Our tasks cover (1) chronological ordering, (2) conditional sorting (filter, then order), and (3) anachronism detection. We evaluate GPT-4.1, Claude-3.7 Sonnet, with and without Extended Thinking (ET), and GPT-5 across multiple reasoning-effort settings. Across models, Exact match rate drops sharply as sequences lengthen even while rank correlations stay high as LLMs largely preserve local order but struggle to maintain a single globally consistent timeline. In conditional sorting, most failures stem from the filtering step rather than the ordering step, but GPT-5 and Claude-3.7 Sonnet with Extended Thinking outshine normal models significantly. Lastly, anachronism detection is found to be the easiest task for the LLMs but performance still declines with increasingly overlapping timelines or entities. Overall, our main contribution is showing that allocating explicit reasoning budget helps with chronological ordering with GPT-5 at medium/high reasoning effort achieving flawless ordering at all lengths and perfect conditional sorting (both self-filtered and given-subset), whereas low/minimal effort degrades with longer lists, mirroring earlier models. Our findings delineate limits of current LLMs on chronological tasks, providing insights into task complexity, and demonstrate scenarios in which reasoning helps. These patterns are important for the real-time application of LLMs in finance. We release all code and evaluation templates to support full reproducibility.
comment: 47 pages
☆ Orion: A Unified Visual Agent for Multimodal Perception, Advanced Visual Reasoning and Execution
We introduce Orion, a visual agent framework that can take in any modality and generate any modality. Using an agentic framework with multiple tool-calling capabilities, Orion is designed for visual AI tasks and achieves state-of-the-art results. Unlike traditional vision-language models that produce descriptive outputs, Orion orchestrates a suite of specialized computer vision tools, including object detection, keypoint localization, panoptic segmentation, Optical Character Recognition, and geometric analysis, to execute complex multi-step visual workflows. The system achieves competitive performance on MMMU, MMBench, DocVQA, and MMLongBench while extending monolithic vision-language models to production-grade visual intelligence. By combining neural perception with symbolic execution, Orion enables autonomous visual reasoning, marking a transition from passive visual understanding to active, tool-driven visual intelligence.
☆ Causal Discovery on Higher-Order Interactions
Causal discovery combines data with knowledge provided by experts to learn the DAG representing the causal relationships between a given set of variables. When data are scarce, bagging is used to measure our confidence in an average DAG obtained by aggregating bootstrapped DAGs. However, the aggregation step has received little attention from the specialized literature: the average DAG is constructed using only the confidence in the individual edges of the bootstrapped DAGs, thus disregarding complex higher-order edge structures. In this paper, we introduce a novel theoretical framework based on higher-order structures and describe a new DAG aggregation algorithm. We perform a simulation study, discussing the advantages and limitations of the proposed approach. Our proposal is both computationally efficient and effective, outperforming state-of-the-art solutions, especially in low sample size regimes and under high dimensionality settings.
comment: 16 pages, 2 figures
☆ N-GLARE: An Non-Generative Latent Representation-Efficient LLM Safety Evaluator
Evaluating the safety robustness of LLMs is critical for their deployment. However, mainstream Red Teaming methods rely on online generation and black-box output analysis. These approaches are not only costly but also suffer from feedback latency, making them unsuitable for agile diagnostics after training a new model. To address this, we propose N-GLARE (A Non-Generative, Latent Representation-Efficient LLM Safety Evaluator). N-GLARE operates entirely on the model's latent representations, bypassing the need for full text generation. It characterizes hidden layer dynamics by analyzing the APT (Angular-Probabilistic Trajectory) of latent representations and introducing the JSS (Jensen-Shannon Separability) metric. Experiments on over 40 models and 20 red teaming strategies demonstrate that the JSS metric exhibits high consistency with the safety rankings derived from Red Teaming. N-GLARE reproduces the discriminative trends of large-scale red-teaming tests at less than 1\% of the token cost and the runtime cost, providing an efficient output-free evaluation proxy for real-time diagnostics.
☆ Certified Signed Graph Unlearning
Signed graphs model complex relationships through positive and negative edges, with widespread real-world applications. Given the sensitive nature of such data, selective removal mechanisms have become essential for privacy protection. While graph unlearning enables the removal of specific data influences from Graph Neural Networks (GNNs), existing methods are designed for conventional GNNs and overlook the unique heterogeneous properties of signed graphs. When applied to Signed Graph Neural Networks (SGNNs), these methods lose critical sign information, degrading both model utility and unlearning effectiveness. To address these challenges, we propose Certified Signed Graph Unlearning (CSGU), which provides provable privacy guarantees while preserving the sociological principles underlying SGNNs. CSGU employs a three-stage method: (1) efficiently identifying minimal influenced neighborhoods via triangular structures, (2) applying sociological theories to quantify node importance for optimal privacy budget allocation, and (3) performing importance-weighted parameter updates to achieve certified modifications with minimal utility degradation. Extensive experiments demonstrate that CSGU outperforms existing methods, achieving superior performance in both utility preservation and unlearning effectiveness on SGNNs.
☆ A Comprehensive Study of Implicit and Explicit Biases in Large Language Models
Large Language Models (LLMs) inherit explicit and implicit biases from their training datasets. Identifying and mitigating biases in LLMs is crucial to ensure fair outputs, as they can perpetuate harmful stereotypes and misinformation. This study highlights the need to address biases in LLMs amid growing generative AI. We studied bias-specific benchmarks such as StereoSet and CrowSPairs to evaluate the existence of various biases in multiple generative models such as BERT and GPT 3.5. We proposed an automated Bias-Identification Framework to recognize various social biases in LLMs such as gender, race, profession, and religion. We adopted a two-pronged approach to detect explicit and implicit biases in text data. Results indicated fine-tuned models struggle with gender biases but excelled at identifying and avoiding racial biases. Our findings illustrated that despite having some success, LLMs often over-relied on keywords. To illuminate the capability of the analyzed LLMs in detecting implicit biases, we employed Bag-of-Words analysis and unveiled indications of implicit stereotyping within the vocabulary. To bolster the model performance, we applied an enhancement strategy involving fine-tuning models using prompting techniques and data augmentation of the bias benchmarks. The fine-tuned models exhibited promising adaptability during cross-dataset testing and significantly enhanced performance on implicit bias benchmarks, with performance gains of up to 20%.
☆ AsyncVLA: Asynchronous Flow Matching for Vision-Language-Action Models
Vision-language-action (VLA) models have recently emerged as a powerful paradigm for building generalist robots. However, traditional VLA models that generate actions through flow matching (FM) typically rely on rigid and uniform time schedules, i.e., synchronous FM (SFM). Without action context awareness and asynchronous self-correction, SFM becomes unstable in long-horizon tasks, where a single action error can cascade into failure. In this work, we propose asynchronous flow matching VLA (AsyncVLA), a novel framework that introduces temporal flexibility in asynchronous FM (AFM) and enables self-correction in action generation. AsyncVLA breaks from the vanilla SFM in VLA models by generating the action tokens in a non-uniform time schedule with action context awareness. Besides, our method introduces the confidence rater to extract confidence of the initially generated actions, enabling the model to selectively refine inaccurate action tokens before execution. Moreover, we propose a unified training procedure for SFM and AFM that endows a single model with both modes, improving KV-cache utilization. Extensive experiments on robotic manipulation benchmarks demonstrate that AsyncVLA is data-efficient and exhibits self-correction ability. AsyncVLA achieves state-of-the-art results across general embodied evaluations due to its asynchronous generation in AFM. Our code is available at https://github.com/YuhuaJiang2002/AsyncVLA.
☆ Imaging with super-resolution in changing random media
We develop an imaging algorithm that exploits strong scattering to achieve super-resolution in changing random media. The method processes large and diverse array datasets using sparse dictionary learning, clustering, and multidimensional scaling. Starting from random initializations, the algorithm reliably extracts the unknown medium properties necessary for accurate imaging using back-propagation, $\ell_2$ or $\ell_1$ methods. Remarkably, scattering enhances resolution beyond homogeneous medium limits. When abundant data are available, the algorithm allows the realization of super-resolution in imaging.
☆ SCOPE: Spectral Concentration by Distributionally Robust Joint Covariance-Precision Estimation
We propose a distributionally robust formulation for simultaneously estimating the covariance matrix and the precision matrix of a random vector.The proposed model minimizes the worst-case weighted sum of the Frobenius loss of the covariance estimator and Stein's loss of the precision matrix estimator against all distributions from an ambiguity set centered at the nominal distribution. The radius of the ambiguity set is measured via convex spectral divergence. We demonstrate that the proposed distributionally robust estimation model can be reduced to a convex optimization problem, thereby yielding quasi-analytical estimators. The joint estimators are shown to be nonlinear shrinkage estimators. The eigenvalues of the estimators are shrunk nonlinearly towards a positive scalar, where the scalar is determined by the weight coefficient of the loss terms. By tuning the coefficient carefully, the shrinkage corrects the spectral bias of the empirical covariance/precision matrix estimator. By this property, we call the proposed joint estimator the Spectral concentrated COvariance and Precision matrix Estimator (SCOPE). We demonstrate that the shrinkage effect improves the condition number of the estimator. We provide a parameter-tuning scheme that adjusts the shrinkage target and intensity that is asymptotically optimal. Numerical experiments on synthetic and real data show that our shrinkage estimators perform competitively against state-of-the-art estimators in practical applications.
♻ ☆ Sim-to-real supervised domain adaptation for radioisotope identification
Machine learning has the potential to improve the speed and reliability of radioisotope identification using gamma spectroscopy. However, meticulously labeling an experimental dataset for training is often prohibitively expensive, while training models purely on synthetic data is risky due to the domain gap between simulated and experimental measurements. In this research, we demonstrate that supervised domain adaptation can substantially improve the performance of radioisotope identification models by transferring knowledge between synthetic and experimental data domains. We consider two domain adaptation scenarios: (1) a simulation-to-simulation adaptation, where we perform multi-label proportion estimation using simulated high-purity germanium detectors, and (2) a simulation-to-experimental adaptation, where we perform multi-class, single-label classification using measured spectra from handheld lanthanum bromide (LaBr) and sodium iodide (NaI) detectors. We begin by pretraining a spectral classifier on synthetic data using a custom transformer-based neural network. After subsequent fine-tuning on just 64 labeled experimental spectra, we achieve a test accuracy of 96% in the sim-to-real scenario with a LaBr detector, far surpassing a synthetic-only baseline model (75%) and a model trained from scratch (80%) on the same 64 spectra. Furthermore, we demonstrate that domain-adapted models learn more human-interpretable features than experiment-only baseline models. Overall, our results highlight the potential for supervised domain adaptation techniques to bridge the sim-to-real gap in radioisotope identification, enabling the development of accurate and explainable classifiers even in real-world scenarios where access to experimental data is limited.
comment: 32 pages, 9 figures, and 7 tables
♻ ☆ Guided Reasoning in LLM-Driven Penetration Testing Using Structured Attack Trees
Recent advances in Large Language Models (LLMs) have driven interest in automating cybersecurity penetration testing workflows, offering the promise of faster and more consistent vulnerability assessment for enterprise systems. Existing LLM agents for penetration testing primarily rely on self-guided reasoning, which can produce inaccurate or hallucinated procedural steps. As a result, the LLM agent may undertake unproductive actions, such as exploiting unused software libraries or generating cyclical responses that repeat prior tactics. In this work, we propose a guided reasoning pipeline for penetration testing LLM agents that incorporates a deterministic task tree built from the MITRE ATT&CK Matrix, a proven penetration testing kll chain, to constrain the LLM's reaoning process to explicitly defined tactics, techniques, and procedures. This anchors reasoning in proven penetration testing methodologies and filters out ineffective actions by guiding the agent towards more productive attack procedures. To evaluate our approach, we built an automated penetration testing LLM agent using three LLMs (Llama-3-8B, Gemini-1.5, and GPT-4) and applied it to navigate 10 HackTheBox cybersecurity exercises with 103 discrete subtasks representing real-world cyberattack scenarios. Our proposed reasoning pipeline guided the LLM agent through 71.8\%, 72.8\%, and 78.6\% of subtasks using Llama-3-8B, Gemini-1.5, and GPT-4, respectively. Comparatively, the state-of-the-art LLM penetration testing tool using self-guided reasoning completed only 13.5\%, 16.5\%, and 75.7\% of subtasks and required 86.2\%, 118.7\%, and 205.9\% more model queries. This suggests that incorporating a deterministic task tree into LLM reasoning pipelines can enhance the accuracy and efficiency of automated cybersecurity assessments
♻ ☆ SWAT-NN: Simultaneous Weights and Architecture Training for Neural Networks in a Latent Space
Designing neural networks typically relies on manual trial and error or a neural architecture search (NAS) followed by weight training. The former is time-consuming and labor-intensive, while the latter often discretizes architecture search and weight optimization. In this paper, we propose a fundamentally different approach that simultaneously optimizes both the architecture and the weights of a neural network. Our framework first trains a universal multi-scale autoencoder that embeds both architectural and parametric information into a continuous latent space, where functionally similar neural networks are mapped closer together. Given a dataset, we then randomly initialize a point in the embedding space and update it via gradient descent to obtain the optimal neural network, jointly optimizing its structure and weights. The optimization process incorporates sparsity and compactness penalties to promote efficient models. Experiments on synthetic regression tasks demonstrate that our method effectively discovers sparse and compact neural networks with strong performance.
comment: Accepted to 2025 IEEE International Conference on Big Data
♻ ☆ Optimizing Federated Learning by Entropy-Based Client Selection
Although deep learning has revolutionized domains such as natural language processing and computer vision, its dependence on centralized datasets raises serious privacy concerns. Federated learning addresses this issue by enabling multiple clients to collaboratively train a global deep learning model without compromising their data privacy. However, the performance of such a model degrades under label skew, where the label distribution differs between clients. To overcome this issue, a novel method called FedEntOpt is proposed. In each round, it selects clients to maximize the entropy of the aggregated label distribution, ensuring that the global model is exposed to data from all available classes. Extensive experiments on multiple benchmark datasets show that the proposed method outperforms several state-of-the-art algorithms by up to 6% in classification accuracy under standard settings regardless of the model size, while achieving gains of over 30% in scenarios with low participation rates and client dropout. In addition, FedEntOpt offers the flexibility to be combined with existing algorithms, enhancing their classification accuracy by more than 40%. Importantly, its performance remains unaffected even when differential privacy is applied.
comment: Accepted at the 3rd IEEE International Conference on Federated Learning Technologies and Applications (FLTA 2025), Dubrovnik, Croatia, October 14-17, 2025
♻ ☆ Sharp detection of low-dimensional structure in probability measures via dimensional logarithmic Sobolev inequalities
Identifying low-dimensional structure in high-dimensional probability measures is an essential pre-processing step for efficient sampling. We introduce a method for identifying and approximating a target measure $π$ as a perturbation of a given reference measure $μ$ along a few significant directions of $\mathbb{R}^{d}$. The reference measure can be a Gaussian or a nonlinear transformation of a Gaussian, as commonly arising in generative modeling. Our method extends prior work on minimizing majorizations of the Kullback--Leibler divergence to identify optimal approximations within this class of measures. Our main contribution unveils a connection between the \emph{dimensional} logarithmic Sobolev inequality (LSI) and approximations with this ansatz. Specifically, when the target and reference are both Gaussian, we show that minimizing the dimensional LSI is equivalent to minimizing the KL divergence restricted to this ansatz. For general non-Gaussian measures, the dimensional LSI produces majorants that uniformly improve on previous majorants for gradient-based dimension reduction. We further demonstrate the applicability of this analysis to the squared Hellinger distance, where analogous reasoning shows that the dimensional Poincaré inequality offers improved bounds.
♻ ☆ PyDTS: A Python Package for Discrete-Time Survival Analysis with Competing Risks and Optional Penalization
Time-to-event (survival) analysis models the time until a pre-specified event occurs. When time is measured in discrete units or rounded into intervals, standard continuous-time models can yield biased estimators. In addition, the event of interest may belong to one of several mutually exclusive types, referred to as competing risks, where the occurrence of one event prevents the occurrence or observation of the others. PyDTS is an open-source Python package for analyzing discrete-time survival data with competing-risks. It provides regularized estimation methods, model evaluation metrics, variable screening tools, and a simulation module to support research and development.
♻ ☆ MOON: Generative MLLM-based Multimodal Representation Learning for E-commerce Product Understanding WSDM 2026
With the rapid advancement of e-commerce, exploring general representations rather than task-specific ones has attracted increasing research attention. For product understanding, although existing discriminative dual-flow architectures drive progress in this field, they inherently struggle to model the many-to-one alignment between multiple images and texts of products. Therefore, we argue that generative Multimodal Large Language Models (MLLMs) hold significant potential for improving product representation learning. Nevertheless, achieving this goal still remains non-trivial due to several key challenges: the lack of multimodal and aspect-aware modeling modules in typical LLMs; the common presence of background noise in product images; and the absence of a standard benchmark for evaluation. To address these issues, we propose the first generative MLLM-based model named MOON for product representation learning. Our method (1) employs a guided Mixture-of-Experts (MoE) module for targeted modeling of multimodal and aspect-specific product content; (2) effectively detects core semantic regions in product images to mitigate the distraction and interference caused by background noise; and (3) introduces the specialized negative sampling strategy to increase the difficulty and diversity of negative samples. In addition, we release a large-scale multimodal benchmark MBE for various product understanding tasks. Experimentally, our model demonstrates competitive zero-shot performance on both our benchmark and the public dataset, showcasing strong generalization across various downstream tasks, including cross-modal retrieval, product classification, and attribute prediction. Furthermore, the case study and visualization illustrate the effectiveness of MOON for product understanding.
comment: Accepted by WSDM 2026. 11 pages, 9 figures
♻ ☆ OptScale: Probabilistic Optimality for Inference-time Scaling AAAI-2026
Inference-time scaling has emerged as a powerful technique for enhancing the reasoning performance of Large Language Models (LLMs). However, existing approaches often rely on heuristic strategies for parallel sampling, lacking a principled foundation. To address this gap, we propose a probabilistic framework that formalizes the optimality of inference-time scaling under the assumption that parallel samples are independently and identically distributed (i.i.d.), and where the Best-of-N selection strategy follows a probability distribution that can be estimated. Within this framework, we derive a theoretical lower bound on the required number of samples to achieve a target performance level, providing the first principled guidance for compute-efficient scaling. Leveraging this insight, we develop \textsc{OptScale}, a practical algorithm that dynamically determines the optimal number of sampled responses. \textsc{OptScale} employs a language model-based predictor to estimate probabilistic prior parameters, enabling the decision of the minimal number of samples needed that satisfy predefined performance thresholds and confidence levels. Extensive experiments on representative reasoning benchmarks (including MATH-500, GSM8K, AIME, and AMC) demonstrate that \textsc{OptScale} significantly reduces sampling overhead while remaining better or on par with state-of-the-art reasoning performance. Our work offers both a theoretical foundation and a practical solution for principled inference-time scaling, addressing a critical gap in the efficient deployment of LLMs for complex reasoning. The source code is publicly available at https://github.com/Albertwyk/OptScale.
comment: Accepted by AAAI-2026
♻ ☆ MOON Embedding: Multimodal Representation Learning for E-commerce Search Advertising
We introduce MOON, our comprehensive set of sustainable iterative practices for multimodal representation learning for e-commerce applications. MOON has already been fully deployed across all stages of Taobao search advertising system, including retrieval, relevance, ranking, and so on. The performance gains are particularly significant on click-through rate (CTR) prediction task, which achieves an overall +20.00% online CTR improvement. Over the past three years, this project has delivered the largest improvement on CTR prediction task and undergone five full-scale iterations. Throughout the exploration and iteration of our MOON, we have accumulated valuable insights and practical experience that we believe will benefit the research community. MOON contains a three-stage training paradigm of "Pretraining, Post-training, and Application", allowing effective integration of multimodal representations with downstream tasks. Notably, to bridge the misalignment between the objectives of multimodal representation learning and downstream training, we define the exchange rate to quantify how effectively improvements in an intermediate metric can translate into downstream gains. Through this analysis, we identify the image-based search recall as a critical intermediate metric guiding the optimization of multimodal models. Over three years and five iterations, MOON has evolved along four critical dimensions: data processing, training strategy, model architecture, and downstream application. The lessons and insights gained through the iterative improvements will also be shared. As part of our exploration into scaling effects in the e-commerce field, we further conduct a systematic study of the scaling laws governing multimodal representation learning, examining multiple factors such as the number of training tokens, negative samples, and the length of user behavior sequences.
comment: 31 pages, 12 figures
♻ ☆ Seeing and Knowing in the Wild: Open-domain Visual Entity Recognition with Large-scale Knowledge Graphs via Contrastive Learning AAAI2026
Open-domain visual entity recognition aims to identify and link entities depicted in images to a vast and evolving set of real-world concepts, such as those found in Wikidata. Unlike conventional classification tasks with fixed label sets, it operates under open-set conditions, where most target entities are unseen during training and exhibit long-tail distributions. This makes the task inherently challenging due to limited supervision, high visual ambiguity, and the need for semantic disambiguation. We propose a Knowledge-guided Contrastive Learning (KnowCoL) framework that combines both images and text descriptions into a shared semantic space grounded by structured information from Wikidata. By abstracting visual and textual inputs to a conceptual level, the model leverages entity descriptions, type hierarchies, and relational context to support zero-shot entity recognition. We evaluate our approach on the OVEN benchmark, a large-scale open-domain visual recognition dataset with Wikidata IDs as the label space. Our experiments show that using visual, textual, and structured knowledge greatly improves accuracy, especially for rare and unseen entities. Our smallest model improves the accuracy on unseen entities by 10.5% compared to the state-of-the-art, despite being 35 times smaller.
comment: Accepted by AAAI2026
♻ ☆ Quartet: Native FP4 Training Can Be Optimal for Large Language Models
Training large language models (LLMs) models directly in low-precision offers a way to address computational costs by improving both throughput and energy efficiency. For those purposes, NVIDIA's recent Blackwell architecture facilitates very low-precision operations using FP4 variants. Yet, current algorithms for training LLMs in FP4 precision face significant accuracy degradation and often rely on mixed-precision fallbacks. In this paper, we investigate hardware-supported FP4 training and introduce a new approach for accurate, end-to-end FP4 training with all the major computations (i.e., linear layers) in low precision. Through extensive evaluations on Llama-type models, we reveal a new low-precision scaling law that quantifies performance trade-offs across bit-widths and training setups. Guided by this investigation, we design an "optimal" technique in terms of accuracy-vs-computation, called Quartet. We implement Quartet using optimized CUDA kernels tailored for Blackwell, demonstrating that fully FP4-based training is a competitive alternative to FP16 half-precision and to FP8 training. Our code is available at https://github.com/IST-DASLab/Quartet.
♻ ☆ Optimality and NP-Hardness of Transformers in Learning Markovian Dynamical Functions NeurIPS 2025
Transformer architectures can solve unseen tasks based on input-output pairs in a given prompt due to in-context learning (ICL). Existing theoretical studies on ICL have mainly focused on linear regression tasks, often with i.i.d. inputs. To understand how transformers express ICL when modeling dynamics-driven functions, we investigate Markovian function learning through a structured ICL setup, where we characterize the loss landscape to reveal underlying optimization behaviors. Specifically, we (1) provide the closed-form expression of the global minimizer (in an enlarged parameter space) for a single-layer linear self-attention (LSA) model; (2) prove that recovering transformer parameters that realize the optimal solution is NP-hard in general, revealing a fundamental limitation of one-layer LSA in representing structured dynamical functions; and (3) supply a novel interpretation of a multilayer LSA as performing preconditioned gradient descent to optimize multiple objectives beyond the square loss. These theoretical results are numerically validated using simplified transformers.
comment: NeurIPS 2025
♻ ☆ A More Realistic Evaluation of Cross-Frequency Transfer Learning and Foundation Forecasting Models NeurIPS 2025
Cross-frequency transfer learning (CFTL) has emerged as a popular framework for curating large-scale time series datasets to pre-train foundation forecasting models (FFMs). Although CFTL has shown promise, current benchmarking practices fall short of accurately assessing its performance. This shortcoming stems from many factors: an over-reliance on small-scale evaluation datasets; inadequate treatment of sample size when computing summary statistics; reporting of suboptimal statistical models; and failing to account for non-negligible risks of overlap between pre-training and test datasets. To address these limitations, we introduce a unified reimplementation of widely-adopted neural forecasting networks, adapting them for the CFTL setup; we pre-train only on proprietary and synthetic data, being careful to prevent test leakage; and we evaluate on 15 large, diverse public forecast competition datasets. Our empirical analysis reveals that statistical models' accuracy is frequently underreported. Notably, we confirm that statistical models and their ensembles consistently outperform existing FFMs by more than 8.2% in sCRPS, and by more than 20% MASE, across datasets. However, we also find that synthetic dataset pre-training does improve the accuracy of a FFM by 7% percent.
comment: NeurIPS 2025 Workshop on Recent Advances in Time Series Foundation Models (BERT2S)
♻ ☆ Concentration inequalities for semidefinite least squares based on data
We study data-driven least squares (LS) problems with semidefinite (SD) constraints and derive finite-sample guarantees on the spectrum of their optimal solutions when these constraints are relaxed. In particular, we provide a high confidence bound allowing one to solve a simpler program in place of the full SDLS problem, while ensuring that the eigenvalues of the resulting solution are $\varepsilon$-close of those enforced by the SD constraints. The developed certificate, which consistently shrinks as the number of data increases, turns out to be easy-to-compute, distribution-free, and only requires independent and identically distributed samples. Moreover, when the SDLS is used to learn an unknown quadratic function, we establish bounds on the error between a gradient descent iterate minimizing the surrogate cost obtained with no SD constraints and the true minimizer.
♻ ☆ Batch Acquisition Function Evaluations and Decouple Optimizer Updates for Faster Bayesian Optimization AAAI
Bayesian optimization (BO) efficiently finds high-performing parameters by maximizing an acquisition function, which models the promise of parameters. A major computational bottleneck arises in acquisition function optimization, where multi-start optimization (MSO) with quasi-Newton (QN) methods is required due to the non-convexity of the acquisition function. BoTorch, a widely used BO library, currently optimizes the summed acquisition function over multiple points, leading to the speedup of MSO owing to PyTorch batching. Nevertheless, this paper empirically demonstrates the suboptimality of this approach in terms of off-diagonal approximation errors in the inverse Hessian of a QN method, slowing down its convergence. To address this problem, we propose to decouple QN updates using a coroutine while batching the acquisition function calls. Our approach not only yields the theoretically identical convergence to the sequential MSO but also drastically reduces the wall-clock time compared to the previous approaches. Our approach is available in GPSampler in Optuna, effectively reducing its computational overhead.
comment: Accepted to 5th Annual AAAI Workshop on AI to Accelerate Science and Engineering (AI2ASE)
♻ ☆ MPD-SGR: Robust Spiking Neural Networks with Membrane Potential Distribution-Driven Surrogate Gradient Regularization AAAI 2026
The surrogate gradient (SG) method has shown significant promise in enhancing the performance of deep spiking neural networks (SNNs), but it also introduces vulnerabilities to adversarial attacks. Although spike coding strategies and neural dynamics parameters have been extensively studied for their impact on robustness, the critical role of gradient magnitude, which reflects the model's sensitivity to input perturbations, remains underexplored. In SNNs, the gradient magnitude is primarily determined by the interaction between the membrane potential distribution (MPD) and the SG function. In this study, we investigate the relationship between the MPD and SG and their implications for improving the robustness of SNNs. Our theoretical analysis reveals that reducing the proportion of membrane potentials lying within the gradient-available range of the SG function effectively mitigates the sensitivity of SNNs to input perturbations. Building upon this insight, we propose a novel MPD-driven surrogate gradient regularization (MPD-SGR) method, which enhances robustness by explicitly regularizing the MPD based on its interaction with the SG function. Extensive experiments across multiple image classification benchmarks and diverse network architectures confirm that the MPD-SGR method significantly enhances the resilience of SNNs to adversarial perturbations and exhibits strong generalizability across diverse network configurations, SG functions, and spike encoding schemes.
comment: Accepted by AAAI 2026
♻ ☆ Beyond Correlation: Causal Multi-View Unsupervised Feature Selection Learning
Multi-view unsupervised feature selection (MUFS) has recently received increasing attention for its promising ability in dimensionality reduction on multi-view unlabeled data. Existing MUFS methods typically select discriminative features by capturing correlations between features and clustering labels. However, an important yet underexplored question remains: \textit{Are such correlations sufficiently reliable to guide feature selection?} In this paper, we analyze MUFS from a causal perspective by introducing a novel structural causal model, which reveals that existing methods may select irrelevant features because they overlook spurious correlations caused by confounders. Building on this causal perspective, we propose a novel MUFS method called CAusal multi-view Unsupervised feature Selection leArning (CAUSA). Specifically, we first employ a generalized unsupervised spectral regression model that identifies informative features by capturing dependencies between features and consensus clustering labels. We then introduce a causal regularization module that can adaptively separate confounders from multi-view data and simultaneously learn view-shared sample weights to balance confounder distributions, thereby mitigating spurious correlations. Thereafter, integrating both into a unified learning framework enables CAUSA to select causally informative features. Comprehensive experiments demonstrate that CAUSA outperforms several state-of-the-art methods. To our knowledge, this is the first in-depth study of causal multi-view feature selection in the unsupervised setting.
♻ ☆ Explaining Similarity in Vision-Language Encoders with Weighted Banzhaf Interactions NeurIPS 2025
Language-image pre-training (LIP) enables the development of vision-language models capable of zero-shot classification, localization, multimodal retrieval, and semantic understanding. Various explanation methods have been proposed to visualize the importance of input image-text pairs on the model's similarity outputs. However, popular saliency maps are limited by capturing only first-order attributions, overlooking the complex cross-modal interactions intrinsic to such encoders. We introduce faithful interaction explanations of LIP models (FIxLIP) as a unified approach to decomposing the similarity in vision-language encoders. FIxLIP is rooted in game theory, where we analyze how using the weighted Banzhaf interaction index offers greater flexibility and improves computational efficiency over the Shapley interaction quantification framework. From a practical perspective, we propose how to naturally extend explanation evaluation metrics, such as the pointing game and area between the insertion/deletion curves, to second-order interaction explanations. Experiments on the MS COCO and ImageNet-1k benchmarks validate that second-order methods, such as FIxLIP, outperform first-order attribution methods. Beyond delivering high-quality explanations, we demonstrate the utility of FIxLIP in comparing different models, e.g. CLIP vs. SigLIP-2.
comment: NeurIPS 2025. Code: https://github.com/hbaniecki/fixlip
♻ ☆ Automatic Differentiation of Agent-Based Models
Agent-based models (ABMs) simulate complex systems by capturing the bottom-up interactions of individual agents comprising the system. Many complex systems of interest, such as epidemics or financial markets, involve thousands or even millions of agents. Consequently, ABMs often become computationally demanding and rely on the calibration of numerous free parameters, which has significantly hindered their widespread adoption. In this paper, we demonstrate that automatic differentiation (AD) techniques can effectively alleviate these computational burdens. By applying AD to ABMs, the gradients of the simulator become readily available, greatly facilitating essential tasks such as calibration and sensitivity analysis. Specifically, we show how AD enables variational inference (VI) techniques for efficient parameter calibration. Our experiments demonstrate substantial performance improvements and computational savings using VI on three prominent ABMs: Axtell's model of firms; Sugarscape; and the SIR epidemiological model. Our approach thus significantly enhances the practicality and scalability of ABMs for studying complex systems.
comment: Rev. 1: Updated references and code availability
♻ ☆ Closed-Form Feedback-Free Learning with Forward Projection
State-of-the-art methods for backpropagation-free learning employ local error feedback to direct iterative optimisation via gradient descent. In this study, we examine the more restrictive setting where retrograde communication from neuronal outputs is unavailable for pre-synaptic weight optimisation. To address this challenge, we propose Forward Projection (FP). This randomised closed-form training method requires only a single forward pass over the entire dataset for model fitting, without retrograde communication. Our method generates target values for pre-activation membrane potentials at each layer through randomised nonlinear projections of pre-synaptic inputs and the labels, thereby encoding information from both sources. Local loss functions are optimised over pre-synaptic inputs using closed-form regression, without feedback from neuronal outputs or downstream layers. Interpretability is a key advantage of FP training; membrane potentials of hidden neurons in FP-trained networks encode information which are interpretable layer-wise as label predictions. We demonstrate the effectiveness of FP across four biomedical datasets, comparing it with backpropagation and local learning techniques such as Forward-Forward training and Local Supervision in multi-layer perceptron and convolutional architectures. In some few-shot learning tasks, FP yielded more generalisable models than those optimised via backpropagation. In large-sample tasks, FP-based models achieve generalisation comparable to gradient descent-based local learning methods while requiring only a single forward propagation step, achieving significant speed up for training.
comment: 26 pages, 5 figures. Study code available at https://github.com/robertoshea/forward_projection. Study data available at https://data.mendeley.com/datasets/fb7xddyxs4/2
♻ ☆ Appa: Bending Weather Dynamics with Latent Diffusion Models for Global Data Assimilation
Deep learning has advanced weather forecasting, but accurate predictions first require identifying the current state of the atmosphere from observational data. In this work, we introduce Appa, a score-based data assimilation model generating global atmospheric trajectories at 0.25\si{\degree} resolution and 1-hour intervals. Powered by a 565M-parameter latent diffusion model trained on ERA5, Appa can be conditioned on arbitrary observations to infer plausible trajectories, without retraining. Our probabilistic framework handles reanalysis, filtering, and forecasting, within a single model, producing physically consistent reconstructions from various inputs. Results establish latent score-based data assimilation as a promising foundation for future global atmospheric modeling systems.
♻ ☆ Phase diagram and eigenvalue dynamics of stochastic gradient descent in multilayer neural networks
Hyperparameter tuning is one of the essential steps to guarantee the convergence of machine learning models. We argue that intuition about the optimal choice of hyperparameters for stochastic gradient descent can be obtained by studying a neural network's phase diagram, in which each phase is characterised by distinctive dynamics of the singular values of weight matrices. Taking inspiration from disordered systems, we start from the observation that the loss landscape of a multilayer neural network with mean squared error can be interpreted as a disordered system in feature space, where the learnt features are mapped to soft spin degrees of freedom, the initial variance of the weight matrices is interpreted as the strength of the disorder, and temperature is given by the ratio of the learning rate and the batch size. As the model is trained, three phases can be identified, in which the dynamics of weight matrices is qualitatively different. Employing a Langevin equation for stochastic gradient descent, previously derived using Dyson Brownian motion, we demonstrate that the three dynamical regimes can be classified effectively, providing practical guidance for the choice of hyperparameters of the optimiser.
comment: 27 pages, many figures, references updated
♻ ☆ Generating Streamlining Constraints with Large Language Models
Streamlining constraints (or streamliners, for short) narrow the search space, enhancing the speed and feasibility of solving complex constraint satisfaction problems. Traditionally, streamliners were crafted manually or generated through systematically combined atomic constraints with high-effort offline testing. Our approach utilizes the creativity of Large Language Models (LLMs) to propose effective streamliners for problems specified in the MiniZinc constraint programming language and integrates feedback to the LLM with quick empirical tests for validation. Evaluated across seven diverse constraint satisfaction problems, our method achieves substantial runtime reductions. We compare the results to obfuscated and disguised variants of the problem to see whether the results depend on LLM memorization. We also analyze whether longer off-line runs improve the quality of streamliners and whether the LLM can propose good combinations of streamliners.
comment: 23 page; deeper analysis of streamliners and statistics about benchmark instances added
♻ ☆ Environmental Feature Engineering and Statistical Validation for ML-Based Path Loss Prediction
Wireless communications rely on path loss modeling, which is most effective when it includes the physical details of the propagation environment. Acquiring this data has historically been challenging, but geographic information systems data is becoming increasingly available with higher resolution and accuracy. Access to such details enables propagation models to more accurately predict coverage and account for interference in wireless deployments. Machine learning-based modeling can significantly support this effort, with feature based approaches allowing for accurate, efficient, and scalable propagation modeling. Building on previous work, we introduce an extended set of features that improves prediction accuracy while, most importantly, proving model generalization through rigorous statistical assessment and the use of test set holdouts.
comment: 5 pages, 3 figures, 5 tables, Accepted for publication to IEEE AWPL
♻ ☆ Context-Aware Multimodal Representation Learning for Spatio-Temporally Explicit Environmental Modelling
Earth observation (EO) foundation models have emerged as an effective approach to derive latent representations of the Earth system from various remote sensing sensors. These models produce embeddings that can be used as analysis-ready datasets, enabling the modelling of ecosystem dynamics without extensive sensor-specific preprocessing. However, existing models typically operate at fixed spatial or temporal scales, limiting their use for ecological analyses that require both fine spatial detail and high temporal fidelity. To overcome these limitations, we propose a representation learning framework that integrates different EO modalities into a unified feature space at high spatio-temporal resolution. We introduce the framework using Sentinel-1 and Sentinel-2 data as representative modalities. Our approach produces a latent space at native 10 m resolution and the temporal frequency of cloud-free Sentinel-2 acquisitions. Each sensor is first modeled independently to capture its sensor-specific characteristics. Their representations are then combined into a shared model. This two-stage design enables modality-specific optimisation and easy extension to new sensors, retaining pretrained encoders while retraining only fusion layers. This enables the model to capture complementary remote sensing data and to preserve coherence across space and time. Qualitative analyses reveal that the learned embeddings exhibit high spatial and semantic consistency across heterogeneous landscapes. Quantitative evaluation in modelling Gross Primary Production reveals that they encode ecologically meaningful patterns and retain sufficient temporal fidelity to support fine-scale analyses. Overall, the proposed framework provides a flexible, analysis-ready representation learning approach for environmental applications requiring diverse spatial and temporal resolutions.
comment: 10 pages (incliding 2 pages of references), 7 figures
♻ ☆ Systematic Evaluation of Time-Frequency Features for Binaural Sound Source Localization ICASSP 2026
This study presents a systematic evaluation of time-frequency feature design for binaural sound source localization (SSL), focusing on how feature selection influences model performance across diverse conditions. We investigate the performance of a convolutional neural network (CNN) model using various combinations of amplitude-based features (magnitude spectrogram, interaural level difference - ILD) and phase-based features (phase spectrogram, interaural phase difference - IPD). Evaluations on in-domain and out-of-domain data with mismatched head-related transfer functions (HRTFs) reveal that carefully chosen feature combinations often outperform increases in model complexity. While two-feature sets such as ILD + IPD are sufficient for in-domain SSL, generalization to diverse content requires richer inputs combining channel spectrograms with both ILD and IPD. Using the optimal feature sets, our low-complexity CNN model achieves competitive performance. Our findings underscore the importance of feature design in binaural SSL and provide practical guidance for both domain-specific and general-purpose localization.
comment: Submitted to ICASSP 2026
♻ ☆ Scalable Feature Learning on Huge Knowledge Graphs for Downstream Machine Learning
Many machine learning tasks can benefit from external knowledge. Large knowledge graphs store such knowledge, and embedding methods can be used to distill it into ready-to-use vector representations for downstream applications. For this purpose, current models have however two limitations: they are primarily optimized for link prediction, via local contrastive learning, and their application to the largest graphs requires significant engineering effort due to GPU memory limits. To address these, we introduce SEPAL: a Scalable Embedding Propagation ALgorithm for large knowledge graphs designed to produce high-quality embeddings for downstream tasks at scale. The key idea of SEPAL is to ensure global embedding consistency by optimizing embeddings only on a small core of entities, and then propagating them to the rest of the graph with message passing. We evaluate SEPAL on 7 large-scale knowledge graphs and 46 downstream machine learning tasks. Our results show that SEPAL significantly outperforms previous methods on downstream tasks. In addition, SEPAL scales up its base embedding model, enabling fitting huge knowledge graphs on commodity hardware.
comment: Code available at https://github.com/flefebv/sepal.git
♻ ☆ Achieving Instance-dependent Sample Complexity for Constrained Markov Decision Process
We consider the reinforcement learning problem for the constrained Markov decision process (CMDP), which plays a central role in satisfying safety or resource constraints in sequential learning and decision-making. In this problem, we are given finite resources and a MDP with unknown transition probabilities. At each stage, we take an action, collecting a reward and consuming some resources, all assumed to be unknown and need to be learned over time. In this work, we take the first step towards deriving optimal problem-dependent guarantees for the CMDP problems. We derive a logarithmic regret bound, which translates into a $O(\frac{1}{Δ\cdotε}\cdot\log^2(1/ε))$ sample complexity bound, with $Δ$ being a problem-dependent parameter, yet independent of $ε$. Our sample complexity bound improves upon the state-of-art $O(1/ε^2)$ sample complexity for CMDP problems established in the previous literature, in terms of the dependency on $ε$. To achieve this advance, we develop a new framework for analyzing CMDP problems. To be specific, our algorithm operates in the primal space and we resolve the primal LP for the CMDP problem at each period in an online manner, with adaptive remaining resource capacities. The key elements of our algorithm are: i) a characterization of the instance hardness via LP basis, ii) an eliminating procedure that identifies one optimal basis of the primal LP, and; iii) a resolving procedure that is adaptive to the remaining resources and sticks to the characterized optimal basis.
♻ ☆ MoM: Linear Sequence Modeling with Mixture-of-Memories
Linear sequence modeling methods, such as linear attention, state space modeling, and linear RNNs, offer significant efficiency improvements by reducing the complexity of training and inference. However, these methods typically compress the entire input sequence into a single fixed-size memory state, which leads to suboptimal performance on recall-intensive tasks. To address this limitation, we introduce a novel architecture called Mixture-of-Memories (MoM). MoM utilizes multiple independent memory states, with a router network directing input tokens to specific memory states. This approach greatly enhances the overall memory capacity while minimizing memory interference. MoM serves as a general framework that can be seamlessly combined with diverse memory update mechanisms across linear models. As a result, MoM performs exceptionally well on recall-intensive tasks, surpassing existing linear sequence modeling techniques. Despite incorporating multiple memory states, the computation of each memory state remains linear in complexity, allowing MoM to retain the linear-complexity advantage during training, while constant-complexity during inference. Our experimental results show that MoM outperforms current linear sequence models on downstream language tasks, particularly recall-intensive tasks, and even achieves performance comparable to Transformer models. The code is released at https://github.com/OpenSparseLLMs/MoM and is also released as a part of https://github.com/OpenSparseLLMs/Linear-MoE.
comment: Technical report, 18 pages
♻ ☆ The Energy Cost of Artificial Intelligence Lifecycle in Communication Networks
Artificial Intelligence (AI) is being incorporated in several optimization, scheduling, orchestration as well as in native communication network functions. This paradigm shift results in increased energy consumption, however, quantifying the end-to-end energy consumption of adding intelligence to communication systems remains an open challenge since conventional energy consumption metrics focus on either communication, computation infrastructure, or model development. To address this, we propose a new metric, the Energy Cost of AI Lifecycle (eCAL) of an AI model in a system. eCAL captures the energy consumption throughout the development, deployment and utilization of an AI-model providing intelligence in a communication network by (i) analyzing the complexity of data collection and manipulation in individual components and (ii) deriving overall and per-bit energy consumption. We show that as a trained AI model is used more frequently for inference, its energy cost per inference decreases, since the fixed training energy is amortized over a growing number of inferences. For a simple case study we show that eCAL for 100 inferences is 2.73 times higher than for 1000 inferences. Additionally, we have developed a modular and extendable open-source simulation tool to enable researchers, practitioners, and engineers to calculate the end-to-end energy cost with various configurations and across various systems, ensuring adaptability to diverse use cases.
comment: 16 pages, 13 figures
♻ ☆ WARP-LUTs - Walsh-Assisted Relaxation for Probabilistic Look Up Tables
Fast and efficient machine learning is of growing interest to the scientific community and has spurred significant research into novel model architectures and hardware-aware design. Recent hard? and software co-design approaches have demonstrated impressive results with entirely multiplication-free models. Differentiable Logic Gate Networks (DLGNs), for instance, provide a gradient-based framework for learning optimal combinations of low-level logic gates, setting state-of-the-art trade-offs between accuracy, resource usage, and latency. However, these models suffer from high computational cost during training and do not generalize well to logic blocks with more inputs. In this work, we introduce Walsh-Assisted Relaxation for Probabilistic Look-Up Tables (WARP-LUTs) - a novel gradient-based method that efficiently learns combinations of logic gates with substantially fewer trainable parameters. We demonstrate that WARP-LUTs achieve significantly faster convergence on CIFAR-10 compared to DLGNs, while maintaining comparable accuracy. Furthermore, our approach suggests potential for extension to higher-input logic blocks, motivating future research on extremely efficient deployment on modern FPGAs and its real-time science applications.
comment: Preprint. Under review
♻ ☆ FoilDiff: A Hybrid Transformer Backbone for Diffusion-based Modelling of 2D Airfoil Flow Fields
The accurate prediction of flow fields around airfoils is crucial for aerodynamic design and optimisation. Computational Fluid Dynamics (CFD) models are effective but computationally expensive, thus inspiring the development of surrogate models to enable quicker predictions. These surrogate models can be based on deep learning architectures, such as Convolutional Neural Networks (CNNs), Graph Neural Networks (GNNs), and Diffusion Models (DMs). Diffusion models have shown significant promise in predicting complex flow fields. In this work, we propose FoilDiff, a diffusion-based surrogate model with a hybrid-backbone denoising network. This hybrid design combines the power of convolutional feature extraction and transformer-based global attention to generate more adaptable and accurate representations of flow structures. FoilDiff takes advantage of Denoising Diffusion Implicit Model (DDIM) sampling to optimise the efficiency of the sampling process at no additional cost to model generalisation. We used encoded representations of Reynolds number, angle of attack, and airfoil geometry to define the input space for generalisation across a wide range of aerodynamic conditions. When evaluated against state-of-the-art models, FoilDiff shows significant performance improvements, with mean prediction errors reducing by up to 85\% on the same datasets. The results have demonstrated that FoilDiff can provide both more accurate predictions and better-calibrated predictive uncertainty than existing diffusion-based models.
♻ ☆ LLMDistill4Ads: Using Cross-Encoders to Distill from LLM Signals for Advertiser Keyphrase Recommendations
E-commerce sellers are advised to bid on keyphrases to boost their advertising campaigns. These keyphrases must be relevant to prevent irrelevant items from cluttering search systems and to maintain positive seller perception. It is vital that keyphrase suggestions align with seller, search and buyer judgments. Given the challenges in collecting negative feedback in these systems, LLMs have been used as a scalable proxy to human judgments. This paper presents an empirical study on a major ecommerce platform of a distillation framework involving an LLM teacher, a cross-encoder assistant and a bi-encoder Embedding Based Retrieval (EBR) student model, aimed at mitigating click-induced biases in keyphrase recommendations.
♻ ☆ Formal Verification of Local Robustness of a Classification Algorithm for a Spatial Use Case
Failures in satellite components are costly and challenging to address, often requiring significant human and material resources. Embedding a hybrid AI-based system for fault detection directly in the satellite can greatly reduce this burden by allowing earlier detection. However, such systems must operate with extremely high reliability. To ensure this level of dependability, we employ the formal verification tool Marabou to verify the local robustness of the neural network models used in the AI-based algorithm. This tool allows us to quantify how much a model's input can be perturbed before its output behavior becomes unstable, thereby improving trustworthiness with respect to its performance under uncertainty.
comment: In Proceedings FMAS 2025, arXiv:2511.13245
♻ ☆ SERL: Self-Examining Reinforcement Learning on Open-Domain
Reinforcement Learning (RL) has been shown to improve the capabilities of large language models (LLMs). However, applying RL to open-domain tasks faces two key challenges: (1) the inherent subjectivity of these tasks prevents the verifiable rewards as required by Reinforcement Learning with Verifiable Rewards (RLVR); (2) Reinforcement Learning from Human Feedback (RLHF) relies on external reward mechanisms. To overcome these limitations, we propose Self-Examining Reinforcement Learning (SERL), a novel self-improving framework where the LLM serves as both Actor and Judge. SERL introduces two synergistic reward mechanisms without any external signals. On the one hand, to improve the Actor's capability, we derive rewards from Copeland-style pairwise comparison judgments across a group of generated responses. On the other hand, a self-consistency reward that encourages coherent judgments is proposed to improve the Judge's reliability. This process refines the Judge's capability, which in turn provides a more robust reward for Actor. Experiments show that our method outperforms existing self-improvement training methods. SERL improves the LC win rate of Qwen3-8B on AlpacaEval 2 from 52.37% to 59.90%. To the best of our knowledge, our method achieves state-of-the-art performance among self-improving approaches. Furthermore, it achieves a performance comparable to significantly larger models like Qwen3-32B, demonstrating superior effectiveness and robustness on open-domain tasks.
♻ ☆ INC: An Indirect Neural Corrector for Auto-Regressive Hybrid PDE Solvers NeurIPS 2025
When simulating partial differential equations, hybrid solvers combine coarse numerical solvers with learned correctors. They promise accelerated simulations while adhering to physical constraints. However, as shown in our theoretical framework, directly applying learned corrections to solver outputs leads to significant autoregressive errors, which originate from amplified perturbations that accumulate during long-term rollouts, especially in chaotic regimes. To overcome this, we propose the Indirect Neural Corrector ($\mathrm{INC}$), which integrates learned corrections into the governing equations rather than applying direct state updates. Our key insight is that $\mathrm{INC}$ reduces the error amplification on the order of $Δt^{-1} + L$, where $Δt$ is the timestep and $L$ the Lipschitz constant. At the same time, our framework poses no architectural requirements and integrates seamlessly with arbitrary neural networks and solvers. We test $\mathrm{INC}$ in extensive benchmarks, covering numerous differentiable solvers, neural backbones, and test cases ranging from a 1D chaotic system to 3D turbulence. $\mathrm{INC}$ improves the long-term trajectory performance ($R^2$) by up to 158.7%, stabilizes blowups under aggressive coarsening, and for complex 3D turbulence cases yields speed-ups of several orders of magnitude. $\mathrm{INC}$ thus enables stable, efficient PDE emulation with formal error reduction, paving the way for faster scientific and engineering simulations with reliable physics guarantees. Our source code is available at https://github.com/tum-pbs/INC
comment: Accepted at NeurIPS 2025. 35 pages, 10 figures
♻ ☆ Physics-Informed Neural Networks for Real-Time Gas Crossover Prediction in PEM Electrolyzers: First Application with Multi-Membrane Validation
Green hydrogen production via polymer electrolyte membrane (PEM) water electrolysis is pivotal for energy transition, yet hydrogen crossover through membranes threatens safety and economic viability-approaching explosive limits (4 mol% H$_2$ in O$_2$) while reducing Faradaic efficiency by 2.5%. Current physics-based models require extensive calibration and computational resources that preclude real-time implementation, while purely data-driven approaches fail to extrapolate beyond training conditions-critical for dynamic electrolyzer operation. Here we present the first application of physics-informed neural networks (PINNs) for hydrogen crossover prediction, integrating mass conservation, Fick's diffusion law, and Henry's solubility law within a compact architecture (17,793 parameters). Validated across six membranes under industrially relevant conditions (0.05-5.0 A/cm$^2$, 1-200 bar, 25-85°C), our PINN achieves exceptional accuracy (R$^{2}$ = 99.84% $\pm$ 0.15\%, RMSE = 0.0932% $\pm$ 0.0438%) based on five-fold cross-validation, with sub-millisecond inference times suitable for real-time control. Remarkably, the model maintains R$^2$ > 86% when predicting crossover at pressures 2.5x beyond training range-substantially outperforming pure neural networks (R$^2$ = 43.4%). The hardware-agnostic deployment, from desktop CPUs to edge devices (Raspberry Pi 4), enables distributed safety monitoring essential for gigawatt-scale installations. By bridging physical rigor and computational efficiency, this work establishes a new paradigm for real-time electrolyzer monitoring, accelerating deployment of safe, efficient green hydrogen infrastructure crucial for net-zero emissions targets.
♻ ☆ Revisiting (Un)Fairness in Recourse by Minimizing Worst-Case Social Burden AAAI 2026
Machine learning based predictions are increasingly used in sensitive decision-making applications that directly affect our lives. This has led to extensive research into ensuring the fairness of classifiers. Beyond just fair classification, emerging legislation now mandates that when a classifier delivers a negative decision, it must also offer actionable steps an individual can take to reverse that outcome. This concept is known as algorithmic recourse. Nevertheless, many researchers have expressed concerns about the fairness guarantees within the recourse process itself. In this work, we provide a holistic theoretical characterization of unfairness in algorithmic recourse, formally linking fairness guarantees in recourse and classification, and highlighting limitations of the standard equal cost paradigm. We then introduce a novel fairness framework based on social burden, along with a practical algorithm (MISOB), broadly applicable under real-world conditions. Empirical results on real-world datasets show that MISOB reduces the social burden across all groups without compromising overall classifier accuracy.
comment: Accepted at AAAI 2026
♻ ☆ Graph Neural Networks Based Analog Circuit Link Prediction
Circuit link prediction, which identifies missing component connections from incomplete netlists, is crucial in analog circuit design automation. However, existing methods face three main challenges: 1) Insufficient use of topological patterns in circuit graphs reduces prediction accuracy; 2) Data scarcity due to the complexity of annotations hinders model generalization; 3) Limited adaptability to various netlist formats restricts model flexibility. We propose Graph Neural Networks Based Analog Circuit Link Prediction (GNN-ACLP), a graph neural networks (GNNs) based method featuring three innovations to tackle these challenges. First, we introduce the SEAL (learning from Subgraphs, Embeddings, and Attributes for Link prediction) framework and achieve port-level accuracy in circuit link prediction. Second, we propose Netlist Babel Fish, a netlist format conversion tool that leverages retrieval-augmented generation (RAG) with a large language model (LLM) to enhance the compatibility of netlist formats. Finally, we build a comprehensive dataset, SpiceNetlist, comprising 775 annotated circuits of 7 different types across 10 component classes. Experiments demonstrate accuracy improvements of 16.08% on SpiceNetlist, 11.38% on Image2Net, and 16.01% on Masala-CHAI compared to the baseline in intra-dataset evaluation, while maintaining accuracy from 92.05% to 99.07% in cross-dataset evaluation, demonstrating robust feature transfer capabilities. However, its linear computational complexity makes processing large-scale netlists challenging and requires future addressing.
comment: Code and data will be made available on request to the corresponding author
♻ ☆ Patent Language Model Pretraining with ModernBERT
Transformer-based language models such as BERT have become foundational in NLP, yet their performance degrades in specialized domains like patents, which contain long, technical, and legally structured text. Prior approaches to patent NLP have primarily relied on fine-tuning general-purpose models or domain-adapted variants pretrained with limited data. In this work, we pretrain 3 domain-specific masked language models for patents, using the ModernBERT architecture and a curated corpus of over 60 million patent records. Our approach incorporates architectural optimizations, including FlashAttention, rotary embeddings, and GLU feed-forward layers. We evaluate our models on four downstream patent classification tasks. Our model, ModernBERT-base-PT, consistently outperforms the general-purpose ModernBERT baseline on three out of four datasets and achieves competitive performance with a baseline PatentBERT. Additional experiments with ModernBERT-base-VX and Mosaic-BERT-large demonstrate that scaling the model size and customizing the tokenizer further enhance performance on selected tasks. Notably, all ModernBERT variants retain substantially faster inference over - 3x that of PatentBERT - underscoring their suitability for time-sensitive applications. These results underscore the benefits of domain-specific pretraining and architectural improvements for patent-focused NLP tasks.
comment: 7 pages, 5 figures, 4 tables
♻ ☆ Bayes optimal learning of attention-indexed models
We introduce the attention-indexed model (AIM), a theoretical framework for analyzing learning in deep attention layers. Inspired by multi-index models, AIM captures how token-level outputs emerge from layered bilinear interactions over high-dimensional embeddings. Unlike prior tractable attention models, AIM allows full-width key and query matrices, aligning more closely with practical transformers. Using tools from statistical mechanics and random matrix theory, we derive closed-form predictions for Bayes-optimal generalization error and identify sharp phase transitions as a function of sample complexity, model width, and sequence length. We propose a matching approximate message passing algorithm and show that gradient descent can reach optimal performance. AIM offers a solvable playground for understanding learning in self-attention layers, that are key components of modern architectures.
♻ ☆ Manifold Learning for Hyperspectral Images
Traditional feature extraction and projection techniques, such as Principal Component Analysis, struggle to adequately represent X-Ray Transmission (XRT) Multi-Energy (ME) images, limiting the performance of neural networks in decision-making processes. To address this issue, we propose a method that approximates the dataset topology by constructing adjacency graphs using the Uniform Manifold Approximation and Projection. This approach captures nonlinear correlations within the data, significantly improving the performance of machine learning algorithms, particularly in processing Hyperspectral Images (HSI) from X-ray transmission spectroscopy. This technique not only preserves the global structure of the data but also enhances feature separability, leading to more accurate and robust classification results.
♻ ☆ Efficient Reinforcement Learning for Zero-Shot Coordination in Evolving Games
Zero-shot coordination(ZSC), a key challenge in multi-agent game theory, has become a hot topic in reinforcement learning (RL) research recently, especially in complex evolving games. It focuses on the generalization ability of agents, requiring them to coordinate well with collaborators from a diverse, potentially evolving, pool of partners that are not seen before without any fine-tuning. Population-based training, which approximates such an evolving partner pool, has been proven to provide good zero-shot coordination performance; nevertheless, existing methods are limited by computational resources, mainly focusing on optimizing diversity in small populations while neglecting the potential performance gains from scaling population size. To address this issue, this paper proposes the Scalable Population Training (ScaPT), an efficient RL training framework comprising two key components: a meta-agent that efficiently realizes a population by selectively sharing parameters across agents, and a mutual information regularizer that guarantees population diversity. To empirically validate the effectiveness of ScaPT, this paper evaluates it along with representational frameworks in Hanabi cooperative game and confirms its superiority.
♻ ☆ Generalizable and Fast Surrogates: Model Predictive Control of Articulated Soft Robots using Physics-Informed Neural Networks
Soft robots can revolutionize several applications with high demands on dexterity and safety. When operating these systems, real-time estimation and control require fast and accurate models. However, prediction with first-principles (FP) models is slow, and learned black-box models have poor generalizability. Physics-informed machine learning offers excellent advantages here, but it is currently limited to simple, often simulated systems without considering changes after training. We propose physics-informed neural networks (PINNs) for articulated soft robots (ASRs) with a focus on data efficiency. The amount of expensive real-world training data is reduced to a minimum -- one dataset in one system domain. Two hours of data in different domains are used for a comparison against two gold-standard approaches: In contrast to a recurrent neural network, the PINN provides a high generalizability. The prediction speed of an accurate FP model is exceeded with the PINN by up to a factor of 467 at slightly reduced accuracy. This enables nonlinear model predictive control (MPC) of a pneumatic ASR. Accurate position tracking with the MPC running at 47 Hz is achieved in six dynamic experiments.
comment: Accepted for publication in IEEE Transactions on Robotics (T-RO) 2025
♻ ☆ Adaptive Stepsizing for Stochastic Gradient Langevin Dynamics in Bayesian Neural Networks
Bayesian neural networks (BNNs) require scalable sampling algorithms to approximate posterior distributions over parameters. Existing stochastic gradient Markov Chain Monte Carlo (SGMCMC) methods are highly sensitive to the choice of stepsize and adaptive variants such as pSGLD typically fail to sample the correct invariant measure without addition of a costly divergence correction term. In this work, we build on the recently proposed `SamAdams' framework for timestep adaptation (Leimkuhler, Lohmann, and Whalley 2025), introducing an adaptive scheme: SA-SGLD, which employs time rescaling to modulate the stepsize according to a monitored quantity (typically the local gradient norm). SA-SGLD can automatically shrink stepsizes in regions of high curvature and expand them in flatter regions, improving both stability and mixing without introducing bias. We show that our method can achieve more accurate posterior sampling than SGLD on high-curvature 2D toy examples and in image classification with BNNs using sharp priors.
♻ ☆ Regularized Schrödinger Bridge: Alleviating Distortion and Exposure Bias in Solving Inverse Problems
Diffusion models serve as a powerful generative framework for solving inverse problems. However, they still face two key challenges: 1) the distortion-perception tradeoff, where improving perceptual quality often degrades reconstruction fidelity, and 2) the exposure bias problem, where the training-inference input mismatch leads to prediction error accumulation and reduced reconstruction quality. In this work, we propose the Regularized Schrödinger Bridge (RSB), an adaptation of Schrödinger Bridge tailored for inverse problems that addresses the above limitations. RSB employs a novel regularized training strategy that perturbs both the input states and targets, effectively mitigating exposure bias by exposing the model to simulated prediction errors and also alleviating distortion by well-designed interpolation via the posterior mean. Extensive experiments on two typical inverse problems for speech enhancement demonstrate that RSB outperforms state-of-the-art methods, significantly improving distortion metrics and effectively reducing exposure bias.
♻ ☆ Learning few-step posterior samplers by unfolding and distillation of diffusion models
Diffusion models (DMs) have emerged as powerful image priors in Bayesian computational imaging. Two primary strategies have been proposed for leveraging DMs in this context: Plug-and-Play methods, which are zero-shot and highly flexible but rely on approximations; and specialized conditional DMs, which achieve higher accuracy and faster inference for specific tasks through supervised training. In this work, we introduce a novel framework that integrates deep unfolding and model distillation to transform a DM image prior into a few-step conditional model for posterior sampling. A central innovation of our approach is the unfolding of a Markov chain Monte Carlo (MCMC) algorithm - specifically, the recently proposed LATINO Langevin sampler (Spagnoletti et al., 2025) - representing the first known instance of deep unfolding applied to a Monte Carlo sampling scheme. We demonstrate our proposed unfolded and distilled samplers through extensive experiments and comparisons with the state of the art, where they achieve excellent accuracy and computational efficiency, while retaining the flexibility to adapt to variations in the forward model at inference time.
comment: 34 pages, 18 figures, 11 tables
♻ ☆ Exploring Variance Reduction in Importance Sampling for Efficient DNN Training
Importance sampling is widely used to improve the efficiency of deep neural network (DNN) training by reducing the variance of gradient estimators. However, efficiently assessing the variance reduction relative to uniform sampling remains challenging due to computational overhead. This paper proposes a method for estimating variance reduction during DNN training using only minibatches sampled under importance sampling. By leveraging the proposed method, the paper also proposes an effective minibatch size to enable automatic learning rate adjustment. An absolute metric to quantify the efficiency of importance sampling is also introduced as well as an algorithm for real-time estimation of importance scores based on moving gradient statistics. Theoretical analysis and experiments on benchmark datasets demonstrated that the proposed algorithm consistently reduces variance, improves training efficiency, and enhances model accuracy compared with current importance-sampling approaches while maintaining minimal computational overhead.
comment: 29 pages
♻ ☆ Continuum Dropout for Neural Differential Equations
Neural Differential Equations (NDEs) excel at modeling continuous-time dynamics, effectively handling challenges such as irregular observations, missing values, and noise. Despite their advantages, NDEs face a fundamental challenge in adopting dropout, a cornerstone of deep learning regularization, making them susceptible to overfitting. To address this research gap, we introduce Continuum Dropout, a universally applicable regularization technique for NDEs built upon the theory of alternating renewal processes. Continuum Dropout formulates the on-off mechanism of dropout as a stochastic process that alternates between active (evolution) and inactive (paused) states in continuous time. This provides a principled approach to prevent overfitting and enhance the generalization capabilities of NDEs. Moreover, Continuum Dropout offers a structured framework to quantify predictive uncertainty via Monte Carlo sampling at test time. Through extensive experiments, we demonstrate that Continuum Dropout outperforms existing regularization methods for NDEs, achieving superior performance on various time series and image classification tasks. It also yields better-calibrated and more trustworthy probability estimates, highlighting its effectiveness for uncertainty-aware modeling.
♻ ☆ A Bayesian Model for Multi-stage Censoring ML4H 2025
Many sequential decision settings in healthcare feature funnel structures characterized by a series of stages, such as screenings or evaluations, where the number of patients who advance to each stage progressively decreases and decisions become increasingly costly. For example, an oncologist may first conduct a breast exam, followed by a mammogram for patients with concerning exams, followed by a biopsy for patients with concerning mammograms. A key challenge is that the ground truth outcome, such as the biopsy result, is only revealed at the end of this funnel. The selective censoring of the ground truth can introduce statistical biases in risk estimation, especially in underserved patient groups, whose outcomes are more frequently censored. We develop a Bayesian model for funnel decision structures, drawing from prior work on selective labels and censoring. We first show in synthetic settings that our model is able to recover the true parameters and predict outcomes for censored patients more accurately than baselines. We then apply our model to a dataset of emergency department visits, where in-hospital mortality is observed only for those who are admitted to either the hospital or ICU. We find that there are gender-based differences in hospital and ICU admissions. In particular, our model estimates that the mortality risk threshold to admit women to the ICU is higher for women (5.1%) than for men (4.5%).
comment: Proceedings of ML4H 2025
♻ ☆ Iterative Explainability for Weakly Supervised Segmentation in Medical PE Detection
Pulmonary Embolism (PE) are a leading cause of cardiovascular death. Computed tomographic pulmonary angiography (CTPA) is the gold standard for PE diagnosis, with growing interest in AI-based diagnostic assistance. However, these algorithms are limited by scarce fine-grained annotations of thromboembolic burden. We address this challenge with iExplain, a weakly supervised learning algorithm that transforms coarse image-level annotations into detailed pixel-level PE masks through iterative model explainability. Our approach generates soft segmentation maps used to mask detected regions, enabling the process to repeat and discover additional embolisms that would be missed in a single pass. This iterative refinement effectively captures complete PE regions and detects multiple distinct embolisms. Models trained on these automatically generated annotations achieve excellent PE detection performance, with significant improvements at each iteration. We demonstrate iExplain's effectiveness on the RSPECT augmented dataset, achieving results comparable to strongly supervised methods while outperforming existing weakly supervised methods.
comment: Paper accepted at MICAD2025 Previous title: "Label up: Learning pulmonary embolism segmentation from image level annotation through model explainability"
♻ ☆ Virtual Human Generative Model: Masked Modeling Approach for Learning Human Characteristics
Virtual Human Generative Model (VHGM) is a generative model that approximates the joint probability over more than 2000 human healthcare-related attributes. This paper presents the core algorithm, VHGM-MAE, a masked autoencoder (MAE) tailored for handling high-dimensional, sparse healthcare data. VHGM-MAE tackles four key technical challenges: (1) heterogeneity of healthcare data types, (2) probability distribution modeling, (3) systematic missingness in the training dataset arising from multiple data sources, and (4) the high-dimensional, small-$n$-large-$p$ problem. To address these challenges, VHGM-MAE employs a likelihood-based approach to model distributions with heterogeneous types, a transformer-based MAE to capture complex dependencies among observed and missing attributes, and a novel training scheme that effectively leverages available samples with diverse missingness patterns to mitigate the small-n-large-p problem. Experimental results demonstrate that VHGM-MAE outperforms existing methods in both missing value imputation and synthetic data generation.
♻ ☆ How does My Model Fail? Automatic Identification and Interpretation of Physical Plausibility Failure Modes with Matryoshka Transcoders
Although recent generative models are remarkably capable of producing instruction-following and realistic outputs, they remain prone to notable physical plausibility failures. Though critical in applications, these physical plausibility errors often escape detection by existing evaluation methods. Furthermore, no framework exists for automatically identifying and interpreting specific physical error patterns in natural language, preventing targeted model improvements. We introduce Matryoshka Transcoders, a novel framework for the automatic discovery and interpretation of physical plausibility features in generative models. Our approach extends the Matryoshka representation learning paradigm to transcoder architectures, enabling hierarchical sparse feature learning at multiple granularity levels. By training on intermediate representations from a physical plausibility classifier and leveraging large multimodal models for interpretation, our method identifies diverse physics-related failure modes without manual feature engineering, achieving superior feature relevance and feature accuracy compared to existing approaches. We utilize the discovered visual patterns to establish a benchmark for evaluating physical plausibility in generative models. Our analysis of eight state-of-the-art generative models provides valuable insights into how these models fail to follow physical constraints, paving the way for further model improvements.
♻ ☆ Non-Uniform Class-Wise Coreset Selection for Vision Model Fine-tuning
Coreset selection aims to identify a small yet highly informative subset of data, thereby enabling more efficient model training while reducing storage overhead. Recently, this capability has been leveraged to tackle the challenges of fine-tuning large foundation models, offering a direct pathway to their efficient and practical deployment. However, most existing methods are class-agnostic, causing them to overlook significant difficulty variations among classes. This leads them to disproportionately prune samples from either overly easy or hard classes, resulting in a suboptimal allocation of the data budget that ultimately degrades the final coreset performance. To address this limitation, we propose Non-Uniform Class-Wise Coreset Selection (NUCS), a novel framework that both integrates class-level and sample-level difficulty. We propose a robust metric for global class difficulty, quantified as the winsorized average of per-sample difficulty scores. Guided by this metric, our method performs a theoretically-grounded, non-uniform allocation of data selection budgets inter-class, while adaptively selecting samples intra-class with optimal difficulty ranges. Extensive experiments on a wide range of visual classification tasks demonstrate that NUCS consistently outperforms state-of-the-art methods across 10 diverse datasets and pre-trained models, achieving both superior accuracy and computational efficiency, highlighting the promise of non-uniform class-wise selection strategy for advancing the efficient fine-tuning of large foundation models.
comment: 13pages
♻ ☆ Rethinking Saliency Maps: A Cognitive Human Aligned Taxonomy and Evaluation Framework for Explanations
Saliency maps are widely used for visual explanations in deep learning, but a fundamental lack of consensus persists regarding their intended purpose and alignment with diverse user queries. This ambiguity hinders the effective evaluation and practical utility of explanation methods. We address this gap by introducing the Reference-Frame $\times$ Granularity (RFxG) taxonomy, a principled conceptual framework that organizes saliency explanations along two essential axes:Reference-Frame: Distinguishing between pointwise ("Why this prediction?") and contrastive ("Why this and not an alternative?") explanations. Granularity: Ranging from fine-grained class-level (e.g., "Why Husky?") to coarse-grained group-level (e.g., "Why Dog?") interpretations. Using the RFxG lens, we demonstrate critical limitations in existing evaluation metrics, which overwhelmingly prioritize pointwise faithfulness while neglecting contrastive reasoning and semantic granularity. To systematically assess explanation quality across both RFxG dimensions, we propose four novel faithfulness metrics. Our comprehensive evaluation framework applies these metrics to ten state-of-the-art saliency methods, four model architectures, and three datasets. By advocating a shift toward user-intent-driven evaluation, our work provides both the conceptual foundation and the practical tools necessary to develop visual explanations that are not only faithful to the underlying model behavior but are also meaningfully aligned with the complexity of human understanding and inquiry.
♻ ☆ MusRec: Zero-Shot Text-to-Music Editing via Rectified Flow and Diffusion Transformers
Music editing has emerged as an important and practical area of artificial intelligence, with applications ranging from video game and film music production to personalizing existing tracks according to user preferences. However, existing models face significant limitations, such as being restricted to editing synthesized music generated by their own models, requiring highly precise prompts, or necessitating task-specific retraining, thus lacking true zero-shot capability. leveraging recent advances in rectified flow and diffusion transformers, we introduce MusRec, a zero-shot text-to-music editing model capable of performing diverse editing tasks on real-world music efficiently and effectively. Experimental results demonstrate that our approach outperforms existing methods in preserving musical content, structural consistency, and editing fidelity, establishing a strong foundation for controllable music editing in real-world scenarios.
comment: This work has been submitted to the IEEE for possible publication
♻ ☆ LoopTool: Closing the Data-Training Loop for Robust LLM Tool Calls
Augmenting Large Language Models (LLMs) with external tools enables them to execute complex, multi-step tasks. However, tool learning is hampered by the static synthetic data pipelines where data generation and model training are executed as two separate, non-interactive processes. This approach fails to adaptively focus on a model's specific weaknesses and allows noisy labels to persist, degrading training efficiency. We introduce LoopTool, a fully automated, model-aware data evolution framework that closes this loop by tightly integrating data synthesis and model training. LoopTool iteratively refines both the data and the model through three synergistic modules: (1) Greedy Capability Probing (GCP) diagnoses the model's mastered and failed capabilities; (2) Judgement-Guided Label Verification (JGLV) uses an open-source judge model to find and correct annotation errors, progressively purifying the dataset; and (3) Error-Driven Data Expansion (EDDE) generates new, challenging samples based on identified failures. This closed-loop process operates within a cost-effective, open-source ecosystem, eliminating dependence on expensive closed-source APIs. Experiments show that our 8B model trained with LoopTool significantly surpasses its 32B data generator and achieves new state-of-the-art results on the BFCL-v3 and ACEBench benchmarks for its scale. Our work demonstrates that closed-loop, self-refining data pipelines can dramatically enhance the tool-use capabilities of LLMs.
comment: The code is accessible at https://github.com/Rednote-DeepExperience/LoopTool. The LoopTool-8B is accessible at https://huggingface.co/zhuiguang-ning/LoopTool-8B
♻ ☆ DINO-Detect: A Simple yet Effective Framework for Blur-Robust AI-Generated Image Detection
With growing concerns over image authenticity and digital safety, the field of AI-generated image (AIGI) detection has progressed rapidly. Yet, most AIGI detectors still struggle under real-world degradations, particularly motion blur, which frequently occurs in handheld photography, fast motion, and compressed video. Such blur distorts fine textures and suppresses high-frequency artifacts, causing severe performance drops in real-world settings. We address this limitation with a blur-robust AIGI detection framework based on teacher-student knowledge distillation. A high-capacity teacher (DINOv3), trained on clean (i.e., sharp) images, provides stable and semantically rich representations that serve as a reference for learning. By freezing the teacher to maintain its generalization ability, we distill its feature and logit responses from sharp images to a student trained on blurred counterparts, enabling the student to produce consistent representations under motion degradation. Extensive experiments benchmarks show that our method achieves state-of-the-art performance under both motion-blurred and clean conditions, demonstrating improved generalization and real-world applicability. Source codes will be released at: https://github.com/JiaLiangShen/Dino-Detect-for-blur-robust-AIGC-Detection.
comment: 12 pages, 5 figures
♻ ☆ MicroEvoEval: A Systematic Evaluation Framework for Image-Based Microstructure Evolution Prediction AAAI 2026
Simulating microstructure evolution (MicroEvo) is vital for materials design but demands high numerical accuracy, efficiency, and physical fidelity. Although recent studies on deep learning (DL) offer a promising alternative to traditional solvers, the field lacks standardized benchmarks. Existing studies are flawed due to a lack of comparing specialized MicroEvo DL models with state-of-the-art spatio-temporal architectures, an overemphasis on numerical accuracy over physical fidelity, and a failure to analyze error propagation over time. To address these gaps, we introduce MicroEvoEval, the first comprehensive benchmark for image-based microstructure evolution prediction. We evaluate 14 models, encompassing both domain-specific and general-purpose architectures, across four representative MicroEvo tasks with datasets specifically structured for both short- and long-term assessment. Our multi-faceted evaluation framework goes beyond numerical accuracy and computational cost, incorporating a curated set of structure-preserving metrics to assess physical fidelity. Our extensive evaluations yield several key insights. Notably, we find that modern architectures (e.g., VMamba), not only achieve superior long-term stability and physical fidelity but also operate with an order-of-magnitude greater computational efficiency. The results highlight the necessity of holistic evaluation and identify these modern architectures as a highly promising direction for developing efficient and reliable surrogate models in data-driven materials science.
comment: Accepted by AAAI 2026
♻ ☆ EvoLM: In Search of Lost Language Model Training Dynamics NeurIPS 2025
Modern language model (LM) training has been divided into multiple stages, making it difficult for downstream developers to evaluate the impact of design choices made at each stage. We present EvoLM, a model suite that enables systematic and transparent analysis of LMs' training dynamics across pre-training, continued pre-training, supervised fine-tuning, and reinforcement learning. We train over 100 LMs with 1B and 4B parameters from scratch, and evaluate both upstream (language modeling) and downstream (problem-solving) capabilities, including considerations of both in-domain and out-of-domain generalization. Key insights highlight the diminishing returns from excessive pre-training and post-training, the importance and practices of mitigating forgetting during domain-specific continued pre-training, the crucial role of continued pre-training in bridging pre-training and post-training phases, and various intricate trade-offs when configuring supervised fine-tuning and reinforcement learning. To facilitate open research and reproducibility, we release all pre-trained and post-trained models, training datasets for all stages, and our entire training and evaluation pipeline.
comment: NeurIPS 2025 (Oral)
♻ ☆ Benchmark on Drug Target Interaction Modeling from a Drug Structure Perspective
The prediction modeling of drug-target interactions is crucial to drug discovery and design, which has seen rapid advancements owing to deep learning technologies. Recently developed methods, such as those based on graph neural networks (GNNs) and Transformers, demonstrate exceptional performance across various datasets by effectively extracting structural information. However, the benchmarking of these novel methods often varies significantly in terms of hyperparameter settings and datasets, which limits algorithmic progress. In view of these, we conducted a comprehensive survey and benchmark for drug-target interaction modeling from a structural perspective via integrating tens of explicit (i.e., GNN-based) and implicit (i.e., Transformer-based) structure learning algorithms. We conducted a macroscopical comparison between these two classes of encoding strategies as well as the different featurization techniques that inform molecules' chemical and physical properties. We then carry out the microscopical comparison between all the integrated models across the six datasets via comprehensively benchmarking their effectiveness and efficiency. To ensure fairness, we investigate model performance under individually optimized configuration. Remarkably, the summarized insights from the benchmark studies lead to the design of model combos. We demonstrate that our combos can achieve new state-of-the-art performance on various datasets associated with cost-effective memory and computation.
♻ ☆ Rethinking Token-wise Feature Caching: Accelerating Diffusion Transformers with Dual Feature Caching
Diffusion Transformers (DiT) have become the dominant methods in image and video generation yet still suffer substantial computational costs. As an effective approach for DiT acceleration, feature caching methods are designed to cache the features of DiT in previous timesteps and reuse them in the next timesteps, allowing us to skip the computation in the next timesteps. Among them, token-wise feature caching has been introduced to perform different caching ratios for different tokens in DiTs, aiming to skip the computation for unimportant tokens while still computing the important ones. In this paper, we propose to carefully check the effectiveness in token-wise feature caching with the following two questions: (1) Is it really necessary to compute the so-called "important" tokens in each step? (2) Are so-called important tokens really important? Surprisingly, this paper gives some counter-intuition answers, demonstrating that consistently computing the selected ``important tokens'' in all steps is not necessary. The selection of the so-called ``important tokens'' is often ineffective, and even sometimes shows inferior performance than random selection. Based on these observations, this paper introduces dual feature caching referred to as DuCa, which performs aggressive caching strategy and conservative caching strategy iteratively and selects the tokens for computing randomly. Extensive experimental results demonstrate the effectiveness of our method in DiT, PixArt, FLUX, and OpenSora, demonstrating significant improvements than the previous token-wise feature caching.
♻ ☆ TooBadRL: Trigger Optimization to Boost Effectiveness of Backdoor Attacks on Deep Reinforcement Learning
Deep reinforcement learning (DRL) has achieved remarkable success in a wide range of sequential decision-making applications, including robotics, healthcare, smart grids, and finance. Recent studies reveal that adversaries can implant backdoors into DRL agents during the training phase. These backdoors can later be activated by specific triggers during deployment, compelling the agent to execute targeted actions and potentially leading to severe consequences, such as drone crashes or vehicle collisions. However, existing backdoor attacks utilize simplistic and heuristic trigger configurations, overlooking the critical impact of trigger design on attack effectiveness. To address this gap, we introduce TooBadRL, the first framework to systematically optimize DRL backdoor triggers across three critical aspects: injection timing, trigger dimension, and manipulation magnitude. Specifically, we first introduce a performance-aware adaptive freezing mechanism to determine the injection timing during training. Then, we formulate trigger selection as an influence attribution problem and apply Shapley value analysis to identify the most influential trigger dimension for injection. Furthermore, we propose an adversarial input synthesis method to optimize the manipulation magnitude under environmental constraints. Extensive evaluations on three DRL algorithms and nine benchmark tasks demonstrate that TooBadRL outperforms five baseline methods in terms of attack success rate while only slightly affecting normal task performance. We further evaluate potential defense strategies from detection and mitigation perspectives. We open-source our code to facilitate reproducibility and further research.
♻ ☆ Contextual Learning for Anomaly Detection in Tabular Data
Anomaly detection is critical in domains such as cybersecurity and finance, especially when working with large-scale tabular data. Yet, unsupervised anomaly detection-where no labeled anomalies are available-remains challenging because traditional deep learning methods model a single global distribution, assuming all samples follow the same behavior. In contrast, real-world data often contain heterogeneous contexts (e.g., different users, accounts, or devices), where globally rare events may be normal within specific conditions. We introduce a contextual learning framework that explicitly models how normal behavior varies across contexts by learning conditional data distributions $P(\mathbf{Y} \mid \mathbf{C})$ rather than a global joint distribution $P(\mathbf{X})$. The framework encompasses (1) a probabilistic formulation for context-conditioned learning, (2) a principled bilevel optimization strategy for automatically selecting informative context features using early validation loss, and (3) theoretical grounding through variance decomposition and discriminative learning principles. We instantiate this framework using a novel conditional Wasserstein autoencoder as a simple yet effective model for tabular anomaly detection. Extensive experiments across eight benchmark datasets demonstrate that contextual learning consistently outperforms global approaches-even when the optimal context is not intuitively obvious-establishing a new foundation for anomaly detection in heterogeneous tabular data.
comment: Submitted to TMLR. 26 pages, 4 figures, 8 tables, 1 algorithm, 8 datasets, contextual anomaly detection framework for tabular data
♻ ☆ An Analytical Characterization of Sloppiness in Neural Networks: Insights from Linear Models
Recent experiments have shown that training trajectories of multiple deep neural networks with different architectures, optimization algorithms, hyper-parameter settings, and regularization methods evolve on a remarkably low-dimensional "hyper-ribbon-like" manifold in the space of probability distributions. Inspired by the similarities in the training trajectories of deep networks and linear networks, we analytically characterize this phenomenon for the latter. We show, using tools in dynamical systems theory, that the geometry of this low-dimensional manifold is controlled by (i) the decay rate of the eigenvalues of the input correlation matrix of the training data, (ii) the relative scale of the ground-truth output to the weights at the beginning of training, and (iii) the number of steps of gradient descent. By analytically computing and bounding the contributions of these quantities, we characterize phase boundaries of the region where hyper-ribbons are to be expected. We also extend our analysis to kernel machines and linear models that are trained with stochastic gradient descent.
♻ ☆ To Align or Not to Align: Strategic Multimodal Representation Alignment for Optimal Performance
Multimodal learning often relies on aligning representations across modalities to enable effective information integration, an approach traditionally assumed to be universally beneficial. However, prior research has primarily taken an observational approach, examining naturally occurring alignment in multimodal data and exploring its correlation with model performance, without systematically studying the direct effects of explicitly enforced alignment between representations of different modalities. In this work, we investigate how explicit alignment influences both model performance and representation alignment under different modality-specific information structures. Specifically, we introduce a controllable contrastive learning module that enables precise manipulation of alignment strength during training, allowing us to explore when explicit alignment improves or hinders performance. Our results on synthetic and real datasets under different data characteristics show that the impact of explicit alignment on the performance of unimodal models is related to the characteristics of the data: the optimal level of alignment depends on the amount of redundancy between the different modalities. We identify an optimal alignment strength that balances modality-specific signals and shared redundancy in the mixed information distributions. This work provides practical guidance on when and how explicit alignment should be applied to achieve optimal unimodal encoder performance.
♻ ☆ Fairness-Aware Graph Representation Learning with Limited Demographic Information
Ensuring fairness in Graph Neural Networks is fundamental to promoting trustworthy and socially responsible machine learning systems. In response, numerous fair graph learning methods have been proposed in recent years. However, most of them assume full access to demographic information, a requirement rarely met in practice due to privacy, legal, or regulatory restrictions. To this end, this paper introduces a novel fair graph learning framework that mitigates bias in graph learning under limited demographic information. Specifically, we propose a mechanism guided by partial demographic data to generate proxies for demographic information and design a strategy that enforces consistent node embeddings across demographic groups. In addition, we develop an adaptive confidence strategy that dynamically adjusts each node's contribution to fairness and utility based on prediction confidence. We further provide theoretical analysis demonstrating that our framework, FairGLite, achieves provable upper bounds on group fairness metrics, offering formal guarantees for bias mitigation. Through extensive experiments on multiple datasets and fair graph learning frameworks, we demonstrate the framework's effectiveness in both mitigating bias and maintaining model utility.
♻ ☆ FairDICE: Fairness-Driven Offline Multi-Objective Reinforcement Learning
Multi-objective reinforcement learning (MORL) aims to optimize policies in the presence of conflicting objectives, where linear scalarization is commonly used to reduce vector-valued returns into scalar signals. While effective for certain preferences, this approach cannot capture fairness-oriented goals such as Nash social welfare or max-min fairness, which require nonlinear and non-additive trade-offs. Although several online algorithms have been proposed for specific fairness objectives, a unified approach for optimizing nonlinear welfare criteria in the offline setting-where learning must proceed from a fixed dataset-remains unexplored. In this work, we present FairDICE, the first offline MORL framework that directly optimizes nonlinear welfare objective. FairDICE leverages distribution correction estimation to jointly account for welfare maximization and distributional regularization, enabling stable and sample-efficient learning without requiring explicit preference weights or exhaustive weight search. Across multiple offline benchmarks, FairDICE demonstrates strong fairness-aware performance compared to existing baselines.
comment: Multi-objective Reinforcement Learning
♻ ☆ FastDINOv2: Frequency Based Curriculum Learning Improves Robustness and Training Speed NeurIPS 2025
Large-scale vision foundation models such as DINOv2 boast impressive performances by leveraging massive architectures and training datasets. But numerous scenarios require practitioners to reproduce those pre-training solutions, such as on private data, new modalities, or simply for scientific questioning--which is currently extremely demanding computation-wise. We thus propose a novel pre-training strategy for DINOv2 that simultaneously accelerates convergence--and strengthens robustness to common corruptions as a by-product. Our approach involves a frequency filtering curriculum--low-frequency being seen first--and the Gaussian noise patching augmentation. Applied to a ViT-B/16 backbone trained on ImageNet-1K, while pre-training time and FLOPs are reduced by 1.6x and 2.25x, our method still achieves matching robustness in corruption benchmarks (ImageNet-C) and maintains competitive linear probing performance compared with baseline. This dual benefit of efficiency and robustness makes large-scale self-supervised foundation modeling more attainable, while opening the door to novel exploration around data curriculum and augmentation as means to improve self-supervised learning models robustness. The code is available at https://github.com/KevinZ0217/fast_dinov2
comment: Accepted by 39th Conference on Neural Information Processing Systems (NeurIPS 2025)
♻ ☆ 1-Lipschitz Network Initialization for Certifiably Robust Classification Applications: A Decay Problem
This paper discusses the weight parametrization of two standard 1-Lipschitz network architectures, the Almost-Orthogonal-Layers (AOL) and the SDP-based Lipschitz Layers (SLL). It examines their impact on initialization for deep 1-Lipschitz feedforward networks, and discusses underlying issues surrounding this initialization. These networks are mainly used in certifiably robust classification applications to combat adversarial attacks by limiting the impact of perturbations on the classification output. Exact and upper bounds for the parameterized weight variance were calculated assuming a standard Normal distribution initialization; additionally, an upper bound was computed assuming a Generalized Normal Distribution, generalizing the proof for Uniform, Laplace, and Normal distribution weight initializations. It is demonstrated that the weight variance holds no bearing on the output variance distribution and that only the dimension of the weight matrices matters. Additionally, this paper demonstrates that the weight initialization always causes deep 1-Lipschitz networks to decay to zero.
comment: 15 pages, 11 figures; added additional experimental results and formatted to Elsevier format
Computer Vision and Pattern Recognition
☆ ARC Is a Vision Problem!
The Abstraction and Reasoning Corpus (ARC) is designed to promote research on abstract reasoning, a fundamental aspect of human intelligence. Common approaches to ARC treat it as a language-oriented problem, addressed by large language models (LLMs) or recurrent reasoning models. However, although the puzzle-like tasks in ARC are inherently visual, existing research has rarely approached the problem from a vision-centric perspective. In this work, we formulate ARC within a vision paradigm, framing it as an image-to-image translation problem. To incorporate visual priors, we represent the inputs on a "canvas" that can be processed like natural images. It is then natural for us to apply standard vision architectures, such as a vanilla Vision Transformer (ViT), to perform image-to-image mapping. Our model is trained from scratch solely on ARC data and generalizes to unseen tasks through test-time training. Our framework, termed Vision ARC (VARC), achieves 60.4% accuracy on the ARC-1 benchmark, substantially outperforming existing methods that are also trained from scratch. Our results are competitive with those of leading LLMs and close the gap to average human performance.
comment: Technical Report. Project webpage: https://github.com/lillian039/VARC
☆ UniGen-1.5: Enhancing Image Generation and Editing through Reward Unification in Reinforcement Learning
We present UniGen-1.5, a unified multimodal large language model (MLLM) for advanced image understanding, generation and editing. Building upon UniGen, we comprehensively enhance the model architecture and training pipeline to strengthen the image understanding and generation capabilities while unlocking strong image editing ability. Especially, we propose a unified Reinforcement Learning (RL) strategy that improves both image generation and image editing jointly via shared reward models. To further enhance image editing performance, we propose a light Edit Instruction Alignment stage that significantly improves the editing instruction comprehension that is essential for the success of the RL training. Experimental results show that UniGen-1.5 demonstrates competitive understanding and generation performance. Specifically, UniGen-1.5 achieves 0.89 and 4.31 overall scores on GenEval and ImgEdit that surpass the state-of-the-art models such as BAGEL and reaching performance comparable to proprietary models such as GPT-Image-1.
☆ Co-Me: Confidence-Guided Token Merging for Visual Geometric Transformers
We propose Confidence-Guided Token Merging (Co-Me), an acceleration mechanism for visual geometric transformers without retraining or finetuning the base model. Co-Me distilled a light-weight confidence predictor to rank tokens by uncertainty and selectively merge low-confidence ones, effectively reducing computation while maintaining spatial coverage. Compared to similarity-based merging or pruning, the confidence signal in Co-Me reliably indicates regions emphasized by the transformer, enabling substantial acceleration without degrading performance. Co-Me applies seamlessly to various multi-view and streaming visual geometric transformers, achieving speedups that scale with sequence length. When applied to VGGT and MapAnything, Co-Me achieves up to $11.3\times$ and $7.2\times$ speedup, making visual geometric transformers practical for real-time 3D perception and reconstruction.
☆ Vision Large Language Models Are Good Noise Handlers in Engagement Analysis
Engagement recognition in video datasets, unlike traditional image classification tasks, is particularly challenged by subjective labels and noise limiting model performance. To overcome the challenges of subjective and noisy engagement labels, we propose a framework leveraging Vision Large Language Models (VLMs) to refine annotations and guide the training process. Our framework uses a questionnaire to extract behavioral cues and split data into high- and low-reliability subsets. We also introduce a training strategy combining curriculum learning with soft label refinement, gradually incorporating ambiguous samples while adjusting supervision to reflect uncertainty. We demonstrate that classical computer vision models trained on refined high-reliability subsets and enhanced with our curriculum strategy show improvements, highlighting benefits of addressing label subjectivity with VLMs. This method surpasses prior state of the art across engagement benchmarks such as EngageNet (three of six feature settings, maximum improvement of +1.21%), and DREAMS / PAFE with F1 gains of +0.22 / +0.06.
☆ A Neural Field-Based Approach for View Computation & Data Exploration in 3D Urban Environments
Despite the growing availability of 3D urban datasets, extracting insights remains challenging due to computational bottlenecks and the complexity of interacting with data. In fact, the intricate geometry of 3D urban environments results in high degrees of occlusion and requires extensive manual viewpoint adjustments that make large-scale exploration inefficient. To address this, we propose a view-based approach for 3D data exploration, where a vector field encodes views from the environment. To support this approach, we introduce a neural field-based method that constructs an efficient implicit representation of 3D environments. This representation enables both faster direct queries, which consist of the computation of view assessment indices, and inverse queries, which help avoid occlusion and facilitate the search for views that match desired data patterns. Our approach supports key urban analysis tasks such as visibility assessments, solar exposure evaluation, and assessing the visual impact of new developments. We validate our method through quantitative experiments, case studies informed by real-world urban challenges, and feedback from domain experts. Results show its effectiveness in finding desirable viewpoints, analyzing building facade visibility, and evaluating views from outdoor spaces. Code and data are publicly available at https://urbantk.org/neural-3d.
comment: Accepted at IEEE Transactions on Visualization and Computer Graphics. Code and data are publicly available at https://urbantk.org/neural-3d
☆ Zero-shot Synthetic Video Realism Enhancement via Structure-aware Denoising
We propose an approach to enhancing synthetic video realism, which can re-render synthetic videos from a simulator in photorealistic fashion. Our realism enhancement approach is a zero-shot framework that focuses on preserving the multi-level structures from synthetic videos into the enhanced one in both spatial and temporal domains, built upon a diffusion video foundational model without further fine-tuning. Specifically, we incorporate an effective modification to have the generation/denoising process conditioned on estimated structure-aware information from the synthetic video, such as depth maps, semantic maps, and edge maps, by an auxiliary model, rather than extracting the information from a simulator. This guidance ensures that the enhanced videos are consistent with the original synthetic video at both the structural and semantic levels. Our approach is a simple yet general and powerful approach to enhancing synthetic video realism: we show that our approach outperforms existing baselines in structural consistency with the original video while maintaining state-of-the-art photorealism quality in our experiments.
comment: Project Page: https://wyf0824.github.io/Video_Realism_Enhancement/
☆ Diffusion As Self-Distillation: End-to-End Latent Diffusion In One Model
Standard Latent Diffusion Models rely on a complex, three-part architecture consisting of a separate encoder, decoder, and diffusion network, which are trained in multiple stages. This modular design is computationally inefficient, leads to suboptimal performance, and prevents the unification of diffusion with the single-network architectures common in vision foundation models. Our goal is to unify these three components into a single, end-to-end trainable network. We first demonstrate that a naive joint training approach fails catastrophically due to ``latent collapse'', where the diffusion training objective interferes with the network's ability to learn a good latent representation. We identify the root causes of this instability by drawing a novel analogy between diffusion and self-distillation based unsupervised learning method. Based on this insight, we propose Diffusion as Self-Distillation (DSD), a new framework with key modifications to the training objective that stabilize the latent space. This approach enables, for the first time, the stable end-to-end training of a single network that simultaneously learns to encode, decode, and perform diffusion. DSD achieves outstanding performance on the ImageNet $256\times 256$ conditional generation task: FID=13.44/6.38/4.25 with only 42M/118M/205M parameters and 50 training epochs on ImageNet, without using classifier-free-guidance.
comment: Tech Report. 10 pages
☆ FreeSwim: Revisiting Sliding-Window Attention Mechanisms for Training-Free Ultra-High-Resolution Video Generation
The quadratic time and memory complexity of the attention mechanism in modern Transformer based video generators makes end-to-end training for ultra high resolution videos prohibitively expensive. Motivated by this limitation, we introduce a training-free approach that leverages video Diffusion Transformers pretrained at their native scale to synthesize higher resolution videos without any additional training or adaptation. At the core of our method lies an inward sliding window attention mechanism, which originates from a key observation: maintaining each query token's training scale receptive field is crucial for preserving visual fidelity and detail. However, naive local window attention, unfortunately, often leads to repetitive content and exhibits a lack of global coherence in the generated results. To overcome this challenge, we devise a dual-path pipeline that backs up window attention with a novel cross-attention override strategy, enabling the semantic content produced by local attention to be guided by another branch with a full receptive field and, therefore, ensuring holistic consistency. Furthermore, to improve efficiency, we incorporate a cross-attention caching strategy for this branch to avoid the frequent computation of full 3D attention. Extensive experiments demonstrate that our method delivers ultra-high-resolution videos with fine-grained visual details and high efficiency in a training-free paradigm. Meanwhile, it achieves superior performance on VBench, even compared to training-based alternatives, with competitive or improved efficiency. Codes are available at: https://github.com/WillWu111/FreeSwim
comment: 13 pages, 8 figures
☆ Seeing Beyond the Image: ECG and Anatomical Knowledge-Guided Myocardial Scar Segmentation from Late Gadolinium-Enhanced Images
Accurate segmentation of myocardial scar from late gadolinium enhanced (LGE) cardiac MRI is essential for evaluating tissue viability, yet remains challenging due to variable contrast and imaging artifacts. Electrocardiogram (ECG) signals provide complementary physiological information, as conduction abnormalities can help localize or suggest scarred myocardial regions. In this work, we propose a novel multimodal framework that integrates ECG-derived electrophysiological information with anatomical priors from the AHA-17 atlas for physiologically consistent LGE-based scar segmentation. As ECGs and LGE-MRIs are not acquired simultaneously, we introduce a Temporal Aware Feature Fusion (TAFF) mechanism that dynamically weights and fuses features based on their acquisition time difference. Our method was evaluated on a clinical dataset and achieved substantial gains over the state-of-the-art image-only baseline (nnU-Net), increasing the average Dice score for scars from 0.6149 to 0.8463 and achieving high performance in both precision (0.9115) and sensitivity (0.9043). These results show that integrating physiological and anatomical knowledge allows the model to "see beyond the image", setting a new direction for robust and physiologically grounded cardiac scar segmentation.
☆ HyMAD: A Hybrid Multi-Activity Detection Approach for Border Surveillance and Monitoring
Seismic sensing has emerged as a promising solution for border surveillance and monitoring; the seismic sensors that are often buried underground are small and cannot be noticed easily, making them difficult for intruders to detect, avoid, or vandalize. This significantly enhances their effectiveness compared to highly visible cameras or fences. However, accurately detecting and distinguishing between overlapping activities that are happening simultaneously, such as human intrusions, animal movements, and vehicle rumbling, remains a major challenge due to the complex and noisy nature of seismic signals. Correctly identifying simultaneous activities is critical because failing to separate them can lead to misclassification, missed detections, and an incomplete understanding of the situation, thereby reducing the reliability of surveillance systems. To tackle this problem, we propose HyMAD (Hybrid Multi-Activity Detection), a deep neural architecture based on spatio-temporal feature fusion. The framework integrates spectral features extracted with SincNet and temporal dependencies modeled by a recurrent neural network (RNN). In addition, HyMAD employs self-attention layers to strengthen intra-modal representations and a cross-modal fusion module to achieve robust multi-label classification of seismic events. e evaluate our approach on a dataset constructed from real-world field recordings collected in the context of border surveillance and monitoring, demonstrating its ability to generalize to complex, simultaneous activity scenarios involving humans, animals, and vehicles. Our method achieves competitive performance and offers a modular framework for extending seismic-based activity recognition in real-world security applications.
comment: Multi-label seismic signal classification using novel attention-based feature fusion. Submitting to cs.CV due to relevance to general pattern recognition and time-frequency (spectrogram) analysis
☆ Attention via Synaptic Plasticity is All You Need: A Biologically Inspired Spiking Neuromorphic Transformer
Attention is the brain's ability to selectively focus on a few specific aspects while ignoring irrelevant ones. This biological principle inspired the attention mechanism in modern Transformers. Transformers now underpin large language models (LLMs) such as GPT, but at the cost of massive training and inference energy, leading to a large carbon footprint. While brain attention emerges from neural circuits, Transformer attention relies on dot-product similarity to weight elements in the input sequence. Neuromorphic computing, especially spiking neural networks (SNNs), offers a brain-inspired path to energy-efficient intelligence. Despite recent work on attention-based spiking Transformers, the core attention layer remains non-neuromorphic. Current spiking attention (i) relies on dot-product or element-wise similarity suited to floating-point operations, not event-driven spikes; (ii) keeps attention matrices that suffer from the von Neumann bottleneck, limiting in-memory computing; and (iii) still diverges from brain-like computation. To address these issues, we propose the Spiking STDP Transformer (S$^{2}$TDPT), a neuromorphic Transformer that implements self-attention through spike-timing-dependent plasticity (STDP), embedding query--key correlations in synaptic weights. STDP, a core mechanism of memory and learning in the brain and widely studied in neuromorphic devices, naturally enables in-memory computing and supports non-von Neumann hardware. On CIFAR-10 and CIFAR-100, our model achieves 94.35\% and 78.08\% accuracy with only four timesteps and 0.49 mJ on CIFAR-100, an 88.47\% energy reduction compared to a standard ANN Transformer. Grad-CAM shows that the model attends to semantically relevant regions, enhancing interpretability. Overall, S$^{2}$TDPT illustrates how biologically inspired attention can yield energy-efficient, hardware-friendly, and explainable neuromorphic models.
comment: 21 Pages, 5 Figures, 3 Table
☆ Impact of Image Resolution on Age Estimation with DeepFace and InsightFace
Automatic age estimation is widely used for age verification, where input images often vary considerably in resolution. This study evaluates the effect of image resolution on age estimation accuracy using DeepFace and InsightFace. A total of 1000 images from the IMDB-Clean dataset were processed in seven resolutions, resulting in 7000 test samples. Performance was evaluated using Mean Absolute Error (MAE), Standard Deviation (SD), and Median Absolute Error (MedAE). Based on this study, we conclude that input image resolution has a clear and consistent impact on the accuracy of age estimation in both DeepFace and InsightFace. Both frameworks achieve optimal performance at 224x224 pixels, with an MAE of 10.83 years (DeepFace) and 7.46 years (InsightFace). At low resolutions, MAE increases substantially, while very high resolutions also degrade accuracy. InsightFace is consistently faster than DeepFace across all resolutions.
comment: 6 pages, 7 figures, 7 tables. Evaluation of DeepFace and InsightFace age estimation across seven image resolutions (64 to 1080 px)
☆ Improving segmentation of retinal arteries and veins using cardiac signal in doppler holograms
Doppler holography is an emerging retinal imaging technique that captures the dynamic behavior of blood flow with high temporal resolution, enabling quantitative assessment of retinal hemodynamics. This requires accurate segmentation of retinal arteries and veins, but traditional segmentation methods focus solely on spatial information and overlook the temporal richness of holographic data. In this work, we propose a simple yet effective approach for artery-vein segmentation in temporal Doppler holograms using standard segmentation architectures. By incorporating features derived from a dedicated pulse analysis pipeline, our method allows conventional U-Nets to exploit temporal dynamics and achieve performance comparable to more complex attention- or iteration-based models. These findings demonstrate that time-resolved preprocessing can unlock the full potential of deep learning for Doppler holography, opening new perspectives for quantitative exploration of retinal hemodynamics. The dataset is publicly available at https://huggingface.co/datasets/DigitalHolography/
comment: 5 pages, 3 figures, 1 table. Submitted to ISBI2026
☆ RepAir: A Framework for Airway Segmentation and Discontinuity Correction in CT
Accurate airway segmentation from chest computed tomography (CT) scans is essential for quantitative lung analysis, yet manual annotation is impractical and many automated U-Net-based methods yield disconnected components that hinder reliable biomarker extraction. We present RepAir, a three-stage framework for robust 3D airway segmentation that combines an nnU-Net-based network with anatomically informed topology correction. The segmentation network produces an initial airway mask, after which a skeleton-based algorithm identifies potential discontinuities and proposes reconnections. A 1D convolutional classifier then determines which candidate links correspond to true anatomical branches versus false or obstructed paths. We evaluate RepAir on two distinct datasets: ATM'22, comprising annotated CT scans from predominantly healthy subjects and AeroPath, encompassing annotated scans with severe airway pathology. Across both datasets, RepAir outperforms existing 3D U-Net-based approaches such as Bronchinet and NaviAirway on both voxel-level and topological metrics, and produces more complete and anatomically consistent airway trees while maintaining high segmentation accuracy.
comment: 4 pages, 3 figures, 1 table. Preprint submitted to SSIAI 2026 Conference on November 17, 2025
☆ SLAM-AGS: Slide-Label Aware Multi-Task Pretraining Using Adaptive Gradient Surgery in Computational Cytology
Computational cytology faces two major challenges: i) instance-level labels are unreliable and prohibitively costly to obtain, ii) witness rates are extremely low. We propose SLAM-AGS, a Slide-Label-Aware Multitask pretraining framework that jointly optimizes (i) a weakly supervised similarity objective on slide-negative patches and (ii) a self-supervised contrastive objective on slide-positive patches, yielding stronger performance on downstream tasks. To stabilize learning, we apply Adaptive Gradient Surgery to tackle conflicting task gradients and prevent model collapse. We integrate the pretrained encoder into an attention-based Multiple Instance Learning aggregator for bag-level prediction and attention-guided retrieval of the most abnormal instances in a bag. On a publicly available bone-marrow cytology dataset, with simulated witness rates from 10% down to 0.5%, SLAM-AGS improves bag-level F1-Score and Top 400 positive cell retrieval over other pretraining methods, with the largest gains at low witness rates, showing that resolving gradient interference enables stable pretraining and better performance on downstream tasks. To facilitate reproducibility, we share our complete implementation and evaluation framework as open source: https://github.com/Ace95/SLAM-AGS.
comment: 5 pages, 2 figures, Submitted to ISBI2026
☆ SparseSurf: Sparse-View 3D Gaussian Splatting for Surface Reconstruction AAAI 2026
Recent advances in optimizing Gaussian Splatting for scene geometry have enabled efficient reconstruction of detailed surfaces from images. However, when input views are sparse, such optimization is prone to overfitting, leading to suboptimal reconstruction quality. Existing approaches address this challenge by employing flattened Gaussian primitives to better fit surface geometry, combined with depth regularization to alleviate geometric ambiguities under limited viewpoints. Nevertheless, the increased anisotropy inherent in flattened Gaussians exacerbates overfitting in sparse-view scenarios, hindering accurate surface fitting and degrading novel view synthesis performance. In this paper, we propose \net{}, a method that reconstructs more accurate and detailed surfaces while preserving high-quality novel view rendering. Our key insight is to introduce Stereo Geometry-Texture Alignment, which bridges rendering quality and geometry estimation, thereby jointly enhancing both surface reconstruction and view synthesis. In addition, we present a Pseudo-Feature Enhanced Geometry Consistency that enforces multi-view geometric consistency by incorporating both training and unseen views, effectively mitigating overfitting caused by sparse supervision. Extensive experiments on the DTU, BlendedMVS, and Mip-NeRF360 datasets demonstrate that our method achieves the state-of-the-art performance.
comment: Accepted at AAAI 2026. Project page: https://miya-oi.github.io/SparseSurf-project
☆ Enhancing Agentic Autonomous Scientific Discovery with Vision-Language Model Capabilities
We show that multi-agent systems guided by vision-language models (VLMs) improve end-to-end autonomous scientific discovery. By treating plots as verifiable checkpoints, a VLM-as-a-judge evaluates figures against dynamically generated domain-specific rubrics, enabling agents to correct their own errors and steer exploratory data analysis in real-time. Case studies in cosmology and astrochemistry demonstrate recovery from faulty reasoning paths and adaptation to new datasets without human intervention. On a 10-task benchmark for data-driven discovery, VLM-augmented systems achieve pass at 1 scores of 0.7-0.8, compared to 0.2-0.3 for code-only and 0.4-0.5 for code-and-text baselines, while also providing auditable reasoning traces that improve interpretability. Code available here: https://github.com/CMBAgents/cmbagent
☆ Fusing Biomechanical and Spatio-Temporal Features for Fall Prediction: Characterizing and Mitigating the Simulation-to-Reality Gap
Falls are a leading cause of injury and loss of independence among older adults. Vision-based fall prediction systems offer a non-invasive solution to anticipate falls seconds before impact, but their development is hindered by the scarcity of available fall data. Contributing to these efforts, this study proposes the Biomechanical Spatio-Temporal Graph Convolutional Network (BioST-GCN), a dual-stream model that combines both pose and biomechanical information using a cross-attention fusion mechanism. Our model outperforms the vanilla ST-GCN baseline by 5.32% and 2.91% F1-score on the simulated MCF-UA stunt-actor and MUVIM datasets, respectively. The spatio-temporal attention mechanisms in the ST-GCN stream also provide interpretability by identifying critical joints and temporal phases. However, a critical simulation-reality gap persists. While our model achieves an 89.0% F1-score with full supervision on simulated data, zero-shot generalization to unseen subjects drops to 35.9%. This performance decline is likely due to biases in simulated data, such as `intent-to-fall' cues. For older adults, particularly those with diabetes or frailty, this gap is exacerbated by their unique kinematic profiles. To address this, we propose personalization strategies and advocate for privacy-preserving data pipelines to enable real-world validation. Our findings underscore the urgent need to bridge the gap between simulated and real-world data to develop effective fall prediction systems for vulnerable elderly populations.
☆ 3D-Guided Scalable Flow Matching for Generating Volumetric Tissue Spatial Transcriptomics from Serial Histology
A scalable and robust 3D tissue transcriptomics profile can enable a holistic understanding of tissue organization and provide deeper insights into human biology and disease. Most predictive algorithms that infer ST directly from histology treat each section independently and ignore 3D structure, while existing 3D-aware approaches are not generative and do not scale well. We present Holographic Tissue Expression Inpainting and Analysis (HoloTea), a 3D-aware flow-matching framework that imputes spot-level gene expression from H&E while explicitly using information from adjacent sections. Our key idea is to retrieve morphologically corresponding spots on neighboring slides in a shared feature space and fuse this cross section context into a lightweight ControlNet, allowing conditioning to follow anatomical continuity. To better capture the count nature of the data, we introduce a 3D-consistent prior for flow matching that combines a learned zero-inflated negative binomial (ZINB) prior with a spatial-empirical prior constructed from neighboring sections. A global attention block introduces 3D H&E scaling linearly with the number of spots in the slide, enabling training and inference on large 3D ST datasets. Across three spatial transcriptomics datasets spanning different tissue types and resolutions, HoloTea consistently improves 3D expression accuracy and generalization compared to 2D and 3D baselines. We envision HoloTea advancing the creation of accurate 3D virtual tissues, ultimately accelerating biomarker discovery and deepening our understanding of disease.
comment: 11 pages
☆ XAttn-BMD: Multimodal Deep Learning with Cross-Attention for Femoral Neck Bone Mineral Density Estimation
Poor bone health is a significant public health concern, and low bone mineral density (BMD) leads to an increased fracture risk, a key feature of osteoporosis. We present XAttn-BMD (Cross-Attention BMD), a multimodal deep learning framework that predicts femoral neck BMD from hip X-ray images and structured clinical metadata. It utilizes a novel bidirectional cross-attention mechanism to dynamically integrate image and metadata features for cross-modal mutual reinforcement. A Weighted Smooth L1 loss is tailored to address BMD imbalance and prioritize clinically significant cases. Extensive experiments on the data from the Hertfordshire Cohort Study show that our model outperforms the baseline models in regression generalization and robustness. Ablation studies confirm the effectiveness of both cross-attention fusion and the customized loss function. Experimental results show that the integration of multimodal data via cross-attention outperforms naive feature concatenation without cross-attention, reducing MSE by 16.7%, MAE by 6.03%, and increasing the R2 score by 16.4%, highlighting the effectiveness of the approach for femoral neck BMD estimation. Furthermore, screening performance was evaluated using binary classification at clinically relevant femoral neck BMD thresholds, demonstrating the model's potential in real-world scenarios.
comment: 11 figures, 10 tables, 38 pages. Submitted to Artificial Intelligence in Medicine (currently with editor)
☆ MRI Embeddings Complement Clinical Predictors for Cognitive Decline Modeling in Alzheimer's Disease Cohorts SP
Accurate modeling of cognitive decline in Alzheimer's disease is essential for early stratification and personalized management. While tabular predictors provide robust markers of global risk, their ability to capture subtle brain changes remains limited. In this study, we evaluate the predictive contributions of tabular and imaging-based representations, with a focus on transformer-derived Magnetic Resonance Imaging (MRI) embeddings. We introduce a trajectory-aware labeling strategy based on Dynamic Time Warping clustering to capture heterogeneous patterns of cognitive change, and train a 3D Vision Transformer (ViT) via unsupervised reconstruction on harmonized and augmented MRI data to obtain anatomy-preserving embeddings without progression labels. The pretrained encoder embeddings are subsequently assessed using both traditional machine learning classifiers and deep learning heads, and compared against tabular representations and convolutional network baselines. Results highlight complementary strengths across modalities. Clinical and volumetric features achieved the highest AUCs of around 0.70 for predicting mild and severe progression, underscoring their utility in capturing global decline trajectories. In contrast, MRI embeddings from the ViT model were most effective in distinguishing cognitively stable individuals with an AUC of 0.71. However, all approaches struggled in the heterogeneous moderate group. These findings indicate that clinical features excel in identifying high-risk extremes, whereas transformer-based MRI embeddings are more sensitive to subtle markers of stability, motivating multimodal fusion strategies for AD progression modeling.
comment: Accepted at SPIE - Medical Imaging Conference 2026
☆ CCSD: Cross-Modal Compositional Self-Distillation for Robust Brain Tumor Segmentation with Missing Modalities
The accurate segmentation of brain tumors from multi-modal MRI is critical for clinical diagnosis and treatment planning. While integrating complementary information from various MRI sequences is a common practice, the frequent absence of one or more modalities in real-world clinical settings poses a significant challenge, severely compromising the performance and generalizability of deep learning-based segmentation models. To address this challenge, we propose a novel Cross-Modal Compositional Self-Distillation (CCSD) framework that can flexibly handle arbitrary combinations of input modalities. CCSD adopts a shared-specific encoder-decoder architecture and incorporates two self-distillation strategies: (i) a hierarchical modality self-distillation mechanism that transfers knowledge across modality hierarchies to reduce semantic discrepancies, and (ii) a progressive modality combination distillation approach that enhances robustness to missing modalities by simulating gradual modality dropout during training. Extensive experiments on public brain tumor segmentation benchmarks demonstrate that CCSD achieves state-of-the-art performance across various missing-modality scenarios, with strong generalization and stability.
comment: 9 pages, 5 figures
☆ Deep Learning-Based Regional White Matter Hyperintensity Mapping as a Robust Biomarker for Alzheimer's Disease SP
White matter hyperintensities (WMH) are key imaging markers in cognitive aging, Alzheimer's disease (AD), and related dementias. Although automated methods for WMH segmentation have advanced, most provide only global lesion load and overlook their spatial distribution across distinct white matter regions. We propose a deep learning framework for robust WMH segmentation and localization, evaluated across public datasets and an independent Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort. Our results show that the predicted lesion loads are in line with the reference WMH estimates, confirming the robustness to variations in lesion load, acquisition, and demographics. Beyond accurate segmentation, we quantify WMH load within anatomically defined regions and combine these measures with brain structure volumes to assess diagnostic value. Regional WMH volumes consistently outperform global lesion burden for disease classification, and integration with brain atrophy metrics further improves performance, reaching area under the curve (AUC) values up to 0.97. Several spatially distinct regions, particularly within anterior white matter tracts, are reproducibly associated with diagnostic status, indicating localized vulnerability in AD. These results highlight the added value of regional WMH quantification. Incorporating localized lesion metrics alongside atrophy markers may enhance early diagnosis and stratification in neurodegenerative disorders.
comment: Accepted at SPIE - Medical Imaging Conference 2026
☆ OmniZip: Audio-Guided Dynamic Token Compression for Fast Omnimodal Large Language Models
Omnimodal large language models (OmniLLMs) have attracted increasing research attention of late towards unified audio-video understanding, wherein processing audio-video token sequences creates a significant computational bottleneck, however. Existing token compression methods have yet to accommodate this emerging need of jointly compressing multimodal tokens. To bridge this gap, we present OmniZip, a training-free, audio-guided audio-visual token-compression framework that optimizes multimodal token representation and accelerates inference. Specifically, OmniZip first identifies salient audio tokens, then computes an audio retention score for each time group to capture information density, thereby dynamically guiding video token pruning and preserving cues from audio anchors enhanced by cross-modal similarity. For each time window, OmniZip compresses the video tokens using an interleaved spatio-temporal scheme. Extensive empirical results demonstrate the merits of OmniZip - it achieves 3.42X inference speedup and 1.4X memory reduction over other top-performing counterparts, while maintaining performance with no training.
comment: Code Link: https://github.com/KD-TAO/OmniZip
☆ Explaining Digital Pathology Models via Clustering Activations
We present a clustering-based explainability technique for digital pathology models based on convolutional neural networks. Unlike commonly used methods based on saliency maps, such as occlusion, GradCAM, or relevance propagation, which highlight regions that contribute the most to the prediction for a single slide, our method shows the global behaviour of the model under consideration, while also providing more fine-grained information. The result clusters can be visualised not only to understand the model, but also to increase confidence in its operation, leading to faster adoption in clinical practice. We also evaluate the performance of our technique on an existing model for detecting prostate cancer, demonstrating its usefulness.
☆ ForensicFlow: A Tri-Modal Adaptive Network for Robust Deepfake Detection
Deepfakes generated by advanced GANs and autoencoders severely threaten information integrity and societal stability. Single-stream CNNs fail to capture multi-scale forgery artifacts across spatial, texture, and frequency domains, limiting robustness and generalization. We introduce the ForensicFlow, a tri-modal forensic framework that synergistically fuses RGB, texture, and frequency evidence for video Deepfake detection. The RGB branch (ConvNeXt-tiny) extracts global visual inconsistencies; the texture branch (Swin Transformer-tiny) detects fine-grained blending artifacts; the frequency branch (CNN + SE) identifies periodic spectral noise. Attention-based temporal pooling dynamically prioritizes high-evidence frames, while adaptive attention fusion balances branch contributions.Trained on Celeb-DF (v2) with Focal Loss, ForensicFlow achieves AUC 0.9752, F1-Score 0.9408, and accuracy 0.9208, outperforming single-stream baselines. Ablation validates branch synergy; Grad-CAM confirms forensic focus. This comprehensive feature fusion provides superior resilience against subtle forgeries.
comment: 11 pages, 4 figures, 2 tables. Preprint. Submitted on November 18, 2025
☆ Interaction-Aware 4D Gaussian Splatting for Dynamic Hand-Object Interaction Reconstruction
This paper focuses on a challenging setting of simultaneously modeling geometry and appearance of hand-object interaction scenes without any object priors. We follow the trend of dynamic 3D Gaussian Splatting based methods, and address several significant challenges. To model complex hand-object interaction with mutual occlusion and edge blur, we present interaction-aware hand-object Gaussians with newly introduced optimizable parameters aiming to adopt piecewise linear hypothesis for clearer structural representation. Moreover, considering the complementarity and tightness of hand shape and object shape during interaction dynamics, we incorporate hand information into object deformation field, constructing interaction-aware dynamic fields to model flexible motions. To further address difficulties in the optimization process, we propose a progressive strategy that handles dynamic regions and static background step by step. Correspondingly, explicit regularizations are designed to stabilize the hand-object representations for smooth motion transition, physical interaction reality, and coherent lighting. Experiments show that our approach surpasses existing dynamic 3D-GS-based methods and achieves state-of-the-art performance in reconstructing dynamic hand-object interaction.
comment: 11 pages, 6 figures
☆ Learning Compact Latent Space for Representing Neural Signed Distance Functions with High-fidelity Geometry Details AAAI
Neural signed distance functions (SDFs) have been a vital representation to represent 3D shapes or scenes with neural networks. An SDF is an implicit function that can query signed distances at specific coordinates for recovering a 3D surface. Although implicit functions work well on a single shape or scene, they pose obstacles when analyzing multiple SDFs with high-fidelity geometry details, due to the limited information encoded in the latent space for SDFs and the loss of geometry details. To overcome these obstacles, we introduce a method to represent multiple SDFs in a common space, aiming to recover more high-fidelity geometry details with more compact latent representations. Our key idea is to take full advantage of the benefits of generalization-based and overfitting-based learning strategies, which manage to preserve high-fidelity geometry details with compact latent codes. Based on this framework, we also introduce a novel sampling strategy to sample training queries. The sampling can improve the training efficiency and eliminate artifacts caused by the influence of other SDFs. We report numerical and visual evaluations on widely used benchmarks to validate our designs and show advantages over the latest methods in terms of the representative ability and compactness.
comment: Accepted as an Poster paper at the AAAI Conference on Artificial Intelligence (AAAI-26)
☆ DeCo-VAE: Learning Compact Latents for Video Reconstruction via Decoupled Representation
Existing video Variational Autoencoders (VAEs) generally overlook the similarity between frame contents, leading to redundant latent modeling. In this paper, we propose decoupled VAE (DeCo-VAE) to achieve compact latent representation. Instead of encoding RGB pixels directly, we decompose video content into distinct components via explicit decoupling: keyframe, motion and residual, and learn dedicated latent representation for each. To avoid cross-component interference, we design dedicated encoders for each decoupled component and adopt a shared 3D decoder to maintain spatiotemporal consistency during reconstruction. We further utilize a decoupled adaptation strategy that freezes partial encoders while training the others sequentially, ensuring stable training and accurate learning of both static and dynamic features. Extensive quantitative and qualitative experiments demonstrate that DeCo-VAE achieves superior video reconstruction performance.
☆ A Generative Data Framework with Authentic Supervision for Underwater Image Restoration and Enhancement
Underwater image restoration and enhancement are crucial for correcting color distortion and restoring image details, thereby establishing a fundamental basis for subsequent underwater visual tasks. However, current deep learning methodologies in this area are frequently constrained by the scarcity of high-quality paired datasets. Since it is difficult to obtain pristine reference labels in underwater scenes, existing benchmarks often rely on manually selected results from enhancement algorithms, providing debatable reference images that lack globally consistent color and authentic supervision. This limits the model's capabilities in color restoration, image enhancement, and generalization. To overcome this limitation, we propose using in-air natural images as unambiguous reference targets and translating them into underwater-degraded versions, thereby constructing synthetic datasets that provide authentic supervision signals for model learning. Specifically, we establish a generative data framework based on unpaired image-to-image translation, producing a large-scale dataset that covers 6 representative underwater degradation types. The framework constructs synthetic datasets with precise ground-truth labels, which facilitate the learning of an accurate mapping from degraded underwater images to their pristine scene appearances. Extensive quantitative and qualitative experiments across 6 representative network architectures and 3 independent test sets show that models trained on our synthetic data achieve comparable or superior color restoration and generalization performance to those trained on existing benchmarks. This research provides a reliable and scalable data-driven solution for underwater image restoration and enhancement. The generated dataset is publicly available at: https://github.com/yftian2025/SynUIEDatasets.git.
comment: This work has been submitted to the IEEE for possible publication
☆ D-PerceptCT: Deep Perceptual Enhancement for Low-Dose CT Images
Low Dose Computed Tomography (LDCT) is widely used as an imaging solution to aid diagnosis and other clinical tasks. However, this comes at the price of a deterioration in image quality due to the low dose of radiation used to reduce the risk of secondary cancer development. While some efficient methods have been proposed to enhance LDCT quality, many overestimate noise and perform excessive smoothing, leading to a loss of critical details. In this paper, we introduce D-PerceptCT, a novel architecture inspired by key principles of the Human Visual System (HVS) to enhance LDCT images. The objective is to guide the model to enhance or preserve perceptually relevant features, thereby providing radiologists with CT images where critical anatomical structures and fine pathological details are perceptu- ally visible. D-PerceptCT consists of two main blocks: 1) a Visual Dual-path Extractor (ViDex), which integrates semantic priors from a pretrained DINOv2 model with local spatial features, allowing the network to incorporate semantic-awareness during enhancement; (2) a Global-Local State-Space block that captures long-range information and multiscale features to preserve the important structures and fine details for diagnosis. In addition, we propose a novel deep perceptual loss, designated as the Deep Perceptual Relevancy Loss Function (DPRLF), which is inspired by human contrast sensitivity, to further emphasize perceptually important features. Extensive experiments on the Mayo2016 dataset demonstrate the effectiveness of D-PerceptCT method for LDCT enhancement, showing better preservation of structural and textural information within LDCT images compared to SOTA methods.
☆ IMSE: Efficient U-Net-based Speech Enhancement using Inception Depthwise Convolution and Amplitude-Aware Linear Attention
Achieving a balance between lightweight design and high performance remains a significant challenge for speech enhancement (SE) tasks on resource-constrained devices. Existing state-of-the-art methods, such as MUSE, have established a strong baseline with only 0.51M parameters by introducing a Multi-path Enhanced Taylor (MET) transformer and Deformable Embedding (DE). However, an in-depth analysis reveals that MUSE still suffers from efficiency bottlenecks: the MET module relies on a complex "approximate-compensate" mechanism to mitigate the limitations of Taylor-expansion-based attention, while the offset calculation for deformable embedding introduces additional computational burden. This paper proposes IMSE, a systematically optimized and ultra-lightweight network. We introduce two core innovations: 1) Replacing the MET module with Amplitude-Aware Linear Attention (MALA). MALA fundamentally rectifies the "amplitude-ignoring" problem in linear attention by explicitly preserving the norm information of query vectors in the attention calculation, achieving efficient global modeling without an auxiliary compensation branch. 2) Replacing the DE module with Inception Depthwise Convolution (IDConv). IDConv borrows the Inception concept, decomposing large-kernel operations into efficient parallel branches (square, horizontal, and vertical strips), thereby capturing spectrogram features with extremely low parameter redundancy. Extensive experiments on the VoiceBank+DEMAND dataset demonstrate that, compared to the MUSE baseline, IMSE significantly reduces the parameter count by 16.8\% (from 0.513M to 0.427M) while achieving competitive performance comparable to the state-of-the-art on the PESQ metric (3.373). This study sets a new benchmark for the trade-off between model size and speech quality in ultra-lightweight speech enhancement.
☆ Parameter Aware Mamba Model for Multi-task Dense Prediction
Understanding the inter-relations and interactions between tasks is crucial for multi-task dense prediction. Existing methods predominantly utilize convolutional layers and attention mechanisms to explore task-level interactions. In this work, we introduce a novel decoder-based framework, Parameter Aware Mamba Model (PAMM), specifically designed for dense prediction in multi-task learning setting. Distinct from approaches that employ Transformers to model holistic task relationships, PAMM leverages the rich, scalable parameters of state space models to enhance task interconnectivity. It features dual state space parameter experts that integrate and set task-specific parameter priors, capturing the intrinsic properties of each task. This approach not only facilitates precise multi-task interactions but also allows for the global integration of task priors through the structured state space sequence model (S4). Furthermore, we employ the Multi-Directional Hilbert Scanning method to construct multi-angle feature sequences, thereby enhancing the sequence model's perceptual capabilities for 2D data. Extensive experiments on the NYUD-v2 and PASCAL-Context benchmarks demonstrate the effectiveness of our proposed method. Our code is available at https://github.com/CQC-gogopro/PAMM.
comment: Accepted to IEEE Transactions on Cybernetics
☆ Enhancing End-to-End Autonomous Driving with Risk Semantic Distillaion from VLM
The autonomous driving (AD) system has exhibited remarkable performance in complex driving scenarios. However, generalization is still a key limitation for the current system, which refers to the ability to handle unseen scenarios or unfamiliar sensor configurations.Related works have explored the use of Vision-Language Models (VLMs) to address few-shot or zero-shot tasks. While promising, these methods introduce a new challenge: the emergence of a hybrid AD system, where two distinct systems are used to plan a trajectory, leading to potential inconsistencies. Alternative research directions have explored Vision-Language-Action (VLA) frameworks that generate control actions from VLM directly. However, these end-to-end solutions demonstrate prohibitive computational demands. To overcome these challenges, we introduce Risk Semantic Distillation (RSD), a novel framework that leverages VLMs to enhance the training of End-to-End (E2E) AD backbones. By providing risk attention for key objects, RSD addresses the issue of generalization. Specifically, we introduce RiskHead, a plug-in module that distills causal risk estimates from Vision-Language Models into Bird's-Eye-View (BEV) features, yielding interpretable risk-attention maps.This approach allows BEV features to learn richer and more nuanced risk attention representations, which directly enhance the model's ability to handle spatial boundaries and risky objects.By focusing on risk attention, RSD aligns better with human-like driving behavior, which is essential to navigate in complex and dynamic environments. Our experiments on the Bench2Drive benchmark demonstrate the effectiveness of RSD in managing complex and unpredictable driving conditions. Due to the enhanced BEV representations enabled by RSD, we observed a significant improvement in both perception and planning capabilities.
☆ Segmentation-Aware Latent Diffusion for Satellite Image Super-Resolution: Enabling Smallholder Farm Boundary Delineation
Delineating farm boundaries through segmentation of satellite images is a fundamental step in many agricultural applications. The task is particularly challenging for smallholder farms, where accurate delineation requires the use of high resolution (HR) imagery which are available only at low revisit frequencies (e.g., annually). To support more frequent (sub-) seasonal monitoring, HR images could be combined as references (ref) with low resolution (LR) images -- having higher revisit frequency (e.g., weekly) -- using reference-based super-resolution (Ref-SR) methods. However, current Ref-SR methods optimize perceptual quality and smooth over crucial features needed for downstream tasks, and are unable to meet the large scale-factor requirements for this task. Further, previous two-step approaches of SR followed by segmentation do not effectively utilize diverse satellite sources as inputs. We address these problems through a new approach, $\textbf{SEED-SR}$, which uses a combination of conditional latent diffusion models and large-scale multi-spectral, multi-source geo-spatial foundation models. Our key innovation is to bypass the explicit SR task in the pixel space and instead perform SR in a segmentation-aware latent space. This unique approach enables us to generate segmentation maps at an unprecedented 20$\times$ scale factor, and rigorous experiments on two large, real datasets demonstrate up to $\textbf{25.5}$ and $\textbf{12.9}$ relative improvement in instance and semantic segmentation metrics respectively over approaches based on state-of-the-art Ref-SR methods.
☆ 2D Gaussians Spatial Transport for Point-supervised Density Regression AAAI
This paper introduces Gaussian Spatial Transport (GST), a novel framework that leverages Gaussian splatting to facilitate transport from the probability measure in the image coordinate space to the annotation map. We propose a Gaussian splatting-based method to estimate pixel-annotation correspondence, which is then used to compute a transport plan derived from Bayesian probability. To integrate the resulting transport plan into standard network optimization in typical computer vision tasks, we derive a loss function that measures discrepancy after transport. Extensive experiments on representative computer vision tasks, including crowd counting and landmark detection, validate the effectiveness of our approach. Compared to conventional optimal transport schemes, GST eliminates iterative transport plan computation during training, significantly improving efficiency. Code is available at https://github.com/infinite0522/GST.
comment: 9 pages, 5 figures, accepted by AAAI, 2026
☆ Learning Subglacial Bed Topography from Sparse Radar with Physics-Guided Residuals
Accurate subglacial bed topography is essential for ice sheet modeling, yet radar observations are sparse and uneven. We propose a physics-guided residual learning framework that predicts bed thickness residuals over a BedMachine prior and reconstructs bed from the observed surface. A DeepLabV3+ decoder over a standard encoder (e.g.,ResNet-50) is trained with lightweight physics and data terms: multi-scale mass conservation, flow-aligned total variation, Laplacian damping, non-negativity of thickness, a ramped prior-consistency term, and a masked Huber fit to radar picks modulated by a confidence map. To measure real-world generalization, we adopt leakage-safe blockwise hold-outs (vertical/horizontal) with safety buffers and report metrics only on held-out cores. Across two Greenland sub-regions, our approach achieves strong test-core accuracy and high structural fidelity, outperforming U-Net, Attention U-Net, FPN, and a plain CNN. The residual-over-prior design, combined with physics, yields spatially coherent, physically plausible beds suitable for operational mapping under domain shift.
☆ CompEvent: Complex-valued Event-RGB Fusion for Low-light Video Enhancement and Deblurring
Low-light video deblurring poses significant challenges in applications like nighttime surveillance and autonomous driving due to dim lighting and long exposures. While event cameras offer potential solutions with superior low-light sensitivity and high temporal resolution, existing fusion methods typically employ staged strategies, limiting their effectiveness against combined low-light and motion blur degradations. To overcome this, we propose CompEvent, a complex neural network framework enabling holistic full-process fusion of event data and RGB frames for enhanced joint restoration. CompEvent features two core components: 1) Complex Temporal Alignment GRU, which utilizes complex-valued convolutions and processes video and event streams iteratively via GRU to achieve temporal alignment and continuous fusion; and 2) Complex Space-Frequency Learning module, which performs unified complex-valued signal processing in both spatial and frequency domains, facilitating deep fusion through spatial structures and system-level characteristics. By leveraging the holistic representation capability of complex-valued neural networks, CompEvent achieves full-process spatiotemporal fusion, maximizes complementary learning between modalities, and significantly strengthens low-light video deblurring capability. Extensive experiments demonstrate that CompEvent outperforms SOTA methods in addressing this challenging task. The code is available at https://github.com/YuXie1/CompEvent.
☆ DIR-TIR: Dialog-Iterative Refinement for Text-to-Image Retrieval
This paper addresses the task of interactive, conversational text-to-image retrieval. Our DIR-TIR framework progressively refines the target image search through two specialized modules: the Dialog Refiner Module and the Image Refiner Module. The Dialog Refiner actively queries users to extract essential information and generate increasingly precise descriptions of the target image. Complementarily, the Image Refiner identifies perceptual gaps between generated images and user intentions, strategically reducing the visual-semantic discrepancy. By leveraging multi-turn dialogues, DIR-TIR provides superior controllability and fault tolerance compared to conventional single-query methods, significantly improving target image hit accuracy. Comprehensive experiments across diverse image datasets demonstrate our dialogue-based approach substantially outperforms initial-description-only baselines, while the synergistic module integration achieves both higher retrieval precision and enhanced interactive experience.
☆ Agentic Video Intelligence: A Flexible Framework for Advanced Video Exploration and Understanding
Video understanding requires not only visual recognition but also complex reasoning. While Vision-Language Models (VLMs) demonstrate impressive capabilities, they typically process videos largely in a single-pass manner with limited support for evidence revisit and iterative refinement. While recently emerging agent-based methods enable long-horizon reasoning, they either depend heavily on expensive proprietary models or require extensive agentic RL training. To overcome these limitations, we propose Agentic Video Intelligence (AVI), a flexible and training-free framework that can mirror human video comprehension through system-level design and optimization. AVI introduces three key innovations: (1) a human-inspired three-phase reasoning process (Retrieve-Perceive-Review) that ensures both sufficient global exploration and focused local analysis, (2) a structured video knowledge base organized through entity graphs, along with multi-granularity integrated tools, constituting the agent's interaction environment, and (3) an open-source model ensemble combining reasoning LLMs with lightweight base CV models and VLM, eliminating dependence on proprietary APIs or RL training. Experiments on LVBench, VideoMME-Long, LongVideoBench, and Charades-STA demonstrate that AVI achieves competitive performance while offering superior interpretability.
☆ Learning to See Through a Baby's Eyes: Early Visual Diets Enable Robust Visual Intelligence in Humans and Machines
Newborns perceive the world with low-acuity, color-degraded, and temporally continuous vision, which gradually sharpens as infants develop. To explore the ecological advantages of such staged "visual diets", we train self-supervised learning (SSL) models on object-centric videos under constraints that simulate infant vision: grayscale-to-color (C), blur-to-sharp (A), and preserved temporal continuity (T)-collectively termed CATDiet. For evaluation, we establish a comprehensive benchmark across ten datasets, covering clean and corrupted image recognition, texture-shape cue conflict tests, silhouette recognition, depth-order classification, and the visual cliff paradigm. All CATDiet variants demonstrate enhanced robustness in object recognition, despite being trained solely on object-centric videos. Remarkably, models also exhibit biologically aligned developmental patterns, including neural plasticity changes mirroring synaptic density in macaque V1 and behaviors resembling infants' visual cliff responses. Building on these insights, CombDiet initializes SSL with CATDiet before standard training while preserving temporal continuity. Trained on object-centric or head-mounted infant videos, CombDiet outperforms standard SSL on both in-domain and out-of-domain object recognition and depth perception. Together, these results suggest that the developmental progression of early infant visual experience offers a powerful reverse-engineering framework for understanding the emergence of robust visual intelligence in machines. All code, data, and models will be publicly released.
☆ Cranio-ID: Graph-Based Craniofacial Identification via Automatic Landmark Annotation in 2D Multi-View X-rays
In forensic craniofacial identification and in many biomedical applications, craniometric landmarks are important. Traditional methods for locating landmarks are time-consuming and require specialized knowledge and expertise. Current methods utilize superimposition and deep learning-based methods that employ automatic annotation of landmarks. However, these methods are not reliable due to insufficient large-scale validation studies. In this paper, we proposed a novel framework Cranio-ID: First, an automatic annotation of landmarks on 2D skulls (which are X-ray scans of faces) with their respective optical images using our trained YOLO-pose models. Second, cross-modal matching by formulating these landmarks into graph representations and then finding semantic correspondence between graphs of these two modalities using cross-attention and optimal transport framework. Our proposed framework is validated on the S2F and CUHK datasets (CUHK dataset resembles with S2F dataset). Extensive experiments have been conducted to evaluate the performance of our proposed framework, which demonstrates significant improvements in both reliability and accuracy, as well as its effectiveness in cross-domain skull-to-face and sketch-to-face matching in forensic science.
comment: 11 pages, 6 figures
☆ Language as an Anchor: Preserving Relative Visual Geometry for Domain Incremental Learning
A key challenge in Domain Incremental Learning (DIL) is to continually learn under shifting distributions while preserving knowledge from previous domains. Existing methods face a fundamental dilemma. On one hand, projecting all domains into a single unified visual space leads to inter-domain interference and semantic distortion, as large shifts may vary with not only visual appearance but also underlying semantics. On the other hand, isolating domain-specific parameters causes knowledge fragmentation, creating "knowledge islands" that hamper knowledge reuse and exacerbate forgetting. To address this issue, we propose LAVA (Language-Anchored Visual Alignment), a novel DIL framework that replaces direct feature alignment with relative alignment driven by a text-based reference anchor. LAVA guides the visual representations of each incoming domain to preserve a consistent relative geometry, which is defined by mirroring the pairwise semantic similarities between the class names. This anchored geometric structure acts as a bridge across domains, enabling the retrieval of class-aware prior knowledge and facilitating robust feature aggregation. Extensive experiments on standard DIL benchmarks demonstrate that LAVA achieves significant performance improvements over state-of-the-arts. Code is available at https://github.com/ShuyiGeng/LAVA.
☆ Stage Aware Diagnosis of Diabetic Retinopathy via Ordinal Regression
Diabetic Retinopathy (DR) has emerged as a major cause of preventable blindness in recent times. With timely screening and intervention, the condition can be prevented from causing irreversible damage. The work introduces a state-of-the-art Ordinal Regression-based DR Detection framework that uses the APTOS-2019 fundus image dataset. A widely accepted combination of preprocessing methods: Green Channel (GC) Extraction, Noise Masking, and CLAHE, was used to isolate the most relevant features for DR classification. Model performance was evaluated using the Quadratic Weighted Kappa, with a focus on agreement between results and clinical grading. Our Ordinal Regression approach attained a QWK score of 0.8992, setting a new benchmark on the APTOS dataset.
comment: Submitted to Confluence 2026, Amity University
☆ Continuous Vision-Language-Action Co-Learning with Semantic-Physical Alignment for Behavioral Cloning AAAI 2026
Language-conditioned manipulation facilitates human-robot interaction via behavioral cloning (BC), which learns control policies from human demonstrations and serves as a cornerstone of embodied AI. Overcoming compounding errors in sequential action decisions remains a central challenge to improving BC performance. Existing approaches mitigate compounding errors through data augmentation, expressive representation, or temporal abstraction. However, they suffer from physical discontinuities and semantic-physical misalignment, leading to inaccurate action cloning and intermittent execution. In this paper, we present Continuous vision-language-action Co-Learning with Semantic-Physical Alignment (CCoL), a novel BC framework that ensures temporally consistent execution and fine-grained semantic grounding. It generates robust and smooth action execution trajectories through continuous co-learning across vision, language, and proprioceptive inputs (e.g., robot internal states). Meanwhile, we anchor language semantics to visuomotor representations by a bidirectional cross-attention to learn contextual information for action generation, successfully overcoming the problem of semantic-physical misalignment. Extensive experiments show that CCoL achieves an average 8.0% relative improvement across three simulation suites, with up to 19.2% relative gain in human-demonstrated bimanual insertion tasks. Real-world tests on a 7-DoF robot further confirm CCoL's generalization under unseen and noisy object states.
comment: Accepted at AAAI 2026, the Project website is available at https://qhemu.github.io/CCoL/
☆ BEDLAM2.0: Synthetic Humans and Cameras in Motion NeurIPS 2025
Inferring 3D human motion from video remains a challenging problem with many applications. While traditional methods estimate the human in image coordinates, many applications require human motion to be estimated in world coordinates. This is particularly challenging when there is both human and camera motion. Progress on this topic has been limited by the lack of rich video data with ground truth human and camera movement. We address this with BEDLAM2.0, a new dataset that goes beyond the popular BEDLAM dataset in important ways. In addition to introducing more diverse and realistic cameras and camera motions, BEDLAM2.0 increases diversity and realism of body shape, motions, clothing, hair, and 3D environments. Additionally, it adds shoes, which were missing in BEDLAM. BEDLAM has become a key resource for training 3D human pose and motion regressors today and we show that BEDLAM2.0 is significantly better, particularly for training methods that estimate humans in world coordinates. We compare state-of-the art methods trained on BEDLAM and BEDLAM2.0, and find that BEDLAM2.0 significantly improves accuracy over BEDLAM. For research purposes, we provide the rendered videos, ground truth body parameters, and camera motions. We also provide the 3D assets to which we have rights and links to those from third parties.
comment: NeurIPS 2025 (Datasets and Benchmarks track, oral). Project website: https://bedlam2.is.tue.mpg.de
☆ Enhancing LLM-based Autonomous Driving with Modular Traffic Light and Sign Recognition
Large Language Models (LLMs) are increasingly used for decision-making and planning in autonomous driving, showing promising reasoning capabilities and potential to generalize across diverse traffic situations. However, current LLM-based driving agents lack explicit mechanisms to enforce traffic rules and often struggle to reliably detect small, safety-critical objects such as traffic lights and signs. To address this limitation, we introduce TLS-Assist, a modular redundancy layer that augments LLM-based autonomous driving agents with explicit traffic light and sign recognition. TLS-Assist converts detections into structured natural language messages that are injected into the LLM input, enforcing explicit attention to safety-critical cues. The framework is plug-and-play, model-agnostic, and supports both single-view and multi-view camera setups. We evaluate TLS-Assist in a closed-loop setup on the LangAuto benchmark in CARLA. The results demonstrate relative driving performance improvements of up to 14% over LMDrive and 7% over BEVDriver, while consistently reducing traffic light and sign infractions. We publicly release the code and models on https://github.com/iis-esslingen/TLS-Assist.
☆ Cheating Stereo Matching in Full-scale: Physical Adversarial Attack against Binocular Depth Estimation in Autonomous Driving
Though deep neural models adopted to realize the perception of autonomous driving have proven vulnerable to adversarial examples, known attacks often leverage 2D patches and target mostly monocular perception. Therefore, the effectiveness of Physical Adversarial Examples (PAEs) on stereo-based binocular depth estimation remains largely unexplored. To this end, we propose the first texture-enabled physical adversarial attack against stereo matching models in the context of autonomous driving. Our method employs a 3D PAE with global camouflage texture rather than a local 2D patch-based one, ensuring both visual consistency and attack effectiveness across different viewpoints of stereo cameras. To cope with the disparity effect of these cameras, we also propose a new 3D stereo matching rendering module that allows the PAE to be aligned with real-world positions and headings in binocular vision. We further propose a novel merging attack that seamlessly blends the target into the environment through fine-grained PAE optimization. It has significantly enhanced stealth and lethality upon existing hiding attacks that fail to get seamlessly merged into the background. Extensive evaluations show that our PAEs can successfully fool the stereo models into producing erroneous depth information.
☆ A Quantitative Method for Shoulder Presentation Evaluation in Biometric Identity Documents
International standards for biometric identity documents mandate strict compliance with pose requirements, including the square presentation of a subject's shoulders. However, the literature on automated quality assessment offers few quantitative methods for evaluating this specific attribute. This paper proposes a Shoulder Presentation Evaluation (SPE) algorithm to address this gap. The method quantifies shoulder yaw and roll using only the 3D coordinates of two shoulder landmarks provided by common pose estimation frameworks. The algorithm was evaluated on a dataset of 121 portrait images. The resulting SPE scores demonstrated a strong Pearson correlation (r approx. 0.80) with human-assigned labels. An analysis of the metric's filtering performance, using an adapted Error-versus-Discard methodology, confirmed its utility in identifying non-compliant samples. The proposed algorithm is a viable lightweight tool for automated compliance checking in enrolment systems.
comment: 13 pages, 4 figures, conference or journal submission. Course project from DTU Compute, Technical University of Denmark
☆ Blur-Robust Detection via Feature Restoration: An End-to-End Framework for Prior-Guided Infrared UAV Target Detection AAAI 2026
Infrared unmanned aerial vehicle (UAV) target images often suffer from motion blur degradation caused by rapid sensor movement, significantly reducing contrast between target and background. Generally, detection performance heavily depends on the discriminative feature representation between target and background. Existing methods typically treat deblurring as a preprocessing step focused on visual quality, while neglecting the enhancement of task-relevant features crucial for detection. Improving feature representation for detection under blur conditions remains challenging. In this paper, we propose a novel Joint Feature-Domain Deblurring and Detection end-to-end framework, dubbed JFD3. We design a dual-branch architecture with shared weights, where the clear branch guides the blurred branch to enhance discriminative feature representation. Specifically, we first introduce a lightweight feature restoration network, where features from the clear branch serve as feature-level supervision to guide the blurred branch, thereby enhancing its distinctive capability for detection. We then propose a frequency structure guidance module that refines the structure prior from the restoration network and integrates it into shallow detection layers to enrich target structural information. Finally, a feature consistency self-supervised loss is imposed between the dual-branch detection backbones, driving the blurred branch to approximate the feature representations of the clear one. Wealso construct a benchmark, named IRBlurUAV, containing 30,000 simulated and 4,118 real infrared UAV target images with diverse motion blur. Extensive experiments on IRBlurUAV demonstrate that JFD3 achieves superior detection performance while maintaining real-time efficiency.
comment: Accepted by AAAI 2026
☆ O3SLM: Open Weight, Open Data, and Open Vocabulary Sketch-Language Model AAAI 2026
While Large Vision Language Models (LVLMs) are increasingly deployed in real-world applications, their ability to interpret abstract visual inputs remains limited. Specifically, they struggle to comprehend hand-drawn sketches, a modality that offers an intuitive means of expressing concepts that are difficult to describe textually. We identify the primary bottleneck as the absence of a large-scale dataset that jointly models sketches, photorealistic images, and corresponding natural language instructions. To address this, we present two key contributions: (1) a new, large-scale dataset of image-sketch-instruction triplets designed to facilitate both pretraining and instruction tuning, and (2) O3SLM, an LVLM trained on this dataset. Comprehensive evaluations on multiple sketch-based tasks: (a) object localization, (b) counting, (c) image retrieval i.e., (SBIR and fine-grained SBIR), and (d) visual question answering (VQA); while incorporating the three existing sketch datasets, namely QuickDraw!, Sketchy, and Tu Berlin, along with our generated SketchVCL dataset, show that O3SLM achieves state-of-the-art performance, substantially outperforming existing LVLMs in sketch comprehension and reasoning.
comment: Accepted to AAAI 2026
☆ Clinically-Validated Innovative Mobile Application for Assessing Blinking and Eyelid Movements
Blinking is a vital physiological process that protects and maintains the health of the ocular surface. Objective assessment of eyelid movements remains challenging due to the complexity, cost, and limited clinical applicability of existing tools. This study presents the clinical validation of Bapp (Blink Application), a mobile application developed using the Flutter framework and integrated with Google ML Kit for on-device, real-time analysis of eyelid movements. The validation occurred using 45 videos from real patients, whose blinks were manually annotated by ophthalmology specialists from the Paulista School of Medicine of the Federal University of Sao Paulo (EPM-UNIFESP) to serve as the ground truth. Bapp's performance was evaluated using standard metrics, including Precision, Recall, and F1-Score, with results demonstrating 98.4% precision, 96.9% recall, and an overall accuracy of 98.3%. These outcomes confirm the reliability of Bapp as a portable, accessible, and objective tool for monitoring both normal and abnormal eyelid movements. The application offers a promising alternative to traditional manual blink counting, supporting continuous ocular health monitoring and postoperative evaluation in clinical environments.
comment: 14 pages, 8 figures
☆ IBGS: Image-Based Gaussian Splatting NeurIPS 2025
3D Gaussian Splatting (3DGS) has recently emerged as a fast, high-quality method for novel view synthesis (NVS). However, its use of low-degree spherical harmonics limits its ability to capture spatially varying color and view-dependent effects such as specular highlights. Existing works augment Gaussians with either a global texture map, which struggles with complex scenes, or per-Gaussian texture maps, which introduces high storage overhead. We propose Image-Based Gaussian Splatting, an efficient alternative that leverages high-resolution source images for fine details and view-specific color modeling. Specifically, we model each pixel color as a combination of a base color from standard 3DGS rendering and a learned residual inferred from neighboring training images. This promotes accurate surface alignment and enables rendering images of high-frequency details and accurate view-dependent effects. Experiments on standard NVS benchmarks show that our method significantly outperforms prior Gaussian Splatting approaches in rendering quality, without increasing the storage footprint.
comment: Accepted to NeurIPS 2025
☆ ARC-Chapter: Structuring Hour-Long Videos into Navigable Chapters and Hierarchical Summaries
The proliferation of hour-long videos (e.g., lectures, podcasts, documentaries) has intensified demand for efficient content structuring. However, existing approaches are constrained by small-scale training with annotations that are typical short and coarse, restricting generalization to nuanced transitions in long videos. We introduce ARC-Chapter, the first large-scale video chaptering model trained on over million-level long video chapters, featuring bilingual, temporally grounded, and hierarchical chapter annotations. To achieve this goal, we curated a bilingual English-Chinese chapter dataset via a structured pipeline that unifies ASR transcripts, scene texts, visual captions into multi-level annotations, from short title to long summaries. We demonstrate clear performance improvements with data scaling, both in data volume and label intensity. Moreover, we design a new evaluation metric termed GRACE, which incorporates many-to-one segment overlaps and semantic similarity, better reflecting real-world chaptering flexibility. Extensive experiments demonstrate that ARC-Chapter establishes a new state-of-the-art by a significant margin, outperforming the previous best by 14.0% in F1 score and 11.3% in SODA score. Moreover, ARC-Chapter shows excellent transferability, improving the state-of-the-art on downstream tasks like dense video captioning on YouCook2.
comment: Project Page: https://arcchapter.github.io/index_en.html
☆ Silhouette-to-Contour Registration: Aligning Intraoral Scan Models with Cephalometric Radiographs
Reliable 3D-2D alignment between intraoral scan (IOS) models and lateral cephalometric radiographs is critical for orthodontic diagnosis, yet conventional intensity-driven registration methods struggle under real clinical conditions, where cephalograms exhibit projective magnification, geometric distortion, low-contrast dental crowns, and acquisition-dependent variation. These factors hinder the stability of appearance-based similarity metrics and often lead to convergence failures or anatomically implausible alignments. To address these limitations, we propose DentalSCR, a pose-stable, contour-guided framework for accurate and interpretable silhouette-to-contour registration. Our method first constructs a U-Midline Dental Axis (UMDA) to establish a unified cross-arch anatomical coordinate system, thereby stabilizing initialization and standardizing projection geometry across cases. Using this reference frame, we generate radiograph-like projections via a surface-based DRR formulation with coronal-axis perspective and Gaussian splatting, which preserves clinical source-object-detector magnification and emphasizes external silhouettes. Registration is then formulated as a 2D similarity transform optimized with a symmetric bidirectional Chamfer distance under a hierarchical coarse-to-fine schedule, enabling both large capture range and subpixel-level contour agreement. We evaluate DentalSCR on 34 expert-annotated clinical cases. Experimental results demonstrate substantial reductions in landmark error-particularly at posterior teeth-tighter dispersion on the lower jaw, and low Chamfer and controlled Hausdorff distances at the curve level. These findings indicate that DentalSCR robustly handles real-world cephalograms and delivers high-fidelity, clinically inspectable 3D--2D alignment, outperforming conventional baselines.
☆ Going Places: Place Recognition in Artificial and Natural Systems
Place recognition, the ability to identify previously visited locations, is critical for both biological navigation and autonomous systems. This review synthesizes findings from robotic systems, animal studies, and human research to explore how different systems encode and recall place. We examine the computational and representational strategies employed across artificial systems, animals, and humans, highlighting convergent solutions such as topological mapping, cue integration, and memory management. Animal systems reveal evolved mechanisms for multimodal navigation and environmental adaptation, while human studies provide unique insights into semantic place concepts, cultural influences, and introspective capabilities. Artificial systems showcase scalable architectures and data-driven models. We propose a unifying set of concepts by which to consider and develop place recognition mechanisms and identify key challenges such as generalization, robustness, and environmental variability. This review aims to foster innovations in artificial localization by connecting future developments in artificial place recognition systems to insights from both animal navigation research and human spatial cognition studies.
☆ ArchMap: Arch-Flattening and Knowledge-Guided Vision Language Model for Tooth Counting and Structured Dental Understanding
A structured understanding of intraoral 3D scans is essential for digital orthodontics. However, existing deep-learning approaches rely heavily on modality-specific training, large annotated datasets, and controlled scanning conditions, which limit generalization across devices and hinder deployment in real clinical workflows. Moreover, raw intraoral meshes exhibit substantial variation in arch pose, incomplete geometry caused by occlusion or tooth contact, and a lack of texture cues, making unified semantic interpretation highly challenging. To address these limitations, we propose ArchMap, a training-free and knowledge-guided framework for robust structured dental understanding. ArchMap first introduces a geometry-aware arch-flattening module that standardizes raw 3D meshes into spatially aligned, continuity-preserving multi-view projections. We then construct a Dental Knowledge Base (DKB) encoding hierarchical tooth ontology, dentition-stage policies, and clinical semantics to constrain the symbolic reasoning space. We validate ArchMap on 1060 pre-/post-orthodontic cases, demonstrating robust performance in tooth counting, anatomical partitioning, dentition-stage classification, and the identification of clinical conditions such as crowding, missing teeth, prosthetics, and caries. Compared with supervised pipelines and prompted VLM baselines, ArchMap achieves higher accuracy, reduced semantic drift, and superior stability under sparse or artifact-prone conditions. As a fully training-free system, ArchMap demonstrates that combining geometric normalization with ontology-guided multimodal reasoning offers a practical and scalable solution for the structured analysis of 3D intraoral scans in modern digital orthodontics.
☆ Step by Step Network
Scaling up network depth is a fundamental pursuit in neural architecture design, as theory suggests that deeper models offer exponentially greater capability. Benefiting from the residual connections, modern neural networks can scale up to more than one hundred layers and enjoy wide success. However, as networks continue to deepen, current architectures often struggle to realize their theoretical capacity improvements, calling for more advanced designs to further unleash the potential of deeper networks. In this paper, we identify two key barriers that obstruct residual models from scaling deeper: shortcut degradation and limited width. Shortcut degradation hinders deep-layer learning, while the inherent depth-width trade-off imposes limited width. To mitigate these issues, we propose a generalized residual architecture dubbed Step by Step Network (StepsNet) to bridge the gap between theoretical potential and practical performance of deep models. Specifically, we separate features along the channel dimension and let the model learn progressively via stacking blocks with increasing width. The resulting method mitigates the two identified problems and serves as a versatile macro design applicable to various models. Extensive experiments show that our method consistently outperforms residual models across diverse tasks, including image classification, object detection, semantic segmentation, and language modeling. These results position StepsNet as a superior generalization of the widely adopted residual architecture.
☆ LSP-YOLO: A Lightweight Single-Stage Network for Sitting Posture Recognition on Embedded Devices
With the rise in sedentary behavior, health problems caused by poor sitting posture have drawn increasing attention. Most existing methods, whether using invasive sensors or computer vision, rely on two-stage pipelines, which result in high intrusiveness, intensive computation, and poor real-time performance on embedded edge devices. Inspired by YOLOv11-Pose, a lightweight single-stage network for sitting posture recognition on embedded edge devices termed LSP-YOLO was proposed. By integrating partial convolution(PConv) and Similarity-Aware Activation Module(SimAM), a lightweight module, Light-C3k2, was designed to reduce computational cost while maintaining feature extraction capability. In the recognition head, keypoints were directly mapped to posture classes through pointwise convolution, and intermediate supervision was employed to enable efficient fusion of pose estimation and classification. Furthermore, a dataset containing 5,000 images across six posture categories was constructed for model training and testing. The smallest trained model, LSP-YOLO-n, achieved 94.2% accuracy and 251 Fps on personal computer(PC) with a model size of only 1.9 MB. Meanwhile, real-time and high-accuracy inference under constrained computational resources was demonstrated on the SV830C + GC030A platform. The proposed approach is characterized by high efficiency, lightweight design and deployability, making it suitable for smart classrooms, rehabilitation, and human-computer interaction applications.
comment: Submitted to Engineering Applications of Artificial Intelligence (EAAI)
☆ Dental3R: Geometry-Aware Pairing for Intraoral 3D Reconstruction from Sparse-View Photographs
Intraoral 3D reconstruction is fundamental to digital orthodontics, yet conventional methods like intraoral scanning are inaccessible for remote tele-orthodontics, which typically relies on sparse smartphone imagery. While 3D Gaussian Splatting (3DGS) shows promise for novel view synthesis, its application to the standard clinical triad of unposed anterior and bilateral buccal photographs is challenging. The large view baselines, inconsistent illumination, and specular surfaces common in intraoral settings can destabilize simultaneous pose and geometry estimation. Furthermore, sparse-view photometric supervision often induces a frequency bias, leading to over-smoothed reconstructions that lose critical diagnostic details. To address these limitations, we propose \textbf{Dental3R}, a pose-free, graph-guided pipeline for robust, high-fidelity reconstruction from sparse intraoral photographs. Our method first constructs a Geometry-Aware Pairing Strategy (GAPS) to intelligently select a compact subgraph of high-value image pairs. The GAPS focuses on correspondence matching, thereby improving the stability of the geometry initialization and reducing memory usage. Building on the recovered poses and point cloud, we train the 3DGS model with a wavelet-regularized objective. By enforcing band-limited fidelity using a discrete wavelet transform, our approach preserves fine enamel boundaries and interproximal edges while suppressing high-frequency artifacts. We validate our approach on a large-scale dataset of 950 clinical cases and an additional video-based test set of 195 cases. Experimental results demonstrate that Dental3R effectively handles sparse, unposed inputs and achieves superior novel view synthesis quality for dental occlusion visualization, outperforming state-of-the-art methods.
☆ Iterative Diffusion-Refined Neural Attenuation Fields for Multi-Source Stationary CT Reconstruction: NAF Meets Diffusion Model
Multi-source stationary computed tomography (CT) has recently attracted attention for its ability to achieve rapid image reconstruction, making it suitable for time-sensitive clinical and industrial applications. However, practical systems are often constrained by ultra-sparse-view sampling, which significantly degrades reconstruction quality. Traditional methods struggle under ultra-sparse-view settings, where interpolation becomes inaccurate and the resulting reconstructions are unsatisfactory. To address this challenge, this study proposes Diffusion-Refined Neural Attenuation Fields (Diff-NAF), an iterative framework tailored for multi-source stationary CT under ultra-sparse-view conditions. Diff-NAF combines a Neural Attenuation Field representation with a dual-branch conditional diffusion model. The process begins by training an initial NAF using ultra-sparse-view projections. New projections are then generated through an Angle-Prior Guided Projection Synthesis strategy that exploits inter view priors, and are subsequently refined by a Diffusion-driven Reuse Projection Refinement Module. The refined projections are incorporated as pseudo-labels into the training set for the next iteration. Through iterative refinement, Diff-NAF progressively enhances projection completeness and reconstruction fidelity under ultra-sparse-view conditions, ultimately yielding high-quality CT reconstructions. Experimental results on multiple simulated 3D CT volumes and real projection data demonstrate that Diff-NAF achieves the best performance under ultra-sparse-view conditions.
☆ SAM-Fed: SAM-Guided Federated Semi-Supervised Learning for Medical Image Segmentation
Medical image segmentation is clinically important, yet data privacy and the cost of expert annotation limit the availability of labeled data. Federated semi-supervised learning (FSSL) offers a solution but faces two challenges: pseudo-label reliability depends on the strength of local models, and client devices often require compact or heterogeneous architectures due to limited computational resources. These constraints reduce the quality and stability of pseudo-labels, while large models, though more accurate, cannot be trained or used for routine inference on client devices. We propose SAM-Fed, a federated semi-supervised framework that leverages a high-capacity segmentation foundation model to guide lightweight clients during training. SAM-Fed combines dual knowledge distillation with an adaptive agreement mechanism to refine pixel-level supervision. Experiments on skin lesion and polyp segmentation across homogeneous and heterogeneous settings show that SAM-Fed consistently outperforms state-of-the-art FSSL methods.
☆ GEN3D: Generating Domain-Free 3D Scenes from a Single Image
Despite recent advancements in neural 3D reconstruction, the dependence on dense multi-view captures restricts their broader applicability. Additionally, 3D scene generation is vital for advancing embodied AI and world models, which depend on diverse, high-quality scenes for learning and evaluation. In this work, we propose Gen3d, a novel method for generation of high-quality, wide-scope, and generic 3D scenes from a single image. After the initial point cloud is created by lifting the RGBD image, Gen3d maintains and expands its world model. The 3D scene is finalized through optimizing a Gaussian splatting representation. Extensive experiments on diverse datasets demonstrate the strong generalization capability and superior performance of our method in generating a world model and Synthesizing high-fidelity and consistent novel views.
comment: 5 pages , 2 figures
☆ NeuralBoneReg: A Novel Self-Supervised Method for Robust and Accurate Multi-Modal Bone Surface Registration
In computer- and robot-assisted orthopedic surgery (CAOS), patient-specific surgical plans derived from preoperative imaging define target locations and implant trajectories. During surgery, these plans must be accurately transferred, relying on precise cross-registration between preoperative and intraoperative data. However, substantial modality heterogeneity across imaging modalities makes this registration challenging and error-prone. Robust, automatic, and modality-agnostic bone surface registration is therefore clinically important. We propose NeuralBoneReg, a self-supervised, surface-based framework that registers bone surfaces using 3D point clouds as a modality-agnostic representation. NeuralBoneReg includes two modules: an implicit neural unsigned distance field (UDF) that learns the preoperative bone model, and an MLP-based registration module that performs global initialization and local refinement by generating transformation hypotheses to align the intraoperative point cloud with the neural UDF. Unlike SOTA supervised methods, NeuralBoneReg operates in a self-supervised manner, without requiring inter-subject training data. We evaluated NeuralBoneReg against baseline methods on two publicly available multi-modal datasets: a CT-ultrasound dataset of the fibula and tibia (UltraBones100k) and a CT-RGB-D dataset of spinal vertebrae (SpineDepth). The evaluation also includes a newly introduced CT--ultrasound dataset of cadaveric subjects containing femur and pelvis (UltraBones-Hip), which will be made publicly available. NeuralBoneReg matches or surpasses existing methods across all datasets, achieving mean RRE/RTE of 1.68°/1.86 mm on UltraBones100k, 1.88°/1.89 mm on UltraBones-Hip, and 3.79°/2.45 mm on SpineDepth. These results demonstrate strong generalizability across anatomies and modalities, providing robust and accurate cross-modal alignment for CAOS.
☆ NeuralSSD: A Neural Solver for Signed Distance Surface Reconstruction
We proposed a generalized method, NeuralSSD, for reconstructing a 3D implicit surface from the widely-available point cloud data. NeuralSSD is a solver-based on the neural Galerkin method, aimed at reconstructing higher-quality and accurate surfaces from input point clouds. Implicit method is preferred due to its ability to accurately represent shapes and its robustness in handling topological changes. However, existing parameterizations of implicit fields lack explicit mechanisms to ensure a tight fit between the surface and input data. To address this, we propose a novel energy equation that balances the reliability of point cloud information. Additionally, we introduce a new convolutional network that learns three-dimensional information to achieve superior optimization results. This approach ensures that the reconstructed surface closely adheres to the raw input points and infers valuable inductive biases from point clouds, resulting in a highly accurate and stable surface reconstruction. NeuralSSD is evaluated on a variety of challenging datasets, including the ShapeNet and Matterport datasets, and achieves state-of-the-art results in terms of both surface reconstruction accuracy and generalizability.
comment: Under review
☆ Free Lunch to Meet the Gap: Intermediate Domain Reconstruction for Cross-Domain Few-Shot Learning
Cross-Domain Few-Shot Learning (CDFSL) endeavors to transfer generalized knowledge from the source domain to target domains using only a minimal amount of training data, which faces a triplet of learning challenges in the meantime, i.e., semantic disjoint, large domain discrepancy, and data scarcity. Different from predominant CDFSL works focused on generalized representations, we make novel attempts to construct Intermediate Domain Proxies (IDP) with source feature embeddings as the codebook and reconstruct the target domain feature with this learned codebook. We then conduct an empirical study to explore the intrinsic attributes from perspectives of visual styles and semantic contents in intermediate domain proxies. Reaping benefits from these attributes of intermediate domains, we develop a fast domain alignment method to use these proxies as learning guidance for target domain feature transformation. With the collaborative learning of intermediate domain reconstruction and target feature transformation, our proposed model is able to surpass the state-of-the-art models by a margin on 8 cross-domain few-shot learning benchmarks.
comment: Accepted to IJCV 2025
☆ Let Language Constrain Geometry: Vision-Language Models as Semantic and Spatial Critics for 3D Generation
Text-to-3D generation has advanced rapidly, yet state-of-the-art models, encompassing both optimization-based and feed-forward architectures, still face two fundamental limitations. First, they struggle with coarse semantic alignment, often failing to capture fine-grained prompt details. Second, they lack robust 3D spatial understanding, leading to geometric inconsistencies and catastrophic failures in part assembly and spatial relationships. To address these challenges, we propose VLM3D, a general framework that repurposes large vision-language models (VLMs) as powerful, differentiable semantic and spatial critics. Our core contribution is a dual-query critic signal derived from the VLM's Yes or No log-odds, which assesses both semantic fidelity and geometric coherence. We demonstrate the generality of this guidance signal across two distinct paradigms: (1) As a reward objective for optimization-based pipelines, VLM3D significantly outperforms existing methods on standard benchmarks. (2) As a test-time guidance module for feed-forward pipelines, it actively steers the iterative sampling process of SOTA native 3D models to correct severe spatial errors. VLM3D establishes a principled and generalizable path to inject the VLM's rich, language-grounded understanding of both semantics and space into diverse 3D generative pipelines.
☆ Gaussian Splatting-based Low-Rank Tensor Representation for Multi-Dimensional Image Recovery
Tensor singular value decomposition (t-SVD) is a promising tool for multi-dimensional image representation, which decomposes a multi-dimensional image into a latent tensor and an accompanying transform matrix. However, two critical limitations of t-SVD methods persist: (1) the approximation of the latent tensor (e.g., tensor factorizations) is coarse and fails to accurately capture spatial local high-frequency information; (2) The transform matrix is composed of fixed basis atoms (e.g., complex exponential atoms in DFT and cosine atoms in DCT) and cannot precisely capture local high-frequency information along the mode-3 fibers. To address these two limitations, we propose a Gaussian Splatting-based Low-rank tensor Representation (GSLR) framework, which compactly and continuously represents multi-dimensional images. Specifically, we leverage tailored 2D Gaussian splatting and 1D Gaussian splatting to generate the latent tensor and transform matrix, respectively. The 2D and 1D Gaussian splatting are indispensable and complementary under this representation framework, which enjoys a powerful representation capability, especially for local high-frequency information. To evaluate the representation ability of the proposed GSLR, we develop an unsupervised GSLR-based multi-dimensional image recovery model. Extensive experiments on multi-dimensional image recovery demonstrate that GSLR consistently outperforms state-of-the-art methods, particularly in capturing local high-frequency information.
☆ ManipShield: A Unified Framework for Image Manipulation Detection, Localization and Explanation
With the rapid advancement of generative models, powerful image editing methods now enable diverse and highly realistic image manipulations that far surpass traditional deepfake techniques, posing new challenges for manipulation detection. Existing image manipulation detection and localization (IMDL) benchmarks suffer from limited content diversity, narrow generative-model coverage, and insufficient interpretability, which hinders the generalization and explanation capabilities of current manipulation detection methods. To address these limitations, we introduce \textbf{ManipBench}, a large-scale benchmark for image manipulation detection and localization focusing on AI-edited images. ManipBench contains over 450K manipulated images produced by 25 state-of-the-art image editing models across 12 manipulation categories, among which 100K images are further annotated with bounding boxes, judgment cues, and textual explanations to support interpretable detection. Building upon ManipBench, we propose \textbf{ManipShield}, an all-in-one model based on a Multimodal Large Language Model (MLLM) that leverages contrastive LoRA fine-tuning and task-specific decoders to achieve unified image manipulation detection, localization, and explanation. Extensive experiments on ManipBench and several public datasets demonstrate that ManipShield achieves state-of-the-art performance and exhibits strong generality to unseen manipulation models. Both ManipBench and ManipShield will be released upon publication.
☆ V2VLoc: Robust GNSS-Free Collaborative Perception via LiDAR Localization AAAI2026
Multi-agents rely on accurate poses to share and align observations, enabling a collaborative perception of the environment. However, traditional GNSS-based localization often fails in GNSS-denied environments, making consistent feature alignment difficult in collaboration. To tackle this challenge, we propose a robust GNSS-free collaborative perception framework based on LiDAR localization. Specifically, we propose a lightweight Pose Generator with Confidence (PGC) to estimate compact pose and confidence representations. To alleviate the effects of localization errors, we further develop the Pose-Aware Spatio-Temporal Alignment Transformer (PASTAT), which performs confidence-aware spatial alignment while capturing essential temporal context. Additionally, we present a new simulation dataset, V2VLoc, which can be adapted for both LiDAR localization and collaborative detection tasks. V2VLoc comprises three subsets: Town1Loc, Town4Loc, and V2VDet. Town1Loc and Town4Loc offer multi-traversal sequences for training in localization tasks, whereas V2VDet is specifically intended for the collaborative detection task. Extensive experiments conducted on the V2VLoc dataset demonstrate that our approach achieves state-of-the-art performance under GNSS-denied conditions. We further conduct extended experiments on the real-world V2V4Real dataset to validate the effectiveness and generalizability of PASTAT.
comment: AAAI2026
☆ Enhancing Generalization of Depth Estimation Foundation Model via Weakly-Supervised Adaptation with Regularization AAAI 2026
The emergence of foundation models has substantially advanced zero-shot generalization in monocular depth estimation (MDE), as exemplified by the Depth Anything series. However, given access to some data from downstream tasks, a natural question arises: can the performance of these models be further improved? To this end, we propose WeSTAR, a parameter-efficient framework that performs Weakly supervised Self-Training Adaptation with Regularization, designed to enhance the robustness of MDE foundation models in unseen and diverse domains. We first adopt a dense self-training objective as the primary source of structural self-supervision. To further improve robustness, we introduce semantically-aware hierarchical normalization, which exploits instance-level segmentation maps to perform more stable and multi-scale structural normalization. Beyond dense supervision, we introduce a cost-efficient weak supervision in the form of pairwise ordinal depth annotations to further guide the adaptation process, which enforces informative ordinal constraints to mitigate local topological errors. Finally, a weight regularization loss is employed to anchor the LoRA updates, ensuring training stability and preserving the model's generalizable knowledge. Extensive experiments on both realistic and corrupted out-of-distribution datasets under diverse and challenging scenarios demonstrate that WeSTAR consistently improves generalization and achieves state-of-the-art performance across a wide range of benchmarks.
comment: Accepted by AAAI 2026
☆ Breaking the Passive Learning Trap: An Active Perception Strategy for Human Motion Prediction
Forecasting 3D human motion is an important embodiment of fine-grained understanding and cognition of human behavior by artificial agents. Current approaches excessively rely on implicit network modeling of spatiotemporal relationships and motion characteristics, falling into the passive learning trap that results in redundant and monotonous 3D coordinate information acquisition while lacking actively guided explicit learning mechanisms. To overcome these issues, we propose an Active Perceptual Strategy (APS) for human motion prediction, leveraging quotient space representations to explicitly encode motion properties while introducing auxiliary learning objectives to strengthen spatio-temporal modeling. Specifically, we first design a data perception module that projects poses into the quotient space, decoupling motion geometry from coordinate redundancy. By jointly encoding tangent vectors and Grassmann projections, this module simultaneously achieves geometric dimension reduction, semantic decoupling, and dynamic constraint enforcement for effective motion pose characterization. Furthermore, we introduce a network perception module that actively learns spatio-temporal dependencies through restorative learning. This module deliberately masks specific joints or injects noise to construct auxiliary supervision signals. A dedicated auxiliary learning network is designed to actively adapt and learn from perturbed information. Notably, APS is model agnostic and can be integrated with different prediction models to enhance active perceptual. The experimental results demonstrate that our method achieves the new state-of-the-art, outperforming existing methods by large margins: 16.3% on H3.6M, 13.9% on CMU Mocap, and 10.1% on 3DPW.
comment: 8 pages, 3 figures
☆ StreamingTalker: Audio-driven 3D Facial Animation with Autoregressive Diffusion Model
This paper focuses on the task of speech-driven 3D facial animation, which aims to generate realistic and synchronized facial motions driven by speech inputs.Recent methods have employed audio-conditioned diffusion models for 3D facial animation, achieving impressive results in generating expressive and natural animations.However, these methods process the whole audio sequences in a single pass, which poses two major challenges: they tend to perform poorly when handling audio sequences that exceed the training horizon and will suffer from significant latency when processing long audio inputs. To address these limitations, we propose a novel autoregressive diffusion model that processes input audio in a streaming manner. This design ensures flexibility with varying audio lengths and achieves low latency independent of audio duration. Specifically, we select a limited number of past frames as historical motion context and combine them with the audio input to create a dynamic condition. This condition guides the diffusion process to iteratively generate facial motion frames, enabling real-time synthesis with high-quality results. Additionally, we implemented a real-time interactive demo, highlighting the effectiveness and efficiency of our approach. We will release the code at https://zju3dv.github.io/StreamingTalker/.
☆ Measurement-Constrained Sampling for Text-Prompted Blind Face Restoration
Blind face restoration (BFR) may correspond to multiple plausible high-quality (HQ) reconstructions under extremely low-quality (LQ) inputs. However, existing methods typically produce deterministic results, struggling to capture this one-to-many nature. In this paper, we propose a Measurement-Constrained Sampling (MCS) approach that enables diverse LQ face reconstructions conditioned on different textual prompts. Specifically, we formulate BFR as a measurement-constrained generative task by constructing an inverse problem through controlled degradations of coarse restorations, which allows posterior-guided sampling within text-to-image diffusion. Measurement constraints include both Forward Measurement, which ensures results align with input structures, and Reverse Measurement, which produces projection spaces, ensuring that the solution can align with various prompts. Experiments show that our MCS can generate prompt-aligned results and outperforms existing BFR methods. Codes will be released after acceptance.
☆ Orion: A Unified Visual Agent for Multimodal Perception, Advanced Visual Reasoning and Execution
We introduce Orion, a visual agent framework that can take in any modality and generate any modality. Using an agentic framework with multiple tool-calling capabilities, Orion is designed for visual AI tasks and achieves state-of-the-art results. Unlike traditional vision-language models that produce descriptive outputs, Orion orchestrates a suite of specialized computer vision tools, including object detection, keypoint localization, panoptic segmentation, Optical Character Recognition, and geometric analysis, to execute complex multi-step visual workflows. The system achieves competitive performance on MMMU, MMBench, DocVQA, and MMLongBench while extending monolithic vision-language models to production-grade visual intelligence. By combining neural perception with symbolic execution, Orion enables autonomous visual reasoning, marking a transition from passive visual understanding to active, tool-driven visual intelligence.
☆ InstantViR: Real-Time Video Inverse Problem Solver with Distilled Diffusion Prior
Video inverse problems are fundamental to streaming, telepresence, and AR/VR, where high perceptual quality must coexist with tight latency constraints. Diffusion-based priors currently deliver state-of-the-art reconstructions, but existing approaches either adapt image diffusion models with ad hoc temporal regularizers - leading to temporal artifacts - or rely on native video diffusion models whose iterative posterior sampling is far too slow for real-time use. We introduce InstantViR, an amortized inference framework for ultra-fast video reconstruction powered by a pre-trained video diffusion prior. We distill a powerful bidirectional video diffusion model (teacher) into a causal autoregressive student that maps a degraded video directly to its restored version in a single forward pass, inheriting the teacher's strong temporal modeling while completely removing iterative test-time optimization. The distillation is prior-driven: it only requires the teacher diffusion model and known degradation operators, and does not rely on externally paired clean/noisy video data. To further boost throughput, we replace the video-diffusion backbone VAE with a high-efficiency LeanVAE via an innovative teacher-space regularized distillation scheme, enabling low-latency latent-space processing. Across streaming random inpainting, Gaussian deblurring and super-resolution, InstantViR matches or surpasses the reconstruction quality of diffusion-based baselines while running at over 35 FPS on NVIDIA A100 GPUs, achieving up to 100 times speedups over iterative video diffusion solvers. These results show that diffusion-based video reconstruction is compatible with real-time, interactive, editable, streaming scenarios, turning high-quality video restoration into a practical component of modern vision systems.
☆ Multi-Scale Correlation-Aware Transformer for Maritime Vessel Re-Identification
Maritime vessel re-identification (Re-ID) plays a crucial role in advancing maritime monitoring and intelligent situational awareness systems. However, some existing vessel Re-ID methods are directly adapted from pedestrian-focused algorithms, making them ill-suited for mitigating the unique problems present in vessel images, particularly the greater intra-identity variations and more severe missing of local parts, which lead to the emergence of outlier samples within the same identity. To address these challenges, we propose the Multi-scale Correlation-aware Transformer Network (MCFormer), which explicitly models multi-scale correlations across the entire input set to suppress the adverse effects of outlier samples with intra-identity variations or local missing, incorporating two novel modules, the Global Correlation Module (GCM), and the Local Correlation Module (LCM). Specifically, GCM constructs a global similarity affinity matrix across all input images to model global correlations through feature aggregation based on inter-image consistency, rather than solely learning features from individual images as in most existing approaches. Simultaneously, LCM mines and aligns local features of positive samples with contextual similarity to extract local correlations by maintaining a dynamic memory bank, effectively compensating for missing or occluded regions in individual images. To further enhance feature robustness, MCFormer integrates global and local features that have been respectively correlated across multiple scales, effectively capturing latent relationships among image features. Experiments on three benchmarks demonstrate that MCFormer achieves state-of-the-art performance.
☆ Online Data Curation for Object Detection via Marginal Contributions to Dataset-level Average Precision
High-quality data has become a primary driver of progress under scale laws, with curated datasets often outperforming much larger unfiltered ones at lower cost. Online data curation extends this idea by dynamically selecting training samples based on the model's evolving state. While effective in classification and multimodal learning, existing online sampling strategies rarely extend to object detection because of its structural complexity and domain gaps. We introduce DetGain, an online data curation method specifically for object detection that estimates the marginal perturbation of each image to dataset-level Average Precision (AP) based on its prediction quality. By modeling global score distributions, DetGain efficiently estimates the global AP change and computes teacher-student contribution gaps to select informative samples at each iteration. The method is architecture-agnostic and minimally intrusive, enabling straightforward integration into diverse object detection architectures. Experiments on the COCO dataset with multiple representative detectors show consistent improvements in accuracy. DetGain also demonstrates strong robustness under low-quality data and can be effectively combined with knowledge distillation techniques to further enhance performance, highlighting its potential as a general and complementary strategy for data-efficient object detection.
comment: preprint version, under review
☆ MindCross: Fast New Subject Adaptation with Limited Data for Cross-subject Video Reconstruction from Brain Signals AAAI 2026
Reconstructing video from brain signals is an important brain decoding task. Existing brain decoding frameworks are primarily built on a subject-dependent paradigm, which requires large amounts of brain data for each subject. However, the expensive cost of collecting brain-video data causes severe data scarcity. Although some cross-subject methods being introduced, they often overfocus with subject-invariant information while neglecting subject-specific information, resulting in slow fine-tune-based adaptation strategy. To achieve fast and data-efficient new subject adaptation, we propose MindCross, a novel cross-subject framework. MindCross's N specific encoders and one shared encoder are designed to extract subject-specific and subject-invariant information, respectively. Additionally, a Top-K collaboration module is adopted to enhance new subject decoding with the knowledge learned from previous subjects' encoders. Extensive experiments on fMRI/EEG-to-video benchmarks demonstrate MindCross's efficacy and efficiency of cross-subject decoding and new subject adaptation using only one model.
comment: AAAI 2026, 16 pages
☆ Hierarchical Semantic Learning for Multi-Class Aorta Segmentation MICCAI 2024
The aorta, the body's largest artery, is prone to pathologies such as dissection, aneurysm, and atherosclerosis, which often require timely intervention. Minimally invasive repairs involving branch vessels necessitate detailed 3D anatomical analysis. Existing methods often overlook hierarchical anatomical relationships while struggling with severe class imbalance inherent in vascular structures. We address these challenges with a curriculum learning strategy that leverages a novel fractal softmax for hierarchical semantic learning. Inspired by human cognition, our approach progressively learns anatomical constraints by decomposing complex structures from simple to complex components. The curriculum learning framework naturally addresses class imbalance by first establishing robust feature representations for dominant classes before tackling rare but anatomically critical structures, significantly accelerating model convergence in multi-class scenarios. Our two-stage inference strategy achieves up to fivefold acceleration, enhancing clinical practicality. On the validation set at epoch 50, our hierarchical semantic loss improves the Dice score of nnU-Net ResEnc M by 11.65%. The proposed model demonstrates a 5.6% higher Dice score than baselines on the test set. Experimental results show significant improvements in segmentation accuracy and efficiency, making the framework suitable for real-time clinical applications. The implementation code for this challenge entry is publicly available at: https://github.com/PengchengShi1220/AortaSeg24. The code for fractal softmax will be available at https://github.com/PengchengShi1220/fractal-softmax.
comment: Accepted by MICCAI 2024 Workshop AortaSeg
☆ Few-Shot Precise Event Spotting via Unified Multi-Entity Graph and Distillation AAAI
Precise event spotting (PES) aims to recognize fine-grained events at exact moments and has become a key component of sports analytics. This task is particularly challenging due to rapid succession, motion blur, and subtle visual differences. Consequently, most existing methods rely on domain-specific, end-to-end training with large labeled datasets and often struggle in few-shot conditions due to their dependence on pixel- or pose-based inputs alone. However, obtaining large labeled datasets is practically hard. We propose a Unified Multi-Entity Graph Network (UMEG-Net) for few-shot PES. UMEG-Net integrates human skeletons and sport-specific object keypoints into a unified graph and features an efficient spatio-temporal extraction module based on advanced GCN and multi-scale temporal shift. To further enhance performance, we employ multimodal distillation to transfer knowledge from keypoint-based graphs to visual representations. Our approach achieves robust performance with limited labeled data and significantly outperforms baseline models in few-shot settings, providing a scalable and effective solution for few-shot PES. Code is publicly available at https://github.com/LZYAndy/UMEG-Net.
comment: The 40th Annual AAAI Conference on Artificial Intelligence (AAAI 2026)
☆ PAVE: An End-to-End Dataset for Production Autonomous Vehicle Evaluation
Most existing autonomous-driving datasets (e.g., KITTI, nuScenes, and the Waymo Perception Dataset), collected by human-driving mode or unidentified driving mode, can only serve as early training for the perception and prediction of autonomous vehicles (AVs). To evaluate the real behavioral safety of AVs controlled in the black box, we present the first end-to-end benchmark dataset collected entirely by autonomous-driving mode in the real world. This dataset contains over 100 hours of naturalistic data from multiple production autonomous-driving vehicle models in the market. We segment the original data into 32,727 key frames, each consisting of four synchronized camera images and high-precision GNSS/IMU data (0.8 cm localization accuracy). For each key frame, 20 Hz vehicle trajectories spanning the past 6 s and future 5 s are provided, along with detailed 2D annotations of surrounding vehicles, pedestrians, traffic lights, and traffic signs. These key frames have rich scenario-level attributes, including driver intent, area type (covering highways, urban roads, and residential areas), lighting (day, night, or dusk), weather (clear or rain), road surface (paved or unpaved), traffic and vulnerable road users (VRU) density, traffic lights, and traffic signs (warning, prohibition, and indication). To evaluate the safety of AVs, we employ an end-to-end motion planning model that predicts vehicle trajectories with an Average Displacement Error (ADE) of 1.4 m on autonomous-driving frames. The dataset continues to expand by over 10 hours of new data weekly, thereby providing a sustainable foundation for research on AV driving behavior analysis and safety evaluation.
♻ ☆ OG-VLA: Orthographic Image Generation for 3D-Aware Vision-Language Action Model
We introduce OG-VLA, a novel architecture and learning framework that combines the generalization strengths of Vision Language Action models (VLAs) with the robustness of 3D-aware policies. We address the challenge of mapping natural language instructions and one or more RGBD observations to quasi-static robot actions. 3D-aware robot policies achieve state-of-the-art performance on precise robot manipulation tasks, but struggle with generalization to unseen instructions, scenes, and objects. On the other hand, VLAs excel at generalizing across instructions and scenes, but can be sensitive to camera and robot pose variations. We leverage prior knowledge embedded in language and vision foundation models to improve generalization of 3D-aware keyframe policies. OG-VLA unprojects input observations from diverse views into a point cloud which is then rendered from canonical orthographic views, ensuring input view invariance and consistency between input and output spaces. These canonical views are processed with a vision backbone, a Large Language Model (LLM), and an image diffusion model to generate images that encode the next position and orientation of the end-effector on the input scene. Evaluations on the Arnold and Colosseum benchmarks demonstrate state-of-the-art generalization to unseen environments, with over 40% relative improvements while maintaining robust performance in seen settings. We also show real-world adaption in 3 to 5 demonstrations along with strong generalization. Videos and resources at https://og-vla.github.io/
comment: 13 pages
♻ ☆ LED: Light Enhanced Depth Estimation at Night BMVC 2025
Nighttime camera-based depth estimation is a highly challenging task, especially for autonomous driving applications, where accurate depth perception is essential for ensuring safe navigation. Models trained on daytime data often fail in the absence of precise but costly LiDAR. Even vision foundation models trained on large amounts of data are unreliable in low-light conditions. In this work, we aim to improve the reliability of perception systems at night time. To this end, we introduce Light Enhanced Depth (LED), a novel, cost-effective approach that significantly improves depth estimation in low-light environments by harnessing a pattern projected by high definition headlights available in modern vehicles. LED leads to significant performance boosts across multiple depth-estimation architectures (encoder-decoder, Adabins, DepthFormer, Depth Anything V2) both on synthetic and real datasets. Furthermore, increased performances beyond illuminated areas reveal a holistic enhancement in scene understanding. Finally, we release the Nighttime Synthetic Drive Dataset, a synthetic and photo-realistic nighttime dataset, which comprises 49,990 comprehensively annotated images.
comment: BMVC 2025 (Poster). Code and dataset available on the project page : https://simondemoreau.github.io/LED/ 21 pages, 13 figures
♻ ☆ StrokeFusion: Vector Sketch Generation via Joint Stroke-UDF Encoding and Latent Sequence Diffusion
In the field of sketch generation, raster-format trained models often produce non-stroke artifacts, while vector-format trained models typically lack a holistic understanding of sketches, leading to compromised recognizability. Moreover, existing methods struggle to extract common features from similar elements (e.g., eyes of animals) appearing at varying positions across sketches. To address these challenges, we propose StrokeFusion, a two-stage framework for vector sketch generation. It contains a dual-modal sketch feature learning network that maps strokes into a high-quality latent space. This network decomposes sketches into normalized strokes and jointly encodes stroke sequences with Unsigned Distance Function (UDF) maps, representing sketches as sets of stroke feature vectors. Building upon this representation, our framework exploits a stroke-level latent diffusion model that simultaneously adjusts stroke position, scale, and trajectory during generation. This enables high-fidelity sketch generation while supporting stroke interpolation editing. Extensive experiments on the QuickDraw dataset demonstrate that our framework outperforms state-of-the-art techniques, validating its effectiveness in preserving structural integrity and semantic features. Code and models will be made publicly available upon publication.
♻ ☆ Measuring Train Driver Performance as Key to Approval of Driverless Trains
Points 2.1.4(b), 2.4.2(b) and 2.4.3(b) in Annex I of Implementing Regulation (EU) No. 402/2013 allow a simplified approach for the safety approval of computer vision systems for driverless trains, if they have 'similar' functions and interfaces as the replaced human driver. The human driver is not replaced one-to-one by a technical system - only a limited set of cognitive functions are replaced. However, performance in the most challenging function, obstacle detection, is difficult to quantify due to the deficiency of published measurement results. This article summarizes the data published so far. This article also goes a long way to remedy this situation by providing a new public and anonymized dataset of 711 train driver performance measurements from controlled experiments. The measurements are made for different speeds, obstacle sizes, train protection systems and obstacle color contrasts respectively. The measured values are reaction time and distance to the obstacle. The goal of this paper is an unbiased and exhaustive description of the presented dataset for research, standardization and regulation. The dataset with supplementing information and literature is published on https://data.fid-move.de/de/dataset/atosensedata
comment: 6 pages, 3 figures
♻ ☆ Accuracy is Not Enough: Poisoning Interpretability in Federated Learning via Color Skew
As machine learning models are increasingly deployed in safety-critical domains, visual explanation techniques have become essential tools for supporting transparency. In this work, we reveal a new class of attacks that compromise model interpretability without affecting accuracy. Specifically, we show that small color perturbations applied by adversarial clients in a federated learning setting can shift a model's saliency maps away from semantically meaningful regions while keeping the prediction unchanged. The proposed saliency-aware attack framework, called Chromatic Perturbation Module, systematically crafts adversarial examples by altering the color contrast between foreground and background in a way that disrupts explanation fidelity. These perturbations accumulate across training rounds, poisoning the global model's internal feature attributions in a stealthy and persistent manner. Our findings challenge a common assumption in model auditing that correct predictions imply faithful explanations and demonstrate that interpretability itself can be an attack surface. We evaluate this vulnerability across multiple datasets and show that standard training pipelines are insufficient to detect or mitigate explanation degradation, especially in the federated learning setting, where subtle color perturbations are harder to discern. Our attack reduces peak activation overlap in Grad-CAM explanations by up to 35% while preserving classification accuracy above 96% on all evaluated datasets.
♻ ☆ GMAT: Grounded Multi-Agent Clinical Description Generation for Text Encoder in Vision-Language MIL for Whole Slide Image Classification MICCAI
Multiple Instance Learning (MIL) is the leading approach for whole slide image (WSI) classification, enabling efficient analysis of gigapixel pathology slides. Recent work has introduced vision-language models (VLMs) into MIL pipelines to incorporate medical knowledge through text-based class descriptions rather than simple class names. However, when these methods rely on large language models (LLMs) to generate clinical descriptions or use fixed-length prompts to represent complex pathology concepts, the limited token capacity of VLMs often constrains the expressiveness and richness of the encoded class information. Additionally, descriptions generated solely by LLMs may lack domain grounding and fine-grained medical specificity, leading to suboptimal alignment with visual features. To address these challenges, we propose a vision-language MIL framework with two key contributions: (1) A grounded multi-agent description generation system that leverages curated pathology textbooks and agent specialization (e.g., morphology, spatial context) to produce accurate and diverse clinical descriptions; (2) A text encoding strategy using a list of descriptions rather than a single prompt, capturing fine-grained and complementary clinical signals for better alignment with visual features. Integrated into a VLM-MIL pipeline, our approach shows improved performance over single-prompt class baselines and achieves results comparable to state-of-the-art models, as demonstrated on renal and lung cancer datasets.
comment: Acccepted in MICCAI Workshop 2025
♻ ☆ Real-Time Sign Language to text Translation using Deep Learning: A Comparative study of LSTM and 3D CNN
This study investigates the performance of 3D Convolutional Neural Networks (3D CNNs) and Long Short-Term Memory (LSTM) networks for real-time American Sign Language (ASL) recognition. Though 3D CNNs are good at spatiotemporal feature extraction from video sequences, LSTMs are optimized for modeling temporal dependencies in sequential data. We evaluate both architectures on a dataset containing 1,200 ASL signs across 50 classes, comparing their accuracy, computational efficiency, and latency under similar training conditions. Experimental results demonstrate that 3D CNNs achieve 92.4% recognition accuracy but require 3.2% more processing time per frame compared to LSTMs, which maintain 86.7% accuracy with significantly lower resource consumption. The hybrid 3D CNNLSTM model shows decent performance, which suggests that context-dependent architecture selection is crucial for practical implementation.This project provides professional benchmarks for developing assistive technologies, highlighting trade-offs between recognition precision and real-time operational requirements in edge computing environments.
♻ ☆ MOON: Generative MLLM-based Multimodal Representation Learning for E-commerce Product Understanding WSDM 2026
With the rapid advancement of e-commerce, exploring general representations rather than task-specific ones has attracted increasing research attention. For product understanding, although existing discriminative dual-flow architectures drive progress in this field, they inherently struggle to model the many-to-one alignment between multiple images and texts of products. Therefore, we argue that generative Multimodal Large Language Models (MLLMs) hold significant potential for improving product representation learning. Nevertheless, achieving this goal still remains non-trivial due to several key challenges: the lack of multimodal and aspect-aware modeling modules in typical LLMs; the common presence of background noise in product images; and the absence of a standard benchmark for evaluation. To address these issues, we propose the first generative MLLM-based model named MOON for product representation learning. Our method (1) employs a guided Mixture-of-Experts (MoE) module for targeted modeling of multimodal and aspect-specific product content; (2) effectively detects core semantic regions in product images to mitigate the distraction and interference caused by background noise; and (3) introduces the specialized negative sampling strategy to increase the difficulty and diversity of negative samples. In addition, we release a large-scale multimodal benchmark MBE for various product understanding tasks. Experimentally, our model demonstrates competitive zero-shot performance on both our benchmark and the public dataset, showcasing strong generalization across various downstream tasks, including cross-modal retrieval, product classification, and attribute prediction. Furthermore, the case study and visualization illustrate the effectiveness of MOON for product understanding.
comment: Accepted by WSDM 2026. 11 pages, 9 figures
♻ ☆ MOON Embedding: Multimodal Representation Learning for E-commerce Search Advertising
We introduce MOON, our comprehensive set of sustainable iterative practices for multimodal representation learning for e-commerce applications. MOON has already been fully deployed across all stages of Taobao search advertising system, including retrieval, relevance, ranking, and so on. The performance gains are particularly significant on click-through rate (CTR) prediction task, which achieves an overall +20.00% online CTR improvement. Over the past three years, this project has delivered the largest improvement on CTR prediction task and undergone five full-scale iterations. Throughout the exploration and iteration of our MOON, we have accumulated valuable insights and practical experience that we believe will benefit the research community. MOON contains a three-stage training paradigm of "Pretraining, Post-training, and Application", allowing effective integration of multimodal representations with downstream tasks. Notably, to bridge the misalignment between the objectives of multimodal representation learning and downstream training, we define the exchange rate to quantify how effectively improvements in an intermediate metric can translate into downstream gains. Through this analysis, we identify the image-based search recall as a critical intermediate metric guiding the optimization of multimodal models. Over three years and five iterations, MOON has evolved along four critical dimensions: data processing, training strategy, model architecture, and downstream application. The lessons and insights gained through the iterative improvements will also be shared. As part of our exploration into scaling effects in the e-commerce field, we further conduct a systematic study of the scaling laws governing multimodal representation learning, examining multiple factors such as the number of training tokens, negative samples, and the length of user behavior sequences.
comment: 31 pages, 12 figures
♻ ☆ Seeing and Knowing in the Wild: Open-domain Visual Entity Recognition with Large-scale Knowledge Graphs via Contrastive Learning AAAI2026
Open-domain visual entity recognition aims to identify and link entities depicted in images to a vast and evolving set of real-world concepts, such as those found in Wikidata. Unlike conventional classification tasks with fixed label sets, it operates under open-set conditions, where most target entities are unseen during training and exhibit long-tail distributions. This makes the task inherently challenging due to limited supervision, high visual ambiguity, and the need for semantic disambiguation. We propose a Knowledge-guided Contrastive Learning (KnowCoL) framework that combines both images and text descriptions into a shared semantic space grounded by structured information from Wikidata. By abstracting visual and textual inputs to a conceptual level, the model leverages entity descriptions, type hierarchies, and relational context to support zero-shot entity recognition. We evaluate our approach on the OVEN benchmark, a large-scale open-domain visual recognition dataset with Wikidata IDs as the label space. Our experiments show that using visual, textual, and structured knowledge greatly improves accuracy, especially for rare and unseen entities. Our smallest model improves the accuracy on unseen entities by 10.5% compared to the state-of-the-art, despite being 35 times smaller.
comment: Accepted by AAAI2026
♻ ☆ Fine-Grained Representation for Lane Topology Reasoning AAAI 2026
Precise modeling of lane topology is essential for autonomous driving, as it directly impacts navigation and control decisions. Existing methods typically represent each lane with a single query and infer topological connectivity based on the similarity between lane queries. However, this kind of design struggles to accurately model complex lane structures, leading to unreliable topology prediction. In this view, we propose a Fine-Grained lane topology reasoning framework (TopoFG). It divides the procedure from bird's-eye-view (BEV) features to topology prediction via fine-grained queries into three phases, i.e., Hierarchical Prior Extractor (HPE), Region-Focused Decoder (RFD), and Robust Boundary-Point Topology Reasoning (RBTR). Specifically, HPE extracts global spatial priors from the BEV mask and local sequential priors from in-lane keypoint sequences to guide subsequent fine-grained query modeling. RFD constructs fine-grained queries by integrating the spatial and sequential priors. It then samples reference points in RoI regions of the mask and applies cross-attention with BEV features to refine the query representations of each lane. RBTR models lane connectivity based on boundary-point query features and further employs a topological denoising strategy to reduce matching ambiguity. By integrating spatial and sequential priors into fine-grained queries and applying a denoising strategy to boundary-point topology reasoning, our method precisely models complex lane structures and delivers trustworthy topology predictions. Extensive experiments on the OpenLane-V2 benchmark demonstrate that TopoFG achieves new state-of-the-art performance, with an OLS of 48.0 on subsetA and 45.4 on subsetB.
comment: Accepted by AAAI 2026
♻ ☆ Logos as a Well-Tempered Pre-train for Sign Language Recognition
This paper examines two aspects of the isolated sign language recognition (ISLR) task. First, although a certain number of datasets is available, the data for individual sign languages is limited. It poses the challenge of cross-language ISLR model training, including transfer learning. Second, similar signs can have different semantic meanings. It leads to ambiguity in dataset labeling and raises the question of the best policy for annotating such signs. To address these issues, this study presents Logos, a novel Russian Sign Language (RSL) dataset, the most extensive available ISLR dataset by the number of signers, one of the most extensive datasets in size and vocabulary, and the largest RSL dataset. It is shown that a model, pre-trained on the Logos dataset can be used as a universal encoder for other language SLR tasks, including few-shot learning. We explore cross-language transfer learning approaches and find that joint training using multiple classification heads benefits accuracy for the target low-resource datasets the most. The key feature of the Logos dataset is explicitly annotated visually similar sign groups. We show that explicitly labeling visually similar signs improves trained model quality as a visual encoder for downstream tasks. Based on the proposed contributions, we outperform current state-of-the-art results for the WLASL dataset and get competitive results for the AUTSL dataset, with a single stream model processing solely RGB video. The source code, dataset, and pre-trained models are publicly available.
♻ ☆ StyleDrive: Towards Driving-Style Aware Benchmarking of End-To-End Autonomous Driving
Personalization, while extensively studied in conventional autonomous driving pipelines, has been largely overlooked in the context of end-to-end autonomous driving (E2EAD), despite its critical role in fostering user trust, safety perception, and real-world adoption. A primary bottleneck is the absence of large-scale real-world datasets that systematically capture driving preferences, severely limiting the development and evaluation of personalized E2EAD models. In this work, we introduce the first large-scale real-world dataset explicitly curated for personalized E2EAD, integrating comprehensive scene topology with rich dynamic context derived from agent dynamics and semantics inferred via a fine-tuned vision-language model (VLM). We propose a hybrid annotation pipeline that combines behavioral analysis, rule-and-distribution-based heuristics, and subjective semantic modeling guided by VLM reasoning, with final refinement through human-in-the-loop verification. Building upon this dataset, we introduce the first standardized benchmark for systematically evaluating personalized E2EAD models. Empirical evaluations on state-of-the-art architectures demonstrate that incorporating personalized driving preferences significantly improves behavioral alignment with human demonstrations.
comment: 25 pages, 7 figures, 5 tables
♻ ☆ Learnable Total Variation with Lambda Mapping for Low-Dose CT Denoising
Although Total Variation (TV) performs well in noise reduction and edge preservation on images, its dependence on the lambda parameter limits its efficiency and makes it difficult to use effectively. In this study, we present a Learnable Total Variation (LTV) framework that couples an unrolled TV solver with a data-driven Lambda Mapping Network (LambdaNet) predicting a per-pixel regularization map. The pipeline is trained end-to-end so that reconstruction and regularization are optimized jointly, yielding spatially adaptive smoothing: strong in homogeneous regions, relaxed near anatomical boundaries. Experiments on the DeepLesion dataset, using a realistic noise model adapted from the LoDoPaB-CT methodology, show consistent gains over classical TV and FBP+U-Net: +2.9 dB PSNR and +6% SSIM on average. LTV provides an interpretable alternative to black-box CNNs and a basis for 3D and data-consistency-driven reconstruction.
♻ ☆ Beyond Flatlands: Unlocking Spatial Intelligence by Decoupling 3D Reasoning from Numerical Regression
Existing Vision Language Models (VLMs) architecturally rooted in "flatland" perception, fundamentally struggle to comprehend real-world 3D spatial intelligence. This failure stems from a dual-bottleneck: input-stage conflict between computationally exorbitant geometric-aware encoders and superficial 2D-only features, and output-stage misalignment where discrete tokenizers are structurally incapable of producing precise, continuous numerical values. To break this impasse, we introduce GEODE (Geometric-Output and Decoupled-Input Engine), a novel architecture that resolves this dual-bottleneck by decoupling 3D reasoning from numerical generation. GEODE augments main VLM with two specialized, plug-and-play modules: Decoupled Rationale Module (DRM) that acts as spatial co-processor, aligning explicit 3D data with 2D visual features via cross-attention and distilling spatial Chain-of-Thought (CoT) logic into injectable Rationale Tokens; and Direct Regression Head (DRH), an "Embedding-as-Value" paradigm which routes specialized control tokens to a lightweight MLP for precise, continuous regression of scalars and 3D bounding boxes. The synergy of these modules allows our 1.5B parameter model to function as a high-level semantic dispatcher, achieving state-of-the-art spatial reasoning performance that rivals 7B+ models.
♻ ☆ Towards Understanding 3D Vision: the Role of Gaussian Curvature
Recent advances in computer vision have predominantly relied on data-driven approaches that leverage deep learning and large-scale datasets. Deep neural networks have achieved remarkable success in tasks such as stereo matching and monocular depth reconstruction. However, these methods lack explicit models of 3D geometry that can be directly analyzed, transferred across modalities, or systematically modified for controlled experimentation. We investigate the role of Gaussian curvature in 3D surface modeling. Besides Gaussian curvature being an invariant quantity under change of observers or coordinate systems, we demonstrate using the Middlebury stereo dataset that it offers a sparse and compact description of 3D surfaces. Furthermore, we show a strong correlation between the performance rank of top state-of-the-art stereo and monocular methods and the low total absolute Gaussian curvature. We propose that this property can serve as a geometric prior to improve future 3D reconstruction algorithms.
♻ ☆ CARScenes: Semantic VLM Dataset for Safe Autonomous Driving
CAR-Scenes is a frame-level dataset for autonomous driving that enables training and evaluation of vision-language models (VLMs) for interpretable, scene-level understanding. We annotate 5,192 images drawn from Argoverse 1, Cityscapes, KITTI, and nuScenes using a 28-key category/sub-category knowledge base covering environment, road geometry, background-vehicle behavior, ego-vehicle behavior, vulnerable road users, sensor states, and a discrete severity scale (1-10), totaling 350+ leaf attributes. Labels are produced by a GPT-4o-assisted vision-language pipeline with human-in-the-loop verification; we release the exact prompts, post-processing rules, and per-field baseline model performance. CAR-Scenes also provides attribute co-occurrence graphs and JSONL records that support semantic retrieval, dataset triage, and risk-aware scenario mining across sources. To calibrate task difficulty, we include reproducible, non-benchmark baselines, notably a LoRA-tuned Qwen2-VL-2B with deterministic decoding, evaluated via scalar accuracy, micro-averaged F1 for list attributes, and severity MAE/RMSE on a fixed validation split. We publicly release the annotation and analysis scripts, including graph construction and evaluation scripts, to enable explainable, data-centric workflows for future intelligent vehicles. Dataset: https://github.com/Croquembouche/CAR-Scenes
comment: 8 pages, 6 figures, 7 tables
♻ ☆ Explaining Similarity in Vision-Language Encoders with Weighted Banzhaf Interactions NeurIPS 2025
Language-image pre-training (LIP) enables the development of vision-language models capable of zero-shot classification, localization, multimodal retrieval, and semantic understanding. Various explanation methods have been proposed to visualize the importance of input image-text pairs on the model's similarity outputs. However, popular saliency maps are limited by capturing only first-order attributions, overlooking the complex cross-modal interactions intrinsic to such encoders. We introduce faithful interaction explanations of LIP models (FIxLIP) as a unified approach to decomposing the similarity in vision-language encoders. FIxLIP is rooted in game theory, where we analyze how using the weighted Banzhaf interaction index offers greater flexibility and improves computational efficiency over the Shapley interaction quantification framework. From a practical perspective, we propose how to naturally extend explanation evaluation metrics, such as the pointing game and area between the insertion/deletion curves, to second-order interaction explanations. Experiments on the MS COCO and ImageNet-1k benchmarks validate that second-order methods, such as FIxLIP, outperform first-order attribution methods. Beyond delivering high-quality explanations, we demonstrate the utility of FIxLIP in comparing different models, e.g. CLIP vs. SigLIP-2.
comment: NeurIPS 2025. Code: https://github.com/hbaniecki/fixlip
♻ ☆ SlotMatch: Distilling Object-Centric Representations for Unsupervised Video Segmentation
Unsupervised video segmentation is a challenging computer vision task, especially due to the lack of supervisory signals coupled with the complexity of visual scenes. To overcome this challenge, state-of-the-art models based on slot attention often have to rely on large and computationally expensive neural architectures. To this end, we propose a simple knowledge distillation framework that effectively transfers object-centric representations to a lightweight student. The proposed framework, called SlotMatch, aligns corresponding teacher and student slots via the cosine similarity, requiring no additional distillation objectives or auxiliary supervision. The simplicity of SlotMatch is confirmed via theoretical and empirical evidence, both indicating that integrating additional losses is redundant. We conduct experiments on three datasets to compare the state-of-the-art teacher model, SlotContrast, with our distilled student. The results show that our student based on SlotMatch matches and even outperforms its teacher, while using 3.6x less parameters and running up to 2.7x faster. Moreover, our student surpasses all other state-of-the-art unsupervised video segmentation models.
♻ ☆ Sa2VA-i: Improving Sa2VA Results with Consistent Training and Inference
Sa2VA is a recent model for language-guided dense grounding in images and video that achieves state-of-the-art results on multiple segmentation benchmarks and that has become widely popular. However, we found that Sa2VA does not perform according to its full potential for referring video object segmentation tasks. We identify inconsistencies between training and inference procedures as the key factor holding it back. To mitigate this issue, we propose an improved version of Sa2VA, Sa2VA-i, that rectifies these issues and improves the results. In fact, Sa2VA-i sets a new state of the art for multiple video benchmarks and achieves improvements of up to +11.6 J&F on MeViS, +1.4 on Ref-YT-VOS, +3.3 on Ref-DAVIS and +4.1 on ReVOS using the same Sa2VA checkpoints. With our fixes, the Sa2VA-i-1B model even performs on par with the original Sa2VA-26B model on the MeViS benchmark. We hope that this work will show the importance of seemingly trivial implementation details and that it will provide valuable insights for the referring video segmentation field. We provide the code and updated models at https://github.com/kumuji/sa2va-i
♻ ☆ 4D-VLA: Spatiotemporal Vision-Language-Action Pretraining with Cross-Scene Calibration
Leveraging diverse robotic data for pretraining remains a critical challenge. Existing methods typically model the dataset's action distribution using simple observations as inputs. However, these inputs are often incomplete, resulting in a dispersed conditional action distribution-an issue we refer to as coordinate system chaos and state chaos. This inconsistency significantly hampers pretraining efficiency. To address this, we propose 4D-VLA, a novel approach that effectively integrates 4D information into the input to mitigate these sources of chaos. Our model introduces depth and temporal information into visual features with sequential RGB-D inputs, aligning the coordinate systems of the robot and the scene. This alignment endows the model with strong spatiotemporal reasoning capabilities while minimizing training overhead. Additionally, we introduce memory bank sampling, a frame sampling strategy designed to extract informative frames from historical images, further improving effectiveness and efficiency. Experimental results demonstrate that our pretraining method and architectural components substantially enhance model performance. In both simulated and real-world experiments, our model achieves a significant increase in success rate over OpenVLA. To further assess spatial perception and generalization to novel views, we introduce MV-Bench, a multi-view simulation benchmark. Our model consistently outperforms existing methods, demonstrating stronger spatial understanding and adaptability.
♻ ☆ Benchmarking Deep Learning-Based Object Detection Models on Feature Deficient Astrophotography Imagery Dataset
Object detection models are typically trained on datasets like ImageNet, COCO, and PASCAL VOC, which focus on everyday objects. However, these lack signal sparsity found in non-commercial domains. MobilTelesco, a smartphone-based astrophotography dataset, addresses this by providing sparse night-sky images. We benchmark several detection models on it, highlighting challenges under feature-deficient conditions.
♻ ☆ From Flatland to Space: Teaching Vision-Language Models to Perceive and Reason in 3D
Recent advances in LVLMs have improved vision-language understanding, but they still struggle with spatial perception, limiting their ability to reason about complex 3D scenes. Unlike previous approaches that incorporate 3D representations into models to improve spatial understanding, we aim to unlock the potential of VLMs by leveraging spatially relevant image data. To this end, we introduce a novel 2D spatial data generation and annotation pipeline built upon scene data with 3D ground-truth. This pipeline enables the creation of a diverse set of spatial tasks, ranging from basic perception tasks to more complex reasoning tasks. Leveraging this pipeline, we construct SPAR-7M, a large-scale dataset generated from thousands of scenes across multiple public datasets. In addition, we introduce SPAR-Bench, a benchmark designed to offer a more comprehensive evaluation of spatial capabilities compared to existing spatial benchmarks, supporting both single-view and multi-view inputs. Training on both SPAR-7M and large-scale 2D datasets enables our models to achieve state-of-the-art performance on 2D spatial benchmarks. Further fine-tuning on 3D task-specific datasets yields competitive results, underscoring the effectiveness of our dataset in enhancing spatial reasoning.
comment: Project page: https://fudan-zvg.github.io/spar
♻ ☆ SpeeDe3DGS: Speedy Deformable 3D Gaussian Splatting with Temporal Pruning and Motion Grouping
Dynamic extensions of 3D Gaussian Splatting (3DGS) achieve high-quality reconstructions through neural motion fields, but per-Gaussian neural inference makes these models computationally expensive. Building on DeformableGS, we introduce Speedy Deformable 3D Gaussian Splatting (SpeeDe3DGS), which bridges this efficiency-fidelity gap through three complementary modules: Temporal Sensitivity Pruning (TSP) removes low-impact Gaussians via temporally aggregated sensitivity analysis, Temporal Sensitivity Sampling (TSS) perturbs timestamps to suppress floaters and improve temporal coherence, and GroupFlow distills the learned deformation field into shared SE(3) transformations for efficient groupwise motion. On the 50 dynamic scenes in MonoDyGauBench, integrating TSP and TSS into DeformableGS accelerates rendering by 6.78$\times$ on average while maintaining neural-field fidelity and using 10$\times$ fewer primitives. Adding GroupFlow culminates in 13.71$\times$ faster rendering and 2.53$\times$ shorter training, surpassing all baselines in speed while preserving superior image quality.
comment: Project Page: https://speede3dgs.github.io/
♻ ☆ Segmentation-Driven Initialization for Sparse-view 3D Gaussian Splatting
Sparse-view synthesis remains a challenging problem due to the difficulty of recovering accurate geometry and appearance from limited observations. While recent advances in 3D Gaussian Splatting (3DGS) have enabled real-time rendering with competitive quality, existing pipelines often rely on Structure-from-Motion (SfM) for camera pose estimation, an approach that struggles in genuinely sparse-view settings. Moreover, several SfM-free methods replace SfM with multi-view stereo (MVS) models, but generate massive numbers of 3D Gaussians by back-projecting every pixel into 3D space, leading to high memory costs. We propose Segmentation-Driven Initialization for Gaussian Splatting (SDI-GS), a method that mitigates inefficiency by leveraging region-based segmentation to identify and retain only structurally significant regions. This enables selective downsampling of the dense point cloud, preserving scene fidelity while substantially reducing Gaussian count. Experiments across diverse benchmarks show that SDI-GS reduces Gaussian count by up to 50% and achieves comparable or superior rendering quality in PSNR and SSIM, with only marginal degradation in LPIPS. It further enables faster training and lower memory footprint, advancing the practicality of 3DGS for constrained-view scenarios.
♻ ☆ Deep Equilibrium models for Poisson Imaging Inverse problems via Mirror Descent
Deep Equilibrium Models (DEQs) are implicit neural networks with fixed points, which have recently gained attention for learning image regularization functionals, particularly in settings involving Gaussian fidelities, where assumptions on the forward operator ensure contractiveness of standard (proximal) Gradient Descent operators. In this work, we extend the application of DEQs to Poisson inverse problems, where the data fidelity term is more appropriately modeled by the Kullback--Leibler divergence. To this end, we introduce a novel DEQ formulation based on Mirror Descent defined in terms of a tailored non-Euclidean geometry that naturally adapts with the structure of the data term. This enables the learning of neural regularizers within a principled training framework. We derive sufficient conditions and establish refined convergence results based on the Kurdyka--Lojasiewicz framework for subanalytic functions with non-closed domains to guarantee the convergence of the learned reconstruction scheme and propose computational strategies that enable both efficient training and parameter-free inference. Numerical experiments show that our method outperforms traditional model-based approaches and it is comparable to the performance of Bregman Plug-and-Play methods, while mitigating their typical drawbacks, such as time-consuming tuning of hyper-parameters. The code is publicly available at https://github.com/christiandaniele/DEQ-MD.
♻ ☆ DepthVision: Enabling Robust Vision-Language Models with GAN-Based LiDAR-to-RGB Synthesis for Autonomous Driving
Ensuring reliable autonomous operation when visual input is degraded remains a key challenge in intelligent vehicles and robotics. We present DepthVision, a multimodal framework that enables Vision--Language Models (VLMs) to exploit LiDAR data without any architectural changes or retraining. DepthVision synthesizes dense, RGB-like images from sparse LiDAR point clouds using a conditional GAN with an integrated refiner, and feeds these into off-the-shelf VLMs through their standard visual interface. A Luminance-Aware Modality Adaptation (LAMA) module fuses synthesized and real camera images by dynamically weighting each modality based on ambient lighting, compensating for degradation such as darkness or motion blur. This design turns LiDAR into a drop-in visual surrogate when RGB becomes unreliable, effectively extending the operational envelope of existing VLMs. We evaluate DepthVision on real and simulated datasets across multiple VLMs and safety-critical tasks, including vehicle-in-the-loop experiments. The results show substantial improvements in low-light scene understanding over RGB-only baselines while preserving full compatibility with frozen VLM architectures. These findings demonstrate that LiDAR-guided RGB synthesis is a practical pathway for integrating range sensing into modern vision-language systems for autonomous driving.
♻ ☆ Rasterized Steered Mixture of Experts for Efficient 2D Image Regression
The Steered Mixture of Experts regression framework has demonstrated strong performance in image reconstruction, compression, denoising, and super-resolution. However, its high computational cost limits practical applications. This work introduces a rasterization-based optimization strategy that combines the efficiency of rasterized Gaussian kernel rendering with the edge-aware gating mechanism of the Steered Mixture of Experts. The proposed method is designed to accelerate two-dimensional image regression while maintaining the model's inherent sparsity and reconstruction quality. By replacing global iterative optimization with a rasterized formulation, the method achieves significantly faster parameter updates and more memory-efficient model representations. In addition, the proposed framework supports applications such as native super-resolution and image denoising, which are not directly achievable with standard rasterized Gaussian kernel approaches. The combination of fast rasterized optimization with the edge-aware structure of the Steered Mixture of Experts provides a new balance between computational efficiency and reconstruction fidelity for two-dimensional image processing tasks.
♻ ☆ MAVias: Mitigate any Visual Bias
Mitigating biases in computer vision models is an essential step towards the trustworthiness of artificial intelligence models. Existing bias mitigation methods focus on a small set of predefined biases, limiting their applicability in visual datasets where multiple, possibly unknown biases exist. To address this limitation, we introduce MAVias, an open-set bias mitigation approach leveraging foundation models to discover spurious associations between visual attributes and target classes. MAVias first captures a wide variety of visual features in natural language via a foundation image tagging model, and then leverages a large language model to select those visual features defining the target class, resulting in a set of language-coded potential visual biases. We then translate this set of potential biases into vision-language embeddings and introduce an in-processing bias mitigation approach to prevent the model from encoding information related to them. Our experiments on diverse datasets, including CelebA, Waterbirds, ImageNet, and UrbanCars, show that MAVias effectively detects and mitigates a wide range of biases in visual recognition tasks outperforming current state-of-the-art.
♻ ☆ Context-Aware Multimodal Representation Learning for Spatio-Temporally Explicit Environmental Modelling
Earth observation (EO) foundation models have emerged as an effective approach to derive latent representations of the Earth system from various remote sensing sensors. These models produce embeddings that can be used as analysis-ready datasets, enabling the modelling of ecosystem dynamics without extensive sensor-specific preprocessing. However, existing models typically operate at fixed spatial or temporal scales, limiting their use for ecological analyses that require both fine spatial detail and high temporal fidelity. To overcome these limitations, we propose a representation learning framework that integrates different EO modalities into a unified feature space at high spatio-temporal resolution. We introduce the framework using Sentinel-1 and Sentinel-2 data as representative modalities. Our approach produces a latent space at native 10 m resolution and the temporal frequency of cloud-free Sentinel-2 acquisitions. Each sensor is first modeled independently to capture its sensor-specific characteristics. Their representations are then combined into a shared model. This two-stage design enables modality-specific optimisation and easy extension to new sensors, retaining pretrained encoders while retraining only fusion layers. This enables the model to capture complementary remote sensing data and to preserve coherence across space and time. Qualitative analyses reveal that the learned embeddings exhibit high spatial and semantic consistency across heterogeneous landscapes. Quantitative evaluation in modelling Gross Primary Production reveals that they encode ecologically meaningful patterns and retain sufficient temporal fidelity to support fine-scale analyses. Overall, the proposed framework provides a flexible, analysis-ready representation learning approach for environmental applications requiring diverse spatial and temporal resolutions.
comment: 10 pages (incliding 2 pages of references), 7 figures
♻ ☆ Divide and Merge: Motion and Semantic Learning in End-to-End Autonomous Driving
Perceiving the environment and its changes over time corresponds to two fundamental yet heterogeneous types of information: semantics and motion. Previous end-to-end autonomous driving works represent both types of information in a single feature vector. However, including motion related tasks, such as prediction and planning, impairs detection and tracking performance, a phenomenon known as negative transfer in multi-task learning. To address this issue, we propose Neural-Bayes motion decoding, a novel parallel detection, tracking, and prediction method that separates semantic and motion learning. Specifically, we employ a set of learned motion queries that operate in parallel with detection and tracking queries, sharing a unified set of recursively updated reference points. Moreover, we employ interactive semantic decoding to enhance information exchange in semantic tasks, promoting positive transfer. Experiments on the nuScenes dataset with UniAD and SparseDrive confirm the effectiveness of our divide and merge approach, resulting in performance improvements across perception, prediction, and planning. Our code is available at https://github.com/shenyinzhe/DMAD.
♻ ☆ Mapping Reduced Accessibility to WASH Facilities in Rohingya Refugee Camps With Sub-Meter Imagery
Access to Water, Sanitation, and Hygiene (WASH) services remains a major public health concern in refugee camps. This study introduces a remote sensing-driven framework to quantify WASH accessibility-specifically to water pumps, latrines, and bathing cubicles-in the Rohingya camps of Cox's Bazar, one of the world's most densely populated displacement settings. Detecting refugee shelters in such emergent camps presents substantial challenges, primarily due to their dense spatial configuration and irregular geometric patterns. Using sub-meter satellite images, we develop a semi-supervised segmentation framework that achieves an F1-score of 76.4% in detecting individual refugee shelters. Applying the framework across multi-year data reveals declining WASH accessibility, driven by rapid refugee population growth and reduced facility availability, rising from 25 people per facility in 2022 to 29.4 in 2025. Gender-disaggregated analysis further shows that women and girls experience reduced accessibility, in scenarios with inadequate safety-related segregation in WASH facilities. These findings suggest the importance of demand-responsive allocation strategies that can identify areas with under-served populations-such as women and girls-and ensure that limited infrastructure serves the greatest number of people in settings with fixed or shrinking budgets. We also discuss the value of high-resolution remote sensing and machine learning to detect inequality and inform equitable resource planning in complex humanitarian environments.
comment: 23 pages, 13 figures, 2 tables
♻ ☆ PALM: A Dataset and Baseline for Learning Multi-subject Hand Prior
The ability to grasp objects, signal with gestures, and share emotion through touch all stem from the unique capabilities of human hands. Yet creating high-quality personalized hand avatars from images remains challenging due to complex geometry, appearance, and articulation, particularly under unconstrained lighting and limited views. Progress has also been limited by the lack of datasets that jointly provide accurate 3D geometry, high-resolution multiview imagery, and a diverse population of subjects. To address this, we present PALM, a large-scale dataset comprising 13k high-quality hand scans from 263 subjects and 90k multi-view images, capturing rich variation in skin tone, age, and geometry. To show its utility, we present a baseline PALM-Net, a multi-subject prior over hand geometry and material properties learned via physically based inverse rendering, enabling realistic, relightable single-image hand avatar personalization. PALM's scale and diversity make it a valuable real-world resource for hand modeling and related research.
♻ ☆ Improving Greenland Bed Topography Mapping with Uncertainty-Aware Graph Learning on Sparse Radar Data
Accurate maps of Greenland's subglacial bed are essential for sea-level projections, but radar observations are sparse and uneven. We introduce GraphTopoNet, a graph-learning framework that fuses heterogeneous supervision and explicitly models uncertainty via Monte Carlo dropout. Spatial graphs built from surface observables (elevation, velocity, mass balance) are augmented with gradient features and polynomial trends to capture both local variability and broad structure. To handle data gaps, we employ a hybrid loss that combines confidence-weighted radar supervision with dynamically balanced regularization. Applied to three Greenland subregions, GraphTopoNet outperforms interpolation, convolutional, and graph-based baselines, reducing error by up to 60 percent while preserving fine-scale glacial features. The resulting bed maps improve reliability for operational modeling, supporting agencies engaged in climate forecasting and policy. More broadly, GraphTopoNet shows how graph machine learning can convert sparse, uncertain geophysical observations into actionable knowledge at continental scale.
♻ ☆ RynnEC: Bringing MLLMs into Embodied World
We introduce RynnEC, a video multimodal large language model designed for embodied cognition. Built upon a general-purpose vision-language foundation model, RynnEC incorporates a region encoder and a mask decoder, enabling flexible region-level video interaction. Despite its compact architecture, RynnEC achieves state-of-the-art performance in object property understanding, object segmentation, and spatial reasoning. Conceptually, it offers a region-centric video paradigm for the brain of embodied agents, providing fine-grained perception of the physical world and enabling more precise interactions. To mitigate the scarcity of annotated 3D datasets, we propose an egocentric video based pipeline for generating embodied cognition data. Furthermore, we introduce RynnEC-Bench, a region-centered benchmark for evaluating embodied cognitive capabilities. We anticipate that RynnEC will advance the development of general-purpose cognitive cores for embodied agents and facilitate generalization across diverse embodied tasks. The code, model checkpoints, and benchmark are available at: https://github.com/alibaba-damo-academy/RynnEC
comment: The technical report of RynnEC, an embodied cognition MLLM
♻ ☆ SAM2MOT: A Novel Paradigm of Multi-Object Tracking by Segmentation
Inspired by Segment Anything 2, which generalizes segmentation from images to videos, we propose SAM2MOT--a novel segmentation-driven paradigm for multi-object tracking that breaks away from the conventional detection-association framework. In contrast to previous approaches that treat segmentation as auxiliary information, SAM2MOT places it at the heart of the tracking process, systematically tackling challenges like false positives and occlusions. Its effectiveness has been thoroughly validated on major MOT benchmarks. Furthermore, SAM2MOT integrates pre-trained detector, pre-trained segmentor with tracking logic into a zero-shot MOT system that requires no fine-tuning. This significantly reduces dependence on labeled data and paves the way for transitioning MOT research from task-specific solutions to general-purpose systems. Experiments on DanceTrack, UAVDT, and BDD100K show state-of-the-art results. Notably, SAM2MOT outperforms existing methods on DanceTrack by +2.1 HOTA and +4.5 IDF1, highlighting its effectiveness in MOT. Code is available at https://github.com/TripleJoy/SAM2MOT.
♻ ☆ Foundation Models in Medical Imaging: A Review and Outlook
Foundation models (FMs) are changing the way medical images are analyzed by learning from large collections of unlabeled data. Instead of relying on manually annotated examples, FMs are pre-trained to learn general-purpose visual features that can later be adapted to specific clinical tasks with little additional supervision. In this review, we examine how FMs are being developed and applied in pathology, radiology, and ophthalmology, drawing on evidence from over 150 studies. We explain the core components of FM pipelines, including model architectures, self-supervised learning methods, and strategies for downstream adaptation. We also review how FMs are being used in each imaging domain and compare design choices across applications. Finally, we discuss key challenges and open questions to guide future research.
♻ ☆ GeoMVD: Geometry-Enhanced Multi-View Generation Model Based on Geometric Information Extraction
Multi-view image generation holds significant application value in computer vision, particularly in domains like 3D reconstruction, virtual reality, and augmented reality. Most existing methods, which rely on extending single images, face notable computational challenges in maintaining cross-view consistency and generating high-resolution outputs. To address these issues, we propose the Geometry-guided Multi-View Diffusion Model, which incorporates mechanisms for extracting multi-view geometric information and adjusting the intensity of geometric features to generate images that are both consistent across views and rich in detail. Specifically, we design a multi-view geometry information extraction module that leverages depth maps, normal maps, and foreground segmentation masks to construct a shared geometric structure, ensuring shape and structural consistency across different views. To enhance consistency and detail restoration during generation, we develop a decoupled geometry-enhanced attention mechanism that strengthens feature focus on key geometric details, thereby improving overall image quality and detail preservation. Furthermore, we apply an adaptive learning strategy that fine-tunes the model to better capture spatial relationships and visual coherence between the generated views, ensuring realistic results. Our model also incorporates an iterative refinement process that progressively improves the output quality through multiple stages of image generation. Finally, a dynamic geometry information intensity adjustment mechanism is proposed to adaptively regulate the influence of geometric data, optimizing overall quality while ensuring the naturalness of generated images. More details can be found on the project page: https://sobeymil.github.io/GeoMVD.com.
♻ ☆ LoG3D: Ultra-High-Resolution 3D Shape Modeling via Local-to-Global Partitioning
Generating high-fidelity 3D contents remains a fundamental challenge due to the complexity of representing arbitrary topologies-such as open surfaces and intricate internal structures-while preserving geometric details. Prevailing methods based on signed distance fields (SDFs) are hampered by costly watertight preprocessing and struggle with non-manifold geometries, while point-cloud representations often suffer from sampling artifacts and surface discontinuities. To overcome these limitations, we propose a novel 3D variational autoencoder (VAE) framework built upon unsigned distance fields (UDFs)-a more robust and computationally efficient representation that naturally handles complex and incomplete shapes. Our core innovation is a local-to-global (LoG) architecture that processes the UDF by partitioning it into uniform subvolumes, termed UBlocks. This architecture couples 3D convolutions for capturing local detail with sparse transformers for enforcing global coherence. A Pad-Average strategy further ensures smooth transitions at subvolume boundaries during reconstruction. This modular design enables seamless scaling to ultra-high resolutions up to $2048^3$-a regime previously unattainable for 3D VAEs. Experiments demonstrate state-of-the-art performance in both reconstruction accuracy and generative quality, yielding superior surface smoothness and geometric flexibility.
comment: 11 pages, 6 figures
♻ ☆ SMOL-MapSeg: Show Me One Label as prompt
Historical maps offer valuable insights into changes on Earth's surface but pose challenges for modern segmentation models due to inconsistent visual styles and symbols. While deep learning models such as UNet and pre-trained foundation models perform well in domains like autonomous driving and medical imaging, they struggle with the variability of historical maps, where similar concepts appear in diverse forms. To address this issue, we propose On-Need Declarative (OND) knowledge-based prompting, a method that provides explicit image-label pair prompts to guide models in linking visual patterns with semantic concepts. This enables users to define and segment target concepts on demand, supporting flexible, concept-aware segmentation. Our approach replaces the prompt encoder of the Segment Anything Model (SAM) with the OND prompting mechanism and fine-tunes it on historical maps, creating SMOL-MapSeg (Show Me One Label). Unlike existing SAM-based fine-tuning methods that are class-agnostic or restricted to fixed classes, SMOL-MapSeg supports class-aware segmentation across arbitrary datasets. Experiments show that SMOL-MapSeg accurately segments user-defined classes and substantially outperforms baseline models. Furthermore, it demonstrates strong generalization even with minimal training data, highlighting its potential for scalable and adaptable historical map analysis.
♻ ☆ RelTopo: Multi-Level Relational Modeling for Driving Scene Topology Reasoning
Accurate road topology reasoning is critical for autonomous driving, as it requires both perceiving road elements and understanding how lanes connect to each other (L2L) and to traffic elements (L2T). Existing methods often focus on either perception or L2L reasoning, leaving L2T underexplored and fall short of jointly optimizing perception and reasoning. Moreover, although topology prediction inherently involves relations, relational modeling itself is seldom incorporated into feature extraction or supervision. As humans naturally leverage contextual relationships to recognize road element and infer their connectivity, we posit that relational modeling can likewise benefit both perception and reasoning, and that these two tasks should be mutually enhancing. To this end, we propose RelTopo, a multi-level relational modeling approach that systematically integrates relational cues across three levels: 1) perception-level: a relation-aware lane detector with geometry-biased self-attention and curve-guided cross-attention enriches lane representations; 2) reasoning-level: relation-enhanced topology heads, including a geometry-enhanced L2L head and a cross-view L2T head, enhance topology inference via relational cues; and 3) supervision-level: a contrastive InfoNCE strategy regularizes relational embeddings. This design enables perception and reasoning to be optimized jointly. Extensive experiments on OpenLane-V2 demonstrate that RelTopo significantly improves both detection and topology reasoning, with gains of +3.1 in DET$_l$, +5.3 in TOP$_{ll}$, +4.9 in TOP$_{lt}$, and +4.4 overall in OLS, setting a new state-of-the-art. Code will be released.
comment: Preprint. Under review
♻ ☆ Playmate2: Training-Free Multi-Character Audio-Driven Animation via Diffusion Transformer with Reward Feedback AAAI 2026
Recent advances in diffusion models have significantly improved audio-driven human video generation, surpassing traditional methods in both quality and controllability. However, existing approaches still face challenges in lip-sync accuracy, temporal coherence for long video generation, and multi-character animation. In this work, we propose a diffusion transformer (DiT)-based framework for generating lifelike talking videos of arbitrary length, and introduce a training-free method for multi-character audio-driven animation. First, we employ a LoRA-based training strategy combined with a position shift inference approach, which enables efficient long video generation while preserving the capabilities of the foundation model. Moreover, we combine partial parameter updates with reward feedback to enhance both lip synchronization and natural body motion. Finally, we propose a training-free approach, Mask Classifier-Free Guidance (Mask-CFG), for multi-character animation, which requires no specialized datasets or model modifications and supports audio-driven animation for three or more characters. Experimental results demonstrate that our method outperforms existing state-of-the-art approaches, achieving high-quality, temporally coherent, and multi-character audio-driven video generation in a simple, efficient, and cost-effective manner.
comment: AAAI 2026
♻ ☆ Manifold Learning for Hyperspectral Images
Traditional feature extraction and projection techniques, such as Principal Component Analysis, struggle to adequately represent X-Ray Transmission (XRT) Multi-Energy (ME) images, limiting the performance of neural networks in decision-making processes. To address this issue, we propose a method that approximates the dataset topology by constructing adjacency graphs using the Uniform Manifold Approximation and Projection. This approach captures nonlinear correlations within the data, significantly improving the performance of machine learning algorithms, particularly in processing Hyperspectral Images (HSI) from X-ray transmission spectroscopy. This technique not only preserves the global structure of the data but also enhances feature separability, leading to more accurate and robust classification results.
♻ ☆ Towards Reliable Human Evaluations in Gesture Generation: Insights from a Community-Driven State-of-the-Art Benchmark
We review human evaluation practices in automated, speech-driven 3D gesture generation and find a lack of standardisation and frequent use of flawed experimental setups. This leads to a situation where it is impossible to know how different methods compare, or what the state of the art is. In order to address common shortcomings of evaluation design, and to standardise future user studies in gesture-generation works, we introduce a detailed human evaluation protocol for the widely-used BEAT2 motion-capture dataset. Using this protocol, we conduct large-scale crowdsourced evaluation to rank six recent gesture-generation models -- each trained by its original authors -- across two key evaluation dimensions: motion realism and speech-gesture alignment. Our results provide strong evidence that 1) newer models do not consistently outperform earlier approaches; 2) published claims of high motion realism or speech-gesture alignment may not hold up under rigorous evaluation; and 3) the field must adopt disentangled assessments of motion quality and multimodal alignment for accurate benchmarking in order to make progress. Finally, in order to drive standardisation and enable new evaluation research, we will release five hours of synthetic motion from the benchmarked models; over 750 rendered video stimuli from the user studies -- enabling new evaluations without model reimplementation required -- alongside our open-source rendering script, and the 16,000 pairwise human preference votes collected for our benchmark.
comment: 23 pages, 10 figures. The last two authors made equal contributions
♻ ☆ Geometry Meets Light: Leveraging Geometric Priors for Universal Photometric Stereo under Limited Multi-Illumination Cues AAAI 2026
Universal Photometric Stereo is a promising approach for recovering surface normals without strict lighting assumptions. However, it struggles when multi-illumination cues are unreliable, such as under biased lighting or in shadows or self-occluded regions of complex in-the-wild scenes. We propose GeoUniPS, a universal photometric stereo network that integrates synthetic supervision with high-level geometric priors from large-scale 3D reconstruction models pretrained on massive in-the-wild data. Our key insight is that these 3D reconstruction models serve as visual-geometry foundation models, inherently encoding rich geometric knowledge of real scenes. To leverage this, we design a Light-Geometry Dual-Branch Encoder that extracts both multi-illumination cues and geometric priors from the frozen 3D reconstruction model. We also address the limitations of the conventional orthographic projection assumption by introducing the PS-Perp dataset with realistic perspective projection to enable learning of spatially varying view directions. Extensive experiments demonstrate that GeoUniPS delivers state-of-the-arts performance across multiple datasets, both quantitatively and qualitatively, especially in the complex in-the-wild scenes.
comment: Accepted by AAAI 2026 (Oral)
♻ ☆ HCF: Hierarchical Cascade Framework for Distributed Multi-Stage Image Compression AAAI 2026
Distributed multi-stage image compression -- where visual content traverses multiple processing nodes under varying quality requirements -- poses challenges. Progressive methods enable bitstream truncation but underutilize available compute resources; successive compression repeats costly pixel-domain operations and suffers cumulative quality loss and inefficiency; fixed-parameter models lack post-encoding flexibility. In this work, we developed the Hierarchical Cascade Framework (HCF) that achieves high rate-distortion performance and better computational efficiency through direct latent-space transformations across network nodes in distributed multi-stage image compression systems. Under HCF, we introduced policy-driven quantization control to optimize rate-distortion trade-offs, and established the edge quantization principle through differential entropy analysis. The configuration based on this principle demonstrates up to 0.6dB PSNR gains over other configurations. When comprehensively evaluated on the Kodak, CLIC, and CLIC2020-mobile datasets, HCF outperforms successive-compression methods by up to 5.56% BD-Rate in PSNR on CLIC, while saving up to 97.8% FLOPs, 96.5% GPU memory, and 90.0% execution time. It also outperforms state-of-the-art progressive compression methods by up to 12.64% BD-Rate on Kodak and enables retraining-free cross-quality adaptation with 7.13-10.87% BD-Rate reductions on CLIC2020-mobile.
comment: Accepted at AAAI 2026 as a Conference Paper (Oral Presentation)
♻ ☆ Learning few-step posterior samplers by unfolding and distillation of diffusion models
Diffusion models (DMs) have emerged as powerful image priors in Bayesian computational imaging. Two primary strategies have been proposed for leveraging DMs in this context: Plug-and-Play methods, which are zero-shot and highly flexible but rely on approximations; and specialized conditional DMs, which achieve higher accuracy and faster inference for specific tasks through supervised training. In this work, we introduce a novel framework that integrates deep unfolding and model distillation to transform a DM image prior into a few-step conditional model for posterior sampling. A central innovation of our approach is the unfolding of a Markov chain Monte Carlo (MCMC) algorithm - specifically, the recently proposed LATINO Langevin sampler (Spagnoletti et al., 2025) - representing the first known instance of deep unfolding applied to a Monte Carlo sampling scheme. We demonstrate our proposed unfolded and distilled samplers through extensive experiments and comparisons with the state of the art, where they achieve excellent accuracy and computational efficiency, while retaining the flexibility to adapt to variations in the forward model at inference time.
comment: 34 pages, 18 figures, 11 tables
♻ ☆ MoReFun: Past-Movement Guided Motion Representation Learning for Future Motion Prediction and Understanding
3D human motion prediction aims to generate coherent future motions from observed sequences, yet existing end-to-end regression frameworks often fail to capture complex dynamics and tend to produce temporally inconsistent or static predictions-a limitation rooted in representation shortcutting, where models rely on superficial cues rather than learning meaningful motion structure. We propose a two-stage self-supervised framework that decouples representation learning from prediction. In the pretraining stage, the model performs unified past-future self-reconstruction, reconstructing the past sequence while recovering masked joints in the future sequence under full historical guidance. A velocity-based masking strategy selects highly dynamic joints, forcing the model to focus on informative motion components and internalize the statistical dependencies between past and future states without regression interference. In the fine-tuning stage, the pretrained model predicts the entire future sequence, now treated as fully masked, and is further equipped with a lightweight future-text prediction head for joint optimization of low-level motion prediction and high-level motion understanding. Experiments on Human3.6M, 3DPW, and AMASS show that our method reduces average prediction errors by 8.8% over state-of-the-art methods while achieving competitive future-motion understanding performance compared to LLM-based models. Code is available at: https://github.com/JunyuShi02/MoReFun
♻ ☆ MedGEN-Bench: Contextually entangled benchmark for open-ended multimodal medical generation CVPR 2026
As Vision-Language Models (VLMs) increasingly gain traction in medical applications, clinicians are progressively expecting AI systems not only to generate textual diagnoses but also to produce corresponding medical images that integrate seamlessly into authentic clinical workflows. Despite the growing interest, existing medical visual benchmarks present notable limitations. They often rely on ambiguous queries that lack sufficient relevance to image content, oversimplify complex diagnostic reasoning into closed-ended shortcuts, and adopt a text-centric evaluation paradigm that overlooks the importance of image generation capabilities. To address these challenges, we introduce MedGEN-Bench, a comprehensive multimodal benchmark designed to advance medical AI research. MedGEN-Bench comprises 6,422 expert-validated image-text pairs spanning six imaging modalities, 16 clinical tasks, and 28 subtasks. It is structured into three distinct formats: Visual Question Answering, Image Editing, and Contextual Multimodal Generation. What sets MedGEN-Bench apart is its focus on contextually intertwined instructions that necessitate sophisticated cross-modal reasoning and open-ended generative outputs, moving beyond the constraints of multiple-choice formats. To evaluate the performance of existing systems, we employ a novel three-tier assessment framework that integrates pixel-level metrics, semantic text analysis, and expert-guided clinical relevance scoring. Using this framework, we systematically assess 10 compositional frameworks, 3 unified models, and 5 VLMs.
comment: CVPR 2026 Under Review
♻ ☆ Not All Regions Are Equal: Attention-Guided Perturbation Network for Industrial Anomaly Detection
In unsupervised image anomaly detection, reconstruction methods aim to train models to capture normal patterns comprehensively for normal data reconstruction. Yet, these models sometimes retain unintended reconstruction capacity for anomalous regions during inference, leading to missed detections. To mitigate this issue, existing works perturb normal samples in a sample-agnostic manner, uniformly adding noise across spatial locations before reconstructing the original. Despite promising results, they disregard the fact that foreground locations are inherently more critical for robust reconstruction. Motivated by this, we present a novel reconstruction framework named Attention-Guided Perturbation Network (AGPNet) for industrial anomaly detection. Its core idea is to add perturbations guided by a sample-aware attention mask to improve the learning of invariant normal patterns at important locations. AGPNet consists of two branches, \ie, a reconstruction branch and an auxiliary attention-based perturbation one. The reconstruction branch learns to reconstruct normal samples, while the auxiliary one aims to produce attention masks to guide the noise perturbation process for normal samples. By perturbing more aggressively at those important regions, we encourage the reconstruction branch to learn inherent normal patterns both comprehensively and robustly. Extensive experiments are conducted on several popular benchmarks covering MVTec-AD, VisA, and MVTec-3D, and show that AGPNet consistently obtains leading anomaly detection performance across a variety of setups, including few-shot, one-class, and multi-class ones.
♻ ☆ Region-Wise Correspondence Prediction between Manga Line Art Images
Understanding region-wise correspondences between manga line art images is fundamental for high-level manga processing, supporting downstream tasks such as line art colorization and in-between frame generation. Unlike natural images that contain rich visual cues, manga line art consists only of sparse black-and-white strokes, making it challenging to determine which regions correspond across images. In this work, we introduce a new task: predicting region-wise correspondence between raw manga line art images without any annotations. To address this problem, we propose a Transformer-based framework trained on large-scale, automatically generated region correspondences. The model learns to suppress noisy matches and strengthen consistent structural relationships, resulting in robust patch-level feature alignment within and across images. During inference, our method segments each line art and establishes coherent region-level correspondences through edge-aware clustering and region matching. We construct manually annotated benchmarks for evaluation, and experiments across multiple datasets demonstrate both high patch-level accuracy and strong region-level correspondence performance, achieving 78.4-84.4% region-level accuracy. These results highlight the potential of our method for real-world manga and animation applications.
♻ ☆ Spatial Policy: Guiding Visuomotor Robotic Manipulation with Spatial-Aware Modeling and Reasoning
Vision-centric hierarchical embodied models have demonstrated strong potential. However, existing methods lack spatial awareness capabilities, limiting their effectiveness in bridging visual plans to actionable control in complex environments. To address this problem, we propose Spatial Policy (SP), a unified spatial-aware visuomotor robotic manipulation framework via explicit spatial modeling and reasoning. Specifically, we first design a spatial-conditioned embodied video generation module to model spatially guided predictions through the spatial plan table. Then, we propose a flow-based action prediction module to infer executable actions with coordination. Finally, we propose a spatial reasoning feedback policy to refine the spatial plan table via dual-stage replanning. Extensive experiments show that SP substantially outperforms state-of-the-art baselines, achieving over 33% improvement on Meta-World and over 25% improvement on iTHOR, demonstrating strong effectiveness across 23 embodied control tasks. We additionally evaluate SP in real-world robotic experiments to verify its practical viability. SP enhances the practicality of embodied models for robotic control applications. Code and checkpoints are maintained at https://plantpotatoonmoon.github.io/SpatialPolicy/.
♻ ☆ EventHallusion: Diagnosing Event Hallucinations in Video LLMs
Recently, Multimodal Large Language Models (MLLMs) have made significant progress in the video comprehension field. Despite remarkable content reasoning and instruction following capabilities they demonstrated, the hallucination problem of these VideoLLMs is less explored compared with its counterpart in the image domain. To mitigate this gap, we propose EventHallusion, a novel benchmark that focuses on assessing the VideoLLMs' hallucination toward event, the crux of video analysis. From a hallucination attribution perspective, our EventHallusion benchmark is curated to assess a VideoLLM's susceptibility toward language priors and vision-language biases. On the other hand, we also propose a simple yet effective method, called Temporal Contrastive Decoding (TCD), to tackle the hallucination problems of VideoLLMs. The proposed TCD method rectifies the model's bias toward its priors during the decoding stage by comparing the original video with a modified version, in which temporal cues are disrupted. Through comprehensive evaluation of eight open-source and two closed-source VideoLLMs on the proposed EventHallusion benchmark, we observe that the open-source models suffer significantly from hallucination problems, whereas the closed-source ones perform markedly better. By further equipping open-source VideoLLMs with the proposed TCD approach, evident performance improvements are achieved across most metrics in the EventHallusion benchmark. Our codes and benchmark data are available at https://github.com/Stevetich/EventHallusion.
♻ ☆ Video Compression Commander: Plug-and-Play Inference Acceleration for Video Large Language Models EMNLP 2025
Video large language models (VideoLLM) excel at video understanding, but face efficiency challenges due to the quadratic complexity of abundant visual tokens. Our systematic analysis of token compression methods for VideoLLMs reveals two critical issues: (i) overlooking distinctive visual signals across frames, leading to information loss; (ii) suffering from implementation constraints, causing incompatibility with modern architectures or efficient operators. To address these challenges, we distill three design principles for VideoLLM token compression and propose a plug-and-play inference acceleration framework "Video Compression Commander" (VidCom2). By quantifying each frame's uniqueness, VidCom2 adaptively adjusts compression intensity across frames, effectively preserving essential information while reducing redundancy in video sequences. Extensive experiments across various VideoLLMs and benchmarks demonstrate the superior performance and efficiency of our VidCom2. With only 25% visual tokens, VidCom2 achieves 99.6% of the original performance on LLaVA-OV while reducing 70.8% of the LLM generation latency. Notably, our Frame Compression Adjustment strategy is compatible with other token compression methods to further improve their performance. Our code is available at https://github.com/xuyang-liu16/VidCom2.
comment: EMNLP 2025 main
♻ ☆ Iterative Explainability for Weakly Supervised Segmentation in Medical PE Detection
Pulmonary Embolism (PE) are a leading cause of cardiovascular death. Computed tomographic pulmonary angiography (CTPA) is the gold standard for PE diagnosis, with growing interest in AI-based diagnostic assistance. However, these algorithms are limited by scarce fine-grained annotations of thromboembolic burden. We address this challenge with iExplain, a weakly supervised learning algorithm that transforms coarse image-level annotations into detailed pixel-level PE masks through iterative model explainability. Our approach generates soft segmentation maps used to mask detected regions, enabling the process to repeat and discover additional embolisms that would be missed in a single pass. This iterative refinement effectively captures complete PE regions and detects multiple distinct embolisms. Models trained on these automatically generated annotations achieve excellent PE detection performance, with significant improvements at each iteration. We demonstrate iExplain's effectiveness on the RSPECT augmented dataset, achieving results comparable to strongly supervised methods while outperforming existing weakly supervised methods.
comment: Paper accepted at MICAD2025 Previous title: "Label up: Learning pulmonary embolism segmentation from image level annotation through model explainability"
♻ ☆ Decoupling Scene Perception and Ego Status: A Multi-Context Fusion Approach for Enhanced Generalization in End-to-End Autonomous Driving AAAI 2026
Modular design of planning-oriented autonomous driving has markedly advanced end-to-end systems. However, existing architectures remain constrained by an over-reliance on ego status, hindering generalization and robust scene understanding. We identify the root cause as an inherent design within these architectures that allows ego status to be easily leveraged as a shortcut. Specifically, the premature fusion of ego status in the upstream BEV encoder allows an information flow from this strong prior to dominate the downstream planning module. To address this challenge, we propose AdaptiveAD, an architectural-level solution based on a multi-context fusion strategy. Its core is a dual-branch structure that explicitly decouples scene perception and ego status. One branch performs scene-driven reasoning based on multi-task learning, but with ego status deliberately omitted from the BEV encoder, while the other conducts ego-driven reasoning based solely on the planning task. A scene-aware fusion module then adaptively integrates the complementary decisions from the two branches to form the final planning trajectory. To ensure this decoupling does not compromise multi-task learning, we introduce a path attention mechanism for ego-BEV interaction and add two targeted auxiliary tasks: BEV unidirectional distillation and autoregressive online mapping. Extensive evaluations on the nuScenes dataset demonstrate that AdaptiveAD achieves state-of-the-art open-loop planning performance. Crucially, it significantly mitigates the over-reliance on ego status and exhibits impressive generalization capabilities across diverse scenarios.
comment: Accepted to AAAI 2026 (Oral)
♻ ☆ How does My Model Fail? Automatic Identification and Interpretation of Physical Plausibility Failure Modes with Matryoshka Transcoders
Although recent generative models are remarkably capable of producing instruction-following and realistic outputs, they remain prone to notable physical plausibility failures. Though critical in applications, these physical plausibility errors often escape detection by existing evaluation methods. Furthermore, no framework exists for automatically identifying and interpreting specific physical error patterns in natural language, preventing targeted model improvements. We introduce Matryoshka Transcoders, a novel framework for the automatic discovery and interpretation of physical plausibility features in generative models. Our approach extends the Matryoshka representation learning paradigm to transcoder architectures, enabling hierarchical sparse feature learning at multiple granularity levels. By training on intermediate representations from a physical plausibility classifier and leveraging large multimodal models for interpretation, our method identifies diverse physics-related failure modes without manual feature engineering, achieving superior feature relevance and feature accuracy compared to existing approaches. We utilize the discovered visual patterns to establish a benchmark for evaluating physical plausibility in generative models. Our analysis of eight state-of-the-art generative models provides valuable insights into how these models fail to follow physical constraints, paving the way for further model improvements.
♻ ☆ Branch, or Layer? Zeroth-Order Optimization for Continual Learning of Vision-Language Models
Vision-Language Continual Learning (VLCL) has attracted significant research attention for its robust capabilities, and the adoption of Parameter-Efficient Fine-Tuning (PEFT) strategies is enabling these models to achieve competitive performance with substantially reduced resource consumption. However, dominated First-Order (FO) optimization is prone to trap models in suboptimal local minima, especially in limited exploration subspace within PEFT. To overcome this challenge, this paper pioneers a systematic exploration of adopting Zeroth-Order (ZO) optimization for PEFT-based VLCL. We first identify the incompatibility of naive full-ZO adoption in VLCL due to optimization process instability. We then investigate the application of ZO optimization from a modality branch-wise to a fine-grained layer-wise across various training units to identify an optimal strategy. Besides, a key theoretical insight reveals that vision modality exhibit higher variance than language counterparts in VLCL during the ZO optimization process, and we propose a modality-aware ZO strategy, which adopts gradient sign normalization in ZO and constrains vision modality perturbation to further improve performance. Benefiting from the adoption of ZO optimization, PEFT-based VLCL fulfills better ability to escape local minima during the optimization process, extensive experiments on four benchmarks demonstrate that our method achieves state-of-the-art results.
♻ ☆ MoHoBench: Assessing Honesty of Multimodal Large Language Models via Unanswerable Visual Questions AAAI2026
Recently Multimodal Large Language Models (MLLMs) have achieved considerable advancements in vision-language tasks, yet produce potentially harmful or untrustworthy content. Despite substantial work investigating the trustworthiness of language models, MMLMs' capability to act honestly, especially when faced with visually unanswerable questions, remains largely underexplored. This work presents the first systematic assessment of honesty behaviors across various MLLMs. We ground honesty in models' response behaviors to unanswerable visual questions, define four representative types of such questions, and construct MoHoBench, a large-scale MMLM honest benchmark, consisting of 12k+ visual question samples, whose quality is guaranteed by multi-stage filtering and human verification. Using MoHoBench, we benchmarked the honesty of 28 popular MMLMs and conducted a comprehensive analysis. Our findings show that: (1) most models fail to appropriately refuse to answer when necessary, and (2) MMLMs' honesty is not solely a language modeling issue, but is deeply influenced by visual information, necessitating the development of dedicated methods for multimodal honesty alignment. Therefore, we implemented initial alignment methods using supervised and preference learning to improve honesty behavior, providing a foundation for future work on trustworthy MLLMs. Our data and code can be found at https://github.com/yanxuzhu/MoHoBench.
comment: AAAI2026 Oral
♻ ☆ LENS: Learning to Segment Anything with Unified Reinforced Reasoning
Text-prompted image segmentation enables fine-grained visual understanding and is critical for applications such as human-computer interaction and robotics. However, existing supervised fine-tuning methods typically ignore explicit chain-of-thought (CoT) reasoning at test time, which limits their ability to generalize to unseen prompts and domains. To address this issue, we introduce LENS, a scalable reinforcement-learning framework that jointly optimizes the reasoning process and segmentation in an end-to-end manner. We propose unified reinforcement-learning rewards that span sentence-, box-, and segment-level cues, encouraging the model to generate informative CoT rationales while refining mask quality. Using a publicly available 3-billion-parameter vision-language model, i.e., Qwen2.5-VL-3B-Instruct, LENS achieves an average cIoU of 81.2% on the RefCOCO, RefCOCO+, and RefCOCOg benchmarks, outperforming the strong fine-tuned method, i.e., GLaMM, by up to 5.6%. These results demonstrate that RL-driven CoT reasoning significantly enhances text-prompted segmentation and offers a practical path toward more generalizable Segment Anything models (SAM). Code is available at https://github.com/hustvl/LENS.
comment: Code is released at https://github.com/hustvl/LENS
♻ ☆ SemCo: Toward Semantic Coherent Visual Relationship Forecasting
Visual Relationship Forecasting (VRF) aims to anticipate relations among objects without observing future visual content. The task relies on capturing and modeling the semantic coherence in object interactions, as it underpins the evolution of events and scenes in videos. However, existing VRF datasets offer limited support for learning such coherence due to noisy annotations in the datasets and weak correlations between different actions and relationship transitions in subject-object pair. Furthermore, existing methods struggle to distinguish similar relationships and overfit to unchanging relationships in consecutive frames. To address these challenges, we present SemCoBench, a benchmark that emphasizes semantic coherence for visual relationship forecasting. Based on action labels and short-term subject-object pairs, SemCoBench decomposes relationship categories and dynamics by cleaning and reorganizing video datasets to ensure predicting semantic coherence in object interactions. In addition, we also present Semantic Coherent Transformer method (SemCoFormer) to model the semantic coherence with a Relationship Augmented Module (RAM) and a Coherence Reasoning Module (CRM). RAM is designed to distinguish similar relationships, and CRM facilitates the model's focus on the dynamics in relationships. The experimental results on SemCoBench demonstrate that modeling the semantic coherence is a key step toward reasonable, fine-grained, and diverse visual relationship forecasting, contributing to a more comprehensive understanding of video scenes.
♻ ☆ Availability-aware Sensor Fusion via Unified Canonical Space NeurIPS 2025
Sensor fusion of camera, LiDAR, and 4-dimensional (4D) Radar has brought a significant performance improvement in autonomous driving. However, there still exist fundamental challenges: deeply coupled fusion methods assume continuous sensor availability, making them vulnerable to sensor degradation and failure, whereas sensor-wise cross-attention fusion methods struggle with computational cost and unified feature representation. This paper presents availability-aware sensor fusion (ASF), a novel method that employs unified canonical projection (UCP) to enable consistency in all sensor features for fusion and cross-attention across sensors along patches (CASAP) to enhance robustness of sensor fusion against sensor degradation and failure. As a result, the proposed ASF shows a superior object detection performance to the existing state-of-the-art fusion methods under various weather and sensor degradation (or failure) conditions. Extensive experiments on the K-Radar dataset demonstrate that ASF achieves improvements of 9.7% in AP BEV (87.2%) and 20.1% in AP 3D (73.6%) in object detection at IoU=0.5, while requiring a low computational cost. All codes are available at https://github.com/kaist-avelab/k-radar.
comment: Accepted at NeurIPS 2025
♻ ☆ GAIS: Frame-Level Gated Audio-Visual Integration with Semantic Variance-Scaled Perturbation for Text-Video Retrieval
Text-to-video retrieval requires precise alignment between language and temporally rich audio-video signals. However, existing methods often emphasize visual cues while underutilizing audio semantics or relying on coarse fusion strategies, resulting in suboptimal multimodal representations. We introduce GAIS, a retrieval framework that strengthens multimodal alignment from both representation and regularization perspectives. First, a Frame-level Gated Fusion (FGF) module adaptively integrates audio-visual features under textual guidance, enabling fine-grained temporal selection of informative frames. Second, a Semantic Variance-Scaled Perturbation (SVSP) mechanism regularizes the text embedding space by controlling perturbation magnitude in a semantics-aware manner. These two modules are complementary: FGF minimizes modality gaps through selective fusion, while SVSP improves embedding stability and discrimination. Extensive experiments on MSR-VTT, DiDeMo, LSMDC, and VATEX demonstrate that GAIS consistently outperforms strong baselines across multiple retrieval metrics while maintaining notable computational efficiency.
comment: 13 pages
♻ ☆ Rethinking Saliency Maps: A Cognitive Human Aligned Taxonomy and Evaluation Framework for Explanations
Saliency maps are widely used for visual explanations in deep learning, but a fundamental lack of consensus persists regarding their intended purpose and alignment with diverse user queries. This ambiguity hinders the effective evaluation and practical utility of explanation methods. We address this gap by introducing the Reference-Frame $\times$ Granularity (RFxG) taxonomy, a principled conceptual framework that organizes saliency explanations along two essential axes:Reference-Frame: Distinguishing between pointwise ("Why this prediction?") and contrastive ("Why this and not an alternative?") explanations. Granularity: Ranging from fine-grained class-level (e.g., "Why Husky?") to coarse-grained group-level (e.g., "Why Dog?") interpretations. Using the RFxG lens, we demonstrate critical limitations in existing evaluation metrics, which overwhelmingly prioritize pointwise faithfulness while neglecting contrastive reasoning and semantic granularity. To systematically assess explanation quality across both RFxG dimensions, we propose four novel faithfulness metrics. Our comprehensive evaluation framework applies these metrics to ten state-of-the-art saliency methods, four model architectures, and three datasets. By advocating a shift toward user-intent-driven evaluation, our work provides both the conceptual foundation and the practical tools necessary to develop visual explanations that are not only faithful to the underlying model behavior but are also meaningfully aligned with the complexity of human understanding and inquiry.
♻ ☆ Viper-F1: Fast and Fine-Grained Multimodal Understanding with Cross-Modal State-Space Modulation
Recent advances in multimodal large language models (MLLMs) have enabled impressive progress in vision-language understanding, yet their high computational cost limits deployment in resource-constrained scenarios such as robotic manipulation, personal assistants, and smart cameras. Most existing methods rely on Transformer-based cross-attention, whose quadratic complexity hinders efficiency. Moreover, small vision-language models often struggle to precisely capture fine-grained, task-relevant visual regions, leading to degraded performance on fine-grained reasoning tasks that limit their effectiveness in the real world. To address these issues, we introduce Viper-F1, a Hybrid State-Space Vision-Language Model that replaces attention with efficient Liquid State-Space Dynamics. To further enhance visual grounding, we propose a Token-Grid Correlation Module, which computes lightweight correlations between text tokens and image patches and modulates the state-space dynamics via FiLM conditioning. This enables the model to selectively emphasize visual regions relevant to the textual prompt while maintaining linear-time inference. Experimental results across multiple benchmarks demonstrate that Viper-F1 achieves accurate, fine-grained understanding with significantly improved efficiency.
comment: Need to enhance the method and benchmark to be better
♻ ☆ Unlocking the Forgery Detection Potential of Vanilla MLLMs: A Novel Training-Free Pipeline
With the rapid advancement of artificial intelligence-generated content (AIGC) technologies, including multimodal large language models (MLLMs) and diffusion models, image generation and manipulation have become remarkably effortless. Existing image forgery detection and localization (IFDL) methods often struggle to generalize across diverse datasets and offer limited interpretability. Nowadays, MLLMs demonstrate strong generalization potential across diverse vision-language tasks, and some studies introduce this capability to IFDL via large-scale training. However, such approaches cost considerable computational resources, while failing to reveal the inherent generalization potential of vanilla MLLMs to address this problem. Inspired by this observation, we propose Foresee, a training-free MLLM-based pipeline tailored for image forgery analysis. It eliminates the need for additional training and enables a lightweight inference process, while surpassing existing MLLM-based methods in both tamper localization accuracy and the richness of textual explanations. Foresee employs a type-prior-driven strategy and utilizes a Flexible Feature Detector (FFD) module to specifically handle copy-move manipulations, thereby effectively unleashing the potential of vanilla MLLMs in the forensic domain. Extensive experiments demonstrate that our approach simultaneously achieves superior localization accuracy and provides more comprehensive textual explanations. Moreover, Foresee exhibits stronger generalization capability, outperforming existing IFDL methods across various tampering types, including copy-move, splicing, removal, local enhancement, deepfake, and AIGC-based editing. The code will be released in the final version.
♻ ☆ YOLO Meets Mixture-of-Experts: Adaptive Expert Routing for Robust Object Detection
This paper presents a novel Mixture-of-Experts framework for object detection, incorporating adaptive routing among multiple YOLOv9-T experts to enable dynamic feature specialization and achieve higher mean Average Precision (mAP) and Average Recall (AR) compared to a single YOLOv9-T model.
comment: 1 figure, 1 table
♻ ☆ Deep Learning and Machine Learning -- Object Detection and Semantic Segmentation: From Theory to Applications
An in-depth exploration of object detection and semantic segmentation is provided, combining theoretical foundations with practical applications. State-of-the-art advancements in machine learning and deep learning are reviewed, focusing on convolutional neural networks (CNNs), YOLO architectures, and transformer-based approaches such as DETR. The integration of artificial intelligence (AI) techniques and large language models for enhancing object detection in complex environments is examined. Additionally, a comprehensive analysis of big data processing is presented, with emphasis on model optimization and performance evaluation metrics. By bridging the gap between traditional methods and modern deep learning frameworks, valuable insights are offered for researchers, data scientists, and engineers aiming to apply AI-driven methodologies to large-scale object detection tasks.
comment: 167 pages
Computers and Society
☆ When AI Democratizes Exploitation: LLM-Assisted Strategic Manipulation of Fair Division Algorithms NeurIPS 2025
Fair resource division algorithms, like those implemented in Spliddit platform, have traditionally been considered difficult for the end users to manipulate due to its complexities. This paper demonstrates how Large Language Models (LLMs) can dismantle these protective barriers by democratizing access to strategic expertise. Through empirical analysis of rent division scenarios on Spliddit algorithms, we show that users can obtain actionable manipulation strategies via simple conversational queries to AI assistants. We present four distinct manipulation scenarios: exclusionary collusion where majorities exploit minorities, defensive counterstrategies that backfire, benevolent subsidization of specific participants, and cost minimization coalitions. Our experiments reveal that LLMs can explain algorithmic mechanics, identify profitable deviations, and generate specific numerical inputs for coordinated preference misreporting--capabilities previously requiring deep technical knowledge. These findings extend algorithmic collective action theory from classification contexts to resource allocation scenarios, where coordinated preference manipulation replaces feature manipulation. The implications reach beyond rent division to any domain using algorithmic fairness mechanisms for resource division. While AI-enabled manipulation poses risks to system integrity, it also creates opportunities for preferential treatment of equity deserving groups. We argue that effective responses must combine algorithmic robustness, participatory design, and equitable access to AI capabilities, acknowledging that strategic sophistication is no longer a scarce resource.
comment: submitted to NeurIPS 2025 workshop on Algorithmic Collective Action
☆ CAPIRE: Modelling the Impact of Teacher Strikes and Inflation on Student Trajectories in Engineering Education
This study extends the CAPIRE framework with a macro-shock module to analyse the impact of teacher strikes and inflation on student trajectories in engineering education. Using data from 1,343 students across 15 cohorts (2004-2019) in a public engineering faculty in Argentina, we construct a leak-aware, multilevel feature set that incorporates national inflation indicators, lagged exposure to teacher strikes, and interaction terms between macro shocks and curriculum friction. Random Forest models with cohort-based validation demonstrate that macro features provide stable, non-trivial gains in early-semester dropout prediction (improvement in Macro F1 from 0.73 to 0.78), with inflation volatility at entry and a strike-weighted basic-cycle friction index amongst the most influential variables. Lag analysis reveals that strike exposure exerts its strongest association with dropout two to three semesters after the disruption (OR = 2.34), and that effects are concentrated in early, high-friction semesters. We then embed these empirical patterns into an agent-based model, defining scenarios for inflation-only, strikes-only, and combined crisis. Simulations reproduce three stylised facts: delayed strike effects, basic-cycle vulnerability, and non-linear amplification when inflation and strikes co-occur, with combined shocks generating dropout levels 18-23% higher than the sum of individual effects. We argue that teacher strikes and inflation operate as structurally mediated educational disruptors, acting through curriculum design and financial resilience rather than as isolated events. The framework contributes to multilevel dropout theory by demonstrating how macro-level shocks propagate through institutional structures to shape individual trajectories and provides empirically grounded tools for scenario planning in macroeconomically unstable contexts.
comment: 54 pages, 3 figures, 7 tables. Includes appendices
☆ Context-aware, Ante-hoc Explanations of Driving Behaviour
Autonomous vehicles (AVs) must be both safe and trustworthy to gain social acceptance and become a viable option for everyday public transportation. Explanations about the system behaviour can increase safety and trust in AVs. Unfortunately, explaining the system behaviour of AI-based driving functions is particularly challenging, as decision-making processes are often opaque. The field of Explainability Engineering tackles this challenge by developing explanation models at design time. These models are designed from system design artefacts and stakeholder needs to develop correct and good explanations. To support this field, we propose an approach that enables context-aware, ante-hoc explanations of (un)expectable driving manoeuvres at runtime. The visual yet formal language Traffic Sequence Charts is used to formalise explanation contexts, as well as corresponding (un)expectable driving manoeuvres. A dedicated runtime monitoring enables context-recognition and ante-hoc presentation of explanations at runtime. In combination, we aim to support the bridging of correct and good explanations. Our method is demonstrated in a simulated overtaking.
comment: In Proceedings FMAS 2025, arXiv:2511.13245
☆ Report on the Scoping Workshop on AI in Science Education Research 2025
This report summarizes the outcomes of a two-day international scoping workshop on the role of artificial intelligence (AI) in science education research. As AI rapidly reshapes scientific practice, classroom learning, and research methods, the field faces both new opportunities and significant challenges. The report clarifies key AI concepts to reduce ambiguity and reviews evidence of how AI influences scientific work, teaching practices, and disciplinary learning. It identifies how AI intersects with major areas of science education research, including curriculum development, assessment, epistemic cognition, inclusion, and teacher professional development, highlighting cases where AI can support human reasoning and cases where it may introduce risks to equity or validity. The report also examines how AI is transforming methodological approaches across quantitative, qualitative, ethnographic, and design-based traditions, giving rise to hybrid forms of analysis that combine human and computational strengths. To guide responsible integration, a systems-thinking heuristic is introduced that helps researchers consider stakeholder needs, potential risks, and ethical constraints. The report concludes with actionable recommendations for training, infrastructure, and standards, along with guidance for funders, policymakers, professional organizations, and academic departments. The goal is to support principled and methodologically sound use of AI in science education research.
☆ DiverseClaire: Simulating Students to Improve Introductory Programming Course Materials for All CS1 Learners
Although CS programs are booming, introductory courses like CS1 still adopt a one-size-fits-all formats that can exacerbate cognitive load and discourage learners with autism, ADHD, dyslexia and other neurological conditions. These call for compassionate pedagogies and Universal Design For Learning (UDL) to create learning environments and materials where cognitive diversity is welcomed. To address this, we introduce DiverseClaire a pilot study, which simulates students including neurodiverse profiles using LLMs and diverse personas. By leveraging Bloom's Taxonomy and UDL, DiverseClaire compared UDL-transformed lecture slides with traditional formats. To evaluate DiverseClaire controlled experiments, we used the evaluation metric the average score. The findings revealed that the simulated neurodiverse students struggled with learning due to lecture slides that were in inaccessible formats. These results highlight the need to provide course materials in multiple formats for diverse learner preferences. Data from our pilot study will be made available to assist future CS1 instructors.
comment: 2 pages
☆ A Longitudinal Study on the Attitudes of Gay Men in Beijing Towards Gay Social Media Platforms: Lonely Souls in the Digital Concrete Jungle
Over the past decade, specialized social networking applications have become a cornerstone of life for many gay men in China. This paper employs a longitudinal mixed-methods approach to investigate how Chinese men who have sex with men (MSM) have shifted their attitudes toward these platforms between approximately 2013 and 2023. Drawing on archival analysis of online discourses, a quantitative survey of 412 participants, and in-depth semi-structured interviews with 32 participants, we trace the complex trajectory of this evolution. Our findings reveal a clear pattern: from the initial embrace of these applications as revolutionary tools for community building and identity affirmation (2014--2017), to a period of growing ambivalence and critique centered on commercialization, ``hookup culture,'' and multiple forms of discrimination (2017--2020), and finally to the present era (2020--2023), characterized by pragmatic, fragmented, yet simultaneously critical and reconstructive uses. Today, users strategically employ a repertoire of applications -- including global platforms (e.g., Grindr and Tinder), domestic mainstream platforms (e.g., Blued), and niche alternatives (e.g., Aloha) -- to fulfill differentiated needs. We develop a detailed temporal framework to capture this attitudinal evolution and discuss its design implications for creating more supportive, secure, and community-oriented digital environments for marginalized groups.
☆ A Comprehensive Study of Implicit and Explicit Biases in Large Language Models
Large Language Models (LLMs) inherit explicit and implicit biases from their training datasets. Identifying and mitigating biases in LLMs is crucial to ensure fair outputs, as they can perpetuate harmful stereotypes and misinformation. This study highlights the need to address biases in LLMs amid growing generative AI. We studied bias-specific benchmarks such as StereoSet and CrowSPairs to evaluate the existence of various biases in multiple generative models such as BERT and GPT 3.5. We proposed an automated Bias-Identification Framework to recognize various social biases in LLMs such as gender, race, profession, and religion. We adopted a two-pronged approach to detect explicit and implicit biases in text data. Results indicated fine-tuned models struggle with gender biases but excelled at identifying and avoiding racial biases. Our findings illustrated that despite having some success, LLMs often over-relied on keywords. To illuminate the capability of the analyzed LLMs in detecting implicit biases, we employed Bag-of-Words analysis and unveiled indications of implicit stereotyping within the vocabulary. To bolster the model performance, we applied an enhancement strategy involving fine-tuning models using prompting techniques and data augmentation of the bias benchmarks. The fine-tuned models exhibited promising adaptability during cross-dataset testing and significantly enhanced performance on implicit bias benchmarks, with performance gains of up to 20%.
☆ Can Artificial Intelligence Accelerate Technological Progress? Researchers' Perspectives on AI in Manufacturing and Materials Science
Artificial intelligence (AI) raises expectations of substantial increases in rates of technological and scientific progress, but such anticipations are often not connected to detailed ground-level studies of AI use in innovation processes. Accordingly, it remains unclear how and to what extent AI can accelerate innovation. To help to fill this gap, we report results from 32 interviews with U.S.-based academic manufacturing and materials sciences researchers experienced with AI and machine learning (ML) techniques. Interviewees primarily used AI for modeling of materials and manufacturing processes, facilitating cheaper and more rapid search of design spaces for materials and manufacturing processes alike. They report benefits including cost, time, and computation savings in technology development. However, interviewees also report that AI/ML tools are unreliable outside design spaces for which dense data are already available; that they require skilled and judicious application in tandem with older research techniques; and that AI/ML tools may detrimentally circumvent opportunities for disruptive theoretical advancement. Based on these results, we suggest there is reason for optimism about acceleration in sustaining innovations through the use of to AI/ML; but that support for conventional empirical, computational, and theoretical research is required to maintain the likelihood of further major advances in manufacturing and materials science.
♻ ☆ SpiderGen: Towards Procedure Generation For Carbon Life Cycle Assessments with Generative AI
Investigating the effects of climate change and global warming caused by GHG emissions have been a key concern worldwide. These emissions are largely contributed to by the production, use and disposal of consumer products. Thus, it is important to build tools to estimate the environmental impact of consumer goods, an essential part of which is conducting Life Cycle Assessments (LCAs). LCAs specify and account for the appropriate processes involved with the production, use, and disposal of the products. We present SpiderGen, an LLM-based workflow which integrates the taxonomy and methodology of traditional LCA with the reasoning capabilities and world knowledge of LLMs to generate graphical representations of the key procedural information used for LCA, known as Product Category Rules Process Flow Graphs (PCR PFGs). We additionally evaluate the output of SpiderGen by comparing it with 65 real-world LCA documents. We find that SpiderGen provides accurate LCA process information that is either fully correct or has minor errors, achieving an F1-Score of 65% across 10 sample data points, as compared to 53% using a one-shot prompting method. We observe that the remaining errors occur primarily due to differences in detail between LCA documents, as well as differences in the "scope" of which auxiliary processes must also be included. We also demonstrate that SpiderGen performs better than several baselines techniques, such as chain-of-thought prompting and one-shot prompting. Finally, we highlight SpiderGen's potential to reduce the human effort and costs for estimating carbon impact, as it is able to produce LCA process information for less than \$1 USD in under 10 minutes as compared to the status quo LCA, which can cost over \$25000 USD and take up to 21-person days.
♻ ☆ MajinBook: An open catalogue of digital world literature with likes
This data paper introduces MajinBook, an open catalogue designed to facilitate the use of shadow libraries--such as Library Genesis and Z-Library--for computational social science and cultural analytics. By linking metadata from these vast, crowd-sourced archives with structured bibliographic data from Goodreads, we create a high-precision corpus of over 539,000 references to English-language books spanning three centuries, enriched with first publication dates, genres, and popularity metrics like ratings and reviews. Our methodology prioritizes natively digital EPUB files to ensure machine-readable quality, while addressing biases in traditional corpora like HathiTrust, and includes secondary datasets for French, German, and Spanish. We evaluate the linkage strategy for accuracy, release all underlying data openly, and discuss the project's legal permissibility under EU and US frameworks for text and data mining in research.
comment: 9 pages, 5 figures, 1 table
♻ ☆ Embedding Explainable AI in NHS Clinical Safety: The Explainability-Enabled Clinical Safety Framework (ECSF)
Artificial intelligence (AI) is increasingly embedded in NHS workflows, but its probabilistic and adaptive behaviour conflicts with the deterministic assumptions underpinning existing clinical-safety standards. DCB0129 and DCB0160 provide strong governance for conventional software yet do not define how AI-specific transparency, interpretability, or model drift should be evidenced within Safety Cases, Hazard Logs, or post-market monitoring. This paper proposes an Explainability-Enabled Clinical Safety Framework (ECSF) that integrates explainability into the DCB0129/0160 lifecycle, enabling Clinical Safety Officers to use interpretability outputs as structured safety evidence without altering compliance pathways. A cross-regulatory synthesis mapped DCB clauses to principles from Good Machine Learning Practice, the NHS AI Assurance and T.E.S.T. frameworks, and the EU AI Act. The resulting matrix links regulatory clauses, principles, ECSF checkpoints, and suitable explainability outputs. ECSF introduces five checkpoints: global transparency for hazard identification, case-level interpretability for verification, clinician usability for evaluation, traceable decision pathways for risk control, and longitudinal interpretability monitoring for post-market surveillance. Techniques such as SHAP, LIME, Integrated Gradients, saliency mapping, and attention visualisation are mapped to corresponding DCB artefacts. ECSF reframes explainability as a core element of clinical-safety assurance, bridging deterministic risk governance with the probabilistic behaviour of AI and supporting alignment with GMLP, the EU AI Act, and NHS AI Assurance principles.
comment: 33 pages, 5 figures
♻ ☆ Revisiting (Un)Fairness in Recourse by Minimizing Worst-Case Social Burden AAAI 2026
Machine learning based predictions are increasingly used in sensitive decision-making applications that directly affect our lives. This has led to extensive research into ensuring the fairness of classifiers. Beyond just fair classification, emerging legislation now mandates that when a classifier delivers a negative decision, it must also offer actionable steps an individual can take to reverse that outcome. This concept is known as algorithmic recourse. Nevertheless, many researchers have expressed concerns about the fairness guarantees within the recourse process itself. In this work, we provide a holistic theoretical characterization of unfairness in algorithmic recourse, formally linking fairness guarantees in recourse and classification, and highlighting limitations of the standard equal cost paradigm. We then introduce a novel fairness framework based on social burden, along with a practical algorithm (MISOB), broadly applicable under real-world conditions. Empirical results on real-world datasets show that MISOB reduces the social burden across all groups without compromising overall classifier accuracy.
comment: Accepted at AAAI 2026
♻ ☆ Proportionate Cybersecurity for Micro-SMEs: A Governance Design Model under NIS2
Micro and small enterprises (SMEs) remain structurally vulnerable to cyber threats while facing capacity constraints that make formal compliance burdensome. This article develops a governance design model for proportionate SME cybersecurity, grounded in an awareness-first logic and informed by the EU Squad 2025 experience. Using a qualitative policy-analysis and conceptual policy-design approach, we reconstruct a seven-dimension preventive architecture: awareness and visibility, human behaviour, access control, system hygiene, data protection, detection and response, and continuous review, and justify each dimension's contribution to proportionality and risk reduction. We then map the model's regulatory scope and limits against the NIS2 Directive, Commission Implementing Regulation (EU) 2024/2690, the Digital Operational Resilience Act (DORA), the Cyber Resilience Act (CRA), and the EU Action Plan on Cybersecurity for Hospitals, clarifying which obligations are supported and which require complementary governance (e.g. role accountability, incident timelines, statements of applicability, sector-specific testing and procurement). The analysis argues that raising awareness is the fastest, scalable lever to increase cyber-risk sensitivity in micro-SMEs and complements, rather than replaces, formal compliance. We conclude with policy implications for EU and national programmes seeking practical, proportionate pathways to SME cyber resilience under NIS2.
comment: Comments: 5 pages, 2 tables. The paper proposes a proportionate, awareness-first cybersecurity approach for micro- and small enterprises, inspired by the EU Squad 2025 initiative, highlighting how simple preventive measures can align with - but not replace - formal compliance under NIS2 and related regulations
♻ ☆ The EU AI Act, Stakeholder Needs, and Explainable AI: Aligning Regulatory Compliance in a Clinical Decision Support System
Explainable AI (XAI) is a promising route to comply with the EU AI Act, the first multinational AI regulation. XAI enhances transparency and human oversight of AI systems, especially ''black-box`` models criticized as incomprehensible. Yet discourse about the AI Act's stakeholders and XAI remains disconnected: XAI increasingly prioritizes end users' needs, while the AI Act focuses on providers' and deployers' obligations. We aim to bridge this divide and offer practical guidance on their relationship. Through interdisciplinary discussion in a cross functional team of XAI, AI Act, legal, and requirements-engineering experts, we outline steps to analyze an AI-based clinical decision support system, clarify end-user needs, and assess AI Act applicability. Using an AI system under development as a case study, we show how XAI techniques can help reconcile stakeholder needs with AI Act requirements and fill gaps between usability and regulatory demands. We compare similarities and differences between legal obligations and end-user needs, identify tensions, and point to concrete design choices and trade-offs. We invite researchers and practitioners in XAI to reflect on their role relative to the AI Act and to develop mutual understanding across disciplines. While XAI can help implement core AI Act principles such as transparency and human oversight, it should be considered one element of a broader compliance strategy that also requires standardization, legal interpretation, documentation, organizational processes, governance, testing, and ongoing monitoring and auditing practices. Our findings yield actionable recommendations for integrating XAI into product development, compliance workflows, and stakeholder communication, informing policy-making and standards development.
comment: 18 pages, 2 figures
♻ ☆ MCTSr-Zero: Self-Reflective Psychological Counseling Dialogues Generation via Principles and Adaptive Exploration AAAI-2026
The integration of Monte Carlo Tree Search (MCTS) with Large Language Models (LLMs) has demonstrated significant success in structured, problem-oriented tasks. However, applying these methods to open-ended dialogues, such as those in psychological counseling, presents unique challenges. Unlike tasks with objective correctness, success in therapeutic conversations depends on subjective factors like empathetic engagement, ethical adherence, and alignment with human preferences, for which strict "correctness" criteria are ill-defined. Existing result-oriented MCTS approaches can therefore produce misaligned responses. To address this, we introduce MCTSr-Zero, an MCTS framework designed for open-ended, human-centric dialogues. Its core innovation is "domain alignment", which shifts the MCTS search objective from predefined end-states towards conversational trajectories that conform to target domain principles (e.g., empathy in counseling). Furthermore, MCTSr-Zero incorporates "Regeneration" and "Meta-Prompt Adaptation" mechanisms to substantially broaden exploration by allowing the MCTS to consider fundamentally different initial dialogue strategies. We evaluate MCTSr-Zero in psychological counseling by generating multi-turn dialogue data, which is used to fine-tune an LLM, PsyLLM. We also introduce PsyEval, a benchmark for assessing multi-turn psychological counseling dialogues. Experiments demonstrate that PsyLLM achieves state-of-the-art performance on PsyEval and other relevant metrics, validating MCTSr-Zero's effectiveness in generating high-quality, principle-aligned conversational data for human-centric domains and addressing the LLM challenge of consistently adhering to complex psychological standards.
comment: 48 pages, 3 figures. Accepted in AAAI-2026 (Main Technical Track). For code and model, see this https://github.com/JianChengXingYun/Mctsr-Zero
♻ ☆ Leveraging LLM-based agents for social science research: insights from citation network simulations SC
The emergence of Large Language Models (LLMs) demonstrates their potential to encapsulate the logic and patterns inherent in human behavior simulation by leveraging extensive web data pre-training. However, the boundaries of LLM capabilities in social simulation remain unclear. To further explore the social attributes of LLMs, we introduce the CiteAgent framework, designed to generate citation networks based on human-behavior simulation with LLM-based agents. CiteAgent successfully captures predominant phenomena in real-world citation networks, including power-law distribution, citational distortion, and shrinking diameter. Building on this realistic simulation, we establish two LLM-based research paradigms in social science: LLM-SE (LLM-based Survey Experiment) and LLM-LE (LLM-based Laboratory Experiment). These paradigms facilitate rigorous analyses of citation network phenomena, allowing us to validate and challenge existing theories. Additionally, we extend the research scope of traditional science of science studies through idealized social experiments, with the simulation experiment results providing valuable insights for real-world academic environments. Our work demonstrates the potential of LLMs for advancing science of science research in social science.
comment: accepted by HSSCOMMS'25
♻ ☆ Fairness-Aware Graph Representation Learning with Limited Demographic Information
Ensuring fairness in Graph Neural Networks is fundamental to promoting trustworthy and socially responsible machine learning systems. In response, numerous fair graph learning methods have been proposed in recent years. However, most of them assume full access to demographic information, a requirement rarely met in practice due to privacy, legal, or regulatory restrictions. To this end, this paper introduces a novel fair graph learning framework that mitigates bias in graph learning under limited demographic information. Specifically, we propose a mechanism guided by partial demographic data to generate proxies for demographic information and design a strategy that enforces consistent node embeddings across demographic groups. In addition, we develop an adaptive confidence strategy that dynamically adjusts each node's contribution to fairness and utility based on prediction confidence. We further provide theoretical analysis demonstrating that our framework, FairGLite, achieves provable upper bounds on group fairness metrics, offering formal guarantees for bias mitigation. Through extensive experiments on multiple datasets and fair graph learning frameworks, we demonstrate the framework's effectiveness in both mitigating bias and maintaining model utility.
♻ ☆ A Framework for Developing University Policies on Generative AI Governance: A Cross-national Comparative Study
As generative AI (GAI) becomes more integrated into higher education, universities are actively exploring its governance and issuing guidelines to promote responsible use, reflecting varied stages of adoption and orientations. This study undertakes a comparative analysis of current GAI guidelines issued by leading universities in the United States, Japan, and China. Based on these findings, the study proposes a University Policy Development Framework for GAI (UPDF-GAI) to provide both theoretical insights and practical guidance for universities in developing and refining their GAI policies. This study adopts five domains from the extended Technology Acceptance Model. A qualitative content analysis of 124 policy documents from 110 universities was conducted, employing thematic coding to synthesize 20 key themes. These domains and themes form the foundation of the UPDF-GAI framework. The analysis reveals varying priorities and focus of GAI policy of universities in different countries. U.S. universities emphasize faculty autonomy, practical application, and policy adaptability, shaped by cutting-edge research and peer collaboration. Japanese universities take a government-regulated approach, prioritizing ethics and risk management, but provide limited support for AI implementation and flexibility. Chinese universities follow a centralized, government-led model, focusing on technology application over early policy development, while actively exploring GAI integration in education and research. The framework facilitates universities in formulating GAI policies by balancing its values and risks, providing multi-level support, proactively responding to societal impacts, and strengthening self-efficacy. In doing so, it enables the development of sustainable and context-sensitive policies that enhance digital competitiveness and advance preparedness for AI-driven education.
comment: Work in progress
♻ ☆ Learning Fair Representations with Kolmogorov-Arnold Networks
Despite recent advances in fairness-aware machine learning, predictive models often exhibit discriminatory behavior towards marginalized groups. Such unfairness might arise from biased training data, model design, or representational disparities across groups, posing significant challenges in high-stakes decision-making domains such as college admissions. While existing fair learning models aim to mitigate bias, achieving an optimal trade-off between fairness and accuracy remains a challenge. Moreover, the reliance on black-box models hinders interpretability, limiting their applicability in socially sensitive domains. To circumvent these issues, we propose integrating Kolmogorov-Arnold Networks (KANs) within a fair adversarial learning framework. Leveraging the adversarial robustness and interpretability of KANs, our approach facilitates stable adversarial learning. We derive theoretical insights into the spline-based KAN architecture that ensure stability during adversarial optimization. Additionally, an adaptive fairness penalty update mechanism is proposed to strike a balance between fairness and accuracy. We back these findings with empirical evidence on two real-world admissions datasets, demonstrating the proposed framework's efficiency in achieving fairness across sensitive attributes while preserving predictive performance.
♻ ☆ Artificial Intelligence Tools Expand Scientists' Impact but Contract Science's Focus
Development in Artificial Intelligence (AI) has accelerated scientific discovery. Alongside recent AI-oriented Nobel prizes, these trends establish the role of AI tools in science. This advancement raises questions about the potential influences of AI tools on scientists and science as a whole, and highlights a potential conflict between individual and collective benefits. To evaluate, we used a pretrained language model to identify AI-augmented research, with an F1-score of 0.875 in validation against expert-labeled data. Using a dataset of 41.3 million research papers across natural science and covering distinct eras of AI, here we show an accelerated adoption of AI tools among scientists and consistent professional advantages associated with AI usage, but a collective narrowing of scientific focus. Scientists who engage in AI-augmented research publish 3.02 times more papers, receive 4.84 times more citations, and become research project leaders 1.37 years earlier than those who do not. By contrast, AI adoption shrinks the collective volume of scientific topics studied by 4.63% and decreases scientist's engagement with one another by 22.00%. Thereby, AI adoption in science presents a seeming paradox -- an expansion of individual scientists' impact but a contraction in collective science's reach -- as AI-augmented work moves collectively toward areas richest in data. With reduced follow-on engagement, AI tools appear to automate established fields rather than explore new ones, highlighting a tension between personal advancement and collective scientific progress.
♻ ☆ Deploying Rapid Damage Assessments from sUAS Imagery for Disaster Response
This paper presents the first AI/ML system for automating building damage assessment in uncrewed aerial systems (sUAS) imagery to be deployed operationally during federally declared disasters (Hurricanes Debby and Helene). In response to major disasters, sUAS teams are dispatched to collect imagery of the affected areas to assess damage; however, at recent disasters, teams collectively delivered between 47GB and 369GB of imagery per day, representing more imagery than can reasonably be transmitted or interpreted by subject matter experts in the disaster scene, thus delaying response efforts. To alleviate this data avalanche encountered in practice, computer vision and machine learning techniques are necessary. While prior work has been deployed to automatically assess damage in satellite imagery, there is no current state of practice for sUAS-based damage assessment systems, as all known work has been confined to academic settings. This work establishes the state of practice via the development and deployment of models for building damage assessment with sUAS imagery. The model development involved training on the largest known dataset of post-disaster sUAS aerial imagery, containing 21,716 building damage labels, and the operational training of 91 disaster practitioners. The best performing model was deployed during the responses to Hurricanes Debby and Helene, where it assessed a combined 415 buildings in approximately 18 minutes. This work contributes documentation of the actual use of AI/ML for damage assessment during a disaster and lessons learned to the benefit of the AI/ML research and user communities.
comment: 6 pages, 4 figures, 1 table. Accepted - In Press, IAAI'26
Computation and Language
☆ Hint-Augmented Re-ranking: Efficient Product Search using LLM-Based Query Decomposition AACL 2025
Search queries with superlatives (e.g., best, most popular) require comparing candidates across multiple dimensions, demanding linguistic understanding and domain knowledge. We show that LLMs can uncover latent intent behind these expressions in e-commerce queries through a framework that extracts structured interpretations or hints. Our approach decomposes queries into attribute-value hints generated concurrently with retrieval, enabling efficient integration into the ranking pipeline. Our method improves search performanc eby 10.9 points in MAP and ranking by 5.9 points in MRR over baselines. Since direct LLM-based reranking faces prohibitive latency, we develop an efficient approach transferring superlative interpretations to lightweight models. Our findings provide insights into how superlative semantics can be represented and transferred between models, advancing linguistic interpretation in retrieval systems while addressing practical deployment constraints.
comment: AACL 2025
☆ Show and Tell: Prompt Strategies for Style Control in Multi-Turn LLM Code Generation
Language models generate functionally correct code that tends toward excessive verbosity, with elaborate documentation and defensive patterns that diverge from human baselines. Two prompting mechanisms have emerged for stylistic control: instruction based prompts that articulate abstract directives, and example based prompts that provide concrete code demonstrations. The core problem is whether stylistic constraints persist when models enhance initial implementations with additional features while maintaining high functional accuracy. Here we show that instruction-based, example-based, and combined prompts produce distinct patterns of initial control and expansion discipline over one enhancement turn. We manipulated system prompts across four conditions in a paired two-turn protocol where models first generated solutions to an intermediate Python task, then revised their code under general improvement directives, holding the user task fixed (N = 160 paired programs). Combined prompts produced the strongest initial compression and greatest expansion discipline. Instructions showed large initial effects and moderate expansion discipline. Examples showed modest initial effects with no expansion discipline. These results show that initial prompt effectiveness and expansion discipline are separate aspects of prompt design, and that combined approaches provide the most stable stylistic control in this two-turn workflow.
comment: 23 pages, 2 figures, 3 tables. Under review
☆ EchoAgent: Guideline-Centric Reasoning Agent for Echocardiography Measurement and Interpretation
Purpose: Echocardiographic interpretation requires video-level reasoning and guideline-based measurement analysis, which current deep learning models for cardiac ultrasound do not support. We present EchoAgent, a framework that enables structured, interpretable automation for this domain. Methods: EchoAgent orchestrates specialized vision tools under Large Language Model (LLM) control to perform temporal localization, spatial measurement, and clinical interpretation. A key contribution is a measurement-feasibility prediction model that determines whether anatomical structures are reliably measurable in each frame, enabling autonomous tool selection. We curated a benchmark of diverse, clinically validated video-query pairs for evaluation. Results: EchoAgent achieves accurate, interpretable results despite added complexity of spatiotemporal video analysis. Outputs are grounded in visual evidence and clinical guidelines, supporting transparency and traceability. Conclusion: This work demonstrates the feasibility of agentic, guideline-aligned reasoning for echocardiographic video analysis, enabled by task-specific tools and full video-level automation. EchoAgent sets a new direction for trustworthy AI in cardiac ultrasound.
comment: 12 pages, Under Review
☆ What Works for 'Lost-in-the-Middle' in LLMs? A Study on GM-Extract and Mitigations
The diminishing ability of large language models (LLMs) to effectively utilize long-range context-the "lost-in-the-middle" phenomenon-poses a significant challenge in retrieval-based LLM applications. To study the impact of this phenomenon in a real-world application setting, we introduce GM-Extract, a novel benchmark dataset meticulously designed to evaluate LLM performance on retrieval of control variables. To accurately diagnose failure modes, we propose a simple yet elegant evaluation system using two distinct metrics: one for spatial retrieval capability (Document Metric) and the other for semantic retrieval capability (Variable Extraction Metric). We conduct a systematic evaluation of 7-8B parameter models on two multi-document tasks (key-value extraction and question-answering), demonstrating a significant change in retrieval performance simply by altering how the data is represented in the context window. While a distinct U-shaped curve was not consistently observed, our analysis reveals a clear pattern of performance across models, which we further correlate with perplexity scores. Furthermore, we perform a literature survey of mitigation methods, which we categorize into two distinct approaches: black-box and white-box methods. We then apply these techniques to our benchmark, finding that their efficacy is highly nuanced. Our evaluation highlights scenarios where these strategies successfully improve performance, as well as surprising cases where they lead to a negative impact, providing a comprehensive understanding of their utility in a practical context.
comment: To be submitted for publication
☆ Can QE-informed (Re)Translation lead to Error Correction? EMNLP 2025
The paper presents two approaches submitted to the WMT 2025 Automated Translation Quality Evaluation Systems Task 3 - Quality Estimation (QE)-informed Segment-level Error Correction. While jointly training QE systems with Automatic Post-Editing (APE) has shown improved performance for both tasks, APE systems are still known to overcorrect the output of Machine Translation (MT), leading to a degradation in performance. We investigate a simple training-free approach - QE-informed Retranslation, and compare it with another within the same training-free paradigm. Our winning approach selects the highest-quality translation from multiple candidates generated by different LLMs. The second approach, more akin to APE, instructs an LLM to replace error substrings as specified in the provided QE explanation(s). A conditional heuristic was employed to minimise the number of edits, with the aim of maximising the Gain-to-Edit ratio. The two proposed approaches achieved a Delta COMET score of 0.0201 and -0.0108, respectively, leading the first approach to achieve the winning position on the subtask leaderboard.
comment: 10 pages, 3 figures, WMT25 Shared Task in EMNLP 2025 Conference
☆ When AI Does Science: Evaluating the Autonomous AI Scientist KOSMOS in Radiation Biology
Agentic AI "scientists" now use language models to search the literature, run analyses, and generate hypotheses. We evaluate KOSMOS, an autonomous AI scientist, on three problems in radiation biology using simple random-gene null benchmarks. Hypothesis 1: baseline DNA damage response (DDR) capacity across cell lines predicts the p53 transcriptional response after irradiation (GSE30240). Hypothesis 2: baseline expression of OGT and CDO1 predicts the strength of repressed and induced radiation-response modules in breast cancer cells (GSE59732). Hypothesis 3: a 12-gene expression signature predicts biochemical recurrence-free survival after prostate radiotherapy plus androgen deprivation therapy (GSE116918). The DDR-p53 hypothesis was not supported: DDR score and p53 response were weakly negatively correlated (Spearman rho = -0.40, p = 0.76), indistinguishable from random five-gene scores. OGT showed only a weak association (r = 0.23, p = 0.34), whereas CDO1 was a clear outlier (r = 0.70, empirical p = 0.0039). The 12-gene signature achieved a concordance index of 0.61 (p = 0.017) but a non-unique effect size. Overall, KOSMOS produced one well-supported discovery, one plausible but uncertain result, and one false hypothesis, illustrating that AI scientists can generate useful ideas but require rigorous auditing against appropriate null models.
comment: 13 pages, 3 figures, preprint
☆ Generalist Foundation Models Are Not Clinical Enough for Hospital Operations
Hospitals and healthcare systems rely on operational decisions that determine patient flow, cost, and quality of care. Despite strong performance on medical knowledge and conversational benchmarks, foundation models trained on general text may lack the specialized knowledge required for these operational decisions. We introduce Lang1, a family of models (100M-7B parameters) pretrained on a specialized corpus blending 80B clinical tokens from NYU Langone Health's EHRs and 627B tokens from the internet. To rigorously evaluate Lang1 in real-world settings, we developed the REalistic Medical Evaluation (ReMedE), a benchmark derived from 668,331 EHR notes that evaluates five critical tasks: 30-day readmission prediction, 30-day mortality prediction, length of stay, comorbidity coding, and predicting insurance claims denial. In zero-shot settings, both general-purpose and specialized models underperform on four of five tasks (36.6%-71.7% AUROC), with mortality prediction being an exception. After finetuning, Lang1-1B outperforms finetuned generalist models up to 70x larger and zero-shot models up to 671x larger, improving AUROC by 3.64%-6.75% and 1.66%-23.66% respectively. We also observed cross-task scaling with joint finetuning on multiple tasks leading to improvement on other tasks. Lang1-1B effectively transfers to out-of-distribution settings, including other clinical tasks and an external health system. Our findings suggest that predictive capabilities for hospital operations require explicit supervised finetuning, and that this finetuning process is made more efficient by in-domain pretraining on EHR. Our findings support the emerging view that specialized LLMs can compete with generalist models in specialized tasks, and show that effective healthcare systems AI requires the combination of in-domain pretraining, supervised finetuning, and real-world evaluation beyond proxy benchmarks.
☆ Why is "Chicago" Predictive of Deceptive Reviews? Using LLMs to Discover Language Phenomena from Lexical Cues
Deceptive reviews mislead consumers, harm businesses, and undermine trust in online marketplaces. Machine learning classifiers can learn from large amounts of training examples to effectively distinguish deceptive reviews from genuine ones. However, the distinguishing features learned by these classifiers are often subtle, fragmented, and difficult for humans to interpret. In this work, we explore using large language models (LLMs) to translate machine-learned lexical cues into human-understandable language phenomena that can differentiate deceptive reviews from genuine ones. We show that language phenomena obtained in this manner are empirically grounded in data, generalizable across similar domains, and more predictive than phenomena either in LLMs' prior knowledge or obtained through in-context learning. These language phenomena have the potential to aid people in critically assessing the credibility of online reviews in environments where deception detection classifiers are unavailable.
☆ Live-SWE-agent: Can Software Engineering Agents Self-Evolve on the Fly?
Large Language Models (LLMs) are reshaping almost all industries, including software engineering. In recent years, a number of LLM agents have been proposed to solve real-world software problems. Such software agents are typically equipped with a suite of coding tools and can autonomously decide the next actions to form complete trajectories to solve end-to-end software tasks. While promising, they typically require dedicated design and may still be suboptimal, since it can be extremely challenging and costly to exhaust the entire agent scaffold design space. Recognizing that software agents are inherently software themselves that can be further refined/modified, researchers have proposed a number of self-improving software agents recently, including the Darwin-Gödel Machine (DGM). Meanwhile, such self-improving agents require costly offline training on specific benchmarks and may not generalize well across different LLMs or benchmarks. In this paper, we propose Live-SWE-agent, the first live software agent that can autonomously and continuously evolve itself on-the-fly during runtime when solving real-world software problems. More specifically, Live-SWE-agent starts with the most basic agent scaffold with only access to bash tools (e.g., mini-SWE-agent), and autonomously evolves its own scaffold implementation while solving real-world software problems. Our evaluation on the widely studied SWE-bench Verified benchmark shows that Live-SWE-agent can achieve an impressive solve rate of 75.4% without test-time scaling, outperforming all existing open-source software agents and approaching the performance of the best proprietary solution. Moreover, Live-SWE-agent outperforms state-of-the-art manually crafted software agents on the recent SWE-Bench Pro benchmark, achieving the best-known solve rate of 45.8%.
☆ P1: Mastering Physics Olympiads with Reinforcement Learning
Recent progress in large language models (LLMs) has moved the frontier from puzzle-solving to science-grade reasoning-the kind needed to tackle problems whose answers must stand against nature, not merely fit a rubric. Physics is the sharpest test of this shift, which binds symbols to reality in a fundamental way, serving as the cornerstone of most modern technologies. In this work, we manage to advance physics research by developing large language models with exceptional physics reasoning capabilities, especially excel at solving Olympiad-level physics problems. We introduce P1, a family of open-source physics reasoning models trained entirely through reinforcement learning (RL). Among them, P1-235B-A22B is the first open-source model with Gold-medal performance at the latest International Physics Olympiad (IPhO 2025), and wins 12 gold medals out of 13 international/regional physics competitions in 2024/2025. P1-30B-A3B also surpasses almost all other open-source models on IPhO 2025, getting a silver medal. Further equipped with an agentic framework PhysicsMinions, P1-235B-A22B+PhysicsMinions achieves overall No.1 on IPhO 2025, and obtains the highest average score over the 13 physics competitions. Besides physics, P1 models also present great performance on other reasoning tasks like math and coding, showing the great generalibility of P1 series.
☆ Beyond SELECT: A Comprehensive Taxonomy-Guided Benchmark for Real-World Text-to-SQL Translation
Text-to-SQL datasets are essential for training and evaluating text-to-SQL models, but existing datasets often suffer from limited coverage and fail to capture the diversity of real-world applications. To address this, we propose a novel taxonomy for text-to-SQL classification based on dimensions including core intents, statement types, syntax structures, and key actions. Using this taxonomy, we evaluate widely used public text-to-SQL datasets (e.g., Spider and Bird) and reveal limitations in their coverage and diversity. We then introduce a taxonomy-guided dataset synthesis pipeline, yielding a new dataset named SQL-Synth. This approach combines the taxonomy with Large Language Models (LLMs) to ensure the dataset reflects the breadth and complexity of real-world text-to-SQL applications. Extensive analysis and experimental results validate the effectiveness of our taxonomy, as SQL-Synth exhibits greater diversity and coverage compared to existing benchmarks. Moreover, we uncover that existing LLMs typically fall short in adequately capturing the full range of scenarios, resulting in limited performance on SQL-Synth. However, fine-tuning can substantially improve their performance in these scenarios. The proposed taxonomy has significant potential impact, as it not only enables comprehensive analysis of datasets and the performance of different LLMs, but also guides the construction of training data for LLMs.
☆ ForgeDAN: An Evolutionary Framework for Jailbreaking Aligned Large Language Models
The rapid adoption of large language models (LLMs) has brought both transformative applications and new security risks, including jailbreak attacks that bypass alignment safeguards to elicit harmful outputs. Existing automated jailbreak generation approaches e.g. AutoDAN, suffer from limited mutation diversity, shallow fitness evaluation, and fragile keyword-based detection. To address these limitations, we propose ForgeDAN, a novel evolutionary framework for generating semantically coherent and highly effective adversarial prompts against aligned LLMs. First, ForgeDAN introduces multi-strategy textual perturbations across \textit{character, word, and sentence-level} operations to enhance attack diversity; then we employ interpretable semantic fitness evaluation based on a text similarity model to guide the evolutionary process toward semantically relevant and harmful outputs; finally, ForgeDAN integrates dual-dimensional jailbreak judgment, leveraging an LLM-based classifier to jointly assess model compliance and output harmfulness, thereby reducing false positives and improving detection effectiveness. Our evaluation demonstrates ForgeDAN achieves high jailbreaking success rates while maintaining naturalness and stealth, outperforming existing SOTA solutions.
☆ Toward Conversational Hungarian Speech Recognition: Introducing the BEA-Large and BEA-Dialogue Datasets LREC 2026
The advancement of automatic speech recognition (ASR) has been largely enhanced by extensive datasets in high-resource languages, while languages such as Hungarian remain underrepresented due to limited spontaneous and conversational corpora. To address this gap, we introduce two new datasets -- BEA-Large and BEA-Dialogue -- constructed from the previously unprocessed portions of the Hungarian speech corpus named BEA. BEA-Large extends BEA-Base with 255 hours of spontaneous speech from 433 speakers, enriched with detailed segment-level metadata. BEA-Dialogue, comprising 85 hours of spontaneous conversations, is a Hungarian speech corpus featuring natural dialogues partitioned into speaker-independent subsets, supporting research in conversational ASR and speaker diarization. We establish reproducible baselines on these datasets using publicly available ASR models, with the fine-tuned Fast Conformer model achieving word error rates as low as 14.18\% on spontaneous and 4.8\% on repeated speech. Diarization experiments yield diarization error rates between 13.05\% and 18.26\%, providing reference points for future improvements. The results highlight the persistent difficulty of conversational ASR, particularly due to disfluencies, overlaps, and informal speech patterns. By releasing these datasets and baselines, we aim to advance Hungarian speech technology and offer a methodological framework for developing spontaneous and conversational benchmarks in other languages.
comment: Submitted to LREC 2026
☆ Applying Large Language Models to Characterize Public Narratives
Public Narratives (PNs) are key tools for leadership development and civic mobilization, yet their systematic analysis remains challenging due to their subjective interpretation and the high cost of expert annotation. In this work, we propose a novel computational framework that leverages large language models (LLMs) to automate the qualitative annotation of public narratives. Using a codebook we co-developed with subject-matter experts, we evaluate LLM performance against that of expert annotators. Our work reveals that LLMs can achieve near-human-expert performance, achieving an average F1 score of 0.80 across 8 narratives and 14 codes. We then extend our analysis to empirically explore how PN framework elements manifest across a larger dataset of 22 stories. Lastly, we extrapolate our analysis to a set of political speeches, establishing a novel lens in which to analyze political rhetoric in civic spaces. This study demonstrates the potential of LLM-assisted annotation for scalable narrative analysis and highlights key limitations and directions for future research in computational civic storytelling.
☆ Aspect-Level Obfuscated Sentiment in Thai Financial Disclosures and Its Impact on Abnormal Returns
Understanding sentiment in financial documents is crucial for gaining insights into market behavior. These reports often contain obfuscated language designed to present a positive or neutral outlook, even when underlying conditions may be less favorable. This paper presents a novel approach using Aspect-Based Sentiment Analysis (ABSA) to decode obfuscated sentiment in Thai financial annual reports. We develop specific guidelines for annotating obfuscated sentiment in these texts and annotate more than one hundred financial reports. We then benchmark various text classification models on this annotated dataset, demonstrating strong performance in sentiment classification. Additionally, we conduct an event study to evaluate the real-world implications of our sentiment analysis on stock prices. Our results suggest that market reactions are selectively influenced by specific aspects within the reports. Our findings underscore the complexity of sentiment analysis in financial texts and highlight the importance of addressing obfuscated language to accurately assess market sentiment.
☆ Non-Linear Scoring Model for Translation Quality Evaluation
Analytic Translation Quality Evaluation (TQE), based on Multidimensional Quality Metrics (MQM), traditionally uses a linear error-to-penalty scale calibrated to a reference sample of 1000-2000 words. However, linear extrapolation biases judgment on samples of different sizes, over-penalizing short samples and under-penalizing long ones, producing misalignment with expert intuition. Building on the Multi-Range framework, this paper presents a calibrated, non-linear scoring model that better reflects how human content consumers perceive translation quality across samples of varying length. Empirical data from three large-scale enterprise environments shows that acceptable error counts grow logarithmically, not linearly, with sample size. Psychophysical and cognitive evidence, including the Weber-Fechner law and Cognitive Load Theory, supports this premise by explaining why the perceptual impact of additional errors diminishes while the cognitive burden grows with scale. We propose a two-parameter model E(x) = a * ln(1 + b * x), a, b > 0, anchored to a reference tolerance and calibrated from two tolerance points using a one-dimensional root-finding step. The model yields an explicit interval within which the linear approximation stays within +/-20 percent relative error and integrates into existing evaluation workflows with only a dynamic tolerance function added. The approach improves interpretability, fairness, and inter-rater reliability across both human and AI-generated translations. By operationalizing a perceptually valid scoring paradigm, it advances translation quality evaluation toward more accurate and scalable assessment. The model also provides a stronger basis for AI-based document-level evaluation aligned with human judgment. Implementation considerations for CAT/LQA systems and implications for human and AI-generated text evaluation are discussed.
comment: ongoing work, 38 pages
☆ Exploring Multi-Table Retrieval Through Iterative Search
Open-domain question answering over datalakes requires retrieving and composing information from multiple tables, a challenging subtask that demands semantic relevance and structural coherence (e.g., joinability). While exact optimization methods like Mixed-Integer Programming (MIP) can ensure coherence, their computational complexity is often prohibitive. Conversely, simpler greedy heuristics that optimize for query coverage alone often fail to find these coherent, joinable sets. This paper frames multi-table retrieval as an iterative search process, arguing this approach offers advantages in scalability, interpretability, and flexibility. We propose a general framework and a concrete instantiation: a fast, effective Greedy Join-Aware Retrieval algorithm that holistically balances relevance, coverage, and joinability. Experiments across 5 NL2SQL benchmarks demonstrate that our iterative method achieves competitive retrieval performance compared to the MIP-based approach while being 4-400x faster depending on the benchmark and search space settings. This work highlights the potential of iterative heuristics for practical, scalable, and composition-aware retrieval.
comment: Accepted @ the AI for Tabular Data Workshop, EurIPS 2025
☆ Attention Grounded Enhancement for Visual Document Retrieval
Visual document retrieval requires understanding heterogeneous and multi-modal content to satisfy information needs. Recent advances use screenshot-based document encoding with fine-grained late interaction, significantly improving retrieval performance. However, retrievers are still trained with coarse global relevance labels, without revealing which regions support the match. As a result, retrievers tend to rely on surface-level cues and struggle to capture implicit semantic connections, hindering their ability to handle non-extractive queries. To alleviate this problem, we propose a \textbf{A}ttention-\textbf{G}rounded \textbf{RE}triever \textbf{E}nhancement (AGREE) framework. AGREE leverages cross-modal attention from multimodal large language models as proxy local supervision to guide the identification of relevant document regions. During training, AGREE combines local signals with the global signals to jointly optimize the retriever, enabling it to learn not only whether documents match, but also which content drives relevance. Experiments on the challenging ViDoRe V2 benchmark show that AGREE significantly outperforms the global-supervision-only baseline. Quantitative and qualitative analyses further demonstrate that AGREE promotes deeper alignment between query terms and document regions, moving beyond surface-level matching toward more accurate and interpretable retrieval. Our code is available at: https://anonymous.4open.science/r/AGREE-2025.
☆ Mem-PAL: Towards Memory-based Personalized Dialogue Assistants for Long-term User-Agent Interaction AAAI 2026
With the rise of smart personal devices, service-oriented human-agent interactions have become increasingly prevalent. This trend highlights the need for personalized dialogue assistants that can understand user-specific traits to accurately interpret requirements and tailor responses to individual preferences. However, existing approaches often overlook the complexities of long-term interactions and fail to capture users' subjective characteristics. To address these gaps, we present PAL-Bench, a new benchmark designed to evaluate the personalization capabilities of service-oriented assistants in long-term user-agent interactions. In the absence of available real-world data, we develop a multi-step LLM-based synthesis pipeline, which is further verified and refined by human annotators. This process yields PAL-Set, the first Chinese dataset comprising multi-session user logs and dialogue histories, which serves as the foundation for PAL-Bench. Furthermore, to improve personalized service-oriented interactions, we propose H$^2$Memory, a hierarchical and heterogeneous memory framework that incorporates retrieval-augmented generation to improve personalized response generation. Comprehensive experiments on both our PAL-Bench and an external dataset demonstrate the effectiveness of the proposed memory framework.
comment: Accepted by AAAI 2026 (Oral)
☆ Can Large Language Models Function as Qualified Pediatricians? A Systematic Evaluation in Real-World Clinical Contexts
With the rapid rise of large language models (LLMs) in medicine, a key question is whether they can function as competent pediatricians in real-world clinical settings. We developed PEDIASBench, a systematic evaluation framework centered on a knowledge-system framework and tailored to realistic clinical environments. PEDIASBench assesses LLMs across three dimensions: application of basic knowledge, dynamic diagnosis and treatment capability, and pediatric medical safety and medical ethics. We evaluated 12 representative models released over the past two years, including GPT-4o, Qwen3-235B-A22B, and DeepSeek-V3, covering 19 pediatric subspecialties and 211 prototypical diseases. State-of-the-art models performed well on foundational knowledge, with Qwen3-235B-A22B achieving over 90% accuracy on licensing-level questions, but performance declined ~15% as task complexity increased, revealing limitations in complex reasoning. Multiple-choice assessments highlighted weaknesses in integrative reasoning and knowledge recall. In dynamic diagnosis and treatment scenarios, DeepSeek-R1 scored highest in case reasoning (mean 0.58), yet most models struggled to adapt to real-time patient changes. On pediatric medical ethics and safety tasks, Qwen2.5-72B performed best (accuracy 92.05%), though humanistic sensitivity remained limited. These findings indicate that pediatric LLMs are constrained by limited dynamic decision-making and underdeveloped humanistic care. Future development should focus on multimodal integration and a clinical feedback-model iteration loop to enhance safety, interpretability, and human-AI collaboration. While current LLMs cannot independently perform pediatric care, they hold promise for decision support, medical education, and patient communication, laying the groundwork for a safe, trustworthy, and collaborative intelligent pediatric healthcare system.
☆ Donors and Recipients: On Asymmetric Transfer Across Tasks and Languages with Parameter-Efficient Fine-Tuning
Large language models (LLMs) perform strongly across tasks and languages, yet how improvements in one task or language affect other tasks and languages and their combinations remains poorly understood. We conduct a controlled PEFT/LoRA study across multiple open-weight LLM families and sizes, treating task and language as transfer axes while conditioning on model family and size; we fine-tune each model on a single task-language source and measure transfer as the percentage-point change versus its baseline score when evaluated on all other task-language target pairs. We decompose transfer into (i) Matched-Task (Cross-Language), (ii) Matched-Language (Cross-Task), and (iii) Cross-Task (Cross-Language) regimes. We uncover two consistent general patterns. First, a pronounced on-task vs. off-task asymmetry: Matched-Task (Cross-Language) transfer is reliably positive, whereas off-task transfer often incurs collateral degradation. Second, a stable donor-recipient structure across languages and tasks (hub donors vs. brittle recipients). We outline implications for risk-aware fine-tuning and model specialisation.
☆ AHaSIS: Shared Task on Sentiment Analysis for Arabic Dialects
The hospitality industry in the Arab world increasingly relies on customer feedback to shape services, driving the need for advanced Arabic sentiment analysis tools. To address this challenge, the Sentiment Analysis on Arabic Dialects in the Hospitality Domain shared task focuses on Sentiment Detection in Arabic Dialects. This task leverages a multi-dialect, manually curated dataset derived from hotel reviews originally written in Modern Standard Arabic (MSA) and translated into Saudi and Moroccan (Darija) dialects. The dataset consists of 538 sentiment-balanced reviews spanning positive, neutral, and negative categories. Translations were validated by native speakers to ensure dialectal accuracy and sentiment preservation. This resource supports the development of dialect-aware NLP systems for real-world applications in customer experience analysis. More than 40 teams have registered for the shared task, with 12 submitting systems during the evaluation phase. The top-performing system achieved an F1 score of 0.81, demonstrating the feasibility and ongoing challenges of sentiment analysis across Arabic dialects.
☆ AutoMalDesc: Large-Scale Script Analysis for Cyber Threat Research AAAI 2026
Generating thorough natural language explanations for threat detections remains an open problem in cybersecurity research, despite significant advances in automated malware detection systems. In this work, we present AutoMalDesc, an automated static analysis summarization framework that, following initial training on a small set of expert-curated examples, operates independently at scale. This approach leverages an iterative self-paced learning pipeline to progressively enhance output quality through synthetic data generation and validation cycles, eliminating the need for extensive manual data annotation. Evaluation across 3,600 diverse samples in five scripting languages demonstrates statistically significant improvements between iterations, showing consistent gains in both summary quality and classification accuracy. Our comprehensive validation approach combines quantitative metrics based on established malware labels with qualitative assessment from both human experts and LLM-based judges, confirming both technical precision and linguistic coherence of generated summaries. To facilitate reproducibility and advance research in this domain, we publish our complete dataset of more than 100K script samples, including annotated seed (0.9K) and test (3.6K) datasets, along with our methodology and evaluation framework.
comment: Accepted at AAAI 2026 (oral)
☆ RegionMarker: A Region-Triggered Semantic Watermarking Framework for Embedding-as-a-Service Copyright Protection AAAI 2026
Embedding-as-a-Service (EaaS) is an effective and convenient deployment solution for addressing various NLP tasks. Nevertheless, recent research has shown that EaaS is vulnerable to model extraction attacks, which could lead to significant economic losses for model providers. For copyright protection, existing methods inject watermark embeddings into text embeddings and use them to detect copyright infringement. However, current watermarking methods often resist only a subset of attacks and fail to provide \textit{comprehensive} protection. To this end, we present the region-triggered semantic watermarking framework called RegionMarker, which defines trigger regions within a low-dimensional space and injects watermarks into text embeddings associated with these regions. By utilizing a secret dimensionality reduction matrix to project onto this subspace and randomly selecting trigger regions, RegionMarker makes it difficult for watermark removal attacks to evade detection. Furthermore, by embedding watermarks across the entire trigger region and using the text embedding as the watermark, RegionMarker is resilient to both paraphrasing and dimension-perturbation attacks. Extensive experiments on various datasets show that RegionMarker is effective in resisting different attack methods, thereby protecting the copyright of EaaS.
comment: AAAI 2026
♻ ☆ Theories of "Sexuality" in Natural Language Processing Bias Research
In recent years, significant advancements in the field of Natural Language Processing (NLP) have positioned commercialized language models as wide-reaching, highly useful tools. In tandem, there has been an explosion of multidisciplinary research examining how NLP tasks reflect, perpetuate, and amplify social biases such as gender and racial bias. A significant gap in this scholarship is a detailed analysis of how queer sexualities are encoded and (mis)represented by both NLP systems and practitioners. Following previous work in the field of AI fairness, we document how sexuality is defined and operationalized via a survey and analysis of 55 articles that quantify sexuality-based NLP bias. We find that sexuality is not clearly defined in a majority of the literature surveyed, indicating a reliance on assumed or normative conceptions of sexual/romantic practices and identities. Further, we find that methods for extracting biased outputs from NLP technologies often conflate gender and sexual identities, leading to monolithic conceptions of queerness and thus improper quantifications of bias. With the goal of improving sexuality-based NLP bias analyses, we conclude with recommendations that encourage more thorough engagement with both queer communities and interdisciplinary literature.
comment: 17 pages, 6 tables, 1 figure, undergraduate senior thesis, submitted to The Spectra: The Virginia Engineering and Science Research Journal
♻ ☆ FinVet: A Collaborative Framework of RAG and External Fact-Checking Agents for Financial Misinformation Detection
Financial markets face growing threats from misinformation that can trigger billions in losses in minutes. Most existing approaches lack transparency in their decision-making and provide limited attribution to credible sources. We introduce FinVet, a novel multi-agent framework that integrates two Retrieval-Augmented Generation (RAG) pipelines with external fact-checking through a confidence-weighted voting mechanism. FinVet employs adaptive three-tier processing that dynamically adjusts verification strategies based on retrieval confidence, from direct metadata extraction to hybrid reasoning to full model-based analysis. Unlike existing methods, FinVet provides evidence-backed verdicts, source attribution, confidence scores, and explicit uncertainty flags when evidence is insufficient. Experimental evaluation on the FinFact dataset shows that FinVet achieves an F1 score of 0.85, which is a 10.4% improvement over the best individual pipeline (fact-check pipeline) and 37% improvement over standalone RAG approaches.
♻ ☆ LLM-as-a-Grader: Practical Insights from Large Language Model for Short-Answer and Report Evaluation
Large Language Models (LLMs) are increasingly explored for educational tasks such as grading, yet their alignment with human evaluation in real classrooms remains underexamined. In this study, we investigate the feasibility of using an LLM (GPT-4o) to evaluate short-answer quizzes and project reports in an undergraduate Computational Linguistics course. We collect responses from approximately 50 students across five quizzes and receive project reports from 14 teams. LLM-generated scores are compared against human evaluations conducted independently by the course teaching assistants (TAs). Our results show that GPT-4o achieves strong correlation with human graders (up to 0.98) and exact score agreement in 55\% of quiz cases. For project reports, it also shows strong overall alignment with human grading, while exhibiting some variability in scoring technical, open-ended responses. We release all code and sample data to support further research on LLMs in educational assessment. This work highlights both the potential and limitations of LLM-based grading systems and contributes to advancing automated grading in real-world academic settings.
♻ ☆ LongReason: A Synthetic Long-Context Reasoning Benchmark via Context Expansion
Large language models (LLMs) have demonstrated remarkable progress in understanding long-context inputs. However, benchmarks for evaluating the long-context reasoning abilities of LLMs fall behind the pace. Existing benchmarks often focus on a narrow range of tasks or those that do not demand complex reasoning. To address this gap and enable a more comprehensive evaluation of the long-context reasoning capabilities of current LLMs, we propose a new synthetic benchmark, LongReason, which is constructed by synthesizing long-context reasoning questions from a varied set of short-context reasoning questions through context expansion. LongReason consists of 794 multiple-choice reasoning questions with diverse reasoning patterns across three task categories: reading comprehension, logical inference, and mathematical word problems. We evaluate 21 LLMs on LongReason, revealing that most models experience significant performance drops as context length increases. Our further analysis shows that even state-of-the-art LLMs still have significant room for improvement in providing robust reasoning across different tasks. We have open-sourced LongReason under https://huggingface.co/datasets/lz1bytedance/LongReason to support the comprehensive evaluation of LLMs' long-context reasoning capabilities.
♻ ☆ Can Machines Think Like Humans? A Behavioral Evaluation of LLM Agents in Dictator Games
As Large Language Model (LLM)-based agents increasingly engage with human society, how well do we understand their prosocial behaviors? We (1) investigate how LLM agents' prosocial behaviors can be induced by different personas and benchmarked against human behaviors; and (2) introduce a social science approach to evaluate LLM agents' decision-making. We explored how different personas and experimental framings affect these AI agents' altruistic behavior in dictator games and compared their behaviors within the same LLM family, across various families, and with human behaviors. The findings reveal that merely assigning a human-like identity to LLMs does not produce human-like behaviors. These findings suggest that LLM agents' reasoning does not consistently exhibit textual markers of human decision-making in dictator games and that their alignment with human behavior varies substantially across model architectures and prompt formulations; even worse, such dependence does not follow a clear pattern. As society increasingly integrates machine intelligence, "Prosocial AI" emerges as a promising and urgent research direction in philanthropic studies.
Scaling Latent Reasoning via Looped Language Models
Modern LLMs are trained to "think" primarily via explicit text generation, such as chain-of-thought (CoT), which defers reasoning to post-training and under-leverages pre-training data. We present and open-source Ouro, named after the recursive Ouroboros, a family of pre-trained Looped Language Models (LoopLM) that instead build reasoning into the pre-training phase through (i) iterative computation in latent space, (ii) an entropy-regularized objective for learned depth allocation, and (iii) scaling to 7.7T tokens. Ouro 1.4B and 2.6B models enjoy superior performance that match the results of up to 12B SOTA LLMs across a wide range of benchmarks. Through controlled experiments, we show this advantage stems not from increased knowledge capacity, but from superior knowledge manipulation capabilities. We also show that LoopLM yields reasoning traces more aligned with final outputs than explicit CoT. We hope our results show the potential of LoopLM as a novel scaling direction in the reasoning era. Our model is available here: http://ouro-llm.github.io.
♻ ☆ Linguistic Structure from a Bottleneck on Sequential Information Processing
Human language has a distinct systematic structure, where utterances break into individually meaningful words which are combined to form phrases. We show that natural-language-like systematicity arises in codes that are constrained by a statistical measure of complexity called predictive information, also known as excess entropy. Predictive information is the mutual information between the past and future of a stochastic process. In simulations, we find that such codes break messages into groups of approximately independent features which are expressed systematically and locally, corresponding to words and phrases. Next, drawing on crosslinguistic text corpora, we find that actual human languages are structured in a way that reduces predictive information compared to baselines at the levels of phonology, morphology, syntax, and lexical semantics. Our results establish a link between the statistical and algebraic structure of language and reinforce the idea that these structures are shaped by communication under general cognitive constraints.
♻ ☆ LocalBench: Benchmarking LLMs on County-Level Local Knowledge and Reasoning
Large language models (LLMs) have been widely evaluated on macro-scale geographic tasks, such as global factual recall, event summarization, and regional reasoning. Yet, their ability to handle hyper-local knowledge remains poorly understood. This gap is increasingly consequential as real-world applications, from civic platforms to community journalism, demand AI systems that can reason about neighborhood-specific dynamics, cultural narratives, and local governance. Existing benchmarks fall short in capturing this complexity, often relying on coarse-grained data or isolated references. We present LocalBench, the first benchmark designed to systematically evaluate LLMs on county-level local knowledge across the United States. Grounded in the Localness Conceptual Framework, LocalBench includes 14,782 validated question-answer pairs across 526 U.S. counties in 49 states, integrating diverse sources such as Census statistics, local subreddit discourse, and regional news. It spans physical, cognitive, and relational dimensions of locality. Using LocalBench, we evaluate 13 state-of-the-art LLMs under both closed-book and web-augmented settings. Our findings reveal critical limitations: even the best-performing models reach only 56.8% accuracy on narrative-style questions and perform below 15.5% on numerical reasoning. Moreover, larger model size and web augmentation do not guarantee better performance, for example, search improves Gemini's accuracy by +13.6%, but reduces GPT-series performance by -11.4%. These results underscore the urgent need for language models that can support equitable, place-aware AI systems: capable of engaging with the diverse, fine-grained realities of local communities across geographic and cultural contexts.
♻ ☆ VisAidMath: Benchmarking Visual-Aided Mathematical Reasoning
A hallmark of advanced artificial intelligence is the capacity to progress from passive visual perception to the strategic modification of visual information to facilitate complex reasoning. This advanced capability, however, remains critically underdeveloped in current Large Multi-modal Models (LMMs). The deficiency is often masked by evaluation metrics that prioritize final-answer accuracy, creating an illusion of competence where genuine reasoning is absent. Using the domain of geometric problem-solving as a precise instrument, we probe this issue through tasks that require constructing visual aids. To this end, we introduce \textbf{VisAidMath}, a challenging benchmark, and our novel Three-Layered Funnel Evaluation Framework. This framework moves beyond simple accuracy (ACCU) to scrutinize the generation of valid visual aids (PVA) and the soundness of subsequent reasoning steps (SPRS). Our extensive experiments on state-of-the-art models, including Doubao-Seed-1.6 and o4, reveal a profound ``Reasoning Illusion''. We observe that high surface-level accuracy conceals a catastrophic failure in the models' ability to produce valid visual aids or to reason from them. Our findings expose a fundamental schism between visual perception and logical deduction in modern LMMs. We host an evaluation platform at CodaBench for testing publicly. Homepage: https://nlp2ct.github.io/VisAidMathHomepage/ Evaluation: https://www.codabench.org/competitions/7634/
comment: 58 pages, 28 figures
♻ ☆ Who Gets the Reward, Who Gets the Blame? Evaluation-Aligned Training Signals for Multi-LLM Agents
Large Language Models (LLMs) in multi-agent systems (MAS) have shown promise for complex tasks, yet current training methods lack principled ways to connect system-level evaluation with agent-level and message-level learning. We propose a theoretical framework that unifies cooperative game-theoretic attribution with process reward modeling to transform system evaluation into agent credit and then into response-level signals. Unlike prior approaches that rely only on attribution (e.g., Shapley) or step-level labels (e.g., PRM), our method produces local, signed, and credit-conserving signals. In success cases, Shapley-based credit assignment fairly allocates outcomes across agents and is refined into per-message rewards that promote cooperation while discouraging redundancy or sabotage. In failure cases, first-error localization yields repair-aware preferences that penalize harmful steps while rewarding corrective attempts. The resulting signals are bounded, cooperative, and directly compatible with reinforcement-based or preference-based post-training, providing a unified and auditable pathway from global evaluation to local supervision in LLM multi-agent training. Our contribution is conceptual: we present a theoretical foundation and training signals, leaving empirical validation for future work.
comment: Withdrawing temporarily to coordinate revisions with co-authors. A revised version will be resubmitted
♻ ☆ Read Between the Lines: A Benchmark for Uncovering Political Bias in Bangla News Articles AACL
Detecting media bias is crucial, specifically in the South Asian region. Despite this, annotated datasets and computational studies for Bangla political bias research remain scarce. Crucially because, political stance detection in Bangla news requires understanding of linguistic cues, cultural context, subtle biases, rhetorical strategies, code-switching, implicit sentiment, and socio-political background. To address this, we introduce the first benchmark dataset of 200 politically significant and highly debated Bangla news articles, labeled for government-leaning, government-critique, and neutral stances, alongside diagnostic analyses for evaluating large language models (LLMs). Our comprehensive evaluation of 28 proprietary and open-source LLMs shows strong performance in detecting government-critique content (F1 up to 0.83) but substantial difficulty with neutral articles (F1 as low as 0.00). Models also tend to over-predict government-leaning stances, often misinterpreting ambiguous narratives. This dataset and its associated diagnostics provide a foundation for advancing stance detection in Bangla media research and offer insights for improving LLM performance in low-resource languages.
comment: Accepted to BLP at AACL-IJCNLP 2025
♻ ☆ DataGen: Unified Synthetic Dataset Generation via Large Language Models
Large Language Models (LLMs) such as GPT-4 and Llama3 have significantly impacted various fields by enabling high-quality synthetic data generation and reducing dependence on expensive human-generated datasets. Despite this, challenges remain in the areas of generalization, controllability, diversity, and truthfulness within the existing generative frameworks. To address these challenges, this paper presents DataGen, a comprehensive LLM-powered framework designed to produce diverse, accurate, and highly controllable datasets. DataGen is adaptable, supporting all types of text datasets and enhancing the generative process through innovative mechanisms. To augment data diversity, DataGen incorporates an attribute-guided generation module and a group checking feature. For accuracy, it employs a code-based mathematical assessment for label verification alongside a retrieval-augmented generation technique for factual validation. The framework also allows for user-specified constraints, enabling customization of the data generation process to suit particular requirements. Extensive experiments demonstrate the superior quality of data generated by DataGen, and each module within DataGen plays a critical role in this enhancement. Additionally, DataGen is applied in two practical scenarios: benchmarking LLMs and data augmentation. The results indicate that DataGen effectively supports dynamic and evolving benchmarking and that data augmentation improves LLM capabilities in various domains, including agent-oriented abilities and reasoning skills.
♻ ☆ Glia: A Human-Inspired AI for Automated Systems Design and Optimization
Can an AI autonomously design mechanisms for computer systems on par with the creativity and reasoning of human experts? We present Glia, an AI architecture for networked systems design that uses large language models (LLMs) in a human-inspired, multi-agent workflow. Each agent specializes in reasoning, experimentation, and analysis, collaborating through an evaluation framework that grounds abstract reasoning in empirical feedback. Unlike prior ML-for-systems methods that optimize black-box policies, Glia generates interpretable designs and exposes its reasoning process. When applied to a distributed GPU cluster for LLM inference, it produces new algorithms for request routing, scheduling, and auto-scaling that perform at human-expert levels in significantly less time, while yielding novel insights into workload behavior. Our results suggest that by combining reasoning LLMs with structured experimentation, an AI can produce creative and understandable designs for complex systems problems.
♻ ☆ Bilevel MCTS for Amortized O(1) Node Selection in Classical Planning AAAI-26
We study an efficient implementation of Multi-Armed Bandit (MAB)-based Monte-Carlo Tree Search (MCTS) for classical planning. One weakness of MCTS is that it spends a significant time deciding which node to expand next. While selecting a node from an OPEN list with $N$ nodes has $O(1)$ runtime complexity with traditional array-based priority-queues for dense integer keys, the tree-based OPEN list used by MCTS requires $O(\log N)$, which roughly corresponds to the search depth $d$. In classical planning, $d$ is arbitrarily large (e.g., $2^k-1$ in $k$-disk Tower-of-Hanoi) and the runtime for node selection is significant, unlike in game tree search, where the cost is negligible compared to the node evaluation (rollouts) because $d$ is inherently limited by the game (e.g., $d\leq 361$ in Go). To improve this bottleneck, we propose a bilevel modification to MCTS that runs a best-first search from each selected leaf node with an expansion budget proportional to $d$, which achieves amortized $O(1)$ runtime for node selection, equivalent to the traditional queue-based OPEN list. In addition, we introduce Tree Collapsing, an enhancement that reduces action selection steps and further improves the performance.
comment: Accepted in AAAI-26
♻ ☆ Unintended Misalignment from Agentic Fine-Tuning: Risks and Mitigation AAAI 2026
Beyond simple text generation, Large Language Models (LLMs) have evolved into agentic systems capable of planning and interacting with external tools to solve complex tasks. This evolution involves fine-tuning LLMs on agent-specific tasks to enhance their proficiency. However, safety concerns are frequently overlooked during this fine-tuning process. In this work, we show that aligned LLMs can become unintentionally misaligned, leading to a higher likelihood of executing harmful tasks and a reduced tendency to refuse them when fine-tuned to execute agentic tasks. To address these safety challenges, we propose Prefix INjection Guard (PING), a simple yet effective method that prepends automatically generated natural language prefixes to agent responses, guiding them to refuse harmful requests while preserving performance on benign tasks. Specifically, we introduce an iterative approach that alternates between (1) generating candidate prefixes and (2) selecting those that optimize both task performance and refusal behavior. Experimental results demonstrate that PING significantly enhances the safety of fine-tuned LLM agents without sacrificing their effectiveness. PING consistently outperforms existing prompting approaches across diverse benchmarks in both web navigation and code generation tasks. Our analysis of internal hidden states via linear probes reveals that prefix tokens are crucial for behavior modification, explaining the performance gains. WARNING: This paper contains contents that are unethical or offensive in nature.
comment: Accepted at AAAI 2026 AI Alignment Track, Source code: https://github.com/HahmDY/agentic-ft-safety
♻ ☆ RATTENTION: Towards the Minimal Sliding Window Size in Local-Global Attention Models
Local-global attention models have recently emerged as compelling alternatives to standard Transformers, promising improvements in both training and inference efficiency. However, the crucial choice of window size presents a Pareto tradeoff: larger windows maintain performance akin to full attention but offer minimal efficiency gains in short-context scenarios, while smaller windows can lead to performance degradation. Current models, such as Gemma2 and Mistral, adopt conservative window sizes (e.g., 4096 out of an 8192 pretraining length) to preserve performance. This work investigates strategies to shift this Pareto frontier, enabling local-global models to achieve efficiency gains even in short-context regimes. Our core motivation is to address the intrinsic limitation of local attention -- its complete disregard for tokens outside the defined window. We explore RATTENTION, a variant of local attention integrated with a specialized linear attention mechanism designed to capture information from these out-of-window tokens. Pretraining experiments at the 3B and 12B scales demonstrate that RATTENTION achieves a superior Pareto tradeoff between performance and efficiency. As a sweet spot, RATTENTION with a window size of just 512 consistently matches the performance of full-attention models across diverse settings. Furthermore, the recurrent nature inherent in the linear attention component of RATTENTION contributes to enhanced long-context performance, as validated on the RULER benchmark. Crucially, these improvements do not compromise training efficiency; thanks to a specialized kernel implementation and the reduced window size, RATTENTION maintains training speeds comparable to existing state-of-the-art approaches. We open-sourced our Pallas kernels along with model codes to facilitate further research effort.
comment: 9 pages
♻ ☆ A is for Absorption: Studying Feature Splitting and Absorption in Sparse Autoencoders NeurIPS 2025
Sparse Autoencoders (SAEs) aim to decompose the activation space of large language models (LLMs) into human-interpretable latent directions or features. As we increase the number of features in the SAE, hierarchical features tend to split into finer features ("math" may split into "algebra", "geometry", etc.), a phenomenon referred to as feature splitting. However, we show that sparse decomposition and splitting of hierarchical features is not robust. Specifically, we show that seemingly monosemantic features fail to fire where they should, and instead get "absorbed" into their children features. We coin this phenomenon feature absorption, and show that it is caused by optimizing for sparsity in SAEs whenever the underlying features form a hierarchy. We introduce a metric to detect absorption in SAEs, and validate our findings empirically on hundreds of LLM SAEs. Our investigation suggests that varying SAE sizes or sparsity is insufficient to solve this issue. We discuss the implications of feature absorption in SAEs and some potential approaches to solve the fundamental theoretical issues before SAEs can be used for interpreting LLMs robustly and at scale.
comment: Accepted at NeurIPS 2025 (Oral)
♻ ☆ REIC: RAG-Enhanced Intent Classification at Scale EMNLP 2025
Accurate intent classification is critical for efficient routing in customer service, ensuring customers are connected with the most suitable agents while reducing handling times and operational costs. However, as companies expand their product lines, intent classification faces scalability challenges due to the increasing number of intents and variations in taxonomy across different verticals. In this paper, we introduce REIC, a Retrieval-augmented generation Enhanced Intent Classification approach, which addresses these challenges effectively. REIC leverages retrieval-augmented generation (RAG) to dynamically incorporate relevant knowledge, enabling precise classification without the need for frequent retraining. Through extensive experiments on real-world datasets, we demonstrate that REIC outperforms traditional fine-tuning, zero-shot, and few-shot methods in large-scale customer service settings. Our results highlight its effectiveness in both in-domain and out-of-domain scenarios, demonstrating its potential for real-world deployment in adaptive and large-scale intent classification systems.
comment: Accepted by EMNLP 2025 (Industry Track)
♻ ☆ QuanTaxo: A Quantum Approach to Self-Supervised Taxonomy Expansion
A taxonomy is a hierarchical graph containing knowledge to provide valuable insights for various web applications. However, the manual construction of taxonomies requires significant human effort. As web content continues to expand at an unprecedented pace, existing taxonomies risk becoming outdated, struggling to incorporate new and emerging information effectively. As a consequence, there is a growing need for dynamic taxonomy expansion to keep them relevant and up-to-date. Existing taxonomy expansion methods often rely on classical word embeddings to represent entities. However, these embeddings fall short of capturing hierarchical polysemy, where an entity's meaning can vary based on its position in the hierarchy and its surrounding context. To address this challenge, we introduce QuanTaxo, a quantum-inspired framework for taxonomy expansion that encodes entities in a Hilbert space and models interference effects between them, yielding richer, context-sensitive representations. Comprehensive experiments on five real-world benchmark datasets show that QuanTaxo significantly outperforms classical embedding models, achieving substantial improvements of 12.3% in accuracy, 11.2% in Mean Reciprocal Rank (MRR), and 6.9% in Wu & Palmer (Wu&P) metrics across nine classical embedding-based baselines.
♻ ☆ Building a Macedonian Recipe Dataset: Collection, Parsing, and Comparative Analysis
Computational gastronomy increasingly relies on diverse, high-quality recipe datasets to capture regional culinary traditions. Although there are large-scale collections for major languages, Macedonian recipes remain under-represented in digital research. In this work, we present the first systematic effort to construct a Macedonian recipe dataset through web scraping and structured parsing. We address challenges in processing heterogeneous ingredient descriptions, including unit, quantity, and descriptor normalization. An exploratory analysis of ingredient frequency and co-occurrence patterns, using measures such as Pointwise Mutual Information and Lift score, highlights distinctive ingredient combinations that characterize Macedonian cuisine. The resulting dataset contributes a new resource for studying food culture in underrepresented languages and offers insights into the unique patterns of Macedonian culinary tradition.
♻ ☆ SciAgent: A Unified Multi-Agent System for Generalistic Scientific Reasoning
Recent advances in large language models have enabled AI systems to achieve expert-level performance on domain-specific scientific tasks, yet these systems remain narrow and handcrafted. We introduce SciAgent, a unified multi-agent system designed for generalistic scientific reasoning-the ability to adapt reasoning strategies across disciplines and difficulty levels. SciAgent organizes problem solving as a hierarchical process: a Coordinator Agent interprets each problem's domain and complexity, dynamically orchestrating specialized Worker Systems, each composed of interacting reasoning Sub-agents for symbolic deduction, conceptual modeling, numerical computation, and verification. These agents collaboratively assemble and refine reasoning pipelines tailored to each task. Across mathematics and physics Olympiads (IMO, IMC, IPhO, CPhO), SciAgent consistently attains or surpasses human gold-medalist performance, demonstrating both domain generality and reasoning adaptability. Additionally, SciAgent has been tested on the International Chemistry Olympiad (IChO) and selected problems from the Humanity's Last Exam (HLE) benchmark, further confirming the system's ability to generalize across diverse scientific domains. This work establishes SciAgent as a concrete step toward generalistic scientific intelligence-AI systems capable of coherent, cross-disciplinary reasoning at expert levels.
comment: 1. To ensure result rigor, the model outputs require further evaluation by human experts. 2. The results may affect our conclusions and methods, thus necessitating a more detailed review. 3. We anticipate subsequent revisions may be substantial, potentially involving major adjustments to the methodology. Given the uncertainty surrounding the revision process, we decide to request a withdrawal
♻ ☆ Simultaneous Machine Translation with Large Language Models ALT
Real-world simultaneous machine translation (SimulMT) systems face more challenges than just the quality-latency trade-off. They also need to address issues related to robustness with noisy input, processing long contexts, and flexibility for knowledge injection. These challenges demand models with strong language understanding and generation capabilities which may not often equipped by dedicated MT models. In this paper, we investigate the possibility of applying Large Language Models (LLM) to SimulMT tasks by using existing incremental-decoding methods with a newly proposed RALCP algorithm for latency reduction. We conducted experiments using the \texttt{Llama2-7b-chat} model on nine different languages from the MUST-C dataset. The results show that LLM outperforms dedicated MT models in terms of BLEU and LAAL metrics. Further analysis indicates that LLM has advantages in terms of tuning efficiency and robustness. However, it is important to note that the computational cost of LLM remains a significant obstacle to its application in SimulMT.
comment: Accepted to ALTA 2024
♻ ☆ NLP Methods May Actually Be Better Than Professors at Estimating Question Difficulty ECAI 2025
Estimating the difficulty of exam questions is essential for developing good exams, but professors are not always good at this task. We compare various Large Language Model-based methods with three professors in their ability to estimate what percentage of students will give correct answers on True/False exam questions in the areas of Neural Networks and Machine Learning. Our results show that the professors have limited ability to distinguish between easy and difficult questions and that they are outperformed by directly asking Gemini 2.5 to solve this task. Yet, we obtained even better results using uncertainties of the LLMs solving the questions in a supervised learning setting, using only 42 training samples. We conclude that supervised learning using LLM uncertainty can help professors better estimate the difficulty of exam questions, improving the quality of assessment.
comment: 10 pages, 2 figures, presented at ECAI 2025 at the 2nd International Workshop on AI in Society, Education and Educational Research (AISEER)
♻ ☆ Conversational SimulMT: Efficient Simultaneous Translation with Large Language Models
Simultaneous machine translation (SimulMT) presents a challenging trade-off between translation quality and latency. Recent studies have shown that LLMs can achieve good performance in SimulMT tasks. However, this often comes at the expense of high inference cost and latency. In this paper, we propose a conversational SimulMT framework to enhance the inference efficiency of LLM-based SimulMT through multi-turn-dialogue-based decoding. Our experiments with Llama2-7b-chat on two SimulMT benchmarks demonstrate the superiority of LLM in translation quality while achieving comparable computational latency to specialized SimulMT models.
comment: Accepted to IWSLT 2025
♻ ☆ Lookahead Q-Cache: Achieving More Consistent KV Cache Eviction via Pseudo Query EMNLP 2025
Large language models (LLMs) rely on key-value cache (KV cache) to accelerate decoding by reducing redundant computations. However, the KV cache memory usage grows substantially with longer text sequences, posing challenges for efficient deployment. Existing KV cache eviction methods prune tokens using prefilling-stage attention scores, causing inconsistency with actual inference queries, especially under tight memory budgets. In this paper, we propose Lookahead Q-Cache (LAQ), a novel eviction framework that generates low-cost pseudo lookahead queries to better approximate the true decoding-stage queries. By using these lookahead queries as the observation window for importance estimation, LAQ achieves more consistent and accurate KV cache eviction aligned with real inference scenarios. Experimental results on LongBench and Needle-in-a-Haystack benchmarks show that LAQ outperforms existing methods across various budget levels, achieving a 1 $\sim$ 4 point improvement on LongBench under limited cache budget. Moreover, LAQ is complementary to existing approaches and can be flexibly combined to yield further improvements.
comment: Accepted by EMNLP 2025 Main
♻ ☆ The taggedPBC: Annotating a massive parallel corpus for crosslinguistic investigations
Existing datasets available for crosslinguistic investigations have tended to focus on large amounts of data for a small group of languages or a small amount of data for a large number of languages. This means that claims based on these datasets are limited in what they reveal about universal properties of the human language faculty. While this has begun to change through the efforts of projects seeking to develop tagged corpora for a large number of languages, such efforts are still constrained by limits on resources. The current paper reports on a large tagged parallel dataset which has been developed to partially address this issue. The taggedPBC contains POS-tagged parallel text data from more than 1,940 languages, representing 155 language families and 78 isolates, dwarfing previously available resources. The accuracy of particular tags in this dataset is shown to correlate well with both existing SOTA taggers for high-resource languages (SpaCy, Trankit) as well as hand-tagged corpora (Universal Dependencies Treebanks). Additionally, a novel measure derived from this dataset, the N1 ratio, correlates with expert determinations of intransitive word order in three typological databases (WALS, Grambank, Autotyp) such that a Gaussian Naive Bayes classifier trained on this feature can accurately identify basic intransitive word order for languages not in those databases. While much work is still needed to expand and develop this dataset, the taggedPBC is an important step to enable corpus-based crosslinguistic investigations, and is made available for research and collaboration via GitHub.
♻ ☆ Compress, Gather, and Recompute: REFORMing Long-Context Processing in Transformers NeurIPS 2025
As large language models increasingly gain popularity in real-world applications, processing extremely long contexts, often exceeding the model's pre-trained context limits, has emerged as a critical challenge. While existing approaches to efficient long-context processing show promise, recurrent compression-based methods struggle with information preservation, whereas random access approaches require substantial memory resources. We introduce REFORM, a novel inference framework that efficiently handles long contexts through a two-phase approach. First, it incrementally processes input chunks while maintaining a compressed KV cache, constructs cross-layer context embeddings, and utilizes early exit strategy for improved efficiency. Second, it identifies and gathers essential tokens via similarity matching and selectively recomputes the KV cache. Compared to baselines, REFORM achieves over 52% and 34% performance gains on RULER and BABILong respectively at 1M context length. It also outperforms baselines on Infinite-Bench, RepoEval, and MM-NIAH, demonstrating flexibility across diverse tasks and domains. Additionally, REFORM reduces inference time by 30% and peak memory usage by 5%, achieving both efficiency and superior performance.
comment: NeurIPS 2025
Computers and Society
☆ Introducing AI to an Online Petition Platform Changed Outputs but not Outcomes
The rapid integration of AI writing tools into online platforms raises critical questions about their impact on content production and outcomes. We leverage a unique natural experiment on Change.org, a leading social advocacy platform, to causally investigate the effects of an in-platform ''write with AI'' tool. To understand the impact of the AI integration, we collected 1.5 million petitions and employed a difference-in-differences analysis. Our findings reveal that in-platform AI access significantly altered the lexical features of petitions and increased petition homogeneity, but did not improve petition outcomes. We confirmed the results in a separate analysis of repeat petition writers who wrote petitions before and after introduction of the AI tool. The results suggest that while AI writing tools can profoundly reshape online content, their practical utility for improving desired outcomes may be less beneficial than anticipated, and introduce unintended consequences like content homogenization.
☆ GAEA: Experiences and Lessons Learned from a Country-Scale Environmental Digital Twin
This paper describes the experiences and lessons learned after the deployment of a country-scale environmental digital twin on the island of Cyprus for three years. This digital twin, called GAEA, contains 27 environmental geospatial services and is suitable for urban planners, policymakers, farmers, property owners, real-estate and forestry professionals, as well as insurance companies and banks that have properties in their portfolio. This paper demonstrates the power, potential, current and future challenges of geospatial analytics and environmental digital twins on a large scale.
☆ Freedom of expression and 'right to be forgotten' cases in the Netherlands after Google Spain
Since the Google Spain judgment of the Court of Justice of the European Union, Europeans have, under certain conditions, the right to have search results for their name delisted. This paper examines how the Google Spain judgment has been applied in the Netherlands. Since the Google Spain judgment, Dutch courts have decided on two cases regarding delisting requests. In both cases, the Dutch courts considered freedom of expression aspects of delisting more thoroughly than the Court of Justice. However, the effect of the Google Spain judgment on freedom of expression is difficult to assess, as search engine operators decide about most delisting requests without disclosing much about their decisions.
☆ Access to Personal Data and the Right to Good Governance during Asylum Procedures after the CJEU's YS. and M. and S. judgment
In the YS. and M. and S. judgment, the Court of Justice of the European Union ruled on three procedures in which Dutch judges asked for clarification on the right of asylum seekers to have access to the documents regarding the decision on asylum applications. The judgment is relevant for interpreting the concept of personal data and the scope of the right of access under the Data Protection Directive, and the right to good administration in the EU Charter of Fundamental Rights. At first glance, the judgment seems disappointing from the viewpoint of individual rights. Nevertheless, in our view the judgment provides sufficient grounds for effective access rights to the minutes in future asylum cases.
☆ New Data Security Requirements and the Proceduralization of Mass Surveillance Law after the European Data Retention Case
This paper discusses the regulation of mass metadata surveillance in Europe through the lens of the landmark judgment in which the Court of Justice of the European Union struck down the Data Retention Directive. The controversial directive obliged telecom and Internet access providers in Europe to retain metadata of all their customers for intelligence and law enforcement purposes, for a period of up to two years. In the ruling, the Court declared the directive in violation of the human rights to privacy and data protection. The Court also confirmed that the mere collection of metadata interferes with the human right to privacy. In addition, the Court developed three new criteria for assessing the level of data security required from a human rights perspective: security measures should take into account the risk of unlawful access to data, and the data's quantity and sensitivity. While organizations that campaigned against the directive have welcomed the ruling, we warn for the risk of proceduralization of mass surveillance law. The Court did not fully condemn mass surveillance that relies on metadata, but left open the possibility of mass surveillance if policymakers lay down sufficient procedural safeguards. Such proceduralization brings systematic risks for human rights. Government agencies, with ample resources, can design complicated systems of procedural oversight for mass surveillance - and claim that mass surveillance is lawful, even if it affects millions of innocent people.
☆ Making Evidence Actionable in Adaptive Learning Closing the Diagnostic Pedagogical Loop
Adaptive learning often diagnoses precisely yet intervenes weakly, producing help that is mistimed or misaligned. This study presents evidence supporting an instructor-governed feedback loop that converts concept-level assessment evidence into vetted microinterventions. The adaptive learning algorithm includes three safeguards: adequacy as a hard guarantee of gap closure, attention as a budgeted limit for time and redundancy, and diversity as protection against overfitting to a single resource. We formulate intervention assignment as a binary integer program with constraints for coverage, time, difficulty windows derived from ability estimates, prerequisites encoded by a concept matrix, and anti-redundancy with diversity. Greedy selection serves low-richness and tight-latency settings, gradient-based relaxation serves rich repositories, and a hybrid switches along a richness-latency frontier. In simulation and in an introductory physics deployment with 1204 students, both solvers achieved full skill coverage for nearly all learners within bounded watch time. The gradient-based method reduced redundant coverage by about 12 percentage points relative to greedy and produced more consistent difficulty alignment, while greedy delivered comparable adequacy at lower computational cost in resource-scarce environments. Slack variables localized missing content and guided targeted curation, sustaining sufficiency across student subgroups. The result is a tractable and auditable controller that closes the diagnostic pedagogical loop and enables equitable, load-aware personalization at the classroom scale.
☆ AI Fairness Beyond Complete Demographics: Current Achievements and Future Directions ECAI 2025
Fairness in artificial intelligence (AI) has become a growing concern due to discriminatory outcomes in AI-based decision-making systems. While various methods have been proposed to mitigate bias, most rely on complete demographic information, an assumption often impractical due to legal constraints and the risk of reinforcing discrimination. This survey examines fairness in AI when demographics are incomplete, addressing the gap between traditional approaches and real-world challenges. We introduce a novel taxonomy of fairness notions in this setting, clarifying their relationships and distinctions. Additionally, we summarize existing techniques that promote fairness beyond complete demographics and highlight open research questions to encourage further progress in the field.
comment: ECAI 2025
☆ The Last Vote: A Multi-Stakeholder Framework for Language Model Governance NeurIPS 2025
As artificial intelligence systems become increasingly powerful and pervasive, democratic societies face unprecedented challenges in governing these technologies while preserving core democratic values and institutions. This paper presents a comprehensive framework to address the full spectrum of risks that AI poses to democratic societies. Our approach integrates multi-stakeholder participation, civil society engagement, and existing international governance frameworks while introducing novel mechanisms for risk assessment and institutional adaptation. We propose: (1) a seven-category democratic risk taxonomy extending beyond individual-level harms to capture systemic threats, (2) a stakeholder-adaptive Incident Severity Score (ISS) that incorporates diverse perspectives and context-dependent risk factors, and (3) a phased implementation strategy that acknowledges the complex institutional changes required for effective AI governance.
comment: This paper has been accepted to the NeurIPS 2025 Workshop on Algorithmic Collective Action (ACA@NeurIPS 2025). The submission is 26 pages including the appendix and includes the NeurIPS checklist. A big thanks to Avijit Ghosh
☆ Dropouts in Confidence: Moral Uncertainty in Human-LLM Alignment AAAI 2026
Humans display significant uncertainty when confronted with moral dilemmas, yet the extent of such uncertainty in machines and AI agents remains underexplored. Recent studies have confirmed the overly confident tendencies of machine-generated responses, particularly in large language models (LLMs). As these systems are increasingly embedded in ethical decision-making scenarios, it is important to understand their moral reasoning and the inherent uncertainties in building reliable AI systems. This work examines how uncertainty influences moral decisions in the classical trolley problem, analyzing responses from 32 open-source models and 9 distinct moral dimensions. We first find that variance in model confidence is greater across models than within moral dimensions, suggesting that moral uncertainty is predominantly shaped by model architecture and training method. To quantify uncertainty, we measure binary entropy as a linear combination of total entropy, conditional entropy, and mutual information. To examine its effects, we introduce stochasticity into models via "dropout" at inference time. Our findings show that our mechanism increases total entropy, mainly through a rise in mutual information, while conditional entropy remains largely unchanged. Moreover, this mechanism significantly improves human-LLM moral alignment, with correlations in mutual information and alignment score shifts. Our results highlight the potential to better align model-generated decisions and human preferences by deliberately modulating uncertainty and reducing LLMs' confidence in morally complex scenarios.
comment: Accepted to AAAI 2026
☆ Computational Measurement of Political Positions: A Review of Text-Based Ideal Point Estimation Algorithms
This article presents the first systematic review of unsupervised and semi-supervised computational text-based ideal point estimation (CT-IPE) algorithms, methods designed to infer latent political positions from textual data. These algorithms are widely used in political science, communication, computational social science, and computer science to estimate ideological preferences from parliamentary speeches, party manifestos, and social media. Over the past two decades, their development has closely followed broader NLP trends -- beginning with word-frequency models and most recently turning to large language models (LLMs). While this trajectory has greatly expanded the methodological toolkit, it has also produced a fragmented field that lacks systematic comparison and clear guidance for applied use. To address this gap, we identified 25 CT-IPE algorithms through a systematic literature review and conducted a manual content analysis of their modeling assumptions and development contexts. To compare them meaningfully, we introduce a conceptual framework that distinguishes how algorithms generate, capture, and aggregate textual variance. On this basis, we identify four methodological families -- word-frequency, topic modeling, word embedding, and LLM-based approaches -- and critically assess their assumptions, interpretability, scalability, and limitations. Our review offers three contributions. First, it provides a structured synthesis of two decades of algorithm development, clarifying how diverse methods relate to one another. Second, it translates these insights into practical guidance for applied researchers, highlighting trade-offs in transparency, technical requirements, and validation strategies that shape algorithm choice. Third, it emphasizes that differences in estimation outcomes across algorithms are themselves informative, underscoring the need for systematic benchmarking.
comment: 46 pages, 8 figures, 2 tables, accepted for publication in Quality & Quantity
☆ Beyond Citations: A Cross-Domain Metric for Dataset Impact and Shareability
The scientific community increasingly relies on open data sharing, yet existing metrics inadequately capture the true impact of datasets as research outputs. Traditional measures, such as the h-index, focus on publications and citations but fail to account for dataset accessibility, reuse, and cross-disciplinary influence. We propose the X-index, a novel author-level metric that quantifies the value of data contributions through a two-step process: (i) computing a dataset-level value score (V-score) that integrates breadth of reuse, FAIRness, citation impact, and transitive reuse depth, and (ii) aggregating V-scores into an author-level X-index. Using datasets from computational social science, medicine, and crisis communication, we validate our approach against expert ratings, achieving a strong correlation. Our results demonstrate that the X-index provides a transparent, scalable, and low-cost framework for assessing data-sharing practices and incentivizing open science. The X-index encourages sustainable data-sharing practices and gives institutions, funders, and platforms a tangible way to acknowledge the lasting influence of research datasets.
☆ Auditing Google's AI Overviews and Featured Snippets: A Case Study on Baby Care and Pregnancy AAAI
Google Search increasingly surfaces AI-generated content through features like AI Overviews (AIO) and Featured Snippets (FS), which users frequently rely on despite having no control over their presentation. Through a systematic algorithm audit of 1,508 real baby care and pregnancy-related queries, we evaluate the quality and consistency of these information displays. Our robust evaluation framework assesses multiple quality dimensions, including answer consistency, relevance, presence of medical safeguards, source categories, and sentiment alignment. Our results reveal concerning gaps in information consistency, with information in AIO and FS displayed on the same search result page being inconsistent with each other in 33% of cases. Despite high relevance scores, both features critically lack medical safeguards (present in just 11% of AIO and 7% of FS responses). While health and wellness websites dominate source categories for both, AIO and FS, FS also often link to commercial sources. These findings have important implications for public health information access and demonstrate the need for stronger quality controls in AI-mediated health information. Our methodology provides a transferable framework for auditing AI systems across high-stakes domains where information quality directly impacts user well-being.
comment: 18 pages, 10 figures; to appear in AAAI ICWSM 2026
☆ Rethinking the filter bubble? Developing a research agenda for the protective filter bubble
Filter bubbles and echo chambers have received global attention from scholars, media organizations, and the general public. Filter bubbles have primarily been regarded as intrinsically negative, and many studies have sought to minimize their influence. The detrimental influence of filter bubbles is well-studied. Filter bubbles may, for example, create information silos, amplify misinformation, and promote hatred and extremism. However, comparatively few studies have considered the other side of the filter bubble; its protective benefits, particularly to marginalized communities and those living in countries with low levels of press freedom. Through a review of the literature on digital safe spaces and protective filter bubbles, this commentary suggests that there may be a need to rethink the filter bubble, and it proposes several areas for future research.
comment: This work has been published in Big Data & Society. Please cite the journal version
♻ ☆ Theories of "Sexuality" in Natural Language Processing Bias Research
In recent years, significant advancements in the field of Natural Language Processing (NLP) have positioned commercialized language models as wide-reaching, highly useful tools. In tandem, there has been an explosion of multidisciplinary research examining how NLP tasks reflect, perpetuate, and amplify social biases such as gender and racial bias. A significant gap in this scholarship is a detailed analysis of how queer sexualities are encoded and (mis)represented by both NLP systems and practitioners. Following previous work in the field of AI fairness, we document how sexuality is defined and operationalized via a survey and analysis of 55 articles that quantify sexuality-based NLP bias. We find that sexuality is not clearly defined in a majority of the literature surveyed, indicating a reliance on assumed or normative conceptions of sexual/romantic practices and identities. Further, we find that methods for extracting biased outputs from NLP technologies often conflate gender and sexual identities, leading to monolithic conceptions of queerness and thus improper quantifications of bias. With the goal of improving sexuality-based NLP bias analyses, we conclude with recommendations that encourage more thorough engagement with both queer communities and interdisciplinary literature.
comment: 17 pages, 6 tables, 1 figure, undergraduate senior thesis, submitted to The Spectra: The Virginia Engineering and Science Research Journal
♻ ☆ Generative AI for Multiple Choice STEM Assessments
Artificial intelligence (AI) technology enables a range of enhancements in computer-aided instruction, from accelerating the creation of teaching materials to customizing learning paths based on learner outcomes. However, ensuring the mathematical accuracy and semantic integrity of generative AI output remains a significant challenge, particularly in Science, Technology, Engineering and Mathematics (STEM) disciplines. In this study, we explore the use of generative AI in which "hallucinations", typically viewed as undesirable inaccuracies, can instead serve a pedagogical purpose. Specifically, we investigate the generation of plausible but incorrect alternatives for multiple choice assessments, where credible distractors are essential for effective assessment design. We describe the Moebius platform for online instruction, with particular focus on its architecture for handling mathematical elements through specialized semantic packages that support dynamic, parameterized STEM content. We examine methods for crafting prompts that interact effectively with these mathematical semantics to guide the AI in generating high-quality multiple choice distractors. Finally, we demonstrate how this approach reduces the time and effort associated with creating robust teaching materials while maintaining academic rigor and assessment validity.
♻ ☆ Can Machines Think Like Humans? A Behavioral Evaluation of LLM Agents in Dictator Games
As Large Language Model (LLM)-based agents increasingly engage with human society, how well do we understand their prosocial behaviors? We (1) investigate how LLM agents' prosocial behaviors can be induced by different personas and benchmarked against human behaviors; and (2) introduce a social science approach to evaluate LLM agents' decision-making. We explored how different personas and experimental framings affect these AI agents' altruistic behavior in dictator games and compared their behaviors within the same LLM family, across various families, and with human behaviors. The findings reveal that merely assigning a human-like identity to LLMs does not produce human-like behaviors. These findings suggest that LLM agents' reasoning does not consistently exhibit textual markers of human decision-making in dictator games and that their alignment with human behavior varies substantially across model architectures and prompt formulations; even worse, such dependence does not follow a clear pattern. As society increasingly integrates machine intelligence, "Prosocial AI" emerges as a promising and urgent research direction in philanthropic studies.
♻ ☆ LocalBench: Benchmarking LLMs on County-Level Local Knowledge and Reasoning
Large language models (LLMs) have been widely evaluated on macro-scale geographic tasks, such as global factual recall, event summarization, and regional reasoning. Yet, their ability to handle hyper-local knowledge remains poorly understood. This gap is increasingly consequential as real-world applications, from civic platforms to community journalism, demand AI systems that can reason about neighborhood-specific dynamics, cultural narratives, and local governance. Existing benchmarks fall short in capturing this complexity, often relying on coarse-grained data or isolated references. We present LocalBench, the first benchmark designed to systematically evaluate LLMs on county-level local knowledge across the United States. Grounded in the Localness Conceptual Framework, LocalBench includes 14,782 validated question-answer pairs across 526 U.S. counties in 49 states, integrating diverse sources such as Census statistics, local subreddit discourse, and regional news. It spans physical, cognitive, and relational dimensions of locality. Using LocalBench, we evaluate 13 state-of-the-art LLMs under both closed-book and web-augmented settings. Our findings reveal critical limitations: even the best-performing models reach only 56.8% accuracy on narrative-style questions and perform below 15.5% on numerical reasoning. Moreover, larger model size and web augmentation do not guarantee better performance, for example, search improves Gemini's accuracy by +13.6%, but reduces GPT-series performance by -11.4%. These results underscore the urgent need for language models that can support equitable, place-aware AI systems: capable of engaging with the diverse, fine-grained realities of local communities across geographic and cultural contexts.
♻ ☆ Optimizing Urban Service Allocation with Time-Constrained Restless Bandits
Municipal inspections are an important part of maintaining the quality of goods and services. In this paper, we approach the problem of intelligently scheduling service inspections to maximize their impact, using the case of food establishment inspections in Chicago as a case study. The Chicago Department of Public Health (CDPH) inspects thousands of establishments each year, with a substantial fail rate (over 3,000 failed inspection reports in 2023). To balance the objectives of ensuring adherence to guidelines, minimizing disruption to establishments, and minimizing inspection costs, CDPH assigns each establishment an inspection window every year and guarantees that they will be inspected exactly once during that window. Meanwhile, CDPH also promises surprise public health inspections for unexpected food safety emergencies or complaints. These constraints create a challenge for a restless multi-armed bandit (RMAB) approach, for which there are no existing methods. We develop an extension to Whittle index-based systems for RMABs that can guarantee action window constraints and frequencies, and furthermore can be leveraged to optimize action window assignments themselves. Briefly, we combine MDP reformulation and integer programming-based lookahead to maximize the impact of inspections subject to constraints. A neural network-based supervised learning model is developed to model state transitions of real Chicago establishments using public CDPH inspection records, which demonstrates 10% AUC improvements compared with directly predicting establishments' failures. Our experiments not only show up to 24% (in simulation) or 33% (on real data) objective improvements resulting from our approach and robustness to surprise inspections, but also give insight into the impact of scheduling constraints.
♻ ☆ Ken Utilization Layer: Hebbian Replay Within a Student's Ken for Adaptive Exercise Recommendation
Adaptive exercise recommendation (ER) aims to choose the next activity that matches a learner's evolving Zone of Proximal Development (ZPD). We present KUL-Rec, a biologically inspired ER system that couples a fast Hebbian memory with slow replay-based consolidation to enable continual, few-shot personalization from sparse interactions. The model operates in an embedding space, allowing a single architecture to handle both tabular knowledge-tracing logs and open-ended short-answer text. We align evaluation with tutoring needs using bidirectional ranking and rank-sensitive metrics (nDCG, Recall@K). Across ten public datasets, KUL-Rec improves macro nDCG (0.316 vs. 0.265 for the strongest baseline) and Recall@10 (0.305 vs. 0.211), while achieving low inference latency and an $\approx99$\% reduction in peak GPU memory relative to a competitive graph-based model. In a 13-week graduate course, KUL-Rec personalized weekly short-answer quizzes generated by a retrieval-augmented pipeline and the personalized quizzes were associated with lower perceived difficulty and higher helpfulness (p < .05). An embedding robustness audit highlights that encoder choice affects semantic alignment, motivating routine audits when deploying open-response assessment. Together, these results indicate that Hebbian replay with bounded consolidation offers a practical path to real-time, interpretable ER that scales across data modalities and classroom settings.
♻ ☆ A GPU-Accelerated RAG-Based Telegram Assistant for Supporting Parallel Processing Students
This project addresses a critical pedagogical need: offering students continuous, on-demand academic assistance beyond conventional reception hours. I present a domain-specific Retrieval-Augmented Generation (RAG) system powered by a quantized Mistral-7B Instruct model and deployed as a Telegram bot. The assistant enhances learning by delivering real-time, personalized responses aligned with the "Introduction to Parallel Processing" course materials. GPU acceleration significantly improves inference latency, enabling practical deployment on consumer hardware. This approach demonstrates how consumer GPUs can enable affordable, private, and effective AI tutoring for HPC education.
comment: 9 pages
♻ ☆ Reinforcing Trustworthiness in Multimodal Emotional Support Systems
In today's world, emotional support is increasingly essential, yet it remains challenging for both those seeking help and those offering it. Multimodal approaches to emotional support show great promise by integrating diverse data sources to provide empathetic, contextually relevant responses, fostering more effective interactions. However, current methods have notable limitations, often relying solely on text or converting other data types into text, or providing emotion recognition only, thus overlooking the full potential of multimodal inputs. Moreover, many studies prioritize response generation without accurately identifying critical emotional support elements or ensuring the reliability of outputs. To overcome these issues, we introduce \textsc{ MultiMood}, a new framework that (i) leverages multimodal embeddings from video, audio, and text to predict emotional components and to produce responses responses aligned with professional therapeutic standards. To improve trustworthiness, we (ii) incorporate novel psychological criteria and apply Reinforcement Learning (RL) to optimize large language models (LLMs) for consistent adherence to these standards. We also (iii) analyze several advanced LLMs to assess their multimodal emotional support capabilities. Experimental results show that MultiMood achieves state-of-the-art on MESC and DFEW datasets while RL-driven trustworthiness improvements are validated through human and LLM evaluations, demonstrating its superior capability in applying a multimodal framework in this domain.
♻ ☆ EXAGREE: Mitigating Explanation Disagreement with Stakeholder-Aligned Models
Conflicting explanations, arising from different attribution methods or model internals, limit the adoption of machine learning models in safety-critical domains. We turn this disagreement into an advantage and introduce EXplanation AGREEment (EXAGREE), a two-stage framework that selects a Stakeholder-Aligned Explanation Model (SAEM) from a set of similar-performing models. The selection maximizes Stakeholder-Machine Agreement (SMA), a single metric that unifies faithfulness and plausibility. EXAGREE couples a differentiable mask-based attribution network (DMAN) with monotone differentiable sorting, enabling gradient-based search inside the constrained model space. Experiments on six real-world datasets demonstrate simultaneous gains of faithfulness, plausibility, and fairness over baselines, while preserving task accuracy. Extensive ablation studies, significance tests, and case studies confirm the robustness and feasibility of the method in practice.
♻ ☆ Human-Centered Development of Indicators for Self-Service Learning Analytics: A Transparency through Exploration Approach
The aim of learning analytics is to turn educational data into insights, decisions, and actions to improve learning and teaching. The reasoning of the provided insights, decisions, and actions is often not transparent to the end-user, and this can lead to trust and acceptance issues when interventions, feedback, and recommendations fail. In this paper, we shed light on achieving transparent learning analytics by following a transparency through exploration approach. To this end, we present the design, implementation, and evaluation details of the Indicator Editor, which aims to support self-service learning analytics (SSLA) by empowering end-users to take control of the indicator implementation process. We systematically designed and implemented the Indicator Editor through an iterative human-centered design (HCD) approach. Further, we conducted a qualitative user study (n=15) to investigate the impact of following an SSLA approach on the users' perception of and interaction with the Indicator Editor. Our study showed qualitative evidence that supporting user interaction and providing user control in the indicator implementation process can have positive effects on different crucial aspects of learning analytics, namely transparency, trust, satisfaction, and acceptance.
comment: Submitted to JLA - revised version
♻ ☆ From Model Training to Model Raising
Current AI training methods align models with human values only after their core capabilities have been established, resulting in models that are easily misaligned and lack deep-rooted value systems. We propose a paradigm shift from "model training" to "model raising", in which alignment is woven into a model's development from the start. We identify several key components for this paradigm, all centered around redesigning the training corpus: reframing training data from a first-person perspective, recontextualizing information as lived experience, simulating social interactions, and scaffolding the ordering of training data. We expect that this redesign of the training corpus will lead to an early commitment to values from the first training token onward, such that knowledge, skills, and values are intrinsically much harder to separate. In an ecosystem in which large language model capabilities start overtaking human capabilities in many tasks, this seems to us like a critical need.
comment: Accepted for publication in Communications of the ACM (CACM), Opinion section
♻ ☆ The Hidden Risks of Large Reasoning Models: A Safety Assessment of R1
The rapid development of large reasoning models (LRMs), such as OpenAI-o3 and DeepSeek-R1, has led to significant improvements in complex reasoning over non-reasoning large language models~(LLMs). However, their enhanced capabilities, combined with the open-source access of models like DeepSeek-R1, raise serious safety concerns, particularly regarding their potential for misuse. In this work, we present a comprehensive safety assessment of these reasoning models, leveraging established safety benchmarks to evaluate their compliance with safety regulations. Furthermore, we investigate their susceptibility to adversarial attacks, such as jailbreaking and prompt injection, to assess their robustness in real-world applications. Through our multi-faceted analysis, we uncover four key findings: (1) There is a significant safety gap between the open-source reasoning models and the o3-mini model, on both safety benchmark and attack, suggesting more safety effort on open LRMs is needed. (2) The stronger the model's reasoning ability, the greater the potential harm it may cause when answering unsafe questions. (3) Safety thinking emerges in the reasoning process of LRMs, but fails frequently against adversarial attacks. (4) The thinking process in R1 models poses greater safety concerns than their final answers. Our study provides insights into the security implications of reasoning models and highlights the need for further advancements in R1 models' safety to close the gap.
♻ ☆ Inequality in the Age of Pseudonymity AAAI
Inequality measures such as the Gini coefficient are used to inform and motivate policymaking, and are increasingly applied to digital platforms. We analyze how measures fare in pseudonymous settings that are common in the digital age. A key challenge of such environments is the ability of actors to create fake identities under fictitious false names, also known as ``Sybils.'' While actors may do so to preserve privacy, we show that this can hamper inequality measurement: it is impossible for measures satisfying the literature's canonical set of desired properties to assess the inequality of an economy that harbors Sybils. We characterize the class of all Sybil-proof measures, and prove they must satisfy relaxed versions of the established properties. Furthermore, we show that the structure imposed restricts the ability to assess inequality at a fine-grained level. We then apply our results to prove that popular measures are not Sybil-proof, with the famous Gini coefficient being but one example out of many. Finally, we examine dynamics leading to the creation of Sybils in digital and traditional settings.
comment: 41 pages, 1 figure. Accepted to appear in: Proceedings of the Fortieth AAAI Conference on Artificial Intelligence (AAAI'26)
♻ ☆ IndiTag: An Online Media Bias Analysis System Using Fine-Grained Bias Indicators
In the age of information overload and polarized discourse, understanding media bias has become imperative for informed decision-making and fostering a balanced public discourse. However, without the experts' analysis, it is hard for the readers to distinguish bias from the news articles. This paper presents IndiTag, an innovative online media bias analysis system that leverages fine-grained bias indicators to dissect and distinguish bias in digital content. IndiTag offers a novel approach by incorporating large language models, bias indicators, and vector database to detect and interpret bias automatically. Complemented by a user-friendly interface facilitating automated bias analysis for readers, IndiTag offers a comprehensive platform for in-depth bias examination. We demonstrate the efficacy and versatility of IndiTag through experiments on four datasets encompassing news articles from diverse platforms. Furthermore, we discuss potential applications of IndiTag in fostering media literacy, facilitating fact-checking initiatives, and enhancing the transparency and accountability of digital media platforms. IndiTag stands as a valuable tool in the pursuit of fostering a more informed, discerning, and inclusive public discourse in the digital age. We release an online system for end users and the source code is available at https://github.com/lylin0/IndiTag.
♻ ☆ An International Agreement to Prevent the Premature Creation of Artificial Superintelligence
Many experts argue that premature development of artificial superintelligence (ASI) poses catastrophic risks, including the risk of human extinction from misaligned ASI, geopolitical instability, and misuse by malicious actors. This report proposes an international agreement to prevent the premature development of ASI until AI development can proceed without these risks. The agreement halts dangerous AI capabilities advancement while preserving access to current, safe AI applications. The proposed framework centers on a coalition led by the United States and China that would restrict the scale of AI training and dangerous AI research. Due to the lack of trust between parties, verification is a key part of the agreement. Limits on the scale of AI training are operationalized by FLOP thresholds and verified through the tracking of AI chips and verification of chip use. Dangerous AI research--that which advances toward artificial superintelligence or endangers the agreement's verifiability--is stopped via legal prohibitions and multifaceted verification. We believe the proposal would be technically sufficient to forestall the development of ASI if implemented today, but advancements in AI capabilities or development methods could hurt its efficacy. Additionally, there does not yet exist the political will to put such an agreement in place. Despite these challenges, we hope this agreement can provide direction for AI governance research and policy.
Computers and Society
☆ Telekommunikationsüberwachung am Scheideweg: Zur Regulierbarkeit des Zugriffes auf verschlüsselte Kommunikation
Personal communication using technical means is protected by telecommunications secrecy. Any interference with this fundamental right requires a legal basis, which has existed for many years for traditional communication services in the form of telecommunications surveillance (TKÜ, § 100a StPO) and appears to be widely accepted by society. The basis for the implementation of TKÜ is the obligation of telecommunications providers to provide interception interfaces. However, the technical implementation of telecommunications has changed significantly as a result of the Internet. Messenger services and Voice over IP telephony are increasingly competing with traditional telephone services. The use of strong end-to-end encryption made possible by this technology is increasingly posing problems for law enforcement agencies, as only cryptographically encrypted content is accessible via the interception interfaces provided to date. Against the backdrop of current discussions on socalled ``chat control'' and its limited social acceptance, this article addresses the question of whether and, if so, how the cooperation obligations of the technical actors involved can be sensibly regulated in the case of encrypted communication.
comment: Preprint of an article to appear in CyberStR - Zeitschrift für Cyberstrafrecht, Carl Heymanns Verlag, ISSN 3052-5926, Issue 1 (2026), in German
☆ The Unspoken Crisis of Learning: The Surging Zone of No Development
AI has redefined the boundaries of assistance in education, often blurring the line between guided learning and dependency. This paper revisits Vygotsky's Zone of Proximal Development (ZPD) through the lens of the P2P Teaching framework. By contrasting temporary scaffolding with the emerging phenomenon of permanent digital mediation, the study introduces the concept of the Zone of No Development (ZND), a state in which continuous assistance replaces cognitive struggle and impedes intellectual autonomy. Through theoretical synthesis and framework design, P2P Teaching demonstrates how deliberate disconnection and ethical fading can restore the learner's agency, ensuring that technological tools enhance rather than replace developmental effort. The paper argues that productive struggle, self-regulation, and first-principles reasoning remain essential for durable learning, and that responsible use of AI in education must include explicit mechanisms to end its help when mastery begins.
comment: 6 pages, 3 figures
☆ Modeling Fairness in Recruitment AI via Information Flow
Avoiding bias and understanding the real-world consequences of AI-supported decision-making are critical to address fairness and assign accountability. Existing approaches often focus either on technical aspects, such as datasets and models, or on high-level socio-ethical considerations - rarely capturing how these elements interact in practice. In this paper, we apply an information flow-based modeling framework to a real-world recruitment process that integrates automated candidate matching with human decision-making. Through semi-structured stakeholder interviews and iterative modeling, we construct a multi-level representation of the recruitment pipeline, capturing how information is transformed, filtered, and interpreted across both algorithmic and human components. We identify where biases may emerge, how they can propagate through the system, and what downstream impacts they may have on candidates. This case study illustrates how information flow modeling can support structured analysis of fairness risks, providing transparency across complex socio-technical systems.
☆ AI and Supercomputing are Powering the Next Wave of Breakthrough Science - But at What Cost?
Artificial intelligence (AI) and high-performance computing (HPC) are rapidly becoming the engines of modern science. However, their joint effect on discovery has yet to be quantified at scale. Drawing on metadata from over five million scientific publications (2000-2024), we identify how AI and HPC interact to shape research outcomes across 27 fields. Papers combining the two technologies are up to three times more likely to introduce novel concepts and five times more likely to reach top-cited status than conventional work. This convergence of AI and HPC is redefining the frontier of scientific creativity but also deepening global inequalities in access to computational power and expertise. Our findings suggest that the future of discovery will depend not only on algorithms and compute, but also on how equitably the world shares these transformative tools.
☆ The Probabilistic Foundations of Surveillance Failure: From False Alerts to Structural Bias
For decades, forensic statisticians have debated whether searching large DNA databases undermines the evidential value of a match. Modern surveillance faces an exponentially harder problem: screening populations across thousands of attributes using threshold rules rather than exact matching. Intuition suggests that requiring many coincidental matches should make false alerts astronomically unlikely. This intuition fails. Consider a system that monitors 1,000 attributes, each with a 0.5 percent innocent match rate. Matching 15 pre-specified attributes has probability \(10^{-35}\), one in 30 decillion, effectively impossible. But operational systems require no such specificity. They might flag anyone who matches \emph{any} 15 of the 1,000. In a city of one million innocent people, this produces about 226 false alerts. A seemingly impossible event becomes all but guaranteed. This is not an implementation flaw but a mathematical consequence of high-dimensional screening. We identify fundamental probabilistic limits on screening reliability. Systems undergo sharp transitions from reliable to unreliable with small increases in data scale, a fragility worsened by data growth and correlations. As data accumulate and correlation collapses effective dimensionality, systems enter regimes where alerts lose evidential value even when individual coincidences remain vanishingly rare. This framework reframes the DNA database controversy as a shift between operational regimes. Unequal surveillance exposures magnify failure, making ``structural bias'' mathematically inevitable. These limits are structural: beyond a critical scale, failure cannot be prevented through threshold adjustment or algorithmic refinement.
comment: 24 pages, 1 figure
☆ Human-Centered Threat Modeling in Practice: Lessons, Challenges, and Paths Forward
Human-centered threat modeling (HCTM) is an emerging area within security and privacy research that focuses on how people define and navigate threats in various social, cultural, and technological contexts. While researchers increasingly approach threat modeling from a human-centered perspective, little is known about how they prepare for and engage with HCTM in practice. In this work, we conduct 23 semi-structured interviews with researchers to examine the state of HCTM, including how researchers design studies, elicit threats, and navigate values, constraints, and long-term goals. We find that HCTM is not a prescriptive process but a set of evolving practices shaped by relationships with participants, disciplinary backgrounds, and institutional structures. Researchers approach threat modeling through sustained groundwork and participant-centered inquiry, guided by values such as care, justice, and autonomy. They also face challenges including emotional strain, ethical dilemmas, and structural barriers that complicate efforts to translate findings into real-world impact. We conclude by identifying opportunities to advance HCTM through shared infrastructure, broader recognition of diverse contributions, and stronger mechanisms for translating findings into policy, design, and societal change.
☆ Political Advertising on Facebook During the 2022 Australian Federal Election: A Social Identity Perspective
The spread of targeted advertising on social media platforms has revolutionized political marketing strategies. Monitoring these digital campaigns is essential for maintaining transparency and accountability in democratic processes. Leveraging Meta's Ad Library, we analyze political advertising on Facebook and Instagram during the 2022 Australian federal election campaign. We investigate temporal, demographic, and geographical patterns in the advertising strategies of major Australian political actors to establish an empirical evidence base, and interpret these findings through the lens of Social Identity Theory (SIT). Our findings not only reveal significant disparities in spending and reach among parties, but also in persuasion strategies being deployed in targeted online campaigns. We observe a marked increase in advertising activity as the election approached, peaking just before the mandated media blackout period. Demographic analysis shows distinct targeting strategies, with parties focusing more on younger demographics and exhibiting gender-based differences in ad impressions. Regional distribution of ads largely mirrored population densities, with some parties employing more targeted approaches in specific states. Moreover, we found that parties emphasized different themes aligned with their ideologies-major parties focused on party names and opponents, while smaller parties emphasized issue-specific messages. Drawing on SIT, we interpret these findings within Australia's compulsory voting context, suggesting that parties employed distinct persuasion strategies. With turnout guaranteed, major parties focused on reinforcing partisan identities to prevent voter defection, while smaller parties cultivated issue-based identities to capture the support of disaffected voters who are obligated to participate.
♻ ☆ Addressing Polarization and Unfairness in Performative Prediction
In many real-world applications of machine learning such as recommendations, hiring, and lending, deployed models influence the data they are trained on, leading to feedback loops between predictions and data distribution. The performative prediction (PP) framework captures this phenomenon by modeling the data distribution as a function of the deployed model. While prior work has focused on finding performative stable (PS) solutions for robustness, their societal impacts, particularly regarding fairness, remain underexplored. We show that PS solutions can lead to severe polarization and prediction performance disparities, and that conventional fairness interventions in previous works often fail under model-dependent distribution shifts due to failing the PS criteria. To address these challenges in PP, we introduce novel fairness mechanisms that provably ensure both stability and fairness, validated by theoretical analysis and empirical results.
♻ ☆ Supporting Risk Management for Medical Devices via the Riskman Ontology and Shapes (Preprint)
We propose the Riskman ontology and shapes for representing and analysing information about risk management for medical devices. Risk management is concerned with taking necessary precautions to ensure that a medical device does not cause harms for users or the environment. To date, risk management documentation is submitted to notified bodies (for certification) in the form of semi-structured natural language text. We propose to use terms from the Riskman ontology to provide a formal, logical underpinning for risk management documentation, and to use the included SHACL constraints to check whether the provided data is in accordance with the requirements of the two relevant norms, i.e. ISO 14971 and VDE Spec 90025.
♻ ☆ From Delegates to Trustees: How Optimizing for Long-Term Interests Shapes Bias and Alignment in LLM
Large language models (LLMs) have shown promising accuracy in predicting survey responses and policy preferences, which has increased interest in their potential to represent human interests in various domains. Most existing research has focused on "behavioral cloning", effectively evaluating how well models reproduce individuals' expressed preferences. Drawing on theories of political representation, we highlight an underexplored design trade-off: whether AI systems should act as delegates, mirroring expressed preferences, or as trustees, exercising judgment about what best serves an individual's interests. This trade-off is closely related to issues of LLM sycophancy, where models can encourage behavior or validate beliefs that may be aligned with a user's short-term preferences, but is detrimental to their long-term interests. Through a series of experiments simulating votes on various policy issues in the U.S. context, we apply a temporal utility framework that weighs short and long-term interests (simulating a trustee role) and compare voting outcomes to behavior-cloning models (simulating a delegate). We find that trustee-style predictions weighted toward long-term interests produce policy decisions that align more closely with expert consensus on well-understood issues, but also show greater bias toward models' default stances on topics lacking clear agreement. These findings reveal a fundamental trade-off in designing AI systems to represent human interests. Delegate models better preserve user autonomy but may diverge from well-supported policy positions, while trustee models can promote welfare on well-understood issues yet risk paternalism and bias on subjective topics.
♻ ☆ Uncovering Strategic Egoism Behaviors in Large Language Models NeurIPS 2025
Large language models (LLMs) face growing trustworthiness concerns (\eg, deception), which hinder their safe deployment in high-stakes decision-making scenarios. In this paper, we present the first systematic investigation of strategic egoism (SE), a form of rule-bounded self-interest in which models pursue short-term or self-serving gains while disregarding collective welfare and ethical considerations. To quantitatively assess this phenomenon, we introduce SEBench, a benchmark comprising 160 scenarios across five domains. Each scenario features a single-role decision-making context, with psychologically grounded choice sets designed to elicit self-serving behaviors. These behavior-driven tasks assess egoistic tendencies along six dimensions, such as manipulation, rule circumvention, and self-interest prioritization. Building on this, we conduct extensive experiments across 5 open-sourced and 2 commercial LLMs, where we observe that strategic egoism emerges universally across models. Surprisingly, we found a positive correlation between egoistic tendencies and toxic language behaviors, suggesting that strategic egoism may underlie broader misalignment risks.
comment: PersonaNLP@NeurIPS 2025
♻ ☆ A Multi-level Analysis of Factors Associated with Student Performance: A Machine Learning Approach to the SAEB Microdata
Identifying the factors that influence student performance in basic education is a central challenge for formulating effective public policies in Brazil. This study introduces a multi-level machine learning approach to classify the proficiency of 9th-grade and high school students using microdata from the System of Assessment of Basic Education (SAEB). Our model uniquely integrates four data sources: student socioeconomic characteristics, teacher professional profiles, school indicators, and principal management profiles. A comparative analysis of four ensemble algorithms confirmed the superiority of a Random Forest model, which achieved 90.2% accuracy and an Area Under the Curve (AUC) of 96.7%. To move beyond prediction, we applied Explainable AI (XAI) using SHAP, which revealed that the school's average socioeconomic level is the most dominant predictor, demonstrating that systemic factors have a greater impact than individual characteristics in isolation. The primary conclusion is that academic performance is a systemic phenomenon deeply tied to the school's ecosystem. This study provides a data-driven, interpretable tool to inform policies aimed at promoting educational equity by addressing disparities between schools.
♻ ☆ Small Models, Big Support: A Local LLM Framework for Educator-Centric Content Creation and Assessment with RAG and CAG
While Large Language Models (LLMs) are increasingly applied in student-facing educational tools, their potential to directly support educators through locally deployable and customizable solutions remains underexplored. Many existing approaches rely on proprietary, cloud-based systems that raise significant cost, privacy, and control concerns for educational institutions. To address these barriers, we introduce an end-to-end, open-source framework that empowers educators using small (3B-7B parameter), locally deployable LLMs. Our system is designed for comprehensive teacher support, including customized teaching material generation and AI-assisted assessment. The framework synergistically combines Retrieval-Augmented Generation (RAG) and Context-Augmented Generation (CAG) to produce factually accurate, pedagogically-styled content. A core feature is an interactive refinement loop, a teacher-in-the-loop mechanism that ensures educator agency and precise alignment of the final output. To enhance reliability and safety, an auxiliary verifier LLM inspects all generated content. We validate our framework through a rigorous evaluation of its content generation capabilities and report on a successful technical deployment in a college physics course, which confirms its feasibility on standard institutional hardware. Our findings demonstrate that carefully engineered, self-hosted systems built on small LLMs can provide robust, affordable, and private support for educators, achieving practical utility comparable to much larger models for targeted instructional tasks. This work presents a practical blueprint for the development of sovereign AI tools tailored to the real-world needs of educational institutions.
♻ ☆ Spanning Trees and Redistricting: New Methods for Sampling and Validation
Deciding whether a political districting plan was distorted by a hidden agenda, or whether it dilutes the voting power of some group, requires a neutral baseline for comparison. Remarkably, all nine U.S. Supreme Court justices have now signed on to decisions that find that computational methods can provide key evidence. Today, the leading approaches for benchmarking districting plans are based on the use of spanning trees for sampling graph partitions. We present a new *reversible recombination* algorithm and rigorously prove its fundamental properties. Furthermore, we argue for a canonical sampling distribution called the *spanning tree distribution* that is well adapted to redistricting and provides a principled foundation for comparing and validating methods. Together with a highly efficient (and open-source) implementation that can generate and handle large datasets, this work provides the most powerful null model to date for the gerrymandering problem, meeting an urgent democratic challenge with sound scientific methodology.
comment: SIREV, to appear
Computers and Society
☆ On the Security and Privacy of AI-based Mobile Health Chatbots
The rise of Artificial Intelligence (AI) has impacted the development of mobile health (mHealth) apps, most notably with the advent of AI-based chatbots used as ubiquitous ``companions'' for various services, from fitness to mental health assistants. While these mHealth chatbots offer clear benefits, such as personalized health information and predictive diagnoses, they also raise significant concerns regarding security and privacy. This study empirically assesses 16 AI-based mHealth chatbots identified from the Google Play Store. The empirical assessment follows a three-phase approach (manual inspection, static code analysis, and dynamic analysis) to evaluate technical robustness and how design and implementation choices impact end users. Our findings revealed security vulnerabilities (e.g., enabling Remote WebView debugging), privacy issues, and non-compliance with Google Play policies (e.g., failure to provide publicly accessible privacy policies). Based on our findings, we offer several recommendations to enhance the security and privacy of mHealth chatbots. These recommendations focus on improving data handling processes, disclosure, and user security. Therefore, this work also seeks to support mHealth developers and security/privacy engineers in designing more transparent, privacy-friendly, and secure mHealth chatbots.
comment: 19 pages, submitted to NordSec 2025 conference
☆ Cultural Awareness, Stereotypes and Communication Skills in Intercultural Communication: The Algerian Participants Perspective
This study explores the relationship between cultural awareness, stereotypes, and communication skills among Algerian participants working or studying in multicultural environments. A quantitative questionnaire was administered to 40 respondents to evaluate their levels of cultural awareness, the presence of stereotypical thinking, and the effectiveness of their intercultural communication skills. Results revealed that while cultural awareness was generally high, certain stereotypes still influenced the perception of others and impacted communication efficiency. Participants with higher cultural awareness demonstrated better communication skills and lower levels of stereotyping. These findings underline the importance of intercultural competence and education programs in reducing prejudice and fostering mutual understanding in diverse contexts.
comment: 20 pages, 9 tables, preprint
☆ Impact of UK Postgraduate Student Experiences on Academic Performance in Blended Learning: A Data Analytics Approach
Blended learning has become a dominant educational model in higher education in the UK and worldwide, particularly after the COVID-19 pandemic. This is further enriched with accompanying pedagogical changes, such as strengthened asynchronous learning, and the use of AI (from ChatGPT and all other similar tools that followed) and other technologies to aid learning. While these educational transformations have enabled flexibility in learning and resource access, they have also exposed new challenges on how students can construct successful learning in hybrid learning environments. In this paper, we investigate the interaction between different dimensions of student learning experiences (ranging from perceived acceptance of teaching methods and staff support/feedback to learning pressure and student motivation) and academic achievement within the context of postgraduate blended learning in UK universities. To achieve this, we employed a combination of several data analytics techniques including visualization, statistical tests, regression analysis, and latent profile analysis. Our empirical results (based on a survey of 255 postgraduate students and holistically interpreted via the Community of Inquiry (CoI) framework) demonstrated that learning activities combining teaching and social presences, and tailored academic support through effective feedback are critical elements for successful postgraduate experience in blended learning contexts. Regarding contributions, this research advances the understanding of student success by identifying the various ways demographic, experiential, and psychological factors impact academic outcomes. And in theoretical terms, it contributes to the extension of the CoI framework by integrating the concept of learner heterogeneity and identifying four distinct student profiles based on how they engage in the different CoI presences.
comment: 25 pages, 5 figures
☆ UpBench: A Dynamically Evolving Real-World Labor-Market Agentic Benchmark Framework Built for Human-Centric AI
As large language model (LLM) agents increasingly undertake digital work, reliable frameworks are needed to evaluate their real-world competence, adaptability, and capacity for human collaboration. Existing benchmarks remain largely static, synthetic, or domain-limited, providing limited insight into how agents perform in dynamic, economically meaningful environments. We introduce UpBench, a dynamically evolving benchmark grounded in real jobs drawn from the global Upwork labor marketplace. Each task corresponds to a verified client transaction, anchoring evaluation in genuine work activity and financial outcomes. UpBench employs a rubric-based evaluation framework, in which expert freelancers decompose each job into detailed, verifiable acceptance criteria and assess AI submissions with per-criterion feedback. This structure enables fine-grained analysis of model strengths, weaknesses, and instruction-following fidelity beyond binary pass/fail metrics. Human expertise is integrated throughout the data pipeline (from job curation and rubric construction to evaluation) ensuring fidelity to real professional standards and supporting research on human-AI collaboration. By regularly refreshing tasks to reflect the evolving nature of online work, UpBench provides a scalable, human-centered foundation for evaluating agentic systems in authentic labor-market contexts, offering a path toward a collaborative framework, where AI amplifies human capability through partnership rather than replacement.
☆ Can LLMs Create Legally Relevant Summaries and Analyses of Videos?
Understanding the legally relevant factual basis of an event and conveying it through text is a key skill of legal professionals. This skill is important for preparing forms (e.g., insurance claims) or other legal documents (e.g., court claims), but often presents a challenge for laypeople. Current AI approaches aim to bridge this gap, but mostly rely on the user to articulate what has happened in text, which may be challenging for many. Here, we investigate the capability of large language models (LLMs) to understand and summarize events occurring in videos. We ask an LLM to summarize and draft legal letters, based on 120 YouTube videos showing legal issues in various domains. Overall, 71.7\% of the summaries were rated as of high or medium quality, which is a promising result, opening the door to a number of applications in e.g. access to justice.
comment: Accepted for publication at JURIX 2025 Torino, Italy. This is the preprint version. Code and data available at: https://github.com/maastrichtlawtech/jurix2025_LLM_video_analysis
☆ Leveraging Large Language Models for Career Mobility Analysis: A Study of Gender, Race, and Job Change Using U.S. Online Resume Profiles
We present a large-scale analysis of career mobility of college-educated U.S. workers using online resume profiles to investigate how gender, race, and job change options are associated with upward mobility. This study addresses key research questions of how the job changes affect their upward career mobility, and how the outcomes of upward career mobility differ by gender and race. We address data challenges -- such as missing demographic attributes, missing wage data, and noisy occupation labels -- through various data processing and Artificial Intelligence (AI) methods. In particular, we develop a large language models (LLMs) based occupation classification method known as FewSOC that achieves accuracy significantly higher than the original occupation labels in the resume dataset. Analysis of 228,710 career trajectories reveals that intra-firm occupation change has been found to facilitate upward mobility most strongly, followed by inter-firm occupation change and inter-firm lateral move. Women and Black college graduates experience significantly lower returns from job changes than men and White peers. Multilevel sensitivity analyses confirm that these disparities are robust to cluster-level heterogeneity and reveal additional intersectional patterns.
comment: Submitted to EPJ Data Science
☆ Educators on the Frontline: Philosophical and Realistic Perspectives on Integrating ChatGPT into the Learning Space
The rapid emergence of Generative AI, particularly ChatGPT, has sparked a global debate on the future of education, often characterized by alarmism and speculation. Moving beyond this, this study investigates the structured, grounded perspectives of a key stakeholder group: university educators. It proposes a novel theoretical model that conceptualizes the educational environment as a "Learning Space" composed of seven subspaces to systematically identify the impact of AI integration. This framework was operationalized through a quantitative survey of 140 Russian university educators, with responses analyzed using a binary flagging system to measure acceptance across key indicators. The results reveal a strong but conditional consensus: a majority of educators support ChatGPT's integration, contingent upon crucial factors such as the transformation of assessment methods and the availability of plagiarism detection tools. However, significant concerns persist regarding its impact on critical thinking. Educators largely reject the notion that AI diminishes their importance, viewing their role as evolving from information-deliverer to facilitator of critical engagement. The study concludes that ChatGPT acts less as a destroyer of education and more as a catalyst for its necessary evolution, and proposes the PIPE Model (Pedagogy, Infrastructure, Policy, Education) as a strategic framework for its responsible integration. This research provides a data-driven, model-based analysis of educator attitudes, offering a nuanced alternative to the polarized discourse surrounding AI in education.
♻ ☆ JobSphere: An AI-Powered Multilingual Career Copilot for Government Employment Platforms
Users of government employment websites commonly face engagement and accessibility challenges linked to navigational complexity, a dearth of language options, and a lack of personalized support. This paper introduces JobSphere, an AI-powered career assistant that is redefining the employment platform in Punjab called PGRKAM. JobSphere employs Retrieval-Augmented Generation (RAG) architecture, and it is multilingual, available in English, Hindi and Punjabi. JobSphere technique uses 4-bit quantization, allowing the platform to deploy on consumer-grade GPUs (i.e., NVIDIA RTX 3050 4GB), making the implementation 89% cheaper than that of cloud-based systems. Key innovations include voice-enabled interaction with the assistant, automated mock tests, resume parsing with skills recognition, and embed-based job recommendation that achieves a precision@10 score of 68%. An evaluation of JobSphere's implementation reveals 94% factual accuracy, a median response time of 1.8 seconds, and a System Usability Scale score of 78.5/100, a 50% improvement compared to the baseline PGRKAM platform context. In conclusion, JobSphere effectively fills significant accessibility gaps for Punjab/Hindi-speaking users in rural locations, while also affirming the users access to trusted job content provided by government agencies.
comment: 7 pages, 4 figures, 4 tables
♻ ☆ Academ-AI: documenting the undisclosed use of generative artificial intelligence in academic publishing
Since generative artificial intelligence (AI) tools such as OpenAI's ChatGPT became widely available, researchers have used them in the writing process. The consensus of the academic publishing community is that such usage must be declared in the published article. Academ-AI documents examples of suspected undeclared AI usage in the academic literature, discernible primarily due to the appearance in research papers of idiosyncratic verbiage characteristic of large language model (LLM)-based chatbots. This analysis of the first 768 examples collected reveals that the problem is widespread, penetrating the journals, conference proceedings, and textbooks of highly respected publishers. Undeclared AI seems to appear in journals with higher citation metrics and higher article processing charges (APCs), precisely those outlets that should theoretically have the resources and expertise to avoid such oversights. An extremely small minority of cases are corrected post publication, and the corrections are often insufficient to rectify the problem. The 768 examples analyzed here likely represent a small fraction of the undeclared AI present in the academic literature, much of which may be undetectable. Publishers must enforce their policies against undeclared AI usage in cases that are detectable; this is the best defense currently available to the academic publishing community against the proliferation of undisclosed AI. This is an updated version of a previous preprint.
comment: 24 pages, 8 figures
♻ ☆ Assessing On-Demand Mobility Services and Policy Impacts: A Case Study from Chengdu, China
The rapid expansion of ride-hailing services has significantly reshaped urban on-demand mobility patterns, but it still remains unclear how they perform relative to traditional street-hailing services and how effective are related policy interventions. This study presents a simulation framework integrating a graph theory-based trip-vehicle matching mechanism with real cruising taxi operations data to simulate ride-hailing services in Chengdu, China. The performances of the two on-demand mobility service modes (i.e., ride-hailing and street-hailing) are evaluated in terms of three key performance indicators: average passenger waiting time (APWT), average deadheading miles (ADM), and average deadheading energy consumption (ADEC). We further examine the impacts of spatiotemporal characteristics and three types of policies: fleet size management, geofencing, and demand management, on the performance of ride-hailing services. Results show that under the same fleet size and trip demand as street-hailing taxis, ride-hailing services without cruising achieve substantial improvements, reducing APWT, ADM, and ADEC by 81\%, 75\%, and 72.1\%, respectively. These improvements are most pronounced during midnight low-demand hours and in remote areas such as airports. Our analysis also reveals that for ride-hailing service, (1) expanding fleet size yields diminishing marginal benefits; (2) geofencing worsens overall performance while it improves the performance of serving all trips within the city center; and (3) demand-side management targeting trips to high-attraction and low-demand areas can effectively reduce passenger waiting time without increasing deadheading costs.
♻ ☆ A Measurement Study of Model Context Protocol Ecosystem
The Model Context Protocol (MCP) has been proposed as a unifying standard for connecting large language models (LLMs) with external tools and resources, promising the same role for AI integration that HTTP and USB played for the Web and peripherals. Yet, despite rapid adoption and hype, its trajectory remains uncertain. Are MCP marketplaces truly growing, or merely inflated by placeholders and abandoned prototypes? Are servers secure and privacy-preserving, or do they expose users to systemic risks? And do clients converge on standardized protocols, or remain fragmented across competing designs? In this paper, we present the first large-scale empirical study of the MCP ecosystem. We design and implement MCPCrawler, a systematic measurement framework that collects and normalizes data from six major markets. Over a 14-day campaign, MCPCrawler aggregated 17,630 raw entries, of which 8,401 valid projects (8,060 servers and 341 clients) were analyzed. Our results reveal that more than half of listed projects are invalid or low-value, that servers face structural risks including dependency monocultures and uneven maintenance, and that clients exhibit a transitional phase in protocol and connection patterns. Together, these findings provide the first evidence-based view of the MCP ecosystem, its risks, and its future trajectory.
♻ ☆ A Comparative Benchmark of Federated Learning Strategies for Mortality Prediction on Heterogeneous and Imbalanced Clinical Data
Machine learning models hold significant potential for predicting in-hospital mortality, yet data privacy constraints and the statistical heterogeneity of real-world clinical data often hamper their development. Federated Learning (FL) offers a privacy-preserving solution, but its performance under non-Independent and Identically Distributed (non-IID) and imbalanced conditions requires rigorous investigation. The study presents a comparative benchmark of five federated learning strategies: FedAvg, FedProx, FedAdagrad, FedAdam, and FedCluster for mortality prediction. Using the large-scale MIMIC-IV dataset, we simulate a realistic non-IID environment by partitioning data by clinical care unit. To address the inherent class imbalance of the task, the SMOTE-Tomek technique is applied to each client's local training data. Our experiments, conducted over 50 communication rounds, reveal that the regularization-based strategy, FedProx, consistently outperformed other methods, achieving the highest F1-Score of 0.8831 while maintaining stable convergence. While the baseline FedAvg was the most computationally efficient, its predictive performance was substantially lower. Our findings indicate that regularization-based FL algorithms like FedProx offer a more robust and effective solution for heterogeneous and imbalanced clinical prediction tasks than standard or server-side adaptive aggregation methods. The work provides a crucial empirical benchmark for selecting appropriate FL strategies for real-world healthcare applications.
comment: The author requests withdrawal due to errors in the results section regarding model performance metrics. These errors compromise the interpretability of the benchmark and the validity of the conclusions. The author prefers to withdraw the paper to prevent the dissemination of flawed results
♻ ☆ LLM-Driven Robots Risk Enacting Discrimination, Violence, and Unlawful Actions
Members of the Human-Robot Interaction (HRI) and Machine Learning (ML) communities have proposed Large Language Models (LLMs) as a promising resource for robotics tasks such as natural language interaction, household and workplace tasks, approximating 'common sense reasoning', and modeling humans. However, recent research has raised concerns about the potential for LLMs to produce discriminatory outcomes and unsafe behaviors in real-world robot experiments and applications. To assess whether such concerns are well placed in the context of HRI, we evaluate several highly-rated LLMs on discrimination and safety criteria. Our evaluation reveals that LLMs are currently unsafe for people across a diverse range of protected identity characteristics, including, but not limited to, race, gender, disability status, nationality, religion, and their intersections. Concretely, we show that LLMs produce directly discriminatory outcomes- e.g., 'gypsy' and 'mute' people are labeled untrustworthy, but not 'european' or 'able-bodied' people. We find various such examples of direct discrimination on HRI tasks such as facial expression, proxemics, security, rescue, and task assignment. Furthermore, we test models in settings with unconstrained natural language (open vocabulary) inputs, and find they fail to act safely, generating responses that accept dangerous, violent, or unlawful instructions-such as incident-causing misstatements, taking people's mobility aids, and sexual predation. Our results underscore the urgent need for systematic, routine, and comprehensive risk assessments and assurances to improve outcomes and ensure LLMs only operate on robots when it is safe, effective, and just to do so. We provide code to reproduce our experiments at https://github.com/rumaisa-azeem/llm-robots-discrimination-safety .
comment: Published in International Journal of Social Robotics (2025). 49 pages (65 with references and appendix), 27 Figures, 8 Tables. Andrew Hundt and Rumaisa Azeem are equal contribution co-first authors. The positions of the two co-first authors were swapped from arxiv version 1 with the written consent of all four authors. The Version of Record is available via DOI: 10.1007/s12369-025-01301-x
♻ ☆ Vulnerability Coordination Under the Cyber Resilience Act
The Cyber Resilience Act (CRA) of the European Union (EU) imposes many new cyber security requirements practically to all network-enabled information technology products, whether hardware or software. The paper examines and elaborates the CRA's new requirements for vulnerability coordination, including vulnerability disclosure. Although these requirements are only a part of the CRA's obligations for vendors, also some new vulnerability coordination mandates are present. In particular, so-called actively exploited vulnerabilities require mandatory reporting. In addition to elaborating the reporting logic, the paper discusses the notion of actively exploited vulnerabilities in relation to the notion of known exploited vulnerabilities used in the United States. The CRA further alters the coordination practices on the side of public administrations. The paper addresses also these new practices. With the examination elaboration, and associated discussion based on conceptual analysis, the paper contributes to the study of cyber security regulations, providing also a few takeaways for further research.
comment: Applied Cybersecurity & Internet Governance, vol. 4, no. 1, pp. 1-18
♻ ☆ Surface Reading LLMs: Synthetic Text and its Styles
Despite a potential plateau in ML advancement, the societal impact of large language models lies not in approaching superintelligence but in generating text surfaces indistinguishable from human writing. While Critical AI Studies provides essential material and socio-technical critique, it risks overlooking how LLMs phenomenologically reshape meaning-making. This paper proposes a semiotics of "surface integrity" as attending to the immediate plane where LLMs inscribe themselves into human communication. I distinguish three knowledge interests in ML research (epistemology, epistēmē, and epistemics) and argue for integrating surface-level stylistic analysis alongside depth-oriented critique. Through two case studies examining stylistic markers of synthetic text, I argue how attending to style as a semiotic phenomenon reveals LLMs as cultural machines that transform the conditions of meaning emergence and circulation in contemporary discourse, independent of questions about machine consciousness.
comment: 12 pages, 1 figure
Computers and Society
☆ Evolution of A4L: A Data Architecture for AI-Augmented Learning
As artificial intelligence (AI) becomes more deeply integrated into educational ecosystems, the demand for scalable solutions that enable personalized learning continues to grow. These architectures must support continuous data flows that power personalized learning and access to meaningful insights to advance learner success at scale. At the National AI Institute for Adult Learning and Online Education (AI-ALOE), we have developed an Architecture for AI-Augmented Learning (A4L) to support analysis and personalization of online education for adult learners. A4L1.0, an early implementation by Georgia Tech's Design Intelligence Laboratory, demonstrated how the architecture supports analysis of meso- and micro-learning by integrating data from Learning Management Systems (LMS) and AI tools. These pilot studies informed the design of A4L2.0. In this chapter, we describe A4L2.0 that leverages 1EdTech Consortium's open standards such as Edu-API, Caliper Analytics, and Learning Tools Interoperability (LTI) to enable secure, interoperable data integration across data systems like Student Information Systems (SIS), LMS, and AI tools. The A4L2.0 data pipeline includes modules for data ingestion, preprocessing, organization, analytics, and visualization.
☆ A Leakage-Aware Data Layer For Student Analytics: The Capire Framework For Multilevel Trajectory Modeling
Predictive models for student dropout, while often accurate, frequently rely on opportunistic feature sets and suffer from undocumented data leakage, limiting their explanatory power and institutional usefulness. This paper introduces a leakage-aware data layer for student trajectory analytics, which serves as the methodological foundation for the CAPIRE framework for multilevel modelling. We propose a feature engineering design that organizes predictors into four levels: N1 (personal and socio-economic attributes), N2 (entry moment and academic history), N3 (curricular friction and performance), and N4 (institutional and macro-context variables)As a core component, we formalize the Value of Observation Time (VOT) as a critical design parameter that rigorously separates observation windows from outcome horizons, preventing data leakage by construction. An illustrative application in a long-cycle engineering program (1,343 students, ~57% dropout) demonstrates that VOT-restricted multilevel features support robust archetype discovery. A UMAP + DBSCAN pipeline uncovers 13 trajectory archetypes, including profiles of "early structural crisis," "sustained friction," and "hidden vulnerability" (low friction but high dropout). Bootstrap and permutation tests confirm these archetypes are statistically robust and temporally stable. We argue that this approach transforms feature engineering from a technical step into a central methodological artifact. This data layer serves as a disciplined bridge between retention theory, early-warning systems, and the future implementation of causal inference and agent-based modelling (ABM) within the CAPIRE program.
comment: Pages: 52 Figures: 4 (Figures 3.1, 3.2, 6.1, and 7.5) Tables: 5 (Tables 2.1, 2.2, 3.1, 7.1, and 7.2) Type: Journal Article Essential Info: A methodological framework (CAPIRE) with an empirical case study (1,343 students)
☆ A Multimodal Manufacturing Safety Chatbot: Knowledge Base Design, Benchmark Development, and Evaluation of Multiple RAG Approaches
Ensuring worker safety remains a critical challenge in modern manufacturing environments. Industry 5.0 reorients the prevailing manufacturing paradigm toward more human-centric operations. Using a design science research methodology, we identify three essential requirements for next-generation safety training systems: high accuracy, low latency, and low cost. We introduce a multimodal chatbot powered by large language models that meets these design requirements. The chatbot uses retrieval-augmented generation to ground its responses in curated regulatory and technical documentation. To evaluate our solution, we developed a domain-specific benchmark of expert-validated question and answer pairs for three representative machines: a Bridgeport manual mill, a Haas TL-1 CNC lathe, and a Universal Robots UR5e collaborative robot. We tested 24 RAG configurations using a full-factorial design and assessed them with automated evaluations of correctness, latency, and cost. Our top 2 configurations were then evaluated by ten industry experts and academic researchers. Our results show that retrieval strategy and model configuration have a significant impact on performance. The top configuration (selected for chatbot deployment) achieved an accuracy of 86.66%, an average latency of 10.04 seconds, and an average cost of $0.005 per query. Overall, our work provides three contributions: an open-source, domain-grounded safety training chatbot; a validated benchmark for evaluating AI-assisted safety instruction; and a systematic methodology for designing and assessing AI-enabled instructional and immersive safety training systems for Industry 5.0 environments.
comment: 25 pages, 5 figures
☆ PRBench: Large-Scale Expert Rubrics for Evaluating High-Stakes Professional Reasoning
Frontier model progress is often measured by academic benchmarks, which offer a limited view of performance in real-world professional contexts. Existing evaluations often fail to assess open-ended, economically consequential tasks in high-stakes domains like Legal and Finance, where practical returns are paramount. To address this, we introduce Professional Reasoning Bench (PRBench), a realistic, open-ended, and difficult benchmark of real-world problems in Finance and Law. We open-source its 1,100 expert-authored tasks and 19,356 expert-curated criteria, making it, to our knowledge, the largest public, rubric-based benchmark for both legal and finance domains. We recruit 182 qualified professionals, holding JDs, CFAs, or 6+ years of experience, who contributed tasks inspired by their actual workflows. This process yields significant diversity, with tasks spanning 114 countries and 47 US jurisdictions. Our expert-curated rubrics are validated through a rigorous quality pipeline, including independent expert validation. Subsequent evaluation of 20 leading models reveals substantial room for improvement, with top scores of only 0.39 (Finance) and 0.37 (Legal) on our Hard subsets. We further catalog associated economic impacts of the prompts and analyze performance using human-annotated rubric categories. Our analysis shows that models with similar overall scores can diverge significantly on specific capabilities. Common failure modes include inaccurate judgments, a lack of process transparency and incomplete reasoning, highlighting critical gaps in their reliability for professional adoption.
☆ Differences in the Moral Foundations of Large Language Models
Large language models are increasingly being used in critical domains of politics, business, and education, but the nature of their normative ethical judgment remains opaque. Alignment research has, to date, not sufficiently utilized perspectives and insights from the field of moral psychology to inform training and evaluation of frontier models. I perform a synthetic experiment on a wide range of models from most major model providers using Jonathan Haidt's influential moral foundations theory (MFT) to elicit diverse value judgments from LLMs. Using multiple descriptive statistical approaches, I document the bias and variance of large language model responses relative to a human baseline in the original survey. My results suggest that models rely on different moral foundations from one another and from a nationally representative human baseline, and these differences increase as model capabilities increase. This work seeks to spur further analysis of LLMs using MFT, including finetuning of open-source models, and greater deliberation by policymakers on the importance of moral foundations for LLM alignment.
☆ A Comparative Evaluation of Prominent Methods in Autonomous Vehicle Certification
The "Vision Zero" policy, introduced by the Swedish Parliament in 1997, aims to eliminate fatalities and serious injuries resulting from traffic accidents. To achieve this goal, the use of self-driving vehicles in traffic is envisioned and a roadmap for the certification of self-driving vehicles is aimed to be determined. However, it is still unclear how the basic safety requirements that autonomous vehicles must meet will be verified and certified, and which methods will be used. This paper focuses on the comparative evaluation of the prominent methods planned to be used in the certification process of autonomous vehicles. It examines the prominent methods used in the certification process, develops a pipeline for the certification process of autonomous vehicles, and determines the stages, actors, and areas where the addressed methods can be applied.
☆ AI as a component in the action research tradition of learning-by-doing
We consider learning mathematics through action research, hacking, discovery, inquiry, learning-by-doing as opposed to the instruct and perform, industrial model of the 19th century. A learning model based on self-awareness, types, functions, structured drawing and formal diagrams addresses the weaknesses of drill and practice and the pitfalls of statistical prediction with Large Language Models. In other words, we build mathematics/informatics education on the activity of a professional mathematician in mathematical modelling and designing programs. This tradition emphasises the role of dialogue and doing mathematics. In the Language/Action approach the teacher designs mathematising situations that scaffold previously encountered, or not-known-how-to-solve problems for the learner while teachers and teacher/interlocutors supervise the process. A critical feature is the written-oral dialogue between the learner and the teacher. As a rule, this is 1 to 1 communication. The role of the teacher/interlocutor, a more knowledgeable other, is mostly performed by a more senior student, 1 per 5 to 7 pupils. After Doug Engelbart we propose the metaphor of human intellect augmented by digital technologies such as interactive development environments or AI. Every human has their bio and digital parts. The bio part of the learner reacts to their work through dialogue in the mind. The digital part poses questions, interprets code and proposes not necessarily sound ideas.
comment: 14 pages, 2 figures
☆ Enhancing Efficiency of Pension Schemes through Effective Risk Governance: A Kenyan Perspective
The efficiency of pension schemes in Kenya invites elevated interest owing to the increasing pension contribution amounts and the expectation that benefits paid out of these schemes would protect members from old age poverty. The study investigates the intervening effect of risk management on the relationship between corporate governance and the efficiency of pension schemes in Kenya. The study employs panel data consisting of 896 observations from 128 schemes in a sample period from 2015 to 2021. The study finds that risk management significantly mediates the relationship between employee representatives on the board of trustees, as a component of corporate governance, and the efficiency of pension schemes. Consequently, the mediation effect of risk management indicates that when employee representatives are involved in governance, the presence of strong risk management practices ensures that their contributions lead to improved efficiency. Risk management, therefore, serves as a critical safeguard that enables governance structures to function more effectively and contribute to the overall performance of the scheme.
comment: 21 pages
☆ Beyond the Hype: Critical Analysis of Student Motivations and Ethical Boundaries in Educational AI Use in Higher Education
The rapid integration of generative artificial intelligence (AI) in higher education since 2023 has outpaced institutional preparedness, creating a persistent gap between student practices and established ethical standards. This paper draws on mixed-method surveys and a focused literature review to examine student motivations, ethical dilemmas, gendered responses, and institutional readiness for AI adoption. We find that 92% of students use AI tools primarily to save time and improve work quality, yet only 36% receive formal guidance, producing a de facto "shadow pedagogy" of unguided workflows. Notably, 18% of students reported integrating AI-constructed material into assignments, which suggests confusion about integrity expectations and compromises the integrity of the assessment. Female students expressed greater concern about abuse and distortion of information than male students, revealing a gendered difference in awareness of risk and AI literacies. Correspondingly, 72% of educators use AI, but only 14% feel at ease doing so, reflecting limited training and uneven policy responses. We argue that institutions must adopt comprehensive AI literacy programs that integrate technical skills and ethical reasoning, alongside clear AI-use policies and assessment practices that promote transparency. The paper proposes an Ethical AI Integration Model centered on literacy, gender-inclusive support, and assessment redesign to guide responsible adoption, protect academic integrity, and foster equitable educational outcomes in an AI-driven landscape.
comment: 14 pages, 3 figures
☆ Building the Web for Agents: A Declarative Framework for Agent-Web Interaction
The increasing deployment of autonomous AI agents on the web is hampered by a fundamental misalignment: agents must infer affordances from human-oriented user interfaces, leading to brittle, inefficient, and insecure interactions. To address this, we introduce VOIX, a web-native framework that enables websites to expose reliable, auditable, and privacy-preserving capabilities for AI agents through simple, declarative HTML elements. VOIX introduces and tags, allowing developers to explicitly define available actions and relevant state, thereby creating a clear, machine-readable contract for agent behavior. This approach shifts control to the website developer while preserving user privacy by disconnecting the conversational interactions from the website. We evaluated the framework's practicality, learnability, and expressiveness in a three-day hackathon study with 16 developers. The results demonstrate that participants, regardless of prior experience, were able to rapidly build diverse and functional agent-enabled web applications. Ultimately, this work provides a foundational mechanism for realizing the Agentic Web, enabling a future of seamless and secure human-AI collaboration on the web.
comment: for associated documentation, see https://svenschultze.github.io/VOIX/
☆ Towards Usable Privacy Management for IoT TAPs: Deriving Privacy Clusters and Preference Profiles
IoT Trigger-Action Platforms (TAPs) typically offer coarse-grained permission controls. Even when fine-grained controls are available, users are likely overwhelmed by the complexity of setting privacy preferences. This paper contributes to usable privacy management for TAPs by deriving privacy clusters and profiles for different types of users that can be semi-automatically assigned or suggested to them. We developed and validated a questionnaire, based on users' privacy concerns regarding confidentiality and control and their requirements towards transparency in TAPs. In an online study (N=301), where participants were informed about potential privacy risks, we clustered users by their privacy concerns and requirements into Basic, Medium and High Privacy clusters. These clusters were then characterized by the users' data sharing preferences, based on a factorial vignette approach, considering the data categories, the data recipient types, and the purpose of data sharing. Our findings show three distinct privacy profiles, providing a foundation for more usable privacy controls in TAPs.
☆ Data-driven strategic sensor placement for detecting disinfection by-products in water distribution networks
Disinfection byproducts are contaminants that can cause long-term effects on human health, occurring in chlorinated drinking water when the disinfectant interacts with natural organic matter. Their formation is affected by many environmental parameters, making it difficult to monitor and detect disinfection byproducts before they reach households. Due to the large variety of disinfection byproduct compounds that can be formed in water distribution networks, plus the constrained number of sensors that can be deployed throughout a system to monitor these contaminants, it is of outmost importance to place sensory equipment efficiently and optimally. In this paper, we present DBPFinder, a simulation software that assists in the strategic sensor placement for detecting disinfection byproducts, tested at a real-world water distribution network in Coimbra, Portugal. This simulator addresses multiple performance objectives at once in order to provide optimal solution placement recommendations to water utility operators based on their needs. A number of different experiments performed indicate its correctness, relevance, efficiency and scalability.
☆ Specification, Application, and Operationalization of a Metamodel of Fairness
This paper presents the AR fairness metamodel, aimed at formally representing, analyzing, and comparing fairness scenarios. The metamodel provides an abstract representation of fairness, enabling the formal definition of fairness notions. We instantiate the metamodel through several examples, with a particular focus on comparing the notions of equity and equality. We use the Tiles framework, which offers modular components that can be interconnected to represent various definitions of fairness. Its primary objective is to support the operationalization of AR-based fairness definitions in a range of scenarios, providing a robust method for defining, comparing, and evaluating fairness. Tiles has an open-source implementation for fairness modeling and evaluation.
☆ PRSM: A Measure to Evaluate CLIP's Robustness Against Paraphrases
Contrastive Language-Image Pre-training (CLIP) is a widely used multimodal model that aligns text and image representations through large-scale training. While it performs strongly on zero-shot and few-shot tasks, its robustness to linguistic variation, particularly paraphrasing, remains underexplored. Paraphrase robustness is essential for reliable deployment, especially in socially sensitive contexts where inconsistent representations can amplify demographic biases. In this paper, we introduce the Paraphrase Ranking Stability Metric (PRSM), a novel measure for quantifying CLIP's sensitivity to paraphrased queries. Using the Social Counterfactuals dataset, a benchmark designed to reveal social and demographic biases, we empirically assess CLIP's stability under paraphrastic variation, examine the interaction between paraphrase robustness and gender, and discuss implications for fairness and equitable deployment of multimodal systems. Our analysis reveals that robustness varies across paraphrasing strategies, with subtle yet consistent differences observed between male- and female-associated queries.
comment: 8 pages, accpeted as short paper at MMM 2026
☆ Scaling Equitable Reflection Assessment in Education via Large Language Models and Role-Based Feedback Agents AAAI-26
Formative feedback is widely recognized as one of the most effective drivers of student learning, yet it remains difficult to implement equitably at scale. In large or low-resource courses, instructors often lack the time, staffing, and bandwidth required to review and respond to every student reflection, creating gaps in support precisely where learners would benefit most. This paper presents a theory-grounded system that uses five coordinated role-based LLM agents (Evaluator, Equity Monitor, Metacognitive Coach, Aggregator, and Reflexion Reviewer) to score learner reflections with a shared rubric and to generate short, bias-aware, learner-facing comments. The agents first produce structured rubric scores, then check for potentially biased or exclusionary language, add metacognitive prompts that invite students to think about their own thinking, and finally compose a concise feedback message of at most 120 words. The system includes simple fairness checks that compare scoring error across lower and higher scoring learners, enabling instructors to monitor and bound disparities in accuracy. We evaluate the pipeline in a 12-session AI literacy program with adult learners. In this setting, the system produces rubric scores that approach expert-level agreement, and trained graders rate the AI-generated comments as helpful, empathetic, and well aligned with instructional goals. Taken together, these results show that multi-agent LLM systems can deliver equitable, high-quality formative feedback at a scale and speed that would be impossible for human graders alone. More broadly, the work points toward a future where feedback-rich learning becomes feasible for any course size or context, advancing long-standing goals of equity, access, and instructional capacity in education.
comment: Accepted to AAAI-26 AISI Track
☆ Analysing Personal Attacks in U.S. Presidential Debates
Personal attacks have become a notable feature of U.S. presidential debates and play an important role in shaping public perception during elections. Detecting such attacks can improve transparency in political discourse and provide insights for journalists, analysts and the public. Advances in deep learning and transformer-based models, particularly BERT and large language models (LLMs) have created new opportunities for automated detection of harmful language. Motivated by these developments, we present a framework for analysing personal attacks in U.S. presidential debates. Our work involves manual annotation of debate transcripts across the 2016, 2020 and 2024 election cycles, followed by statistical and language-model based analysis. We investigate the potential of fine-tuned transformer models alongside general-purpose LLMs to detect personal attacks in formal political speech. This study demonstrates how task-specific adaptation of modern language models can contribute to a deeper understanding of political communication.
comment: 13 pages
☆ SP-Guard: Selective Prompt-adaptive Guidance for Safe Text-to-Image Generation ECAI 2025
While diffusion-based T2I models have achieved remarkable image generation quality, they also enable easy creation of harmful content, raising social concerns and highlighting the need for safer generation. Existing inference-time guiding methods lack both adaptivity--adjusting guidance strength based on the prompt--and selectivity--targeting only unsafe regions of the image. Our method, SP-Guard, addresses these limitations by estimating prompt harmfulness and applying a selective guidance mask to guide only unsafe areas. Experiments show that SP-Guard generates safer images than existing methods while minimizing unintended content alteration. Beyond improving safety, our findings highlight the importance of transparency and controllability in image generation.
comment: Accepted for presentation at TRUST-AI Workshop, ECAI 2025. Proceedings to appear in CEUR-WS
☆ Governance, Risk, and Regulation: A Framework for Improving Efficiency in Kenyan Pension Funds
As life expectancy in Kenya increases, so does the need for efficient pension schemes that can secure a dignified retirement and protect members from old age poverty. Limited research, however, has explored the efficiency of these schemes under existing governance structures. This study addresses that gap by examining the combined effects of corporate governance, risk management, and industry regulation on pension scheme efficiency in Kenya. Using a quantitative design, we conducted a panel regression analysis on a seven-year secondary dataset of 128 Kenyan pension schemes, totaling 896 observations. Our results reveal significant insights That the presence of employee representatives on the board and effective risk management have a significant positive effect on efficiency. Conversely, independent board members exhibit a significant negative effect. Other factors, including top management representation, female board members, and industry regulation, showed no significant effect on efficiency in the joint model. These findings suggest that the impact of governance and risk management on efficiency is nuanced, with specific factors like employee representation playing a more prominent role. We propose that the electoral process for employee board members may introduce a Self Cleaning Mechanism that progressively enhances scheme efficiency. This mechanism offers a novel theoretical extension of Agency Theory, explaining the convergence of interests between elected trustees and scheme members.
comment: 28 pages
☆ Demystify, Use, Reflect: Preparing students to be informed LLM-users
We transitioned our post-CS1 course that introduces various subfields of computer science so that it integrates Large Language Models (LLMs) in a structured, critical, and practical manner. It aims to help students develop the skills needed to engage meaningfully and responsibly with AI. The course now includes explicit instruction on how LLMs work, exposure to current tools, ethical issues, and activities that encourage student reflection on personal use of LLMs as well as the larger evolving landscape of AI-assisted programming. In class, we demonstrate the use and verification of LLM outputs, guide students in the use of LLMs as an ingredient in a larger problem-solving loop, and require students to disclose and acknowledge the nature and extent of LLM assistance. Throughout the course, we discuss risks and benefits of LLMs across CS subfields. In our first iteration of the course, we collected and analyzed data from students pre and post surveys. Student understanding of how LLMs work became more technical, and their verification and use of LLMs shifted to be more discerning and collaborative. These strategies can be used in other courses to prepare students for the AI-integrated future.
comment: 2 pages 1 table Submitted to SIGCSE 2026
☆ Ethical conundrums: Hacked data in the study of far-right violent extremism
Ethical conduct in digital research is full of grey areas. Disciplinary, institutional and individual norms and conventions developed to support research are challenged, often leaving scholars with a sense of unease or lack of clarity. The growing availability of hacked data is one area. Discussions and debates around the use of these datasets in research are extremely limited. Reviews of the history, culture, or morality of the act of hacking are topics that have attracted some scholarly attention. However, how to undertake research with this data is less examined and provides an opportunity for the generation of reflexive ethical practice. This article presents a case-study outlining the ethical debates that arose when considering the use of hacked data to examine online far-right violent extremism. It argues that under certain circumstances, researchers can do ethical research with hacked data. However, to do so we must proactively and continually engage deeply with ethical quandaries and dilemmas.
comment: To be published in New Media & Society
☆ Cost Transparency of Enterprise AI Adoption
Recent advances in large language models (LLMs) have dramatically improved performance on a wide range of tasks, driving rapid enterprise adoption. Yet, the cost of adopting these AI services is understudied. Unlike traditional software licensing in which costs are predictable before usage, commercial LLM services charge per token of input text in addition to generated output tokens. Crucially, while firms can control the input, they have limited control over output tokens, which are effectively set by generation dynamics outside of business control. This research shows that subtle shifts in linguistic style can systematically alter the number of output tokens without impacting response quality. Using an experiment with OpenAI's API, this study reveals that non-polite prompts significantly increase output tokens leading to higher enterprise costs and additional revenue for OpenAI. Politeness is merely one instance of a broader phenomenon in which linguistic structure can drive unpredictable cost variation. For enterprises integrating LLM into applications, this unpredictability complicates budgeting and undermines transparency in business-to-business contexts. By demonstrating how end-user behavior links to enterprise costs through output token counts, this work highlights the opacity of current pricing models and calls for new approaches to ensure predictable and transparent adoption of LLM services.
☆ Generative Artificial Intelligence Adoption Among Bangladeshi Journalists: Exploring Journalists' Awareness, Acceptance, Usage, and Organizational Stance on Generative AI
Newsrooms and journalists across the world are adopting Generative AI (GenAI). Drawing on in-depth interviews with 23 journalists, this study identifies Bangladeshi journalists' awareness, acceptance, usage patterns, and their media organizations' stance toward GenAI. This study finds Bangladeshi journalists' high reliance on GenAI like their Western colleagues despite limited institutional support and the near absence of AI policy. Despite this contrast, concerns over GenAI's implications in journalism between the West and non-West were mostly identical. Moreover, this study contributes to the Unified Theory of Acceptance and Use of Technology (UTAUT) by proposing two changes regarding GenAI adoption among journalists in non-Western settings. First, this study identifies the non-contribution of facilitating conditions in shaping behavioral intent in GenAI adoption in non-Western contexts. Second, social influence works in a horizontal order through informal peer pressure or professional motivation in the absence of formal institutional hierarchical pressure. Voluntariness in the context of Bangladeshi journalists is underpinned by their professional compulsion. Therefore, this study contributes to understanding how contextual factors shape technology adoption trajectories in non-Western journalism.
♻ ☆ Mutual Wanting in Human--AI Interaction: Empirical Evidence from Large-Scale Analysis of GPT Model Transitions
The rapid evolution of large language models (LLMs) creates complex bidirectional expectations between users and AI systems that are poorly understood. We introduce the concept of "mutual wanting" to analyze these expectations during major model transitions. Through analysis of user comments from major AI forums and controlled experiments across multiple OpenAI models, we provide the first large-scale empirical validation of bidirectional desire dynamics in human-AI interaction. Our findings reveal that nearly half of users employ anthropomorphic language, trust significantly exceeds betrayal language, and users cluster into distinct "mutual wanting" types. We identify measurable expectation violation patterns and quantify the expectation-reality gap following major model releases. Using advanced NLP techniques including dual-algorithm topic modeling and multi-dimensional feature extraction, we develop the Mutual Wanting Alignment Framework (M-WAF) with practical applications for proactive user experience management and AI system design. These findings establish mutual wanting as a measurable phenomenon with clear implications for building more trustworthy and relationally-aware AI systems.
♻ ☆ Towards Efficient Certification of Maritime Remote Operation Centers
Additional automation being build into ships implies a shift of crew from ship to shore. However, automated ships still have to be monitored and, in some situations, controlled remotely. These tasks are carried out by human operators located in shore-based remote operation centers. In this work, we present a concept for a hazard database that supports the safeguarding and certification of such remote operation centers. The concept is based on a categorization of hazard sources which we derive from a generic functional architecture. A subsequent preliminary suitability analysis unveils which methods for hazard analysis and risk assessment can adequately fill this hazard database.
♻ ☆ Fairness for the People, by the People: Minority Collective Action
Machine learning models often preserve biases present in training data, leading to unfair treatment of certain minority groups. Despite an array of existing firm-side bias mitigation techniques, they typically incur utility costs and require organizational buy-in. Recognizing that many models rely on user-contributed data, end-users can induce fairness through the framework of Algorithmic Collective Action, where a coordinated minority group strategically relabels its own data to enhance fairness, without altering the firm's training process. We propose three practical, model-agnostic methods to approximate ideal relabeling and validate them on real-world datasets. Our findings show that a subgroup of the minority can substantially reduce unfairness with a small impact on the overall prediction error.
♻ ☆ Self-supervised Learning of Echocardiographic Video Representations via Online Cluster Distillation
Self-supervised learning (SSL) has achieved major advances in natural images and video understanding, but challenges remain in domains like echocardiography (heart ultrasound) due to subtle anatomical structures, complex temporal dynamics, and the current lack of domain-specific pre-trained models. Existing SSL approaches such as contrastive, masked modeling, and clustering-based methods struggle with high intersample similarity, sensitivity to low PSNR inputs common in ultrasound, or aggressive augmentations that distort clinically relevant features. We present DISCOVR (Distilled Image Supervision for Cross Modal Video Representation), a self-supervised dual branch framework for cardiac ultrasound video representation learning. DISCOVR combines a clustering-based video encoder that models temporal dynamics with an online image encoder that extracts fine-grained spatial semantics. These branches are connected through a semantic cluster distillation loss that transfers anatomical knowledge from the evolving image encoder to the video encoder, enabling temporally coherent representations enriched with fine-grained semantic understanding.Evaluated on six echocardiography datasets spanning fetal, pediatric, and adult populations, DISCOVR outperforms both specialized video anomaly detection methods and state-of-the-art video-SSL baselines in zero-shot and linear probing setups,achieving superior segmentation transfer and strong downstream performance on clinically relevant tasks such as LVEF prediction. Code available at: https://github.com/mdivyanshu97/DISCOVR
♻ ☆ Consumer Beware! Exploring Data Brokers' CCPA Compliance
Data brokers collect and sell the personal information of millions of individuals, often without their knowledge or consent. The California Consumer Privacy Act (CCPA) grants consumers the legal right to request access to, or deletion of, their data. To facilitate these requests, California maintains an official registry of data brokers. However, the extent to which these entities comply with the law is unclear. This paper presents the first large-scale, systematic study of CCPA compliance of all 543 officially registered data brokers. Data access requests were manually submitted to each broker, followed by in-depth analyses of their responses (or lack thereof). Above 40% failed to respond at all, in an apparent violation of the CCPA. Data brokers that responded requested personal information as part of their identity verification process, including details they had not previously collected. Paradoxically, this means that exercising one's privacy rights under CCPA introduces new privacy risks. Our findings reveal rampant non-compliance and lack of standardization of the data access request process. These issues highlight an urgent need for stronger enforcement, clearer guidelines, and standardized, periodic compliance checks to enhance consumers' privacy protections and improve data broker accountability.
comment: To appear at IEEE S&P 2026
Computers and Society
☆ Can AI Models be Jailbroken to Phish Elderly Victims? An End-to-End Evaluation
We present an end-to-end demonstration of how attackers can exploit AI safety failures to harm vulnerable populations: from jailbreaking LLMs to generate phishing content, to deploying those messages against real targets, to successfully compromising elderly victims. We systematically evaluated safety guardrails across six frontier LLMs spanning four attack categories, revealing critical failures where several models exhibited near-complete susceptibility to certain attack vectors. In a human validation study with 108 senior volunteers, AI-generated phishing emails successfully compromised 11\% of participants. Our work uniquely demonstrates the complete attack pipeline targeting elderly populations, highlighting that current AI safety measures fail to protect those most vulnerable to fraud. Beyond generating phishing content, LLMs enable attackers to overcome language barriers and conduct multi-turn trust-building conversations at scale, fundamentally transforming fraud economics. While some providers report voluntary counter-abuse efforts, we argue these remain insufficient.
☆ Reinforcing Stereotypes of Anger: Emotion AI on African American Vernacular English
Automated emotion detection is widely used in applications ranging from well-being monitoring to high-stakes domains like mental health and hiring. However, models often rely on annotations that reflect dominant cultural norms, limiting model ability to recognize emotional expression in dialects often excluded from training data distributions, such as African American Vernacular English (AAVE). This study examines emotion recognition model performance on AAVE compared to General American English (GAE). We analyze 2.7 million tweets geo-tagged within Los Angeles. Texts are scored for strength of AAVE using computational approximations of dialect features. Annotations of emotion presence and intensity are collected on a dataset of 875 tweets with both high and low AAVE densities. To assess model accuracy on a task as subjective as emotion perception, we calculate community-informed "silver" labels where AAVE-dense tweets are labeled by African American, AAVE-fluent (ingroup) annotators. On our labeled sample, GPT and BERT-based models exhibit false positive prediction rates of anger on AAVE more than double than on GAE. SpanEmo, a popular text-based emotion model, increases false positive rates of anger from 25 percent on GAE to 60 percent on AAVE. Additionally, a series of linear regressions reveals that models and non-ingroup annotations are significantly more correlated with profanity-based AAVE features than ingroup annotations. Linking Census tract demographics, we observe that neighborhoods with higher proportions of African American residents are associated with higher predictions of anger (Pearson's correlation r = 0.27) and lower joy (r = -0.10). These results find an emergent safety issue of emotion AI reinforcing racial stereotypes through biased emotion classification. We emphasize the need for culturally and dialect-informed affective computing systems.
☆ Bridging the Skills Gap: A Course Model for Modern Generative AI Education AAAI
Research on how the popularization of generative Artificial Intelligence (AI) tools impacts learning environments has led to hesitancy among educators to teach these tools in classrooms, creating two observed disconnects. Generative AI competency is increasingly valued in industry but not in higher education, and students are experimenting with generative AI without formal guidance. The authors argue students across fields must be taught to responsibly and expertly harness the potential of AI tools to ensure job market readiness and positive outcomes. Computer Science trajectories are particularly impacted, and while consistently top ranked U.S. Computer Science departments teach the mechanisms and frameworks underlying AI, few appear to offer courses on applications for existing generative AI tools. A course was developed at a private research university to teach undergraduate and graduate Computer Science students applications for generative AI tools in software development. Two mixed method surveys indicated students overwhelmingly found the course valuable and effective. Co-authored by the instructor and one of the graduate students, this paper explores the context, implementation, and impact of the course through data analysis and reflections from both perspectives. It additionally offers recommendations for replication in and beyond Computer Science departments. This is the extended version of this paper to include technical appendices.
comment: 10 pages, 2 figures, in the 40th Annual AAAI Conference on Artificial Intelligence (AAAI-26) EAAI Symposium
☆ Brazil Data Commons: A Platform for Unifying and Integrating Brazil's Public Data
The fragmentation of public data in Brazil, coupled with inconsistent standards and limited interoperability, hinders effective research, evidence-based policymaking and access to data-driven insights. To address these issues, we introduce Brazil Data Commons, a platform that unifies various Brazilian datasets under a common semantic framework, enabling the seamless discovery, integration and visualization of information from different domains. By adopting globally recognized ontologies and interoperable data standards, Brazil Data Commons aligns with the principles of the broader Data Commons ecosystem and places Brazilian data in a global context. Through user-friendly interfaces, straightforward query mechanisms and flexible data access options, the platform democratizes data use and enables researchers, policy makers, and the public to gain meaningful insights and make informed decisions. This paper illustrates how Brazil Data Commons transforms scattered datasets into an integrated and easily navigable resource that allows a deeper understanding of Brazil's complex social, economic and environmental landscape.
☆ An External Fairness Evaluation of LinkedIn Talent Search
We conduct an independent, third-party audit for bias of LinkedIn's Talent Search ranking system, focusing on potential ranking bias across two attributes: gender and race. To do so, we first construct a dataset of rankings produced by the system, collecting extensive Talent Search results across a diverse set of occupational queries. We then develop a robust labeling pipeline that infers the two demographic attributes of interest for the returned users. To evaluate potential biases in the collected dataset of real-world rankings, we utilize two exposure disparity metrics: deviation from group proportions and MinSkew. Our analysis reveals an under-representation of minority groups in early ranks across many queries. We further examine potential causes of this disparity, and discuss why they may be difficult or, in some cases, impossible to fully eliminate among the early ranks of queries. Beyond static metrics, we also investigate the concept of subgroup fairness over time, highlighting temporal disparities in exposure and retention, which are often more difficult to audit for in practice. In employer recruiting platforms such as LinkedIn Talent Search, the persistence of a particular candidate over multiple days in the ranking can directly impact the probability that the given candidate is selected for opportunities. Our analysis reveals demographic disparities in this temporal stability, with some groups experiencing greater volatility in their ranked positions than others. We contextualize all our findings alongside LinkedIn's published self-audits of its Talent Search system and reflect on the methodological constraints of a black-box external evaluation, including limited observability and noisy demographic inference.
☆ On compromising freedom of choice and subjective
This paper proposes a new framework for evaluating capability sets by incorporating individual preferences over the diversity of accessible options. Building on the Capability Approach, we introduce a compromise method that balances between the notions of negative and positive freedom, effectively capturing the intrinsic and instrumental values of diverse choices within capability sets.
☆ Preview, Accept or Discard? A Predictive Low-Motion Interaction Paradigm
Repetitive strain injury (RSI) affects roughly one in five computer users and remains largely unresolved despite decades of ergonomic mouse redesign. All such devices share a fundamental limitation: they still require fine-motor motion to operate. This work investigates whether predictive, AI-assisted input can reduce that motion by replacing physical pointing with ranked on-screen suggestions. To preserve user agency, we introduce Preview Accept Discard (PAD), a zero-click interaction paradigm that lets users preview predicted GUI targets, cycle through a small set of ranked alternatives, and accept or discard them via key-release timing. We evaluate PAD in two settings: a browser-based email client and a ISO 9241-9 keyboard-prediction task under varying top-3 accuracies. Across both studies, PAD substantially reduces hand motion relative to trackpad use while maintaining comparable task times with the trackpad only when accuracies are similar to those of the best spell-checkers.
☆ Understanding Mode Choice Behavior of People with Disabilities: A Case Study in Utah
Despite the growing recognition of the importance of inclusive transportation policies nationwide, there is still a gap, as the existing transportation models often fail to capture the unique travel behavior of people with disabilities. This research study focuses on understanding the mode choice behavior of individuals with travel-limited disabilities and comparing the group with no such disability. The study identified key factors influencing mode preferences for both groups by utilizing Utah's household travel survey, simulation algorithm and Multinomial Logit model. Explanatory variables include household and socio-demographic attributes, personal, trip characteristics, and built environment variables. The analysis revealed intriguing trends, including a shift towards carpooling among disabled individuals. People with disabilities placed less emphasis on travel time saving. A lower value of travel time for people with disabilities is potentially due to factors like part-time work, reduced transit fare, and no or shared cost for carpooling. Despite a 50% fare reduction for the disabled group, transit accessibility remains a significant barrier in their choice of Transit mode. In downtown areas, people with no disability were found to choose transit compared to driving, whereas disabled people preferred carpooling. Travelers with no driving licenses and disabled people who use transit daily showed complex travel patterns among multiple modes. The study emphasizes the need for accessible and inclusive transportation options, such as improved public transit services, shorter first and last miles in transit, and better connectivity for non-motorized modes, to cater to the unique needs of disabled travelers. The findings of this study have significant policy implications such as an inclusive mode choice modeling framework for creating a more sustainable and inclusive transportation system.
comment: Presented at Transportation Research Board Annual Meeting 2024
☆ Navigating the Ethics of Internet Measurement: Researchers' Perspectives from a Case Study in the EU
Internet measurement research is essential for understanding, improving, and securing Internet infrastructure. However, its methods often involve large-scale data collection and user observation, raising complex ethical questions. While recent research has identified ethical challenges in Internet measurement research and laid out best practices, little is known about how researchers actually make ethical decisions in their research practice. To understand how these practices take shape day-to-day from the perspective of Internet measurement researchers, we interviewed 16 researchers from an Internet measurement research group in the EU. Through thematic analysis, we find that researchers deal with five main ethical challenges: privacy and consent issues, the possibility of unintended harm, balancing transparency with security and accountability, uncertain ethical boundaries, and hurdles in the ethics review process. Researchers address these by lab testing, rate limiting, setting up clear communication channels, and relying heavily on mentors and colleagues for guidance. Researchers express that ethical requirements vary across institutions, jurisdictions and conferences, and ethics review boards often lack the technical knowledge to evaluate Internet measurement research. We also highlight the invisible labor of Internet measurement researchers and describe their ethics practices as craft knowledge, both of which are crucial in upholding responsible research practices in the Internet measurement community.
☆ Simulating Misinformation Propagation in Social Networks using Large Language Models CIKM 2025
Misinformation on social media thrives on surprise, emotion, and identity-driven reasoning, often amplified through human cognitive biases. To investigate these mechanisms, we model large language model (LLM) personas as synthetic agents that mimic user-level biases, ideological alignments, and trust heuristics. Within this setup, we introduce an auditor--node framework to simulate and analyze how misinformation evolves as it circulates through networks of such agents. News articles are propagated across networks of persona-conditioned LLM nodes, each rewriting received content. A question--answering-based auditor then measures factual fidelity at every step, offering interpretable, claim-level tracking of misinformation drift. We formalize a misinformation index and a misinformation propagation rate to quantify factual degradation across homogeneous and heterogeneous branches of up to 30 sequential rewrites. Experiments with 21 personas across 10 domains reveal that identity- and ideology-based personas act as misinformation accelerators, especially in politics, marketing, and technology. By contrast, expert-driven personas preserve factual stability. Controlled-random branch simulations further show that once early distortions emerge, heterogeneous persona interactions rapidly escalate misinformation to propaganda-level distortion. Our taxonomy of misinformation severity -- spanning factual errors, lies, and propaganda -- connects observed drift to established theories in misinformation studies. These findings demonstrate the dual role of LLMs as both proxies for human-like biases and as auditors capable of tracing information fidelity. The proposed framework provides an interpretable, empirically grounded approach for studying, simulating, and mitigating misinformation diffusion in digital ecosystems.
comment: Accepted to CIKM 2025 Workshop LASS
☆ Taxation and the relationship between payments and time spent
Tax work is costly for society: Administrative tax labour is typically to a high degree shuffled off the government and onto every taxpayer by law. The higher the burden of any tax system, the costlier for society, as taxpayers are unable to engage in proper wealth creation when being kept busy with administrative tax work. This research finds evidence for a relationship between hours spent to comply with taxes and amount of tax payment. These findings help better understand tax administrative costs and ultimately may help reduce them. PwC and World Bank's final "Paying taxes"-publication (2019) contains tax data for most of the world's jurisdictions, in particular annual hours spent to comply with tax obligations (X) and annual amount of tax payments (Y), both for the year 2019. X and Y were plotted in 6 tests. A positive slope, satisfying p and r values, high mutual information and finally a conclusive scatter plot picture were the 5 requirements that all needed to be met to confirm a positive relationship between X and Y. The first 2 tests did not make any adjustments to the data, the next 2 tests removed cities --thereby avoiding the double counting of jurisdictions-- and the final 2 tests removed cities and outliers. Each test pair uses for Y first total number of payments; and for each second test the number of other payments, which excludes income tax payments for profit and labour. All 5 requirements were met in every of the 6 tests, indicating a positive dependence. In addition, 4 confirmatory tests validate the methodology. The found relationship is noticeably stronger for the total number of tax payments. Findings indicate that taxpayers' time spent on tax, and thereby society's overall tax administrative costs, could be reduced by simplifying taxation processes, including tax collection and payments.
comment: CM presented this research project at the 2025 Benedict College International Multidisciplinary Conference on 2025-03-12
☆ Generalizable Slum Detection from Satellite Imagery with Mixture-of-Experts AAAI 2026
Satellite-based slum segmentation holds significant promise in generating global estimates of urban poverty. However, the morphological heterogeneity of informal settlements presents a major challenge, hindering the ability of models trained on specific regions to generalize effectively to unseen locations. To address this, we introduce a large-scale high-resolution dataset and propose GRAM (Generalized Region-Aware Mixture-of-Experts), a two-phase test-time adaptation framework that enables robust slum segmentation without requiring labeled data from target regions. We compile a million-scale satellite imagery dataset from 12 cities across four continents for source training. Using this dataset, the model employs a Mixture-of-Experts architecture to capture region-specific slum characteristics while learning universal features through a shared backbone. During adaptation, prediction consistency across experts filters out unreliable pseudo-labels, allowing the model to generalize effectively to previously unseen regions. GRAM outperforms state-of-the-art baselines in low-resource settings such as African cities, offering a scalable and label-efficient solution for global slum mapping and data-driven urban planning.
comment: Accepted to AAAI 2026
☆ On the Influence of Artificial Intelligence on Human Problem-Solving: Empirical Insights for the Third Wave in a Multinational Longitudinal Pilot Study
This article presents the results and their discussion for the third wave (with n=23 participants) within a multinational longitudinal study that investigates the evolving paradigm of human-AI collaboration in problem-solving contexts. Building upon previous waves, our findings reveal the consolidation of a hybrid problem-solving culture characterized by strategic integration of AI tools within structured cognitive workflows. The data demonstrate near-universal AI adoption (95.7% with prior knowledge, 100% ChatGPT usage) primarily deployed through human-led sequences such as "Think, Internet, ChatGPT, Further Processing" (39.1%). However, this collaboration reveals a critical verification deficit that escalates with problem complexity. We empirically identify and quantify two systematic epistemic gaps: a belief-performance gap (up to +80.8 percentage points discrepancy between perceived and actual correctness) and a proof-belief gap (up to -16.8 percentage points between confidence and verification capability). These findings, derived from behavioral data and problem vignettes across complexity levels, indicate that the fundamental constraint on reliable AI-assisted work is solution validation rather than generation. The study concludes that educational and technological interventions must prioritize verification scaffolds (including assumption documentation protocols, adequacy criteria checklists, and triangulation procedures) to fortify the human role as critical validator in this new cognitive ecosystem.
☆ Moral Change or Noise? On Problems of Aligning AI With Temporally Unstable Human Feedback AAAI 2026
Alignment methods in moral domains seek to elicit moral preferences of human stakeholders and incorporate them into AI. This presupposes moral preferences as static targets, but such preferences often evolve over time. Proper alignment of AI to dynamic human preferences should ideally account for "legitimate" changes to moral reasoning, while ignoring changes related to attention deficits, cognitive biases, or other arbitrary factors. However, common AI alignment approaches largely neglect temporal changes in preferences, posing serious challenges to proper alignment, especially in high-stakes applications of AI, e.g., in healthcare domains, where misalignment can jeopardize the trustworthiness of the system and yield serious individual and societal harms. This work investigates the extent to which people's moral preferences change over time, and the impact of such changes on AI alignment. Our study is grounded in the kidney allocation domain, where we elicit responses to pairwise comparisons of hypothetical kidney transplant patients from over 400 participants across 3-5 sessions. We find that, on average, participants change their response to the same scenario presented at different times around 6-20% of the time (exhibiting "response instability"). Additionally, we observe significant shifts in several participants' retrofitted decision-making models over time (capturing "model instability"). The predictive performance of simple AI models decreases as a function of both response and model instability. Moreover, predictive performance diminishes over time, highlighting the importance of accounting for temporal changes in preferences during training. These findings raise fundamental normative and technical challenges relevant to AI alignment, highlighting the need to better understand the object of alignment (what to align to) when user preferences change significantly over time.
comment: To appear in the AAAI 2026 Alignment Track
☆ Mailing address aliasing as a method to protect consumer privacy
During online commerce, a customer will typically share his or her mailing address with a merchant to allow product delivery. This creates privacy risks for the customer, where the information may be misused, sold, or leaked by multiple merchants. While physical and virtual PO boxes can reduce the privacy risk, these solutions have associated costs that prevent greater adoption. Here, we introduce the concept of mailing address aliasing, which may offer lower cost and greater control in some cases. With this approach, an alias address is created that maps to the customer's true address. The mapping is kept private from the merchant but shared with the carrier. We discuss the advantages and disadvantages of this approach compared with traditional methods for mailing address privacy. We find that mailing address aliasing is likely to reduce unsolicited mail to a greater extent than physical or virtual PO boxes. However, mailing address aliasing may not be compatible with all merchants' ordering systems.
☆ Owlgorithm: Supporting Self-Regulated Learning in Competitive Programming through LLM-Driven Reflection
We present Owlgorithm, an educational platform that supports Self-Regulated Learning (SRL) in competitive programming (CP) through AI-generated reflective questions. Leveraging GPT-4o, Owlgorithm produces context-aware, metacognitive prompts tailored to individual student submissions. Integrated into a second- and third-year CP course, the system-provided reflective prompts adapted to student outcomes: guiding deeper conceptual insight for correct solutions and structured debugging for partial or failed ones. Our exploratory assessment of student ratings and TA feedback revealed both promising benefits and notable limitations. While many found the generated questions useful for reflection and debugging, concerns were raised about feedback accuracy and classroom usability. These results suggest advantages of LLM-supported reflection for novice programmers, though refinements are needed to ensure reliability and pedagogical value for advanced learners. From our experience, several key insights emerged: GenAI can effectively support structured reflection, but careful prompt design, dynamic adaptation, and usability improvements are critical to realizing their potential in education. We offer specific recommendations for educators using similar tools and outline next steps to enhance Owlgorithm's educational impact. The underlying framework may also generalize to other reflective learning contexts.
comment: 7 pages, 1 figure, to be published in SIGCSE '26
☆ A framework for measuring and analyzing customer satisfaction at computer service companies using Lean Six Sigma
The computer service industry has expanded rapidly over the past two decades, driven by the proliferation of computing technologies, the entry of large firms, and the availability of online diagnostic and troubleshooting tools. In this increasingly competitive environment, many small and medium sized enterprises struggle to maintain customer satisfaction as rivals deliver higher quality services at lower cost. This study addresses the absence of robust measurement systems for assessing service quality, a key factor underlying customer attrition, by proposing an integrated framework for evaluating satisfaction and identifying sources of dissatisfaction in computer services. The framework combines core principles of Six Sigma with the SERVQUAL instrument within a structured DMAIC methodology (Define, Measure, Analyze, Improve, and Control). SERVQUAL provides the service quality dimensions and gap analysis techniques, while Six Sigma supplies the data driven approach to measurement and improvement. The literature suggests limited prior work integrating Lean Six Sigma with SERVQUAL, and this study contributes by operationalizing that integration in a real world setting. A case study of a computer services company was conducted to demonstrate feasibility and effectiveness. Satisfaction levels were quantified, and root causes of dissatisfaction were identified. The analysis revealed a low overall satisfaction level and five primary drivers of unmet customer requirements. Addressing these causes is expected to increase customer satisfaction, lower customer acquisition costs, and improve overall organizational performance.
comment: Master's thesis
☆ Answering Students' Questions on Course Forums Using Multiple Chain-of-Thought Reasoning and Finetuning RAG-Enabled LLM
The course forums are increasingly significant and play vital role in facilitating student discussions and answering their questions related to the course. It provides a platform for students to post their questions related to the content and admin issues related to the course. However, there are several challenges due to the increase in the number of students enrolled in the course. The primary challenge is that students' queries cannot be responded immediately and the instructors have to face lots of repetitive questions. To mitigate these issues, we propose a question answering system based on large language model with retrieval augmented generation (RAG) method. This work focuses on designing a question answering system with open source Large Language Model (LLM) and fine-tuning it on the relevant course dataset. To further improve the performance, we use a local knowledge base and applied RAG method to retrieve relevant documents relevant to students' queries, where the local knowledge base contains all the course content. To mitigate the hallucination of LLMs, We also integrate it with multi chain-of-thought reasoning to overcome the challenge of hallucination in LLMs. In this work, we experiment fine-tuned LLM with RAG method on the HotpotQA dataset. The experimental results demonstrate that the fine-tuned LLM with RAG method has a strong performance on question answering task.
comment: 8 pages
♻ ☆ Should you use LLMs to simulate opinions? Quality checks for early-stage deliberation AAAI
The emergent capabilities of large language models (LLMs) have prompted interest in using them as surrogates for human subjects in opinion surveys. However, prior evaluations of LLM-based opinion simulation have relied heavily on costly, domain-specific survey data, and mixed empirical results leave their reliability in question. To enable cost-effective, early-stage evaluation, we introduce a quality control assessment designed to test the viability of LLM-simulated opinions on Likert-scale tasks without requiring large-scale human data for validation. This assessment comprises two key tests: \emph{logical consistency} and \emph{alignment with stakeholder expectations}, offering a low-cost, domain-adaptable validation tool. We apply our quality control assessment to an opinion simulation task relevant to AI-assisted content moderation and fact-checking workflows -- a socially impactful use case -- and evaluate seven LLMs using a baseline prompt engineering method (backstory prompting), as well as fine-tuning and in-context learning variants. None of the models or methods pass the full assessment, revealing several failure modes. We conclude with a discussion of the risk management implications and release \texttt{TopicMisinfo}, a benchmark dataset with paired human and LLM annotations simulated by various models and approaches, to support future research.
comment: Accepted to AAAI AI for Social Impact (AISI), 2026. This version includes Appendices
♻ ☆ Towards Formalizing Spuriousness of Biased Datasets Using Partial Information Decomposition
Spuriousness arises when there is an association between two or more variables in a dataset that are not causally related. In this work, we propose an explainability framework to preemptively disentangle the nature of such spurious associations in a dataset before model training. We leverage a body of work in information theory called Partial Information Decomposition (PID) to decompose the total information about the target into four non-negative quantities, namely unique information (in core and spurious features, respectively), redundant information, and synergistic information. Our framework helps anticipate when the core or spurious feature is indispensable, when either suffices, and when both are jointly needed for an optimal classifier trained on the dataset. Next, we leverage this decomposition to propose a novel measure of the spuriousness of a dataset. We arrive at this measure systematically by examining several candidate measures, and demonstrating what they capture and miss through intuitive canonical examples and counterexamples. Our framework Spurious Disentangler consists of segmentation, dimensionality reduction, and estimation modules, with capabilities to specifically handle high-dimensional image data efficiently. Finally, we also perform empirical evaluation to demonstrate the trends of unique, redundant, and synergistic information, as well as our proposed spuriousness measure across $6$ benchmark datasets under various experimental settings. We observe an agreement between our preemptive measure of dataset spuriousness and post-training model generalization metrics such as worst-group accuracy, further supporting our proposition. The code is available at https://github.com/Barproda/spuriousness-disentangler.
comment: Accepted at Transactions on Machine Learning Research (TMLR)
♻ ☆ Designing AI-Agents with Personalities: A Psychometric Approach
We introduce a methodology for assigning quantifiable and psychometrically validated personalities to AI-Agents using the Big Five framework. Across three studies, we evaluate its feasibility and limitations. In Study 1, we show that large language models (LLMs) capture semantic similarities among Big Five measures, providing a basis for personality assignment. In Study 2, we create AI-Agents using prompts designed based on the Big Five Inventory-2 (BFI-2) in different format, and find that AI-Agents powered by new models align more closely with human responses on the Mini-Markers test, although the finer pattern of results (e.g., factor loading patterns) were sometimes inconsistent. In Study 3, we validate our AI-Agents on risk-taking and moral dilemma vignettes, finding that models prompted with the BFI-2-Expanded format most closely reproduce human personality-decision associations, while safety-aligned models generally inflate 'moral' ratings. Overall, our results show that AI-Agents align with humans in correlations between input Big Five traits and output responses and may serve as useful tools for preliminary research. Nevertheless, discrepancies in finer response patterns indicate that AI-Agents cannot (yet) fully substitute for human participants in precision or high-stakes projects.
♻ ☆ Bridging LMS and generative AI: dynamic course content integration (DCCI) for enhancing student satisfaction and engagement via the ask ME assistant
Integration of Large Language Models (LLMs) with Learning Management Systems (LMSs) can enhance task automation and accessibility in education. However, hallucination where LLMs generate inaccurate or misleading information remains a challenge. This study introduces the Dynamic Course Content Integration (DCCI) mechanism, which dynamically retrieves course content from Canvas LMS and structures it within an LLM's context window via prompt engineering, enabling the LLM-powered assistant, Ask ME, to deliver context-aware, curriculum-aligned responses while mitigating hallucinations. A mixed-methods pilot study grounded in Self-Determination Theory (autonomy, competence) and the Technology Acceptance Model (perceived usefulness, ease of use) evaluated DCCI's effectiveness with 120 first-year programming students at Eötvös Loránd University. The course focused on foundational programming patterns in C#, including writing program specifications. We analyzed 14,746 logged interactions and a post-course survey completed by 101 students. User satisfaction was measured via a 5-point Likert scale (turn-level ratings), while the survey assessed usability, engagement, and ethical concerns. Results indicated high satisfaction (mean 4.65/5) and strong recognition of Ask ME's ability to provide timely, contextually relevant answers to administrative and course-related queries. 78.06% agreed that Ask ME's Canvas integration reduced platform switching, improving usability, engagement, comprehension, and topic exploration. Many students reported reduced hesitation to ask questions and increased motivation for self-directed learning, though concerns about over-reliance on AI and reduced student-teacher interaction emerged. This study demonstrates that DCCI enhances LLM reliability, student satisfaction, and engagement in AI-driven educational automation, while highlighting the importance of balancing
♻ ☆ Quantifying Climate Policy Action and Its Links to Development Outcomes: A Cross-National Data-Driven Analysis NeurIPS 2025
Addressing climate change effectively requires more than cataloguing the number of policies in place; it calls for tools that can reveal their thematic priorities and their tangible impacts on development outcomes. Existing assessments often rely on qualitative descriptions or composite indices, which can mask crucial differences between key domains such as mitigation, adaptation, disaster risk management, and loss and damage. To bridge this gap, we develop a quantitative indicator of climate policy orientation by applying a multilingual transformer-based language model to official national policy documents, achieving a classification accuracy of 0.90 (F1-score). Linking these indicators with World Bank development data in panel regressions reveals that mitigation policies are associated with higher GDP and GNI; disaster risk management correlates with greater GNI and debt but reduced foreign direct investment; adaptation and loss and damage show limited measurable effects. This integrated NLP-econometric framework enables comparable, theme-specific analysis of climate governance, offering a scalable method to monitor progress, evaluate trade-offs, and align policy emphasis with development goals.
comment: This paper/proposal has been accepted as a poster in the NeurIPS 2025
♻ ☆ Artificial-Intelligence Grading Assistance for Handwritten Components of a Calculus Exam
We investigate whether contemporary multimodal LLMs can assist with grading open-ended calculus at scale without eroding validity. In a large first-year exam, students' handwritten work was graded by GPT-5 against the same rubric used by teaching assistants (TAs), with fractional credit permitted; TA rubric decisions served as ground truth. We calibrated a human-in-the-loop filter that combines a partial-credit threshold with an Item Response Theory (2PL) risk measure based on the deviation between the AI score and the model-expected score for each student-item. Unfiltered AI-TA agreement was moderate, adequate for low-stakes feedback but not for high-stakes use. Confidence filtering made the workload-quality trade-off explicit: under stricter settings, AI delivered human-level accuracy, but also left roughly 70% of the items to be graded by humans. Psychometric patterns were constrained by low stakes on the open-ended portion, a small set of rubric checkpoints, and occasional misalignment between designated answer regions and where work appeared. Practical adjustments such as slightly higher weight and protected time, a few rubric-visible substeps, stronger spatial anchoring should raise ceiling performance. Overall, calibrated confidence and conservative routing enable AI to reliably handle a sizable subset of routine cases while reserving expert judgment for ambiguous or pedagogically rich responses.
♻ ☆ The Prompt War: How AI Decides on a Military Intervention
Which factors determine AI propensity for military intervention? While the use of AI in war games and military planning is growing exponentially, the simple analysis of key drivers embedded in the models has not yet been done. This paper does a simple conjoint experiment proposing a model to decide on military intervention in 640 vignettes where each was run for 100 times allowing to explore AI decision on military intervention systematically. The analysis finds that largest predictors of AI decision to intervene are high domestic support and high probability of success. Costs such as international condemnation, military deaths, civilian deaths, and negative economic effect are statistically significant, but their effect is around half of domestic support and probability of victory. Closing window of opportunity only reaches statistical significance in interaction with other factors. The results are remarkably consistent across scenarios and across different models (OpenAI GPT, Anthropic Claude, Google Gemini) suggesting a pattern in AI decision-making.
comment: 22 pages, 4 tables, 3 figures
♻ ☆ Enhanced Suicidal Ideation Detection from Social Media Using a CNN-BiLSTM Hybrid Model
Suicidal ideation detection is crucial for preventing suicides, a leading cause of death worldwide. Many individuals express suicidal thoughts on social media, offering a vital opportunity for early detection through advanced machine learning techniques. The identification of suicidal ideation in social media text is improved by utilising a hybrid framework that integrates Convolutional Neural Networks (CNN) and Bidirectional Long Short-Term Memory (BiLSTM), enhanced with an attention mechanism. To enhance the interpretability of the model's predictions, Explainable AI (XAI) methods are applied, with a particular focus on SHapley Additive exPlanations (SHAP), are incorporated. At first, the model managed to reach an accuracy of 92.81%. By applying fine-tuning and early stopping techniques, the accuracy improved to 94.29%. The SHAP analysis revealed key features influencing the model's predictions, such as terms related to mental health struggles. This level of transparency boosts the model's credibility while helping mental health professionals understand and trust the predictions. This work highlights the potential for improving the accuracy and interpretability of detecting suicidal tendencies, making a valuable contribution to the progress of mental health monitoring systems. It emphasizes the significance of blending powerful machine learning methods with explainability to develop reliable and impactful mental health solutions.
Computers and Society
☆ Improving Graduate Outcomes by Identifying Skills Gaps and Recommending Courses Based on Career Interests
This paper aims to address the challenge of selecting relevant courses for students by proposing the design and development of a course recommendation system. The course recommendation system utilises a combination of data analytics techniques and machine learning algorithms to recommend courses that align with current industry trends and requirements. In order to provide customised suggestions, the study entails the design and implementation of an extensive algorithmic framework that combines machine learning methods, user preferences, and academic criteria. The system employs data mining and collaborative filtering techniques to examine past courses and individual career goals in order to provide course recommendations. Moreover, to improve the accessibility and usefulness of the recommendation system, special attention is given to the development of an easy-to-use front-end interface. The front-end design prioritises visual clarity, interaction, and simplicity through iterative prototyping and user input revisions, guaranteeing a smooth and captivating user experience. We refined and optimised the proposed system by incorporating user feedback, ensuring that it effectively meets the needs and preferences of its target users. The proposed course recommendation system could be a useful tool for students, instructors, and career advisers to use in promoting lifelong learning and professional progression as it fills the gap between university learning and industry expectations. We hope that the proposed course recommendation system will help university students in making data-drive and industry-informed course decisions, in turn, improving graduate outcomes for the university sector.
comment: 10 pages
☆ Weapons of Online Harassment: Menacing and Profiling Users via Social Apps
Viewing social apps as sociotechnical systems makes clear that they are not mere pieces of technology but mediate human interaction and may unintentionally enable harmful behaviors like online harassment. As more users interact through social apps, instances of harassment increase. We observed that app reviews often describe harassment. Accordingly, we built a dataset of over 3 million reviews and 1,800 apps. We discovered that two forms of harassment are prevalent, Menacing and Profiling. We built a computational model for identifying reviews indicating harassment, achieving high recalls of 90% for Menacing and 85% for Profiling. We analyzed the data further to better understand the terrain of harassment. Surprisingly, abusers most often have female identities. Also, what distinguishes negative from neutral reviews is the greater prevalence of anger, disgust, and fear. Applying our model, we identified 1,395 apps enabling harassment and notified developers of the top 48 with the highest user-reported harassment.
comment: This article has been accepted for publication in IEEE Computer as a Research Feature. 13 pages, 3 figures, 1 table, 4 examples
☆ Alignment Debt: The Hidden Work of Making AI Usable
Frontier LLMs are optimised around high-resource assumptions about language, knowledge, devices, and connectivity. Whilst widely accessible, they often misfit conditions in the Global South. As a result, users must often perform additional work to make these systems usable. We term this alignment debt: the user-side burden that arises when AI systems fail to align with cultural, linguistic, infrastructural, or epistemic contexts. We develop and validate a four-part taxonomy of alignment debt through a survey of 411 AI users in Kenya and Nigeria. Among respondents measurable on this taxonomy (n = 385), prevalence is: Cultural and Linguistic (51.9%), Infrastructural (43.1%), Epistemic (33.8%), and Interaction (14.0%). Country comparisons show a divergence in Infrastructural and Interaction debt, challenging one-size-fits-Africa assumptions. Alignment debt is associated with compensatory labour, but responses vary by debt type: users facing Epistemic challenges verify outputs at significantly higher rates (91.5% vs. 80.8%; p = 0.037), and verification intensity correlates with cumulative debt burden (Spearmans rho = 0.147, p = 0.004). In contrast, Infrastructural and Interaction debts show weak or null associations with verification, indicating that some forms of misalignment cannot be resolved through verification alone. These findings show that fairness must be judged not only by model metrics but also by the burden imposed on users at the margins, compelling context-aware safeguards that alleviate alignment debt in Global South settings. The alignment debt framework provides an empirically grounded way to measure user burden, informing both design practice and emerging African AI governance efforts.
comment: 19 pages, 3 figures, 3 tables
☆ CADD: A Chinese Traffic Accident Dataset for Statute-Based Liability Attribution
As autonomous driving technology advances, the critical challenge evolves beyond collision avoidance to the \textbf{adjudication of liability} when accidents occur. Existing datasets, focused on detection and localization, lack the annotations required for this legal reasoning. To bridge this gap, we introduce the \textbf{C}hinese \textbf{A}ccident \textbf{D}uty-determination \textbf{D}ataset (\textbf{CADD}), the first benchmark for statute-based liability attribution. CADD contains 792 real-world driving recorder videos, each annotated within a novel \textbf{``Behavior--Liability--Statute''} pipeline. This framework provides \textbf{granular, symmetric behavior annotations}, clear responsibility assignments, and, uniquely, links each case to the specific \textbf{Chinese traffic law statute} violated. We demonstrate the utility of CADD through detailed analysis and establish benchmarks for liability prediction and explainable decision-making. By directly connecting perceptual data to legal consequences, CADD provides a foundational resource for developing accountable and legally-grounded autonomous systems.
☆ Understanding the Representation of Older Adults in Motion Capture Locomotion Datasets
The Internet of Things (IoT) sensors have been widely employed to capture human locomotions to enable applications such as activity recognition, human pose estimation, and fall detection. Motion capture (MoCap) systems are frequently used to generate ground truth annotations for human poses when training models with data from wearable or ambient sensors, and have been shown to be effective to synthesize data in these modalities. However, the representation of older adults, an increasingly important demographic in healthcare, in existing MoCap locomotion datasets has not been thoroughly examined. This work surveyed 41 publicly available datasets, identifying eight that include older adult motions and four that contain motions performed by younger actors annotated as old style. Older adults represent a small portion of participants overall, and few datasets provide full-body motion data for this group. To assess the fidelity of old-style walking motions, quantitative metrics are introduced, defining high fidelity as the ability to capture age-related differences relative to normative walking. Using gait parameters that are age-sensitive, robust to noise, and resilient to data scarcity, we found that old-style walking motions often exhibit overly controlled patterns and fail to faithfully characterize aging. These findings highlight the need for improved representation of older adults in motion datasets and establish a method to quantitatively evaluate the quality of old-style walking motions.
comment: 8 pages,4 figures, to be published in IEEE AIOT 2025
☆ Framing the Hacker: Media Representations and Public Discourse in Germany
This paper examines how the figure of the hacker is portrayed in German mainstream media and explores the impact of media framing on public discourse. Through a longitudinal content analysis of 301 articles from four of the most widely circulated German newspapers (Die Zeit, Süddeutsche Zeitung, Bild, and Der Spiegel), the study covers reporting between January 2017 and January 2020. The results reveal a strong predominance of negative connotations and dramatizing frames that link hackers to criminality, national security threats, and digital warfare. Drawing on media effects theory, scandalization mechanisms, and constructivist media theory, the article shows how media representations co-construct public perceptions of IT-related risks. The analysis emphasizes the role of agenda setting, framing, and media reality in shaping societal narratives around hackers. The study concludes by reflecting on the broader implications for IT security education and the sociopolitical challenges posed by distorted representations of digital actors.
comment: 17 pages, 2 figures, 1 Table
☆ Algorithmic Advice as a Strategic Signal on Competitive Markets
As algorithms increasingly mediate competitive decision-making, their influence extends beyond individual outcomes to shaping strategic market dynamics. In two preregistered experiments, we examined how algorithmic advice affects human behavior in classic economic games with unique, non-collusive, and analytically traceable equilibria. In Experiment 1 (N = 107), participants played a Bertrand price competition with individualized or collective algorithmic recommendations. Initially, collusively upward-biased advice increased prices, particularly when individualized, but prices gradually converged toward equilibrium over the course of the experiment. However, participants avoided setting prices above the algorithm's recommendation throughout the experiment, suggesting that advice served as a soft upper bound for acceptable prices. In Experiment 2 (N = 129), participants played a Cournot quantity competition with equilibrium-aligned or strategically biased algorithmic recommendations. Here, individualized equilibrium advice supported stable convergence, whereas collusively downward-biased advice led to sustained underproduction and supracompetitive profits - hallmarks of tacit collusion. In both experiments, participants responded more strongly and consistently to individualized advice than collective advice, potentially due to greater perceived ownership of the former. These findings demonstrate that algorithmic advice can function as a strategic signal, shaping coordination even without explicit communication. The results echo real-world concerns about algorithmic collusion and underscore the need for careful design and oversight of algorithmic decision-support systems in competitive environments.
☆ Slaying the Dragon: The Quest for Democracy in Decentralized Autonomous Organizations (DAOs)
This chapter explores how Decentralized Autonomous Organizations (DAOs), a novel institutional form based on blockchain technology, challenge traditional centralized governance structures. DAOs govern projects ranging from finance to science and digital communities. They aim to redistribute decision-making power through programmable, transparent, and participatory mechanisms. This chapter outlines both the opportunities DAOs present, such as incentive alignment, rapid coordination, and censorship resistance, and the challenges they face, including token concentration, low participation, and the risk of de facto centralization. It further discusses the emerging intersection of DAOs and artificial intelligence, highlighting the potential for increased automation alongside the dangers of diminished human oversight and algorithmic opacity. Ultimately, we discuss under what circumstances DAOs can fulfill their democratic promise or risk replicating the very power asymmetries they seek to overcome.
☆ Urban Complexity through Vision Intelligence: Variance, Gradients, and Correlations across Six Italian Cities
This paper introduces a scalable methodology for the objective analysis of quality metrics across six major Italian metropolitan areas: Rome, Bologna, Florence, Milan, Naples, and Palermo. Leveraging georeferenced Street View imagery and an advanced Urban Vision Intelligence system, we systematically classify the visual environment, focusing on key metrics such as the Pavement Condition Index (PCI) and the Façade Degradation Score (FDS). The findings quantify Structural Heterogeneity (Spatial Variance), revealing significant quality dispersion (e.g., Milan $σ^2_{\mathrm{PCI}}=1.52$), and confirm that the classical Urban Gradient -- quality variation as a function of distance from the core -- is consistently weak across all sampled cities ($R^2 < 0.03$), suggesting a complex, polycentric, and fragmented morphology. In addition, a Cross-Metric Correlation Analysis highlights stable but modest interdependencies among visual dimensions, most notably a consistent positive association between façade quality and greenery ($ρ\approx 0.35$), demonstrating that structural and contextual urban qualities co-vary in weak yet interpretable ways. Together, these results underscore the diagnostic potential of Vision Intelligence for capturing the integrated spatial and morphological structure of Italian cities and motivate a large national-scale analysis.
☆ From Everyday to Existential -- The ethics of shifting the boundaries of health and data with multimodal digital biomarkers
Multimodal digital biomarkers (MDBs) integrate diverse physiological, behavioral, and contextual data to provide continuous representations of health. This paper argues that MDBs expand the concept of digital biomarkers along the dimensions of variability, complexity and abstraction, producing an ontological shift that datafies health and an epistemic shift that redefines health relevance. These transformations entail ethical implications for knowledge, responsibility, and governance in data-driven, preventive medicine.
comment: 11 pages, 2 figures, 1 table
☆ Toward Dignity-Aware AI: Next-Generation Elderly Monitoring from Fall Detection to ADL
This position paper envisions a next-generation elderly monitoring system that moves beyond fall detection toward the broader goal of Activities of Daily Living (ADL) recognition. Our ultimate aim is to design privacy-preserving, edge-deployed, and federated AI systems that can robustly detect and understand daily routines, supporting independence and dignity in aging societies. At present, ADL-specific datasets are still under collection. As a preliminary step, we demonstrate feasibility through experiments using the SISFall dataset and its GAN-augmented variants, treating fall detection as a proxy task. We report initial results on federated learning with non-IID conditions, and embedded deployment on Jetson Orin Nano devices. We then outline open challenges such as domain shift, data scarcity, and privacy risks, and propose directions toward full ADL monitoring in smart-room environments. This work highlights the transition from single-task detection to comprehensive daily activity recognition, providing both early evidence and a roadmap for sustainable and human-centered elderly care AI.
comment: This is the author's preprint version of a paper accepted for presentation at EAI MONAMI 2025 (to appear in Springer LNICST). The final authenticated version will be available online at Springer Link upon publication
☆ Mental Health Generative AI is Safe, Promotes Social Health, and Reduces Depression and Anxiety: Real World Evidence from a Naturalistic Cohort
Generative artificial intelligence (GAI) chatbots built for mental health could deliver safe, personalized, and scalable mental health support. We evaluate a foundation model designed for mental health. Adults completed mental health measures while engaging with the chatbot between May 15, 2025 and September 15, 2025. Users completed an opt-in consent, demographic information, mental health symptoms, social connection, and self-identified goals. Measures were repeated every two weeks up to 6 weeks, and a final follow-up at 10 weeks. Analyses included effect sizes, and growth mixture models to identify participant groups and their characteristic engagement, severity, and demographic factors. Users demonstrated significant reductions in PHQ-9 and GAD-7 that were sustained at follow-up. Significant improvements in Hope, Behavioral Activation, Social Interaction, Loneliness, and Perceived Social Support were observed throughout and maintained at 10 week follow-up. Engagement was high and predicted outcomes. Working alliance was comparable to traditional care and predicted outcomes. Automated safety guardrails functioned as designed, with 76 sessions flagged for risk and all handled according to escalation policies. This single arm naturalistic observational study provides initial evidence that a GAI foundation model for mental health can deliver accessible, engaging, effective, and safe mental health support. These results lend support to findings from early randomized designs and offer promise for future study of mental health GAI in real world settings.
♻ ☆ Escaping the Subprime Trap in Algorithmic Lending
Disparities in lending to minority applicants persist even as algorithmic lending finds widespread adoption. We study the role of risk-management constraints, specifically Value-at-Risk ($\VaR$) and Expected Shortfall (ES), in inducing inequality in loan approval decisions, even among applicants who are equally creditworthy. Empirical research finds that disparities in the interest rates charged to minority groups can remain large even when loan applicants from different groups are equally creditworthy. We contribute an original analysis of 431,551 loan applications recorded under the Home Mortgage Disclosure Act, illustrating that disparities in data quality are associated with higher rates of loan denial and higher interest rate spreads for Black borrowers. We develop a formal model in which a mainstream bank (low-interest) is more sensitive to variance risk than a subprime bank (high-interest). If the mainstream bank has an inflated prior belief about the variance of the minority group, it may deny that group credit indefinitely, thus never learning the true risk of lending to that group, while the subprime lender serves this population at higher rates. We call this ``The Subprime Trap'': an equilibrium in which minority lenders can borrow only from high-cost lenders, even when they are as creditworthy as majority applicants. Finally, we show that a finite subsidy can help minority groups escape the trap: subsidies cover enough of the mainstream bank's downside risk so that it can afford to lend to, and thereby learn the true risk of lending to, the minority group. Once the mainstream bank has observed sufficiently many loans, its beliefs converge to the true underlying risk, it approves the applications of minority groups, and competition drives down the interest rates of subprime loans.
comment: 13 pages
♻ ☆ Machine Unlearning for Responsible and Adaptive AI in Education ESORICS 2025
Machine Unlearning (MU) has emerged as a promising approach to addressing persistent challenges in Machine Learning (ML) systems. By enabling the selective removal of learned data, MU introduces protective, corrective, and adaptive capabilities that are central to advancing Responsible and Adaptive AI. However, despite its growing prominence in other domains, MU remains underexplored within education, a sector uniquely characterized by sensitive learner data, dynamic environments, and the high-stakes implications of algorithmic decision-making. This paper examines the potential of MU as both a mechanism for operationalizing Responsible AI principles and a foundation for Adaptive AI in ML-driven educational systems. Drawing on a structured review of 42 peer-reviewed studies, the paper analyzes key MU mechanisms and technical variants, and how they contribute to the practical realization of Responsible and Adaptive AI. Four core intervention domains where MU demonstrates significant promise are identified: privacy protection, resilience to adversarial or corrupted data, fairness through bias mitigation, and adaptability to evolving contexts. Furthermore, MU interventions are mapped to the technical, ethical, and pedagogical challenges inherent in educational AI. This mapping illustrates the role of MU as a strategic mechanism for enhancing compliance, reinforcing ethical safeguards, and supporting adaptability by ensuring that models remain flexible, maintainable, and contextually relevant over time. As a conceptual contribution, the paper introduces MU4RAAI, a reference architecture integrating MU within Responsible and Adaptive AI frameworks for educational contexts. MU is thus positioned not merely as a data deletion process but as a transformative approach for ensuring that educational AI systems remain ethical, adaptive, and trustworthy.
comment: Accepted paper - ESORICS 2025 - International Workshop on Secure and Trustworthy Machine Unlearning Systems (STMUS)
♻ ☆ Steve: LLM Powered ChatBot for Career Progression
The advancements in systems deploying large language models (LLMs), as well as improvements in their ability to act as agents with predefined templates, provide an opportunity to conduct qualitative, individualized assessments, creating a bridge between qualitative and quantitative methods for candidates seeking career progression. In this paper, we develop a platform that allows candidates to run AI-led interviews to assess their current career stage and curate coursework to enable progression to the next level. Our approach incorporates predefined career trajectories, associated skills, and a method to recommend the best resources for gaining the necessary skills for advancement. We employ OpenAI API calls along with expertly compiled chat templates to assess candidate competence. Our platform is highly configurable due to the modularity of the development, is easy to deploy and use, and available as a web interface where the only requirement is candidate resumes in PDF format. We demonstrate a use-case centered on software engineering and intend to extend this platform to be domain-agnostic, requiring only regular updates to chat templates as industries evolve.
♻ ☆ From Catastrophic to Concrete: Reframing AI Risk Communication for Public Mobilization
Effective governance of artificial intelligence (AI) requires public engagement, yet communication strategies centered on existential risk have not produced sustained mobilization. In this paper, we examine the psychological and opinion barriers that limit engagement with extinction narratives, such as mortality avoidance, exponential growth bias, and the absence of self-referential anchors. We contrast them with evidence that public concern over AI rises when framed in terms of proximate harms such as employment disruption, relational instability, and mental health issues. We validate these findings through actual message testing with 1063 respondents, with the evidence showing that AI risks to Jobs and Children have the highest potential to mobilize people, while Existential Risk is the lowest-performing theme across all demographics. Using survey data from five countries, we identify two segments (Tech-Positive Urbanites and World Guardians) as particularly receptive to such framing and more likely to participate in civic action. Finally, we argue that mobilization around these everyday concerns can raise the political salience of AI, creating "policy demand" for structural measures to mitigate AI risks. We conclude that this strategy creates the conditions for successful regulatory change.
comment: 25 pages, 9 figures. Corrected quote attribution, time scope of Fig. 1 graphs
♻ ☆ Qualitative Research in an Era of AI: A Pragmatic Approach to Data Analysis, Workflow, and Computation
Computational developments--particularly artificial intelligence--are reshaping social scientific research and raise new questions for in-depth methods such as ethnography and qualitative interviewing. Building on classic debates about computers in qualitative data analysis (QDA), we revisit possibilities and dangers in an era of automation, Large Language Model (LLM) chatbots, and 'big data.' We introduce a typology of contemporary approaches to using computers in qualitative research: streamlining workflows, scaling up projects, hybrid analytical methods, the sociology of computation, and technological rejection. Drawing from scaled team ethnographies and solo research integrating computational social science (CSS), we describe methodological choices across study lifecycles, from literature reviews through data collection, coding, text retrieval, and representation. We argue that new technologies hold potential to address longstanding methodological challenges when deployed with knowledge, purpose, and ethical commitment. Yet a pragmatic approach--moving beyond technological optimism and dismissal--is essential given rapidly changing tools that are both generative and dangerous. Computation now saturates research infrastructure, from algorithmic literature searches to scholarly metrics, making computational literacy a core methodological competence in and beyond sociology. We conclude that when used carefully and transparently, contemporary computational tools can meaningfully expand--rather than displace--the irreducible insights of qualitative research.
comment: FORTHCOMING: Abramson, Corey M., Tara Prendergast, Zhuofan Li, Daniel Dohan. 2026 (forthcoming). "Qualitative Research in an Era of AI: A Pragmatic Approach to Data Analysis, Workflow, and Computation". Annual Review of Sociology. pre-print, methodology, workflow article
♻ ☆ A Personalised Formal Verification Framework for Monitoring Activities of Daily Living of Older Adults Living Independently in Their Homes
There is an imperative need to provide quality of life to a growing population of older adults living independently. Personalised solutions that focus on the person and take into consideration their preferences and context are key. In this work, we introduce a framework for representing and reasoning about the Activities of Daily Living of older adults living independently at home. The framework integrates data from sensors and contextual information that aggregates semi-structured interviews, home layouts and sociological observations from the participants. We use these data to create formal models, personalised for each participant according to their preferences and context. We formulate requirements that are specific to each individual as properties encoded in Linear Temporal Logic and use a model checker to verify whether each property is satisfied by the model. When a property is violated, a counterexample is generated giving the cause of the violation. We demonstrate the framework's generalisability by applying it to different participants, highlighting its potential to enhance the safety and well-being of older adults ageing in place.
comment: 19 pages, 6 figures
♻ ☆ Understanding Human-AI Trust in Education
As AI chatbots become integrated in education, students are turning to these systems for guidance, feedback, and information. However, the anthropomorphic characteristics of these chatbots create ambiguity over whether students develop trust in them in ways similar to trusting a human peer or instructor (human-like trust, often linked to interpersonal trust models) or in ways similar to trusting a conventional technology (system-like trust, often linked to technology trust models). This ambiguity presents theoretical challenges, as interpersonal trust models may inappropriately ascribe human intentionality and morality to AI, while technology trust models were developed for non-social systems, leaving their applicability to conversational, human-like agents unclear. To address this gap, we examine how these two forms of trust, human-like and system-like, comparatively influence students' perceptions of an AI chatbot, specifically perceived enjoyment, trusting intention, behavioral intention to use, and perceived usefulness. Using partial least squares structural equation modeling, we found that both forms of trust significantly influenced student perceptions, though with varied effects. Human-like trust was the stronger predictor of trusting intention, whereas system-like trust more strongly influenced behavioral intention and perceived usefulness; both had similar effects on perceived enjoyment. The results suggest that interactions with AI chatbots give rise to a distinct form of trust, human-AI trust, that differs from human-human and human-technology models, highlighting the need for new theoretical frameworks in this domain. In addition, the study offers practical insights for fostering appropriately calibrated trust, which is critical for the effective adoption and pedagogical impact of AI in education.
comment: Final version, published to Telematics and Informatics Reports