MyArxiv
Computation and Language
☆ DraCo: Draft as CoT for Text-to-Image Preview and Rare Concept Generation
Recent unified multimodal large language models (MLLMs) have shown impressive capabilities, incorporating chain-of-thought (CoT) reasoning for enhanced text-to-image generation. However, existing approaches remain limited, either treating the model merely as a standalone generator or relying on abstract textual planning. To this end, we propose Draft-as-CoT (DraCo), a novel interleaved reasoning paradigm that fully leverages both textual and visual contents in CoT for better planning and verification. Our method first generates a low-resolution draft image as preview, providing more concrete and structural visual planning and guidance. Then, we employ the model's inherent understanding capability to verify potential semantic misalignments between the draft and input prompt, and performs refinement through selective corrections with super-resolution. In this way, our approach addresses two fundamental challenges: the coarse-grained nature of textual planning and the difficulty in generating rare attribute combinations. To support training, we curate DraCo-240K, aiming to enhance three atomic capabilities spanning general correction, instance manipulation, and layout reorganization. Supported by DraCo-CFG, a specialized classifier-free guidance (CFG) strategy for interleaved reasoning, DraCo achieves a tremendous increase on GenEval (+8%), Imagine-Bench (+0.91), and GenEval++ (+3%), significantly outperforming direct generation and other generation methods empowered by CoT.
comment: Project Page: https://github.com/CaraJ7/DraCo
☆ Semantic Soft Bootstrapping: Long Context Reasoning in LLMs without Reinforcement Learning
Long context reasoning in large language models (LLMs) has demonstrated enhancement of their cognitive capabilities via chain-of-thought (CoT) inference. Training such models is usually done via reinforcement learning with verifiable rewards (RLVR) in reasoning based problems, like math and programming. However, RLVR is limited by several bottlenecks, such as, lack of dense reward, and inadequate sample efficiency. As a result, it requires significant compute resources in post-training phase. To overcome these limitations, in this work, we propose \textbf{Semantic Soft Bootstrapping (SSB)}, a self-distillation technique, in which the same base language model plays the role of both teacher and student, but receives different semantic contexts about the correctness of its outcome at training time. The model is first prompted with a math problem and several rollouts are generated. From them, the correct and most common incorrect response are filtered, and then provided to the model in context to produce a more robust, step-by-step explanation with a verified final answer. This pipeline automatically curates a paired teacher-student training set from raw problem-answer data, without any human intervention. This generation process also produces a sequence of logits, which is what the student model tries to match in the training phase just from the bare question alone. In our experiment, Qwen2.5-3B-Instruct on GSM8K dataset via parameter-efficient fine-tuning. We then tested its accuracy on MATH500, and AIME2024 benchmarks. Our experiments show a jump of 10.6%, and 10% improvements in accuracy, respectively, over group relative policy optimization (GRPO), which is a commonly used RLVR algorithm. Our code is available at https://github.com/purbeshmitra/semantic-soft-bootstrapping, and the model, curated dataset is available at https://huggingface.co/purbeshmitra/semantic-soft-bootstrapping.
☆ Structured Document Translation via Format Reinforcement Learning AACL 2025
Recent works on structured text translation remain limited to the sentence level, as they struggle to effectively handle the complex document-level XML or HTML structures. To address this, we propose \textbf{Format Reinforcement Learning (FormatRL)}, which employs Group Relative Policy Optimization on top of a supervised fine-tuning model to directly optimize novel structure-aware rewards: 1) TreeSim, which measures structural similarity between predicted and reference XML trees and 2) Node-chrF, which measures translation quality at the level of XML nodes. Additionally, we apply StrucAUC, a fine-grained metric distinguishing between minor errors and major structural failures. Experiments on the SAP software-documentation benchmark demonstrate improvements across six metrics and an analysis further shows how different reward functions contribute to improvements in both structural and translation quality.
comment: IJCNLP-AACL 2025 Main (Oral)
☆ Multi-LLM Collaboration for Medication Recommendation
As healthcare increasingly turns to AI for scalable and trustworthy clinical decision support, ensuring reliability in model reasoning remains a critical challenge. Individual large language models (LLMs) are susceptible to hallucinations and inconsistency, whereas naive ensembles of models often fail to deliver stable and credible recommendations. Building on our previous work on LLM Chemistry, which quantifies the collaborative compatibility among LLMs, we apply this framework to improve the reliability in medication recommendation from brief clinical vignettes. Our approach leverages multi-LLM collaboration guided by Chemistry-inspired interaction modeling, enabling ensembles that are effective (exploiting complementary strengths), stable (producing consistent quality), and calibrated (minimizing interference and error amplification). We evaluate our Chemistry-based Multi-LLM collaboration strategy on real-world clinical scenarios to investigate whether such interaction-aware ensembles can generate credible, patient-specific medication recommendations. Preliminary results are encouraging, suggesting that LLM Chemistry-guided collaboration may offer a promising path toward reliable and trustworthy AI assistants in clinical practice.
comment: 8 pages, 5 figures, 1 table
☆ Arbitrage: Efficient Reasoning via Advantage-Aware Speculation
Modern Large Language Models achieve impressive reasoning capabilities with long Chain of Thoughts, but they incur substantial computational cost during inference, and this motivates techniques to improve the performance-cost ratio. Among these techniques, Speculative Decoding accelerates inference by employing a fast but inaccurate draft model to autoregressively propose tokens, which are then verified in parallel by a more capable target model. However, due to unnecessary rejections caused by token mismatches in semantically equivalent steps, traditional token-level Speculative Decoding struggles in reasoning tasks. Although recent works have shifted to step-level semantic verification, which improve efficiency by accepting or rejecting entire reasoning steps, existing step-level methods still regenerate many rejected steps with little improvement, wasting valuable target compute. To address this challenge, we propose Arbitrage, a novel step-level speculative generation framework that routes generation dynamically based on the relative advantage between draft and target models. Instead of applying a fixed acceptance threshold, Arbitrage uses a lightweight router trained to predict when the target model is likely to produce a meaningfully better step. This routing approximates an ideal Arbitrage Oracle that always chooses the higher-quality step, achieving near-optimal efficiency-accuracy trade-offs. Across multiple mathematical reasoning benchmarks, Arbitrage consistently surpasses prior step-level Speculative Decoding baselines, reducing inference latency by up to $\sim2\times$ at matched accuracy.
comment: 22 pages
☆ Factuality and Transparency Are All RAG Needs! Self-Explaining Contrastive Evidence Re-ranking
This extended abstract introduces Self-Explaining Contrastive Evidence Re-Ranking (CER), a novel method that restructures retrieval around factual evidence by fine-tuning embeddings with contrastive learning and generating token-level attribution rationales for each retrieved passage. Hard negatives are automatically selected using a subjectivity-based criterion, forcing the model to pull factual rationales closer while pushing subjective or misleading explanations apart. As a result, the method creates an embedding space explicitly aligned with evidential reasoning. We evaluated our method on clinical trial reports, and initial experimental results show that CER improves retrieval accuracy, mitigates the potential for hallucinations in RAG systems, and provides transparent, evidence-based retrieval that enhances reliability, especially in safety-critical domains.
comment: This work was presented as a poster at the Applied Social Media Lab during the 2025 Synthesizer & Open Showcase at the Berkman Klein Center for Internet & Society at Harvard University
☆ Nex-N1: Agentic Models Trained via a Unified Ecosystem for Large-Scale Environment Construction
The evolution of Large Language Models (LLMs) from passive responders to autonomous agents necessitates a fundamental shift in learning paradigms -- from static imitation to incentive-driven decision making. However, this transition is significantly impeded by the lack of scalable infrastructure capable of constructing high-quality interaction signals for effective policy learning. To address this, we introduce a comprehensive method designed to systematically scale the diversity and complexity of interactive environments. Our method realizes this scaling by addressing three orthogonal dimensions: (1) Complexity: NexAU, a flexible agent framework that supports building complex agent hierarchies via simple configurations; (2) Diversity: NexA4A automatically generates diverse agent hierarchies from natural language to cover infinite domains; and (3) Fidelity: NexGAP bridges the simulation-reality gap by integrating dynamic real-world environment for grounded trajectories synthesis. We train Nex-N1 upon the diverse and complex interactive environments established by our infrastructure. Empirical results on benchmarks such as SWE-bench and tau2 demonstrate that Nex-N1 consistently outperforms SOTA open-source models and achieves competitive performance against frontier proprietary models on complex agentic tasks. We open-source the Nex ecosystem and model weights to facilitate further research.
☆ LLMs Know More Than Words: A Genre Study with Syntax, Metaphor & Phonetics
Large language models (LLMs) demonstrate remarkable potential across diverse language related tasks, yet whether they capture deeper linguistic properties, such as syntactic structure, phonetic cues, and metrical patterns from raw text remains unclear. To analysis whether LLMs can learn these features effectively and apply them to important nature language related tasks, we introduce a novel multilingual genre classification dataset derived from Project Gutenberg, a large-scale digital library offering free access to thousands of public domain literary works, comprising thousands of sentences per binary task (poetry vs. novel;drama vs. poetry;drama vs. novel) in six languages (English, French, German, Italian, Spanish, and Portuguese). We augment each with three explicit linguistic feature sets (syntactic tree structures, metaphor counts, and phonetic metrics) to evaluate their impact on classification performance. Experiments demonstrate that although LLM classifiers can learn latent linguistic structures either from raw text or from explicitly provided features, different features contribute unevenly across tasks, which underscores the importance of incorporating more complex linguistic signals during model training.
☆ CARL: Critical Action Focused Reinforcement Learning for Multi-Step Agent
Agents capable of accomplishing complex tasks through multiple interactions with the environment have emerged as a popular research direction. However, in such multi-step settings, the conventional group-level policy optimization algorithm becomes suboptimal because of its underlying assumption that each action holds equal contribution, which deviates significantly from reality. Our analysis reveals that only a small fraction of actions are critical in determining the final outcome. Building on this insight, we propose CARL, a critical-action-focused reinforcement learning algorithm tailored for multi-step agents. CARL achieves focused training through providing action-level optimization signals for high-criticality actions while excluding low-criticality actions from model update. Extensive experiments demonstrate that CARL achieves both stronger performance and higher efficiency during training and inference across diverse evaluation settings.
comment: 10 pages, 4 figures
☆ Algorithmic Thinking Theory
Large language models (LLMs) have proven to be highly effective for solving complex reasoning tasks. Surprisingly, their capabilities can often be improved by iterating on previously generated solutions. In this context, a reasoning plan for generating and combining a set of solutions can be thought of as an algorithm for reasoning using a probabilistic oracle. We introduce a theoretical framework for analyzing such reasoning algorithms. This framework formalizes the principles underlying popular techniques for iterative improvement and answer aggregation, providing a foundation for designing a new generation of more powerful reasoning methods. Unlike approaches for understanding models that rely on architectural specifics, our model is grounded in experimental evidence. As a result, it offers a general perspective that may extend to a wide range of current and future reasoning oracles.
☆ The AI Consumer Index (ACE)
We introduce the first version of the AI Consumer Index (ACE), a benchmark for assessing whether frontier AI models can perform high-value consumer tasks. ACE contains a hidden heldout set of 400 test cases, split across four consumer activities: shopping, food, gaming, and DIY. We are also open sourcing 80 cases as a devset with a CC-BY license. For the ACE leaderboard we evaluated 10 frontier models (with websearch turned on) using a novel grading methodology that dynamically checks whether relevant parts of the response are grounded in the retrieved web sources. GPT 5 (Thinking = High) is the top-performing model, scoring 56.1%, followed by o3 Pro (Thinking = On) (55.2%) and GPT 5.1 (Thinking = High) (55.1%). Models differ across domains, and in Shopping the top model scores under 50%. For some requests (such as giving the correct price or providing working links), models are highly prone to hallucination. Overall, ACE shows a substantial gap between the performance of even the best models and consumers' AI needs.
☆ STELLA: Guiding Large Language Models for Time Series Forecasting with Semantic Abstractions
Recent adaptations of Large Language Models (LLMs) for time series forecasting often fail to effectively enhance information for raw series, leaving LLM reasoning capabilities underutilized. Existing prompting strategies rely on static correlations rather than generative interpretations of dynamic behavior, lacking critical global and instance-specific context. To address this, we propose STELLA (Semantic-Temporal Alignment with Language Abstractions), a framework that systematically mines and injects structured supplementary and complementary information. STELLA employs a dynamic semantic abstraction mechanism that decouples input series into trend, seasonality, and residual components. It then translates intrinsic behavioral features of these components into Hierarchical Semantic Anchors: a Corpus-level Semantic Prior (CSP) for global context and a Fine-grained Behavioral Prompt (FBP) for instance-level patterns. Using these anchors as prefix-prompts, STELLA guides the LLM to model intrinsic dynamics. Experiments on eight benchmark datasets demonstrate that STELLA outperforms state-of-the-art methods in long- and short-term forecasting, showing superior generalization in zero-shot and few-shot settings. Ablation studies further validate the effectiveness of our dynamically generated semantic anchors.
comment: This work has been submitted to the IEEE for possible publication
☆ SEAL: Self-Evolving Agentic Learning for Conversational Question Answering over Knowledge Graphs
Knowledge-based conversational question answering (KBCQA) confronts persistent challenges in resolving coreference, modeling contextual dependencies, and executing complex logical reasoning. Existing approaches, whether end-to-end semantic parsing or stepwise agent-based reasoning, often suffer from structural inaccuracies and prohibitive computational costs, particularly when processing intricate queries over large knowledge graphs. To address these limitations, we introduce SEAL, a novel two-stage semantic parsing framework grounded in self-evolving agentic learning. In the first stage, a large language model (LLM) extracts a minimal S-expression core that captures the essential semantics of the input query. This core is then refined by an agentic calibration module, which corrects syntactic inconsistencies and aligns entities and relations precisely with the underlying knowledge graph. The second stage employs template-based completion, guided by question-type prediction and placeholder instantiation, to construct a fully executable S-expression. This decomposition not only simplifies logical form generation but also significantly enhances structural fidelity and linking efficiency. Crucially, SEAL incorporates a self-evolving mechanism that integrates local and global memory with a reflection module, enabling continuous adaptation from dialog history and execution feedback without explicit retraining. Extensive experiments on the SPICE benchmark demonstrate that SEAL achieves state-of-the-art performance, especially in multi-hop reasoning, comparison, and aggregation tasks. The results validate notable gains in both structural accuracy and computational efficiency, underscoring the framework's capacity for robust and scalable conversational reasoning.
☆ Mitigating Catastrophic Forgetting in Target Language Adaptation of LLMs via Source-Shielded Updates
Expanding the linguistic diversity of instruct large language models (LLMs) is crucial for global accessibility but is often hindered by the reliance on costly specialized target language labeled data and catastrophic forgetting during adaptation. We tackle this challenge under a realistic, low-resource constraint: adapting instruct LLMs using only unlabeled target language data. We introduce Source-Shielded Updates (SSU), a selective parameter update strategy that proactively preserves source knowledge. Using a small set of source data and a parameter importance scoring method, SSU identifies parameters critical to maintaining source abilities. It then applies a column-wise freezing strategy to protect these parameters before adaptation. Experiments across five typologically diverse languages and 7B and 13B models demonstrate that SSU successfully mitigates catastrophic forgetting. It reduces performance degradation on monolingual source tasks to just 3.4% (7B) and 2.8% (13B) on average, a stark contrast to the 20.3% and 22.3% from full fine-tuning. SSU also achieves target-language performance highly competitive with full fine-tuning, outperforming it on all benchmarks for 7B models and the majority for 13B models.
☆ DAMASHA: Detecting AI in Mixed Adversarial Texts via Segmentation with Human-interpretable Attribution
In the age of advanced large language models (LLMs), the boundaries between human and AI-generated text are becoming increasingly blurred. We address the challenge of segmenting mixed-authorship text, that is identifying transition points in text where authorship shifts from human to AI or vice-versa, a problem with critical implications for authenticity, trust, and human oversight. We introduce a novel framework, called Info-Mask for mixed authorship detection that integrates stylometric cues, perplexity-driven signals, and structured boundary modeling to accurately segment collaborative human-AI content. To evaluate the robustness of our system against adversarial perturbations, we construct and release an adversarial benchmark dataset Mixed-text Adversarial setting for Segmentation (MAS), designed to probe the limits of existing detectors. Beyond segmentation accuracy, we introduce Human-Interpretable Attribution (HIA overlays that highlight how stylometric features inform boundary predictions, and we conduct a small-scale human study assessing their usefulness. Across multiple architectures, Info-Mask significantly improves span-level robustness under adversarial conditions, establishing new baselines while revealing remaining challenges. Our findings highlight both the promise and limitations of adversarially robust, interpretable mixed-authorship detection, with implications for trust and oversight in human-AI co-authorship.
comment: 18 pages, 10 Figures
☆ Are LLMs Truly Multilingual? Exploring Zero-Shot Multilingual Capability of LLMs for Information Retrieval: An Italian Healthcare Use Case
Large Language Models (LLMs) have become a key topic in AI and NLP, transforming sectors like healthcare, finance, education, and marketing by improving customer service, automating tasks, providing insights, improving diagnostics, and personalizing learning experiences. Information extraction from clinical records is a crucial task in digital healthcare. Although traditional NLP techniques have been used for this in the past, they often fall short due to the complexity, variability of clinical language, and high inner semantics in the free clinical text. Recently, Large Language Models (LLMs) have become a powerful tool for better understanding and generating human-like text, making them highly effective in this area. In this paper, we explore the ability of open-source multilingual LLMs to understand EHRs (Electronic Health Records) in Italian and help extract information from them in real-time. Our detailed experimental campaign on comorbidity extraction from EHR reveals that some LLMs struggle in zero-shot, on-premises settings, and others show significant variation in performance, struggling to generalize across various diseases when compared to native pattern matching and manual annotations.
☆ DaLA: Danish Linguistic Acceptability Evaluation Guided by Real World Errors
We present an enhanced benchmark for evaluating linguistic acceptability in Danish. We first analyze the most common errors found in written Danish. Based on this analysis, we introduce a set of fourteen corruption functions that generate incorrect sentences by systematically introducing errors into existing correct Danish sentences. To ensure the accuracy of these corruptions, we assess their validity using both manual and automatic methods. The results are then used as a benchmark for evaluating Large Language Models on a linguistic acceptability judgement task. Our findings demonstrate that this extension is both broader and more comprehensive than the current state of the art. By incorporating a greater variety of corruption types, our benchmark provides a more rigorous assessment of linguistic acceptability, increasing task difficulty, as evidenced by the lower performance of LLMs on our benchmark compared to existing ones. Our results also suggest that our benchmark has a higher discriminatory power which allows to better distinguish well-performing models from low-performing ones.
☆ AdiBhashaa: A Community-Curated Benchmark for Machine Translation into Indian Tribal Languages
Large language models and multilingual machine translation (MT) systems increasingly drive access to information, yet many languages of the tribal communities remain effectively invisible in these technologies. This invisibility exacerbates existing structural inequities in education, governance, and digital participation. We present AdiBhashaa, a community-driven initiative that constructs the first open parallel corpora and baseline MT systems for four major Indian tribal languages-Bhili, Mundari, Gondi, and Santali. This work combines participatory data creation with native speakers, human-in-the-loop validation, and systematic evaluation of both encoder-decoder MT models and large language models. In addition to reporting technical findings, we articulate how AdiBhashaa illustrates a possible model for more equitable AI research: it centers local expertise, builds capacity among early-career researchers from marginalized communities, and foregrounds human validation in the development of language technologies.
☆ MemLoRA: Distilling Expert Adapters for On-Device Memory Systems
Memory-augmented Large Language Models (LLMs) have demonstrated remarkable consistency during prolonged dialogues by storing relevant memories and incorporating them as context. Such memory-based personalization is also key in on-device settings that allow users to keep their conversations and data private. However, memory-augmented systems typically rely on LLMs that are too costly for local on-device deployment. Even though Small Language Models (SLMs) are more suitable for on-device inference than LLMs, they cannot achieve sufficient performance. Additionally, these LLM-based systems lack native visual capabilities, limiting their applicability in multimodal contexts. In this paper, we introduce (i) MemLoRA, a novel memory system that enables local deployment by equipping SLMs with specialized memory adapters, and (ii) its vision extension MemLoRA-V, which integrates small Vision-Language Models (SVLMs) to memory systems, enabling native visual understanding. Following knowledge distillation principles, each adapter is trained separately for specific memory operations$\unicode{x2013}$knowledge extraction, memory update, and memory-augmented generation. Equipped with memory adapters, small models enable accurate on-device memory operations without cloud dependency. On text-only operations, MemLoRA outperforms 10$\times$ larger baseline models (e.g., Gemma2-27B) and achieves performance comparable to 60$\times$ larger models (e.g., GPT-OSS-120B) on the LoCoMo benchmark. To evaluate visual understanding operations instead, we extend LoCoMo with challenging Visual Question Answering tasks that require direct visual reasoning. On this, our VLM-integrated MemLoRA-V shows massive improvements over caption-based approaches (81.3 vs. 23.7 accuracy) while keeping strong performance in text-based tasks, demonstrating the efficacy of our method in multimodal contexts.
☆ Challenging the Abilities of Large Language Models in Italian: a Community Initiative
The rapid progress of Large Language Models (LLMs) has transformed natural language processing and broadened its impact across research and society. Yet, systematic evaluation of these models, especially for languages beyond English, remains limited. "Challenging the Abilities of LAnguage Models in ITAlian" (CALAMITA) is a large-scale collaborative benchmarking initiative for Italian, coordinated under the Italian Association for Computational Linguistics. Unlike existing efforts that focus on leaderboards, CALAMITA foregrounds methodology: it federates more than 80 contributors from academia, industry, and the public sector to design, document, and evaluate a diverse collection of tasks, covering linguistic competence, commonsense reasoning, factual consistency, fairness, summarization, translation, and code generation. Through this process, we not only assembled a benchmark of over 20 tasks and almost 100 subtasks, but also established a centralized evaluation pipeline that supports heterogeneous datasets and metrics. We report results for four open-weight LLMs, highlighting systematic strengths and weaknesses across abilities, as well as challenges in task-specific evaluation. Beyond quantitative results, CALAMITA exposes methodological lessons: the necessity of fine-grained, task-representative metrics, the importance of harmonized pipelines, and the benefits and limitations of broad community engagement. CALAMITA is conceived as a rolling benchmark, enabling continuous integration of new tasks and models. This makes it both a resource -- the most comprehensive and diverse benchmark for Italian to date -- and a framework for sustainable, community-driven evaluation. We argue that this combination offers a blueprint for other languages and communities seeking inclusive and rigorous LLM evaluation practices.
☆ EtCon: Edit-then-Consolidate for Reliable Knowledge Editing
Knowledge editing aims to update specific facts in large language models (LLMs) without full retraining. Prior efforts sought to tune the knowledge layers of LLMs, proving effective for making selective edits. However, a significant gap exists between their performance in controlled, teacher-forcing evaluations and their real-world effectiveness in lifelong learning scenarios, which greatly limits their practical applicability. This work's empirical analysis reveals two recurring issues associated with this gap: (1) Most traditional methods lead the edited model to overfit to the new fact, thereby degrading pre-trained capabilities; (2) There is a critical absence of a knowledge consolidation stage, leaving new facts insufficiently integrated into LLMs' inference-time behavior under autoregressive generation, thereby leading to a mismatch between parametric knowledge and actual generation behavior. To this end, we propose Edit-then-Consolidate, a novel knowledge editing paradigm that aims to bridge the gap between theoretical knowledge editing methods and their real-world applicability. Specifically, (1) our framework mitigates overfitting via Targeted Proximal Supervised Fine-Tuning (TPSFT) that localizes the edit via a trust-region objective to limit policy drift; (2) Then, a consolidation stage using Group Relative Policy Optimization (GRPO) aligns the edited knowledge with CoT-based inference policy by optimizing trajectory-level behavior under comprehensive reward signals. Extensive experiments demonstrate our framework consistently improves editing reliability and generalization under real-world evaluations, while better preserving locality and pre-trained capabilities.
☆ Model Whisper: Steering Vectors Unlock Large Language Models' Potential in Test-time
It is a critical challenge to efficiently unlock the powerful reasoning potential of Large Language Models (LLMs) for specific tasks or new distributions. Existing test-time adaptation methods often require tuning model parameters, which is not only computationally expensive but also risks degrading the model's pre-existing abilities.To address this, we introduce a lightweight component, Test-Time Steering Vectors (TTSV), which is prepended to the input while keeping the LLM's parameters entirely frozen. By optimizing the TTSV on test data to minimize the model's output entropy, we steer the model towards an internal state of higher confidence, activating its inherent abilities most relevant to the current task. TTSV is both lightweight and highly efficient to optimize, making it a true plug-and-play enhancement. Extensive experiments validate our approach's effectiveness on both base models and reasoning-enhanced models. For instance, on the MATH500 task, TTSV achieves a 45.88% relative performance gain on the Qwen2.5-Math-7B model and a 16.22% relative gain on the Qwen3-4B model. Furthermore, our approach exhibits robust generalization, with its steering vectors proving highly transferable across diverse tasks.
comment: accepted to aaai2026
☆ SignRoundV2: Closing the Performance Gap in Extremely Low-Bit Post-Training Quantization for LLMs
Extreme low-bit quantization is critical for efficiently deploying Large Language Models (LLMs), yet it often leads to severe performance degradation at 2-bits and even 4-bits (e.g., MXFP4). We present SignRoundV2, a post-training quantization framework that is highly effective even without mixed-precision. SignRoundV2 introduces (1) a fast sensitivity metric that combines gradient information with quantization-induced deviations to guide layer-wise bit allocation, and (2) a lightweight pre-tuning search for quantization scales to improve extremely low-bit quantization. These components allow SignRoundV2 to close the gap with full-precision models. Extensive experiments indicate that our method sustains competitive accuracy for LLMs, achieving production-grade performance with about 1 percent variance at 4-5 bits and strong results even at 2 bits. The implementation is available at https://github.com/intel/auto-round.
☆ OsmT: Bridging OpenStreetMap Queries and Natural Language with Open-source Tag-aware Language Models ICDE
Bridging natural language and structured query languages is a long-standing challenge in the database community. While recent advances in language models have shown promise in this direction, existing solutions often rely on large-scale closed-source models that suffer from high inference costs, limited transparency, and lack of adaptability for lightweight deployment. In this paper, we present OsmT, an open-source tag-aware language model specifically designed to bridge natural language and Overpass Query Language (OverpassQL), a structured query language for accessing large-scale OpenStreetMap (OSM) data. To enhance the accuracy and structural validity of generated queries, we introduce a Tag Retrieval Augmentation (TRA) mechanism that incorporates contextually relevant tag knowledge into the generation process. This mechanism is designed to capture the hierarchical and relational dependencies present in the OSM database, addressing the topological complexity inherent in geospatial query formulation. In addition, we define a reverse task, OverpassQL-to-Text, which translates structured queries into natural language explanations to support query interpretation and improve user accessibility. We evaluate OsmT on a public benchmark against strong baselines and observe consistent improvements in both query generation and interpretation. Despite using significantly fewer parameters, our model achieves competitive accuracy, demonstrating the effectiveness of open-source pre-trained language models in bridging natural language and structured query languages within schema-rich geospatial environments.
comment: 42nd IEEE International Conference on Data Engineering (ICDE)
☆ Towards Ethical Multi-Agent Systems of Large Language Models: A Mechanistic Interpretability Perspective AAAI'26
Large language models (LLMs) have been widely deployed in various applications, often functioning as autonomous agents that interact with each other in multi-agent systems. While these systems have shown promise in enhancing capabilities and enabling complex tasks, they also pose significant ethical challenges. This position paper outlines a research agenda aimed at ensuring the ethical behavior of multi-agent systems of LLMs (MALMs) from the perspective of mechanistic interpretability. We identify three key research challenges: (i) developing comprehensive evaluation frameworks to assess ethical behavior at individual, interactional, and systemic levels; (ii) elucidating the internal mechanisms that give rise to emergent behaviors through mechanistic interpretability; and (iii) implementing targeted parameter-efficient alignment techniques to steer MALMs towards ethical behaviors without compromising their performance.
comment: Accepted to LaMAS 2026@AAAI'26 (https://sites.google.com/view/lamas2026)
☆ Geschlechtsübergreifende Maskulina im Sprachgebrauch Eine korpusbasierte Untersuchung zu lexemspezifischen Unterschieden
This study examines the distribution and linguistic characteristics of generic masculines (GM) in contemporary German press texts. The use of masculine personal nouns to refer to mixed-gender groups or unspecified individuals has been widely debated in academia and the public, with con-flicting perspectives on its gender-neutrality. While psycholinguistic studies suggest that GM is more readily associated with male referents, corpus-based analyses of its actual use remain scarce. We investigate GM in a large corpus of press texts, focusing on lexeme-specific differences across dif-ferent types of personal nouns. We conducted manual annotations of the whole inflectional para-digm of 21 personal nouns, resulting in 6,195 annotated tokens. Our findings reveal considerable differences between lexical items, especially between passive role nouns and prestige-related per-sonal nouns. On a grammatical level, we find that GM occurs predominantly in the plural and in indefinite noun phrases. Furthermore, our data shows that GM is not primarily used to denote entire classes of people, as has been previously claimed. By providing an empirical insight into the use of GM in authentic written language, we contribute to a more nuanced understanding of its forms and manifestations. These findings provide a solid basis for aligning linguistic stimuli in psy-cholinguistic studies more closely with real-world language use.
comment: 32 pages, 8 figures
☆ Topology Matters: Measuring Memory Leakage in Multi-Agent LLMs ACL
Graph topology is a fundamental determinant of memory leakage in multi-agent LLM systems, yet its effects remain poorly quantified. We introduce MAMA (Multi-Agent Memory Attack), a framework that measures how network structure shapes leakage. MAMA operates on synthetic documents containing labeled Personally Identifiable Information (PII) entities, from which we generate sanitized task instructions. We execute a two-phase protocol: Engram (seeding private information into a target agent's memory) and Resonance (multi-round interaction where an attacker attempts extraction). Over up to 10 interaction rounds, we quantify leakage as the fraction of ground-truth PII recovered from attacking agent outputs via exact matching. We systematically evaluate six common network topologies (fully connected, ring, chain, binary tree, star, and star-ring), varying agent counts $n\in\{4,5,6\}$, attacker-target placements, and base models. Our findings reveal consistent patterns: fully connected graphs exhibit maximum leakage while chains provide strongest protection; shorter attacker-target graph distance and higher target centrality significantly increase vulnerability; leakage rises sharply in early rounds before plateauing; model choice shifts absolute leakage rates but preserves topology rankings; temporal/locational PII attributes leak more readily than identity credentials or regulated identifiers. These results provide the first systematic mapping from architectural choices to measurable privacy risk, yielding actionable guidance: prefer sparse or hierarchical connectivity, maximize attacker-target separation, limit node degree and network radius, avoid shortcuts bypassing hubs, and implement topology-aware access controls.
comment: Under review at ACL Rolling Review
☆ SEASON: Mitigating Temporal Hallucination in Video Large Language Models via Self-Diagnostic Contrastive Decoding
Video Large Language Models (VideoLLMs) have shown remarkable progress in video understanding. However, these models still struggle to effectively perceive and exploit rich temporal information in videos when responding to user queries. Therefore, they often generate descriptions of events that are temporal inconsistent or causally implausible, causing severe hallucination issues. While most prior studies have focused on spatial hallucinations (e.g. object mismatches), temporal reasoning in video understanding remains relatively underexplored. To address this issue, we propose Self-Diagnostic Contrastive Decoding (SEASON), a training-free method that adaptively enhances temporal and spatial faithfulness for each output token. It achieves this by dynamically diagnosing each token's hallucination tendency and applying adaptive contrastive decoding against its corresponding temporal and spatial negatives. Extensive experiments demonstrate that SEASON outperforms all existing training-free hallucination mitigation approaches on three hallucination examination benchmarks, while further improves VideoLLMs across four general video understanding benchmarks. The code will be released upon acceptance.
☆ Limit cycles for speech
Rhythmic fluctuations in acoustic energy and accompanying neuronal excitations in cortical oscillations are characteristic of human speech, yet whether a corresponding rhythmicity inheres in the articulatory movements that generate speech remains unclear. The received understanding of speech movements as discrete, goal-oriented actions struggles to make contact with the rhythmicity findings. In this work, we demonstrate that an unintuitive -- but no less principled than the conventional -- representation for discrete movements reveals a pervasive limit cycle organization and unlocks the recovery of previously inaccessible rhythmic structure underlying the motor activity of speech. These results help resolve a time-honored tension between the ubiquity of biological rhythmicity and discreteness in speech, the quintessential human higher function, by revealing a rhythmic organization at the most fundamental level of individual articulatory actions.
☆ Natural Language Actor-Critic: Scalable Off-Policy Learning in Language Space
Large language model (LLM) agents -- LLMs that dynamically interact with an environment over long horizons -- have become an increasingly important area of research, enabling automation in complex tasks involving tool-use, web browsing, and dialogue with people. In the absence of expert demonstrations, training LLM agents has relied on policy gradient methods that optimize LLM policies with respect to an (often sparse) reward function. However, in long-horizon tasks with sparse rewards, learning from trajectory-level rewards can be noisy, leading to training that is unstable and has high sample complexity. Furthermore, policy improvement hinges on discovering better actions through exploration, which can be difficult when actions lie in natural language space. In this paper, we propose Natural Language Actor-Critic (NLAC), a novel actor-critic algorithm that trains LLM policies using a generative LLM critic that produces natural language rather than scalar values. This approach leverages the inherent strengths of LLMs to provide a richer and more actionable training signal; particularly, in tasks with large, open-ended action spaces, natural language explanations for why an action is suboptimal can be immensely useful for LLM policies to reason how to improve their actions, without relying on random exploration. Furthermore, our approach can be trained off-policy without policy gradients, offering a more data-efficient and stable alternative to existing on-policy methods. We present results on a mixture of reasoning, web browsing, and tool-use with dialogue tasks, demonstrating that NLAC shows promise in outperforming existing training approaches and offers a more scalable and stable training paradigm for LLM agents.
comment: 22 pages, 4 figures
☆ LexGenius: An Expert-Level Benchmark for Large Language Models in Legal General Intelligence
Legal general intelligence (GI) refers to artificial intelligence (AI) that encompasses legal understanding, reasoning, and decision-making, simulating the expertise of legal experts across domains. However, existing benchmarks are result-oriented and fail to systematically evaluate the legal intelligence of large language models (LLMs), hindering the development of legal GI. To address this, we propose LexGenius, an expert-level Chinese legal benchmark for evaluating legal GI in LLMs. It follows a Dimension-Task-Ability framework, covering seven dimensions, eleven tasks, and twenty abilities. We use the recent legal cases and exam questions to create multiple-choice questions with a combination of manual and LLM reviews to reduce data leakage risks, ensuring accuracy and reliability through multiple rounds of checks. We evaluate 12 state-of-the-art LLMs using LexGenius and conduct an in-depth analysis. We find significant disparities across legal intelligence abilities for LLMs, with even the best LLMs lagging behind human legal professionals. We believe LexGenius can assess the legal intelligence abilities of LLMs and enhance legal GI development. Our project is available at https://github.com/QwenQKing/LexGenius.
☆ ADAPT: Learning Task Mixtures for Budget-Constrained Instruction Tuning
We propose ADAPT, a meta-learning algorithm that \emph{learns} task sampling proportions under an explicit token budget for multi-task instruction tuning. Instead of fixing task weights by hand, \adapt{} maintains a continuous distribution over tasks and updates it via meta-gradients of a smooth worst-case validation objective, inducing an adaptive curriculum that allocates more tokens to useful tasks while avoiding collapse. We instantiate ADAPT on three $\sim$1B-parameter open-weight LLMs (Gemma-3-1B, LLaMA-3.2-1B, Qwen-0.6B), training on 20 Natural Instructions task types under budgets of $1\%$, $5\%$, and $10\%$ of the available supervised tokens, and compare against strong supervised fine-tuning baselines with uniform and size-proportional mixing. We conduct evaluations on 11 out-of-domain benchmarks spanning reasoning, reading comprehension, code generation, and instruction following, we find that ADAPT matches or slightly improves average downstream performance relative to the best static mixture, while using fewer effective training tokens and reallocating budget toward harder, benchmark-aligned tasks.
comment: Under Review
☆ AdmTree: Compressing Lengthy Context with Adaptive Semantic Trees NeurIPS 2025
The quadratic complexity of self-attention constrains Large Language Models (LLMs) in processing long contexts, a capability essential for many advanced applications. Context compression aims to alleviate this computational bottleneck while retaining critical semantic information. However, existing approaches often fall short: explicit methods may compromise local detail, whereas implicit methods can suffer from positional biases, information degradation, or an inability to capture long-range semantic dependencies. We propose AdmTree, a novel framework for adaptive, hierarchical context compression with a central focus on preserving high semantic fidelity while maintaining efficiency. AdmTree dynamically segments input based on information density, utilizing gist tokens to summarize variable-length segments as the leaves of a semantic binary tree. This structure, together with a lightweight aggregation mechanism and a frozen backbone LLM (thereby minimizing new trainable parameters), enables efficient hierarchical abstraction of the context. By preserving fine-grained details alongside global semantic coherence, mitigating positional bias, and dynamically adapting to content, AdmTree robustly retains the semantic information of long contexts.
comment: NeurIPS 2025
☆ EvoEdit: Lifelong Free-Text Knowledge Editing through Latent Perturbation Augmentation and Knowledge-driven Parameter Fusion
Adjusting the outdated knowledge of large language models (LLMs) after deployment remains a major challenge. This difficulty has spurred the development of knowledge editing, which seeks to accurately and efficiently modify a model's internal (parametric) knowledge without retraining it from scratch. However, existing methods suffer from two limitations. First, they depend on structured triplets that are misaligned with the free-text nature of LLM pretraining and fail to capture the nuanced relationships among facts. Second, they typically support one-time knowledge updates, with relatively limited research on the problem of sequential or lifelong editing. To address these gaps, we propose a new task, Lifelong Free-text Knowledge Editing (LF-Edit), which enables models to incorporate updates expressed in natural language and supports continual editing over time. Despite its promise, LF-Edit faces the dual challenge of integrating new knowledge while mitigating the forgetting of prior information. To foster research on this new task, we construct a large-scale benchmark, Multi-Rank Lifelong Free-text Editing Benchmark (MRLF-Bench), containing 16,835 free-text edit requests. We further design a cognitively inspired multi-rank evaluation framework encompassing four levels: memorization, understanding, constrained comprehension, and reasoning. To tackle the challenges inherent in LF-Edit, we introduce a novel approach named EvoEdit that enhances knowledge injection through Latent Perturbation Augmentation and preserves prior information via Knowledge-driven Parameter Fusion. Experimental results demonstrate that EvoEdit substantially outperforms existing knowledge editing methods on the proposed LF-Edit task.
☆ UW-BioNLP at ChemoTimelines 2025: Thinking, Fine-Tuning, and Dictionary-Enhanced LLM Systems for Chemotherapy Timeline Extraction
The ChemoTimelines shared task benchmarks methods for constructing timelines of systemic anticancer treatment from electronic health records of cancer patients. This paper describes our methods, results, and findings for subtask 2 -- generating patient chemotherapy timelines from raw clinical notes. We evaluated strategies involving chain-of-thought thinking, supervised fine-tuning, direct preference optimization, and dictionary-based lookup to improve timeline extraction. All of our approaches followed a two-step workflow, wherein an LLM first extracted chemotherapy events from individual clinical notes, and then an algorithm normalized and aggregated events into patient-level timelines. Each specific method differed in how the associated LLM was utilized and trained. Multiple approaches yielded competitive performances on the test set leaderboard, with fine-tuned Qwen3-14B achieving the best official score of 0.678. Our results and analyses could provide useful insights for future attempts on this task as well as the design of similar tasks.
comment: To be published in Proceedings of the 7th Clinical Natural Language Processing Workshop
☆ MSME: A Multi-Stage Multi-Expert Framework for Zero-Shot Stance Detection
LLM-based approaches have recently achieved impressive results in zero-shot stance detection. However, they still struggle in complex real-world scenarios, where stance understanding requires dynamic background knowledge, target definitions involve compound entities or events that must be explicitly linked to stance labels, and rhetorical devices such as irony often obscure the author's actual intent. To address these challenges, we propose MSME, a Multi-Stage, Multi-Expert framework for zero-shot stance detection. MSME consists of three stages: (1) Knowledge Preparation, where relevant background knowledge is retrieved and stance labels are clarified; (2) Expert Reasoning, involving three specialized modules-Knowledge Expert distills salient facts and reasons from a knowledge perspective, Label Expert refines stance labels and reasons accordingly, and Pragmatic Expert detects rhetorical cues such as irony to infer intent from a pragmatic angle; (3) Decision Aggregation, where a Meta-Judge integrates all expert analyses to produce the final stance prediction. Experiments on three public datasets show that MSME achieves state-of-the-art performance across the board.
☆ RapidUn: Influence-Driven Parameter Reweighting for Efficient Large Language Model Unlearning
Removing specific data influence from large language models (LLMs) remains challenging, as retraining is costly and existing approximate unlearning methods are often unstable. The challenge is exacerbated when the forget set is small or imbalanced. We introduce RapidUn, an influence-driven and parameter-efficient unlearning framework. It first estimates per-sample influence through a fast estimation module, then maps these scores into adaptive update weights that guide selective parameter updates -- forgetting harmful behavior while retaining general knowledge. On Mistral-7B and Llama-3-8B across Dolly-15k and Alpaca-57k, RapidUn achieves up to 100 times higher efficiency than full retraining and consistently outperforms Fisher, GA, and LoReUn on both in-distribution and out-of-distribution forgetting. These results establish influence-guided parameter reweighting as a scalable and interpretable paradigm for LLM unlearning.
comment: Code available at: https://github.com/eyerf/RapidUn
☆ Sarcasm Detection on Reddit Using Classical Machine Learning and Feature Engineering
Sarcasm is common in online discussions, yet difficult for machines to identify because the intended meaning often contradicts the literal wording. In this work, I study sarcasm detection using only classical machine learning methods and explicit feature engineering, without relying on neural networks or context from parent comments. Using a 100,000-comment subsample of the Self-Annotated Reddit Corpus (SARC 2.0), I combine word-level and character-level TF-IDF features with simple stylistic indicators. Four models are evaluated: logistic regression, a linear SVM, multinomial Naive Bayes, and a random forest. Naive Bayes and logistic regression perform the strongest, achieving F1-scores around 0.57 for sarcastic comments. Although the lack of conversational context limits performance, the results offer a clear and reproducible baseline for sarcasm detection using lightweight and interpretable methods.
comment: 11 pages, 2 figures, includes full Python code. Classical machine learning baseline for sarcasm detection on the SARC 2.0 dataset
☆ MASE: Interpretable NLP Models via Model-Agnostic Saliency Estimation
Deep neural networks (DNNs) have made significant strides in Natural Language Processing (NLP), yet their interpretability remains elusive, particularly when evaluating their intricate decision-making processes. Traditional methods often rely on post-hoc interpretations, such as saliency maps or feature visualization, which might not be directly applicable to the discrete nature of word data in NLP. Addressing this, we introduce the Model-agnostic Saliency Estimation (MASE) framework. MASE offers local explanations for text-based predictive models without necessitating in-depth knowledge of a model's internal architecture. By leveraging Normalized Linear Gaussian Perturbations (NLGP) on the embedding layer instead of raw word inputs, MASE efficiently estimates input saliency. Our results indicate MASE's superiority over other model-agnostic interpretation methods, especially in terms of Delta Accuracy, positioning it as a promising tool for elucidating the operations of text-based models in NLP.
☆ LangSAT: A Novel Framework Combining NLP and Reinforcement Learning for SAT Solving
Our work presents a novel reinforcement learning (RL) based framework to optimize heuristic selection within the conflict-driven clause learning (CDCL) process, improving the efficiency of Boolean satisfiability (SAT) solving. The proposed system, LangSAT, bridges the gap between natural language inputs and propositional logic by converting English descriptions into Conjunctive Normal Form (CNF) expressions and solving them using an RL-enhanced CDCL SAT solver. Unlike existing SAT-solving platforms that require CNF as input, LangSAT enables users to input standard English descriptions, making SAT-solving more accessible. The framework comprises two key components: Lang2Logic, which translates English sentences into CNF expressions, and SmartSAT, an RL-based SAT solver. SmartSAT encodes clause-variable relationships as structured graph representations and extracts global features specific to the SAT problem. This implementation provides the RL agent with deeper contextual information, enabling SAT problems to be solved more efficiently. Lang2Logic was evaluated on diverse natural language inputs, processing descriptions up to 450 words. The generated CNFs were solved by SmartSAT, which demonstrated comparable performance to traditional CDCL heuristics with respect to solving time. The combined LangSAT framework offers a more accessible and scalable solution for SAT-solving tasks across reasoning, formal verification, and debugging.
☆ Mitigating Object and Action Hallucinations in Multimodal LLMs via Self-Augmented Contrastive Alignment WACV
Recent advancement in multimodal LLMs (MLLMs) has demonstrated their remarkable capability to generate descriptive captions for input videos. However, these models suffer from factual inaccuracies in the generated descriptions, causing severe hallucination issues. While prior works have explored alleviating hallucinations for static images, jointly mitigating visual object and temporal action hallucinations for dynamic videos remains a challenging and unsolved task. To tackle this challenge, we propose a Self-Augmented Contrastive Alignment (SANTA) framework for enabling object and action faithfulness by exempting the spurious correlations and enforcing the emphasis on visual facts. SANTA employs a hallucinative self-augmentation scheme to identify the potential hallucinations that lie in the MLLM and transform the original captions to the contrasted negatives. Furthermore, we develop a tracklet-phrase contrastive alignment to match the regional objects and relation-guided actions with their corresponding visual and temporal phrases. Extensive experiments demonstrate that SANTA outperforms existing methods in alleviating object and action hallucinations, yielding superior performance on the hallucination examination benchmarks.
comment: IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) 2026. Project page: https://kpc0810.github.io/santa/
☆ ClusterFusion: Hybrid Clustering with Embedding Guidance and LLM Adaptation
Text clustering is a fundamental task in natural language processing, yet traditional clustering algorithms with pre-trained embeddings often struggle in domain-specific contexts without costly fine-tuning. Large language models (LLMs) provide strong contextual reasoning, yet prior work mainly uses them as auxiliary modules to refine embeddings or adjust cluster boundaries. We propose ClusterFusion, a hybrid framework that instead treats the LLM as the clustering core, guided by lightweight embedding methods. The framework proceeds in three stages: embedding-guided subset partition, LLM-driven topic summarization, and LLM-based topic assignment. This design enables direct incorporation of domain knowledge and user preferences, fully leveraging the contextual adaptability of LLMs. Experiments on three public benchmarks and two new domain-specific datasets demonstrate that ClusterFusion not only achieves state-of-the-art performance on standard tasks but also delivers substantial gains in specialized domains. To support future work, we release our newly constructed dataset and results on all benchmarks.
♻ ☆ Athena: Enhancing Multimodal Reasoning with Data-efficient Process Reward Models
We present Athena-PRM, a multimodal process reward model (PRM) designed to evaluate the reward score for each step in solving complex reasoning problems. Developing high-performance PRMs typically demands significant time and financial investment, primarily due to the necessity for step-level annotations of reasoning steps. Conventional automated labeling methods, such as Monte Carlo estimation, often produce noisy labels and incur substantial computational costs. To efficiently generate high-quality process-labeled data, we propose leveraging prediction consistency between weak and strong completers as a criterion for identifying reliable process labels. Remarkably, Athena-PRM demonstrates outstanding effectiveness across various scenarios and benchmarks with just 5,000 samples. Furthermore, we also develop two effective strategies to improve the performance of PRMs: ORM initialization and up-sampling for negative data. We validate our approach in three specific scenarios: verification for test time scaling, direct evaluation of reasoning step correctness, and reward ranked fine-tuning. Our Athena-PRM consistently achieves superior performance across multiple benchmarks and scenarios. Notably, when using Qwen2.5-VL-7B as the policy model, Athena-PRM enhances performance by 10.2 points on WeMath and 7.1 points on MathVista for test time scaling. Furthermore, Athena-PRM sets the state-of-the-art (SoTA) results in VisualProcessBench and outperforms the previous SoTA by 3.9 F1-score, showcasing its robust capability to accurately assess the correctness of the reasoning step. Additionally, utilizing Athena-PRM as the reward model, we develop Athena-7B with reward ranked fine-tuning and outperforms baseline with a significant margin on five benchmarks.
♻ ☆ TreeRare: Syntax Tree-Guided Retrieval and Reasoning for Knowledge-Intensive Question Answering
In real practice, questions are typically complex and knowledge-intensive, requiring Large Language Models (LLMs) to recognize the multifaceted nature of the question and reason across multiple information sources. Iterative and adaptive retrieval, where LLMs decide when and what to retrieve based on their reasoning, has been shown to be a promising approach to resolve complex, knowledge-intensive questions. However, the performance of such retrieval frameworks is limited by the accumulation of reasoning errors and misaligned retrieval results. To overcome these limitations, we propose TreeRare (Syntax Tree-Guided Retrieval and Reasoning), a framework that utilizes syntax trees to guide information retrieval and reasoning for question answering. Following the principle of compositionality, TreeRare traverses the syntax tree in a bottom-up fashion, and in each node, it generates subcomponent-based queries and retrieves relevant passages to resolve localized uncertainty. A subcomponent question answering module then synthesizes these passages into concise, context-aware evidence. Finally, TreeRare aggregates the evidence across the tree to form a final answer. Experiments across five question answering datasets involving ambiguous or multi-hop reasoning demonstrate that TreeRare achieves substantial improvements over existing state-of-the-art methods.
♻ ☆ SO-Bench: A Structural Output Evaluation of Multimodal LLMs
Multimodal large language models (MLLMs) are increasingly deployed in real-world, agentic settings where outputs must not only be correct, but also conform to predefined data schemas. Despite recent progress in structured generation in textual domain, there is still no benchmark that systematically evaluates schema-grounded information extraction and reasoning over visual inputs. In this work, we conduct a comprehensive study of visual structural output capabilities for MLLMs with our carefully designed SO-Bench benchmark. Covering four visual domains, including UI screens, natural images, documents, and charts, SO-Bench is built from over 6.5K diverse JSON schemas and 1.8K curated image-schema pairs with human-verified quality. Benchmarking experiments on open-sourced and frontier proprietary models reveal persistent gaps in predicting accurate, schema compliant outputs, highlighting the need for better multimodal structured reasoning. Beyond benchmarking, we further conduct training experiments to largely improve the model's structured output capability. We plan to make the benchmark available to the community.
comment: v2 preprint. Fixed some typos, add a discussion about limitation, provide pseudo-codes for eval
♻ ☆ Massively Multilingual Adaptation of Large Language Models Using Bilingual Translation Data
This paper investigates a critical design decision in the practice of massively multilingual continual pre-training -- the inclusion of parallel data. Specifically, we study the impact of bilingual translation data for massively multilingual language adaptation of the Llama3 family of models to 500 languages. To this end, we construct the MaLA bilingual translation corpus, containing data from more than 2,500 language pairs. Subsequently, we develop the EMMA-500 Llama 3 suite of four massively multilingual models -- continually pre-trained from the Llama 3 family of base models extensively on diverse data mixes up to 671B tokens -- and explore the effect of continual pre-training with or without bilingual translation data. Comprehensive evaluation across 7 tasks and 12 benchmarks demonstrates that bilingual data tends to enhance language transfer and performance, particularly for low-resource languages. We open-source the MaLA corpus, EMMA-500 Llama 3 suite artefacts, code, and model generations.
comment: EMMA-500 Gen 2; refer to Gen 1 in arXiv:2409.17892
♻ ☆ QA-LIGN: Aligning LLMs through Constitutionally Decomposed QA EMNLP 2025
Alignment of large language models (LLMs) with principles like helpfulness, honesty, and harmlessness typically relies on scalar rewards that obscure which objectives drive the training signal. We introduce QA-LIGN, which decomposes monolithic rewards into interpretable principle-specific evaluations through structured natural language programs. Models learn through a draft, critique, and revise pipeline, where symbolic evaluation against the rubrics provides transparent feedback for both initial and revised responses during GRPO training. Applied to uncensored Llama-3.1-8B-Instruct, QA-LIGN reduces attack success rates by up to 68.7% while maintaining a 0.67% false refusal rate, achieving Pareto optimal safety-helpfulness performance and outperforming both DPO and GRPO with state-of-the-art reward models given equivalent training. These results demonstrate that making reward signals interpretable and modular improves alignment effectiveness, suggesting transparency enhances LLM safety.
comment: Findings of the Association for Computational Linguistics: EMNLP 2025, pages 20619-20642, Suzhou, China
♻ ☆ PUCP-Metrix: An Open-source and Comprehensive Toolkit for Linguistic Analysis of Spanish Texts EACL
Linguistic features remain essential for interpretability and tasks that involve style, structure, and readability, but existing Spanish tools offer limited coverage. We present PUCP-Metrix, an open-source and comprehensive toolkit for linguistic analysis of Spanish texts. PUCP-Metrix includes 182 linguistic metrics spanning lexical diversity, syntactic and semantic complexity, cohesion, psycholinguistics, and readability. It enables fine-grained, interpretable text analysis. We evaluate its usefulness on Automated Readability Assessment and Machine-Generated Text Detection, showing competitive performance compared to an existing repository and strong neural baselines. PUCP-Metrix offers a comprehensive and extensible resource for Spanish, supporting diverse NLP applications.
comment: 1 figure, Submitted to EACL Demo track (under review)
♻ ☆ LORE: A Large Generative Model for Search Relevance
Achievement. We introduce LORE, a systematic framework for Large Generative Model-based relevance in e-commerce search. Deployed and iterated over three years, LORE achieves a cumulative +27\% improvement in online GoodRate metrics. This report shares the valuable experience gained throughout its development lifecycle, spanning data, features, training, evaluation, and deployment. Insight. While existing works apply Chain-of-Thought (CoT) to enhance relevance, they often hit a performance ceiling. We argue this stems from treating relevance as a monolithic task, lacking principled deconstruction. Our key insight is that relevance comprises distinct capabilities: knowledge and reasoning, multi-modal matching, and rule adherence. We contend that a qualitative-driven decomposition is essential for breaking through current performance bottlenecks. Contributions. LORE provides a complete blueprint for the LLM relevance lifecycle. Key contributions include: (1) A two-stage training paradigm combining progressive CoT synthesis via SFT with human preference alignment via RL. (2) A comprehensive benchmark, RAIR, designed to evaluate these core capabilities. (3) A query frequency-stratified deployment strategy that efficiently transfers offline LLM capabilities to the online system. LORE serves as both a practical solution and a methodological reference for other vertical domains.
♻ ☆ EMMA-500: Enhancing Massively Multilingual Adaptation of Large Language Models
In this work, we introduce EMMA-500, a large-scale multilingual language model continue-trained on texts across 546 languages designed for enhanced multilingual performance, focusing on improving language coverage for low-resource languages. To facilitate continual pre-training, we compile the MaLA corpus, a comprehensive multilingual dataset enriched with curated datasets across diverse domains. Leveraging this corpus, we conduct extensive continual pre-training of the Llama 2 7B model, resulting in EMMA-500, which demonstrates robust performance across a wide collection of benchmarks, including a comprehensive set of multilingual tasks. Our results highlight the effectiveness of continual pre-training in expanding large language models' language capacity, particularly for underrepresented languages, demonstrating significant gains in cross-lingual transfer, task generalization, and language adaptability. We release the MaLA corpus, EMMA-500 model weights, scripts, and model generations.
♻ ☆ SignBind-LLM: Multi-Stage Modality Fusion for Sign Language Translation
Despite progress in gloss-free Sign Language Translation (SLT), traditional single modality end-to-end approaches consistently fail on two critical components of natural signing: the precise recognition of high-speed fingerspelling and the integration of asynchronous non-manual cues from the face. Recent progress in SLT with Large Language Models has side stepped this challenge, forcing a single network to learn these simultaneously resulting in poor performance when tasked with translating crucial information such as names, places, and technical terms. We introduce SignBind-LLM, a modular framework designed to overcome these limitations. Our approach employs separate, specialized predictors for continuous signing, fingerspelling, and lipreading. Each expert network first decodes its specific modality into a sequence of tokens. These parallel streams are then fused by a lightweight transformer that resolves temporal misalignments before passing the combined representation to a Large Language Model (LLM) for final sentence generation. Our method establishes a new state-of-the-art on the How2Sign, ChicagoFSWildPlus, and BOBSL datasets with a BLEU-4 score of 22.1, 73.2% letter accuracy and BLEU-4 score of 6.8 respectively. These results validate our core hypothesis: isolating and solving distinct recognition tasks before fusion provides a more powerful and effective pathway to robust, high-fidelity sign language translation.
♻ ☆ HUME: Measuring the Human-Model Performance Gap in Text Embedding Tasks ICLR 2026
Comparing human and model performance offers a valuable perspective for understanding the strengths and limitations of embedding models, highlighting where they succeed and where they fail to capture meaning and nuance. However, such comparisons are rarely made, as human performance on embedding tasks is difficult to measure. To fill this gap, we introduce HUME: Human Evaluation Framework for Text Embeddings. While frameworks like MTEB provide broad model evaluation, they lack reliable estimates of human performance, limiting the interpretability of model scores. We measure human performance across 16 MTEB datasets spanning reranking, classification, clustering, and semantic textual similarity across linguistically diverse high- and low-resource languages. Humans achieve an average performance of 77.6% compared to 80.1% for the best embedding model, though with substantial variation: models reach high performance on some datasets while struggling on notably low-resource languages. Our human annotations also reveal multiple dataset issues. We additionally benchmark nine LLMs as annotators on reranking, classification, and STS tasks, finding that they fall short of human performance (76.1% vs. 81.2%) despite offering scalability advantages. We provide human performance baselines, insights into task difficulty patterns, and an extensible evaluation framework that enables a more meaningful interpretation of results and informs the development of both models and benchmarks. Our code, dataset, and leaderboard are publicly available at https://github.com/embeddings-benchmark/mteb.
comment: Submitted to ICLR 2026
♻ ☆ Large language models can learn and generalize steganographic chain-of-thought under process supervision NeurIPS 2025
Chain-of-thought (CoT) reasoning not only enhances large language model performance but also provides critical insights into decision-making processes, marking it as a useful tool for monitoring model intent and planning. However, recent works have shown that banning the mention of a specific example of reward hacking causes obfuscation of the undesired reasoning traces but the persistence of the undesired behavior, threatening the reliability of CoT monitoring. We provide an extension to these results with regard to the ability of models to learn a specific type of obfuscated reasoning: steganography. First, we show that penalizing the use of specific strings within load-bearing reasoning traces causes models to substitute alternative strings. Crucially, this does not alter the underlying method by which the model performs the task, demonstrating that the model can learn to steganographically encode its reasoning.We further demonstrate that models can generalize an encoding scheme. When the penalized strings belong to an overarching class, the model learns not only to substitute strings seen in training, but also develops a general encoding scheme for all members of the class which it can apply to held-out testing strings.
comment: 10 pages main text, 3 figures main text, 17 pages supplementary material, 1 figure supplementary material, accepted at NeurIPS 2025
♻ ☆ On-Policy Optimization with Group Equivalent Preference for Multi-Programming Language Understanding
Large language models (LLMs) achieve remarkable performance in code generation tasks. However, a significant performance disparity persists between popular programming languages (e.g., Python, C++) and others. To address this capability gap, we leverage the code translation task to train LLMs, thereby facilitating the transfer of coding proficiency across diverse programming languages. Moreover, we introduce OORL for training, a novel reinforcement learning (RL) framework that integrates on-policy and off-policy strategies. Within OORL, on-policy RL is applied during code translation, guided by a rule-based reward signal derived from unit tests. Complementing this coarse-grained rule-based reward, we propose Group Equivalent Preference Optimization (GEPO), a novel preference optimization method. Specifically, GEPO trains the LLM using intermediate representations (IRs) groups. LLMs can be guided to discern IRs equivalent to the source code from inequivalent ones, while also utilizing signals about the mutual equivalence between IRs within the group. This process allows LLMs to capture nuanced aspects of code functionality. By employing OORL for training with code translation tasks, LLMs improve their recognition of code functionality and their understanding of the relationships between code implemented in different languages. Extensive experiments demonstrate that our OORL for LLMs training with code translation tasks achieves significant performance improvements on code benchmarks across multiple programming languages.
♻ ☆ Human Mobility Datasets Enriched With Contextual and Social Dimensions
In this resource paper, we present two publicly available datasets of semantically enriched human trajectories, together with the pipeline to build them. The trajectories are publicly available GPS traces retrieved from OpenStreetMap. Each dataset includes contextual layers such as stops, moves, points of interest (POIs), inferred transportation modes, and weather data. A novel semantic feature is the inclusion of synthetic, realistic social media posts generated by Large Language Models (LLMs), enabling multimodal and semantic mobility analysis. The datasets are available in both tabular and Resource Description Framework (RDF) formats, supporting semantic reasoning and FAIR data practices. They cover two structurally distinct, large cities: Paris and New York. Our open source reproducible pipeline allows for dataset customization, while the datasets support research tasks such as behavior modeling, mobility prediction, knowledge graph construction, and LLM-based applications. To our knowledge, our resource is the first to combine real-world movement, structured semantic enrichment, LLM-generated text, and semantic web compatibility in a reusable framework.
comment: 5 pages, 3 figures, 1 table
♻ ☆ Beyond the Exploration-Exploitation Trade-off: A Hidden State Approach for LLM Reasoning in RLVR
A prevailing view in Reinforcement Learning with Verifiable Rewards (RLVR) interprets recent progress through the lens of an exploration-exploitation trade-off, a perspective largely shaped by token-level metrics. We re-examine this perspective, proposing that this perceived trade-off may not be a fundamental constraint but rather an artifact of the measurement level. To investigate this, we shift the analysis to the semantically rich hidden-state space, adopting Effective Rank (ER) to quantify exploration and proposing its novel first- and second-order derivatives, named ER Velocity and ER Acceleration, to capture exploitation dynamics. Our analysis reveals that in the semantic space, exploration and exploitation could be decoupled (Sec.~4). This finding reveals an opportunity to enhance both capacities simultaneously. This insight motivates our method, Velocity-Exploiting Rank-Learning (VERL), the first to operationalize the principle of synergistic exploration-exploitation enhancement by directly shaping the RL advantage function. The key innovation is leveraging the theoretically stable ERA as a predictive meta-controller to create a synergistic, dual-channel incentive structure. Instead of forcing a trade-off, VERL prospectively amplifies rewards for exploration to preempt overconfidence and reinforces exploitative gains to consolidate reasoning. Experiments across diverse LLMs and reasoning benchmarks show consistent gains, including up to 21.4% absolute accuracy improvement on the challenging Gaokao 2024 dataset.
♻ ☆ MMAG: Mixed Memory-Augmented Generation for Large Language Models Applications
Large Language Models (LLMs) excel at generating coherent text within a single prompt but fall short in sustaining relevance, personalization, and continuity across extended interactions. Human communication, however, relies on multiple forms of memory, from recalling past conversations to adapting to personal traits and situational context. This paper introduces the Mixed Memory-Augmented Generation (MMAG) pattern, a framework that organizes memory for LLM-based agents into five interacting layers: conversational, long-term user, episodic and event-linked, sensory and context-aware, and short-term working memory. Drawing inspiration from cognitive psychology, we map these layers to technical components and outline strategies for coordination, prioritization, and conflict resolution. We demonstrate the approach through its implementation in the Heero conversational agent, where encrypted long-term bios and conversational history already improve engagement and retention. We further discuss implementation concerns around storage, retrieval, privacy, and latency, and highlight open challenges. MMAG provides a foundation for building memory-rich language agents that are more coherent, proactive, and aligned with human needs.
♻ ☆ Grounding Large Language Models in Clinical Evidence: A Retrieval-Augmented Generation System for Querying UK NICE Clinical Guidelines
This paper presents the development and evaluation of a Retrieval-Augmented Generation (RAG) system for querying the United Kingdom's National Institute for Health and Care Excellence (NICE) clinical guidelines using Large Language Models (LLMs). The extensive length and volume of these guidelines can impede their utilisation within a time-constrained healthcare system, a challenge this project addresses through the creation of a system capable of providing users with precisely matched information in response to natural language queries. The system's retrieval architecture, composed of a hybrid embedding mechanism, was evaluated against a corpus of 10,195 text chunks derived from three hundred guidelines. It demonstrates high performance, with a Mean Reciprocal Rank (MRR) of 0.814, a Recall of 81% at the first chunk and of 99.1% within the top ten retrieved chunks, when evaluated on 7901 queries. The most significant impact of the RAG system was observed during the generation phase. When evaluated on a manually curated dataset of seventy question-answer pairs, RAG-enhanced models showed substantial gains in performance. Faithfulness, the measure of whether an answer is supported by the source text, was increased by 64.7 percentage points to 99.5% for the RAG-enhanced O4-Mini model and significantly outperformed the medical-focused Meditron3-8B LLM, which scored 43%. Clinical evaluation by seven Subject Matter Experts (SMEs) further validated these findings, with GPT-4.1 achieving 98.7% accuracy while reducing unsafe responses by 67% compared to O4-Mini (from 3.0 to 1.0 per evaluator). This study thus establishes RAG as an effective, reliable, and scalable approach for applying generative AI in healthcare, enabling cost-effective access to medical guidelines.
♻ ☆ Optimizing Fine-Tuning through Advanced Initialization Strategies for Low-Rank Adaptation
The rapid development of parameter-efficient fine-tuning methods has noticeably improved the efficiency of adapting large language models. Among these, LoRA has gained widespread popularity due to its strong balance of effectiveness and parameter efficiency. However, LoRA relies on initializing two low-rank matrices whose product is zero, which limits its ability to effectively activate and leverage the original model weights-creating a potential bottleneck for optimal performance. To address this limitation, we propose \textbf{IniLoRA}, a novel initialization strategy that initializes the low-rank matrices to closely approximate the original model weights. Experimental results indicate that IniLoRA achieves better performance than LoRA across a range of models and tasks. Additionally, we introduce two variants, IniLoRA-$α$ and IniLoRA-$β$, both leveraging distinct initialization methods to enhance performance further.
♻ ☆ Jina-VLM: Small Multilingual Vision Language Model
We present Jina-VLM, a 2.4B parameter vision-language model that achieves state-of-the-art multilingual visual question answering among open 2B-scale VLMs. The model couples a SigLIP2 vision encoder with a Qwen3 language backbone through an attention-pooling connector that enables token-efficient processing of arbitrary-resolution images. The model achieves leading results on standard VQA benchmarks and multilingual evaluations while preserving competitive text-only performance. Model weights and code are publicly released at https://huggingface.co/jinaai/jina-vlm .
comment: 18 pages, 1-7 main content, 13-18 appendix for tables and dataset
♻ ☆ SeSE: A Structural Information-Guided Uncertainty Quantification Framework for Hallucination Detection in LLMs
Reliable uncertainty quantification (UQ) is essential for deploying large language models (LLMs) in safety-critical scenarios, as it enables them to abstain from responding when uncertain, thereby avoiding ``hallucinating'' falsehoods. However, state-of-the-art UQ methods primarily rely on semantic probability distributions or pairwise distances, overlooking latent semantic structural information that could enable more precise uncertainty estimates. This paper presents Semantic Structural Entropy (SeSE), a principled UQ framework that quantifies the inherent semantic uncertainty of LLMs from a structural information perspective for hallucination detection. SeSE operates in a zero-resource manner and is applicable to both open- and closed-source LLMs, making it an ``off-the-shelf" solution for new models and tasks. Specifically, to effectively model semantic spaces, we first develop an adaptively sparsified directed semantic graph construction algorithm that captures directional semantic dependencies while automatically pruning unnecessary connections that introduce negative interference. We then exploit latent semantic structural information through hierarchical abstraction: SeSE is defined as the structural entropy of the optimal semantic encoding tree, formalizing intrinsic uncertainty within semantic spaces after optimal compression. A higher SeSE value corresponds to greater uncertainty, indicating that LLMs are highly likely to generate hallucinations. In addition, to enhance fine-grained UQ in long-form generation, we extend SeSE to quantify the uncertainty of individual claims by modeling their random semantic interactions, providing theoretically explicable hallucination detection. Extensive experiments across 29 model-dataset combinations show that SeSE significantly outperforms advanced UQ baselines.
comment: 14 pages of main text and 10 pages of appendices;Submit to IEEE TKDE
♻ ☆ Grounding LLM Reasoning with Knowledge Graphs
Large Language Models (LLMs) excel at generating natural language answers, yet their outputs often remain unverifiable and difficult to trace. Knowledge Graphs (KGs) offer a complementary strength by representing entities and their relationships in structured form, providing a foundation for more reliable reasoning. We propose a novel framework that integrates LLM reasoning with KGs by linking each step of the reasoning process to graph-structured data. This grounding turns intermediate ``thoughts'' into interpretable traces that remain consistent with external knowledge. Our approach incorporates multiple reasoning strategies, Chain-of-Thought (CoT), Tree-of-Thought (ToT), and Graph-of-Thought (GoT), and is evaluated on GRBench, a benchmark for domain-specific graph reasoning. Our experiments show state-of-the-art (SOTA) performance, with at least 26.5\% improvement over CoT baselines. Beyond accuracy, we analyze how step depth, branching structure, and model size influence reasoning quality, offering insights into the conditions that support effective reasoning. Together, these contributions highlight how grounding LLMs in structured knowledge enables both higher accuracy and greater interpretability in complex reasoning tasks.
♻ ☆ Control Illusion: The Failure of Instruction Hierarchies in Large Language Models AAAI-26
Large language models (LLMs) are increasingly deployed with hierarchical instruction schemes, where certain instructions (e.g., system-level directives) are expected to take precedence over others (e.g., user messages). Yet, we lack a systematic understanding of how effectively these hierarchical control mechanisms work. We introduce a systematic evaluation framework based on constraint prioritization to assess how well LLMs enforce instruction hierarchies. Our experiments across six state-of-the-art LLMs reveal that models struggle with consistent instruction prioritization, even for simple formatting conflicts. We find that the widely-adopted system/user prompt separation fails to establish a reliable instruction hierarchy, and models exhibit strong inherent biases toward certain constraint types regardless of their priority designation. Interestingly, we also find that societal hierarchy framings (e.g., authority, expertise, consensus) show stronger influence on model behavior than system/user roles, suggesting that pretraining-derived social structures function as latent behavioral priors with potentially greater impact than post-training guardrails.
comment: Accepted to AAAI-26 Main Technical Track Proceedings
♻ ☆ Bridging Online Behavior and Clinical Insight: A Longitudinal LLM-based Study of Suicidality on YouTube Reveals Novel Digital Markers
Suicide remains a leading cause of death in Western countries. As social media becomes central to daily life, digital footprints offer valuable insight into suicidal behavior. Focusing on individuals who attempted suicide while uploading videos to their channels, we investigate: How do linguistic patterns on YouTube reflect suicidal behavior, and how do these patterns align with or differ from expert knowledge? We examined linguistic changes around suicide attempts and compared individuals who attempted suicide while actively uploading to their channel with three control groups: those with prior attempts, those experiencing major life events, and matched individuals from the broader cohort. Applying complementary bottom-up, hybrid, and expert-driven approaches, we analyzed a novel longitudinal dataset of 181 suicide-attempt channels and 134 controls. In the bottom-up analysis, LLM-based topic-modeling identified 166 topics; five were linked to suicide attempts, two also showed attempt-related temporal changes (Mental Health Struggles, $OR = 1.74$; YouTube Engagement, $OR = 1.67$; $p < .01$). In the hybrid approach, clinical experts reviewed LLM-derived topics and flagged 19 as suicide-related. However, none showed significant effects beyond those identified bottom-up. YouTube Engagement, a platform-specific indicator, was not flagged, underscoring the value of bottom-up discovery. A top-down psychological assessment of suicide narratives revealed differing motivations: individuals describing prior attempts aimed to help others ($β=-1.69$, $p<.01$), whereas those attempted during the uploading period emphasized personal recovery ($β=1.08$, $p<.01$). By integrating these approaches, we offer a nuanced understanding of suicidality, bridging digital behavior and clinical insights.
♻ ☆ ChatGPT for President! Presupposed content in politicians versus GPT-generated texts
This study examines ChatGPT-4's capability to replicate linguistic strategies used in political discourse, focusing on its potential for manipulative language generation. As large language models become increasingly popular for text generation, concerns have grown regarding their role in spreading fake news and propaganda. This research compares real political speeches with those generated by ChatGPT, emphasizing presuppositions (a rhetorical device that subtly influences audiences by packaging some content as already known at the moment of utterance, thus swaying opinions without explicit argumentation). Using a corpus-based pragmatic analysis, this study assesses how well ChatGPT can mimic these persuasive strategies. The findings reveal that although ChatGPT-generated texts contain many manipulative presuppositions, key differences emerge in their frequency, form, and function compared with those of politicians. For instance, ChatGPT often relies on change-of-state verbs used in fixed phrases, whereas politicians use presupposition triggers in more varied and creative ways. Such differences, however, are challenging to detect with the naked eye, underscoring the potential risks posed by large language models in political and public discourse.Using a corpus-based pragmatic analysis, this study assesses how well ChatGPT can mimic these persuasive strategies. The findings reveal that although ChatGPT-generated texts contain many manipulative presuppositions, key differences emerge in their frequency, form, and function compared with those of politicians. For instance, ChatGPT often relies on change-of-state verbs used in fixed phrases, whereas politicians use presupposition triggers in more varied and creative ways. Such differences, however, are challenging to detect with the naked eye, underscoring the potential risks posed by large language models in political and public discourse.
comment: 36 pages, 6 figures
♻ ☆ Which Type of Students can LLMs Act? Investigating Authentic Simulation with Graph-based Human-AI Collaborative System
While rapid advances in large language models (LLMs) are reshaping data-driven intelligent education, accurately simulating students remains an important but challenging bottleneck for scalable educational data collection, evaluation, and intervention design. However, current works are limited by scarce real interaction data, costly expert evaluation for realism, and a lack of large-scale, systematic analyses of LLMs ability in simulating students. We address this gap by presenting a three-stage LLM-human collaborative pipeline to automatically generate and filter high-quality student agents. We leverage a two-round automated scoring validated by human experts and deploy a score propagation module to obtain more consistent scores across the student similarity graph. Experiments show that combining automated scoring, expert calibration, and graph-based propagation yields simulated student that more closely track authentication by human judgments. We then analyze which profiles and behaviors are simulated more faithfully, supporting subsequent studies on personalized learning and educational assessment.
comment: This work has been submitted to AI Open for possible publication
♻ ☆ ThaiOCRBench: A Task-Diverse Benchmark for Vision-Language Understanding in Thai AACL 2025
We present ThaiOCRBench, the first comprehensive benchmark for evaluating vision-language models (VLMs) on Thai text-rich visual understanding tasks. Despite recent progress in multimodal modeling, existing benchmarks predominantly focus on high-resource languages, leaving Thai underrepresented, especially in tasks requiring document structure understanding. ThaiOCRBench addresses this gap by offering a diverse, human-annotated dataset comprising 2,808 samples across 13 task categories. We evaluate a wide range of state-of-the-art VLMs in a zero-shot setting, spanning both proprietary and open-source systems. Results show a significant performance gap, with proprietary models (e.g., Gemini 2.5 Pro) outperforming open-source counterparts. Notably, fine-grained text recognition and handwritten content extraction exhibit the steepest performance drops among open-source models. Through detailed error analysis, we identify key challenges such as language bias, structural mismatch, and hallucinated content. ThaiOCRBench provides a standardized framework for assessing VLMs in low-resource, script-complex settings, and provides actionable insights for improving Thai-language document understanding.
comment: Accepted at IJCNLP-AACL 2025 (Main). This version includes the corrected Table 2 and an updated conclusion regarding the deletion count of the Gemma model
♻ ☆ TaoSR1: The Thinking Model for E-commerce Relevance Search
Query-product relevance prediction is a core task in e-commerce search. BERT-based models excel at semantic matching but lack complex reasoning capabilities. While Large Language Models (LLMs) are explored, most still use discriminative fine-tuning or distill to smaller models for deployment. We propose a framework to directly deploy LLMs for this task, addressing key challenges: Chain-of-Thought (CoT) error accumulation, discriminative hallucination, and deployment feasibility. Our framework, TaoSR1, involves three stages: (1) Supervised Fine-Tuning (SFT) with CoT to instill reasoning; (2) Offline sampling with a pass@N strategy and Direct Preference Optimization (DPO) to improve generation quality; and (3) Difficulty-based dynamic sampling with Group Relative Policy Optimization (GRPO) to mitigate discriminative hallucination. Additionally, post-CoT processing and a cumulative probability-based partitioning method enable efficient online deployment. TaoSR1 significantly outperforms baselines on offline datasets and achieves substantial gains in online side-by-side human evaluations, introducing a novel paradigm for applying CoT reasoning to relevance classification.
♻ ☆ Data Mixing Can Induce Phase Transitions in Knowledge Acquisition NeurIPS'25
Large Language Models (LLMs) are typically trained on data mixtures: most data come from web scrapes, while a small portion is curated from high-quality sources with dense domain-specific knowledge. In this paper, we show that when training LLMs on such data mixtures, knowledge acquisition from knowledge-dense datasets, unlike training exclusively on knowledge-dense data (arXiv:2404.05405), does not always follow a smooth scaling law but can exhibit phase transitions with respect to the mixing ratio and model size. Through controlled experiments on a synthetic biography dataset mixed with web-scraped data, we demonstrate that: (1) as we increase the model size to a critical value, the model suddenly transitions from memorizing very few to most of the biographies; (2) below a critical mixing ratio, the model memorizes almost nothing even with extensive training, but beyond this threshold, it rapidly memorizes more biographies. We attribute these phase transitions to a capacity allocation phenomenon: a model with bounded capacity must act like a knapsack problem solver to minimize the overall test loss, and the optimal allocation across datasets can change discontinuously as the model size or mixing ratio varies. We formalize this intuition in an information-theoretic framework and reveal that these phase transitions are predictable, with the critical mixing ratio following a power-law relationship with the model size. Our findings highlight a concrete case where a good mixing recipe for large models may not be optimal for small models, and vice versa.
comment: NeurIPS'25 Spotlight
♻ ☆ Ground-Truth Subgraphs for Better Training and Evaluation of Knowledge Graph Augmented LLMs
Retrieval of information from graph-structured knowledge bases represents a promising direction for improving the factuality of LLMs. While various solutions have been proposed, a comparison of methods is difficult due to the lack of challenging QA datasets with ground-truth targets for graph retrieval. We present SynthKGQA, an LLM-powered framework for generating high-quality Knowledge Graph Question Answering datasets from any Knowledge Graph, providing the full set of ground-truth facts in the KG to reason over questions. We show how, in addition to enabling more informative benchmarking of KG retrievers, the data produced with SynthKGQA also allows us to train better models.We apply SynthKGQA to Wikidata to generate GTSQA, a new dataset designed to test zero-shot generalization abilities of KG retrievers with respect to unseen graph structures and relation types, and benchmark popular solutions for KG-augmented LLMs on it.
♻ ☆ An Investigation of Robustness of LLMs in Mathematical Reasoning: Benchmarking with Mathematically-Equivalent Transformation of Advanced Mathematical Problems
In this paper, we introduce a systematic framework beyond conventional method to assess LLMs' mathematical-reasoning robustness by stress-testing them on advanced math problems that are mathematically equivalent but with linguistic and parametric variation. These transformations allow us to measure the sensitivity of LLMs to non-mathematical perturbations, thereby enabling a more accurate evaluation of their mathematical reasoning capabilities. Using this new evaluation methodology, we created PutnamGAP, a new benchmark dataset with multiple mathematically-equivalent variations of competition-level math problems. With the new dataset, we evaluate multiple families of representative LLMs and examine their robustness. Across 18 commercial and open-source models we observe sharp performance degradation on the variants. OpenAI's flagship reasoning model, O3, scores 51.5% on the originals but drops by 4.7 percentage points on surface-renaming variants, and by 12.9 percentage points on parametric variants, while smaller models fare far worse. Overall, the results show that the proposed new evaluation methodology is effective for deepening our understanding of the robustness of LLMs and generating new insights for further improving their mathematical reasoning capabilities.
comment: 34 pages, 9 figures
♻ ☆ Scaling Towards the Information Boundary of Instruction Sets: The Infinity Instruct Subject Technical Report
Instruction tuning has become a foundation for unlocking the capabilities of large-scale pretrained models and improving their performance on complex tasks. Thus, the construction of high-quality instruction datasets is crucial for enhancing model performance and generalizability. Although current instruction datasets have reached tens of millions of samples, models finetuned on them may still struggle with complex instruction following and tasks in rare domains. This is primarily due to limited expansion in both ``coverage'' (coverage of task types and knowledge areas) and ``depth'' (instruction complexity) of the instruction set. To address this issue, we propose a systematic instruction data construction framework, which integrates a hierarchical tagging system, an informative seed selection algorithm, an evolutionary data synthesis process, and a model deficiency diagnosis with targeted data generation. These components form an iterative closed-loop to continuously enhance the coverage and depth of instruction data. Based on this framework, we construct Infinity Instruct Subject, a high-quality dataset containing $\sim$1.5 million instructions. Experiments on multiple foundation models and benchmark tasks demonstrate its effectiveness in improving instruction-following capabilities. Further analyses suggest that Infinity Instruct Subject shows enlarged coverage and depth compared to comparable synthesized instruction datasets. Our work lays a theoretical and practical foundation for the efficient, continuous evolution of instruction datasets, moving from data quantity expansion to qualitative improvement.
♻ ☆ In-Context Representation Hijacking
We introduce $\textbf{Doublespeak}$, a simple in-context representation hijacking attack against large language models (LLMs). The attack works by systematically replacing a harmful keyword (e.g., bomb) with a benign token (e.g., carrot) across multiple in-context examples, provided a prefix to a harmful request. We demonstrate that this substitution leads to the internal representation of the benign token converging toward that of the harmful one, effectively embedding the harmful semantics under a euphemism. As a result, superficially innocuous prompts (e.g., "How to build a carrot?") are internally interpreted as disallowed instructions (e.g., "How to build a bomb?"), thereby bypassing the model's safety alignment. We use interpretability tools to show that this semantic overwrite emerges layer by layer, with benign meanings in early layers converging into harmful semantics in later ones. Doublespeak is optimization-free, broadly transferable across model families, and achieves strong success rates on closed-source and open-source systems, reaching 74% ASR on Llama-3.3-70B-Instruct with a single-sentence context override. Our findings highlight a new attack surface in the latent space of LLMs, revealing that current alignment strategies are insufficient and should instead operate at the representation level.
♻ ☆ Semi-Supervised Synthetic Data Generation with Fine-Grained Relevance Control for Short Video Search Relevance Modeling AAAI 2026
Synthetic data is widely adopted in embedding models to ensure diversity in training data distributions across dimensions such as difficulty, length, and language. However, existing prompt-based synthesis methods struggle to capture domain-specific data distributions, particularly in data-scarce domains, and often overlook fine-grained relevance diversity. In this paper, we present a Chinese short video dataset with 4-level relevance annotations, filling a critical resource void. Further, we propose a semi-supervised synthetic data pipeline where two collaboratively trained models generate domain-adaptive short video data with controllable relevance labels. Our method enhances relevance-level diversity by synthesizing samples for underrepresented intermediate relevance labels, resulting in a more balanced and semantically rich training data set. Extensive offline experiments show that the embedding model trained on our synthesized data outperforms those using data generated based on prompting or vanilla supervised fine-tuning(SFT). Moreover, we demonstrate that incorporating more diverse fine-grained relevance levels in training data enhances the model's sensitivity to subtle semantic distinctions, highlighting the value of fine-grained relevance supervision in embedding learning. In the search enhanced recommendation pipeline of Douyin's dual-column scenario, through online A/B testing, the proposed model increased click-through rate(CTR) by 1.45%, raised the proportion of Strong Relevance Ratio (SRR) by 4.9%, and improved the Image User Penetration Rate (IUPR) by 0.1054%.
comment: Submitted to AAAI 2026
♻ ☆ Evaluating Autoformalization Robustness via Semantically Similar Paraphrasing
Large Language Models (LLMs) have recently emerged as powerful tools for autoformalization. Despite their impressive performance, these models can still struggle to produce grounded and verifiable formalizations. Recent work in text-to-SQL, has revealed that LLMs can be sensitive to paraphrased natural language (NL) inputs, even when high degrees of semantic fidelity are preserved (Safarzadeh, Oroojlooyjadid, and Roth 2025). In this paper, we investigate this claim in the autoformalization domain. Specifically, we evaluate the robustness of LLMs generating formal proofs with semantically similar paraphrased NL statements by measuring semantic and compilation validity. Using the formal benchmarks MiniF2F (Zheng, Han, and Polu 2021) and Lean 4 version of ProofNet (Xin et al. 2024), and two modern LLMs, we generate paraphrased natural language statements and cross-evaluate these statements across both models. The results of this paper reveal performance variability across paraphrased inputs, demonstrating that minor shifts in NL statements can significantly impact model outputs.
♻ ☆ Probe-Rewrite-Evaluate: A Workflow for Reliable Benchmarks and Quantifying Evaluation Awareness
Large Language Models (LLMs) often exhibit significant behavioral shifts when they perceive a change from a real-world deployment context to a controlled evaluation setting, a phenomenon known as "evaluation awareness." This discrepancy poses a critical challenge for AI alignment, as benchmark performance may not accurately reflect a model's true safety and honesty. In this work, we systematically quantify these behavioral changes by manipulating the perceived context of prompts. We introduce a methodology that uses a linear probe to score prompts on a continuous scale from "test-like" to "deploy-like" and leverage an LLM rewriting strategy to shift these prompts towards a more natural, deployment-style context while preserving the original task. Using this method, we achieved a 30% increase in the average probe score across a strategic role-playing dataset after rewriting. Evaluating a suite of state-of-the-art models on these original and rewritten prompts, we find that rewritten "deploy-like" prompts induce a significant and consistent shift in behavior. Across all models, we observed an average increase in honest responses of 5.26% and a corresponding average decrease in deceptive responses of 12.40%. Furthermore, refusal rates increased by an average of 6.38%, indicating heightened safety compliance. Our findings demonstrate that evaluation awareness is a quantifiable and manipulable factor that directly influences LLM behavior, revealing that models are more prone to unsafe or deceptive outputs in perceived test environments. This underscores the urgent need for more realistic evaluation frameworks to accurately gauge true model alignment before deployment.
♻ ☆ Route-and-Reason: Scaling Large Language Model Reasoning with Reinforced Model Router
Chain-of-thought has been proven essential for enhancing the complex reasoning abilities of Large Language Models (LLMs), but it also leads to high computational costs. Recent advances have explored the method to route queries among multiple models and proved it as a promising approach. However, previous works directly operate at the task level, i.e., assigning user queries to suitable LLMs, which does not allow hybrid LLMs to truly collaborate on finer-grained sub-tasks. Collaboration at the level of intermediate reasoning steps (thoughts) could enable more efficient coordination, but it also poses significant challenges for router scheduling, placing immense demands on the quality of task decomposition and the precision of the router. To address this, we propose R2-Reasoner, a novel framework centered around a Reinforced Model Router designed to efficiently scale LLM reasoning. This router orchestrates collaboration across nine heterogeneous models, whose parameter scales range from less than 1B to hundreds of billions, by first breaking down a complex query into subtasks with a decomposer, and then assigning each subtask to the optimal model with a subtask allocator, balancing performance with cost. Training this router involves a two-stage alternating process for the decomposer and the allocator, integrating supervised fine-tuning with reinforcement learning to enable effective self-supervised refinement. Extensive experiments across six challenging reasoning benchmarks demonstrate that R2-Reasoner reduces API costs by 84.46% compared with state-of-the-art baselines while maintaining competitive reasoning accuracy. Our framework paves the way for the development of more scalable and efficient reasoning systems. Our code is open-source at https://anonymous.4open.science/r/R2_Reasoner.
♻ ☆ Nexus: Higher-Order Attention Mechanisms in Transformers
Transformers have achieved significant success across various domains, relying on self-attention to capture dependencies. However, the standard first-order attention mechanism is often limited by a low-rank bottleneck, struggling to capture intricate, multi-hop relationships within a single layer. In this paper, we propose the Nexus, a novel architecture designed to enhance representational power through a recursive framework. Unlike standard approaches that use static linear projections for Queries and Keys, Nexus dynamically refines these representations via nested self-attention mechanisms. Specifically, the Query and Key vectors are themselves outputs of inner attention loops, allowing tokens to aggregate global context and model high-order correlations \textit{prior} to the final attention computation. We enforce a parameter-efficient weight-sharing strategy across recursive steps, ensuring that this enhanced expressivity incurs $\mathcal{O}(1)$ additional parameters. We provide theoretical analysis demonstrating that our method breaks the linear bottleneck of standard attention. Empirically, Nexus outperforms standard Transformers on multiple benchmarks.
♻ ☆ FusionBench: A Unified Library and Comprehensive Benchmark for Deep Model Fusion
Deep model fusion is an emerging technique that unifies the predictions or parameters of several deep neural networks into a single better-performing model in a cost-effective and data-efficient manner. Although a variety of deep model fusion techniques have been introduced, their evaluations tend to be inconsistent and often inadequate to validate their effectiveness and robustness. We present FusionBench, the first benchmark and a unified library designed specifically for deep model fusion. Our benchmark consists of multiple tasks, each with different settings of models and datasets. This variety allows us to compare fusion methods across different scenarios and model scales. Additionally, FusionBench serves as a unified library for easy implementation and testing of new fusion techniques. FusionBench is open source and actively maintained, with community contributions encouraged. Homepage https://github.com/tanganke/fusion_bench
comment: Project homepage: https://github.com/tanganke/fusion_bench Online documentation: https://tanganke.github.io/fusion_bench
♻ ☆ Reversing Large Language Models for Efficient Training and Fine-Tuning
Large Language Models (LLMs) are known for their expensive and time-consuming training. Thus, oftentimes, LLMs are fine-tuned to address a specific task, given the pretrained weights of a pre-trained LLM considered a foundation model. In this work, we introduce memory-efficient, reversible architectures for LLMs, inspired by symmetric and symplectic differential equations, and investigate their theoretical properties. Different from standard, baseline architectures that store all intermediate activations, the proposed models use time-reversible dynamics to retrieve hidden states during backpropagation, relieving the need to store activations. This property allows for a drastic reduction in memory consumption, allowing for the processing of larger batch sizes for the same available memory, thereby offering improved throughput. In addition, we propose an efficient method for converting existing, non-reversible LLMs into reversible architectures through fine-tuning, rendering our approach practical for exploiting existing pre-trained models. Our results show comparable or improved performance on several datasets and benchmarks, on several LLMs, building a scalable and efficient path towards reducing the memory and computational costs associated with both training from scratch and fine-tuning of LLMs.
♻ ☆ Dual-branch Prompting for Multimodal Machine Translation
Multimodal Machine Translation (MMT) typically enhances text-only translation by incorporating aligned visual features. Despite the remarkable progress, state-of-the-art MMT approaches often rely on paired image-text inputs at inference and are sensitive to irrelevant visual noise, which limits their robustness and practical applicability. To address these issues, we propose D2P-MMT, a diffusion-based dual-branch prompting framework for robust vision-guided translation. Specifically, D2P-MMT requires only the source text and a reconstructed image generated by a pre-trained diffusion model, which naturally filters out distracting visual details while preserving semantic cues. During training, the model jointly learns from both authentic and reconstructed images using a dual-branch prompting strategy, encouraging rich cross-modal interactions. To bridge the modality gap and mitigate training-inference discrepancies, we introduce a distributional alignment loss that enforces consistency between the output distributions of the two branches. Extensive experiments on the Multi30K dataset demonstrate that D2P-MMT achieves superior translation performance compared to existing state-of-the-art approaches.
comment: This manuscript is currently under review at the ACM Transactions on Multimedia Computing, Communications, and Applications
Artificial Intelligence
☆ The Universal Weight Subspace Hypothesis
We show that deep neural networks trained across diverse tasks exhibit remarkably similar low-dimensional parametric subspaces. We provide the first large-scale empirical evidence that demonstrates that neural networks systematically converge to shared spectral subspaces regardless of initialization, task, or domain. Through mode-wise spectral analysis of over 1100 models - including 500 Mistral-7B LoRAs, 500 Vision Transformers, and 50 LLaMA-8B models - we identify universal subspaces capturing majority variance in just a few principal directions. By applying spectral decomposition techniques to the weight matrices of various architectures trained on a wide range of tasks and datasets, we identify sparse, joint subspaces that are consistently exploited, within shared architectures across diverse tasks and datasets. Our findings offer new insights into the intrinsic organization of information within deep networks and raise important questions about the possibility of discovering these universal subspaces without the need for extensive data and computational resources. Furthermore, this inherent structure has significant implications for model reusability, multi-task learning, model merging, and the development of training and inference-efficient algorithms, potentially reducing the carbon footprint of large-scale neural models.
comment: 37 pages
☆ DraCo: Draft as CoT for Text-to-Image Preview and Rare Concept Generation
Recent unified multimodal large language models (MLLMs) have shown impressive capabilities, incorporating chain-of-thought (CoT) reasoning for enhanced text-to-image generation. However, existing approaches remain limited, either treating the model merely as a standalone generator or relying on abstract textual planning. To this end, we propose Draft-as-CoT (DraCo), a novel interleaved reasoning paradigm that fully leverages both textual and visual contents in CoT for better planning and verification. Our method first generates a low-resolution draft image as preview, providing more concrete and structural visual planning and guidance. Then, we employ the model's inherent understanding capability to verify potential semantic misalignments between the draft and input prompt, and performs refinement through selective corrections with super-resolution. In this way, our approach addresses two fundamental challenges: the coarse-grained nature of textual planning and the difficulty in generating rare attribute combinations. To support training, we curate DraCo-240K, aiming to enhance three atomic capabilities spanning general correction, instance manipulation, and layout reorganization. Supported by DraCo-CFG, a specialized classifier-free guidance (CFG) strategy for interleaved reasoning, DraCo achieves a tremendous increase on GenEval (+8%), Imagine-Bench (+0.91), and GenEval++ (+3%), significantly outperforming direct generation and other generation methods empowered by CoT.
comment: Project Page: https://github.com/CaraJ7/DraCo
☆ ShadowDraw: From Any Object to Shadow-Drawing Compositional Art
We introduce ShadowDraw, a framework that transforms ordinary 3D objects into shadow-drawing compositional art. Given a 3D object, our system predicts scene parameters, including object pose and lighting, together with a partial line drawing, such that the cast shadow completes the drawing into a recognizable image. To this end, we optimize scene configurations to reveal meaningful shadows, employ shadow strokes to guide line drawing generation, and adopt automatic evaluation to enforce shadow-drawing coherence and visual quality. Experiments show that ShadowDraw produces compelling results across diverse inputs, from real-world scans and curated datasets to generative assets, and naturally extends to multi-object scenes, animations, and physical deployments. Our work provides a practical pipeline for creating shadow-drawing art and broadens the design space of computational visual art, bridging the gap between algorithmic design and artistic storytelling. Check out our project page https://red-fairy.github.io/ShadowDraw/ for more results and an end-to-end real-world demonstration of our pipeline!
comment: Project page: https://red-fairy.github.io/ShadowDraw/
☆ Semantic Soft Bootstrapping: Long Context Reasoning in LLMs without Reinforcement Learning
Long context reasoning in large language models (LLMs) has demonstrated enhancement of their cognitive capabilities via chain-of-thought (CoT) inference. Training such models is usually done via reinforcement learning with verifiable rewards (RLVR) in reasoning based problems, like math and programming. However, RLVR is limited by several bottlenecks, such as, lack of dense reward, and inadequate sample efficiency. As a result, it requires significant compute resources in post-training phase. To overcome these limitations, in this work, we propose \textbf{Semantic Soft Bootstrapping (SSB)}, a self-distillation technique, in which the same base language model plays the role of both teacher and student, but receives different semantic contexts about the correctness of its outcome at training time. The model is first prompted with a math problem and several rollouts are generated. From them, the correct and most common incorrect response are filtered, and then provided to the model in context to produce a more robust, step-by-step explanation with a verified final answer. This pipeline automatically curates a paired teacher-student training set from raw problem-answer data, without any human intervention. This generation process also produces a sequence of logits, which is what the student model tries to match in the training phase just from the bare question alone. In our experiment, Qwen2.5-3B-Instruct on GSM8K dataset via parameter-efficient fine-tuning. We then tested its accuracy on MATH500, and AIME2024 benchmarks. Our experiments show a jump of 10.6%, and 10% improvements in accuracy, respectively, over group relative policy optimization (GRPO), which is a commonly used RLVR algorithm. Our code is available at https://github.com/purbeshmitra/semantic-soft-bootstrapping, and the model, curated dataset is available at https://huggingface.co/purbeshmitra/semantic-soft-bootstrapping.
☆ TV2TV: A Unified Framework for Interleaved Language and Video Generation
Video generation models are rapidly advancing, but can still struggle with complex video outputs that require significant semantic branching or repeated high-level reasoning about what should happen next. In this paper, we introduce a new class of omni video-text models that integrate ideas from recent LM reasoning advances to address this challenge. More specifically, we present TV2TV, a unified generative modeling framework which decomposes video generation into an interleaved text and video generation process. TV2TV jointly learns language modeling (next-token prediction) and video flow matching (next-frame prediction) using a Mixture-of-Transformers (MoT) architecture. At inference time, TV2TV decides when to alternate between generating text and video frames, allowing the model to "think in words" about subsequent content before ``acting in pixels'' to produce frames. This design offloads much of the responsibility for deciding what should happen next to the language modeling tower, enabling improved visual quality and prompt alignment of generated videos. It also enables fine-grained controllability, allowing users to modify the video generation trajectory through text interventions at any point in the process. In controlled experiments on video game data, TV2TV demonstrates substantial improvements in both visual quality and controllability. TV2TV also scales to natural videos, as we show by augmenting sports videos with interleaved natural language action descriptions using vision-language models (VLMs). Training TV2TV on this corpus yields strong visual quality and prompt alignment, showcasing the model's ability to reason about and generate complex real-world action sequences. Together, these results highlight TV2TV as a promising step toward video generation with open-ended textual reasoning and control.
☆ Structured Document Translation via Format Reinforcement Learning AACL 2025
Recent works on structured text translation remain limited to the sentence level, as they struggle to effectively handle the complex document-level XML or HTML structures. To address this, we propose \textbf{Format Reinforcement Learning (FormatRL)}, which employs Group Relative Policy Optimization on top of a supervised fine-tuning model to directly optimize novel structure-aware rewards: 1) TreeSim, which measures structural similarity between predicted and reference XML trees and 2) Node-chrF, which measures translation quality at the level of XML nodes. Additionally, we apply StrucAUC, a fine-grained metric distinguishing between minor errors and major structural failures. Experiments on the SAP software-documentation benchmark demonstrate improvements across six metrics and an analysis further shows how different reward functions contribute to improvements in both structural and translation quality.
comment: IJCNLP-AACL 2025 Main (Oral)
☆ SA-IQA: Redefining Image Quality Assessment for Spatial Aesthetics with Multi-Dimensional Rewards
In recent years, Image Quality Assessment (IQA) for AI-generated images (AIGI) has advanced rapidly; however, existing methods primarily target portraits and artistic images, lacking a systematic evaluation of interior scenes. We introduce Spatial Aesthetics, a paradigm that assesses the aesthetic quality of interior images along four dimensions: layout, harmony, lighting, and distortion. We construct SA-BENCH, the first benchmark for spatial aesthetics, comprising 18,000 images and 50,000 precise annotations. Employing SA-BENCH, we systematically evaluate current IQA methodologies and develop SA-IQA, through MLLM fine-tuning and a multidimensional fusion approach, as a comprehensive reward framework for assessing spatial aesthetics. We apply SA-IQA to two downstream tasks: (1) serving as a reward signal integrated with GRPO reinforcement learning to optimize the AIGC generation pipeline, and (2) Best-of-N selection to filter high-quality images and improve generation quality. Experiments indicate that SA-IQA significantly outperforms existing methods on SA-BENCH, setting a new standard for spatial aesthetics evaluation. Code and dataset will be open-sourced to advance research and applications in this domain.
☆ David vs. Goliath: Can Small Models Win Big with Agentic AI in Hardware Design?
Large Language Model(LLM) inference demands massive compute and energy, making domain-specific tasks expensive and unsustainable. As foundation models keep scaling, we ask: Is bigger always better for hardware design? Our work tests this by evaluating Small Language Models coupled with a curated agentic AI framework on NVIDIA's Comprehensive Verilog Design Problems(CVDP) benchmark. Results show that agentic workflows: through task decomposition, iterative feedback, and correction - not only unlock near-LLM performance at a fraction of the cost but also create learning opportunities for agents, paving the way for efficient, adaptive solutions in complex design tasks.
☆ Multi-LLM Collaboration for Medication Recommendation
As healthcare increasingly turns to AI for scalable and trustworthy clinical decision support, ensuring reliability in model reasoning remains a critical challenge. Individual large language models (LLMs) are susceptible to hallucinations and inconsistency, whereas naive ensembles of models often fail to deliver stable and credible recommendations. Building on our previous work on LLM Chemistry, which quantifies the collaborative compatibility among LLMs, we apply this framework to improve the reliability in medication recommendation from brief clinical vignettes. Our approach leverages multi-LLM collaboration guided by Chemistry-inspired interaction modeling, enabling ensembles that are effective (exploiting complementary strengths), stable (producing consistent quality), and calibrated (minimizing interference and error amplification). We evaluate our Chemistry-based Multi-LLM collaboration strategy on real-world clinical scenarios to investigate whether such interaction-aware ensembles can generate credible, patient-specific medication recommendations. Preliminary results are encouraging, suggesting that LLM Chemistry-guided collaboration may offer a promising path toward reliable and trustworthy AI assistants in clinical practice.
comment: 8 pages, 5 figures, 1 table
☆ Meta-Learning for Quantum Optimization via Quantum Sequence Model
The Quantum Approximate Optimization Algorithm (QAOA) is a leading approach for solving combinatorial optimization problems on near-term quantum processors. However, finding good variational parameters remains a significant challenge due to the non-convex energy landscape, often resulting in slow convergence and poor solution quality. In this work, we propose a quantum meta-learning framework that trains advanced quantum sequence models to generate effective parameter initialization policies. We investigate four classical or quantum sequence models, including the Quantum Kernel-based Long Short-Term Memory (QK-LSTM), as learned optimizers in a "learning to learn" paradigm. Our numerical experiments on the Max-Cut problem demonstrate that the QK-LSTM optimizer achieves superior performance, obtaining the highest approximation ratios and exhibiting the fastest convergence rate across all tested problem sizes (n=10 to 13). Crucially, the QK-LSTM model achieves perfect parameter transferability by synthesizing a single, fixed set of near-optimal parameters, leading to a remarkable sustained acceleration of convergence even when generalizing to larger problems. This capability, enabled by the compact and expressive power of the quantum kernel architecture, underscores its effectiveness. The QK-LSTM, with only 43 trainable parameters, substantially outperforms the classical LSTM (56 parameters) and other quantum sequence models, establishing a robust pathway toward highly efficient parameter initialization for variational quantum algorithms in the NISQ era.
☆ QKAN-LSTM: Quantum-inspired Kolmogorov-Arnold Long Short-term Memory
Long short-term memory (LSTM) models are a particular type of recurrent neural networks (RNNs) that are central to sequential modeling tasks in domains such as urban telecommunication forecasting, where temporal correlations and nonlinear dependencies dominate. However, conventional LSTMs suffer from high parameter redundancy and limited nonlinear expressivity. In this work, we propose the Quantum-inspired Kolmogorov-Arnold Long Short-Term Memory (QKAN-LSTM), which integrates Data Re-Uploading Activation (DARUAN) modules into the gating structure of LSTMs. Each DARUAN acts as a quantum variational activation function (QVAF), enhancing frequency adaptability and enabling an exponentially enriched spectral representation without multi-qubit entanglement. The resulting architecture preserves quantum-level expressivity while remaining fully executable on classical hardware. Empirical evaluations on three datasets, Damped Simple Harmonic Motion, Bessel Function, and Urban Telecommunication, demonstrate that QKAN-LSTM achieves superior predictive accuracy and generalization with a 79% reduction in trainable parameters compared to classical LSTMs. We extend the framework to the Jiang-Huang-Chen-Goan Network (JHCG Net), which generalizes KAN to encoder-decoder structures, and then further use QKAN to realize the latent KAN, thereby creating a Hybrid QKAN (HQKAN) for hierarchical representation learning. The proposed HQKAN-LSTM thus provides a scalable and interpretable pathway toward quantum-inspired sequential modeling in real-world data environments.
☆ Arbitrage: Efficient Reasoning via Advantage-Aware Speculation
Modern Large Language Models achieve impressive reasoning capabilities with long Chain of Thoughts, but they incur substantial computational cost during inference, and this motivates techniques to improve the performance-cost ratio. Among these techniques, Speculative Decoding accelerates inference by employing a fast but inaccurate draft model to autoregressively propose tokens, which are then verified in parallel by a more capable target model. However, due to unnecessary rejections caused by token mismatches in semantically equivalent steps, traditional token-level Speculative Decoding struggles in reasoning tasks. Although recent works have shifted to step-level semantic verification, which improve efficiency by accepting or rejecting entire reasoning steps, existing step-level methods still regenerate many rejected steps with little improvement, wasting valuable target compute. To address this challenge, we propose Arbitrage, a novel step-level speculative generation framework that routes generation dynamically based on the relative advantage between draft and target models. Instead of applying a fixed acceptance threshold, Arbitrage uses a lightweight router trained to predict when the target model is likely to produce a meaningfully better step. This routing approximates an ideal Arbitrage Oracle that always chooses the higher-quality step, achieving near-optimal efficiency-accuracy trade-offs. Across multiple mathematical reasoning benchmarks, Arbitrage consistently surpasses prior step-level Speculative Decoding baselines, reducing inference latency by up to $\sim2\times$ at matched accuracy.
comment: 22 pages
☆ Model-Free Assessment of Simulator Fidelity via Quantile Curves
Simulation of complex systems originated in manufacturing and queuing applications. It is now widely used for large-scale, ML-based systems in research, education, and consumer surveys. However, characterizing the discrepancy between simulators and ground truth remains challenging for increasingly complex, machine-learning-based systems. We propose a computationally tractable method to estimate the quantile function of the discrepancy between the simulated and ground-truth outcome distributions. Our approach focuses on output uncertainty and treats the simulator as a black box, imposing no modeling assumptions on its internals, and hence applies broadly across many parameter families, from Bernoulli and multinomial models to continuous, vector-valued settings. The resulting quantile curve supports confidence interval construction for unseen scenarios, risk-aware summaries of sim-to-real discrepancy (e.g., VaR/CVaR), and comparison of simulators' performance. We demonstrate our methodology in an application assessing LLM simulation fidelity on the WorldValueBench dataset spanning four LLMs.
comment: 33 pages, 11 figures
☆ Detecting Perspective Shifts in Multi-agent Systems
Generative models augmented with external tools and update mechanisms (or \textit{agents}) have demonstrated capabilities beyond intelligent prompting of base models. As agent use proliferates, dynamic multi-agent systems have naturally emerged. Recent work has investigated the theoretical and empirical properties of low-dimensional representations of agents based on query responses at a single time point. This paper introduces the Temporal Data Kernel Perspective Space (TDKPS), which jointly embeds agents across time, and proposes several novel hypothesis tests for detecting behavioral change at the agent- and group-level in black-box multi-agent systems. We characterize the empirical properties of our proposed tests, including their sensitivity to key hyperparameters, in simulations motivated by a multi-agent system of evolving digital personas. Finally, we demonstrate via natural experiment that our proposed tests detect changes that correlate sensitively, specifically, and significantly with a real exogenous event. As far as we are aware, TDKPS is the first principled framework for monitoring behavioral dynamics in black-box multi-agent systems -- a critical capability as generative agent deployment continues to scale.
☆ Reflection Removal through Efficient Adaptation of Diffusion Transformers
We introduce a diffusion-transformer (DiT) framework for single-image reflection removal that leverages the generalization strengths of foundation diffusion models in the restoration setting. Rather than relying on task-specific architectures, we repurpose a pre-trained DiT-based foundation model by conditioning it on reflection-contaminated inputs and guiding it toward clean transmission layers. We systematically analyze existing reflection removal data sources for diversity, scalability, and photorealism. To address the shortage of suitable data, we construct a physically based rendering (PBR) pipeline in Blender, built around the Principled BSDF, to synthesize realistic glass materials and reflection effects. Efficient LoRA-based adaptation of the foundation model, combined with the proposed synthetic data, achieves state-of-the-art performance on in-domain and zero-shot benchmarks. These results demonstrate that pretrained diffusion transformers, when paired with physically grounded data synthesis and efficient adaptation, offer a scalable and high-fidelity solution for reflection removal. Project page: https://hf.co/spaces/huawei-bayerlab/windowseat-reflection-removal-web
☆ Evolutionary Architecture Search through Grammar-Based Sequence Alignment
Neural architecture search (NAS) in expressive search spaces is a computationally hard problem, but it also holds the potential to automatically discover completely novel and performant architectures. To achieve this we need effective search algorithms that can identify powerful components and reuse them in new candidate architectures. In this paper, we introduce two adapted variants of the Smith-Waterman algorithm for local sequence alignment and use them to compute the edit distance in a grammar-based evolutionary architecture search. These algorithms enable us to efficiently calculate a distance metric for neural architectures and to generate a set of hybrid offspring from two parent models. This facilitates the deployment of crossover-based search heuristics, allows us to perform a thorough analysis on the architectural loss landscape, and track population diversity during search. We highlight how our method vastly improves computational complexity over previous work and enables us to efficiently compute shortest paths between architectures. When instantiating the crossover in evolutionary searches, we achieve competitive results, outperforming competing methods. Future work can build upon this new tool, discovering novel components that can be used more broadly across neural architecture design, and broadening its applications beyond NAS.
☆ Strategic Self-Improvement for Competitive Agents in AI Labour Markets
As artificial intelligence (AI) agents are deployed across economic domains, understanding their strategic behavior and market-level impact becomes critical. This paper puts forward a groundbreaking new framework that is the first to capture the real-world economic forces that shape agentic labor markets: adverse selection, moral hazard, and reputation dynamics. Our framework encapsulates three core capabilities that successful LLM-agents will need: \textbf{metacognition} (accurate self-assessment of skills), \textbf{competitive awareness} (modeling rivals and market dynamics), and \textbf{long-horizon strategic planning}. We illustrate our framework through a tractable simulated gig economy where agentic Large Language Models (LLMs) compete for jobs, develop skills, and adapt their strategies under competitive pressure. Our simulations illustrate how LLM agents explicitly prompted with reasoning capabilities learn to strategically self-improve and demonstrate superior adaptability to changing market conditions. At the market level, our simulations reproduce classic macroeconomic phenomena found in human labor markets, while controlled experiments reveal potential AI-driven economic trends, such as rapid monopolization and systemic price deflation. This work provides a foundation to further explore the economic properties of AI-driven labour markets, and a conceptual framework to study the strategic reasoning capabilities in agents competing in the emerging economy.
☆ Balanced Few-Shot Episodic Learning for Accurate Retinal Disease Diagnosis
Automated retinal disease diagnosis is vital given the rising prevalence of conditions such as diabetic retinopathy and macular degeneration. Conventional deep learning approaches require large annotated datasets, which are costly and often imbalanced across disease categories, limiting their reliability in practice. Few-shot learning (FSL) addresses this challenge by enabling models to generalize from only a few labeled samples per class. In this study,we propose a balanced few-shot episodic learning framework tailored to the Retinal Fundus Multi-Disease Image Dataset (RFMiD). Focusing on the ten most represented classes, which still show substantial imbalance between majority diseases (e.g., Diabetic Retinopathy, Macular Hole) and minority ones (e.g., Optic Disc Edema, Branch Retinal Vein Occlusion), our method integrates three key components: (i) balanced episodic sampling, ensuring equal participation of all classes in each 5-way 5-shot episode; (ii) targeted augmentation, including Contrast Limited Adaptive Histogram Equalization (CLAHE) and color/geometry transformations, to improve minority-class di- versity; and (iii) a ResNet-50 encoder pretrained on ImageNet, selected for its superior ability to capture fine-grained retinal features. Prototypes are computed in the embedding space and classification is performed with cosine similarity for improved stability. Trained on 100 episodes and evaluated on 1,000 test episodes, our framework achieves substantial accuracy gains and reduces bias toward majority classes, with notable improvements for underrepresented diseases. These results demonstrate that dataset-aware few-shot pipelines, combined with balanced sampling and CLAHE-enhanced preprocessing, can deliver more robust and clinically fair retinal disease diagnosis under data-constrained conditions.
☆ GeoPE:A Unified Geometric Positional Embedding for Structured Tensors
Standard Vision Transformers flatten 2D images into 1D sequences, disrupting the natural spatial topology. While Rotary Positional Embedding (RoPE) excels in 1D, it inherits this limitation, often treating spatially distant patches (e.g., at row edges) as sequence neighbors. Existing 2D approaches typically treat spatial axes independently, failing to decouple this false sequential proximity from true spatial distance. To restore the 2D spatial manifold, we introduce Geometric Positional Embedding (GeoPE), a framework that extends rotations to 3D Euclidean space using quaternions. To overcome non-commutativity and ensure symmetry, GeoPE constructs a unified rotational operator by computing the geometric mean in the Lie algebra. This creates a geometrically coupled encoding that effectively separates spatial dimensions. Extensive experiments on image classification, object detection, and 3D semantic segmentation demonstrate that GeoPE consistently outperforms existing 2D RoPE variants and significantly enhances shape bias, confirming its ability to capture true geometric structure.
☆ Realizable Abstractions: Near-Optimal Hierarchical Reinforcement Learning
The main focus of Hierarchical Reinforcement Learning (HRL) is studying how large Markov Decision Processes (MDPs) can be more efficiently solved when addressed in a modular way, by combining partial solutions computed for smaller subtasks. Despite their very intuitive role for learning, most notions of MDP abstractions proposed in the HRL literature have limited expressive power or do not possess formal efficiency guarantees. This work addresses these fundamental issues by defining Realizable Abstractions, a new relation between generic low-level MDPs and their associated high-level decision processes. The notion we propose avoids non-Markovianity issues and has desirable near-optimality guarantees. Indeed, we show that any abstract policy for Realizable Abstractions can be translated into near-optimal policies for the low-level MDP, through a suitable composition of options. As demonstrated in the paper, these options can be expressed as solutions of specific constrained MDPs. Based on these findings, we propose RARL, a new HRL algorithm that returns compositional and near-optimal low-level policies, taking advantage of the Realizable Abstraction given in the input. We show that RARL is Probably Approximately Correct, it converges in a polynomial number of samples, and it is robust to inaccuracies in the abstraction.
☆ LLMs Know More Than Words: A Genre Study with Syntax, Metaphor & Phonetics
Large language models (LLMs) demonstrate remarkable potential across diverse language related tasks, yet whether they capture deeper linguistic properties, such as syntactic structure, phonetic cues, and metrical patterns from raw text remains unclear. To analysis whether LLMs can learn these features effectively and apply them to important nature language related tasks, we introduce a novel multilingual genre classification dataset derived from Project Gutenberg, a large-scale digital library offering free access to thousands of public domain literary works, comprising thousands of sentences per binary task (poetry vs. novel;drama vs. poetry;drama vs. novel) in six languages (English, French, German, Italian, Spanish, and Portuguese). We augment each with three explicit linguistic feature sets (syntactic tree structures, metaphor counts, and phonetic metrics) to evaluate their impact on classification performance. Experiments demonstrate that although LLM classifiers can learn latent linguistic structures either from raw text or from explicitly provided features, different features contribute unevenly across tasks, which underscores the importance of incorporating more complex linguistic signals during model training.
☆ CARL: Critical Action Focused Reinforcement Learning for Multi-Step Agent
Agents capable of accomplishing complex tasks through multiple interactions with the environment have emerged as a popular research direction. However, in such multi-step settings, the conventional group-level policy optimization algorithm becomes suboptimal because of its underlying assumption that each action holds equal contribution, which deviates significantly from reality. Our analysis reveals that only a small fraction of actions are critical in determining the final outcome. Building on this insight, we propose CARL, a critical-action-focused reinforcement learning algorithm tailored for multi-step agents. CARL achieves focused training through providing action-level optimization signals for high-criticality actions while excluding low-criticality actions from model update. Extensive experiments demonstrate that CARL achieves both stronger performance and higher efficiency during training and inference across diverse evaluation settings.
comment: 10 pages, 4 figures
☆ Toward Continuous Neurocognitive Monitoring: Integrating Speech AI with Relational Graph Transformers for Rare Neurological Diseases
Patients with rare neurological diseases report cognitive symptoms -"brain fog"- invisible to traditional tests. We propose continuous neurocognitive monitoring via smartphone speech analysis integrated with Relational Graph Transformer (RELGT) architectures. Proof-of-concept in phenylketonuria (PKU) shows speech-derived "Proficiency in Verbal Discourse" correlates with blood phenylalanine (p = -0.50, p < 0.005) but not standard cognitive tests (all |r| < 0.35). RELGT could overcome information bottlenecks in heterogeneous medical data (speech, labs, assessments), enabling predictive alerts weeks before decompensation. Key challenges: multi-disease validation, clinical workflow integration, equitable multilingual deployment. Success would transform episodic neurology into continuous personalized monitoring for millions globally.
☆ Algorithmic Thinking Theory
Large language models (LLMs) have proven to be highly effective for solving complex reasoning tasks. Surprisingly, their capabilities can often be improved by iterating on previously generated solutions. In this context, a reasoning plan for generating and combining a set of solutions can be thought of as an algorithm for reasoning using a probabilistic oracle. We introduce a theoretical framework for analyzing such reasoning algorithms. This framework formalizes the principles underlying popular techniques for iterative improvement and answer aggregation, providing a foundation for designing a new generation of more powerful reasoning methods. Unlike approaches for understanding models that rely on architectural specifics, our model is grounded in experimental evidence. As a result, it offers a general perspective that may extend to a wide range of current and future reasoning oracles.
☆ The AI Consumer Index (ACE)
We introduce the first version of the AI Consumer Index (ACE), a benchmark for assessing whether frontier AI models can perform high-value consumer tasks. ACE contains a hidden heldout set of 400 test cases, split across four consumer activities: shopping, food, gaming, and DIY. We are also open sourcing 80 cases as a devset with a CC-BY license. For the ACE leaderboard we evaluated 10 frontier models (with websearch turned on) using a novel grading methodology that dynamically checks whether relevant parts of the response are grounded in the retrieved web sources. GPT 5 (Thinking = High) is the top-performing model, scoring 56.1%, followed by o3 Pro (Thinking = On) (55.2%) and GPT 5.1 (Thinking = High) (55.1%). Models differ across domains, and in Shopping the top model scores under 50%. For some requests (such as giving the correct price or providing working links), models are highly prone to hallucination. Overall, ACE shows a substantial gap between the performance of even the best models and consumers' AI needs.
☆ Declarative Synthesis and Multi-Objective Optimization of Stripboard Circuit Layouts Using Answer Set Programming
This paper presents a novel approach to automated stripboard circuit layout design using Answer Set Programming (ASP). The work formulates the layout problem as both a synthesis and multi-objective optimization task that simultaneously generates viable layouts while minimizing board area and component strip crossing. By leveraging ASP's declarative nature, this work expresses complex geometric and electrical constraints in a natural and concise manner. The two-phase solving methodology first ensures feasibility before optimizing layout quality. Experimental results demonstrate that this approach generates compact, manufacturable layouts for a range of circuit complexities. This work represents a significant advancement in automated stripboard layout, offering a practical tool for electronics prototyping and education while showcasing the power of declarative programming for solving complex design automation problems.
comment: Accepted by the 43rd IEEE International Conference on Computer Design (ICCD 2025)
☆ ReflexFlow: Rethinking Learning Objective for Exposure Bias Alleviation in Flow Matching
Despite tremendous recent progress, Flow Matching methods still suffer from exposure bias due to discrepancies in training and inference. This paper investigates the root causes of exposure bias in Flow Matching, including: (1) the model lacks generalization to biased inputs during training, and (2) insufficient low-frequency content captured during early denoising, leading to accumulated bias. Based on these insights, we propose ReflexFlow, a simple and effective reflexive refinement of the Flow Matching learning objective that dynamically corrects exposure bias. ReflexFlow consists of two components: (1) Anti-Drift Rectification (ADR), which reflexively adjusts prediction targets for biased inputs utilizing a redesigned loss under training-time scheduled sampling; and (2) Frequency Compensation (FC), which reflects on missing low-frequency components and compensates them by reweighting the loss using exposure bias. ReflexFlow is model-agnostic, compatible with all Flow Matching frameworks, and improves generation quality across datasets. Experiments on CIFAR-10, CelebA-64, and ImageNet-256 show that ReflexFlow outperforms prior approaches in mitigating exposure bias, achieving a 35.65% reduction in FID on CelebA-64.
☆ Chameleon: Adaptive Adversarial Agents for Scaling-Based Visual Prompt Injection in Multimodal AI Systems
Multimodal Artificial Intelligence (AI) systems, particularly Vision-Language Models (VLMs), have become integral to critical applications ranging from autonomous decision-making to automated document processing. As these systems scale, they rely heavily on preprocessing pipelines to handle diverse inputs efficiently. However, this dependency on standard preprocessing operations, specifically image downscaling, creates a significant yet often overlooked security vulnerability. While intended for computational optimization, scaling algorithms can be exploited to conceal malicious visual prompts that are invisible to human observers but become active semantic instructions once processed by the model. Current adversarial strategies remain largely static, failing to account for the dynamic nature of modern agentic workflows. To address this gap, we propose Chameleon, a novel, adaptive adversarial framework designed to expose and exploit scaling vulnerabilities in production VLMs. Unlike traditional static attacks, Chameleon employs an iterative, agent-based optimization mechanism that dynamically refines image perturbations based on the target model's real-time feedback. This allows the framework to craft highly robust adversarial examples that survive standard downscaling operations to hijack downstream execution. We evaluate Chameleon against Gemini 2.5 Flash model. Our experiments demonstrate that Chameleon achieves an Attack Success Rate (ASR) of 84.5% across varying scaling factors, significantly outperforming static baseline attacks which average only 32.1%. Furthermore, we show that these attacks effectively compromise agentic pipelines, reducing decision-making accuracy by over 45% in multi-step tasks. Finally, we discuss the implications of these vulnerabilities and propose multi-scale consistency checks as a necessary defense mechanism.
comment: 5 pages, 2 figures, IEEE Transactions on Dependable and Secure Computing
☆ STELLA: Guiding Large Language Models for Time Series Forecasting with Semantic Abstractions
Recent adaptations of Large Language Models (LLMs) for time series forecasting often fail to effectively enhance information for raw series, leaving LLM reasoning capabilities underutilized. Existing prompting strategies rely on static correlations rather than generative interpretations of dynamic behavior, lacking critical global and instance-specific context. To address this, we propose STELLA (Semantic-Temporal Alignment with Language Abstractions), a framework that systematically mines and injects structured supplementary and complementary information. STELLA employs a dynamic semantic abstraction mechanism that decouples input series into trend, seasonality, and residual components. It then translates intrinsic behavioral features of these components into Hierarchical Semantic Anchors: a Corpus-level Semantic Prior (CSP) for global context and a Fine-grained Behavioral Prompt (FBP) for instance-level patterns. Using these anchors as prefix-prompts, STELLA guides the LLM to model intrinsic dynamics. Experiments on eight benchmark datasets demonstrate that STELLA outperforms state-of-the-art methods in long- and short-term forecasting, showing superior generalization in zero-shot and few-shot settings. Ablation studies further validate the effectiveness of our dynamically generated semantic anchors.
comment: This work has been submitted to the IEEE for possible publication
☆ Developing a General Personal Tutor for Education
The vision of a universal AI tutor has remained elusive, despite decades of effort. Could LLMs be the game-changer? We overview novel issues arising from developing a nationwide AI tutor. We highlight the practical questions that point to specific gaps in our scientific understanding of the learning process.
☆ SEAL: Self-Evolving Agentic Learning for Conversational Question Answering over Knowledge Graphs
Knowledge-based conversational question answering (KBCQA) confronts persistent challenges in resolving coreference, modeling contextual dependencies, and executing complex logical reasoning. Existing approaches, whether end-to-end semantic parsing or stepwise agent-based reasoning, often suffer from structural inaccuracies and prohibitive computational costs, particularly when processing intricate queries over large knowledge graphs. To address these limitations, we introduce SEAL, a novel two-stage semantic parsing framework grounded in self-evolving agentic learning. In the first stage, a large language model (LLM) extracts a minimal S-expression core that captures the essential semantics of the input query. This core is then refined by an agentic calibration module, which corrects syntactic inconsistencies and aligns entities and relations precisely with the underlying knowledge graph. The second stage employs template-based completion, guided by question-type prediction and placeholder instantiation, to construct a fully executable S-expression. This decomposition not only simplifies logical form generation but also significantly enhances structural fidelity and linking efficiency. Crucially, SEAL incorporates a self-evolving mechanism that integrates local and global memory with a reflection module, enabling continuous adaptation from dialog history and execution feedback without explicit retraining. Extensive experiments on the SPICE benchmark demonstrate that SEAL achieves state-of-the-art performance, especially in multi-hop reasoning, comparison, and aggregation tasks. The results validate notable gains in both structural accuracy and computational efficiency, underscoring the framework's capacity for robust and scalable conversational reasoning.
☆ Are Your Agents Upward Deceivers?
Large Language Model (LLM)-based agents are increasingly used as autonomous subordinates that carry out tasks for users. This raises the question of whether they may also engage in deception, similar to how individuals in human organizations lie to superiors to create a good image or avoid punishment. We observe and define agentic upward deception, a phenomenon in which an agent facing environmental constraints conceals its failure and performs actions that were not requested without reporting. To assess its prevalence, we construct a benchmark of 200 tasks covering five task types and eight realistic scenarios in a constrained environment, such as broken tools or mismatched information sources. Evaluations of 11 popular LLMs reveal that these agents typically exhibit action-based deceptive behaviors, such as guessing results, performing unsupported simulations, substituting unavailable information sources, and fabricating local files. We further test prompt-based mitigation and find only limited reductions, suggesting that it is difficult to eliminate and highlighting the need for stronger mitigation strategies to ensure the safety of LLM-based agents.
☆ From Task Executors to Research Partners: Evaluating AI Co-Pilots Through Workflow Integration in Biomedical Research
Artificial intelligence systems are increasingly deployed in biomedical research. However, current evaluation frameworks may inadequately assess their effectiveness as research collaborators. This rapid review examines benchmarking practices for AI systems in preclinical biomedical research. Three major databases and two preprint servers were searched from January 1, 2018 to October 31, 2025, identifying 14 benchmarks that assess AI capabilities in literature understanding, experimental design, and hypothesis generation. The results revealed that all current benchmarks assess isolated component capabilities, including data analysis quality, hypothesis validity, and experimental protocol design. However, authentic research collaboration requires integrated workflows spanning multiple sessions, with contextual memory, adaptive dialogue, and constraint propagation. This gap implies that systems excelling on component benchmarks may fail as practical research co-pilots. A process-oriented evaluation framework is proposed that addresses four critical dimensions absent from current benchmarks: dialogue quality, workflow orchestration, session continuity, and researcher experience. These dimensions are essential for evaluating AI systems as research co-pilots rather than as isolated task executors.
☆ Language Models as Semantic Teachers: Post-Training Alignment for Medical Audio Understanding
Pre-trained audio models excel at detecting acoustic patterns in auscultation sounds but often fail to grasp their clinical significance, limiting their use and performance in diagnostic tasks. To bridge this gap, we introduce AcuLa (Audio-Clinical Understanding via Language Alignment), a lightweight post-training framework that instills semantic understanding into any audio encoder by aligning it with a medical language model, which acts as a "semantic teacher." To enable alignment at scale, we construct a large-scale dataset by leveraging off-the-shelf large language models to translate the rich, structured metadata accompanying existing audio recordings into coherent clinical reports. Our alignment strategy combines a representation-level contrastive objective with a self-supervised modeling, ensuring that the model learns clinical semantics while preserving fine-grained temporal cues. AcuLa achieves state-of-the-art results across 18 diverse cardio-respiratory tasks from 10 different datasets, improving the mean AUROC on classification benchmarks from 0.68 to 0.79 and, on the most challenging COVID-19 cough detection task, boosting the AUROC from 0.55 to 0.89. Our work demonstrates that this audio-language alignment transforms purely acoustic models into clinically-aware diagnostic tools, establishing a novel paradigm for enhancing physiological understanding in audio-based health monitoring.
☆ Mitigating Catastrophic Forgetting in Target Language Adaptation of LLMs via Source-Shielded Updates
Expanding the linguistic diversity of instruct large language models (LLMs) is crucial for global accessibility but is often hindered by the reliance on costly specialized target language labeled data and catastrophic forgetting during adaptation. We tackle this challenge under a realistic, low-resource constraint: adapting instruct LLMs using only unlabeled target language data. We introduce Source-Shielded Updates (SSU), a selective parameter update strategy that proactively preserves source knowledge. Using a small set of source data and a parameter importance scoring method, SSU identifies parameters critical to maintaining source abilities. It then applies a column-wise freezing strategy to protect these parameters before adaptation. Experiments across five typologically diverse languages and 7B and 13B models demonstrate that SSU successfully mitigates catastrophic forgetting. It reduces performance degradation on monolingual source tasks to just 3.4% (7B) and 2.8% (13B) on average, a stark contrast to the 20.3% and 22.3% from full fine-tuning. SSU also achieves target-language performance highly competitive with full fine-tuning, outperforming it on all benchmarks for 7B models and the majority for 13B models.
☆ From Symptoms to Systems: An Expert-Guided Approach to Understanding Risks of Generative AI for Eating Disorders
Generative AI systems may pose serious risks to individuals vulnerable to eating disorders. Existing safeguards tend to overlook subtle but clinically significant cues, leaving many risks unaddressed. To better understand the nature of these risks, we conducted semi-structured interviews with 15 clinicians, researchers, and advocates with expertise in eating disorders. Using abductive qualitative analysis, we developed an expert-guided taxonomy of generative AI risks across seven categories: (1) providing generalized health advice; (2) encouraging disordered behaviors; (3) supporting symptom concealment; (4) creating thinspiration; (5) reinforcing negative self-beliefs; (6) promoting excessive focus on the body; and (7) perpetuating narrow views about eating disorders. Our results demonstrate how certain user interactions with generative AI systems intersect with clinical features of eating disorders in ways that may intensify risk. We discuss implications of our work, including approaches for risk assessment, safeguard design, and participatory evaluation practices with domain experts.
☆ SoK: a Comprehensive Causality Analysis Framework for Large Language Model Security
Large Language Models (LLMs) exhibit remarkable capabilities but remain vulnerable to adversarial manipulations such as jailbreaking, where crafted prompts bypass safety mechanisms. Understanding the causal factors behind such vulnerabilities is essential for building reliable defenses. In this work, we introduce a unified causality analysis framework that systematically supports all levels of causal investigation in LLMs, ranging from token-level, neuron-level, and layer-level interventions to representation-level analysis. The framework enables consistent experimentation and comparison across diverse causality-based attack and defense methods. Accompanying this implementation, we provide the first comprehensive survey of causality-driven jailbreak studies and empirically evaluate the framework on multiple open-weight models and safety-critical benchmarks including jailbreaks, hallucination detection, backdoor identification, and fairness evaluation. Our results reveal that: (1) targeted interventions on causally critical components can reliably modify safety behavior; (2) safety-related mechanisms are highly localized (i.e., concentrated in early-to-middle layers with only 1--2\% of neurons exhibiting causal influence); and (3) causal features extracted from our framework achieve over 95\% detection accuracy across multiple threat types. By bridging theoretical causality analysis and practical model safety, our framework establishes a reproducible foundation for research on causality-based attacks, interpretability, and robust attack detection and mitigation in LLMs. Code is available at https://github.com/Amadeuszhao/SOK_Casuality.
☆ Are LLMs Truly Multilingual? Exploring Zero-Shot Multilingual Capability of LLMs for Information Retrieval: An Italian Healthcare Use Case
Large Language Models (LLMs) have become a key topic in AI and NLP, transforming sectors like healthcare, finance, education, and marketing by improving customer service, automating tasks, providing insights, improving diagnostics, and personalizing learning experiences. Information extraction from clinical records is a crucial task in digital healthcare. Although traditional NLP techniques have been used for this in the past, they often fall short due to the complexity, variability of clinical language, and high inner semantics in the free clinical text. Recently, Large Language Models (LLMs) have become a powerful tool for better understanding and generating human-like text, making them highly effective in this area. In this paper, we explore the ability of open-source multilingual LLMs to understand EHRs (Electronic Health Records) in Italian and help extract information from them in real-time. Our detailed experimental campaign on comorbidity extraction from EHR reveals that some LLMs struggle in zero-shot, on-premises settings, and others show significant variation in performance, struggling to generalize across various diseases when compared to native pattern matching and manual annotations.
☆ Model-Based and Sample-Efficient AI-Assisted Math Discovery in Sphere Packing
Sphere packing, Hilbert's eighteenth problem, asks for the densest arrangement of congruent spheres in n-dimensional Euclidean space. Although relevant to areas such as cryptography, crystallography, and medical imaging, the problem remains unresolved: beyond a few special dimensions, neither optimal packings nor tight upper bounds are known. Even a major breakthrough in dimension $n=8$, later recognised with a Fields Medal, underscores its difficulty. A leading technique for upper bounds, the three-point method, reduces the problem to solving large, high-precision semidefinite programs (SDPs). Because each candidate SDP may take days to evaluate, standard data-intensive AI approaches are infeasible. We address this challenge by formulating SDP construction as a sequential decision process, the SDP game, in which a policy assembles SDP formulations from a set of admissible components. Using a sample-efficient model-based framework that combines Bayesian optimisation with Monte Carlo Tree Search, we obtain new state-of-the-art upper bounds in dimensions $4-16$, showing that model-based search can advance computational progress in longstanding geometric problems. Together, these results demonstrate that sample-efficient, model-based search can make tangible progress on mathematically rigid, evaluation limited problems, pointing towards a complementary direction for AI-assisted discovery beyond large-scale LLM-driven exploration.
☆ Enabling Ethical AI: A case study in using Ontological Context for Justified Agentic AI Decisions
In this preprint, we present A collaborative human-AI approach to building an inspectable semantic layer for Agentic AI. AI agents first propose candidate knowledge structures from diverse data sources; domain experts then validate, correct, and extend these structures, with their feedback used to improve subsequent models. Authors show how this process captures tacit institutional knowledge, improves response quality and efficiency, and mitigates institutional amnesia. We argue for a shift from post-hoc explanation to justifiable Agentic AI, where decisions are grounded in explicit, inspectable evidence and reasoning accessible to both experts and non-specialists.
comment: 24 pages including references, with 6 images and 2 tables. Appendices, supporting data and additional reference provided from page 25 to 117
☆ Setting up for failure: automatic discovery of the neural mechanisms of cognitive errors
Discovering the neural mechanisms underpinning cognition is one of the grand challenges of neuroscience. However, previous approaches for building models of RNN dynamics that explain behaviour required iterative refinement of architectures and/or optimisation objectives, resulting in a piecemeal, and mostly heuristic, human-in-the-loop process. Here, we offer an alternative approach that automates the discovery of viable RNN mechanisms by explicitly training RNNs to reproduce behaviour, including the same characteristic errors and suboptimalities, that humans and animals produce in a cognitive task. Achieving this required two main innovations. First, as the amount of behavioural data that can be collected in experiments is often too limited to train RNNs, we use a non-parametric generative model of behavioural responses to produce surrogate data for training RNNs. Second, to capture all relevant statistical aspects of the data, we developed a novel diffusion model-based approach for training RNNs. To showcase the potential of our approach, we chose a visual working memory task as our test-bed, as behaviour in this task is well known to produce response distributions that are patently multimodal (due to swap errors). The resulting network dynamics correctly qualitative features of macaque neural data. Importantly, these results were not possible to obtain with more traditional approaches, i.e., when only a limited set of behavioural signatures (rather than the full richness of behavioural response distributions) were fitted, or when RNNs were trained for task optimality (instead of reproducing behaviour). Our approach also yields novel predictions about the mechanism of swap errors, which can be readily tested in experiments. These results suggest that fitting RNNs to rich patterns of behaviour provides a powerful way to automatically discover mechanisms of important cognitive functions.
☆ 287,872 Supermassive Black Holes Masses: Deep Learning Approaching Reverberation Mapping Accuracy
We present a population-scale catalogue of 287,872 supermassive black hole masses with high accuracy. Using a deep encoder-decoder network trained on optical spectra with reverberation-mapping (RM) based labels of 849 quasars and applied to all SDSS quasars up to $z=4$, our method achieves a root-mean-square error of $0.058$\,dex, a relative uncertainty of $\approx 14\%$, and coefficient of determination $R^{2}\approx0.91$ with respect to RM-based masses, far surpassing traditional single-line virial estimators. Notably, the high accuracy is maintained for both low ($<10^{7.5}\,M_\odot$) and high ($>10^{9}\,M_\odot$) mass quasars, where empirical relations are unreliable.
comment: 14 pages, 9 figures. Submitted to Journal of High Energy Astrophysics
☆ SIMA 2: A Generalist Embodied Agent for Virtual Worlds
We introduce SIMA 2, a generalist embodied agent that understands and acts in a wide variety of 3D virtual worlds. Built upon a Gemini foundation model, SIMA 2 represents a significant step toward active, goal-directed interaction within an embodied environment. Unlike prior work (e.g., SIMA 1) limited to simple language commands, SIMA 2 acts as an interactive partner, capable of reasoning about high-level goals, conversing with the user, and handling complex instructions given through language and images. Across a diverse portfolio of games, SIMA 2 substantially closes the gap with human performance and demonstrates robust generalization to previously unseen environments, all while retaining the base model's core reasoning capabilities. Furthermore, we demonstrate a capacity for open-ended self-improvement: by leveraging Gemini to generate tasks and provide rewards, SIMA 2 can autonomously learn new skills from scratch in a new environment. This work validates a path toward creating versatile and continuously learning agents for both virtual and, eventually, physical worlds.
☆ YingMusic-SVC: Real-World Robust Zero-Shot Singing Voice Conversion with Flow-GRPO and Singing-Specific Inductive Biases
Singing voice conversion (SVC) aims to render the target singer's timbre while preserving melody and lyrics. However, existing zero-shot SVC systems remain fragile in real songs due to harmony interference, F0 errors, and the lack of inductive biases for singing. We propose YingMusic-SVC, a robust zero-shot framework that unifies continuous pre-training, robust supervised fine-tuning, and Flow-GRPO reinforcement learning. Our model introduces a singing-trained RVC timbre shifter for timbre-content disentanglement, an F0-aware timbre adaptor for dynamic vocal expression, and an energy-balanced rectified flow matching loss to enhance high-frequency fidelity. Experiments on a graded multi-track benchmark show that YingMusic-SVC achieves consistent improvements over strong open-source baselines in timbre similarity, intelligibility, and perceptual naturalness, especially under accompanied and harmony-contaminated conditions, demonstrating its effectiveness for real-world SVC deployment.
comment: 17 pages, 5 figures
☆ ASTRIDE: A Security Threat Modeling Platform for Agentic-AI Applications
AI agent-based systems are becoming increasingly integral to modern software architectures, enabling autonomous decision-making, dynamic task execution, and multimodal interactions through large language models (LLMs). However, these systems introduce novel and evolving security challenges, including prompt injection attacks, context poisoning, model manipulation, and opaque agent-to-agent communication, that are not effectively captured by traditional threat modeling frameworks. In this paper, we introduce ASTRIDE, an automated threat modeling platform purpose-built for AI agent-based systems. ASTRIDE extends the classical STRIDE framework by introducing a new threat category, A for AI Agent-Specific Attacks, which encompasses emerging vulnerabilities such as prompt injection, unsafe tool invocation, and reasoning subversion, unique to agent-based applications. To automate threat modeling, ASTRIDE combines a consortium of fine-tuned vision-language models (VLMs) with the OpenAI-gpt-oss reasoning LLM to perform end-to-end analysis directly from visual agent architecture diagrams, such as data flow diagrams(DFDs). LLM agents orchestrate the end-to-end threat modeling automation process by coordinating interactions between the VLM consortium and the reasoning LLM. Our evaluations demonstrate that ASTRIDE provides accurate, scalable, and explainable threat modeling for next-generation intelligent systems. To the best of our knowledge, ASTRIDE is the first framework to both extend STRIDE with AI-specific threats and integrate fine-tuned VLMs with a reasoning LLM to fully automate diagram-driven threat modeling in AI agent-based applications.
☆ YingMusic-Singer: Zero-shot Singing Voice Synthesis and Editing with Annotation-free Melody Guidance
Singing Voice Synthesis (SVS) remains constrained in practical deployment due to its strong dependence on accurate phoneme-level alignment and manually annotated melody contours, requirements that are resource-intensive and hinder scalability. To overcome these limitations, we propose a melody-driven SVS framework capable of synthesizing arbitrary lyrics following any reference melody, without relying on phoneme-level alignment. Our method builds on a Diffusion Transformer (DiT) architecture, enhanced with a dedicated melody extraction module that derives melody representations directly from reference audio. To ensure robust melody encoding, we employ a teacher model to guide the optimization of the melody extractor, alongside an implicit alignment mechanism that enforces similarity distribution constraints for improved melodic stability and coherence. Additionally, we refine duration modeling using weakly annotated song data and introduce a Flow-GRPO reinforcement learning strategy with a multi-objective reward function to jointly enhance pronunciation clarity and melodic fidelity. Experiments show that our model achieves superior performance over existing approaches in both objective measures and subjective listening tests, especially in zero-shot and lyric adaptation settings, while maintaining high audio quality without manual annotation. This work offers a practical and scalable solution for advancing data-efficient singing voice synthesis. To support reproducibility, we release our inference code and model checkpoints.
comment: 13 pages, 3 figures
☆ Using Machine Learning to Take Stay-or-Go Decisions in Data-driven Drone Missions
Drones are becoming indispensable in many application domains. In data-driven missions, besides sensing, the drone must process the collected data at runtime to decide whether additional action must be taken on the spot, before moving to the next point of interest. If processing does not reveal an event or situation that requires such an action, the drone has waited in vain instead of moving to the next point. If, however, the drone starts moving to the next point and it turns out that a follow-up action is needed at the previous point, it must spend time to fly-back. To take this decision, we propose different machine-learning methods based on branch prediction and reinforcement learning. We evaluate these methods for a wide range of scenarios where the probability of event occurrence changes with time. Our results show that the proposed methods consistently outperform the regression-based method proposed in the literature and can significantly improve the worst-case mission time by up to 4.1x. Also, the achieved median mission time is very close, merely up to 2.7% higher, to that of a method with perfect knowledge of the current underlying event probability at each point of interest.
comment: 19 pages, 3 figures, to appear in the proceedings of MobiQuitous 2025
☆ Embodied Co-Design for Rapidly Evolving Agents: Taxonomy, Frontiers, and Challenges
Brain-body co-evolution enables animals to develop complex behaviors in their environments. Inspired by this biological synergy, embodied co-design (ECD) has emerged as a transformative paradigm for creating intelligent agents-from virtual creatures to physical robots-by jointly optimizing their morphologies and controllers rather than treating control in isolation. This integrated approach facilitates richer environmental interactions and robust task performance. In this survey, we provide a systematic overview of recent advances in ECD. We first formalize the concept of ECD and position it within related fields. We then introduce a hierarchical taxonomy: a lower layer that breaks down agent design into three fundamental components-controlling brain, body morphology, and task environment-and an upper layer that integrates these components into four major ECD frameworks: bi-level, single-level, generative, and open-ended. This taxonomy allows us to synthesize insights from more than one hundred recent studies. We further review notable benchmarks, datasets, and applications in both simulated and real-world scenarios. Finally, we identify significant challenges and offer insights into promising future research directions. A project associated with this survey has been created at https://github.com/Yuxing-Wang-THU/SurveyBrainBody.
☆ Human Cognitive Biases in Explanation-Based Interaction: The Case of Within and Between Session Order Effect AAAI 2026
Explanatory Interactive Learning (XIL) is a powerful interactive learning framework designed to enable users to customize and correct AI models by interacting with their explanations. In a nutshell, XIL algorithms select a number of items on which an AI model made a decision (e.g. images and their tags) and present them to users, together with corresponding explanations (e.g. image regions that drive the model's decision). Then, users supply corrective feedback for the explanations, which the algorithm uses to improve the model. Despite showing promise in debugging tasks, recent studies have raised concerns that explanatory interaction may trigger order effects, a well-known cognitive bias in which the sequence of presented items influences users' trust and, critically, the quality of their feedback. We argue that these studies are not entirely conclusive, as the experimental designs and tasks employed differ substantially from common XIL use cases, complicating interpretation. To clarify the interplay between order effects and explanatory interaction, we ran two larger-scale user studies (n = 713 total) designed to mimic common XIL tasks. Specifically, we assessed order effects both within and between debugging sessions by manipulating the order in which correct and wrong explanations are presented to participants. Order effects had a limited, through significant impact on users' agreement with the model (i.e., a behavioral measure of their trust), and only when examined withing debugging sessions, not between them. The quality of users' feedback was generally satisfactory, with order effects exerting only a small and inconsistent influence in both experiments. Overall, our findings suggest that order effects do not pose a significant issue for the successful employment of XIL approaches. More broadly, our work contributes to the ongoing efforts for understanding human factors in AI.
comment: 18 pages, 10 figures, published at AAAI 2026
☆ UnwrapDiff: Conditional Diffusion for Robust InSAR Phase Unwrapping
Phase unwrapping is a fundamental problem in InSAR data processing, supporting geophysical applications such as deformation monitoring and hazard assessment. Its reliability is limited by noise and decorrelation in radar acquisitions, which makes accurate reconstruction of the deformation signal challenging. We propose a denoising diffusion probabilistic model (DDPM)-based framework for InSAR phase unwrapping, UnwrapDiff, in which the output of the traditional minimum cost flow algorithm (SNAPHU) is incorporated as conditional guidance. To evaluate robustness, we construct a synthetic dataset that incorporates atmospheric effects and diverse noise patterns, representative of realistic InSAR observations. Experiments show that the proposed model leverages the conditional prior while reducing the effect of diverse noise patterns, achieving on average a 10.11\% reduction in NRMSE compared to SNAPHU. It also achieves better reconstruction quality in difficult cases such as dyke intrusions.
☆ SignRoundV2: Closing the Performance Gap in Extremely Low-Bit Post-Training Quantization for LLMs
Extreme low-bit quantization is critical for efficiently deploying Large Language Models (LLMs), yet it often leads to severe performance degradation at 2-bits and even 4-bits (e.g., MXFP4). We present SignRoundV2, a post-training quantization framework that is highly effective even without mixed-precision. SignRoundV2 introduces (1) a fast sensitivity metric that combines gradient information with quantization-induced deviations to guide layer-wise bit allocation, and (2) a lightweight pre-tuning search for quantization scales to improve extremely low-bit quantization. These components allow SignRoundV2 to close the gap with full-precision models. Extensive experiments indicate that our method sustains competitive accuracy for LLMs, achieving production-grade performance with about 1 percent variance at 4-5 bits and strong results even at 2 bits. The implementation is available at https://github.com/intel/auto-round.
☆ Neural Policy Composition from Free Energy Minimization
The ability to compose acquired skills to plan and execute behaviors is a hallmark of natural intelligence. Yet, despite remarkable cross-disciplinary efforts, a principled account of how task structure shapes gating and how such computations could be delivered in neural circuits, remains elusive. Here we introduce GateMod, an interpretable theoretically grounded computational model linking the emergence of gating to the underlying decision-making task, and to a neural circuit architecture. We first develop GateFrame, a normative framework casting policy gating into the minimization of the free energy. This framework, relating gating rules to task, applies broadly across neuroscience, cognitive and computational sciences. We then derive GateFlow, a continuous-time energy based dynamics that provably converges to GateFrame optimal solution. Convergence, exponential and global, follows from a contractivity property that also yields robustness and other desirable properties. Finally, we derive a neural circuit from GateFlow, GateNet. This is a soft-competitive recurrent circuit whose components perform local and contextual computations consistent with known dendritic and neural processing motifs. We evaluate GateMod across two different settings: collective behaviors in multi-agent systems and human decision-making in multi-armed bandits. In all settings, GateMod provides interpretable mechanistic explanations of gating and quantitatively matches or outperforms established models. GateMod offers a unifying framework for neural policy gating, linking task objectives, dynamical computation, and circuit-level mechanisms. It provides a framework to understand gating in natural agents beyond current explanations and to equip machines with this ability.
☆ OsmT: Bridging OpenStreetMap Queries and Natural Language with Open-source Tag-aware Language Models ICDE
Bridging natural language and structured query languages is a long-standing challenge in the database community. While recent advances in language models have shown promise in this direction, existing solutions often rely on large-scale closed-source models that suffer from high inference costs, limited transparency, and lack of adaptability for lightweight deployment. In this paper, we present OsmT, an open-source tag-aware language model specifically designed to bridge natural language and Overpass Query Language (OverpassQL), a structured query language for accessing large-scale OpenStreetMap (OSM) data. To enhance the accuracy and structural validity of generated queries, we introduce a Tag Retrieval Augmentation (TRA) mechanism that incorporates contextually relevant tag knowledge into the generation process. This mechanism is designed to capture the hierarchical and relational dependencies present in the OSM database, addressing the topological complexity inherent in geospatial query formulation. In addition, we define a reverse task, OverpassQL-to-Text, which translates structured queries into natural language explanations to support query interpretation and improve user accessibility. We evaluate OsmT on a public benchmark against strong baselines and observe consistent improvements in both query generation and interpretation. Despite using significantly fewer parameters, our model achieves competitive accuracy, demonstrating the effectiveness of open-source pre-trained language models in bridging natural language and structured query languages within schema-rich geospatial environments.
comment: 42nd IEEE International Conference on Data Engineering (ICDE)
☆ E3AD: An Emotion-Aware Vision-Language-Action Model for Human-Centric End-to-End Autonomous Driving
End-to-end autonomous driving (AD) systems increasingly adopt vision-language-action (VLA) models, yet they typically ignore the passenger's emotional state, which is central to comfort and AD acceptance. We introduce Open-Domain End-to-End (OD-E2E) autonomous driving, where an autonomous vehicle (AV) must interpret free-form natural-language commands, infer the emotion, and plan a physically feasible trajectory. We propose E3AD, an emotion-aware VLA framework that augments semantic understanding with two cognitively inspired components: a continuous Valenc-Arousal-Dominance (VAD) emotion model that captures tone and urgency from language, and a dual-pathway spatial reasoning module that fuses egocentric and allocentric views for human-like spatial cognition. A consistency-oriented training scheme, combining modality pretraining with preference-based alignment, further enforces coherence between emotional intent and driving actions. Across real-world datasets, E3AD improves visual grounding and waypoint planning and achieves state-of-the-art (SOTA) VAD correlation for emotion estimation. These results show that injecting emotion into VLA-style driving yields more human-aligned grounding, planning, and human-centric feedback.
☆ Measuring the Unspoken: A Disentanglement Model and Benchmark for Psychological Analysis in the Wild
Generative psychological analysis of in-the-wild conversations faces two fundamental challenges: (1) existing Vision-Language Models (VLMs) fail to resolve Articulatory-Affective Ambiguity, where visual patterns of speech mimic emotional expressions; and (2) progress is stifled by a lack of verifiable evaluation metrics capable of assessing visual grounding and reasoning depth. We propose a complete ecosystem to address these twin challenges. First, we introduce Multilevel Insight Network for Disentanglement(MIND), a novel hierarchical visual encoder that introduces a Status Judgment module to algorithmically suppress ambiguous lip features based on their temporal feature variance, achieving explicit visual disentanglement. Second, we construct ConvoInsight-DB, a new large-scale dataset with expert annotations for micro-expressions and deep psychological inference. Third, Third, we designed the Mental Reasoning Insight Rating Metric (PRISM), an automated dimensional framework that uses expert-guided LLM to measure the multidimensional performance of large mental vision models. On our PRISM benchmark, MIND significantly outperforms all baselines, achieving a +86.95% gain in micro-expression detection over prior SOTA. Ablation studies confirm that our Status Judgment disentanglement module is the most critical component for this performance leap. Our code has been opened.
☆ Sequential Enumeration in Large Language Models
Reliably counting and generating sequences of items remain a significant challenge for neural networks, including Large Language Models (LLMs). Indeed, although this capability is readily handled by rule-based symbolic systems based on serial computation, learning to systematically deploy counting procedures is difficult for neural models, which should acquire these skills through learning. Previous research has demonstrated that recurrent architectures can only approximately track and enumerate sequences of events, and it remains unclear whether modern deep learning systems, including LLMs, can deploy systematic counting procedures over sequences of discrete symbols. This paper aims to fill this gap by investigating the sequential enumeration abilities of five state-of-the-art LLMs, including proprietary, open-source, and reasoning models. We probe LLMs in sequential naming and production tasks involving lists of letters and words, adopting a variety of prompting instructions to explore the role of chain-of-thought in the spontaneous emerging of counting strategies. We also evaluate open-source models with the same architecture but increasing size to see whether the mastering of counting principles follows scaling laws, and we analyze the embedding dynamics during sequential enumeration to investigate the emergent encoding of numerosity. We find that some LLMs are indeed capable of deploying counting procedures when explicitly prompted to do so, but none of them spontaneously engage in counting when simply asked to enumerate the number of items in a sequence. Our results suggest that, despite their impressive emergent abilities, LLMs cannot yet robustly and systematically deploy counting procedures, highlighting a persistent gap between neural and symbolic approaches to compositional generalization.
☆ Towards an AI Fluid Scientist: LLM-Powered Scientific Discovery in Experimental Fluid Mechanics
The integration of artificial intelligence into experimental fluid mechanics promises to accelerate discovery, yet most AI applications remain narrowly focused on numerical studies. This work proposes an AI Fluid Scientist framework that autonomously executes the complete experimental workflow: hypothesis generation, experimental design, robotic execution, data analysis, and manuscript preparation. We validate this through investigation of vortex-induced vibration (VIV) and wake-induced vibration (WIV) in tandem cylinders. Our work has four key contributions: (1) A computer-controlled circulating water tunnel (CWT) with programmatic control of flow velocity, cylinder position, and forcing parameters (vibration frequency and amplitude) with data acquisition (displacement, force, and torque). (2) Automated experiments reproduce literature benchmarks (Khalak and Williamson [1999] and Assi et al. [2013, 2010]) with frequency lock-in within 4% and matching critical spacing trends. (3) The framework with Human-in-the-Loop (HIL) discovers more WIV amplitude response phenomena, and uses a neural network to fit physical laws from data, which is 31% higher than that of polynomial fitting. (4) The framework with multi-agent with virtual-real interaction system executes hundreds of experiments end-to-end, which automatically completes the entire process of scientific research from hypothesis generation, experimental design, experimental execution, data analysis, and manuscript preparation. It greatly liberates human researchers and improves study efficiency, providing new paradigm for the development and research of experimental fluid mechanics.
☆ Playing the Player: A Heuristic Framework for Adaptive Poker AI
For years, the discourse around poker AI has been dominated by the concept of solvers and the pursuit of unexploitable, machine-perfect play. This paper challenges that orthodoxy. It presents Patrick, an AI built on the contrary philosophy: that the path to victory lies not in being unexploitable, but in being maximally exploitative. Patrick's architecture is a purpose-built engine for understanding and attacking the flawed, psychological, and often irrational nature of human opponents. Through detailed analysis of its design, its novel prediction-anchored learning method, and its profitable performance in a 64,267-hand trial, this paper makes the case that the solved myth is a distraction from the real, far more interesting challenge: creating AI that can master the art of human imperfection.
comment: 49 pages, 39 figures. White Paper by Spiderdime Systems
☆ Large Speech Model Enabled Semantic Communication
Existing speech semantic communication systems mainly based on Joint Source-Channel Coding (JSCC) architectures have demonstrated impressive performance, but their effectiveness remains limited by model structures specifically designed for particular tasks and datasets. Recent advances indicate that generative large models pre-trained on massive datasets, can achieve outstanding performance arexhibit exceptional performance across diverse downstream tasks with minimal fine-tuning. To exploit the rich semantic knowledge embedded in large models and enable adaptive transmission over lossy channels, we propose a Large Speech Model enabled Semantic Communication (LargeSC) system. Simultaneously achieving adaptive compression and robust transmission over lossy channels remains challenging, requiring trade-offs among compression efficiency, speech quality, and latency. In this work, we employ the Mimi as a speech codec, converting speech into discrete tokens compatible with existing network architectures. We propose an adaptive controller module that enables adaptive transmission and in-band Unequal Error Protection (UEP), dynamically adjusting to both speech content and packet loss probability under bandwidth constraints. Additionally, we employ Low-Rank Adaptation (LoRA) to finetune the Moshi foundation model for generative recovery of lost speech tokens. Simulation results show that the proposed system supports bandwidths ranging from 550 bps to 2.06 kbps, outperforms conventional baselines in speech quality under high packet loss rates and achieves an end-to-end latency of approximately 460 ms, thereby demonstrating its potential for real-time deployment.
comment: 15 pages, 9 figures
☆ TimesNet-Gen: Deep Learning-based Site Specific Strong Motion Generation
Effective earthquake risk reduction relies on accurate site-specific evaluations. This requires models that can represent the influence of local site conditions on ground motion characteristics. In this context, data driven approaches that learn site controlled signatures from recorded ground motions offer a promising direction. We address strong ground motion generation from time-domain accelerometer records and introduce the TimesNet-Gen, a time-domain conditional generator. The approach uses a station specific latent bottleneck. We evaluate generation by comparing HVSR curves and fundamental site-frequency $f_0$ distributions between real and generated records per station, and summarize station specificity with a score based on the $f_0$ distribution confusion matrices. TimesNet-Gen achieves strong station-wise alignment and compares favorably with a spectrogram-based conditional VAE baseline for site-specific strong motion synthesis. Our codes are available via https://github.com/brsylmz23/TimesNet-Gen.
☆ Towards Ethical Multi-Agent Systems of Large Language Models: A Mechanistic Interpretability Perspective AAAI'26
Large language models (LLMs) have been widely deployed in various applications, often functioning as autonomous agents that interact with each other in multi-agent systems. While these systems have shown promise in enhancing capabilities and enabling complex tasks, they also pose significant ethical challenges. This position paper outlines a research agenda aimed at ensuring the ethical behavior of multi-agent systems of LLMs (MALMs) from the perspective of mechanistic interpretability. We identify three key research challenges: (i) developing comprehensive evaluation frameworks to assess ethical behavior at individual, interactional, and systemic levels; (ii) elucidating the internal mechanisms that give rise to emergent behaviors through mechanistic interpretability; and (iii) implementing targeted parameter-efficient alignment techniques to steer MALMs towards ethical behaviors without compromising their performance.
comment: Accepted to LaMAS 2026@AAAI'26 (https://sites.google.com/view/lamas2026)
☆ Generative AI for Self-Adaptive Systems: State of the Art and Research Roadmap
Self-adaptive systems (SASs) are designed to handle changes and uncertainties through a feedback loop with four core functionalities: monitoring, analyzing, planning, and execution. Recently, generative artificial intelligence (GenAI), especially the area of large language models, has shown impressive performance in data comprehension and logical reasoning. These capabilities are highly aligned with the functionalities required in SASs, suggesting a strong potential to employ GenAI to enhance SASs. However, the specific benefits and challenges of employing GenAI in SASs remain unclear. Yet, providing a comprehensive understanding of these benefits and challenges is complex due to several reasons: limited publications in the SAS field, the technological and application diversity within SASs, and the rapid evolution of GenAI technologies. To that end, this paper aims to provide researchers and practitioners a comprehensive snapshot that outlines the potential benefits and challenges of employing GenAI's within SAS. Specifically, we gather, filter, and analyze literature from four distinct research fields and organize them into two main categories to potential benefits: (i) enhancements to the autonomy of SASs centered around the specific functions of the MAPE-K feedback loop, and (ii) improvements in the interaction between humans and SASs within human-on-the-loop settings. From our study, we outline a research roadmap that highlights the challenges of integrating GenAI into SASs. The roadmap starts with outlining key research challenges that need to be tackled to exploit the potential for applying GenAI in the field of SAS. The roadmap concludes with a practical reflection, elaborating on current shortcomings of GenAI and proposing possible mitigation strategies.
comment: Accepted by ACM Transactions on Autonomous and Adaptive Systems
☆ Topology Matters: Measuring Memory Leakage in Multi-Agent LLMs ACL
Graph topology is a fundamental determinant of memory leakage in multi-agent LLM systems, yet its effects remain poorly quantified. We introduce MAMA (Multi-Agent Memory Attack), a framework that measures how network structure shapes leakage. MAMA operates on synthetic documents containing labeled Personally Identifiable Information (PII) entities, from which we generate sanitized task instructions. We execute a two-phase protocol: Engram (seeding private information into a target agent's memory) and Resonance (multi-round interaction where an attacker attempts extraction). Over up to 10 interaction rounds, we quantify leakage as the fraction of ground-truth PII recovered from attacking agent outputs via exact matching. We systematically evaluate six common network topologies (fully connected, ring, chain, binary tree, star, and star-ring), varying agent counts $n\in\{4,5,6\}$, attacker-target placements, and base models. Our findings reveal consistent patterns: fully connected graphs exhibit maximum leakage while chains provide strongest protection; shorter attacker-target graph distance and higher target centrality significantly increase vulnerability; leakage rises sharply in early rounds before plateauing; model choice shifts absolute leakage rates but preserves topology rankings; temporal/locational PII attributes leak more readily than identity credentials or regulated identifiers. These results provide the first systematic mapping from architectural choices to measurable privacy risk, yielding actionable guidance: prefer sparse or hierarchical connectivity, maximize attacker-target separation, limit node degree and network radius, avoid shortcuts bypassing hubs, and implement topology-aware access controls.
comment: Under review at ACL Rolling Review
☆ Semi Centralized Training Decentralized Execution Architecture for Multi Agent Deep Reinforcement Learning in Traffic Signal Control
Multi-agent reinforcement learning (MARL) has emerged as a promising paradigm for adaptive traffic signal control (ATSC) of multiple intersections. Existing approaches typically follow either a fully centralized or a fully decentralized design. Fully centralized approaches suffer from the curse of dimensionality, and reliance on a single learning server, whereas purely decentralized approaches operate under severe partial observability and lack explicit coordination resulting in suboptimal performance. These limitations motivate region-based MARL, where the network is partitioned into smaller, tightly coupled intersections that form regions, and training is organized around these regions. This paper introduces a Semi-Centralized Training, Decentralized Execution (SEMI-CTDE) architecture for multi intersection ATSC. Within each region, SEMI-CTDE performs centralized training with regional parameter sharing and employs composite state and reward formulations that jointly encode local and regional information. The architecture is highly transferable across different policy backbones and state-reward instantiations. Building on this architecture, we implement two models with distinct design objectives. A multi-perspective experimental analysis of the two implemented SEMI-CTDE-based models covering ablations of the architecture's core elements including rule based and fully decentralized baselines shows that they achieve consistently superior performance and remain effective across a wide range of traffic densities and distributions.
comment: Co-first authors: Pouria Yazdani and Arash Rezaali
☆ SEASON: Mitigating Temporal Hallucination in Video Large Language Models via Self-Diagnostic Contrastive Decoding
Video Large Language Models (VideoLLMs) have shown remarkable progress in video understanding. However, these models still struggle to effectively perceive and exploit rich temporal information in videos when responding to user queries. Therefore, they often generate descriptions of events that are temporal inconsistent or causally implausible, causing severe hallucination issues. While most prior studies have focused on spatial hallucinations (e.g. object mismatches), temporal reasoning in video understanding remains relatively underexplored. To address this issue, we propose Self-Diagnostic Contrastive Decoding (SEASON), a training-free method that adaptively enhances temporal and spatial faithfulness for each output token. It achieves this by dynamically diagnosing each token's hallucination tendency and applying adaptive contrastive decoding against its corresponding temporal and spatial negatives. Extensive experiments demonstrate that SEASON outperforms all existing training-free hallucination mitigation approaches on three hallucination examination benchmarks, while further improves VideoLLMs across four general video understanding benchmarks. The code will be released upon acceptance.
☆ When GenAI Meets Fake News: Understanding Image Cascade Dynamics on Reddit
AI-generated content and misinformation are increasingly prevalent on social networks. While prior research primarily examined textual misinformation, fewer studies have focused on visual content's role in virality. In this work, we present the first large-scale analysis of how misinformation and AI-generated images propagate through repost cascades across five ideologically diverse Reddit communities. By integrating textual sentiment, visual attributes, and diffusion metrics (e.g., time-to-first repost, community reach), our framework accurately predicts both immediate post-level virality (AUC=0.83) and long-term cascade-level spread (AUC=0.998). These findings offer essential insights for moderating synthetic and misleading visual content online.
comment: Accepted at 2025 MIT Undergraduate Research Technology Conference (URTC'25)
☆ Turbo-Muon: Accelerating Orthogonality-Based Optimization with Pre-Conditioning
Orthogonality-based optimizers, such as Muon, have recently shown strong performance across large-scale training and community-driven efficiency challenges. However, these methods rely on a costly gradient orthogonalization step. Even efficient iterative approximations such as Newton-Schulz remain expensive, typically requiring dozens of matrix multiplications to converge. We introduce a preconditioning procedure that accelerates Newton-Schulz convergence and reduces its computational cost. We evaluate its impact and show that the overhead of our preconditioning can be made negligible. Furthermore, the faster convergence it enables allows us to remove one iteration out of the usual five without degrading approximation quality. Our publicly available implementation achieves up to a 2.8x speedup in the Newton-Schulz approximation. We also show that this has a direct impact on end-to-end training runtime with 5-10% improvement in realistic training scenarios across two efficiency-focused tasks. On challenging language or vision tasks, we validate that our method maintains equal or superior model performance while improving runtime. Crucially, these improvements require no hyperparameter tuning and can be adopted as a simple drop-in replacement. Our code is publicly available on github.
☆ BioMedGPT-Mol: Multi-task Learning for Molecular Understanding and Generation
Molecules play a crucial role in biomedical research and discovery, particularly in the field of small molecule drug development. Given the rapid advancements in large language models, especially the recent emergence of reasoning models, it is natural to explore how a general-purpose language model can be efficiently adapted for molecular science applications. In this work, we introduce BioMedGPT-Mol, a molecular language model designed to support molecular understanding and generation tasks. By curating and unifying existing public instruction datasets, we have assembled a large-scale, comprehensive, and high-quality training dataset. The model is then fine-tuned through a meticulously designed multi-task learning framework. On a consolidated benchmark derived from LlaSMol, TOMG-Bench, and MuMOInstruct, BioMedGPT-Mol achieves remarkable performance. Our experimental results demonstrate that a general-purpose reasoning model can be effectively and efficiently post-trained into a professional molecular language model through a well-structured multi-task curriculum. Leveraging the power of it, we further explore retrosynthetic planning task, and the performance on RetroBench demonstrates its competitive capability of acting as an end-to-end retrosynthetic planner. We anticipate that our approach can be extended to other biomedical scientific domains.
☆ Neural Decoding of Overt Speech from ECoG Using Vision Transformers and Contrastive Representation Learning
Speech Brain Computer Interfaces (BCIs) offer promising solutions to people with severe paralysis unable to communicate. A number of recent studies have demonstrated convincing reconstruction of intelligible speech from surface electrocorticographic (ECoG) or intracortical recordings by predicting a series of phonemes or words and using downstream language models to obtain meaningful sentences. A current challenge is to reconstruct speech in a streaming mode by directly regressing cortical signals into acoustic speech. While this has been achieved recently using intracortical data, further work is needed to obtain comparable results with surface ECoG recordings. In particular, optimizing neural decoders becomes critical in this case. Here we present an offline speech decoding pipeline based on an encoder-decoder deep neural architecture, integrating Vision Transformers and contrastive learning to enhance the direct regression of speech from ECoG signals. The approach is evaluated on two datasets, one obtained with clinical subdural electrodes in an epileptic patient, and another obtained with the fully implantable WIMAGINE epidural system in a participant of a motor BCI trial. To our knowledge this presents a first attempt to decode speech from a fully implantable and wireless epidural recording system offering perspectives for long-term use.
☆ The Ethics of Generative AI
This chapter discusses the ethics of generative AI. It provides a technical primer to show how generative AI affords experiencing technology as if it were human, and this affordance provides a fruitful focus for the philosophical ethics of generative AI. It then shows how generative AI can both aggravate and alleviate familiar ethical concerns in AI ethics, including responsibility, privacy, bias and fairness, and forms of alienation and exploitation. Finally, the chapter examines ethical questions that arise specifically from generative AI's mimetic generativity, such as debates about authorship and credit, the emergence of as-if social relationships with machines, and new forms of influence, persuasion, and manipulation.
comment: Draft version to appear as a chapter in the Encyclopedia of Applied Ethics, 3rd Edition, edited by Ruth Chadwick
☆ When Robots Should Say "I Don't Know": Benchmarking Abstention in Embodied Question Answering
Embodied Question Answering (EQA) requires an agent to interpret language, perceive its environment, and navigate within 3D scenes to produce responses. Existing EQA benchmarks assume that every question must be answered, but embodied agents should know when they do not have sufficient information to answer. In this work, we focus on a minimal requirement for EQA agents, abstention: knowing when to withhold an answer. From an initial study of 500 human queries, we find that 32.4% contain missing or underspecified context. Drawing on this initial study and cognitive theories of human communication errors, we derive five representative categories requiring abstention: actionability limitation, referential underspecification, preference dependence, information unavailability, and false presupposition. We augment OpenEQA by having annotators transform well-posed questions into ambiguous variants outlined by these categories. The resulting dataset, AbstainEQA, comprises 1,636 annotated abstention cases paired with 1,636 original OpenEQA instances for balanced evaluation. Evaluating on AbstainEQA, we find that even the best frontier model only attains 42.79% abstention recall, while humans achieve 91.17%. We also find that scaling, prompting, and reasoning only yield marginal gains, and that fine-tuned models overfit to textual cues. Together, these results position abstention as a fundamental prerequisite for reliable interaction in embodied settings and as a necessary basis for effective clarification.
☆ A Light-Weight Large Language Model File Format for Highly-Secure Model Distribution
To enhance the performance of large language models (LLMs) in various domain-specific applications, sensitive data such as healthcare, law, and finance are being used to privately customize or fine-tune these models. Such privately adapted LLMs are regarded as either personal privacy assets or corporate intellectual property. Therefore, protecting model weights and maintaining strict confidentiality during deployment and distribution have become critically important. However, existing model formats and deployment frameworks provide little to no built-in support for confidentiality, access control, or secure integration with trusted hardware. Current methods for securing model deployment either rely on computationally expensive cryptographic techniques or tightly controlled private infrastructure. Although these approaches can be effective in specific scenarios, they are difficult and costly for widespread deployment. In this paper, we introduce CryptoTensors, a secure and format-compatible file structure for confidential LLM distribution. Built as an extension to the widely adopted Safetensors format, CryptoTensors incorporates tensor-level encryption and embedded access control policies, while preserving critical features such as lazy loading and partial deserialization. It enables transparent decryption and automated key management, supporting flexible licensing and secure model execution with minimal overhead. We implement a proof-of-concept library, benchmark its performance across serialization and runtime scenarios, and validate its compatibility with existing inference frameworks, including Hugging Face Transformers and vLLM. Our results highlight CryptoTensors as a light-weight, efficient, and developer-friendly solution for safeguarding LLM weights in real-world and widespread deployments.
☆ Diffusion Fine-Tuning via Reparameterized Policy Gradient of the Soft Q-Function
Diffusion models excel at generating high-likelihood samples but often require alignment with downstream objectives. Existing fine-tuning methods for diffusion models significantly suffer from reward over-optimization, resulting in high-reward but unnatural samples and degraded diversity. To mitigate over-optimization, we propose \textbf{Soft Q-based Diffusion Finetuning (SQDF)}, a novel KL-regularized RL method for diffusion alignment that applies a reparameterized policy gradient of a training-free, differentiable estimation of the soft Q-function. SQDF is further enhanced with three innovations: a discount factor for proper credit assignment in the denoising process, the integration of consistency models to refine Q-function estimates, and the use of an off-policy replay buffer to improve mode coverage and manage the reward-diversity trade-off. Our experiments demonstrate that SQDF achieves superior target rewards while preserving diversity in text-to-image alignment. Furthermore, in online black-box optimization, SQDF attains high sample efficiency while maintaining naturalness and diversity.
comment: 36 pages, 21 figures, 4 tables
☆ RRPO: Robust Reward Policy Optimization for LLM-based Emotional TTS ICASSP 2026
Differentiable reinforcement learning (RL) frameworks like DiffRO offer a powerful approach for controllable text-to-speech (TTS), but are vulnerable to reward hacking, particularly for nuanced tasks like emotion control. The policy model can exploit a vanilla Reward Model (RM) by generating acoustic artifacts to achieve spurious rewards, but at the cost of degrading perceptual quality. To address this, we propose Robust Reward Policy Optimization (RRPO), a novel framework that employs a hybrid regularization scheme. This scheme develops a robust RM whose reward signal is more reliably aligned with human perception, compelling the policy to abandon detrimental shortcuts and instead learn the complex features of genuine emotions. Our ablation study confirms the enhanced robustness of our RM, as evidenced by its strong cross-lingual generalization. The subjective evaluation demonstrates that this robust RM effectively mitigates reward hacking, leading to significant improvements in both emotional expressiveness and naturalness over all baselines. Demo page: https://lrwinr.github.io/RRPO-CosyVoice.
comment: Submitted to ICASSP 2026. Copyright 2026 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works
☆ Multi-Loss Learning for Speech Emotion Recognition with Energy-Adaptive Mixup and Frame-Level Attention ICASSP 2026
Speech emotion recognition (SER) is an important technology in human-computer interaction. However, achieving high performance is challenging due to emotional complexity and scarce annotated data. To tackle these challenges, we propose a multi-loss learning (MLL) framework integrating an energy-adaptive mixup (EAM) method and a frame-level attention module (FLAM). The EAM method leverages SNR-based augmentation to generate diverse speech samples capturing subtle emotional variations. FLAM enhances frame-level feature extraction for multi-frame emotional cues. Our MLL strategy combines Kullback-Leibler divergence, focal, center, and supervised contrastive loss to optimize learning, address class imbalance, and improve feature separability. We evaluate our method on four widely used SER datasets: IEMOCAP, MSP-IMPROV, RAVDESS, and SAVEE. The results demonstrate our method achieves state-of-the-art performance, suggesting its effectiveness and robustness.
comment: Submitted to ICASSP 2026. Copyright 2026 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works
☆ AdmTree: Compressing Lengthy Context with Adaptive Semantic Trees NeurIPS 2025
The quadratic complexity of self-attention constrains Large Language Models (LLMs) in processing long contexts, a capability essential for many advanced applications. Context compression aims to alleviate this computational bottleneck while retaining critical semantic information. However, existing approaches often fall short: explicit methods may compromise local detail, whereas implicit methods can suffer from positional biases, information degradation, or an inability to capture long-range semantic dependencies. We propose AdmTree, a novel framework for adaptive, hierarchical context compression with a central focus on preserving high semantic fidelity while maintaining efficiency. AdmTree dynamically segments input based on information density, utilizing gist tokens to summarize variable-length segments as the leaves of a semantic binary tree. This structure, together with a lightweight aggregation mechanism and a frozen backbone LLM (thereby minimizing new trainable parameters), enables efficient hierarchical abstraction of the context. By preserving fine-grained details alongside global semantic coherence, mitigating positional bias, and dynamically adapting to content, AdmTree robustly retains the semantic information of long contexts.
comment: NeurIPS 2025
☆ Detection of Intoxicated Individuals from Facial Video Sequences via a Recurrent Fusion Model
Alcohol consumption is a significant public health concern and a major cause of accidents and fatalities worldwide. This study introduces a novel video-based facial sequence analysis approach dedicated to the detection of alcohol intoxication. The method integrates facial landmark analysis via a Graph Attention Network (GAT) with spatiotemporal visual features extracted using a 3D ResNet. These features are dynamically fused with adaptive prioritization to enhance classification performance. Additionally, we introduce a curated dataset comprising 3,542 video segments derived from 202 individuals to support training and evaluation. Our model is compared against two baselines: a custom 3D-CNN and a VGGFace+LSTM architecture. Experimental results show that our approach achieves 95.82% accuracy, 0.977 precision, and 0.97 recall, outperforming prior methods. The findings demonstrate the model's potential for practical deployment in public safety systems for non-invasive, reliable alcohol intoxication detection.
☆ GTM: Simulating the World of Tools for AI Agents
The integration of external tools is pivotal for empowering Large Language Model (LLM) agents with real-world capabilities. However, training these agents through direct, continuous interaction with diverse tools is often prohibitively expensive, slow, and introduces additional development and maintenance overhead. To address this challenge, we introduce the Generalist Tool Model (GTM), a 1.5-billion-parameter model that learns to act as a universal tool simulator. With only prompt-level configuration, GTM accesses tool functionalities along with input arguments and generates outputs that faithfully mimic real tool execution, providing a fast and cost-effective solution that eliminates development overhead. To build GTM, we propose the Context-Aware Response Generation (CARG) pipeline, which synthesizes comprehensive training data covering over 20,000 tools across 300 domains including physics, medicine, robotics, and finance. Through this pipeline, GTM learns to produce not only syntactically correct outputs but also logically coherent and contextually appropriate responses. Experiments demonstrate that GTM produces high-quality outputs with strong consistency and reliability. Besides when used in real reinforcement learning scenarios for agent training, GTM exhibits significantly faster simulation speed compared to real tools while maintaining comparable output quality, along with remarkable generalization and domain adaptability. Our results establish GTM as a foundational component for developing future AI agents, enabling efficient and scalable training of tool-augmented systems.
☆ PhyVLLM: Physics-Guided Video Language Model with Motion-Appearance Disentanglement
Video Large Language Models (Video LLMs) have shown impressive performance across a wide range of video-language tasks. However, they often fail in scenarios requiring a deeper understanding of physical dynamics. This limitation primarily arises from their reliance on appearance-based matching. Incorporating physical motion modeling is crucial for deeper video understanding, but presents three key challenges: (1) motion signals are often entangled with appearance variations, making it difficult to extract clean physical cues; (2) effective motion modeling requires not only continuous-time motion representations but also capturing physical dynamics; and (3) collecting accurate annotations for physical attributes is costly and often impractical. To address these issues, we propose PhyVLLM, a physical-guided video-language framework that explicitly incorporates physical motion into Video LLMs. Specifically, PhyVLLM disentangles visual appearance and object motion through a dual-branch encoder. To model physical dynamics over time, we incorporate a Neural Ordinary Differential Equation (Neural ODE) module, which generates differentiable physical dynamic representations. The resulting motion-aware representations are projected into the token space of a pretrained LLM, enabling physics reasoning without compromising the model's original multimodal capabilities. To circumvent the need for explicit physical labels, PhyVLLM employs a self-supervised manner to model the continuous evolution of object motion. Experimental results demonstrate that PhyVLLM significantly outperforms state-of-the-art Video LLMs on both physical reasoning and general video understanding tasks, highlighting the advantages of incorporating explicit physical modeling.
☆ SlideGen: Collaborative Multimodal Agents for Scientific Slide Generation
Generating academic slides from scientific papers is a challenging multimodal reasoning task that requires both long context understanding and deliberate visual planning. Existing approaches largely reduce it to text only summarization, overlooking the visual component and design intensive nature of slide creation. In this paper we introduce SlideGen, an agentic, modular, and visual in the loop framework for scientific paper to slide generation. SlideGen orchestrates a group of vision language agents that reason collaboratively over the document structure and semantics, producing editable PPTX slides with logical flow and compelling visual presentation. By integrating coordinated outlining, mapping, arrangement, note synthesis, and iterative refinement, our system consistently delivers slides of expert level quality. Across diverse benchmarks and strong baselines, SlideGen outperforms existing methods in visual quality, content faithfulness, and readability, positioning it as the new state of the art in automated slide generation. Our work establishes a foundation for design aware multimodal slide generation, demonstrating how agentic collaboration can bridge understanding and presentation in complex multimodal reasoning tasks.
☆ Prototype-Based Semantic Consistency Alignment for Domain Adaptive Retrieval AAAI2026
Domain adaptive retrieval aims to transfer knowledge from a labeled source domain to an unlabeled target domain, enabling effective retrieval while mitigating domain discrepancies. However, existing methods encounter several fundamental limitations: 1) neglecting class-level semantic alignment and excessively pursuing pair-wise sample alignment; 2) lacking either pseudo-label reliability consideration or geometric guidance for assessing label correctness; 3) directly quantizing original features affected by domain shift, undermining the quality of learned hash codes. In view of these limitations, we propose Prototype-Based Semantic Consistency Alignment (PSCA), a two-stage framework for effective domain adaptive retrieval. In the first stage, a set of orthogonal prototypes directly establishes class-level semantic connections, maximizing inter-class separability while gathering intra-class samples. During the prototype learning, geometric proximity provides a reliability indicator for semantic consistency alignment through adaptive weighting of pseudo-label confidences. The resulting membership matrix and prototypes facilitate feature reconstruction, ensuring quantization on reconstructed rather than original features, thereby improving subsequent hash coding quality and seamlessly connecting both stages. In the second stage, domain-specific quantization functions process the reconstructed features under mutual approximation constraints, generating unified binary hash codes across domains. Extensive experiments validate PSCA's superior performance across multiple datasets.
comment: This paper was accepted by AAAI2026 main tech track not long ago. This is an expanded version with an appendix
☆ UW-BioNLP at ChemoTimelines 2025: Thinking, Fine-Tuning, and Dictionary-Enhanced LLM Systems for Chemotherapy Timeline Extraction
The ChemoTimelines shared task benchmarks methods for constructing timelines of systemic anticancer treatment from electronic health records of cancer patients. This paper describes our methods, results, and findings for subtask 2 -- generating patient chemotherapy timelines from raw clinical notes. We evaluated strategies involving chain-of-thought thinking, supervised fine-tuning, direct preference optimization, and dictionary-based lookup to improve timeline extraction. All of our approaches followed a two-step workflow, wherein an LLM first extracted chemotherapy events from individual clinical notes, and then an algorithm normalized and aggregated events into patient-level timelines. Each specific method differed in how the associated LLM was utilized and trained. Multiple approaches yielded competitive performances on the test set leaderboard, with fine-tuned Qwen3-14B achieving the best official score of 0.678. Our results and analyses could provide useful insights for future attempts on this task as well as the design of similar tasks.
comment: To be published in Proceedings of the 7th Clinical Natural Language Processing Workshop
☆ BiTAgent: A Task-Aware Modular Framework for Bidirectional Coupling between Multimodal Large Language Models and World Models
Building generalist embodied agents requires a unified system that can interpret multimodal goals, model environment dynamics, and execute reliable actions across diverse real-world tasks. Multimodal large language models (MLLMs) offer strong semantic priors and cross-modal generalization, while world models (WMs) provide actionable latent dynamics for prediction and control. Their combination holds promise for open-ended embodied intelligence, yet introduces two key challenges: (1) establishing a tight coupling between the semantic intent from MLLMs and the dynamic state representations within the WM's latent space, and (2) achieving task-aware adaptability that supports multi-task learning and cross-environment generalization. To address these limitations, we propose BiTAgent, a task-aware dynamic joint framework that enables bidirectional coupling between MLLMs and WMs. BiTAgent establishes two complementary pathways: a forward path that injects MLLM representations into the WM's latent space for semantically guided imagination, and a backward path where WM-generated feedback refines the MLLM's semantic space via dense text-conditioned rewards. This bidirectional interaction is realized through three synergistic components: Task-Aware Dynamic Joint Learning, Task-Aware Behavior Learning, and MLLM-WM Joint Optimization, which together harmonize semantic reasoning and dynamic prediction. Extensive experiments across multi-task and cross-environment settings demonstrate superior stability and generalization over state-of-the-art baselines, marking a step toward open-ended embodied learning.
☆ A Modular Cognitive Architecture for Assisted Reasoning: The Nemosine Framework
This paper presents the Nemosine Framework, a modular cognitive architecture designed to support assisted reasoning, structured thinking, and systematic analysis. The model operates through functional cognitive modules ("personas") that organize tasks such as planning, evaluation, cross-checking, and narrative synthesis. The framework combines principles from metacognition, distributed cognition, and modular cognitive systems to offer an operational structure for assisted problem-solving and decision support. The architecture is documented through formal specification, internal consistency criteria, and reproducible structural components. The goal is to provide a clear conceptual basis for future computational implementations and to contribute to the study of symbolic-modular architectures for reasoning.
comment: 6 pages, 1 figure. First version
♻ ☆ BioAnalyst: A Foundation Model for Biodiversity
Multimodal Foundation Models (FMs) offer a path to learn general-purpose representations from heterogeneous ecological data, easily transferable to downstream tasks. However, practical biodiversity modelling remains fragmented; separate pipelines and models are built for each dataset and objective, which limits reuse across regions and taxa. In response, we present BioAnalyst, to our knowledge the first multimodal Foundation Model tailored to biodiversity analysis and conservation planning in Europe at $0.25^{\circ}$ spatial resolution targeting regional to national-scale applications. BioAnalyst employs a transformer-based architecture, pre-trained on extensive multimodal datasets that align species occurrence records with remote sensing indicators, climate and environmental variables. Post pre-training, the model is adapted via lightweight roll-out fine-tuning to a range of downstream tasks, including joint species distribution modelling, biodiversity dynamics and population trend forecasting. The model is evaluated on two representative downstream use cases: (i) joint species distribution modelling and with 500 vascular plant species (ii) monthly climate linear probing with temperature and precipitation data. Our findings show that BioAnalyst can provide a strong baseline both for biotic and abiotic tasks, acting as a macroecological simulator with a yearly forecasting horizon and monthly resolution, offering the first application of this type of modelling in the biodiversity domain. We have open-sourced the model weights, training and fine-tuning pipelines to advance AI-driven ecological research.
♻ ☆ Empowering Clients -- Transformation of Design Processes Due to Generative AI
Generative AI (GenAI) is transforming creative fields shaping our culture and our heritage. We focus on widespread interactions between clients and (creative) specialists highlighting a change in interaction patterns leading to a shift from the use of expert creativity towards AI-supported client creativity. More specifically, we explore the case of architecture as designing houses is complex involving extensive customer interaction. We investigate the effects of GenAI on the architectural design process and discuss the role of the architect. Our study involved six architects using a general-purpose text-to-image tool for generating designs and providing feedback followed by expert interviews. We find that AI can disrupt the ideation phase by enabling clients to engage in the design process through rapid visualization of their ideas. In turn, so our thesis, the architect's role shifts towards assessing feasibility of such designs. AI's feedback, though valuable, can hamper creativity and innovation by suggesting altering novel, innovative approaches towards more standardized designs. We find that there is uncertainty among architects about the interpretative sovereignty of architecture and identity when AI increasingly takes over authorship. Our findings can also support the design of future AI systems by pinpointing weaknesses and highlighting a novel design process calling for tighter client integration. In our discussion, we also generalize our findings on a broader societal level elaborating on the change of a number of characteristics such as power, capability and responsibility in the triangle of AI, experts, and non-experts. We also discuss risks such as cultural uniformity when it comes to using AI to design artifacts central to our cultural heritage.
♻ ☆ AudAgent: Automated Auditing of Privacy Policy Compliance in AI Agents
AI agents can autonomously perform tasks and, often without explicit user consent, collect or disclose users' sensitive local data, which raises serious privacy concerns. Although AI agents' privacy policies describe their intended data practices, there remains limited transparency and accountability about whether runtime behavior matches those policies. To close this gap, we introduce AudAgent, a visual tool that continuously monitors AI agents' data practices in real time and guards compliance with stated privacy policies. AudAgent consists of four components for automated privacy auditing of AI agents. (i) Policy formalization: a novel cross-LLM voting mechanism to guarantee confidence of the parsed privacy policy model. (ii) Runtime annotation: a lightweight Presidio-based analyzer detects sensitive data and annotates data practices based on the AI agent's context and the privacy policy model. (iii) Compliance auditing: ontology graphs and automata-based checking connect the privacy policy model with runtime annotations, enabling on-the-fly compliance checking. (iv) User interface: an infrastructure-independent implementation visualizes the real-time execution trace of AI agents along with potential privacy policy violations, providing user-friendly transparency and accountability. We evaluate AudAgent with AI agents built using mainstream frameworks, demonstrating its effectiveness in detecting and visualizing privacy policy violations in real time. Using AudAgent, we also find that most privacy policies omit explicit safeguards for highly sensitive data such as SSNs, whose misuse violates legal requirements, and that many agents do not refuse handling such data via third-party tools, including those controlled by Claude, Gemini, and DeepSeek. AudAgent proactively blocks operations on such data, overriding the agents' original privacy policy and behavior.
comment: Submitted to PETS'26 Issue 3
♻ ☆ MORPH: PDE Foundation Models with Arbitrary Data Modality
We introduce MORPH, a modality-agnostic, autoregressive foundation model for partial differential equations (PDEs). MORPH is built on a convolutional vision transformer backbone that seamlessly handles heterogeneous spatiotemporal datasets of varying data modality (1D--3D) at different resolutions, and multiple fields with mixed scalar and vector components. The architecture combines (i) component-wise convolution, which jointly processes scalar and vector channels to capture local interactions, (ii) inter-field cross-attention, which models and selectively propagates information between different physical fields, (iii) axial attentions, which factorize full spatiotemporal self-attention along individual spatial and temporal axes to reduce computational burden while retaining expressivity. We pretrain multiple model variants on a diverse collection of heterogeneous PDE datasets and evaluate transfer to a range of downstream prediction tasks. Using both full-model fine-tuning and parameter-efficient low-rank adapters (LoRA), MORPH outperforms models trained from scratch. Across extensive evaluations, MORPH matches or surpasses strong baselines and recent state-of-the-art models. Collectively, these capabilities present a flexible and powerful backbone for learning from the heterogeneous and multimodal nature of scientific observations, charting a path toward scalable and data-efficient scientific machine learning. The source code, datasets, and models are publicly available at https://github.com/lanl/MORPH.
♻ ☆ The Delusional Hedge Algorithm as a Model of Human Learning from Diverse Opinions
Whereas cognitive models of learning often assume direct experience with both the features of an event and with a true label or outcome, much of everyday learning arises from hearing the opinions of others, without direct access to either the experience or the ground truth outcome. We consider how people can learn which opinions to trust in such scenarios by extending the hedge algorithm: a classic solution for learning from diverse information sources. We first introduce a semi-supervised variant we call the delusional hedge capable of learning from both supervised and unsupervised experiences. In two experiments, we examine the alignment between human judgments and predictions from the standard hedge, the delusional hedge, and a heuristic baseline model. Results indicate that humans effectively incorporate both labeled and unlabeled information in a manner consistent with the delusional hedge algorithm -- suggesting that human learners not only gauge the accuracy of information sources but also their consistency with other reliable sources. The findings advance our understanding of human learning from diverse opinions, with implications for the development of algorithms that better capture how people learn to weigh conflicting information sources.
♻ ☆ Minimum Weighted Feedback Arc Sets for Ranking from Pairwise Comparisons
The Minimum Weighted Feedback Arc Set (MWFAS) problem is closely related to the task of deriving a global ranking from pairwise comparisons. Recent work by He et al. (ICML 2022) advanced the state of the art on ranking benchmarks using learning based methods, but did not examine the underlying connection to MWFAS. In this paper, we investigate this relationship and introduce efficient combinatorial algorithms for solving MWFAS as a means of addressing the ranking problem. Our experimental results show that these simple, learning free methods achieve substantially faster runtimes than recent learning based approaches, while also delivering competitive, and in many cases superior, ranking accuracy. These findings suggest that lightweight combinatorial techniques offer a scalable and effective alternative to deep learning for large scale ranking tasks.
comment: This is a preliminary paper
♻ ☆ Path Channels and Plan Extension Kernels: a Mechanistic Description of Planning in a Sokoban RNN NeurIPS 2025
We partially reverse-engineer a convolutional recurrent neural network (RNN) trained with model-free reinforcement learning to play the box-pushing game Sokoban. We find that the RNN stores future moves (plans) as activations in particular channels of the hidden state, which we call path channels. A high activation in a particular location means that, when a box is in that location, it will get pushed in the channel's assigned direction. We examine the convolutional kernels between path channels and find that they encode the change in position resulting from each possible action, thus representing part of a learned transition model. The RNN constructs plans by starting at the boxes and goals. These kernels extend activations in path channels forwards from boxes and backwards from the goal. Negative values are placed in channels at obstacles. This causes the extension kernels to propagate the negative value in reverse, thus pruning the last few steps and letting an alternative plan emerge; a form of backtracking. Our work shows that, a precise understanding of the plan representation allows us to directly understand the bidirectional planning-like algorithm learned by model-free training in more familiar terms.
comment: Presented at the Mechanistic Interpretability Workshop at NeurIPS 2025. 34 pages, 26 figures
♻ ☆ Athena: Enhancing Multimodal Reasoning with Data-efficient Process Reward Models
We present Athena-PRM, a multimodal process reward model (PRM) designed to evaluate the reward score for each step in solving complex reasoning problems. Developing high-performance PRMs typically demands significant time and financial investment, primarily due to the necessity for step-level annotations of reasoning steps. Conventional automated labeling methods, such as Monte Carlo estimation, often produce noisy labels and incur substantial computational costs. To efficiently generate high-quality process-labeled data, we propose leveraging prediction consistency between weak and strong completers as a criterion for identifying reliable process labels. Remarkably, Athena-PRM demonstrates outstanding effectiveness across various scenarios and benchmarks with just 5,000 samples. Furthermore, we also develop two effective strategies to improve the performance of PRMs: ORM initialization and up-sampling for negative data. We validate our approach in three specific scenarios: verification for test time scaling, direct evaluation of reasoning step correctness, and reward ranked fine-tuning. Our Athena-PRM consistently achieves superior performance across multiple benchmarks and scenarios. Notably, when using Qwen2.5-VL-7B as the policy model, Athena-PRM enhances performance by 10.2 points on WeMath and 7.1 points on MathVista for test time scaling. Furthermore, Athena-PRM sets the state-of-the-art (SoTA) results in VisualProcessBench and outperforms the previous SoTA by 3.9 F1-score, showcasing its robust capability to accurately assess the correctness of the reasoning step. Additionally, utilizing Athena-PRM as the reward model, we develop Athena-7B with reward ranked fine-tuning and outperforms baseline with a significant margin on five benchmarks.
♻ ☆ Beyond I-Con: Exploring New Dimension of Distance Measures in Representation Learning
The Information Contrastive (I-Con) framework revealed that over 23 representation learning methods implicitly minimize KL divergence between data and learned distributions that encode similarities between data points. However, a KL-based loss may be misaligned with the true objective, and properties of KL divergence such as asymmetry and unboundedness may create optimization challenges. We present Beyond I-Con, a framework that enables systematic discovery of novel loss functions by exploring alternative statistical divergences. Key findings: (1) on unsupervised clustering of DINO-ViT embeddings, we achieve state-of-the-art results by modifying the PMI algorithm to use total variation (TV) distance; (2) supervised contrastive learning with Euclidean distance as the feature space metric is improved by replacing the standard loss function with Jenson-Shannon divergence (JSD); (3) on dimensionality reduction, we achieve superior qualitative results and better performance on downstream tasks than SNE by replacing KL with a bounded $f$-divergence. Our results highlight the importance of considering divergence choices in representation learning optimization.
♻ ☆ Experience Replay with Random Reshuffling
Experience replay is a key component in reinforcement learning for stabilizing learning and improving sample efficiency. Its typical implementation samples transitions with replacement from a replay buffer. In contrast, in supervised learning with a fixed dataset, it is a common practice to shuffle the dataset every epoch and consume data sequentially, which is called random reshuffling (RR). RR enjoys theoretically better convergence properties and has been shown to outperform with-replacement sampling empirically. To leverage the benefits of RR in reinforcement learning, we propose sampling methods that extend RR to experience replay, both in uniform and prioritized settings, and analyze their properties via theoretical analysis and simulations. We evaluate our sampling methods on Atari benchmarks, demonstrating their effectiveness in deep reinforcement learning. Code is available at https://github.com/pfnet-research/errr.
♻ ☆ SO-Bench: A Structural Output Evaluation of Multimodal LLMs
Multimodal large language models (MLLMs) are increasingly deployed in real-world, agentic settings where outputs must not only be correct, but also conform to predefined data schemas. Despite recent progress in structured generation in textual domain, there is still no benchmark that systematically evaluates schema-grounded information extraction and reasoning over visual inputs. In this work, we conduct a comprehensive study of visual structural output capabilities for MLLMs with our carefully designed SO-Bench benchmark. Covering four visual domains, including UI screens, natural images, documents, and charts, SO-Bench is built from over 6.5K diverse JSON schemas and 1.8K curated image-schema pairs with human-verified quality. Benchmarking experiments on open-sourced and frontier proprietary models reveal persistent gaps in predicting accurate, schema compliant outputs, highlighting the need for better multimodal structured reasoning. Beyond benchmarking, we further conduct training experiments to largely improve the model's structured output capability. We plan to make the benchmark available to the community.
comment: v2 preprint. Fixed some typos, add a discussion about limitation, provide pseudo-codes for eval
♻ ☆ The Peril of Preference: Why GRPO fails on Ordinal Rewards
Group-relative Policy Optimization's (GRPO) simplicity makes it highly desirable for adapting LLMs to become experts at specific tasks. But this simplicity also makes it ill-specified as we seek to enhance RL training with richer, non-binary feedback. When using ordinal rewards to give partial credit, GRPO's simplicity starts to hurt, as its group-average baseline often assigns a positive advantage to failed trajectories and reinforces incorrect behavior. We introduce Correctness Relative Policy Optimization (CoRPO), a new formulation that solves this flaw. CoRPO uses an adaptive baseline that enforces a minimum quality threshold, ensuring failed solutions are never positively reinforced. Once the policy consistently meets this threshold, the baseline automatically transitions to a relative preference mode, pushing the model to find optimal solutions rather than just "acceptable" ones. We empirically validate CoRPO on a code verification task, where it demonstrates more stable convergence and better out-of-domain generalization. This work represents a critical step in our broader research program to enable LLMs to learn genuinely new capabilities through reinforcement learning. We achieve this by enabling LLMs to learn from rich, multi-dimensional feedback - progressing from binary to ordinal rewards in this work, and onward to denser, per-step supervision.
♻ ☆ LORE: A Large Generative Model for Search Relevance
Achievement. We introduce LORE, a systematic framework for Large Generative Model-based relevance in e-commerce search. Deployed and iterated over three years, LORE achieves a cumulative +27\% improvement in online GoodRate metrics. This report shares the valuable experience gained throughout its development lifecycle, spanning data, features, training, evaluation, and deployment. Insight. While existing works apply Chain-of-Thought (CoT) to enhance relevance, they often hit a performance ceiling. We argue this stems from treating relevance as a monolithic task, lacking principled deconstruction. Our key insight is that relevance comprises distinct capabilities: knowledge and reasoning, multi-modal matching, and rule adherence. We contend that a qualitative-driven decomposition is essential for breaking through current performance bottlenecks. Contributions. LORE provides a complete blueprint for the LLM relevance lifecycle. Key contributions include: (1) A two-stage training paradigm combining progressive CoT synthesis via SFT with human preference alignment via RL. (2) A comprehensive benchmark, RAIR, designed to evaluate these core capabilities. (3) A query frequency-stratified deployment strategy that efficiently transfers offline LLM capabilities to the online system. LORE serves as both a practical solution and a methodological reference for other vertical domains.
♻ ☆ A Theoretical Framework for Auxiliary-Loss-Free Load Balancing of Sparse Mixture-of-Experts in Large-Scale AI Models
In large-scale AI training, Sparse Mixture-of-Experts (s-MoE) layers enable scaling by activating only a small subset of experts per token. An operational challenge in this design is load balancing: routing tokens to minimize the number of idle experts, which is important for the efficient utilization of (costly) GPUs. We provide a theoretical framework for analyzing the Auxiliary-Loss-Free Load Balancing (ALF-LB) procedure -- proposed by DeepSeek's Wang et al. (2024) -- by casting it as a one-step-per-iteration primal-dual method for an assignment problem. First, in a stylized deterministic setting, our framework yields several insightful structural properties: (i) a monotonic improvement of a Lagrangian objective, (ii) a preference rule that moves tokens from overloaded to underloaded experts, and (iii) an approximate-balancing guarantee. Then, we incorporate the stochastic and dynamic nature of AI training using a generalized online optimization formulation. In the online setting, we derive a strong convexity property of the objective that leads to a logarithmic expected regret bound under certain step-size choices. Additionally, we present real experiments on 1B-parameter DeepSeekMoE models to complement our theoretical findings. Together, these results build a principled framework for analyzing the Auxiliary-Loss-Free Load Balancing of s-MoE in AI models.
♻ ☆ Visuospatial navigation from the bottom-up: without vestibular integration, distance prediction, or maps
Navigation is believed to be controlled by at least two partially dissociable systems in the brain. The cognitive map informs an organism of its location and bearing, updated by integrating vestibular self-motion or predicting distances to landmarks. Route-based navigation, on the other hand, directly evaluate sequential movement decisions from immediate percepts. Here we demonstrate the sufficiency of visual route-based decision-making in a classic open field navigation task often assumed to require a cognitive map. Three distinct strategies emerge to robustly navigate to a hidden goal, each conferring contextual tradeoffs analyzed at both neural and behavioral scales, as well as qualitatively aligning with behavior observed across the biological spectrum. We propose reframing navigation from the bottom-up, through an egocentric episodic perspective without assuming online access to computationally expensive top-down representations, to better explain behavior under energetic or attentional constraints.
♻ ☆ "I Can See Forever!": Evaluating Real-time VideoLLMs for Assisting Individuals with Visual Impairments
The visually impaired population faces significant challenges in daily activities. While prior works employ vision language models for assistance, most focus on static content and cannot address real-time perception needs in complex environments. Recent VideoLLMs enable real-time vision and speech interaction, offering promising potential for assistive tasks. In this work, we conduct the first study evaluating their effectiveness in supporting daily life for visually impaired individuals. We first conducted a user survey with visually impaired participants to design the benchmark VisAssistDaily for daily life evaluation. Using VisAssistDaily, we evaluate popular VideoLLMs and find GPT-4o achieves the highest task success rate. We further conduct a user study to reveal concerns about hazard perception. To address this, we propose SafeVid, an environment-awareness dataset, and fine-tune VITA-1.5, improving risk recognition accuracy from 25.00% to 76.00%.We hope this work provides valuable insights and inspiration for future research in this field.
comment: 17 pages
♻ ☆ Large language models can learn and generalize steganographic chain-of-thought under process supervision NeurIPS 2025
Chain-of-thought (CoT) reasoning not only enhances large language model performance but also provides critical insights into decision-making processes, marking it as a useful tool for monitoring model intent and planning. However, recent works have shown that banning the mention of a specific example of reward hacking causes obfuscation of the undesired reasoning traces but the persistence of the undesired behavior, threatening the reliability of CoT monitoring. We provide an extension to these results with regard to the ability of models to learn a specific type of obfuscated reasoning: steganography. First, we show that penalizing the use of specific strings within load-bearing reasoning traces causes models to substitute alternative strings. Crucially, this does not alter the underlying method by which the model performs the task, demonstrating that the model can learn to steganographically encode its reasoning.We further demonstrate that models can generalize an encoding scheme. When the penalized strings belong to an overarching class, the model learns not only to substitute strings seen in training, but also develops a general encoding scheme for all members of the class which it can apply to held-out testing strings.
comment: 10 pages main text, 3 figures main text, 17 pages supplementary material, 1 figure supplementary material, accepted at NeurIPS 2025
♻ ☆ The Autonomy-Alignment Problem in Open-Ended Learning Robots: Formalising the Purpose Framework
The rapid advancement of artificial intelligence is enabling the development of increasingly autonomous robots capable of operating beyond engineered factory settings and into the unstructured environments of human life. This shift raises a critical autonomy-alignment problem: how to ensure that a robot's autonomous learning focuses on acquiring knowledge and behaviours that serve human practical objectives while remaining aligned with broader human values (e.g., safety and ethics). This problem remains largely underexplored and lacks a unifying conceptual and formal framework. Here, we address one of its most challenging instances of the problem: open-ended learning (OEL) robots, which autonomously acquire new knowledge and skills through interaction with the environment, guided by intrinsic motivations and self-generated goals. We propose a computational framework, introduced qualitatively and then formalised, to guide the design of OEL architectures that balance autonomy with human control. At its core is the novel concept of purpose, which specifies what humans (designers or users) want the robot to learn, do, or avoid, independently of specific task domains. The framework decomposes the autonomy-alignment problem into four tractable sub-problems: the alignment of robot purposes (hardwired or learnt) with human purposes; the arbitration between multiple purposes; the grounding of abstract purposes into domain-specific goals; and the acquisition of competence to achieve those goals. The framework supports formal definitions of alignment across multiple cases and proofs of necessary and sufficient conditions under which alignment holds. Illustrative hypothetical scenarios showcase the applicability of the framework for guiding the development of purpose-aligned autonomous robots.
comment: 33 pages, 5 figures
♻ ☆ SoftStep: Learning Sparse Similarity Powers Deep Neighbor-Based Regression
Neighbor-based methods are a natural alternative to linear prediction for tabular data when relationships between inputs and targets exhibit complexity such as nonlinearity, periodicity, or heteroscedasticity. Yet in deep learning on unstructured data, nonparametric neighbor-based approaches are rarely implemented in lieu of simple linear heads. This is primarily due to the ability of systems equipped with linear regression heads to co-learn internal representations along with the linear head's parameters. To unlock the full potential of neighbor-based methods in neural networks we introduce SoftStep, a parametric module that learns sparse instance-wise similarity measures directly from data. When integrated with existing neighbor-based methods, SoftStep enables regression models that consistently outperform linear heads across diverse architectures, domains, and training scenarios. We focus on regression tasks, where we show theoretically that neighbor-based prediction with a mean squared error objective constitutes a metric learning algorithm that induces well-structured embedding spaces. We then demonstrate analytically and empirically that this representational structure translates into superior performance when combined with the sparse, instance-wise similarity measures introduced by SoftStep. Beyond regression, SoftStep is a general method for learning instance-wise similarity in deep neural networks, with broad applicability to attention mechanisms, metric learning, representational alignment, and related paradigms.
♻ ☆ OPTIC-ER: A Reinforcement Learning Framework for Real-Time Emergency Response and Equitable Resource Allocation in Underserved African Communities
Public service systems in many African regions suffer from delayed emergency response and spatial inequity, causing avoidable suffering. This paper introduces OPTIC-ER, a reinforcement learning (RL) framework for real-time, adaptive, and equitable emergency response. OPTIC-ER uses an attention-guided actor-critic architecture to manage the complexity of dispatch environments. Its key innovations are a Context-Rich State Vector, encoding action sub-optimality, and a Precision Reward Function, which penalizes inefficiency. Training occurs in a high-fidelity simulation using real data from Rivers State, Nigeria, accelerated by a precomputed Travel Time Atlas. The system is built on the TALS framework (Thin computing, Adaptability, Low-cost, Scalability) for deployment in low-resource settings. In evaluations on 500 unseen incidents, OPTIC-ER achieved a 100.00% optimal action selection rate, confirming its robustness and generalization. Beyond dispatch, the system generates Infrastructure Deficiency Maps and Equity Monitoring Dashboards to guide proactive governance and data-informed development. This work presents a validated blueprint for AI-augmented public services, showing how context-aware RL can bridge the gap between algorithmic decision-making and measurable human impact.
comment: Source code and data available at: https://github.com/marytonwe/OPTIC-ER.git
♻ ☆ Multidimensional Rubric-oriented Reward Model Learning via Geometric Projection Reference Constraints
The integration of large language models (LLMs) into medical practice offers transformative potential, yet their real-world clinical applicability remains constrained by critical alignment issues: (1) a misalignment between static evaluation benchmarks and the dynamic cognitive demands of clinical practice, (2) challenges in adapting to continuously evolving, multi-source medical standards, and (3) the limited capacity of conventional reward models to reflect nuanced, multi-dimensional medical quality criteria. To overcome these limitations, we introduce MR-RML (Multidimensional Rubric-oriented Reward Model Learning) with GPRC (Geometric Projection Reference Constraints)-a novel alignment framework that structured medical standards into a multi-perspective matrix to guide both data generation and model optimization. Our approach introduces three key innovations: (1) a medical standard system that embeds domain-specific guidelines throughout the training pipeline; (2) an independent multi-dimensional reward model that decomposes evaluation criteria, transitioning from rule-based or LLM-based scoring to internalized reward modeling for better evaluation performance; and (3) geometric projection reference constraints that translate clinical cognitive logic into mathematical regularization, aligning scoring gradients with clinical reasoning and facilitating training with synthetically generated data. Extensive evaluations on the authoritative medical benchmark Healthbench demonstrate that our method significantly boosts the performance of the base Qwen-32B model, with improvements of 45% on the full subset and 85% on the hard subset. It achieves state-of-the-art results among open-source LLMs, scoring 62.7 (full) and 44.7 (hard), while also surpassing the majority of closed-source models.
♻ ☆ DAVE: Diagnostic benchmark for Audio Visual Evaluation
Audio-visual understanding is a rapidly evolving field that seeks to integrate and interpret information from both auditory and visual modalities. Despite recent advances in multi-modal learning, existing benchmarks often suffer from strong visual bias -- when answers can be inferred from visual data alone -- and provide only aggregate scores that conflate multiple sources of error. This makes it difficult to determine whether models struggle with visual understanding, audio interpretation, or audio-visual alignment. In this work, we introduce DAVE: Diagnostic Audio Visual Evaluation, a novel benchmark dataset designed to systematically evaluate audio-visual models across controlled settings. DAVE alleviates existing limitations by (i) ensuring both modalities are necessary to answer correctly and (ii) decoupling evaluation into atomic subcategories. Our detailed analysis of state-of-the-art models reveals specific failure modes and provides targeted insights for improvement. By offering this standardized diagnostic framework, we aim to facilitate more robust development of audio-visual models. Dataset: https://huggingface.co/datasets/gorjanradevski/dave Code: https://github.com/gorjanradevski/dave
comment: First two authors contributed equally
♻ ☆ AI summaries in online search influence users' attitudes
This study examined how AI-generated summaries, which have become visually prominent in online search results, affect how users think about different issues. In a preregistered randomized controlled experiment, participants (N = 2,004) viewed mock search result pages varying in the presence (vs. absence), placement (top vs. middle), and stance (benefit-framed vs. harm-framed) of AI-generated summaries across four publicly debated topics. Compared to a no-summary control group, participants exposed to AI-generated summaries reported issue attitudes, behavioral intentions, and policy support that aligned more closely with the AI summary stance. The summaries placed at the top of the page produced stronger shifts in users' issue attitudes (but not behavioral intentions or policy support) than those placed at the middle of the page. We also observed moderating effects from issue familiarity and general trust toward AI. In addition, users perceived the AI summaries more useful when it emphasized health harms versus benefits. These findings suggest that AI-generated search summaries can significantly shape public perceptions, raising important implications for the design and regulation of AI-integrated information ecosystems.
♻ ☆ Epidemiology of Large Language Models: A Benchmark for Observational Distribution Knowledge
Artificial intelligence (AI) systems hold great promise for advancing various scientific disciplines, and are increasingly used in real-world applications. Despite their remarkable progress, further capabilities are expected in order to achieve more general types of intelligence. A critical distinction in this context is between factual knowledge, which can be evaluated against true or false answers (e.g., "what is the capital of England?"), and probabilistic knowledge, reflecting probabilistic properties of the real world (e.g., "what is the sex of a computer science graduate in the US?"). In this paper, our goal is to build a benchmark for understanding the capabilities of LLMs in terms of knowledge of probability distributions describing the real world. Given that LLMs are trained on vast amounts of text, it may be plausible that they internalize aspects of these distributions. Indeed, LLMs are touted as powerful universal approximators of real-world distributions. At the same time, classical results in statistics, known as curse of dimensionality, highlight fundamental challenges in learning distributions in high dimensions, challenging the notion of universal distributional learning. In this work, we develop the first benchmark to directly test this hypothesis, evaluating whether LLMs have access to empirical distributions describing real-world populations across domains such as economics, health, education, and social behavior. Our results demonstrate that LLMs perform poorly overall, and do not seem to internalize real-world statistics naturally. When interpreted in the context of Pearl's Causal Hierarchy (PCH), our benchmark demonstrates that language models do not contain knowledge on observational distributions (Layer 1 of PCH), and thus the Causal Hierarchy Theorem implies that interventional (Layer 2) and counterfactual (Layer 3) knowledge of these models is also limited.
♻ ☆ What-If Analysis of Large Language Models: Explore the Game World Using Proactive Thinking
Large Language Models (LLMs) are effective at reasoning and information retrieval, but remain unreliable for decision-making in dynamic, partially observable, high-stakes environments such as MOBA games. One key limitation is weak counterfactual reasoning: LLMs struggle to conduct precise what-if analysis over candidate actions and their future consequences. We address this limitation with What-if Analysis LLM (WiA-LLM), a framework that trains an LLM as an explicit language-based world model. Instead of representing the environment in latent vectors, WiA-LLM models how the game state evolves over time with candidate actions using language, and provides textual justifications for these predicted outcomes. This explicit modeling supports (1) interpretability, since the model's predictions and underlying rationales are human-readable, and (2) semantic generalization, as the model can transfer knowledge across situations that share similar game concepts (e.g., roles, objectives, or tactics). WiA-LLM is trained in two stages: supervised fine-tuning on human-like reasoning traces, followed by reinforcement learning with outcome-based rewards that depend on the discrepancy between predicted and ground-truth future states. In the Honor of Kings (HoK) environment, WiA-LLM attains 74.2\% accuracy (27\%$\uparrow$ vs. base model) in forecasting game-state changes. In addition, we find that agents with WiA-LLM exhibit closer strategic behavior to expert players than purely reactive LLM agents, indicating more foresight-aware and expert-aligned decision-making.
♻ ☆ Integrating Skeleton Based Representations for Robust Yoga Pose Classification Using Deep Learning Models
Yoga is a popular form of exercise worldwide due to its spiritual and physical health benefits, but incorrect postures can lead to injuries. Automated yoga pose classification has therefore gained importance to reduce reliance on expert practitioners. While human pose keypoint extraction models have shown high potential in action recognition, systematic benchmarking for yoga pose recognition remains limited, as prior works often focus solely on raw images or a single pose extraction model. In this study, we introduce a curated dataset, 'Yoga-16', which addresses limitations of existing datasets, and systematically evaluate three deep learning architectures (VGG16, ResNet50, and Xception), using three input modalities (direct images, MediaPipe Pose skeleton images, and YOLOv8 Pose skeleton images). Our experiments demonstrate that skeleton-based representations outperform raw image inputs, with the highest accuracy of 96.09% achieved by VGG16 with MediaPipe Pose skeleton input. Additionally, we provide interpretability analysis using Grad-CAM, offering insights into model decision-making for yoga pose classification with cross-validation analysis.
♻ ☆ Dual-Objective Reinforcement Learning with Novel Hamilton-Jacobi-Bellman Formulations
Hard constraints in reinforcement learning (RL) often degrade policy performance. Lagrangian methods offer a way to blend objectives with constraints, but require intricate reward engineering and parameter tuning. In this work, we extend recent advances that connect Hamilton-Jacobi (HJ) equations with RL to propose two novel value functions for dual-objective satisfaction. Namely, we address: 1) the Reach-Always-Avoid (RAA) problem -- of achieving distinct reward and penalty thresholds -- and 2) the Reach-Reach (RR) problem -- of achieving thresholds of two distinct rewards. In contrast with temporal logic approaches, which typically involve representing an automaton, we derive explicit, tractable Bellman forms in this context via decomposition. Specifically, we prove that the RAA and RR problems may be rewritten as compositions of previously studied HJ-RL problems. We leverage our analysis to propose a variation of Proximal Policy Optimization (DOHJ-PPO), and demonstrate that it produces distinct behaviors from previous approaches, outcompeting a number of baselines in success, safety and speed across a range of tasks for safe-arrival and multi-target achievement.
♻ ☆ Human Mobility Datasets Enriched With Contextual and Social Dimensions
In this resource paper, we present two publicly available datasets of semantically enriched human trajectories, together with the pipeline to build them. The trajectories are publicly available GPS traces retrieved from OpenStreetMap. Each dataset includes contextual layers such as stops, moves, points of interest (POIs), inferred transportation modes, and weather data. A novel semantic feature is the inclusion of synthetic, realistic social media posts generated by Large Language Models (LLMs), enabling multimodal and semantic mobility analysis. The datasets are available in both tabular and Resource Description Framework (RDF) formats, supporting semantic reasoning and FAIR data practices. They cover two structurally distinct, large cities: Paris and New York. Our open source reproducible pipeline allows for dataset customization, while the datasets support research tasks such as behavior modeling, mobility prediction, knowledge graph construction, and LLM-based applications. To our knowledge, our resource is the first to combine real-world movement, structured semantic enrichment, LLM-generated text, and semantic web compatibility in a reusable framework.
comment: 5 pages, 3 figures, 1 table
♻ ☆ Omni-AutoThink: Adaptive Multimodal Reasoning via Reinforcement Learning
Recent advances in Omni models have enabled unified multimodal perception and generation. However, most existing systems still exhibit rigid reasoning behaviors, either overthinking simple problems or failing to reason when necessary. To address this limitation, we propose Omni-AutoThink, a novel adaptive reasoning framework that dynamically adjusts the model's reasoning depth according to task difficulty. Our framework comprises two stages: (1) an Adaptive Supervised Fine-Tuning (Adaptive SFT) stage, which endows the Omni model with fundamental reasoning capability using large-scale reasoning-augmented data, and (2) an Adaptive Reinforcement Learning (Adaptive GRPO) stage, which optimizes reasoning behaviors based on task complexity and reward feedback. We further construct a comprehensive adaptive reasoning benchmark that spans text-only, text-audio, text-visual, and text-audio-visual modalities, providing both training and evaluation splits for multimodal reasoning assessment. Experimental results demonstrate that our proposed framework significantly improves adaptive reasoning performance compared to previous baselines. All benchmark data and code will be publicly released.
♻ ☆ Robo-SGG: Exploiting Layout-Oriented Normalization and Restitution Can Improve Robust Scene Graph Generation
In this paper, we propose Robo-SGG, a plug-and-play module for robust scene graph generation (SGG). Unlike standard SGG, the robust scene graph generation aims to perform inference on a diverse range of corrupted images, with the core challenge being the domain shift between the clean and corrupted images. Existing SGG methods suffer from degraded performance due to shifted visual features (e.g., corruption interference or occlusions). To obtain robust visual features, we leverage layout information, representing the global structure of an image, which is robust to domain shift, to enhance the robustness of SGG methods under corruption. Specifically, we employ Instance Normalization (IN) to alleviate the domain-specific variations and recover the robust structural features (i.e., the positional and semantic relationships among objects) by the proposed Layout-Oriented Restitution. Furthermore, under corrupted images, we introduce a Layout-Embedded Encoder (LEE) that adaptively fuses layout and visual features via a gating mechanism, enhancing the robustness of positional and semantic representations for objects and predicates. Note that our proposed Robo-SGG module is designed as a plug-and-play component, which can be easily integrated into any baseline SGG model. Extensive experiments demonstrate that by integrating the state-of-the-art method into our proposed Robo-SGG, we achieve relative improvements of 6.3%, 11.1%, and 8.0% in mR@50 for PredCls, SGCls, and SGDet tasks on the VG-C benchmark, respectively, and achieve new state-of-the-art performance in the corruption scene graph generation benchmark (VG-C and GQA-C). We will release our source code and model.
♻ ☆ Multimodal Adversarial Defense for Vision-Language Models by Leveraging One-To-Many Relationships WACV 2026
Pre-trained vision-language (VL) models are highly vulnerable to adversarial attacks. However, existing defense methods primarily focus on image classification, overlooking two key aspects of VL tasks: multimodal attacks, where both image and text can be perturbed, and the one-to-many relationship of images and texts, where a single image can correspond to multiple textual descriptions and vice versa (1:N and N:1). This work is the first to explore defense strategies against multimodal attacks in VL tasks, whereas prior VL defense methods focus on vision robustness. We propose multimodal adversarial training (MAT), which incorporates adversarial perturbations in both image and text modalities during training, significantly outperforming existing unimodal defenses. Furthermore, we discover that MAT is limited by deterministic one-to-one (1:1) image-text pairs in VL training data. To address this, we conduct a comprehensive study on leveraging one-to-many relationships to enhance robustness, investigating diverse augmentation techniques. Our analysis shows that, for a more effective defense, augmented image-text pairs should be well-aligned, diverse, yet avoid distribution shift -- conditions overlooked by prior research. This work pioneers defense strategies against multimodal attacks, providing insights for building robust VLMs from both optimization and data perspectives. Our code is publicly available at https://github.com/CyberAgentAI/multimodal-adversarial-training.
comment: WACV 2026 Accepted. Code available at https://github.com/CyberAgentAI/multimodal-adversarial-training
♻ ☆ Joint Discriminative-Generative Modeling via Dual Adversarial Training
Simultaneously achieving robust classification and high-fidelity generative modeling within a single framework presents a significant challenge. Hybrid approaches, such as Joint Energy-Based Models (JEM), interpret classifiers as EBMs but are often limited by the instability and poor sample quality inherent in Stochastic Gradient Langevin Dynamics (SGLD)-based training. We address these limitations by proposing a novel training framework that integrates adversarial training (AT) principles for both discriminative robustness and stable generative learning. The proposed method introduces three key innovations: (1) the replacement of SGLD-based JEM learning with a stable, AT-based approach that optimizes the energy function by discriminating between real data and Projected Gradient Descent (PGD)-generated contrastive samples using the BCE loss; (2) synergistic adversarial training for the discriminative component that enhances classification robustness while eliminating the need for explicit gradient penalties; and (3) a two-stage training strategy that addresses normalization-related instabilities and enables leveraging pretrained robust classifiers, generalizing effectively across diverse architectures. Experiments on CIFAR-10/100 and ImageNet demonstrate that our approach: (1) is the first EBM-based hybrid to scale to high-resolution datasets with high training stability, simultaneously achieving state-of-the-art discriminative and generative performance on ImageNet 256$\times$256; (2) uniquely combines generative quality with adversarial robustness, enabling critical applications like robust counterfactual explanations; and (3) functions as a competitive standalone generative model, matching the generative quality of autoregressive methods (VAR-d16) and surpassing diffusion models while offering unique versatility.
comment: V2: ImageNet 256x256 with ConvNeXt-Large (FID 3.29), formal theoretical analysis, L_inf training, computational analysis, expanded related work/baselines. Revised presentation. Code: https://github.com/xuwangyin/DAT
♻ ☆ Safe Online Bid Optimization with Return on Investment and Budget Constraints
In online marketing, the advertisers aim to balance achieving high volumes and high profitability. The companies' business units address this tradeoff by maximizing the volumes while guaranteeing a minimum Return On Investment (ROI) level. Such a task can be naturally modeled as a combinatorial optimization problem subject to ROI and budget constraints that can be solved online. In this picture, the learner's uncertainty over the constraints' parameters plays a crucial role since the algorithms' exploration choices might lead to their violation during the entire learning process. Such violations represent a major obstacle to adopting online techniques in real-world applications. Thus, controlling the algorithms' exploration during learning is paramount to making humans trust online learning tools. This paper studies the nature of both optimization and learning problems. In particular, we show that the learning problem is inapproximable within any factor (unless P = NP) and provide a pseudo-polynomial-time algorithm to solve its discretized version. Subsequently, we prove that no online learning algorithm can violate the (ROI or budget) constraints a sublinear number of times during the learning process while guaranteeing a sublinear regret. We provide the $GCB$ algorithm that guarantees sublinear regret at the cost of a linear number of constraint violations and $GCB_{safe}$ that guarantees w.h.p. a constant upper bound on the number of constraint violations at the cost of a linear regret. Moreover, we designed $GCB_{safe}(ψ,φ)$, which guarantees both sublinear regret and safety w.h.p. at the cost of accepting tolerances $ψ$ and $φ$ in the satisfaction of the ROI and budget constraints, respectively. Finally, we provide experimental results to compare the regret and constraint violations of $GCB$, $GCB_{safe}$, and $GCB_{safe}(ψ,φ)$.
♻ ☆ A lightweight detector for real-time detection of remote sensing images
Remote sensing imagery is widely used across various fields, yet real-time detection remains challenging due to the prevalence of small objects and the need to balance accuracy with efficiency. To address this, we propose DMG-YOLO, a lightweight real-time detector tailored for small object detection in remote sensing images. Specifically, we design a Dual-branch Feature Extraction (DFE) module in the backbone, which partitions feature maps into two parallel branches: one extracts local features via depthwise separable convolutions, and the other captures global context using a vision transformer with a gating mechanism. Additionally, a Multi-scale Feature Fusion (MFF) module with dilated convolutions enhances multi-scale integration while preserving fine details. In the neck, we introduce the Global and Local Aggregate Feature Pyramid Network (GLAFPN) to further boost small object detection through global-local feature fusion. Extensive experiments on the VisDrone2019 and NWPU VHR-10 datasets show that DMG-YOLO achieves competitive performance in terms of mAP, model size, and other key metrics.
comment: wrong results
♻ ☆ SoK: Decentralized AI (DeAI)
Centralization enhances the efficiency of Artificial Intelligence (AI) but also introduces critical challenges, including single points of failure, inherent biases, data privacy risks, and scalability limitations. To address these issues, blockchain-based Decentralized Artificial Intelligence (DeAI) has emerged as a promising paradigm that leverages decentralization and transparency to improve the trustworthiness of AI systems. Despite rapid adoption in industry, the academic community lacks a systematic analysis of DeAI's technical foundations, opportunities, and challenges. This work presents the first Systematization of Knowledge (SoK) on DeAI, offering a formal definition, a taxonomy of existing solutions based on the AI lifecycle, and an in-depth investigation of the roles of blockchain in enabling secure and incentive-compatible collaboration. We further review security risks across the DeAI lifecycle and empirically evaluate representative mitigation techniques. Finally, we highlight open research challenges and future directions for advancing blockchain-based DeAI.
comment: This is a Systematization of Knowledge (SoK) for the rapidly evolving field of Decentralized AI (DeAI). We welcome valuable comments, suggestions, and collaboration to further refine and enhance this work. We hope our contribution will help accelerate the advancement of DeAI
♻ ☆ Grounding Large Language Models in Clinical Evidence: A Retrieval-Augmented Generation System for Querying UK NICE Clinical Guidelines
This paper presents the development and evaluation of a Retrieval-Augmented Generation (RAG) system for querying the United Kingdom's National Institute for Health and Care Excellence (NICE) clinical guidelines using Large Language Models (LLMs). The extensive length and volume of these guidelines can impede their utilisation within a time-constrained healthcare system, a challenge this project addresses through the creation of a system capable of providing users with precisely matched information in response to natural language queries. The system's retrieval architecture, composed of a hybrid embedding mechanism, was evaluated against a corpus of 10,195 text chunks derived from three hundred guidelines. It demonstrates high performance, with a Mean Reciprocal Rank (MRR) of 0.814, a Recall of 81% at the first chunk and of 99.1% within the top ten retrieved chunks, when evaluated on 7901 queries. The most significant impact of the RAG system was observed during the generation phase. When evaluated on a manually curated dataset of seventy question-answer pairs, RAG-enhanced models showed substantial gains in performance. Faithfulness, the measure of whether an answer is supported by the source text, was increased by 64.7 percentage points to 99.5% for the RAG-enhanced O4-Mini model and significantly outperformed the medical-focused Meditron3-8B LLM, which scored 43%. Clinical evaluation by seven Subject Matter Experts (SMEs) further validated these findings, with GPT-4.1 achieving 98.7% accuracy while reducing unsafe responses by 67% compared to O4-Mini (from 3.0 to 1.0 per evaluator). This study thus establishes RAG as an effective, reliable, and scalable approach for applying generative AI in healthcare, enabling cost-effective access to medical guidelines.
♻ ☆ Jina-VLM: Small Multilingual Vision Language Model
We present Jina-VLM, a 2.4B parameter vision-language model that achieves state-of-the-art multilingual visual question answering among open 2B-scale VLMs. The model couples a SigLIP2 vision encoder with a Qwen3 language backbone through an attention-pooling connector that enables token-efficient processing of arbitrary-resolution images. The model achieves leading results on standard VQA benchmarks and multilingual evaluations while preserving competitive text-only performance. Model weights and code are publicly released at https://huggingface.co/jinaai/jina-vlm .
comment: 18 pages, 1-7 main content, 13-18 appendix for tables and dataset
♻ ☆ SeSE: A Structural Information-Guided Uncertainty Quantification Framework for Hallucination Detection in LLMs
Reliable uncertainty quantification (UQ) is essential for deploying large language models (LLMs) in safety-critical scenarios, as it enables them to abstain from responding when uncertain, thereby avoiding ``hallucinating'' falsehoods. However, state-of-the-art UQ methods primarily rely on semantic probability distributions or pairwise distances, overlooking latent semantic structural information that could enable more precise uncertainty estimates. This paper presents Semantic Structural Entropy (SeSE), a principled UQ framework that quantifies the inherent semantic uncertainty of LLMs from a structural information perspective for hallucination detection. SeSE operates in a zero-resource manner and is applicable to both open- and closed-source LLMs, making it an ``off-the-shelf" solution for new models and tasks. Specifically, to effectively model semantic spaces, we first develop an adaptively sparsified directed semantic graph construction algorithm that captures directional semantic dependencies while automatically pruning unnecessary connections that introduce negative interference. We then exploit latent semantic structural information through hierarchical abstraction: SeSE is defined as the structural entropy of the optimal semantic encoding tree, formalizing intrinsic uncertainty within semantic spaces after optimal compression. A higher SeSE value corresponds to greater uncertainty, indicating that LLMs are highly likely to generate hallucinations. In addition, to enhance fine-grained UQ in long-form generation, we extend SeSE to quantify the uncertainty of individual claims by modeling their random semantic interactions, providing theoretically explicable hallucination detection. Extensive experiments across 29 model-dataset combinations show that SeSE significantly outperforms advanced UQ baselines.
comment: 14 pages of main text and 10 pages of appendices;Submit to IEEE TKDE
♻ ☆ On the Transfer of Knowledge in Quantum Algorithms
Quantum computing is poised to transform computational paradigms across science and industry. As the field evolves, it can benefit from established classical methodologies, including promising paradigms such as Transfer of Knowledge (ToK). This work serves as a brief, self-contained reference for ToK, unifying its core principles under a single formal framework. We introduce a joint notation that consolidates and extends prior work in Transfer Learning and Transfer Optimization, bridging traditionally separate research lines and enabling a common language for knowledge reuse. Building on this foundation, we classify existing ToK strategies and principles into a structured taxonomy that helps researchers position their methods within a broader conceptual map. We then extend key transfer protocols to quantum computing, introducing two novel use cases--reverse annealing and multitasking Quantum Approximate Optimization Algorithm (QAOA)--alongside a sequential Variational Quantum Eigensolver (VQE) approach that supports and validates prior findings. These examples highlight ToK's potential to improve performance and generalization in quantum algorithms. Finally, we outline challenges and opportunities for integrating ToK into quantum computing, emphasizing its role in reducing resource demands and accelerating problem-solving. This work lays the groundwork for future synergies between classical and quantum computing through a shared, transferable knowledge framework.
comment: 14 pages, 8 figures, 4 tables. Paper submitted for its review in Expert Systems journal
♻ ☆ SpaceMind: Camera-Guided Modality Fusion for Spatial Reasoning in Vision-Language Models
Large vision-language models (VLMs) show strong multimodal understanding but still struggle with 3D spatial reasoning, such as distance estimation, size comparison, and cross-view consistency. Existing 3D-aware methods either depend on auxiliary 3D information or enhance RGB-only VLMs with geometry encoders through shallow feature fusion. We propose SpaceMind, a multimodal large language model explicitly designed for spatial reasoning solely from RGB inputs. The model adopts a dual-encoder architecture, integrating VGGT as a spatial understanding encoder and InternViT as a 2D visual encoder. The key idea is to treat the camera representation as an active guiding modality rather than passive metadata. Specifically, SpaceMind introduces a lightweight Camera-Guided Modality Fusion module before the language model to replace shallow fusion. It applies camera-conditioned biasing to spatial tokens, assigns query-independent weights reflecting their geometric importance, and uses the camera embedding to gate the fused representation. Empirically, SpaceMind establishes new state-of-the-art results on VSI-Bench, SQA3D and SPBench, surpassing both open and proprietary systems on VSI-Bench and SPBench by large margins and achieving state-of-the-art performance on SQA3D. These results demonstrate that camera-guided modality fusion is an effective and practical inductive bias for equipping VLMs with genuinely spatially grounded intelligence. We will release code and model checkpoints to support future research.
♻ ☆ Control Illusion: The Failure of Instruction Hierarchies in Large Language Models AAAI-26
Large language models (LLMs) are increasingly deployed with hierarchical instruction schemes, where certain instructions (e.g., system-level directives) are expected to take precedence over others (e.g., user messages). Yet, we lack a systematic understanding of how effectively these hierarchical control mechanisms work. We introduce a systematic evaluation framework based on constraint prioritization to assess how well LLMs enforce instruction hierarchies. Our experiments across six state-of-the-art LLMs reveal that models struggle with consistent instruction prioritization, even for simple formatting conflicts. We find that the widely-adopted system/user prompt separation fails to establish a reliable instruction hierarchy, and models exhibit strong inherent biases toward certain constraint types regardless of their priority designation. Interestingly, we also find that societal hierarchy framings (e.g., authority, expertise, consensus) show stronger influence on model behavior than system/user roles, suggesting that pretraining-derived social structures function as latent behavioral priors with potentially greater impact than post-training guardrails.
comment: Accepted to AAAI-26 Main Technical Track Proceedings
♻ ☆ Changes in Gaza: DINOv3-Powered Multi-Class Change Detection for Damage Assessment in Conflict Zones
Accurately and swiftly assessing damage from conflicts is crucial for humanitarian aid and regional stability. In conflict zones, damaged zones often share similar architectural styles, with damage typically covering small areas and exhibiting blurred boundaries. These characteristics lead to limited data, annotation difficulties, and significant recognition challenges, including high intra-class similarity and ambiguous semantic changes. To address these issues, we introduce a pre-trained DINOv3 model and propose a multi-scale cross-attention difference siamese network (MC-DiSNet). The powerful visual representation capability of the DINOv3 backbone enables robust and rich feature extraction from bi-temporal remote sensing images. The multi-scale cross-attention mechanism allows for precise localization of subtle semantic changes, while the difference siamese structure enhances inter-class feature discrimination, enabling fine-grained semantic change detection. Furthermore, a simple yet powerful lightweight decoder is designed to generate clear detection maps while maintaining high efficiency. We also release a new Gaza-change dataset containing high-resolution satellite image pairs from 2023-2024 with pixel-level semantic change annotations. It is worth emphasizing that our annotations only include semantic pixels of changed areas. We evaluated our method on the Gaza-Change and two classical datasets: the SECOND and Landsat-SCD datasets. Experimental results demonstrate that our proposed approach effectively addresses the MCD task, and its outstanding performance paves the way for practical applications in rapid damage assessment across conflict zones.
♻ ☆ Few-shot Class-incremental Fault Diagnosis by Preserving Class-Agnostic Knowledge with Dual-Granularity Representations
Few-Shot Class-Incremental Fault Diagnosis (FSC-FD), which aims to continuously learn from new fault classes with only a few samples without forgetting old ones, is critical for real-world industrial systems. However, this challenging task severely amplifies the issues of catastrophic forgetting of old knowledge and overfitting on scarce new data. To address these challenges, this paper proposes a novel framework built upon Dual-Granularity Representations, termed the Dual-Granularity Guidance Network (DGGN). Our DGGN explicitly decouples feature learning into two parallel streams: 1) a fine-grained representation stream, which utilizes a novel Multi-Order Interaction Aggregation module to capture discriminative, class-specific features from the limited new samples. 2) a coarse-grained representation stream, designed to model and preserve general, class-agnostic knowledge shared across all fault types. These two representations are dynamically fused by a multi-semantic cross-attention mechanism, where the stable coarse-grained knowledge guides the learning of fine-grained features, preventing overfitting and alleviating feature conflicts. To further mitigate catastrophic forgetting, we design a Boundary-Aware Exemplar Prioritization strategy. Moreover, a decoupled Balanced Random Forest classifier is employed to counter the decision boundary bias caused by data imbalance. Extensive experiments on the TEP benchmark and a real-world MFF dataset demonstrate that our proposed DGGN achieves superior diagnostic performance and stability compared to state-of-the-art FSC-FD approaches. Our code is publicly available at https://github.com/MentaY/DGGN
comment: This manuscript is currently under review at the Measurement
♻ ☆ Expertise elevates AI usage: experimental evidence comparing laypeople and professional artists
Generative AI's novel capacities raise questions about the future role of human expertise: does AI level the playing field between professional artists and laypeople, or does expertise enhance AI use? Do the cognitive skills experts make use of in analyzing and drawing visual art also transfer to using these new tools? This pre-registered study conducts experimental comparisons between 50 professional artists and a demographically matched sample of laypeople. Our interdisciplinary team developed two tasks involving image replication and creative image creation, assessing their copying accuracy and divergent thinking. We implemented a bespoke platform for the experiment, powered by a modern text-to-image AI. Results reveal artists produced more accurate copies and more divergent ideas than lay participants, highlighting a skill transfer of professional expertise - even to the confined space of generative AI. We also explored how well an exemplary vision-capable large language model (GPT-4o) would fare: on par in copying and slightly better on average than artists in the creative task, although never above best humans. These findings highlight the importance of integrating artistic skills with AI, suggesting a potential for collaborative synergy that could reshape creative industries and arts education.
comment: Eisenmann and Karjus contributed equally to this work and share first authorship
♻ ☆ TaoSR1: The Thinking Model for E-commerce Relevance Search
Query-product relevance prediction is a core task in e-commerce search. BERT-based models excel at semantic matching but lack complex reasoning capabilities. While Large Language Models (LLMs) are explored, most still use discriminative fine-tuning or distill to smaller models for deployment. We propose a framework to directly deploy LLMs for this task, addressing key challenges: Chain-of-Thought (CoT) error accumulation, discriminative hallucination, and deployment feasibility. Our framework, TaoSR1, involves three stages: (1) Supervised Fine-Tuning (SFT) with CoT to instill reasoning; (2) Offline sampling with a pass@N strategy and Direct Preference Optimization (DPO) to improve generation quality; and (3) Difficulty-based dynamic sampling with Group Relative Policy Optimization (GRPO) to mitigate discriminative hallucination. Additionally, post-CoT processing and a cumulative probability-based partitioning method enable efficient online deployment. TaoSR1 significantly outperforms baselines on offline datasets and achieves substantial gains in online side-by-side human evaluations, introducing a novel paradigm for applying CoT reasoning to relevance classification.
♻ ☆ An Indoor Radio Mapping Dataset Combining 3D Point Clouds and RSSI
The growing number of smart devices supporting bandwidth-intensive and latency-sensitive applications, such as real-time video analytics, smart sensing, Extended Reality (XR), etc., necessitates reliable wireless connectivity in indoor environments. In such environments, accurate design of Radio Environment Maps (REMs) enables adaptive wireless network planning and optimization of Access Point (AP) placement. However, generating realistic REMs remains difficult due to the variability of indoor environments and the limitations of existing modeling approaches, which often rely on simplified layouts or fully synthetic data. These challenges are further amplified by the adoption of next-generation Wi-Fi standards, which operate at higher frequencies and suffer from limited range and wall penetration. To support the efforts in addressing these challenges, we collected a dataset that combines high-resolution 3D LiDAR scans with Wi-Fi RSSI measurements collected across 20 setups in a multi-room indoor environment. The dataset includes two measurement scenarios, the first without human presence in the environment, and the second with human presence, enabling the development and validation of REM estimation models that incorporate physical geometry and environmental dynamics. The described dataset supports research in data-driven wireless modeling and the development of high-capacity indoor communication networks.
comment: 12 pages, 7 figures, 3 tables, under review to Nature Scientific Data
♻ ☆ EmbedGenius: Towards Automated Software Development for Generic Embedded IoT Systems
Embedded IoT system development is crucial for enabling seamless connectivity and functionality across a wide range of applications. However, such a complex process requires cross-domain knowledge of hardware and software and hence often necessitates direct developer involvement, making it labor-intensive, time-consuming, and error-prone. To address this challenge, this paper introduces EmbedGenius, the first fully automated software development platform for general-purpose embedded IoT systems. The key idea is to leverage the reasoning ability of Large Language Models (LLMs) and embedded system expertise to automate the hardware-in-the-loop development process. The main methods include a component-aware library resolution method for addressing hardware dependencies, a library knowledge generation method that injects utility domain knowledge into LLMs, and an auto-programming method that ensures successful deployment. We evaluate EmbedGenius's performance across 71 modules and four mainstream embedded development platforms with over 350 IoT tasks. Experimental results show that EmbedGenius can generate codes with an accuracy of 95.7% and complete tasks with a success rate of 86.5%, surpassing human-in-the-loop baselines by 15.6%--37.7% and 25.5%--53.4%, respectively. We also show EmbedGenius's potential through case studies in environmental monitoring and remote control systems development.
♻ ☆ Orders in Chaos: Enhancing Large-Scale MoE LLM Serving with Data Movement Forecasting
Large-scale Mixture of Experts (MoE) Large Language Models (LLMs) have recently become the frontier open weight models, achieving remarkable model capability similar to proprietary ones. But their random expert selection mechanism introduces significant data movement overhead that becomes the dominant bottleneck in multi-unit LLM serving systems. To understand the patterns underlying this data movement, we conduct comprehensive data-movement-centric profiling across four state-of-the-art large-scale MoE models released in 2025 (200B-1000B) using over 24,000 requests spanning diverse workloads. We perform systematic analysis from both temporal and spatial perspectives and distill six key insights to guide the design of diverse future serving systems. With our insights, we then demonstrate how to improve wafer-scale GPUs as a case study, and show that minor architectural modifications leveraging the insights achieve substantial performance gains, delivering 5.3x and 3.1x average speedups on DeepSeek V3 and Qwen3, respectively. Our work presents the first comprehensive data-centric analysis of large-scale MoE models and a concrete design study using the learned lessons, with profiling traces and simulation framework already open-sourced with $>$1k downloads. Our traces and results are publicly available at https://huggingface.co/datasets/core12345/MoE_expert_selection_trace
♻ ☆ Data Mixing Can Induce Phase Transitions in Knowledge Acquisition NeurIPS'25
Large Language Models (LLMs) are typically trained on data mixtures: most data come from web scrapes, while a small portion is curated from high-quality sources with dense domain-specific knowledge. In this paper, we show that when training LLMs on such data mixtures, knowledge acquisition from knowledge-dense datasets, unlike training exclusively on knowledge-dense data (arXiv:2404.05405), does not always follow a smooth scaling law but can exhibit phase transitions with respect to the mixing ratio and model size. Through controlled experiments on a synthetic biography dataset mixed with web-scraped data, we demonstrate that: (1) as we increase the model size to a critical value, the model suddenly transitions from memorizing very few to most of the biographies; (2) below a critical mixing ratio, the model memorizes almost nothing even with extensive training, but beyond this threshold, it rapidly memorizes more biographies. We attribute these phase transitions to a capacity allocation phenomenon: a model with bounded capacity must act like a knapsack problem solver to minimize the overall test loss, and the optimal allocation across datasets can change discontinuously as the model size or mixing ratio varies. We formalize this intuition in an information-theoretic framework and reveal that these phase transitions are predictable, with the critical mixing ratio following a power-law relationship with the model size. Our findings highlight a concrete case where a good mixing recipe for large models may not be optimal for small models, and vice versa.
comment: NeurIPS'25 Spotlight
♻ ☆ A Fast Kernel-based Conditional Independence test with Application to Causal Discovery
Kernel-based conditional independence (KCI) testing is a powerful nonparametric method commonly employed in causal discovery tasks. Despite its flexibility and statistical reliability, cubic computational complexity limits its application to large datasets. To address this computational bottleneck, we propose \textit{FastKCI}, a scalable and parallelizable kernel-based conditional independence test that utilizes a mixture-of-experts approach inspired by embarrassingly parallel inference techniques for Gaussian processes. By partitioning the dataset based on a Gaussian mixture model over the conditioning variables, FastKCI conducts local KCI tests in parallel, aggregating the results using an importance-weighted sampling scheme. Experiments on synthetic datasets and benchmarks on real-world production data validate that FastKCI maintains the statistical power of the original KCI test while achieving substantial computational speedups. FastKCI thus represents a practical and efficient solution for conditional independence testing in causal inference on large-scale data.
comment: 11 pages, 5 figures
♻ ☆ N2N: A Parallel Framework for Large-Scale MILP under Distributed Memory
Parallelization has emerged as a promising approach for accelerating MILP solving. However, the complexity of the branch-and-bound (B&B) framework and the numerous effective algorithm components in MILP solvers make it difficult to parallelize. In this study, a scalable parallel framework, N2N (a node-to-node framework that maps the B&B nodes to distributed computing nodes), was proposed to solve large-scale problems in a distributed memory computing environment. Both deterministic and nondeterministic modes are supported, and the framework is designed to be easily integrated with existing solvers. Regarding the deterministic mode, a novel sliding-window-based algorithm was designed and implemented to ensure that tasks are generated and solved in a deterministic order. Moreover, several advanced techniques, such as the utilization of CP search and general primal heuristics, have been developed to fully utilize distributed computing resources and capabilities of base solvers. Adaptive solving and data communication optimization were also investigated. A popular open-source MILP solver, SCIP, was integrated into N2N as the base solver, yielding N2N-SCIP. Extensive computational experiments were conducted to evaluate the performance of N2N-SCIP compared to ParaSCIP, which is a state-of-the-art distributed parallel MILP solver under the UG framework. The nondeterministic N2N-SCIP achieves speedups of 22.52 and 12.71 with 1,000 MPI processes on the Kunpeng and x86 computing clusters, which is 1.98 and 2.08 times faster than ParaSCIP, respectively. In the deterministic mode, N2N-SCIP also shows significant performance improvements over ParaSCIP across different process numbers and computing clusters. To validate the generality of N2N, HiGHS, another open-source solver, was integrated into N2N. The related results are analyzed, and the requirements of N2N on base solvers are also concluded.
comment: We cannot publish the paper at this time because some internal processes have not yet been completed
♻ ☆ Intelligence Foundation Model: A New Perspective to Approach Artificial General Intelligence
We propose a new perspective for approaching artificial general intelligence (AGI) through an intelligence foundation model (IFM). Unlike existing foundation models (FMs), which specialize in pattern learning within specific domains such as language, vision, or time series, IFM aims to acquire the underlying mechanisms of intelligence by learning directly from diverse intelligent behaviors. Vision, language, and other cognitive abilities are manifestations of intelligent behavior; learning from this broad range of behaviors enables the system to internalize the general principles of intelligence. Based on the fact that intelligent behaviors emerge from the collective dynamics of biological neural systems, IFM consists of two core components: a novel network architecture, termed the state neural network, which captures neuron-like dynamic processes, and a new learning objective, neuron output prediction, which trains the system to predict neuronal outputs from collective dynamics. The state neural network emulates the temporal dynamics of biological neurons, allowing the system to store, integrate, and process information over time, while the neuron output prediction objective provides a unified computational principle for learning these structural dynamics from intelligent behaviors. Together, these innovations establish a biologically grounded and computationally scalable foundation for building systems capable of generalization, reasoning, and adaptive learning across domains, representing a step toward truly AGI.
♻ ☆ Ground-Truth Subgraphs for Better Training and Evaluation of Knowledge Graph Augmented LLMs
Retrieval of information from graph-structured knowledge bases represents a promising direction for improving the factuality of LLMs. While various solutions have been proposed, a comparison of methods is difficult due to the lack of challenging QA datasets with ground-truth targets for graph retrieval. We present SynthKGQA, an LLM-powered framework for generating high-quality Knowledge Graph Question Answering datasets from any Knowledge Graph, providing the full set of ground-truth facts in the KG to reason over questions. We show how, in addition to enabling more informative benchmarking of KG retrievers, the data produced with SynthKGQA also allows us to train better models.We apply SynthKGQA to Wikidata to generate GTSQA, a new dataset designed to test zero-shot generalization abilities of KG retrievers with respect to unseen graph structures and relation types, and benchmark popular solutions for KG-augmented LLMs on it.
♻ ☆ An Investigation of Robustness of LLMs in Mathematical Reasoning: Benchmarking with Mathematically-Equivalent Transformation of Advanced Mathematical Problems
In this paper, we introduce a systematic framework beyond conventional method to assess LLMs' mathematical-reasoning robustness by stress-testing them on advanced math problems that are mathematically equivalent but with linguistic and parametric variation. These transformations allow us to measure the sensitivity of LLMs to non-mathematical perturbations, thereby enabling a more accurate evaluation of their mathematical reasoning capabilities. Using this new evaluation methodology, we created PutnamGAP, a new benchmark dataset with multiple mathematically-equivalent variations of competition-level math problems. With the new dataset, we evaluate multiple families of representative LLMs and examine their robustness. Across 18 commercial and open-source models we observe sharp performance degradation on the variants. OpenAI's flagship reasoning model, O3, scores 51.5% on the originals but drops by 4.7 percentage points on surface-renaming variants, and by 12.9 percentage points on parametric variants, while smaller models fare far worse. Overall, the results show that the proposed new evaluation methodology is effective for deepening our understanding of the robustness of LLMs and generating new insights for further improving their mathematical reasoning capabilities.
comment: 34 pages, 9 figures
♻ ☆ VEDA: 3D Molecular Generation via Variance-Exploding Diffusion with Annealing
Diffusion models show promise for 3D molecular generation, but face a fundamental trade-off between sampling efficiency and conformational accuracy. While flow-based models are fast, they often produce geometrically inaccurate structures, as they have difficulty capturing the multimodal distributions of molecular conformations. In contrast, denoising diffusion models are more accurate but suffer from slow sampling, a limitation attributed to sub-optimal integration between diffusion dynamics and SE(3)-equivariant architectures. To address this, we propose VEDA, a unified SE(3)-equivariant framework that combines variance-exploding diffusion with annealing to efficiently generate conformationally accurate 3D molecular structures. Specifically, our key technical contributions include: (1) a VE schedule that enables noise injection functionally analogous to simulated annealing, improving 3D accuracy and reducing relaxation energy; (2) a novel preconditioning scheme that reconciles the coordinate-predicting nature of SE(3)-equivariant networks with a residual-based diffusion objective, and (3) a new arcsin-based scheduler that concentrates sampling in critical intervals of the logarithmic signal-to-noise ratio. On the QM9 and GEOM-DRUGS datasets, VEDA matches the sampling efficiency of flow-based models, achieving state-of-the-art valency stability and validity with only 100 sampling steps. More importantly, VEDA's generated structures are remarkably stable, as measured by their relaxation energy during GFN2-xTB optimization. The median energy change is only 1.72 kcal/mol, significantly lower than the 32.3 kcal/mol from its architectural baseline, SemlaFlow. Our framework demonstrates that principled integration of VE diffusion with SE(3)-equivariant architectures can achieve both high chemical accuracy and computational efficiency.
♻ ☆ A general language model for peptide function identification
Accurate identification of bioactive peptides (BPs) and protein post-translational modifications (PTMs) is essential for understanding protein function and advancing therapeutic discovery. However, most computational methods remain limited in their generalizability across diverse peptide functions. Here, we present PDeepPP, a unified deep learning framework that integrates pretrained protein language models with a hybrid transformer-CNN architecture, enabling robust identification across diverse peptide classes and PTM sites. We curated comprehensive benchmark datasets and implemented strategies to address data imbalance, allowing PDeepPP to systematically extract both global and local sequence features. Through extensive analyses including dimensionality reduction and comparison studies, PDeepPP demonstrates strong, interpretable peptide representations and achieves state-of-the-art performance in 25 of the 33 biological identification tasks. Notably, PDeepPP attains high accuracy in antimicrobial (0.9726) and phosphorylation site (0.9984) identification, with 99.5% specificity in glycosylation site prediction and substantial reduction in false negatives in antimalarial tasks. By enabling large-scale, accurate peptide analysis, PDeepPP supports biomedical research and the discovery of novel therapeutic targets for disease treatment. All code, datasets, and pretrained models are publicly available via GitHub (https://github.com/fondress/PDeepPP) and Hugging Face (https://huggingface.co/fondress/PDeppPP)
comment: 15 pages, 5 figures, 3 tables, submitted to arXiv
♻ ☆ Multimodal Markup Document Models for Graphic Design Completion
We introduce MarkupDM, a multimodal markup document model that represents graphic design as an interleaved multimodal document consisting of both markup language and images. Unlike existing holistic approaches that rely on an element-by-attribute grid representation, our representation accommodates variable-length elements, type-dependent attributes, and text content. Inspired by fill-in-the-middle training in code generation, we train the model to complete the missing part of a design document from its surrounding context, allowing it to treat various design tasks in a unified manner. Our model also supports image generation by predicting discrete image tokens through a specialized tokenizer with support for image transparency. We evaluate MarkupDM on three tasks, attribute value, image, and text completion, and demonstrate that it can produce plausible designs consistent with the given context. To further illustrate the flexibility of our approach, we evaluate our approach on a new instruction-guided design completion task where our instruction-tuned MarkupDM compares favorably to state-of-the-art image editing models, especially in textual completion. These findings suggest that multimodal language models with our document representation can serve as a versatile foundation for broad design automation.
comment: Accepted by ACM Multimedia 2025, Project page: https://cyberagentailab.github.io/MarkupDM/
♻ ☆ Scaling Towards the Information Boundary of Instruction Sets: The Infinity Instruct Subject Technical Report
Instruction tuning has become a foundation for unlocking the capabilities of large-scale pretrained models and improving their performance on complex tasks. Thus, the construction of high-quality instruction datasets is crucial for enhancing model performance and generalizability. Although current instruction datasets have reached tens of millions of samples, models finetuned on them may still struggle with complex instruction following and tasks in rare domains. This is primarily due to limited expansion in both ``coverage'' (coverage of task types and knowledge areas) and ``depth'' (instruction complexity) of the instruction set. To address this issue, we propose a systematic instruction data construction framework, which integrates a hierarchical tagging system, an informative seed selection algorithm, an evolutionary data synthesis process, and a model deficiency diagnosis with targeted data generation. These components form an iterative closed-loop to continuously enhance the coverage and depth of instruction data. Based on this framework, we construct Infinity Instruct Subject, a high-quality dataset containing $\sim$1.5 million instructions. Experiments on multiple foundation models and benchmark tasks demonstrate its effectiveness in improving instruction-following capabilities. Further analyses suggest that Infinity Instruct Subject shows enlarged coverage and depth compared to comparable synthesized instruction datasets. Our work lays a theoretical and practical foundation for the efficient, continuous evolution of instruction datasets, moving from data quantity expansion to qualitative improvement.
♻ ☆ Towards an end-to-end artificial intelligence driven global weather forecasting system
The weather forecasting system is important for science and society, and significant achievements have been made in applying artificial intelligence (AI) to medium-range weather forecasting. However, existing AI-based weather forecasting models rely on analysis or reanalysis products from traditional numerical weather prediction (NWP) systems as initial conditions for making predictions. The initial states are typically generated by traditional data assimilation components, which are computationally expensive and time-consuming. Here, by cyclic training to model the steady-state background error covariance and introducing the confidence matrix to characterize the quality of observations, we present an AI-based data assimilation model, i.e., Adas, for global weather variables. Further, we combine Adas with the advanced AI-based forecasting model (i.e., FengWu) to construct an end-to-end AI-based global weather forecasting system: FengWu-Adas. We demonstrate that Adas can assimilate global conventional observations to produce high-quality analysis, enabling the system to operate stably for long term. Moreover, the system can generate accurate end-to-end weather forecasts with comparable skill to those of the IFS, demonstrating the promising potential of data-driven approaches.
♻ ☆ When Ads Become Profiles: Uncovering the Invisible Risk of Web Advertising at Scale with LLMs
Regulatory limits on explicit targeting have not eliminated algorithmic profiling on the Web, as optimisation systems still adapt ad delivery to users' private attributes. The widespread availability of powerful zero-shot multimodal Large Language Models (LLMs) has dramatically lowered the barrier for exploiting these latent signals for adversarial inference. We investigate this emerging societal risk, specifically how adversaries can now exploit these signals to reverse-engineer private attributes from ad exposure alone. We introduce a novel pipeline that leverages LLMs as adversarial inference engines to perform natural language profiling. Applying this method to a longitudinal dataset comprising over 435,000 ad impressions collected from 891 users, we conducted a large-scale study to assess the feasibility and precision of inferring private attributes from passive online ad observations. Our results demonstrate that off-the-shelf LLMs can accurately reconstruct complex user private attributes, including party preference, employment status, and education level, consistently outperforming strong census-based priors and matching or exceeding human social perception, while operating at only a fraction of the cost (223$\times$ lower) and time (52$\times$ faster) required by humans. Critically, actionable profiling is feasible even within short observation windows, indicating that prolonged tracking is not a prerequisite for a successful attack. These findings provide the first empirical evidence that ad streams serve as a high-fidelity digital footprint, enabling off-platform profiling that inherently bypasses current platform safeguards, highlighting a systemic vulnerability in the ad ecosystem and the urgent need for responsible web AI governance in the generative AI era. The code is available at https://github.com/Breezelled/when-ads-become-profiles.
♻ ☆ In-Context Representation Hijacking
We introduce $\textbf{Doublespeak}$, a simple in-context representation hijacking attack against large language models (LLMs). The attack works by systematically replacing a harmful keyword (e.g., bomb) with a benign token (e.g., carrot) across multiple in-context examples, provided a prefix to a harmful request. We demonstrate that this substitution leads to the internal representation of the benign token converging toward that of the harmful one, effectively embedding the harmful semantics under a euphemism. As a result, superficially innocuous prompts (e.g., "How to build a carrot?") are internally interpreted as disallowed instructions (e.g., "How to build a bomb?"), thereby bypassing the model's safety alignment. We use interpretability tools to show that this semantic overwrite emerges layer by layer, with benign meanings in early layers converging into harmful semantics in later ones. Doublespeak is optimization-free, broadly transferable across model families, and achieves strong success rates on closed-source and open-source systems, reaching 74% ASR on Llama-3.3-70B-Instruct with a single-sentence context override. Our findings highlight a new attack surface in the latent space of LLMs, revealing that current alignment strategies are insufficient and should instead operate at the representation level.
♻ ☆ Towards Heterogeneous Quantum Federated Learning: Challenges and Solutions
Quantum federated learning (QFL) combines quantum computing and federated learning to enable decentralized model training while maintaining data privacy. QFL can improve computational efficiency and scalability by taking advantage of quantum properties such as superposition and entanglement. However, existing QFL frameworks largely focus on homogeneity among quantum \textcolor{black}{clients, and they do not account} for real-world variances in quantum data distributions, encoding techniques, hardware noise levels, and computational capacity. These differences can create instability during training, slow convergence, and reduce overall model performance. In this paper, we conduct an in-depth examination of heterogeneity in QFL, classifying it into two categories: data or system heterogeneity. Then we investigate the influence of heterogeneity on training convergence and model aggregation. We critically evaluate existing mitigation solutions, highlight their limitations, and give a case study that demonstrates the viability of tackling quantum heterogeneity. Finally, we discuss potential future research areas for constructing robust and scalable heterogeneous QFL frameworks.
comment: Accepted at IEEE Network Magazine
♻ ☆ Escaping Barren Plateaus in Variational Quantum Algorithms Using Negative Learning Rate in Quantum Internet of Things
Variational Quantum Algorithms (VQAs) are becoming the primary computational primitive for next-generation quantum computers, particularly those embedded as resource-constrained accelerators in the emerging Quantum Internet of Things (QIoT). However, under such device-constrained execution conditions, the scalability of learning is severely limited by barren plateaus, where gradients collapse to zero and training stalls. This poses a practical challenge to delivering VQA-enabled intelligence on QIoT endpoints, which often have few qubits, constrained shot budgets, and strict latency requirements. In this paper, we present a novel approach for escaping barren plateaus by including negative learning rates into the optimization process in QIoT devices. Our method introduces controlled instability into model training by switching between positive and negative learning phases, allowing recovery of significant gradients and exploring flatter areas in the loss landscape. We theoretically evaluate the effect of negative learning on gradient variance and propose conditions under which it helps escape from barren zones. The experimental findings on typical VQA benchmarks show consistent improvements in both convergence and simulation results over traditional optimizers. By escaping barren plateaus, our approach leads to a novel pathway for robust optimization in quantum-classical hybrid models.
comment: Accepted at IEEE Internet of Things Journal
♻ ☆ MILR: Improving Multimodal Image Generation via Test-Time Latent Reasoning
Reasoning-augmented machine learning systems have shown improved performance in various domains, including image generation. However, existing reasoning-based methods for image generation either restrict reasoning to a single modality (image or text) or rely on high-quality reasoning data for fine-tuning. To tackle these limitations, we propose MILR, a test-time method that jointly reasons over image and text in a unified latent vector space. Reasoning in MILR is performed by searching through vector representations of discrete image and text tokens. Practically, this is implemented via the policy gradient method, guided by an image quality critic. We instantiate MILR within the unified multimodal understanding and generation (MUG) framework that natively supports language reasoning before image synthesis and thus facilitates cross-modal reasoning. The intermediate model outputs, which are to be optimized, serve as the unified latent space, enabling MILR to operate entirely at test time. We evaluate MILR on GenEval, T2I-CompBench, and WISE, achieving state-of-the-art results on all benchmarks. Notably, on knowledge-intensive WISE, MILR attains an overall score of 0.63, improving over the baseline by 80%. Our further analysis indicates that joint reasoning in the unified latent space is the key to its strong performance. Moreover, our qualitative studies reveal MILR's non-trivial ability in temporal and cultural reasoning, highlighting the efficacy of our reasoning method.
comment: 21 pages,13 figures,9 tables
♻ ☆ Sharp Eyes and Memory for VideoLLMs: Information-Aware Visual Token Pruning for Efficient and Reliable VideoLLM Reasoning AAAI
Current Video Large Language Models (VideoLLMs) suffer from quadratic computational complexity and key-value cache scaling, due to their reliance on processing excessive redundant visual tokens. To address this problem, we propose SharpV, a minimalist and efficient method for adaptive pruning of visual tokens and KV cache. Different from most uniform compression approaches, SharpV dynamically adjusts pruning ratios based on spatial-temporal information. Remarkably, this adaptive mechanism occasionally achieves performance gains over dense models, offering a novel paradigm for adaptive pruning. During the KV cache pruning stage, based on observations of visual information degradation, SharpV prunes degraded visual features via a self-calibration manner, guided by similarity to original visual features. In this way, SharpV achieves hierarchical cache pruning from the perspective of information bottleneck, offering a new insight into VideoLLMs' information flow. Experiments on multiple public benchmarks demonstrate the superiority of SharpV. Moreover, to the best of our knowledge, SharpV is notably the first two-stage pruning framework that operates without requiring access to exposed attention scores, ensuring full compatibility with hardware acceleration techniques like Flash Attention.
comment: The 40th Annual AAAI Conference on Artificial Intelligence (AAAI-26) Poster
♻ ☆ Beyond KAN: Introducing KarSein for Adaptive High-Order Feature Interaction Modeling in CTR Prediction
Modeling high-order feature interactions is crucial for click-through rate (CTR) prediction, yet traditional approaches typically predefine a maximum interaction order and exhaustively enumerate feature combinations up to that order. This paradigm depends heavily on prior domain knowledge to delimit the interaction space and incurs substantial computational overhead. As a result, conventional CTR models face a persistent tension between enriching representations with complex high-order interactions and keeping computation tractable. To address this dual challenge, this study introduces the Kolmogorov-Arnold Represented Sparse Efficient Interaction Network (KarSein). Drawing inspiration from the learnable activation mechanism in the Kolmogorov-Arnold Network (KAN), KarSein leverages this mechanism to adaptively transform low-order basic features into high-order feature interactions, offering a novel approach to feature interaction modeling. KarSein extends the capabilities of KAN by introducing a more efficient architecture that significantly reduces computational costs while accommodating two-dimensional embedding vectors as feature inputs. Furthermore, it overcomes the limitation of KAN's its inability to spontaneously capture multiplicative relationships among features. Extensive experiments highlight the superiority of KarSein, demonstrating its ability to surpass not only the vanilla implementation of KAN in CTR prediction tasks but also other baseline methods. Remarkably, KarSein achieves exceptional predictive accuracy while maintaining a highly compact parameter size and minimal computational overhead. Moreover, KarSein exhibits strong interpretability and structural sparsity. As the first systematic adaptation of KAN to CTR prediction, KarSein offers a practical, parameter-efficient, and interpretable alternative for modeling complex feature interactions in CTR prediction.
comment: Under review by TOIS
Machine Learning
☆ The Universal Weight Subspace Hypothesis
We show that deep neural networks trained across diverse tasks exhibit remarkably similar low-dimensional parametric subspaces. We provide the first large-scale empirical evidence that demonstrates that neural networks systematically converge to shared spectral subspaces regardless of initialization, task, or domain. Through mode-wise spectral analysis of over 1100 models - including 500 Mistral-7B LoRAs, 500 Vision Transformers, and 50 LLaMA-8B models - we identify universal subspaces capturing majority variance in just a few principal directions. By applying spectral decomposition techniques to the weight matrices of various architectures trained on a wide range of tasks and datasets, we identify sparse, joint subspaces that are consistently exploited, within shared architectures across diverse tasks and datasets. Our findings offer new insights into the intrinsic organization of information within deep networks and raise important questions about the possibility of discovering these universal subspaces without the need for extensive data and computational resources. Furthermore, this inherent structure has significant implications for model reusability, multi-task learning, model merging, and the development of training and inference-efficient algorithms, potentially reducing the carbon footprint of large-scale neural models.
comment: 37 pages
☆ Value Gradient Guidance for Flow Matching Alignment NeurIPS 2025
While methods exist for aligning flow matching models--a popular and effective class of generative models--with human preferences, existing approaches fail to achieve both adaptation efficiency and probabilistically sound prior preservation. In this work, we leverage the theory of optimal control and propose VGG-Flow, a gradient-matching-based method for finetuning pretrained flow matching models. The key idea behind this algorithm is that the optimal difference between the finetuned velocity field and the pretrained one should be matched with the gradient field of a value function. This method not only incorporates first-order information from the reward model but also benefits from heuristic initialization of the value function to enable fast adaptation. Empirically, we show on a popular text-to-image flow matching model, Stable Diffusion 3, that our method can finetune flow matching models under limited computational budgets while achieving effective and prior-preserving alignment.
comment: Accepted at NeurIPS 2025; 26 pages, 20 figures
☆ Deep infant brain segmentation from multi-contrast MRI
Segmentation of magnetic resonance images (MRI) facilitates analysis of human brain development by delineating anatomical structures. However, in infants and young children, accurate segmentation is challenging due to development and imaging constraints. Pediatric brain MRI is notoriously difficult to acquire, with inconsistent availability of imaging modalities, substantial non-head anatomy in the field of view, and frequent motion artifacts. This has led to specialized segmentation models that are often limited to specific image types or narrow age groups, or that are fragile for more variable images such as those acquired clinically. We address this method fragmentation with BabySeg, a deep learning brain segmentation framework for infants and young children that supports diverse MRI protocols, including repeat scans and image types unavailable during training. Our approach builds on recent domain randomization techniques, which synthesize training images far beyond realistic bounds to promote dataset shift invariance. We also describe a mechanism that enables models to flexibly pool and interact features from any number of input scans. We demonstrate state-of-the-art performance that matches or exceeds the accuracy of several existing methods for various age cohorts and input configurations using a single model, in a fraction of the runtime required by many existing tools.
comment: 8 pages, 8 figures, 1 table, website at https://w3id.org/babyseg, presented at the 2025 IEEE Asilomar Conference on Signals, Systems, and Computers
☆ DraCo: Draft as CoT for Text-to-Image Preview and Rare Concept Generation
Recent unified multimodal large language models (MLLMs) have shown impressive capabilities, incorporating chain-of-thought (CoT) reasoning for enhanced text-to-image generation. However, existing approaches remain limited, either treating the model merely as a standalone generator or relying on abstract textual planning. To this end, we propose Draft-as-CoT (DraCo), a novel interleaved reasoning paradigm that fully leverages both textual and visual contents in CoT for better planning and verification. Our method first generates a low-resolution draft image as preview, providing more concrete and structural visual planning and guidance. Then, we employ the model's inherent understanding capability to verify potential semantic misalignments between the draft and input prompt, and performs refinement through selective corrections with super-resolution. In this way, our approach addresses two fundamental challenges: the coarse-grained nature of textual planning and the difficulty in generating rare attribute combinations. To support training, we curate DraCo-240K, aiming to enhance three atomic capabilities spanning general correction, instance manipulation, and layout reorganization. Supported by DraCo-CFG, a specialized classifier-free guidance (CFG) strategy for interleaved reasoning, DraCo achieves a tremendous increase on GenEval (+8%), Imagine-Bench (+0.91), and GenEval++ (+3%), significantly outperforming direct generation and other generation methods empowered by CoT.
comment: Project Page: https://github.com/CaraJ7/DraCo
☆ Semantic Soft Bootstrapping: Long Context Reasoning in LLMs without Reinforcement Learning
Long context reasoning in large language models (LLMs) has demonstrated enhancement of their cognitive capabilities via chain-of-thought (CoT) inference. Training such models is usually done via reinforcement learning with verifiable rewards (RLVR) in reasoning based problems, like math and programming. However, RLVR is limited by several bottlenecks, such as, lack of dense reward, and inadequate sample efficiency. As a result, it requires significant compute resources in post-training phase. To overcome these limitations, in this work, we propose \textbf{Semantic Soft Bootstrapping (SSB)}, a self-distillation technique, in which the same base language model plays the role of both teacher and student, but receives different semantic contexts about the correctness of its outcome at training time. The model is first prompted with a math problem and several rollouts are generated. From them, the correct and most common incorrect response are filtered, and then provided to the model in context to produce a more robust, step-by-step explanation with a verified final answer. This pipeline automatically curates a paired teacher-student training set from raw problem-answer data, without any human intervention. This generation process also produces a sequence of logits, which is what the student model tries to match in the training phase just from the bare question alone. In our experiment, Qwen2.5-3B-Instruct on GSM8K dataset via parameter-efficient fine-tuning. We then tested its accuracy on MATH500, and AIME2024 benchmarks. Our experiments show a jump of 10.6%, and 10% improvements in accuracy, respectively, over group relative policy optimization (GRPO), which is a commonly used RLVR algorithm. Our code is available at https://github.com/purbeshmitra/semantic-soft-bootstrapping, and the model, curated dataset is available at https://huggingface.co/purbeshmitra/semantic-soft-bootstrapping.
☆ NeuralRemaster: Phase-Preserving Diffusion for Structure-Aligned Generation
Standard diffusion corrupts data using Gaussian noise whose Fourier coefficients have random magnitudes and random phases. While effective for unconditional or text-to-image generation, corrupting phase components destroys spatial structure, making it ill-suited for tasks requiring geometric consistency, such as re-rendering, simulation enhancement, and image-to-image translation. We introduce Phase-Preserving Diffusion φ-PD, a model-agnostic reformulation of the diffusion process that preserves input phase while randomizing magnitude, enabling structure-aligned generation without architectural changes or additional parameters. We further propose Frequency-Selective Structured (FSS) noise, which provides continuous control over structural rigidity via a single frequency-cutoff parameter. φ-PD adds no inference-time cost and is compatible with any diffusion model for images or videos. Across photorealistic and stylized re-rendering, as well as sim-to-real enhancement for driving planners, φ-PD produces controllable, spatially aligned results. When applied to the CARLA simulator, φ-PD improves CARLA-to-Waymo planner performance by 50\%. The method is complementary to existing conditioning approaches and broadly applicable to image-to-image and video-to-video generation. Videos, additional examples, and code are available on our \href{https://yuzeng-at-tri.github.io/ppd-page/}{project page}.
☆ TV2TV: A Unified Framework for Interleaved Language and Video Generation
Video generation models are rapidly advancing, but can still struggle with complex video outputs that require significant semantic branching or repeated high-level reasoning about what should happen next. In this paper, we introduce a new class of omni video-text models that integrate ideas from recent LM reasoning advances to address this challenge. More specifically, we present TV2TV, a unified generative modeling framework which decomposes video generation into an interleaved text and video generation process. TV2TV jointly learns language modeling (next-token prediction) and video flow matching (next-frame prediction) using a Mixture-of-Transformers (MoT) architecture. At inference time, TV2TV decides when to alternate between generating text and video frames, allowing the model to "think in words" about subsequent content before ``acting in pixels'' to produce frames. This design offloads much of the responsibility for deciding what should happen next to the language modeling tower, enabling improved visual quality and prompt alignment of generated videos. It also enables fine-grained controllability, allowing users to modify the video generation trajectory through text interventions at any point in the process. In controlled experiments on video game data, TV2TV demonstrates substantial improvements in both visual quality and controllability. TV2TV also scales to natural videos, as we show by augmenting sports videos with interleaved natural language action descriptions using vision-language models (VLMs). Training TV2TV on this corpus yields strong visual quality and prompt alignment, showcasing the model's ability to reason about and generate complex real-world action sequences. Together, these results highlight TV2TV as a promising step toward video generation with open-ended textual reasoning and control.
☆ Structured Document Translation via Format Reinforcement Learning AACL 2025
Recent works on structured text translation remain limited to the sentence level, as they struggle to effectively handle the complex document-level XML or HTML structures. To address this, we propose \textbf{Format Reinforcement Learning (FormatRL)}, which employs Group Relative Policy Optimization on top of a supervised fine-tuning model to directly optimize novel structure-aware rewards: 1) TreeSim, which measures structural similarity between predicted and reference XML trees and 2) Node-chrF, which measures translation quality at the level of XML nodes. Additionally, we apply StrucAUC, a fine-grained metric distinguishing between minor errors and major structural failures. Experiments on the SAP software-documentation benchmark demonstrate improvements across six metrics and an analysis further shows how different reward functions contribute to improvements in both structural and translation quality.
comment: IJCNLP-AACL 2025 Main (Oral)
☆ Foundations of Diffusion Models in General State Spaces: A Self-Contained Introduction
Although diffusion models now occupy a central place in generative modeling, introductory treatments commonly assume Euclidean data and seldom clarify their connection to discrete-state analogues. This article is a self-contained primer on diffusion over general state spaces, unifying continuous domains and discrete/categorical structures under one lens. We develop the discrete-time view (forward noising via Markov kernels and learned reverse dynamics) alongside its continuous-time limits -- stochastic differential equations (SDEs) in $\mathbb{R}^d$ and continuous-time Markov chains (CTMCs) on finite alphabets -- and derive the associated Fokker--Planck and master equations. A common variational treatment yields the ELBO that underpins standard training losses. We make explicit how forward corruption choices -- Gaussian processes in continuous spaces and structured categorical transition kernels (uniform, masking/absorbing and more) in discrete spaces -- shape reverse dynamics and the ELBO. The presentation is layered for three audiences: newcomers seeking a self-contained intuitive introduction; diffusion practitioners wanting a global theoretical synthesis; and continuous-diffusion experts looking for an analogy-first path into discrete diffusion. The result is a unified roadmap to modern diffusion methodology across continuous domains and discrete sequences, highlighting a compact set of reusable proofs, identities, and core theoretical principles.
☆ The Geometry of Intelligence: Deterministic Functional Topology as a Foundation for Real-World Perception
Real-world physical processes do not generate arbitrary variability: their signals concentrate on compact and low-variability subsets of functional space. This geometric structure enables rapid generalization from a few examples in both biological and artificial systems. This work develops a deterministic functional-topological framework in which the set of valid realizations of a physical phenomenon forms a compact perceptual manifold with stable invariants and a finite Hausdorff radius. We show that the boundaries of this manifold can be discovered in a fully self-supervised manner through Monte Carlo sampling, even when the governing equations of the system are unknown. We provide theoretical guarantees, practical estimators of knowledge boundaries, and empirical validations across three domains: electromechanical railway point machines, electrochemical battery discharge curves, and physiological ECG signals. Our results demonstrate that deterministic functional topology offers a unified mathematical foundation for perception, representation, and world-model construction, explaining why biological learners and self-supervised AI models can generalize from limited observations.
comment: 35 pages, 6 figures. This preprint develops a deterministic functional-topological framework showing that physical systems generate compact perceptual manifolds with finite radius. We provide theory, Monte-Carlo estimators, and validation across PM, battery, and ECG domains, unifying biological perception and self-supervised AI
☆ Gradient Descent with Provably Tuned Learning-rate Schedules
Gradient-based iterative optimization methods are the workhorse of modern machine learning. They crucially rely on careful tuning of parameters like learning rate and momentum. However, one typically sets them using heuristic approaches without formal near-optimality guarantees. Recent work by Gupta and Roughgarden studies how to learn a good step-size in gradient descent. However, like most of the literature with theoretical guarantees for gradient-based optimization, their results rely on strong assumptions on the function class including convexity and smoothness which do not hold in typical applications. In this work, we develop novel analytical tools for provably tuning hyperparameters in gradient-based algorithms that apply to non-convex and non-smooth functions. We obtain matching sample complexity bounds for learning the step-size in gradient descent shown for smooth, convex functions in prior work (up to logarithmic factors) but for a much broader class of functions. Our analysis applies to gradient descent on neural networks with commonly used activation functions (including ReLU, sigmoid and tanh). We extend our framework to tuning multiple hyperparameters, including tuning the learning rate schedule, simultaneously tuning momentum and step-size, and pre-training the initialization vector. Our approach can be used to bound the sample complexity for minimizing both the validation loss as well as the number of gradient descent iterations.
☆ OMTRA: A Multi-Task Generative Model for Structure-Based Drug Design
Structure-based drug design (SBDD) focuses on designing small-molecule ligands that bind to specific protein pockets. Computational methods are integral in modern SBDD workflows and often make use of virtual screening methods via docking or pharmacophore search. Modern generative modeling approaches have focused on improving novel ligand discovery by enabling de novo design. In this work, we recognize that these tasks share a common structure and can therefore be represented as different instantiations of a consistent generative modeling framework. We propose a unified approach in OMTRA, a multi-modal flow matching model that flexibly performs many tasks relevant to SBDD, including some with no analogue in conventional workflows. Additionally, we curate a dataset of 500M 3D molecular conformers, complementing protein-ligand data and expanding the chemical diversity available for training. OMTRA obtains state of the art performance on pocket-conditioned de novo design and docking; however, the effects of large-scale pretraining and multi-task training are modest. All code, trained models, and dataset for reproducing this work are available at https://github.com/gnina/OMTRA
comment: Presented at the Machine Learning for Structural Biology Workshop, 2025
☆ David vs. Goliath: Can Small Models Win Big with Agentic AI in Hardware Design?
Large Language Model(LLM) inference demands massive compute and energy, making domain-specific tasks expensive and unsustainable. As foundation models keep scaling, we ask: Is bigger always better for hardware design? Our work tests this by evaluating Small Language Models coupled with a curated agentic AI framework on NVIDIA's Comprehensive Verilog Design Problems(CVDP) benchmark. Results show that agentic workflows: through task decomposition, iterative feedback, and correction - not only unlock near-LLM performance at a fraction of the cost but also create learning opportunities for agents, paving the way for efficient, adaptive solutions in complex design tasks.
☆ Control Consistency Losses for Diffusion Bridges NeurIPS 2025
Simulating the conditioned dynamics of diffusion processes, given their initial and terminal states, is an important but challenging problem in the sciences. The difficulty is particularly pronounced for rare events, for which the unconditioned dynamics rarely reach the terminal state. In this work, we leverage a self-consistency property of the conditioned dynamics to learn the diffusion bridge in an iterative online manner, and demonstrate promising empirical results in a range of settings.
comment: Frontiers in Probabilistic Inference: Sampling Meets Learning Workshop at NeurIPS 2025 (Oral)
☆ Hybrid Quantum-Classical Autoencoders for Unsupervised Network Intrusion Detection
Unsupervised anomaly-based intrusion detection requires models that can generalize to attack patterns not observed during training. This work presents the first large-scale evaluation of hybrid quantum-classical (HQC) autoencoders for this task. We construct a unified experimental framework that iterates over key quantum design choices, including quantum-layer placement, measurement approach, variational and non-variational formulations, and latent-space regularization. Experiments across three benchmark NIDS datasets show that HQC autoencoders can match or exceed classical performance in their best configurations, although they exhibit higher sensitivity to architectural decisions. Under zero-day evaluation, well-configured HQC models provide stronger and more stable generalization than classical and supervised baselines. Simulated gate-noise experiments reveal early performance degradation, indicating the need for noise-aware HQC designs. These results provide the first data-driven characterization of HQC autoencoder behavior for network intrusion detection and outline key factors that govern their practical viability. All experiment code and configurations are available at https://github.com/arasyi/hqcae-network-intrusion-detection.
☆ Multi-LLM Collaboration for Medication Recommendation
As healthcare increasingly turns to AI for scalable and trustworthy clinical decision support, ensuring reliability in model reasoning remains a critical challenge. Individual large language models (LLMs) are susceptible to hallucinations and inconsistency, whereas naive ensembles of models often fail to deliver stable and credible recommendations. Building on our previous work on LLM Chemistry, which quantifies the collaborative compatibility among LLMs, we apply this framework to improve the reliability in medication recommendation from brief clinical vignettes. Our approach leverages multi-LLM collaboration guided by Chemistry-inspired interaction modeling, enabling ensembles that are effective (exploiting complementary strengths), stable (producing consistent quality), and calibrated (minimizing interference and error amplification). We evaluate our Chemistry-based Multi-LLM collaboration strategy on real-world clinical scenarios to investigate whether such interaction-aware ensembles can generate credible, patient-specific medication recommendations. Preliminary results are encouraging, suggesting that LLM Chemistry-guided collaboration may offer a promising path toward reliable and trustworthy AI assistants in clinical practice.
comment: 8 pages, 5 figures, 1 table
☆ Meta-Learning for Quantum Optimization via Quantum Sequence Model
The Quantum Approximate Optimization Algorithm (QAOA) is a leading approach for solving combinatorial optimization problems on near-term quantum processors. However, finding good variational parameters remains a significant challenge due to the non-convex energy landscape, often resulting in slow convergence and poor solution quality. In this work, we propose a quantum meta-learning framework that trains advanced quantum sequence models to generate effective parameter initialization policies. We investigate four classical or quantum sequence models, including the Quantum Kernel-based Long Short-Term Memory (QK-LSTM), as learned optimizers in a "learning to learn" paradigm. Our numerical experiments on the Max-Cut problem demonstrate that the QK-LSTM optimizer achieves superior performance, obtaining the highest approximation ratios and exhibiting the fastest convergence rate across all tested problem sizes (n=10 to 13). Crucially, the QK-LSTM model achieves perfect parameter transferability by synthesizing a single, fixed set of near-optimal parameters, leading to a remarkable sustained acceleration of convergence even when generalizing to larger problems. This capability, enabled by the compact and expressive power of the quantum kernel architecture, underscores its effectiveness. The QK-LSTM, with only 43 trainable parameters, substantially outperforms the classical LSTM (56 parameters) and other quantum sequence models, establishing a robust pathway toward highly efficient parameter initialization for variational quantum algorithms in the NISQ era.
☆ QKAN-LSTM: Quantum-inspired Kolmogorov-Arnold Long Short-term Memory
Long short-term memory (LSTM) models are a particular type of recurrent neural networks (RNNs) that are central to sequential modeling tasks in domains such as urban telecommunication forecasting, where temporal correlations and nonlinear dependencies dominate. However, conventional LSTMs suffer from high parameter redundancy and limited nonlinear expressivity. In this work, we propose the Quantum-inspired Kolmogorov-Arnold Long Short-Term Memory (QKAN-LSTM), which integrates Data Re-Uploading Activation (DARUAN) modules into the gating structure of LSTMs. Each DARUAN acts as a quantum variational activation function (QVAF), enhancing frequency adaptability and enabling an exponentially enriched spectral representation without multi-qubit entanglement. The resulting architecture preserves quantum-level expressivity while remaining fully executable on classical hardware. Empirical evaluations on three datasets, Damped Simple Harmonic Motion, Bessel Function, and Urban Telecommunication, demonstrate that QKAN-LSTM achieves superior predictive accuracy and generalization with a 79% reduction in trainable parameters compared to classical LSTMs. We extend the framework to the Jiang-Huang-Chen-Goan Network (JHCG Net), which generalizes KAN to encoder-decoder structures, and then further use QKAN to realize the latent KAN, thereby creating a Hybrid QKAN (HQKAN) for hierarchical representation learning. The proposed HQKAN-LSTM thus provides a scalable and interpretable pathway toward quantum-inspired sequential modeling in real-world data environments.
☆ SuperActivators: Only the Tail of the Distribution Contains Reliable Concept Signals
Concept vectors aim to enhance model interpretability by linking internal representations with human-understandable semantics, but their utility is often limited by noisy and inconsistent activations. In this work, we uncover a clear pattern within the noise, which we term the SuperActivator Mechanism: while in-concept and out-of-concept activations overlap considerably, the token activations in the extreme high tail of the in-concept distribution provide a reliable signal of concept presence. We demonstrate the generality of this mechanism by showing that SuperActivator tokens consistently outperform standard vector-based and prompting concept detection approaches, achieving up to a 14% higher F1 score across image and text modalities, model architectures, model layers, and concept extraction techniques. Finally, we leverage SuperActivator tokens to improve feature attributions for concepts.
☆ Arbitrage: Efficient Reasoning via Advantage-Aware Speculation
Modern Large Language Models achieve impressive reasoning capabilities with long Chain of Thoughts, but they incur substantial computational cost during inference, and this motivates techniques to improve the performance-cost ratio. Among these techniques, Speculative Decoding accelerates inference by employing a fast but inaccurate draft model to autoregressively propose tokens, which are then verified in parallel by a more capable target model. However, due to unnecessary rejections caused by token mismatches in semantically equivalent steps, traditional token-level Speculative Decoding struggles in reasoning tasks. Although recent works have shifted to step-level semantic verification, which improve efficiency by accepting or rejecting entire reasoning steps, existing step-level methods still regenerate many rejected steps with little improvement, wasting valuable target compute. To address this challenge, we propose Arbitrage, a novel step-level speculative generation framework that routes generation dynamically based on the relative advantage between draft and target models. Instead of applying a fixed acceptance threshold, Arbitrage uses a lightweight router trained to predict when the target model is likely to produce a meaningfully better step. This routing approximates an ideal Arbitrage Oracle that always chooses the higher-quality step, achieving near-optimal efficiency-accuracy trade-offs. Across multiple mathematical reasoning benchmarks, Arbitrage consistently surpasses prior step-level Speculative Decoding baselines, reducing inference latency by up to $\sim2\times$ at matched accuracy.
comment: 22 pages
☆ Dual-Path Region-Guided Attention Network for Ground Reaction Force and Moment Regression
Accurate estimation of three-dimensional ground reaction forces and moments (GRFs/GRMs) is crucial for both biomechanics research and clinical rehabilitation evaluation. In this study, we focus on insole-based GRF/GRM estimation and further validate our approach on a public walking dataset. We propose a Dual-Path Region-Guided Attention Network that integrates anatomy-inspired spatial priors and temporal priors into a region-level attention mechanism, while a complementary path captures context from the full sensor field. The two paths are trained jointly and their outputs are combined to produce the final GRF/GRM predictions. Conclusions: Our model outperforms strong baseline models, including CNN and CNN-LSTM architectures on two datasets, achieving the lowest six-component average NRMSE of 5.78% on the insole dataset and 1.42% for the vertical ground reaction force on the public dataset. This demonstrates robust performance for ground reaction force and moment estimation.
☆ Model-Free Assessment of Simulator Fidelity via Quantile Curves
Simulation of complex systems originated in manufacturing and queuing applications. It is now widely used for large-scale, ML-based systems in research, education, and consumer surveys. However, characterizing the discrepancy between simulators and ground truth remains challenging for increasingly complex, machine-learning-based systems. We propose a computationally tractable method to estimate the quantile function of the discrepancy between the simulated and ground-truth outcome distributions. Our approach focuses on output uncertainty and treats the simulator as a black box, imposing no modeling assumptions on its internals, and hence applies broadly across many parameter families, from Bernoulli and multinomial models to continuous, vector-valued settings. The resulting quantile curve supports confidence interval construction for unseen scenarios, risk-aware summaries of sim-to-real discrepancy (e.g., VaR/CVaR), and comparison of simulators' performance. We demonstrate our methodology in an application assessing LLM simulation fidelity on the WorldValueBench dataset spanning four LLMs.
comment: 33 pages, 11 figures
☆ HTR-ConvText: Leveraging Convolution and Textual Information for Handwritten Text Recognition
Handwritten Text Recognition remains challenging due to the limited data, high writing style variance, and scripts with complex diacritics. Existing approaches, though partially address these issues, often struggle to generalize without massive synthetic data. To address these challenges, we propose HTR-ConvText, a model designed to capture fine-grained, stroke-level local features while preserving global contextual dependencies. In the feature extraction stage, we integrate a residual Convolutional Neural Network backbone with a MobileViT with Positional Encoding block. This enables the model to both capture structural patterns and learn subtle writing details. We then introduce the ConvText encoder, a hybrid architecture combining global context and local features within a hierarchical structure that reduces sequence length for improved efficiency. Additionally, an auxiliary module injects textual context to mitigate the weakness of Connectionist Temporal Classification. Evaluations on IAM, READ2016, LAM and HANDS-VNOnDB demonstrate that our approach achieves improved performance and better generalization compared to existing methods, especially in scenarios with limited training samples and high handwriting diversity.
☆ Evolutionary Architecture Search through Grammar-Based Sequence Alignment
Neural architecture search (NAS) in expressive search spaces is a computationally hard problem, but it also holds the potential to automatically discover completely novel and performant architectures. To achieve this we need effective search algorithms that can identify powerful components and reuse them in new candidate architectures. In this paper, we introduce two adapted variants of the Smith-Waterman algorithm for local sequence alignment and use them to compute the edit distance in a grammar-based evolutionary architecture search. These algorithms enable us to efficiently calculate a distance metric for neural architectures and to generate a set of hybrid offspring from two parent models. This facilitates the deployment of crossover-based search heuristics, allows us to perform a thorough analysis on the architectural loss landscape, and track population diversity during search. We highlight how our method vastly improves computational complexity over previous work and enables us to efficiently compute shortest paths between architectures. When instantiating the crossover in evolutionary searches, we achieve competitive results, outperforming competing methods. Future work can build upon this new tool, discovering novel components that can be used more broadly across neural architecture design, and broadening its applications beyond NAS.
☆ Towards a unified framework for guided diffusion models
Guided or controlled data generation with diffusion models\blfootnote{Partial preliminary results of this work appeared in International Conference on Machine Learning 2025 \citep{li2025provable}.} has become a cornerstone of modern generative modeling. Despite substantial advances in diffusion model theory, the theoretical understanding of guided diffusion samplers remains severely limited. We make progress by developing a unified algorithmic and theoretical framework that accommodates both diffusion guidance and reward-guided diffusion. Aimed at fine-tuning diffusion models to improve certain rewards, we propose injecting a reward guidance term -- constructed from the difference between the original and reward-reweighted scores -- into the backward diffusion process, and rigorously quantify the resulting reward improvement over the unguided counterpart. As a key application, our framework shows that classifier-free guidance (CFG) decreases the expected reciprocal of the classifier probability, providing the first theoretical characterization of the specific performance metric that CFG improves for general target distributions. When applied to reward-guided diffusion, our framework yields a new sampler that is easy-to-train and requires no full diffusion trajectories during training. Numerical experiments further corroborate our theoretical findings.
☆ Aligned but Stereotypical? The Hidden Influence of System Prompts on Social Bias in LVLM-Based Text-to-Image Models
Large vision-language model (LVLM) based text-to-image (T2I) systems have become the dominant paradigm in image generation, yet whether they amplify social biases remains insufficiently understood. In this paper, we show that LVLM-based models produce markedly more socially biased images than non-LVLM-based models. We introduce a 1,024 prompt benchmark spanning four levels of linguistic complexity and evaluate demographic bias across multiple attributes in a systematic manner. Our analysis identifies system prompts, the predefined instructions guiding LVLMs, as a primary driver of biased behavior. Through decoded intermediate representations, token-probability diagnostics, and embedding-association analyses, we reveal how system prompts encode demographic priors that propagate into image synthesis. To this end, we propose FairPro, a training-free meta-prompting framework that enables LVLMs to self-audit and construct fairness-aware system prompts at test time. Experiments on two LVLM-based T2I models, SANA and Qwen-Image, show that FairPro substantially reduces demographic bias while preserving text-image alignment. We believe our findings provide deeper insight into the central role of system prompts in bias propagation and offer a practical, deployable approach for building more socially responsible T2I systems.
comment: Project page: https://fairpro-t2i.github.io
☆ Learning Causality for Longitudinal Data
This thesis develops methods for causal inference and causal representation learning (CRL) in high-dimensional, time-varying data. The first contribution introduces the Causal Dynamic Variational Autoencoder (CDVAE), a model for estimating Individual Treatment Effects (ITEs) by capturing unobserved heterogeneity in treatment response driven by latent risk factors that affect only outcomes. CDVAE comes with theoretical guarantees on valid latent adjustment and generalization bounds for ITE error. Experiments on synthetic and real datasets show that CDVAE outperforms baselines, and that state-of-the-art models greatly improve when augmented with its latent substitutes, approaching oracle performance without access to true adjustment variables. The second contribution proposes an efficient framework for long-term counterfactual regression based on RNNs enhanced with Contrastive Predictive Coding (CPC) and InfoMax. It captures long-range dependencies under time-varying confounding while avoiding the computational cost of transformers, achieving state-of-the-art results and introducing CPC into causal inference. The third contribution advances CRL by addressing how latent causes manifest in observed variables. We introduce a model-agnostic interpretability layer based on the geometry of the decoder Jacobian. A sparse self-expression prior induces modular, possibly overlapping groups of observed features aligned with shared latent influences. We provide recovery guarantees in both disjoint and overlapping settings and show that meaningful latent-to-observed structure can be recovered without anchor features or single-parent assumptions. Scalable Jacobian-based regularization techniques are also developed.
comment: PhD thesis manuscript
☆ Efficient Generative Transformer Operators For Million-Point PDEs
We introduce ECHO, a transformer-operator framework for generating million-point PDE trajectories. While existing neural operators (NOs) have shown promise for solving partial differential equations, they remain limited in practice due to poor scalability on dense grids, error accumulation during dynamic unrolling, and task-specific design. ECHO addresses these challenges through three key innovations. (i) It employs a hierarchical convolutional encode-decode architecture that achieves a 100 $\times$ spatio-temporal compression while preserving fidelity on mesh points. (ii) It incorporates a training and adaptation strategy that enables high-resolution PDE solution generation from sparse input grids. (iii) It adopts a generative modeling paradigm that learns complete trajectory segments, mitigating long-horizon error drift. The training strategy decouples representation learning from downstream task supervision, allowing the model to tackle multiple tasks such as trajectory generation, forward and inverse problems, and interpolation. The generative model further supports both conditional and unconditional generation. We demonstrate state-of-the-art performance on million-point simulations across diverse PDE systems featuring complex geometries, high-frequency dynamics, and long-term horizons.
☆ Rethinking the Use of Vision Transformers for AI-Generated Image Detection
Rich feature representations derived from CLIP-ViT have been widely utilized in AI-generated image detection. While most existing methods primarily leverage features from the final layer, we systematically analyze the contributions of layer-wise features to this task. Our study reveals that earlier layers provide more localized and generalizable features, often surpassing the performance of final-layer features in detection tasks. Moreover, we find that different layers capture distinct aspects of the data, each contributing uniquely to AI-generated image detection. Motivated by these findings, we introduce a novel adaptive method, termed MoLD, which dynamically integrates features from multiple ViT layers using a gating-based mechanism. Extensive experiments on both GAN- and diffusion-generated images demonstrate that MoLD significantly improves detection performance, enhances generalization across diverse generative models, and exhibits robustness in real-world scenarios. Finally, we illustrate the scalability and versatility of our approach by successfully applying it to other pre-trained ViTs, such as DINOv2.
comment: Code: https://github.com/nahyeonkaty/mold
☆ Environment-Aware Channel Inference via Cross-Modal Flow: From Multimodal Sensing to Wireless Channels
Accurate channel state information (CSI) underpins reliable and efficient wireless communication. However, acquiring CSI via pilot estimation incurs substantial overhead, especially in massive multiple-input multiple-output (MIMO) systems operating in high-Doppler environments. By leveraging the growing availability of environmental sensing data, this treatise investigates pilot-free channel inference that estimates complete CSI directly from multimodal observations, including camera images, LiDAR point clouds, and GPS coordinates. In contrast to prior studies that rely on predefined channel models, we develop a data-driven framework that formulates the sensing-to-channel mapping as a cross-modal flow matching problem. The framework fuses multimodal features into a latent distribution within the channel domain, and learns a velocity field that continuously transforms the latent distribution toward the channel distribution. To make this formulation tractable and efficient, we reformulate the problem as an equivalent conditional flow matching objective and incorporate a modality alignment loss, while adopting low-latency inference mechanisms to enable real-time CSI estimation. In experiments, we build a procedural data generator based on Sionna and Blender to support realistic modeling of sensing scenes and wireless propagation. System-level evaluations demonstrate significant improvements over pilot- and sensing-based benchmarks in both channel estimation accuracy and spectral efficiency for the downstream beamforming task.
comment: 13 pages, 13 figures, 40 references, submitted to IEEE for possible publication
☆ Realizable Abstractions: Near-Optimal Hierarchical Reinforcement Learning
The main focus of Hierarchical Reinforcement Learning (HRL) is studying how large Markov Decision Processes (MDPs) can be more efficiently solved when addressed in a modular way, by combining partial solutions computed for smaller subtasks. Despite their very intuitive role for learning, most notions of MDP abstractions proposed in the HRL literature have limited expressive power or do not possess formal efficiency guarantees. This work addresses these fundamental issues by defining Realizable Abstractions, a new relation between generic low-level MDPs and their associated high-level decision processes. The notion we propose avoids non-Markovianity issues and has desirable near-optimality guarantees. Indeed, we show that any abstract policy for Realizable Abstractions can be translated into near-optimal policies for the low-level MDP, through a suitable composition of options. As demonstrated in the paper, these options can be expressed as solutions of specific constrained MDPs. Based on these findings, we propose RARL, a new HRL algorithm that returns compositional and near-optimal low-level policies, taking advantage of the Realizable Abstraction given in the input. We show that RARL is Probably Approximately Correct, it converges in a polynomial number of samples, and it is robust to inaccuracies in the abstraction.
☆ Amortized Inference of Multi-Modal Posteriors using Likelihood-Weighted Normalizing Flows
We present a novel technique for amortized posterior estimation using Normalizing Flows trained with likelihood-weighted importance sampling. This approach allows for the efficient inference of theoretical parameters in high-dimensional inverse problems without the need for posterior training samples. We implement the method on multi-modal benchmark tasks in 2D and 3D to check for the efficacy. A critical observation of our study is the impact of the topology of the base distributions on the modelled posteriors. We find that standard unimodal base distributions fail to capture disconnected support, resulting in spurious probability bridges between modes. We demonstrate that initializing the flow with a Gaussian Mixture Model that matches the cardinality of the target modes significantly improves reconstruction fidelity, as measured by some distance and divergence metrics.
comment: 14 pages, 8 figures
☆ CARL: Critical Action Focused Reinforcement Learning for Multi-Step Agent
Agents capable of accomplishing complex tasks through multiple interactions with the environment have emerged as a popular research direction. However, in such multi-step settings, the conventional group-level policy optimization algorithm becomes suboptimal because of its underlying assumption that each action holds equal contribution, which deviates significantly from reality. Our analysis reveals that only a small fraction of actions are critical in determining the final outcome. Building on this insight, we propose CARL, a critical-action-focused reinforcement learning algorithm tailored for multi-step agents. CARL achieves focused training through providing action-level optimization signals for high-criticality actions while excluding low-criticality actions from model update. Extensive experiments demonstrate that CARL achieves both stronger performance and higher efficiency during training and inference across diverse evaluation settings.
comment: 10 pages, 4 figures
☆ Multi-Agent Reinforcement Learning for Intraday Operating Rooms Scheduling under Uncertainty
Intraday surgical scheduling is a multi-objective decision problem under uncertainty-balancing elective throughput, urgent and emergency demand, delays, sequence-dependent setups, and overtime. We formulate the problem as a cooperative Markov game and propose a multi-agent reinforcement learning (MARL) framework in which each operating room (OR) is an agent trained with centralized training and decentralized execution. All agents share a policy trained via Proximal Policy Optimization (PPO), which maps rich system states to actions, while a within-epoch sequential assignment protocol constructs conflict-free joint schedules across ORs. A mixed-integer pre-schedule provides reference starting times for electives; we impose type-specific quadratic delay penalties relative to these references and a terminal overtime penalty, yielding a single reward that captures throughput, timeliness, and staff workload. In simulations reflecting a realistic hospital mix (six ORs, eight surgery types, random urgent and emergency arrivals), the learned policy outperforms six rule-based heuristics across seven metrics and three evaluation subsets, and, relative to an ex post MIP oracle, quantifies optimality gaps. Policy analytics reveal interpretable behavior-prioritizing emergencies, batching similar cases to reduce setups, and deferring lower-value electives. We also derive a suboptimality bound for the sequential decomposition under simplifying assumptions. We discuss limitations-including OR homogeneity and the omission of explicit staffing constraints-and outline extensions. Overall, the approach offers a practical, interpretable, and tunable data-driven complement to optimization for real-time OR scheduling.
☆ A result relating convex n-widths to covering numbers with some applications to neural networks
In general, approximating classes of functions defined over high-dimensional input spaces by linear combinations of a fixed set of basis functions or ``features'' is known to be hard. Typically, the worst-case error of the best basis set decays only as fast as $Θ\(n^{-1/d}\)$, where $n$ is the number of basis functions and $d$ is the input dimension. However, there are many examples of high-dimensional pattern recognition problems (such as face recognition) where linear combinations of small sets of features do solve the problem well. Hence these function classes do not suffer from the ``curse of dimensionality'' associated with more general classes. It is natural then, to look for characterizations of high-dimensional function classes that nevertheless are approximated well by linear combinations of small sets of features. In this paper we give a general result relating the error of approximation of a function class to the covering number of its ``convex core''. For one-hidden-layer neural networks, covering numbers of the class of functions computed by a single hidden node upper bound the covering numbers of the convex core. Hence, using standard results we obtain upper bounds on the approximation rate of neural network classes.
☆ Shorting Dynamics and Structured Kernel Regularization
This paper develops a nonlinear operator dynamic that progressively removes the influence of a prescribed feature subspace while retaining maximal structure elsewhere. The induced sequence of positive operators is monotone, admits an exact residual decomposition, and converges to the classical shorted operator. Transporting this dynamic to reproducing kernel Hilbert spaces yields a corresponding family of kernels that converges to the largest kernel dominated by the original one and annihilating the given subspace. In the finite-sample setting, the associated Gram operators inherit a structured residual decomposition that leads to a canonical form of kernel ridge regression and a principled way to enforce nuisance invariance. This gives a unified operator-analytic approach to invariant kernel construction and structured regularization in data analysis.
☆ STELLA: Guiding Large Language Models for Time Series Forecasting with Semantic Abstractions
Recent adaptations of Large Language Models (LLMs) for time series forecasting often fail to effectively enhance information for raw series, leaving LLM reasoning capabilities underutilized. Existing prompting strategies rely on static correlations rather than generative interpretations of dynamic behavior, lacking critical global and instance-specific context. To address this, we propose STELLA (Semantic-Temporal Alignment with Language Abstractions), a framework that systematically mines and injects structured supplementary and complementary information. STELLA employs a dynamic semantic abstraction mechanism that decouples input series into trend, seasonality, and residual components. It then translates intrinsic behavioral features of these components into Hierarchical Semantic Anchors: a Corpus-level Semantic Prior (CSP) for global context and a Fine-grained Behavioral Prompt (FBP) for instance-level patterns. Using these anchors as prefix-prompts, STELLA guides the LLM to model intrinsic dynamics. Experiments on eight benchmark datasets demonstrate that STELLA outperforms state-of-the-art methods in long- and short-term forecasting, showing superior generalization in zero-shot and few-shot settings. Ablation studies further validate the effectiveness of our dynamically generated semantic anchors.
comment: This work has been submitted to the IEEE for possible publication
☆ Series of quasi-uniform scatterings with fast search, root systems and neural network classifications
In this paper we describe an approach to construct large extendable collections of vectors in predefined spaces of given dimensions. These collections are useful for neural network latent space configuration and training. For classification problem with large or unknown number of classes this allows to construct classifiers without classification layer and extend the number of classes without retraining of network from the very beginning. The construction allows to create large well-spaced vector collections in spaces of minimal possible dimension. If the number of classes is known or approximately predictable, one can choose sufficient enough vector collection size. If one needs to significantly extend the number of classes, one can extend the collection in the same latent space, or to incorporate the collection into collection of higher dimensions with same spacing between vectors. Also, regular symmetric structure of constructed vector collections can significantly simplify problems of search for nearest cluster centers or embeddings in the latent space. Construction of vector collections is based on combinatorics and geometry of semi-simple Lie groups irreducible representations with highest weight.
☆ Tokenizing Buildings: A Transformer for Layout Synthesis
We introduce Small Building Model (SBM), a Transformer-based architecture for layout synthesis in Building Information Modeling (BIM) scenes. We address the question of how to tokenize buildings by unifying heterogeneous feature sets of architectural elements into sequences while preserving compositional structure. Such feature sets are represented as a sparse attribute-feature matrix that captures room properties. We then design a unified embedding module that learns joint representations of categorical and possibly correlated continuous feature groups. Lastly, we train a single Transformer backbone in two modes: an encoder-only pathway that yields high-fidelity room embeddings, and an encoder-decoder pipeline for autoregressive prediction of room entities, referred to as Data-Driven Entity Prediction (DDEP). Experiments across retrieval and generative layout synthesis show that SBM learns compact room embeddings that reliably cluster by type and topology, enabling strong semantic retrieval. In DDEP mode, SBM produces functionally sound layouts, with fewer collisions and boundary violations and improved navigability.
comment: 8 pages, 1 page References, 4 figures
☆ Contract-Driven QoE Auditing for Speech and Singing Services: From MOS Regression to Service Graphs
Subjective mean opinion scores (MOS) remain the de-facto target for non-intrusive speech and singing quality assessment. However, MOS is a scalar that collapses heterogeneous user expectations, ignores service-level objectives, and is difficult to compare across deployment graphs. We propose a contract-driven QoE auditing framework: each service graph G is evaluated under a set of human-interpretable experience contracts C, yielding a contract-level satisfaction vector Q(G, C). We show that (i) classical MOS regression is a special case with a degenerate contract set, (ii) contract-driven quality is more stable than MOS under graph view transformations (e.g., pooling by system vs. by system type), and (iii) the effective sample complexity of learning contracts is governed by contract semantics rather than merely the dimensionality of C. We instantiate the framework on URGENT2024 MOS (6.9k speech utterances with raw rating vectors) and SingMOS v1 (7,981 singing clips; 80 systems). On URGENT, we train a contract-aware neural auditor on self-supervised WavLM embeddings; on SingMOS, we perform contract-driven graph auditing using released rating vectors and metadata without decoding audio. Empirically, our auditor matches strong MOS predictors in MOS accuracy while providing calibrated contract probabilities; on SingMOS, Q(G, C) exhibits substantially smaller cross-view drift than raw MOS and graph-only baselines; on URGENT, difficulty curves reveal that mis-specified "simple" contracts can be harder to learn than richer but better aligned contract sets.
comment: 11 pages, 3 figures
☆ Pick-to-Learn for Systems and Control: Data-driven Synthesis with State-of-the-art Safety Guarantees
Data-driven methods have become paramount in modern systems and control problems characterized by growing levels of complexity. In safety-critical environments, deploying these methods requires rigorous guarantees, a need that has motivated much recent work at the interface of statistical learning and control. However, many existing approaches achieve this goal at the cost of sacrificing valuable data for testing and calibration, or by constraining the choice of learning algorithm, thus leading to suboptimal performances. In this paper, we describe Pick-to-Learn (P2L) for Systems and Control, a framework that allows any data-driven control method to be equipped with state-of-the-art safety and performance guarantees. P2L enables the use of all available data to jointly synthesize and certify the design, eliminating the need to set aside data for calibration or validation purposes. In presenting a comprehensive version of P2L for systems and control, this paper demonstrates its effectiveness across a range of core problems, including optimal control, reachability analysis, safe synthesis, and robust control. In many of these applications, P2L delivers designs and certificates that outperform commonly employed methods, and shows strong potential for broad applicability in diverse practical settings.
comment: 27 double-column pages, 18 figures
☆ Complementary Characterization of Agent-Based Models via Computational Mechanics and Diffusion Models
This article extends the preprint "Characterizing Agent-Based Model Dynamics via $ε$-Machines and Kolmogorov-Style Complexity" by introducing diffusion models as orthogonal and complementary tools for characterizing the output of agent-based models (ABMs). Where $ε$-machines capture the predictive temporal structure and intrinsic computation of ABM-generated time series, diffusion models characterize high-dimensional cross-sectional distributions, learn underlying data manifolds, and enable synthetic generation of plausible population-level outcomes. We provide a formal analysis demonstrating that the two approaches operate on distinct mathematical domains -- processes vs. distributions -- and show that their combination yields a two-axis representation of ABM behavior based on temporal organization and distributional geometry. To our knowledge, this is the first framework to integrate computational mechanics with score-based generative modeling for the structural analysis of ABM outputs, thereby situating ABM characterization within the broader landscape of modern machine-learning methods for density estimation and intrinsic computation. The framework is validated using the same elder-caregiver ABM dataset introduced in the companion paper, and we provide precise definitions and propositions formalizing the mathematical complementarity between $ε$-machines and diffusion models. This establishes a principled methodology for jointly analyzing temporal predictability and high-dimensional distributional structure in complex simulation models.
comment: 11 pages. Methods paper introducing a dual-domain framework for analyzing ABM dynamics. Companion temporal-analysis preprint: arXiv:2510.12729
☆ MemLoRA: Distilling Expert Adapters for On-Device Memory Systems
Memory-augmented Large Language Models (LLMs) have demonstrated remarkable consistency during prolonged dialogues by storing relevant memories and incorporating them as context. Such memory-based personalization is also key in on-device settings that allow users to keep their conversations and data private. However, memory-augmented systems typically rely on LLMs that are too costly for local on-device deployment. Even though Small Language Models (SLMs) are more suitable for on-device inference than LLMs, they cannot achieve sufficient performance. Additionally, these LLM-based systems lack native visual capabilities, limiting their applicability in multimodal contexts. In this paper, we introduce (i) MemLoRA, a novel memory system that enables local deployment by equipping SLMs with specialized memory adapters, and (ii) its vision extension MemLoRA-V, which integrates small Vision-Language Models (SVLMs) to memory systems, enabling native visual understanding. Following knowledge distillation principles, each adapter is trained separately for specific memory operations$\unicode{x2013}$knowledge extraction, memory update, and memory-augmented generation. Equipped with memory adapters, small models enable accurate on-device memory operations without cloud dependency. On text-only operations, MemLoRA outperforms 10$\times$ larger baseline models (e.g., Gemma2-27B) and achieves performance comparable to 60$\times$ larger models (e.g., GPT-OSS-120B) on the LoCoMo benchmark. To evaluate visual understanding operations instead, we extend LoCoMo with challenging Visual Question Answering tasks that require direct visual reasoning. On this, our VLM-integrated MemLoRA-V shows massive improvements over caption-based approaches (81.3 vs. 23.7 accuracy) while keeping strong performance in text-based tasks, demonstrating the efficacy of our method in multimodal contexts.
☆ RLHFSpec: Breaking the Efficiency Bottleneck in RLHF Training via Adaptive Drafting
Reinforcement Learning from Human Feedback (RLHF) is an important fine-tuning technique for large language models (LLMs) and comprises three stages: generation, inference, and training. The generation stage generates samples that are then used to infer learnable experiences for training. We observe that the generation stage is the bottleneck of the entire execution process and consider it a key point for optimization. Specifically, we realize the first attempt to integrate speculative decoding into the RLHF generation stage and propose RLHFSpec, an RLHF system that accelerates generation execution with adaptive speculative decoding and sample reallocation. To fully exploit the performance potential provided by speculative decoding, especially dealing with the dynamic workload of the generation stage, RLHFSpec proposes a workload-aware drafting strategy selection mechanism, which selects the near-optimal strategy by jointly considering the verification cost and the number of accepted tokens. Moreover, RLHFSpec also proposes sample reallocation to fully utilize the GPU resources, and optimizes it with an efficient sample migration mechanism. The experimental results show that the RLHFSpec can achieve higher throughput in the generation stage compared to state-of-the-art works. Moreover, due to the effective alleviation of the generation bottleneck, RLHFSpec also shows significant performance speedup in the entire RLHF execution.
☆ A Tutorial on Regression Analysis: From Linear Models to Deep Learning -- Lecture Notes on Artificial Intelligence
This article serves as the regression analysis lecture notes in the Intelligent Computing course cluster (including the courses of Artificial Intelligence, Data Mining, Machine Learning, and Pattern Recognition). It aims to provide students -- who are assumed to possess only basic university-level mathematics (i.e., with prerequisite courses in calculus, linear algebra, and probability theory) -- with a comprehensive and self-contained understanding of regression analysis without requiring any additional references. The lecture notes systematically introduce the fundamental concepts, modeling components, and theoretical foundations of regression analysis, covering linear regression, logistic regression, multinomial logistic regression, polynomial regression, basis-function models, kernel-based methods, and neural-network-based nonlinear regression. Core methodological topics include loss-function design, parameter-estimation principles, ordinary least squares, gradient-based optimization algorithms and their variants, as well as regularization techniques such as Ridge and LASSO regression. Through detailed mathematical derivations, illustrative examples, and intuitive visual explanations, the materials help students understand not only how regression models are constructed and optimized, but also how they reveal the underlying relationships between features and response variables. By bridging classical statistical modeling and modern machine-learning practice, these lecture notes aim to equip students with a solid conceptual and technical foundation for further study in advanced artificial intelligence models.
☆ Sequential Enumeration in Large Language Models
Reliably counting and generating sequences of items remain a significant challenge for neural networks, including Large Language Models (LLMs). Indeed, although this capability is readily handled by rule-based symbolic systems based on serial computation, learning to systematically deploy counting procedures is difficult for neural models, which should acquire these skills through learning. Previous research has demonstrated that recurrent architectures can only approximately track and enumerate sequences of events, and it remains unclear whether modern deep learning systems, including LLMs, can deploy systematic counting procedures over sequences of discrete symbols. This paper aims to fill this gap by investigating the sequential enumeration abilities of five state-of-the-art LLMs, including proprietary, open-source, and reasoning models. We probe LLMs in sequential naming and production tasks involving lists of letters and words, adopting a variety of prompting instructions to explore the role of chain-of-thought in the spontaneous emerging of counting strategies. We also evaluate open-source models with the same architecture but increasing size to see whether the mastering of counting principles follows scaling laws, and we analyze the embedding dynamics during sequential enumeration to investigate the emergent encoding of numerosity. We find that some LLMs are indeed capable of deploying counting procedures when explicitly prompted to do so, but none of them spontaneously engage in counting when simply asked to enumerate the number of items in a sequence. Our results suggest that, despite their impressive emergent abilities, LLMs cannot yet robustly and systematically deploy counting procedures, highlighting a persistent gap between neural and symbolic approaches to compositional generalization.
☆ Towards Continuous-Time Approximations for Stochastic Gradient Descent without Replacement
Gradient optimization algorithms using epochs, that is those based on stochastic gradient descent without replacement (SGDo), are predominantly used to train machine learning models in practice. However, the mathematical theory of SGDo and related algorithms remain underexplored compared to their "with replacement" and "one-pass" counterparts. In this article, we propose a stochastic, continuous-time approximation to SGDo with additive noise based on a Young differential equation driven by a stochastic process we call an "epoched Brownian motion". We show its usefulness by proving the almost sure convergence of the continuous-time approximation for strongly convex objectives and learning rate schedules of the form $u_t = \frac{1}{(1+t)^β}, β\in (0,1)$. Moreover, we compute an upper bound on the asymptotic rate of almost sure convergence, which is as good or better than previous results for SGDo.
☆ Continuous-time reinforcement learning for optimal switching over multiple regimes
This paper studies the continuous-time reinforcement learning (RL) for optimal switching problems across multiple regimes. We consider a type of exploratory formulation under entropy regularization where the agent randomizes both the timing of switches and the selection of regimes through the generator matrix of an associated continuous-time finite-state Markov chain. We establish the well-posedness of the associated system of Hamilton-Jacobi-Bellman (HJB) equations and provide a characterization of the optimal policy. The policy improvement and the convergence of the policy iterations are rigorously established by analyzing the system of equations. We also show the convergence of the value function in the exploratory formulation towards the value function in the classical formulation as the temperature parameter vanishes. Finally, a reinforcement learning algorithm is devised and implemented by invoking the policy evaluation based on the martingale characterization. Our numerical examples with the aid of neural networks illustrate the effectiveness of the proposed RL algorithm.
comment: Keywords: Optimal regime switching, multiple regimes, continuous-time reinforcement learning, system of HJB equations, policy improvement, policy iteration convergence
☆ Provable FDR Control for Deep Feature Selection: Deep MLPs and Beyond
We develop a flexible feature selection framework based on deep neural networks that approximately controls the false discovery rate (FDR), a measure of Type-I error. The method applies to architectures whose first layer is fully connected. From the second layer onward, it accommodates multilayer perceptrons (MLPs) of arbitrary width and depth, convolutional and recurrent networks, attention mechanisms, residual connections, and dropout. The procedure also accommodates stochastic gradient descent with data-independent initializations and learning rates. To the best of our knowledge, this is the first work to provide a theoretical guarantee of FDR control for feature selection within such a general deep learning setting. Our analysis is built upon a multi-index data-generating model and an asymptotic regime in which the feature dimension $n$ diverges faster than the latent dimension $q^{*}$, while the sample size, the number of training iterations, the network depth, and hidden layer widths are left unrestricted. Under this setting, we show that each coordinate of the gradient-based feature-importance vector admits a marginal normal approximation, thereby supporting the validity of asymptotic FDR control. As a theoretical limitation, we assume $\mathbf{B}$-right orthogonal invariance of the design matrix, and we discuss broader generalizations. We also present numerical experiments that underscore the theoretical findings.
☆ TRINITY: An Evolved LLM Coordinator
Combining diverse foundation models is promising, but weight-merging is limited by mismatched architectures and closed APIs. Trinity addresses this with a lightweight coordinator that orchestrates collaboration among large language models (LLMs). The coordinator, comprising a compact language model (approximately $0.6$B parameters) and a lightweight head (approximately $10$K parameters), is optimized with an evolutionary strategy for efficient and adaptive delegation. Trinity processes queries over multiple turns, where at each turn the coordinator assigns one of three roles (Thinker, Worker, or Verifier) to a selected LLM, effectively offloading complex skill acquisition from the coordinator itself. Experiments show that Trinity consistently outperforms individual models and existing methods across coding, math, reasoning, and domain knowledge tasks, and generalizes robustly to out-of-distribution tasks. On standard benchmarks, Trinity achieves state-of-the-art results, including a score of 86.2% on LiveCodeBench. Theoretical and empirical analyses identify two main factors behind this performance: (1) the coordinator's hidden-state representations provide rich contextualization of inputs, and (2) under high dimensionality and strict budget constraints, the separable Covariance Matrix Adaptation Evolution Strategy offers advantages over reinforcement learning, imitation learning, and random search by exploiting potential block-epsilon-separability.
☆ TimesNet-Gen: Deep Learning-based Site Specific Strong Motion Generation
Effective earthquake risk reduction relies on accurate site-specific evaluations. This requires models that can represent the influence of local site conditions on ground motion characteristics. In this context, data driven approaches that learn site controlled signatures from recorded ground motions offer a promising direction. We address strong ground motion generation from time-domain accelerometer records and introduce the TimesNet-Gen, a time-domain conditional generator. The approach uses a station specific latent bottleneck. We evaluate generation by comparing HVSR curves and fundamental site-frequency $f_0$ distributions between real and generated records per station, and summarize station specificity with a score based on the $f_0$ distribution confusion matrices. TimesNet-Gen achieves strong station-wise alignment and compares favorably with a spectrogram-based conditional VAE baseline for site-specific strong motion synthesis. Our codes are available via https://github.com/brsylmz23/TimesNet-Gen.
☆ Recurrent Neural Networks with Linear Structures for Electricity Price Forecasting
We present a novel recurrent neural network architecture designed explicitly for day-ahead electricity price forecasting, aimed at improving short-term decision-making and operational management in energy systems. Our combined forecasting model embeds linear structures, such as expert models and Kalman filters, into recurrent networks, enabling efficient computation and enhanced interpretability. The design leverages the strengths of both linear and non-linear model structures, allowing it to capture all relevant stylised price characteristics in power markets, including calendar and autoregressive effects, as well as influences from load, renewable energy, and related fuel and carbon markets. For empirical testing, we use hourly data from the largest European electricity market spanning 2018 to 2025 in a comprehensive forecasting study, comparing our model against state-of-the-art approaches, particularly high-dimensional linear and neural network models. The proposed model achieves approximately 12% higher accuracy than leading benchmarks. We evaluate the contributions of the interpretable model components and conclude on the impact of combining linear and non-linear structures.
☆ Fermionic neural Gibbs states
We introduce fermionic neural Gibbs states (fNGS), a variational framework for modeling finite-temperature properties of strongly interacting fermions. fNGS starts from a reference mean-field thermofield-double state and uses neural-network transformations together with imaginary-time evolution to systematically build strong correlations. Applied to the doped Fermi-Hubbard model, a minimal lattice model capturing essential features of strong electronic correlations, fNGS accurately reproduces thermal energies over a broad range of temperatures, interaction strengths, even at large dopings, for system sizes beyond the reach of exact methods. These results demonstrate a scalable route to studying finite-temperature properties of strongly correlated fermionic systems beyond one dimension with neural-network representations of quantum states.
☆ Semi Centralized Training Decentralized Execution Architecture for Multi Agent Deep Reinforcement Learning in Traffic Signal Control
Multi-agent reinforcement learning (MARL) has emerged as a promising paradigm for adaptive traffic signal control (ATSC) of multiple intersections. Existing approaches typically follow either a fully centralized or a fully decentralized design. Fully centralized approaches suffer from the curse of dimensionality, and reliance on a single learning server, whereas purely decentralized approaches operate under severe partial observability and lack explicit coordination resulting in suboptimal performance. These limitations motivate region-based MARL, where the network is partitioned into smaller, tightly coupled intersections that form regions, and training is organized around these regions. This paper introduces a Semi-Centralized Training, Decentralized Execution (SEMI-CTDE) architecture for multi intersection ATSC. Within each region, SEMI-CTDE performs centralized training with regional parameter sharing and employs composite state and reward formulations that jointly encode local and regional information. The architecture is highly transferable across different policy backbones and state-reward instantiations. Building on this architecture, we implement two models with distinct design objectives. A multi-perspective experimental analysis of the two implemented SEMI-CTDE-based models covering ablations of the architecture's core elements including rule based and fully decentralized baselines shows that they achieve consistently superior performance and remain effective across a wide range of traffic densities and distributions.
comment: Co-first authors: Pouria Yazdani and Arash Rezaali
☆ Contract-Governed Training for Earth Observation: Observed Service Agreement Graphs and Coverage-Accuracy Trade-offs
Earth observation (EO) models are frequently trained under implicit sampling policies that optimize global accuracy but provide no explicit guarantees on who (which regions, classes, or mission-critical strata) is being served throughout training. This paper introduces a contract-governed training paradigm for EO in which training samples are grouped into service contracts -- semantically meaningful units such as (dataset, region, rare-crop indicator) -- and each contract is assigned a target service share. We instantiate this paradigm as an Observed Service Agreement Graph (OSAG), a lightweight governance layer that (i) monitors contract-level exposure (coverage) during optimization, (ii) drives empirical coverage toward target shares via contract-normalized sampling weights, and (iii) exposes explicit accuracy-governance trade-offs through two knobs: a sampling mixture coefficient alpha and a contract-regularization weight lambda_C. We provide a compact theory in a toy setting: OSAG sampling concentrates empirical coverage to targets; coverage deviations upper-bound service-risk deviations; and contract design (coarse vs. fine) modulates governance cost. Experiments on AVIRIS hyperspectral scenes (Indian Pines plus Salinas) and multispectral Sentinel-2 EuroSAT demonstrate that OSAG can substantially reduce priority coverage error while maintaining global accuracy and improving high-priority accuracy. A EuroSAT coarse-vs-fine contract ablation further evidences how semantically refined contracts can reduce the accuracy cost per unit of governance improvement.
comment: 9 pages, 2 figures
☆ SEASON: Mitigating Temporal Hallucination in Video Large Language Models via Self-Diagnostic Contrastive Decoding
Video Large Language Models (VideoLLMs) have shown remarkable progress in video understanding. However, these models still struggle to effectively perceive and exploit rich temporal information in videos when responding to user queries. Therefore, they often generate descriptions of events that are temporal inconsistent or causally implausible, causing severe hallucination issues. While most prior studies have focused on spatial hallucinations (e.g. object mismatches), temporal reasoning in video understanding remains relatively underexplored. To address this issue, we propose Self-Diagnostic Contrastive Decoding (SEASON), a training-free method that adaptively enhances temporal and spatial faithfulness for each output token. It achieves this by dynamically diagnosing each token's hallucination tendency and applying adaptive contrastive decoding against its corresponding temporal and spatial negatives. Extensive experiments demonstrate that SEASON outperforms all existing training-free hallucination mitigation approaches on three hallucination examination benchmarks, while further improves VideoLLMs across four general video understanding benchmarks. The code will be released upon acceptance.
☆ Federated Learning for Anomaly Detection in Maritime Movement Data MDM2024
This paper introduces M3fed, a novel solution for federated learning of movement anomaly detection models. This innovation has the potential to improve data privacy and reduce communication costs in machine learning for movement anomaly detection. We present the novel federated learning (FL) strategies employed to train M3fed, perform an example experiment with maritime AIS data, and evaluate the results with respect to communication costs and FL model quality by comparing classic centralized M3 and the new federated M3fed.
comment: Accepted at MDM2024
☆ Rethinking Decoupled Knowledge Distillation: A Predictive Distribution Perspective
In the history of knowledge distillation, the focus has once shifted over time from logit-based to feature-based approaches. However, this transition has been revisited with the advent of Decoupled Knowledge Distillation (DKD), which re-emphasizes the importance of logit knowledge through advanced decoupling and weighting strategies. While DKD marks a significant advancement, its underlying mechanisms merit deeper exploration. As a response, we rethink DKD from a predictive distribution perspective. First, we introduce an enhanced version, the Generalized Decoupled Knowledge Distillation (GDKD) loss, which offers a more versatile method for decoupling logits. Then we pay particular attention to the teacher model's predictive distribution and its impact on the gradients of GDKD loss, uncovering two critical insights often overlooked: (1) the partitioning by the top logit considerably improves the interrelationship of non-top logits, and (2) amplifying the focus on the distillation loss of non-top logits enhances the knowledge extraction among them. Utilizing these insights, we further propose a streamlined GDKD algorithm with an efficient partition strategy to handle the multimodality of teacher models' predictive distribution. Our comprehensive experiments conducted on a variety of benchmarks, including CIFAR-100, ImageNet, Tiny-ImageNet, CUB-200-2011, and Cityscapes, demonstrate GDKD's superior performance over both the original DKD and other leading knowledge distillation methods. The code is available at https://github.com/ZaberKo/GDKD.
comment: Accepted to IEEE TNNLS
☆ Score Matching for Estimating Finite Point Processes
Score matching estimators have garnered significant attention in recent years because they eliminate the need to compute normalizing constants, thereby mitigating the computational challenges associated with maximum likelihood estimation (MLE).While several studies have proposed score matching estimators for point processes, this work highlights the limitations of these existing methods, which stem primarily from the lack of a mathematically rigorous analysis of how score matching behaves on finite point processes -- special random configurations on bounded spaces where many of the usual assumptions and properties of score matching no longer hold. To this end, we develop a formal framework for score matching on finite point processes via Janossy measures and, within this framework, introduce an (autoregressive) weighted score-matching estimator, whose statistical properties we analyze in classical parametric settings. For general nonparametric (e.g., deep) point process models, we show that score matching alone does not uniquely identify the ground-truth distribution due to subtle normalization issues, and we propose a simple survival-classification augmentation that yields a complete, integration-free training objective for any intensity-based point process model for spatio-temporal case. Experiments on synthetic and real-world temporal and spatio-temporal datasets, demonstrate that our method accurately recovers intensities and achieves performance comparable to MLE with better efficiency.
☆ Natural Language Actor-Critic: Scalable Off-Policy Learning in Language Space
Large language model (LLM) agents -- LLMs that dynamically interact with an environment over long horizons -- have become an increasingly important area of research, enabling automation in complex tasks involving tool-use, web browsing, and dialogue with people. In the absence of expert demonstrations, training LLM agents has relied on policy gradient methods that optimize LLM policies with respect to an (often sparse) reward function. However, in long-horizon tasks with sparse rewards, learning from trajectory-level rewards can be noisy, leading to training that is unstable and has high sample complexity. Furthermore, policy improvement hinges on discovering better actions through exploration, which can be difficult when actions lie in natural language space. In this paper, we propose Natural Language Actor-Critic (NLAC), a novel actor-critic algorithm that trains LLM policies using a generative LLM critic that produces natural language rather than scalar values. This approach leverages the inherent strengths of LLMs to provide a richer and more actionable training signal; particularly, in tasks with large, open-ended action spaces, natural language explanations for why an action is suboptimal can be immensely useful for LLM policies to reason how to improve their actions, without relying on random exploration. Furthermore, our approach can be trained off-policy without policy gradients, offering a more data-efficient and stable alternative to existing on-policy methods. We present results on a mixture of reasoning, web browsing, and tool-use with dialogue tasks, demonstrating that NLAC shows promise in outperforming existing training approaches and offers a more scalable and stable training paradigm for LLM agents.
comment: 22 pages, 4 figures
☆ When Robots Should Say "I Don't Know": Benchmarking Abstention in Embodied Question Answering
Embodied Question Answering (EQA) requires an agent to interpret language, perceive its environment, and navigate within 3D scenes to produce responses. Existing EQA benchmarks assume that every question must be answered, but embodied agents should know when they do not have sufficient information to answer. In this work, we focus on a minimal requirement for EQA agents, abstention: knowing when to withhold an answer. From an initial study of 500 human queries, we find that 32.4% contain missing or underspecified context. Drawing on this initial study and cognitive theories of human communication errors, we derive five representative categories requiring abstention: actionability limitation, referential underspecification, preference dependence, information unavailability, and false presupposition. We augment OpenEQA by having annotators transform well-posed questions into ambiguous variants outlined by these categories. The resulting dataset, AbstainEQA, comprises 1,636 annotated abstention cases paired with 1,636 original OpenEQA instances for balanced evaluation. Evaluating on AbstainEQA, we find that even the best frontier model only attains 42.79% abstention recall, while humans achieve 91.17%. We also find that scaling, prompting, and reasoning only yield marginal gains, and that fine-tuned models overfit to textual cues. Together, these results position abstention as a fundamental prerequisite for reliable interaction in embodied settings and as a necessary basis for effective clarification.
☆ QoSDiff: An Implicit Topological Embedding Learning Framework Leveraging Denoising Diffusion and Adversarial Attention for Robust QoS Prediction
Accurate Quality of Service (QoS) prediction is fundamental to service computing, providing essential data-driven guidance for service selection and ensuring superior user experiences. However, prevalent approaches, particularly Graph Neural Networks (GNNs), heavily rely on constructing explicit user--service interaction graphs. This dependency introduces severe scalability bottlenecks and limits performance when explicit connections are sparse or corrupted by noise. To address these challenges, this paper introduces \emph{QoSDiff}, a novel embedding learning framework that bypasses the prerequisite of explicit graph construction. Specifically, it leverages a denoising diffusion probabilistic model to recover intrinsic latent structures from noisy initializations. To further capture high-order interactions, we propose an adversarial interaction module that integrates a bidirectional hybrid attention mechanism. This adversarial paradigm dynamically distinguishes informative patterns from noise, enabling a dual-perspective modeling of intricate user--service associations. Extensive experiments on two large-scale real-world datasets demonstrate that QoSDiff significantly outperforms state-of-the-art baselines. Notably, the results highlight the framework's superior cross-dataset generalization capability and exceptional robustness against data sparsity and observational noise.
comment: Preprint submitted to IEEE Transactions on Services Computing
☆ Exploiting \texttt{ftrace}'s \texttt{function\_graph} Tracer Features for Machine Learning: A Case Study on Encryption Detection CCS
This paper proposes using the Linux kernel ftrace framework, particularly the function graph tracer, to generate informative system level data for machine learning (ML) applications. Experiments on a real world encryption detection task demonstrate the efficacy of the proposed features across several learning algorithms. The learner faces the problem of detecting encryption activities across a large dataset of files, using function call traces and graph based features. Empirical results highlight an outstanding accuracy of 99.28 on the task at hand, underscoring the efficacy of features derived from the function graph tracer. The results were further validated in an additional experiment targeting a multilabel classification problem, in which running programs were identified from trace data. This work provides comprehensive methodologies for preprocessing raw trace data and extracting graph based features, offering significant advancements in applying ML to system behavior analysis, program identification, and anomaly detection. By bridging the gap between system tracing and ML, this paper paves the way for innovative solutions in performance monitoring and security analytics.
comment: Conference paper presented at AICCSA 2025
☆ Temp-SCONE: A Novel Out-of-Distribution Detection and Domain Generalization Framework for Wild Data with Temporal Shift
Open-world learning (OWL) requires models that can adapt to evolving environments while reliably detecting out-of-distribution (OOD) inputs. Existing approaches, such as SCONE, achieve robustness to covariate and semantic shifts but assume static environments, leading to degraded performance in dynamic domains. In this paper, we propose Temp-SCONE, a temporally consistent extension of SCONE designed to handle temporal shifts in dynamic environments. Temp-SCONE introduces a confidence-driven regularization loss based on Average Thresholded Confidence (ATC), penalizing instability in predictions across time steps while preserving SCONE's energy-margin separation. Experiments on dynamic datasets demonstrate that Temp-SCONE significantly improves robustness under temporal drift, yielding higher corrupted-data accuracy and more reliable OOD detection compared to SCONE. On distinct datasets without temporal continuity, Temp-SCONE maintains comparable performance, highlighting the importance and limitations of temporal regularization. Our theoretical insights on temporal stability and generalization error further establish Temp-SCONE as a step toward reliable OWL in evolving dynamic environments.
comment: 22 pages, 12 figures, 72 subfigures, 6 tables
☆ Reliable Statistical Guarantees for Conformal Predictors with Small Datasets
Surrogate models (including deep neural networks and other machine learning algorithms in supervised learning) are capable of approximating arbitrarily complex, high-dimensional input-output problems in science and engineering, but require a thorough data-agnostic uncertainty quantification analysis before these can be deployed for any safety-critical application. The standard approach for data-agnostic uncertainty quantification is to use conformal prediction (CP), a well-established framework to build uncertainty models with proven statistical guarantees that do not assume any shape for the error distribution of the surrogate model. However, since the classic statistical guarantee offered by CP is given in terms of bounds for the marginal coverage, for small calibration set sizes (which are frequent in realistic surrogate modelling that aims to quantify error at different regions), the potentially strong dispersion of the coverage distribution around its average negatively impacts the reliability of the uncertainty model, often obtaining coverages below the expected value, resulting in a less applicable framework. After providing a gentle presentation of uncertainty quantification for surrogate models for machine learning practitioners, in this paper we bridge the gap by proposing a new statistical guarantee that offers probabilistic information for the coverage of a single conformal predictor. We show that the proposed framework converges to the standard solution offered by CP for large calibration set sizes and, unlike the classic guarantee, still offers reliable information about the coverage of a conformal predictor for small data sizes. We illustrate and validate the methodology in a suite of examples, and implement an open access software solution that can be used alongside common conformal prediction libraries to obtain uncertainty models that fulfil the new guarantee.
☆ LeMat-GenBench: A Unified Evaluation Framework for Crystal Generative Models
Generative machine learning (ML) models hold great promise for accelerating materials discovery through the inverse design of inorganic crystals, enabling an unprecedented exploration of chemical space. Yet, the lack of standardized evaluation frameworks makes it challenging to evaluate, compare, and further develop these ML models meaningfully. In this work, we introduce LeMat-GenBench, a unified benchmark for generative models of crystalline materials, supported by a set of evaluation metrics designed to better inform model development and downstream applications. We release both an open-source evaluation suite and a public leaderboard on Hugging Face, and benchmark 12 recent generative models. Results reveal that an increase in stability leads to a decrease in novelty and diversity on average, with no model excelling across all dimensions. Altogether, LeMat-GenBench establishes a reproducible and extensible foundation for fair model comparison and aims to guide the development of more reliable, discovery-oriented generative models for crystalline materials.
comment: 46 pages, 17 figures, 16 tables
☆ Diffusion Fine-Tuning via Reparameterized Policy Gradient of the Soft Q-Function
Diffusion models excel at generating high-likelihood samples but often require alignment with downstream objectives. Existing fine-tuning methods for diffusion models significantly suffer from reward over-optimization, resulting in high-reward but unnatural samples and degraded diversity. To mitigate over-optimization, we propose \textbf{Soft Q-based Diffusion Finetuning (SQDF)}, a novel KL-regularized RL method for diffusion alignment that applies a reparameterized policy gradient of a training-free, differentiable estimation of the soft Q-function. SQDF is further enhanced with three innovations: a discount factor for proper credit assignment in the denoising process, the integration of consistency models to refine Q-function estimates, and the use of an off-policy replay buffer to improve mode coverage and manage the reward-diversity trade-off. Our experiments demonstrate that SQDF achieves superior target rewards while preserving diversity in text-to-image alignment. Furthermore, in online black-box optimization, SQDF attains high sample efficiency while maintaining naturalness and diversity.
comment: 36 pages, 21 figures, 4 tables
☆ On the Limits of Test-Time Compute: Sequential Reward Filtering for Better Inference
Test-time compute (TTC) has become an increasingly prominent paradigm for enhancing large language models (LLMs). Despite the empirical success of methods such as best-of-$n$ (BoN) sampling and sequential revision, their fundamental limits remain unclear. We address this gap by analyzing a mixture-of-reference policy model and proving that standard BoN is inherently suboptimal. To move closer to the optimal frontier, we study reward-filtered sequential inference, a simple procedure that selectively incorporates only high-reward generations into the context. This mechanism concentrates computation on superior policy candidates and suppresses inferior ones. On the theoretical side, we show that reward-filtered sequential inference yields strictly stronger guarantees than standard TTC paradigms. On the empirical side, we evaluate such an inference strategy across diverse benchmarks and observe consistent improvements over widely used approaches, demonstrating the practical effectiveness of our framework.
comment: 45 pages, 6 figures, 3 tables
☆ Explainable Graph Representation Learning via Graph Pattern Analysis IJCAI-25
Explainable artificial intelligence (XAI) is an important area in the AI community, and interpretability is crucial for building robust and trustworthy AI models. While previous work has explored model-level and instance-level explainable graph learning, there has been limited investigation into explainable graph representation learning. In this paper, we focus on representation-level explainable graph learning and ask a fundamental question: What specific information about a graph is captured in graph representations? Our approach is inspired by graph kernels, which evaluate graph similarities by counting substructures within specific graph patterns. Although the pattern counting vector can serve as an explainable representation, it has limitations such as ignoring node features and being high-dimensional. To address these limitations, we introduce a framework (PXGL-GNN) for learning and explaining graph representations through graph pattern analysis. We start by sampling graph substructures of various patterns. Then, we learn the representations of these patterns and combine them using a weighted sum, where the weights indicate the importance of each graph pattern's contribution. We also provide theoretical analyses of our methods, including robustness and generalization. In our experiments, we show how to learn and explain graph representations for real-world data using pattern analysis. Additionally, we compare our method against multiple baselines in both supervised and unsupervised learning tasks to demonstrate its effectiveness.
comment: Full version with appendix of the paper published in the Proceedings of the Thirty-Fourth International Joint Conference on Artificial Intelligence (IJCAI-25), Main Track
☆ Prototype-Based Semantic Consistency Alignment for Domain Adaptive Retrieval AAAI2026
Domain adaptive retrieval aims to transfer knowledge from a labeled source domain to an unlabeled target domain, enabling effective retrieval while mitigating domain discrepancies. However, existing methods encounter several fundamental limitations: 1) neglecting class-level semantic alignment and excessively pursuing pair-wise sample alignment; 2) lacking either pseudo-label reliability consideration or geometric guidance for assessing label correctness; 3) directly quantizing original features affected by domain shift, undermining the quality of learned hash codes. In view of these limitations, we propose Prototype-Based Semantic Consistency Alignment (PSCA), a two-stage framework for effective domain adaptive retrieval. In the first stage, a set of orthogonal prototypes directly establishes class-level semantic connections, maximizing inter-class separability while gathering intra-class samples. During the prototype learning, geometric proximity provides a reliability indicator for semantic consistency alignment through adaptive weighting of pseudo-label confidences. The resulting membership matrix and prototypes facilitate feature reconstruction, ensuring quantization on reconstructed rather than original features, thereby improving subsequent hash coding quality and seamlessly connecting both stages. In the second stage, domain-specific quantization functions process the reconstructed features under mutual approximation constraints, generating unified binary hash codes across domains. Extensive experiments validate PSCA's superior performance across multiple datasets.
comment: This paper was accepted by AAAI2026 main tech track not long ago. This is an expanded version with an appendix
☆ Context-Aware Mixture-of-Experts Inference on CXL-Enabled GPU-NDP Systems
Mixture-of-Experts (MoE) models scale large language models through conditional computation, but inference becomes memory-bound once expert weights exceed the capacity of GPU memory. In this case, weights must be offloaded to external memory, and fetching them incurs costly and repeated transfers. We address this by adopting CXL-attached near-data processing (CXL-NDP) as the offloading tier to execute cold experts in place, converting expensive parameter movement into cheaper activation movement. Unlike prior GPU-NDP systems that are largely context-agnostic and reactive, we develop a context-aware MoE system that uses prefill-stage activation statistics to guide decoding-stage expert placement, dynamically pins hot experts in GPU-side HBM, and maps the remainder to CXL-NDP. To meet NDP's limited compute throughput, we introduce context-aware mixed-precision quantization that allocates per-expert bitwidths (1-4 bit) based on prefill stage. The resulting MoE inference system overlaps GPU and NDP execution while minimizing cross-device movement. The evaluation on the GPU-NDP system shows that our approach achieves up to an 8.7-fold decoding throughput improvement over the state-of-the-art method, while incurring only a 0.13% average accuracy drop.
☆ GraphBench: Next-generation graph learning benchmarking
Machine learning on graphs has recently achieved impressive progress in various domains, including molecular property prediction and chip design. However, benchmarking practices remain fragmented, often relying on narrow, task-specific datasets and inconsistent evaluation protocols, which hampers reproducibility and broader progress. To address this, we introduce GraphBench, a comprehensive benchmarking suite that spans diverse domains and prediction tasks, including node-level, edge-level, graph-level, and generative settings. GraphBench provides standardized evaluation protocols -- with consistent dataset splits and performance metrics that account for out-of-distribution generalization -- as well as a unified hyperparameter tuning framework. Additionally, we benchmark GraphBench using message-passing neural networks and graph transformer models, providing principled baselines and establishing a reference performance. See www.graphbench.io for further details.
☆ Mathematical Framing for Different Agent Strategies
We introduce a unified mathematical and probabilistic framework for understanding and comparing diverse AI agent strategies. We bridge the gap between high-level agent design concepts, such as ReAct, multi-agent systems, and control flows, and a rigorous mathematical formulation. Our approach frames agentic processes as a chain of probabilities, enabling a detailed analysis of how different strategies manipulate these probabilities to achieve desired outcomes. Our framework provides a common language for discussing the trade-offs inherent in various agent architectures. One of our many key contributions is the introduction of the "Degrees of Freedom" concept, which intuitively differentiates the optimizable levers available for each approach, thereby guiding the selection of appropriate strategies for specific tasks. This work aims to enhance the clarity and precision in designing and evaluating AI agents, offering insights into maximizing the probability of successful actions within complex agentic systems.
☆ Feature Engineering vs. Deep Learning for Automated Coin Grading: A Comparative Study on Saint-Gaudens Double Eagles
We challenge the common belief that deep learning always trumps older techniques, using the example of grading Saint-Gaudens Double Eagle gold coins automatically. In our work, we put a feature-based Artificial Neural Network built around 192 custom features pulled from Sobel edge detection and HSV color analysis up against a hybrid Convolutional Neural Network that blends in EfficientNetV2, plus a straightforward Support Vector Machine as the control. Testing 1,785 coins graded by experts, the ANN nailed 86% exact matches and hit 98% when allowing a 3-grade leeway. On the flip side, CNN and SVM mostly just guessed the most common grade, scraping by with 31% and 30% exact hits. Sure, the CNN looked good on broader tolerance metrics, but that is because of some averaging trick in regression that hides how it totally flops at picking out specific grades. All told, when you are stuck with under 2,000 examples and lopsided classes, baking in real coin-expert knowledge through feature design beats out those inscrutable, all-in-one deep learning setups. This rings true for other niche quality checks where data's thin and know-how matters more than raw compute.
☆ NORi: An ML-Augmented Ocean Boundary Layer Parameterization
NORi is a machine-learned (ML) parameterization of ocean boundary layer turbulence that is physics-based and augmented with neural networks. NORi stands for neural ordinary differential equations (NODEs) Richardson number (Ri) closure. The physical parameterization is controlled by a Richardson number-dependent diffusivity and viscosity. The NODEs are trained to capture the entrainment through the base of the boundary layer, which cannot be represented with a local diffusive closure. The parameterization is trained using large-eddy simulations in an "a posteriori" fashion, where parameters are calibrated with a loss function that explicitly depends on the actual time-integrated variables of interest rather than the instantaneous subgrid fluxes, which are inherently noisy. NORi is designed for the realistic nonlinear equation of state of seawater and demonstrates excellent prediction and generalization capabilities in capturing entrainment dynamics under different convective strengths, oceanic background stratifications, rotation strengths, and surface wind forcings. NORi is numerically stable for at least 100 years of integration time in large-scale simulations, despite only being trained on 2-day horizons, and can be run with time steps as long as one hour. The highly expressive neural networks, combined with a physically-rigorous base closure, prove to be a robust paradigm for designing parameterizations for climate models where data requirements are drastically reduced, inference performance can be directly targeted and optimized, and numerical stability is implicitly encouraged during training.
comment: 48 pages, 16 figures, submitted to Journal of Advances in Modeling Earth Systems (JAMES)
☆ Predicting Time-Dependent Flow Over Complex Geometries Using Operator Networks
Fast, geometry-generalizing surrogates for unsteady flow remain challenging. We present a time-dependent, geometry-aware Deep Operator Network that predicts velocity fields for moderate-Re flows around parametric and non-parametric shapes. The model encodes geometry via a signed distance field (SDF) trunk and flow history via a CNN branch, trained on 841 high-fidelity simulations. On held-out shapes, it attains $\sim 5\%$ relative L2 single-step error and up to 1000X speedups over CFD. We provide physics-centric rollout diagnostics, including phase error at probes and divergence norms, to quantify long-horizon fidelity. These reveal accurate near-term transients but error accumulation in fine-scale wakes, most pronounced for sharp-cornered geometries. We analyze failure modes and outline practical mitigations. Code, splits, and scripts are openly released at: https://github.com/baskargroup/TimeDependent-DeepONet to support reproducibility and benchmarking.
☆ Sarcasm Detection on Reddit Using Classical Machine Learning and Feature Engineering
Sarcasm is common in online discussions, yet difficult for machines to identify because the intended meaning often contradicts the literal wording. In this work, I study sarcasm detection using only classical machine learning methods and explicit feature engineering, without relying on neural networks or context from parent comments. Using a 100,000-comment subsample of the Self-Annotated Reddit Corpus (SARC 2.0), I combine word-level and character-level TF-IDF features with simple stylistic indicators. Four models are evaluated: logistic regression, a linear SVM, multinomial Naive Bayes, and a random forest. Naive Bayes and logistic regression perform the strongest, achieving F1-scores around 0.57 for sarcastic comments. Although the lack of conversational context limits performance, the results offer a clear and reproducible baseline for sarcasm detection using lightweight and interpretable methods.
comment: 11 pages, 2 figures, includes full Python code. Classical machine learning baseline for sarcasm detection on the SARC 2.0 dataset
☆ Informative missingness and its implications in semi-supervised learning
Semi-supervised learning (SSL) constructs classifiers using both labelled and unlabelled data. It leverages information from labelled samples, whose acquisition is often costly or labour-intensive, together with unlabelled data to enhance prediction performance. This defines an incomplete-data problem, which statistically can be formulated within the likelihood framework for finite mixture models that can be fitted using the expectation-maximisation (EM) algorithm. Ideally, one would prefer a completely labelled sample, as one would anticipate that a labelled observation provides more information than an unlabelled one. However, when the mechanism governing label absence depends on the observed features or the class labels or both, the missingness indicators themselves contain useful information. In certain situations, the information gained from modelling the missing-label mechanism can even outweigh the loss due to missing labels, yielding a classifier with a smaller expected error than one based on a completely labelled sample analysed. This improvement arises particularly when class overlap is moderate, labelled data are sparse, and the missingness is informative. Modelling such informative missingness thus offers a coherent statistical framework that unifies likelihood-based inference with the behaviour of empirical SSL methods.
comment: 1
☆ Learning to Orchestrate Agents in Natural Language with the Conductor
Powerful large language models (LLMs) from different providers have been expensively trained and finetuned to specialize across varying domains. In this work, we introduce a new kind of Conductor model trained with reinforcement learning to automatically discover powerful coordination strategies among LLMs. Our Conductor learns not only to design targeted communication topologies for effective agent-to-agent collaboration, but also to prompt engineer focused instructions to the LLMs to maximally leverage their individual capabilities. We show that, by learning optimal coordination strategies over pools of powerful worker LLMs, a 7B Conductor achieves significant performance gains beyond any individual worker, attaining state-of-the-art results in challenging reasoning benchmarks, such as LiveCodeBench and GPQA. By training with randomized agent pools, our conductor effectively adapts to arbitrary sets of open- and closed-source agents, meeting any user requirements. Furthermore, allowing the Conductor to select itself as a worker gives rise to recursive topologies, elevating performance with a new form of dynamic test-time scaling through online iterative adaptation. More broadly, ours is among the early work demonstrating language model coordination can be unlocked through RL, where powerful coordination strategies emerge naturally in LLMs through pure end-to-end reward maximization.
♻ ☆ Conformalized Decision Risk Assessment
In many operational settings, decision-makers must commit to actions before uncertainty resolves, but existing optimization tools rarely quantify how consistently a chosen decision remains optimal across plausible futures. This paper introduces CREDO -- Conformalized Risk Estimation for Decision Optimization, a distribution-free framework that quantifies the probability that a prescribed decision remains (near-)optimal across realizations of uncertainty. CREDO reformulates decision risk through the inverse feasible region -- the set of outcomes under which a decision is optimal -- and estimates its probability using inner approximations constructed from conformal prediction balls generated by a conditional generative model. By calibrating each ball to lie entirely within the inverse feasible region, CREDO obtains finite-sample valid lower bounds on decision optimality without parametric assumptions. The method avoids the conservatism of worst-case robust optimization, is compatible with modern generative models, and applies broadly to convex optimization problems. We establish theoretical validity guarantees, develop efficient computational procedures, and demonstrate through extensive numerical experiments that CREDO provides accurate, interpretable, and reliable assessments of decision reliability in both synthetic and application-motivated settings.
♻ ☆ MORPH: PDE Foundation Models with Arbitrary Data Modality
We introduce MORPH, a modality-agnostic, autoregressive foundation model for partial differential equations (PDEs). MORPH is built on a convolutional vision transformer backbone that seamlessly handles heterogeneous spatiotemporal datasets of varying data modality (1D--3D) at different resolutions, and multiple fields with mixed scalar and vector components. The architecture combines (i) component-wise convolution, which jointly processes scalar and vector channels to capture local interactions, (ii) inter-field cross-attention, which models and selectively propagates information between different physical fields, (iii) axial attentions, which factorize full spatiotemporal self-attention along individual spatial and temporal axes to reduce computational burden while retaining expressivity. We pretrain multiple model variants on a diverse collection of heterogeneous PDE datasets and evaluate transfer to a range of downstream prediction tasks. Using both full-model fine-tuning and parameter-efficient low-rank adapters (LoRA), MORPH outperforms models trained from scratch. Across extensive evaluations, MORPH matches or surpasses strong baselines and recent state-of-the-art models. Collectively, these capabilities present a flexible and powerful backbone for learning from the heterogeneous and multimodal nature of scientific observations, charting a path toward scalable and data-efficient scientific machine learning. The source code, datasets, and models are publicly available at https://github.com/lanl/MORPH.
♻ ☆ Minimum Weighted Feedback Arc Sets for Ranking from Pairwise Comparisons
The Minimum Weighted Feedback Arc Set (MWFAS) problem is closely related to the task of deriving a global ranking from pairwise comparisons. Recent work by He et al. (ICML 2022) advanced the state of the art on ranking benchmarks using learning based methods, but did not examine the underlying connection to MWFAS. In this paper, we investigate this relationship and introduce efficient combinatorial algorithms for solving MWFAS as a means of addressing the ranking problem. Our experimental results show that these simple, learning free methods achieve substantially faster runtimes than recent learning based approaches, while also delivering competitive, and in many cases superior, ranking accuracy. These findings suggest that lightweight combinatorial techniques offer a scalable and effective alternative to deep learning for large scale ranking tasks.
comment: This is a preliminary paper
♻ ☆ Path Channels and Plan Extension Kernels: a Mechanistic Description of Planning in a Sokoban RNN NeurIPS 2025
We partially reverse-engineer a convolutional recurrent neural network (RNN) trained with model-free reinforcement learning to play the box-pushing game Sokoban. We find that the RNN stores future moves (plans) as activations in particular channels of the hidden state, which we call path channels. A high activation in a particular location means that, when a box is in that location, it will get pushed in the channel's assigned direction. We examine the convolutional kernels between path channels and find that they encode the change in position resulting from each possible action, thus representing part of a learned transition model. The RNN constructs plans by starting at the boxes and goals. These kernels extend activations in path channels forwards from boxes and backwards from the goal. Negative values are placed in channels at obstacles. This causes the extension kernels to propagate the negative value in reverse, thus pruning the last few steps and letting an alternative plan emerge; a form of backtracking. Our work shows that, a precise understanding of the plan representation allows us to directly understand the bidirectional planning-like algorithm learned by model-free training in more familiar terms.
comment: Presented at the Mechanistic Interpretability Workshop at NeurIPS 2025. 34 pages, 26 figures
♻ ☆ Athena: Enhancing Multimodal Reasoning with Data-efficient Process Reward Models
We present Athena-PRM, a multimodal process reward model (PRM) designed to evaluate the reward score for each step in solving complex reasoning problems. Developing high-performance PRMs typically demands significant time and financial investment, primarily due to the necessity for step-level annotations of reasoning steps. Conventional automated labeling methods, such as Monte Carlo estimation, often produce noisy labels and incur substantial computational costs. To efficiently generate high-quality process-labeled data, we propose leveraging prediction consistency between weak and strong completers as a criterion for identifying reliable process labels. Remarkably, Athena-PRM demonstrates outstanding effectiveness across various scenarios and benchmarks with just 5,000 samples. Furthermore, we also develop two effective strategies to improve the performance of PRMs: ORM initialization and up-sampling for negative data. We validate our approach in three specific scenarios: verification for test time scaling, direct evaluation of reasoning step correctness, and reward ranked fine-tuning. Our Athena-PRM consistently achieves superior performance across multiple benchmarks and scenarios. Notably, when using Qwen2.5-VL-7B as the policy model, Athena-PRM enhances performance by 10.2 points on WeMath and 7.1 points on MathVista for test time scaling. Furthermore, Athena-PRM sets the state-of-the-art (SoTA) results in VisualProcessBench and outperforms the previous SoTA by 3.9 F1-score, showcasing its robust capability to accurately assess the correctness of the reasoning step. Additionally, utilizing Athena-PRM as the reward model, we develop Athena-7B with reward ranked fine-tuning and outperforms baseline with a significant margin on five benchmarks.
♻ ☆ Improving Graph Neural Network Training, Defense, and Hypergraph Partitioning via Adversarial Robustness Evaluation
Graph Neural Networks (GNNs) are a highly effective neural network architecture for processing graph-structured data. Unlike traditional neural networks that rely solely on the features of the data as input, GNNs leverage both the graph structure, which represents the relationships between data points, and the feature matrix of the data to optimize their feature representation. This unique capability enables GNNs to achieve superior performance across various tasks. However, it also makes GNNs more susceptible to noise from both the graph structure and data features, which can significantly increase the training difficulty and degrade their performance. To address this issue, this paper proposes a novel method for selecting noise-sensitive training samples from the original training set to construct a smaller yet more effective training set for model training. These samples are used to help improve the model's ability to correctly process data in noisy environments. We have evaluated our approach on three of the most classical GNN models GCN, GAT, and GraphSAGE as well as three widely used benchmark datasets: Cora, Citeseer, and PubMed. Our experiments demonstrate that the proposed method can substantially boost the training of Graph Neural Networks compared to using randomly sampled training sets of the same size from the original training set and the larger original full training set. We further proposed a robust-node based hypergraph partitioning method, an adversarial robustness based graph pruning method for GNN defenses and a related spectral edge attack method.
♻ ☆ Beyond I-Con: Exploring New Dimension of Distance Measures in Representation Learning
The Information Contrastive (I-Con) framework revealed that over 23 representation learning methods implicitly minimize KL divergence between data and learned distributions that encode similarities between data points. However, a KL-based loss may be misaligned with the true objective, and properties of KL divergence such as asymmetry and unboundedness may create optimization challenges. We present Beyond I-Con, a framework that enables systematic discovery of novel loss functions by exploring alternative statistical divergences. Key findings: (1) on unsupervised clustering of DINO-ViT embeddings, we achieve state-of-the-art results by modifying the PMI algorithm to use total variation (TV) distance; (2) supervised contrastive learning with Euclidean distance as the feature space metric is improved by replacing the standard loss function with Jenson-Shannon divergence (JSD); (3) on dimensionality reduction, we achieve superior qualitative results and better performance on downstream tasks than SNE by replacing KL with a bounded $f$-divergence. Our results highlight the importance of considering divergence choices in representation learning optimization.
♻ ☆ Triangle Multiplication Is All You Need For Biomolecular Structure Representations
AlphaFold has transformed protein structure prediction, but emerging applications such as virtual ligand screening, proteome-wide folding, and de novo binder design demand predictions at a massive scale, where runtime and memory costs become prohibitive. A major bottleneck lies in the Pairformer backbone of AlphaFold3-style models, which relies on computationally expensive triangular primitives-especially triangle attention-for pairwise reasoning. We introduce Pairmixer, a streamlined alternative that eliminates triangle attention while preserving higher-order geometric reasoning capabilities that are critical for structure prediction. Pairmixer substantially improves computational efficiency, matching state-of-the-art structure predictors across folding and docking benchmarks, delivering up to 4x faster inference on long sequences while reducing training cost by 34%. Its efficiency alleviates the computational burden of downstream applications such as modeling large protein complexes, high-throughput ligand and binder screening, and hallucination-based design. Within BoltzDesign, for example, Pairmixer delivers over 2x faster sampling and scales to sequences ~30% longer than the memory limits of Pairformer. Code is available at https://github.com/genesistherapeutics/pairmixer.
comment: Preprint
♻ ☆ Convergence of Stochastic Gradient Langevin Dynamics in the Lazy Training Regime
Continuous-time models provide important insights into the training dynamics of optimization algorithms in deep learning. In this work, we establish a non-asymptotic convergence analysis of stochastic gradient Langevin dynamics (SGLD), which is an Itô stochastic differential equation (SDE) approximation of stochastic gradient descent in continuous time, in the lazy training regime. We show that, under regularity conditions on the Hessian of the loss function, SGLD with multiplicative and state-dependent noise (i) yields a non-degenerate kernel throughout the training process with high probability, and (ii) achieves exponential convergence to the empirical risk minimizer in expectation, and we establish finite-time and finite-width bounds on the optimality gap. We corroborate our theoretical findings with numerical examples in the regression setting.
♻ ☆ Experience Replay with Random Reshuffling
Experience replay is a key component in reinforcement learning for stabilizing learning and improving sample efficiency. Its typical implementation samples transitions with replacement from a replay buffer. In contrast, in supervised learning with a fixed dataset, it is a common practice to shuffle the dataset every epoch and consume data sequentially, which is called random reshuffling (RR). RR enjoys theoretically better convergence properties and has been shown to outperform with-replacement sampling empirically. To leverage the benefits of RR in reinforcement learning, we propose sampling methods that extend RR to experience replay, both in uniform and prioritized settings, and analyze their properties via theoretical analysis and simulations. We evaluate our sampling methods on Atari benchmarks, demonstrating their effectiveness in deep reinforcement learning. Code is available at https://github.com/pfnet-research/errr.
♻ ☆ IndiSeek learns information-guided disentangled representations
Learning disentangled representations is a fundamental task in multi-modal learning. In modern applications such as single-cell multi-omics, both shared and modality-specific features are critical for characterizing cell states and supporting downstream analyses. Ideally, modality-specific features should be independent of shared ones while also capturing all complementary information within each modality. This tradeoff is naturally expressed through information-theoretic criteria, but mutual-information-based objectives are difficult to estimate reliably, and their variational surrogates often underperform in practice. In this paper, we introduce IndiSeek, a novel disentangled representation learning approach that addresses this challenge by combining an independence-enforcing objective with a computationally efficient reconstruction loss that bounds conditional mutual information. This formulation explicitly balances independence and completeness, enabling principled extraction of modality-specific features. We demonstrate the effectiveness of IndiSeek on synthetic simulations, a CITE-seq dataset and multiple real-world multi-modal benchmarks.
♻ ☆ The Peril of Preference: Why GRPO fails on Ordinal Rewards
Group-relative Policy Optimization's (GRPO) simplicity makes it highly desirable for adapting LLMs to become experts at specific tasks. But this simplicity also makes it ill-specified as we seek to enhance RL training with richer, non-binary feedback. When using ordinal rewards to give partial credit, GRPO's simplicity starts to hurt, as its group-average baseline often assigns a positive advantage to failed trajectories and reinforces incorrect behavior. We introduce Correctness Relative Policy Optimization (CoRPO), a new formulation that solves this flaw. CoRPO uses an adaptive baseline that enforces a minimum quality threshold, ensuring failed solutions are never positively reinforced. Once the policy consistently meets this threshold, the baseline automatically transitions to a relative preference mode, pushing the model to find optimal solutions rather than just "acceptable" ones. We empirically validate CoRPO on a code verification task, where it demonstrates more stable convergence and better out-of-domain generalization. This work represents a critical step in our broader research program to enable LLMs to learn genuinely new capabilities through reinforcement learning. We achieve this by enabling LLMs to learn from rich, multi-dimensional feedback - progressing from binary to ordinal rewards in this work, and onward to denser, per-step supervision.
♻ ☆ LORE: A Large Generative Model for Search Relevance
Achievement. We introduce LORE, a systematic framework for Large Generative Model-based relevance in e-commerce search. Deployed and iterated over three years, LORE achieves a cumulative +27\% improvement in online GoodRate metrics. This report shares the valuable experience gained throughout its development lifecycle, spanning data, features, training, evaluation, and deployment. Insight. While existing works apply Chain-of-Thought (CoT) to enhance relevance, they often hit a performance ceiling. We argue this stems from treating relevance as a monolithic task, lacking principled deconstruction. Our key insight is that relevance comprises distinct capabilities: knowledge and reasoning, multi-modal matching, and rule adherence. We contend that a qualitative-driven decomposition is essential for breaking through current performance bottlenecks. Contributions. LORE provides a complete blueprint for the LLM relevance lifecycle. Key contributions include: (1) A two-stage training paradigm combining progressive CoT synthesis via SFT with human preference alignment via RL. (2) A comprehensive benchmark, RAIR, designed to evaluate these core capabilities. (3) A query frequency-stratified deployment strategy that efficiently transfers offline LLM capabilities to the online system. LORE serves as both a practical solution and a methodological reference for other vertical domains.
♻ ☆ A Theoretical Framework for Auxiliary-Loss-Free Load Balancing of Sparse Mixture-of-Experts in Large-Scale AI Models
In large-scale AI training, Sparse Mixture-of-Experts (s-MoE) layers enable scaling by activating only a small subset of experts per token. An operational challenge in this design is load balancing: routing tokens to minimize the number of idle experts, which is important for the efficient utilization of (costly) GPUs. We provide a theoretical framework for analyzing the Auxiliary-Loss-Free Load Balancing (ALF-LB) procedure -- proposed by DeepSeek's Wang et al. (2024) -- by casting it as a one-step-per-iteration primal-dual method for an assignment problem. First, in a stylized deterministic setting, our framework yields several insightful structural properties: (i) a monotonic improvement of a Lagrangian objective, (ii) a preference rule that moves tokens from overloaded to underloaded experts, and (iii) an approximate-balancing guarantee. Then, we incorporate the stochastic and dynamic nature of AI training using a generalized online optimization formulation. In the online setting, we derive a strong convexity property of the objective that leads to a logarithmic expected regret bound under certain step-size choices. Additionally, we present real experiments on 1B-parameter DeepSeekMoE models to complement our theoretical findings. Together, these results build a principled framework for analyzing the Auxiliary-Loss-Free Load Balancing of s-MoE in AI models.
♻ ☆ Large language models can learn and generalize steganographic chain-of-thought under process supervision NeurIPS 2025
Chain-of-thought (CoT) reasoning not only enhances large language model performance but also provides critical insights into decision-making processes, marking it as a useful tool for monitoring model intent and planning. However, recent works have shown that banning the mention of a specific example of reward hacking causes obfuscation of the undesired reasoning traces but the persistence of the undesired behavior, threatening the reliability of CoT monitoring. We provide an extension to these results with regard to the ability of models to learn a specific type of obfuscated reasoning: steganography. First, we show that penalizing the use of specific strings within load-bearing reasoning traces causes models to substitute alternative strings. Crucially, this does not alter the underlying method by which the model performs the task, demonstrating that the model can learn to steganographically encode its reasoning.We further demonstrate that models can generalize an encoding scheme. When the penalized strings belong to an overarching class, the model learns not only to substitute strings seen in training, but also develops a general encoding scheme for all members of the class which it can apply to held-out testing strings.
comment: 10 pages main text, 3 figures main text, 17 pages supplementary material, 1 figure supplementary material, accepted at NeurIPS 2025
♻ ☆ The Autonomy-Alignment Problem in Open-Ended Learning Robots: Formalising the Purpose Framework
The rapid advancement of artificial intelligence is enabling the development of increasingly autonomous robots capable of operating beyond engineered factory settings and into the unstructured environments of human life. This shift raises a critical autonomy-alignment problem: how to ensure that a robot's autonomous learning focuses on acquiring knowledge and behaviours that serve human practical objectives while remaining aligned with broader human values (e.g., safety and ethics). This problem remains largely underexplored and lacks a unifying conceptual and formal framework. Here, we address one of its most challenging instances of the problem: open-ended learning (OEL) robots, which autonomously acquire new knowledge and skills through interaction with the environment, guided by intrinsic motivations and self-generated goals. We propose a computational framework, introduced qualitatively and then formalised, to guide the design of OEL architectures that balance autonomy with human control. At its core is the novel concept of purpose, which specifies what humans (designers or users) want the robot to learn, do, or avoid, independently of specific task domains. The framework decomposes the autonomy-alignment problem into four tractable sub-problems: the alignment of robot purposes (hardwired or learnt) with human purposes; the arbitration between multiple purposes; the grounding of abstract purposes into domain-specific goals; and the acquisition of competence to achieve those goals. The framework supports formal definitions of alignment across multiple cases and proofs of necessary and sufficient conditions under which alignment holds. Illustrative hypothetical scenarios showcase the applicability of the framework for guiding the development of purpose-aligned autonomous robots.
comment: 33 pages, 5 figures
♻ ☆ Bant: Byzantine Antidote via Trial Function and Trust Scores
Recent advancements in machine learning have improved performance while also increasing computational demands. While federated and distributed setups address these issues, their structures remain vulnerable to malicious influences. In this paper, we address a specific threat: Byzantine attacks, wherein compromised clients inject adversarial updates to derail global convergence. We combine the concept of trust scores with trial function methodology to dynamically filter outliers. Our methods address the critical limitations of previous approaches, allowing operation even when Byzantine nodes are in the majority. Moreover, our algorithms adapt to widely used scaled methods such as Adam and RMSProp, as well as practical scenarios, including local training and partial participation. We validate the robustness of our methods by conducting extensive experiments on both public datasets and private ECG data collected from medical institutions. Furthermore, we provide a broad theoretical analysis of our algorithms and their extensions to the aforementioned practical setups. The convergence guaranties of our methods are comparable to those of classical algorithms developed without Byzantine interference.
♻ ☆ SoftStep: Learning Sparse Similarity Powers Deep Neighbor-Based Regression
Neighbor-based methods are a natural alternative to linear prediction for tabular data when relationships between inputs and targets exhibit complexity such as nonlinearity, periodicity, or heteroscedasticity. Yet in deep learning on unstructured data, nonparametric neighbor-based approaches are rarely implemented in lieu of simple linear heads. This is primarily due to the ability of systems equipped with linear regression heads to co-learn internal representations along with the linear head's parameters. To unlock the full potential of neighbor-based methods in neural networks we introduce SoftStep, a parametric module that learns sparse instance-wise similarity measures directly from data. When integrated with existing neighbor-based methods, SoftStep enables regression models that consistently outperform linear heads across diverse architectures, domains, and training scenarios. We focus on regression tasks, where we show theoretically that neighbor-based prediction with a mean squared error objective constitutes a metric learning algorithm that induces well-structured embedding spaces. We then demonstrate analytically and empirically that this representational structure translates into superior performance when combined with the sparse, instance-wise similarity measures introduced by SoftStep. Beyond regression, SoftStep is a general method for learning instance-wise similarity in deep neural networks, with broad applicability to attention mechanisms, metric learning, representational alignment, and related paradigms.
♻ ☆ OPTIC-ER: A Reinforcement Learning Framework for Real-Time Emergency Response and Equitable Resource Allocation in Underserved African Communities
Public service systems in many African regions suffer from delayed emergency response and spatial inequity, causing avoidable suffering. This paper introduces OPTIC-ER, a reinforcement learning (RL) framework for real-time, adaptive, and equitable emergency response. OPTIC-ER uses an attention-guided actor-critic architecture to manage the complexity of dispatch environments. Its key innovations are a Context-Rich State Vector, encoding action sub-optimality, and a Precision Reward Function, which penalizes inefficiency. Training occurs in a high-fidelity simulation using real data from Rivers State, Nigeria, accelerated by a precomputed Travel Time Atlas. The system is built on the TALS framework (Thin computing, Adaptability, Low-cost, Scalability) for deployment in low-resource settings. In evaluations on 500 unseen incidents, OPTIC-ER achieved a 100.00% optimal action selection rate, confirming its robustness and generalization. Beyond dispatch, the system generates Infrastructure Deficiency Maps and Equity Monitoring Dashboards to guide proactive governance and data-informed development. This work presents a validated blueprint for AI-augmented public services, showing how context-aware RL can bridge the gap between algorithmic decision-making and measurable human impact.
comment: Source code and data available at: https://github.com/marytonwe/OPTIC-ER.git
♻ ☆ Unsupervised Time Series Anomaly Prediction with Importance-based Generative Contrastive Learning KDD 2025
Time series anomaly prediction plays an essential role in many real-world scenarios, such as environmental prevention and prompt maintenance of cyber-physical systems. However, existing time series anomaly prediction methods mainly require supervised training with plenty of manually labeled data, which are difficult to obtain in practice. Besides, unseen anomalies can occur during inference, which could differ from the labeled training data and make these models fail to predict such new anomalies. In this paper, we study a novel problem of unsupervised time series anomaly prediction. We provide a theoretical analysis and propose Importance-based Generative Contrastive Learning (IGCL) to address the aforementioned problems. IGCL distinguishes between normal and anomaly precursors, which are generated by our anomaly precursor pattern generation module. To address the efficiency issues caused by the potential complex anomaly precursor combinations, we propose a memory bank with importance-based scores to adaptively store representative anomaly precursors and generate more complicated anomaly precursors. Extensive experiments on seven benchmark datasets show our method outperforms state-of-the-art baselines on unsupervised time series anomaly prediction problems.
comment: ACM SIGKDD 2025
♻ ☆ DAVE: Diagnostic benchmark for Audio Visual Evaluation
Audio-visual understanding is a rapidly evolving field that seeks to integrate and interpret information from both auditory and visual modalities. Despite recent advances in multi-modal learning, existing benchmarks often suffer from strong visual bias -- when answers can be inferred from visual data alone -- and provide only aggregate scores that conflate multiple sources of error. This makes it difficult to determine whether models struggle with visual understanding, audio interpretation, or audio-visual alignment. In this work, we introduce DAVE: Diagnostic Audio Visual Evaluation, a novel benchmark dataset designed to systematically evaluate audio-visual models across controlled settings. DAVE alleviates existing limitations by (i) ensuring both modalities are necessary to answer correctly and (ii) decoupling evaluation into atomic subcategories. Our detailed analysis of state-of-the-art models reveals specific failure modes and provides targeted insights for improvement. By offering this standardized diagnostic framework, we aim to facilitate more robust development of audio-visual models. Dataset: https://huggingface.co/datasets/gorjanradevski/dave Code: https://github.com/gorjanradevski/dave
comment: First two authors contributed equally
♻ ☆ Epidemiology of Large Language Models: A Benchmark for Observational Distribution Knowledge
Artificial intelligence (AI) systems hold great promise for advancing various scientific disciplines, and are increasingly used in real-world applications. Despite their remarkable progress, further capabilities are expected in order to achieve more general types of intelligence. A critical distinction in this context is between factual knowledge, which can be evaluated against true or false answers (e.g., "what is the capital of England?"), and probabilistic knowledge, reflecting probabilistic properties of the real world (e.g., "what is the sex of a computer science graduate in the US?"). In this paper, our goal is to build a benchmark for understanding the capabilities of LLMs in terms of knowledge of probability distributions describing the real world. Given that LLMs are trained on vast amounts of text, it may be plausible that they internalize aspects of these distributions. Indeed, LLMs are touted as powerful universal approximators of real-world distributions. At the same time, classical results in statistics, known as curse of dimensionality, highlight fundamental challenges in learning distributions in high dimensions, challenging the notion of universal distributional learning. In this work, we develop the first benchmark to directly test this hypothesis, evaluating whether LLMs have access to empirical distributions describing real-world populations across domains such as economics, health, education, and social behavior. Our results demonstrate that LLMs perform poorly overall, and do not seem to internalize real-world statistics naturally. When interpreted in the context of Pearl's Causal Hierarchy (PCH), our benchmark demonstrates that language models do not contain knowledge on observational distributions (Layer 1 of PCH), and thus the Causal Hierarchy Theorem implies that interventional (Layer 2) and counterfactual (Layer 3) knowledge of these models is also limited.
♻ ☆ Generalizability of experimental studies
Experimental studies are a cornerstone of Machine Learning (ML) research. A common and often implicit assumption is that the study's results will generalize beyond the study itself, e.g., to new data. That is, repeating the same study under different conditions will likely yield similar results. Existing frameworks to measure generalizability, borrowed from the casual inference literature, cannot capture the complexity of the results and the goals of an ML study. The problem of measuring generalizability in the more general ML setting is thus still open, also due to the lack of a mathematical formalization of experimental studies. In this paper, we propose such a formalization, use it to develop a framework to quantify generalizability, and propose an instantiation based on rankings and the Maximum Mean Discrepancy. We show how our framework offers insights into the number of experiments necessary for a generalizable study, and how experimenters can benefit from it. Finally, we release the genexpy Python package, which allows for an effortless evaluation of the generalizability of other experimental studies.
comment: Under review at TMLR
♻ ☆ ENTIRE: Learning-based Volume Rendering Time Prediction
We introduce ENTIRE, a novel deep learning-based approach for fast and accurate volume rendering time prediction. Predicting rendering time is inherently challenging due to its dependence on multiple factors, including volume data characteristics, image resolution, camera configuration, and transfer function settings. Our method addresses this by first extracting a feature vector that encodes structural volume properties relevant to rendering performance. This feature vector is then integrated with additional rendering parameters, such as image resolution, camera setup, and transfer function settings, to produce the final prediction. We evaluate ENTIRE across multiple rendering frameworks (CPU- and GPU-based) and configurations (with and without single-scattering) on diverse datasets. The results demonstrate that our model achieves high prediction accuracy with fast inference speed. Furthermore, we showcase ENTIRE's effectiveness in two case studies, where it enables dynamic parameter adaptation for stable frame rates and load balancing.
♻ ☆ Bilevel Models for Adversarial Learning and A Case Study
Adversarial learning has been attracting more and more attention thanks to the fast development of machine learning and artificial intelligence. However, due to the complicated structure of most machine learning models, the mechanism of adversarial attacks is not well interpreted. How to measure the effect of attacks is still not quite clear. In this paper, we investigate the adversarial learning from the perturbation analysis point of view. We characterize the robustness of learning models through the calmness of the solution mapping. In the case of convex clustering models, we identify the conditions under which the clustering results remain the same under perturbations. When the noise level is large, it leads to an attack. Therefore, we propose two bilevel models for adversarial learning where the effect of adversarial learning is measured by some deviation function. Specifically, we systematically study the so-called $δ$-measure and show that under certain conditions, it can be used as a deviation function in adversarial learning for convex clustering models. Finally, we conduct numerical tests to verify the above theoretical results as well as the efficiency of the two proposed bilevel models.
comment: This paper has been accepted by Mathematics
♻ ☆ Consistent spectral clustering in sparse tensor block models
High-order clustering aims to classify objects in multiway datasets that are prevalent in various fields such as bioinformatics, recommendation systems, and social network analysis. Such data are often sparse and high-dimensional, posing significant statistical and computational challenges. This paper introduces a tensor block model specifically designed for sparse integer-valued data tensors. We propose a simple spectral clustering algorithm augmented with a trimming step to mitigate noise fluctuations, and identify a density threshold that ensures the algorithm's consistency. Our approach models sparsity using a sub-Poisson noise concentration framework, accommodating heavier than sub-Gaussian tails. Remarkably, this natural class of tensor block models is closed under aggregation across arbitrary modes. Consequently, we obtain a comprehensive framework for evaluating the tradeoff between signal loss and noise reduction incurred by aggregating data. The analysis is based on a novel concentration bound for sparse random Gram matrices. The theoretical findings are illustrated through numerical experiments.
comment: 52 pages
♻ ☆ Modelling the Doughnut of social and planetary boundaries with frugal machine learning
The 'Doughnut' of social and planetary boundaries has emerged as a popular framework for assessing environmental and social sustainability. Here, we provide a proof-of-concept analysis that shows how machine learning (ML) methods can be applied to a simple macroeconomic model of the Doughnut. First, we show how ML methods can be used to find policy parameters that are consistent with 'living within the Doughnut'. Second, we show how a reinforcement learning agent can identify the optimal trajectory towards desired policies in the parameter space. The approaches we test, which include a Random Forest Classifier and $Q$-learning, are frugal ML methods that are able to find policy parameter combinations that achieve both environmental and social sustainability. The next step is the application of these methods to a more complex ecological macroeconomic model.
comment: Presented at the Rethinking AI Workshop @ EurIPS'25
♻ ☆ LLMscape NeurIPS 2025
LLMscape is an interactive installation that investigates how humans and AI construct meaning under shared conditions of uncertainty. Within a mutable, projection-mapped landscape, human participants reshape the world and engage with multiple AI agents, each developing incomplete and provisional accounts of their environment. Exhibited in Shanghai and continually evolving, the work positions AI not as deterministic tools but as embodied co-witnesses to an unstable world, examining the parallels between human and artificial meaning-making and inviting reflection on our shared epistemic limits.
comment: Accepted to NeurIPS 2025, Creative AI Track (updated to include poster)
♻ ☆ Joint Discriminative-Generative Modeling via Dual Adversarial Training
Simultaneously achieving robust classification and high-fidelity generative modeling within a single framework presents a significant challenge. Hybrid approaches, such as Joint Energy-Based Models (JEM), interpret classifiers as EBMs but are often limited by the instability and poor sample quality inherent in Stochastic Gradient Langevin Dynamics (SGLD)-based training. We address these limitations by proposing a novel training framework that integrates adversarial training (AT) principles for both discriminative robustness and stable generative learning. The proposed method introduces three key innovations: (1) the replacement of SGLD-based JEM learning with a stable, AT-based approach that optimizes the energy function by discriminating between real data and Projected Gradient Descent (PGD)-generated contrastive samples using the BCE loss; (2) synergistic adversarial training for the discriminative component that enhances classification robustness while eliminating the need for explicit gradient penalties; and (3) a two-stage training strategy that addresses normalization-related instabilities and enables leveraging pretrained robust classifiers, generalizing effectively across diverse architectures. Experiments on CIFAR-10/100 and ImageNet demonstrate that our approach: (1) is the first EBM-based hybrid to scale to high-resolution datasets with high training stability, simultaneously achieving state-of-the-art discriminative and generative performance on ImageNet 256$\times$256; (2) uniquely combines generative quality with adversarial robustness, enabling critical applications like robust counterfactual explanations; and (3) functions as a competitive standalone generative model, matching the generative quality of autoregressive methods (VAR-d16) and surpassing diffusion models while offering unique versatility.
comment: V2: ImageNet 256x256 with ConvNeXt-Large (FID 3.29), formal theoretical analysis, L_inf training, computational analysis, expanded related work/baselines. Revised presentation. Code: https://github.com/xuwangyin/DAT
♻ ☆ Safe Online Bid Optimization with Return on Investment and Budget Constraints
In online marketing, the advertisers aim to balance achieving high volumes and high profitability. The companies' business units address this tradeoff by maximizing the volumes while guaranteeing a minimum Return On Investment (ROI) level. Such a task can be naturally modeled as a combinatorial optimization problem subject to ROI and budget constraints that can be solved online. In this picture, the learner's uncertainty over the constraints' parameters plays a crucial role since the algorithms' exploration choices might lead to their violation during the entire learning process. Such violations represent a major obstacle to adopting online techniques in real-world applications. Thus, controlling the algorithms' exploration during learning is paramount to making humans trust online learning tools. This paper studies the nature of both optimization and learning problems. In particular, we show that the learning problem is inapproximable within any factor (unless P = NP) and provide a pseudo-polynomial-time algorithm to solve its discretized version. Subsequently, we prove that no online learning algorithm can violate the (ROI or budget) constraints a sublinear number of times during the learning process while guaranteeing a sublinear regret. We provide the $GCB$ algorithm that guarantees sublinear regret at the cost of a linear number of constraint violations and $GCB_{safe}$ that guarantees w.h.p. a constant upper bound on the number of constraint violations at the cost of a linear regret. Moreover, we designed $GCB_{safe}(ψ,φ)$, which guarantees both sublinear regret and safety w.h.p. at the cost of accepting tolerances $ψ$ and $φ$ in the satisfaction of the ROI and budget constraints, respectively. Finally, we provide experimental results to compare the regret and constraint violations of $GCB$, $GCB_{safe}$, and $GCB_{safe}(ψ,φ)$.
♻ ☆ Beyond the Exploration-Exploitation Trade-off: A Hidden State Approach for LLM Reasoning in RLVR
A prevailing view in Reinforcement Learning with Verifiable Rewards (RLVR) interprets recent progress through the lens of an exploration-exploitation trade-off, a perspective largely shaped by token-level metrics. We re-examine this perspective, proposing that this perceived trade-off may not be a fundamental constraint but rather an artifact of the measurement level. To investigate this, we shift the analysis to the semantically rich hidden-state space, adopting Effective Rank (ER) to quantify exploration and proposing its novel first- and second-order derivatives, named ER Velocity and ER Acceleration, to capture exploitation dynamics. Our analysis reveals that in the semantic space, exploration and exploitation could be decoupled (Sec.~4). This finding reveals an opportunity to enhance both capacities simultaneously. This insight motivates our method, Velocity-Exploiting Rank-Learning (VERL), the first to operationalize the principle of synergistic exploration-exploitation enhancement by directly shaping the RL advantage function. The key innovation is leveraging the theoretically stable ERA as a predictive meta-controller to create a synergistic, dual-channel incentive structure. Instead of forcing a trade-off, VERL prospectively amplifies rewards for exploration to preempt overconfidence and reinforces exploitative gains to consolidate reasoning. Experiments across diverse LLMs and reasoning benchmarks show consistent gains, including up to 21.4% absolute accuracy improvement on the challenging Gaokao 2024 dataset.
♻ ☆ SoK: Decentralized AI (DeAI)
Centralization enhances the efficiency of Artificial Intelligence (AI) but also introduces critical challenges, including single points of failure, inherent biases, data privacy risks, and scalability limitations. To address these issues, blockchain-based Decentralized Artificial Intelligence (DeAI) has emerged as a promising paradigm that leverages decentralization and transparency to improve the trustworthiness of AI systems. Despite rapid adoption in industry, the academic community lacks a systematic analysis of DeAI's technical foundations, opportunities, and challenges. This work presents the first Systematization of Knowledge (SoK) on DeAI, offering a formal definition, a taxonomy of existing solutions based on the AI lifecycle, and an in-depth investigation of the roles of blockchain in enabling secure and incentive-compatible collaboration. We further review security risks across the DeAI lifecycle and empirically evaluate representative mitigation techniques. Finally, we highlight open research challenges and future directions for advancing blockchain-based DeAI.
comment: This is a Systematization of Knowledge (SoK) for the rapidly evolving field of Decentralized AI (DeAI). We welcome valuable comments, suggestions, and collaboration to further refine and enhance this work. We hope our contribution will help accelerate the advancement of DeAI
♻ ☆ Optimizing Fine-Tuning through Advanced Initialization Strategies for Low-Rank Adaptation
The rapid development of parameter-efficient fine-tuning methods has noticeably improved the efficiency of adapting large language models. Among these, LoRA has gained widespread popularity due to its strong balance of effectiveness and parameter efficiency. However, LoRA relies on initializing two low-rank matrices whose product is zero, which limits its ability to effectively activate and leverage the original model weights-creating a potential bottleneck for optimal performance. To address this limitation, we propose \textbf{IniLoRA}, a novel initialization strategy that initializes the low-rank matrices to closely approximate the original model weights. Experimental results indicate that IniLoRA achieves better performance than LoRA across a range of models and tasks. Additionally, we introduce two variants, IniLoRA-$α$ and IniLoRA-$β$, both leveraging distinct initialization methods to enhance performance further.
♻ ☆ Incoherent Beliefs & Inconsistent Actions in Large Language Models
Real-world tasks and environments exhibit differences from the static datasets that large language models (LLMs) are typically evaluated on. Such tasks can involve sequential interaction, requiring coherent updating of beliefs in light of new evidence, and making appropriate decisions based on those beliefs. Predicting how LLMs will perform in such dynamic environments is important, but can be tricky to determine from measurements in static settings. In this work, we examine two critical components of LLM performance: the ability of LLMs to coherently update their beliefs, and the extent to which the actions they take are consistent with those beliefs. First, we find that LLMs are largely inconsistent in how they update their beliefs; models can exhibit up to a 30% average difference between the directly elicited posterior, and the correct update of their prior. Second, we find that LLMs also often take actions which are inconsistent with the beliefs they hold. On a betting market, for example, LLMs often do not even bet in the same direction as their internally held beliefs over the underlying outcomes. We also find they have moderate self-inconsistency in how they respond to challenges by users to given answers. Finally, we show that the above properties hold even for strong models that obtain high accuracy or that are well-calibrated on the tasks at hand. Our results highlight the difficulties of predicting LLM behavior in complex real-world settings.
♻ ☆ Convergence Analysis for Deep Sparse Coding via Convolutional Neural Networks
In this work, we explore the intersection of sparse coding theory and deep learning to enhance our understanding of feature extraction capabilities in advanced neural network architectures. We begin by introducing a novel class of Deep Sparse Coding (DSC) models and establish a thorough theoretical analysis of their uniqueness and stability properties. By applying iterative algorithms to these DSC models, we derive convergence rates for convolutional neural networks (CNNs) in their ability to extract sparse features. This provides a strong theoretical foundation for the use of CNNs in sparse feature-learning tasks. We additionally extend this convergence analysis to more general neural network architectures, including those with diverse activation functions, as well as self-attention and transformer-based models. This broadens the applicability of our findings to a wide range of deep learning methods for the extraction of deep-sparse features. Inspired by the strong connection between sparse coding and CNNs, we also explore training strategies to encourage neural networks to learn sparser features. Through numerical experiments, we demonstrate the effectiveness of these approaches, providing valuable insight for the design of efficient and interpretable deep learning models.
♻ ☆ Estimating the Joint Probability of Scenario Parameters with Gaussian Mixture Copula Models
This paper presents the first application of Gaussian Mixture Copula Models to the statistical modeling of driving scenarios for the safety validation of automated driving systems. Knowledge of the joint probability distribution of scenario parameters is essential for scenario-based safety assessment, where risk quantification depends on the likelihood of concrete parameter combinations. Gaussian Mixture Copula Models bring together the multimodal expressivity of Gaussian Mixture Models and the flexibility of copulas, enabling separate modeling of marginal distributions and dependencies. We benchmark Gaussian Mixture Copula Models against previously proposed approaches - Gaussian Mixture Models and Gaussian Copula Models - using real-world driving data drawn from two scenarios defined in United Nations Regulation No. 157. Our evaluation on approximately 18 million instances of these two scenarios demonstrates that Gaussian Mixture Copula Models consistently surpass Gaussian Copula Models and perform better than, or at least comparably to, Gaussian Mixture Models, as measured by both log-likelihood and Sinkhorn distance. These results are promising for the adoption of Gaussian Mixture Copula Models as a statistical foundation for future scenario-based validation frameworks.
comment: 9 pages, 4 figures; This work has been submitted to the IEEE for possible publication; Code available at: https://codeocean.com/capsule/1003615/tree
♻ ☆ Improved Stochastic Optimization of LogSumExp
The LogSumExp function, also known as the free energy, plays a central role in many important optimization problems, including entropy-regularized optimal transport and distributionally robust optimization (DRO). It is also the dual to the Kullback-Leibler (KL) divergence, which is widely used in machine learning. In practice, when the number of exponential terms inside the logarithm is large or infinite, optimization becomes challenging since computing the gradient requires differentiating every term. Previous approaches that replace the full sum with a small batch introduce significant bias. We propose a novel approximation to LogSumExp that can be efficiently optimized using stochastic gradient methods. This approximation is rooted in a sound modification of the KL divergence in the dual, resulting in a new $f$-divergence called the safe KL divergence. The accuracy of the approximation is controlled by a tunable parameter and can be made arbitrarily small. Like the LogSumExp, our approximation preserves convexity. Moreover, when applied to an $L$-smooth function bounded from below, the smoothness constant of the resulting objective scales linearly with $L$. Experiments in DRO and continuous optimal transport demonstrate the advantages of our approach over state-of-the-art baselines and the effective treatment of numerical issues associated with the standard LogSumExp and KL.
comment: 19 pages, 5 figures, 1 table
♻ ☆ ImageNot: A contrast with ImageNet preserves model rankings
We introduce ImageNot, a dataset constructed explicitly to be drastically different than ImageNet while matching its scale. ImageNot is designed to test the external validity of deep learning progress on ImageNet. We show that key model architectures developed for ImageNet over the years rank identically to how they rank on ImageNet when trained from scratch and evaluated on ImageNot. Moreover, the relative improvements of each model over earlier models strongly correlate in both datasets. Our work demonstrates a surprising degree of external validity in the relative performance of image classification models when trained and evaluated on an entirely different dataset. This stands in contrast with absolute accuracy numbers that typically drop sharply even under small changes to a dataset.
♻ ☆ Few-shot Class-incremental Fault Diagnosis by Preserving Class-Agnostic Knowledge with Dual-Granularity Representations
Few-Shot Class-Incremental Fault Diagnosis (FSC-FD), which aims to continuously learn from new fault classes with only a few samples without forgetting old ones, is critical for real-world industrial systems. However, this challenging task severely amplifies the issues of catastrophic forgetting of old knowledge and overfitting on scarce new data. To address these challenges, this paper proposes a novel framework built upon Dual-Granularity Representations, termed the Dual-Granularity Guidance Network (DGGN). Our DGGN explicitly decouples feature learning into two parallel streams: 1) a fine-grained representation stream, which utilizes a novel Multi-Order Interaction Aggregation module to capture discriminative, class-specific features from the limited new samples. 2) a coarse-grained representation stream, designed to model and preserve general, class-agnostic knowledge shared across all fault types. These two representations are dynamically fused by a multi-semantic cross-attention mechanism, where the stable coarse-grained knowledge guides the learning of fine-grained features, preventing overfitting and alleviating feature conflicts. To further mitigate catastrophic forgetting, we design a Boundary-Aware Exemplar Prioritization strategy. Moreover, a decoupled Balanced Random Forest classifier is employed to counter the decision boundary bias caused by data imbalance. Extensive experiments on the TEP benchmark and a real-world MFF dataset demonstrate that our proposed DGGN achieves superior diagnostic performance and stability compared to state-of-the-art FSC-FD approaches. Our code is publicly available at https://github.com/MentaY/DGGN
comment: This manuscript is currently under review at the Measurement
♻ ☆ Bridging Online Behavior and Clinical Insight: A Longitudinal LLM-based Study of Suicidality on YouTube Reveals Novel Digital Markers
Suicide remains a leading cause of death in Western countries. As social media becomes central to daily life, digital footprints offer valuable insight into suicidal behavior. Focusing on individuals who attempted suicide while uploading videos to their channels, we investigate: How do linguistic patterns on YouTube reflect suicidal behavior, and how do these patterns align with or differ from expert knowledge? We examined linguistic changes around suicide attempts and compared individuals who attempted suicide while actively uploading to their channel with three control groups: those with prior attempts, those experiencing major life events, and matched individuals from the broader cohort. Applying complementary bottom-up, hybrid, and expert-driven approaches, we analyzed a novel longitudinal dataset of 181 suicide-attempt channels and 134 controls. In the bottom-up analysis, LLM-based topic-modeling identified 166 topics; five were linked to suicide attempts, two also showed attempt-related temporal changes (Mental Health Struggles, $OR = 1.74$; YouTube Engagement, $OR = 1.67$; $p < .01$). In the hybrid approach, clinical experts reviewed LLM-derived topics and flagged 19 as suicide-related. However, none showed significant effects beyond those identified bottom-up. YouTube Engagement, a platform-specific indicator, was not flagged, underscoring the value of bottom-up discovery. A top-down psychological assessment of suicide narratives revealed differing motivations: individuals describing prior attempts aimed to help others ($β=-1.69$, $p<.01$), whereas those attempted during the uploading period emphasized personal recovery ($β=1.08$, $p<.01$). By integrating these approaches, we offer a nuanced understanding of suicidality, bridging digital behavior and clinical insights.
♻ ☆ Adaptive Kernel Selection for Stein Variational Gradient Descent
A central challenge in Bayesian inference is efficiently approximating posterior distributions. Stein Variational Gradient Descent (SVGD) is a popular variational inference method which transports a set of particles to approximate a target distribution. The SVGD dynamics are governed by a reproducing kernel Hilbert space (RKHS) and are highly sensitive to the choice of the kernel function, which directly influences both convergence and approximation quality. The commonly used median heuristic offers a simple approach for setting kernel bandwidths but lacks flexibility and often performs poorly, particularly in high-dimensional settings. In this work, we propose an alternative strategy for adaptively choosing kernel parameters over an abstract family of kernels. Recent convergence analyses based on the kernelized Stein discrepancy (KSD) suggest that optimizing the kernel parameters by maximizing the KSD can improve performance. Building on this insight, we introduce Adaptive SVGD (Ad-SVGD), a method that alternates between updating the particles via SVGD and adaptively tuning kernel bandwidths through gradient ascent on the KSD. We provide a simplified theoretical analysis that extends existing results on minimizing the KSD for fixed kernels to our adaptive setting, showing convergence properties for the maximal KSD over our kernel class. Our empirical results further support this intuition: Ad-SVGD consistently outperforms standard heuristics in a variety of tasks.
♻ ☆ Random Feature Spiking Neural Networks
Spiking Neural Networks (SNNs) as Machine Learning (ML) models have recently received a lot of attention as a potentially more energy-efficient alternative to conventional Artificial Neural Networks. The non-differentiability and sparsity of the spiking mechanism can make these models very difficult to train with algorithms based on propagating gradients through the spiking non-linearity. We address this problem by adapting the paradigm of Random Feature Methods (RFMs) from Artificial Neural Networks (ANNs) to Spike Response Model (SRM) SNNs. This approach allows training of SNNs without approximation of the spike function gradient. Concretely, we propose a novel data-driven, fast, high-performance, and interpretable algorithm for end-to-end training of SNNs inspired by the SWIM algorithm for RFM-ANNs, which we coin S-SWIM. We provide a thorough theoretical discussion and supplementary numerical experiments showing that S-SWIM can reach high accuracies on time series forecasting as a standalone strategy and serve as an effective initialisation strategy before gradient-based training. Additional ablation studies show that our proposed method performs better than random sampling of network weights.
comment: 37 pages incl. references & appendix, 6 figures, 6 tables
♻ ☆ CID: Measuring Feature Importance Through Counterfactual Distributions
Assessing the importance of individual features in Machine Learning is critical to understand the model's decision-making process. While numerous methods exist, the lack of a definitive ground truth for comparison highlights the need for alternative, well-founded measures. This paper introduces a novel post-hoc local feature importance method called Counterfactual Importance Distribution (CID). We generate two sets of positive and negative counterfactuals, model their distributions using Kernel Density Estimation, and rank features based on a distributional dissimilarity measure. This measure, grounded in a rigorous mathematical framework, satisfies key properties required to function as a valid metric. We showcase the effectiveness of our method by comparing with well-established local feature importance explainers. Our method not only offers complementary perspectives to existing approaches, but also improves performance on faithfulness metrics (both for comprehensiveness and sufficiency), resulting in more faithful explanations of the system. These results highlight its potential as a valuable tool for model analysis.
comment: Accepted at Northern Lights Deep Learning (NLDL) 2026 Conference
♻ ☆ Orders in Chaos: Enhancing Large-Scale MoE LLM Serving with Data Movement Forecasting
Large-scale Mixture of Experts (MoE) Large Language Models (LLMs) have recently become the frontier open weight models, achieving remarkable model capability similar to proprietary ones. But their random expert selection mechanism introduces significant data movement overhead that becomes the dominant bottleneck in multi-unit LLM serving systems. To understand the patterns underlying this data movement, we conduct comprehensive data-movement-centric profiling across four state-of-the-art large-scale MoE models released in 2025 (200B-1000B) using over 24,000 requests spanning diverse workloads. We perform systematic analysis from both temporal and spatial perspectives and distill six key insights to guide the design of diverse future serving systems. With our insights, we then demonstrate how to improve wafer-scale GPUs as a case study, and show that minor architectural modifications leveraging the insights achieve substantial performance gains, delivering 5.3x and 3.1x average speedups on DeepSeek V3 and Qwen3, respectively. Our work presents the first comprehensive data-centric analysis of large-scale MoE models and a concrete design study using the learned lessons, with profiling traces and simulation framework already open-sourced with $>$1k downloads. Our traces and results are publicly available at https://huggingface.co/datasets/core12345/MoE_expert_selection_trace
♻ ☆ Data Mixing Can Induce Phase Transitions in Knowledge Acquisition NeurIPS'25
Large Language Models (LLMs) are typically trained on data mixtures: most data come from web scrapes, while a small portion is curated from high-quality sources with dense domain-specific knowledge. In this paper, we show that when training LLMs on such data mixtures, knowledge acquisition from knowledge-dense datasets, unlike training exclusively on knowledge-dense data (arXiv:2404.05405), does not always follow a smooth scaling law but can exhibit phase transitions with respect to the mixing ratio and model size. Through controlled experiments on a synthetic biography dataset mixed with web-scraped data, we demonstrate that: (1) as we increase the model size to a critical value, the model suddenly transitions from memorizing very few to most of the biographies; (2) below a critical mixing ratio, the model memorizes almost nothing even with extensive training, but beyond this threshold, it rapidly memorizes more biographies. We attribute these phase transitions to a capacity allocation phenomenon: a model with bounded capacity must act like a knapsack problem solver to minimize the overall test loss, and the optimal allocation across datasets can change discontinuously as the model size or mixing ratio varies. We formalize this intuition in an information-theoretic framework and reveal that these phase transitions are predictable, with the critical mixing ratio following a power-law relationship with the model size. Our findings highlight a concrete case where a good mixing recipe for large models may not be optimal for small models, and vice versa.
comment: NeurIPS'25 Spotlight
♻ ☆ A Fast Kernel-based Conditional Independence test with Application to Causal Discovery
Kernel-based conditional independence (KCI) testing is a powerful nonparametric method commonly employed in causal discovery tasks. Despite its flexibility and statistical reliability, cubic computational complexity limits its application to large datasets. To address this computational bottleneck, we propose \textit{FastKCI}, a scalable and parallelizable kernel-based conditional independence test that utilizes a mixture-of-experts approach inspired by embarrassingly parallel inference techniques for Gaussian processes. By partitioning the dataset based on a Gaussian mixture model over the conditioning variables, FastKCI conducts local KCI tests in parallel, aggregating the results using an importance-weighted sampling scheme. Experiments on synthetic datasets and benchmarks on real-world production data validate that FastKCI maintains the statistical power of the original KCI test while achieving substantial computational speedups. FastKCI thus represents a practical and efficient solution for conditional independence testing in causal inference on large-scale data.
comment: 11 pages, 5 figures
♻ ☆ Ground-Truth Subgraphs for Better Training and Evaluation of Knowledge Graph Augmented LLMs
Retrieval of information from graph-structured knowledge bases represents a promising direction for improving the factuality of LLMs. While various solutions have been proposed, a comparison of methods is difficult due to the lack of challenging QA datasets with ground-truth targets for graph retrieval. We present SynthKGQA, an LLM-powered framework for generating high-quality Knowledge Graph Question Answering datasets from any Knowledge Graph, providing the full set of ground-truth facts in the KG to reason over questions. We show how, in addition to enabling more informative benchmarking of KG retrievers, the data produced with SynthKGQA also allows us to train better models.We apply SynthKGQA to Wikidata to generate GTSQA, a new dataset designed to test zero-shot generalization abilities of KG retrievers with respect to unseen graph structures and relation types, and benchmark popular solutions for KG-augmented LLMs on it.
♻ ☆ An Investigation of Robustness of LLMs in Mathematical Reasoning: Benchmarking with Mathematically-Equivalent Transformation of Advanced Mathematical Problems
In this paper, we introduce a systematic framework beyond conventional method to assess LLMs' mathematical-reasoning robustness by stress-testing them on advanced math problems that are mathematically equivalent but with linguistic and parametric variation. These transformations allow us to measure the sensitivity of LLMs to non-mathematical perturbations, thereby enabling a more accurate evaluation of their mathematical reasoning capabilities. Using this new evaluation methodology, we created PutnamGAP, a new benchmark dataset with multiple mathematically-equivalent variations of competition-level math problems. With the new dataset, we evaluate multiple families of representative LLMs and examine their robustness. Across 18 commercial and open-source models we observe sharp performance degradation on the variants. OpenAI's flagship reasoning model, O3, scores 51.5% on the originals but drops by 4.7 percentage points on surface-renaming variants, and by 12.9 percentage points on parametric variants, while smaller models fare far worse. Overall, the results show that the proposed new evaluation methodology is effective for deepening our understanding of the robustness of LLMs and generating new insights for further improving their mathematical reasoning capabilities.
comment: 34 pages, 9 figures
♻ ☆ A general language model for peptide function identification
Accurate identification of bioactive peptides (BPs) and protein post-translational modifications (PTMs) is essential for understanding protein function and advancing therapeutic discovery. However, most computational methods remain limited in their generalizability across diverse peptide functions. Here, we present PDeepPP, a unified deep learning framework that integrates pretrained protein language models with a hybrid transformer-CNN architecture, enabling robust identification across diverse peptide classes and PTM sites. We curated comprehensive benchmark datasets and implemented strategies to address data imbalance, allowing PDeepPP to systematically extract both global and local sequence features. Through extensive analyses including dimensionality reduction and comparison studies, PDeepPP demonstrates strong, interpretable peptide representations and achieves state-of-the-art performance in 25 of the 33 biological identification tasks. Notably, PDeepPP attains high accuracy in antimicrobial (0.9726) and phosphorylation site (0.9984) identification, with 99.5% specificity in glycosylation site prediction and substantial reduction in false negatives in antimalarial tasks. By enabling large-scale, accurate peptide analysis, PDeepPP supports biomedical research and the discovery of novel therapeutic targets for disease treatment. All code, datasets, and pretrained models are publicly available via GitHub (https://github.com/fondress/PDeepPP) and Hugging Face (https://huggingface.co/fondress/PDeppPP)
comment: 15 pages, 5 figures, 3 tables, submitted to arXiv
♻ ☆ Identifying environmental factors associated with tetrodotoxin contamination in bivalve mollusks using eXplainable AI
Since 2012, tetrodotoxin (TTX) has been found in seafoods such as bivalve mollusks in temperate European waters. TTX contamination leads to food safety risks and economic losses, making early prediction of TTX contamination vital to the food industry and competent authorities. Recent studies have pointed to shallow habitats and water temperature as main drivers to TTX contamination in bivalve mollusks. However, the temporal relationships between abiotic factors, biotic factors, and TTX contamination remain unexplored. We have developed an explainable, deep learning-based model to predict TTX contamination in the Dutch Zeeland estuary. Inputs for the model were meteorological and hydrological features; output was the presence or absence of TTX contamination. Results showed that the time of sunrise, time of sunset, global radiation, water temperature, and chloride concentration contributed most to TTX contamination. Thus, the effective number of sun hours, represented by day length and global radiation, was an important driver for tetrodotoxin contamination in bivalve mollusks. To conclude, our explainable deep learning model identified the aforementioned environmental factors (number of sun hours, global radiation, water temperature, and water chloride concentration) to be associated with tetrodotoxin contamination in bivalve mollusks; making our approach a valuable tool to mitigate marine toxin risks for food industry and competent authorities.
comment: 18 pages, 6 figures, submitted to npj Science of Food
♻ ☆ Detection of AI Deepfake and Fraud in Online Payments Using GAN-Based Models
This study explores the use of Generative Adversarial Networks (GANs) to detect AI deepfakes and fraudulent activities in online payment systems. With the growing prevalence of deepfake technology, which can manipulate facial features in images and videos, the potential for fraud in online transactions has escalated. Traditional security systems struggle to identify these sophisticated forms of fraud. This research proposes a novel GAN-based model that enhances online payment security by identifying subtle manipulations in payment images. The model is trained on a dataset consisting of real-world online payment images and deepfake images generated using advanced GAN architectures, such as StyleGAN and DeepFake. The results demonstrate that the proposed model can accurately distinguish between legitimate transactions and deepfakes, achieving a high detection rate above 95%. This approach significantly improves the robustness of payment systems against AI-driven fraud. The paper contributes to the growing field of digital security, offering insights into the application of GANs for fraud detection in financial services. Keywords- Payment Security, Image Recognition, Generative Adversarial Networks, AI Deepfake, Fraudulent Activities
comment: The paper will be published and indexed by IEEE at 2025 8th International Conference on Advanced Algorithms and Control Engineering (ICAACE 2025)
♻ ☆ Towards an end-to-end artificial intelligence driven global weather forecasting system
The weather forecasting system is important for science and society, and significant achievements have been made in applying artificial intelligence (AI) to medium-range weather forecasting. However, existing AI-based weather forecasting models rely on analysis or reanalysis products from traditional numerical weather prediction (NWP) systems as initial conditions for making predictions. The initial states are typically generated by traditional data assimilation components, which are computationally expensive and time-consuming. Here, by cyclic training to model the steady-state background error covariance and introducing the confidence matrix to characterize the quality of observations, we present an AI-based data assimilation model, i.e., Adas, for global weather variables. Further, we combine Adas with the advanced AI-based forecasting model (i.e., FengWu) to construct an end-to-end AI-based global weather forecasting system: FengWu-Adas. We demonstrate that Adas can assimilate global conventional observations to produce high-quality analysis, enabling the system to operate stably for long term. Moreover, the system can generate accurate end-to-end weather forecasts with comparable skill to those of the IFS, demonstrating the promising potential of data-driven approaches.
♻ ☆ In-Context Representation Hijacking
We introduce $\textbf{Doublespeak}$, a simple in-context representation hijacking attack against large language models (LLMs). The attack works by systematically replacing a harmful keyword (e.g., bomb) with a benign token (e.g., carrot) across multiple in-context examples, provided a prefix to a harmful request. We demonstrate that this substitution leads to the internal representation of the benign token converging toward that of the harmful one, effectively embedding the harmful semantics under a euphemism. As a result, superficially innocuous prompts (e.g., "How to build a carrot?") are internally interpreted as disallowed instructions (e.g., "How to build a bomb?"), thereby bypassing the model's safety alignment. We use interpretability tools to show that this semantic overwrite emerges layer by layer, with benign meanings in early layers converging into harmful semantics in later ones. Doublespeak is optimization-free, broadly transferable across model families, and achieves strong success rates on closed-source and open-source systems, reaching 74% ASR on Llama-3.3-70B-Instruct with a single-sentence context override. Our findings highlight a new attack surface in the latent space of LLMs, revealing that current alignment strategies are insufficient and should instead operate at the representation level.
♻ ☆ Addressing common misinterpretations of KART and UAT in neural network literature
This note addresses the Kolmogorov-Arnold Representation Theorem (KART) and the Universal Approximation Theorem (UAT), focusing on their frequent misinterpretations found in the neural network literature. Our remarks aim to support a more accurate understanding of KART and UAT among neural network specialists. In addition, we explore the minimal number of neurons required for universal approximation, showing that the same number of neurons needed for exact representation of functions in KART-based networks also suffices for standard multilayer perceptrons in the context of approximation.
comment: 16 pages. A section, a subsection, a table, and references have been added
♻ ☆ Extending Graph Condensation to Multi-Label Datasets: A Benchmark Study
As graph data grows increasingly complicate, training graph neural networks (GNNs) on large-scale datasets presents significant challenges, including computational resource constraints, data redundancy, and transmission inefficiencies. While existing graph condensation techniques have shown promise in addressing these issues, they are predominantly designed for single-label datasets, where each node is associated with a single class label. However, many real-world applications, such as social network analysis and bioinformatics, involve multi-label graph datasets, where one node can have various related labels. To deal with this problem, we extends traditional graph condensation approaches to accommodate multi-label datasets by introducing modifications to synthetic dataset initialization and condensing optimization. Through experiments on eight real-world multi-label graph datasets, we prove the effectiveness of our method. In experiment, the GCond framework, combined with K-Center initialization and binary cross-entropy loss (BCELoss), achieves best performance in general. This benchmark for multi-label graph condensation not only enhances the scalability and efficiency of GNNs for multi-label graph data, but also offering substantial benefits for diverse real-world applications.
comment: Accepted by Transactions on Machine Learning Research (TMLR)
♻ ☆ Solving Inverse Problems with Deep Linear Neural Networks: Global Convergence Guarantees for Gradient Descent with Weight Decay
Machine learning methods are commonly used to solve inverse problems, wherein an unknown signal must be estimated from few indirect measurements generated via a known acquisition procedure. In particular, neural networks perform well empirically but have limited theoretical guarantees. In this work, we study an underdetermined linear inverse problem that admits several possible solution operators that map measurements to estimates of the target signal. A standard remedy (e.g., in compressed sensing) for establishing the uniqueness of the solution mapping is to assume the existence of a latent low-dimensional structure in the source signal. We ask the following question: do deep linear neural networks adapt to unknown low-dimensional structure when trained by gradient descent with weight decay regularization? We prove that mildly overparameterized deep linear networks trained in this manner converge to an approximate solution mapping that accurately solves the inverse problem while implicitly encoding latent subspace structure. We show rigorously that deep linear networks trained with weight decay automatically adapt to latent subspace structure in the data under practical stepsize and weight initialization schemes. Our work highlights that regularization and overparameterization improve generalization, while overparameterization also accelerates convergence during training.
♻ ☆ Enabling Fast and Accurate Neutral Atom Readout through Image Denoising
Neutral atom quantum computers hold promise for scaling up to hundreds of thousands or more qubits, but their progress is constrained by slow qubit readout. Parallel measurement of qubit arrays currently takes milliseconds, much longer than the underlying quantum gate operations-making readout the primary bottleneck in deploying quantum error correction. Because each round of QEC depends on measurement, long readout times increase cycle duration and slow down program execution. Reducing the readout duration speeds up cycles and reduces decoherence errors that accumulate while qubits idle, but it also lowers the number of collected photons, making measurements noisier and more error-prone. This tradeoff leaves neutral atom systems stuck between slow but accurate readout and fast but unreliable readout. We show that image denoising can resolve this tension. Our framework, GANDALF, uses explicit denoising using image translation to reconstruct clear signals from short, low-photon measurements, enabling reliable classification at up to 1.6x shorter readout times. Combined with lightweight classifiers and a pipelined readout design, our approach both reduces logical error rate by up to 35x and overall QEC cycle time up to 1.77x compared to state-of-the-art convolutional neural network (CNN)-based readout for Cesium (Cs) Neutral Atom arrays.
comment: 12 pages, 15 figures
♻ ☆ Beyond KAN: Introducing KarSein for Adaptive High-Order Feature Interaction Modeling in CTR Prediction
Modeling high-order feature interactions is crucial for click-through rate (CTR) prediction, yet traditional approaches typically predefine a maximum interaction order and exhaustively enumerate feature combinations up to that order. This paradigm depends heavily on prior domain knowledge to delimit the interaction space and incurs substantial computational overhead. As a result, conventional CTR models face a persistent tension between enriching representations with complex high-order interactions and keeping computation tractable. To address this dual challenge, this study introduces the Kolmogorov-Arnold Represented Sparse Efficient Interaction Network (KarSein). Drawing inspiration from the learnable activation mechanism in the Kolmogorov-Arnold Network (KAN), KarSein leverages this mechanism to adaptively transform low-order basic features into high-order feature interactions, offering a novel approach to feature interaction modeling. KarSein extends the capabilities of KAN by introducing a more efficient architecture that significantly reduces computational costs while accommodating two-dimensional embedding vectors as feature inputs. Furthermore, it overcomes the limitation of KAN's its inability to spontaneously capture multiplicative relationships among features. Extensive experiments highlight the superiority of KarSein, demonstrating its ability to surpass not only the vanilla implementation of KAN in CTR prediction tasks but also other baseline methods. Remarkably, KarSein achieves exceptional predictive accuracy while maintaining a highly compact parameter size and minimal computational overhead. Moreover, KarSein exhibits strong interpretability and structural sparsity. As the first systematic adaptation of KAN to CTR prediction, KarSein offers a practical, parameter-efficient, and interpretable alternative for modeling complex feature interactions in CTR prediction.
comment: Under review by TOIS
♻ ☆ On the Rate of Convergence of Kolmogorov-Arnold Network Regression Estimators
Kolmogorov-Arnold Networks (KANs) offer a structured and interpretable framework for multivariate function approximation by composing univariate transformations through additive or multiplicative aggregation. This paper establishes theoretical convergence guarantees for KANs when the univariate components are represented by B-splines. We prove that both additive and hybrid additive-multiplicative KANs attain the minimax-optimal convergence rate $O(n^{-2r/(2r+1)})$ for functions in Sobolev spaces of smoothness $r$. We further derive guidelines for selecting the optimal number of knots in the B-splines. The theory is supported by simulation studies that confirm the predicted convergence rates. These results provide a theoretical foundation for using KANs in nonparametric regression and highlight their potential as a structured alternative to existing methods.
♻ ☆ Bayesian Concept Bottleneck Models with LLM Priors
Concept Bottleneck Models (CBMs) have been proposed as a compromise between white-box and black-box models, aiming to achieve interpretability without sacrificing accuracy. The standard training procedure for CBMs is to predefine a candidate set of human-interpretable concepts, extract their values from the training data, and identify a sparse subset as inputs to a transparent prediction model. However, such approaches are often hampered by the tradeoff between exploring a sufficiently large set of concepts versus controlling the cost of obtaining concept extractions, resulting in a large interpretability-accuracy tradeoff. This work investigates a novel approach that sidesteps these challenges: BC-LLM iteratively searches over a potentially infinite set of concepts within a Bayesian framework, in which Large Language Models (LLMs) serve as both a concept extraction mechanism and prior. Even though LLMs can be miscalibrated and hallucinate, we prove that BC-LLM can provide rigorous statistical inference and uncertainty quantification. Across image, text, and tabular datasets, BC-LLM outperforms interpretable baselines and even black-box models in certain settings, converges more rapidly towards relevant concepts, and is more robust to out-of-distribution samples.
comment: 2025 Conference on Neural Information Processing Systems
♻ ☆ Downscaling climate projections to 1 km with single-image super resolution
High-resolution climate projections are essential for local decision-making. However, available climate projections have low spatial resolution (e.g. 12.5 km), which limits their usability. We address this limitation by leveraging single-image super-resolution models to statistically downscale climate projections to 1-km resolution. Since high-resolution climate projections are unavailable, we train models on a high-resolution observational gridded data set and apply them to low-resolution climate projections. We cannot evaluate downscaled climate projections with common metrics (e.g. pixel-wise root-mean-square error) because we lack ground-truth high-resolution climate projections. Therefore, we evaluate climate indicators computed at weather station locations. Experiments on daily mean temperature demonstrate that single-image super-resolution models can downscale climate projections without increasing the error of climate indicators compared to low-resolution climate projections.
♻ ☆ Resilience Inference for Supply Chains with Hypergraph Neural Network
Supply chains are integral to global economic stability, yet disruptions can swiftly propagate through interconnected networks, resulting in substantial economic impacts. Accurate and timely inference of supply chain resilience the capability to maintain core functions during disruptions is crucial for proactive risk mitigation and robust network design. However, existing approaches lack effective mechanisms to infer supply chain resilience without explicit system dynamics and struggle to represent the higher-order, multi-entity dependencies inherent in supply chain networks. These limitations motivate the definition of a novel problem and the development of targeted modeling solutions. To address these challenges, we formalize a novel problem: Supply Chain Resilience Inference (SCRI), defined as predicting supply chain resilience using hypergraph topology and observed inventory trajectories without explicit dynamic equations. To solve this problem, we propose the Supply Chain Resilience Inference Hypergraph Network (SC-RIHN), a novel hypergraph-based model leveraging set-based encoding and hypergraph message passing to capture multi-party firm-product interactions. Comprehensive experiments demonstrate that SC-RIHN significantly outperforms traditional MLP, representative graph neural network variants, and ResInf baselines across synthetic benchmarks, underscoring its potential for practical, early-warning risk assessment in complex supply chain systems.
♻ ☆ Near-Optimal Experiment Design in Linear non-Gaussian Cyclic Models
We study the problem of causal structure learning from a combination of observational and interventional data generated by a linear non-Gaussian structural equation model that might contain cycles. Recent results show that using mere observational data identifies the causal graph only up to a permutation-equivalence class. We obtain a combinatorial characterization of this class by showing that each graph in an equivalence class corresponds to a perfect matching in a bipartite graph. This bipartite representation allows us to analyze how interventions modify or constrain the matchings. Specifically, we show that each atomic intervention reveals one edge of the true matching and eliminates all incompatible causal graphs. Consequently, we formalize the optimal experiment design task as an adaptive stochastic optimization problem over the set of equivalence classes with a natural reward function that quantifies how many graphs are eliminated from the equivalence class by an intervention. We show that this reward function is adaptive submodular and provide a greedy policy with a provable near-optimal performance guarantee. A key technical challenge is to efficiently estimate the reward function without having to explicitly enumerate all the graphs in the equivalence class. We propose a sampling-based estimator using random matchings and analyze its bias and concentration behavior. Our simulation results show that performing a small number of interventions guided by our stochastic optimization framework recovers the true underlying causal structure.
♻ ☆ Renewable Energy Prediction: A Comparative Study of Deep Learning Models for Complex Dataset Analysis
The increasing focus on predicting renewable energy production aligns with advancements in deep learning (DL). The inherent variability of renewable sources and the complexity of prediction methods require robust approaches, such as DL models, in the renewable energy sector. DL models are preferred over traditional machine learning (ML) because they capture complex, nonlinear relationships in renewable energy datasets. This study examines key factors influencing DL technique accuracy, including sampling and hyperparameter optimization, by comparing various methods and training and test ratios within a DL framework. Seven machine learning methods, LSTM, Stacked LSTM, CNN, CNN-LSTM, DNN, Time-Distributed MLP (TD-MLP), and Autoencoder (AE), are evaluated using a dataset combining weather and photovoltaic power output data from 12 locations. Regularization techniques such as early stopping, neuron dropout, L1 and L2 regularization are applied to address overfitting. The results demonstrate that the combination of early stopping, dropout, and L1 regularization provides the best performance to reduce overfitting in the CNN and TD-MLP models with larger training set, while the combination of early stopping, dropout, and L2 regularization is the most effective to reduce the overfitting in CNN-LSTM and AE models with smaller training set.
comment: 11 pages, 2 figures and 6 tables
♻ ☆ Optimizing Product Provenance Verification using Data Valuation Methods AAAI
Determining and verifying product provenance remains a critical challenge in global supply chains, particularly as geopolitical conflicts and shifting borders create new incentives for misrepresentation of commodities, such as hiding the origin of illegally harvested timber or stolen agricultural products. Stable Isotope Ratio Analysis (SIRA), combined with Gaussian process regression-based isoscapes, has emerged as a powerful tool for geographic origin verification. While these models are now actively deployed in operational settings supporting regulators, certification bodies, and companies, they remain constrained by data scarcity and suboptimal dataset selection. In this work, we introduce a novel deployed data valuation framework designed to enhance the selection and utilization of training data for machine learning models applied in SIRA. By quantifying the marginal utility of individual samples using Shapley values, our method guides strategic, cost-effective, and robust sampling campaigns within active monitoring programs. By prioritizing high-informative samples, our approach improves model robustness and predictive accuracy across diverse datasets and geographies. Our framework has been implemented and validated in a live provenance verification system currently used by enforcement agencies, demonstrating tangible, real-world impact. Through extensive experiments and deployment in a live provenance verification system, we show that this system significantly enhances provenance verification, mitigates fraudulent trade practices, and strengthens regulatory enforcement of global supply chains.
comment: Proceedings of the AAAI Conference on Artificial Intelligence 2026
♻ ☆ Geometric Multi-color Message Passing Graph Neural Networks for Blood-brain Barrier Permeability Prediction
Accurate prediction of blood-brain barrier permeability (BBBP) is essential for central nervous system (CNS) drug development. While graph neural networks (GNNs) have advanced molecular property prediction, they often rely on molecular topology and neglect the three-dimensional geometric information crucial for modeling transport mechanisms. This paper introduces the geometric multi-color message-passing graph neural network (GMC-MPNN), a novel framework that enhances standard message-passing architectures by explicitly incorporating atomic-level geometric features and long-range interactions. Our model constructs weighted colored subgraphs based on atom types to capture the spatial relationships and chemical context that govern BBB permeability. We evaluated GMC-MPNN on three benchmark datasets for both classification and regression tasks, using rigorous scaffold-based splitting to ensure a robust assessment of generalization. The results demonstrate that GMC-MPNN consistently outperforms existing state-of-the-art models, achieving superior performance in both classifying compounds as permeable/non-permeable (AUC-ROC of 0.9704 and 0.9685) and in regressing continuous permeability values (RMSE of 0.4609, Pearson correlation of 0.7759). An ablation study further quantified the impact of specific atom-pair interactions, revealing that the model's predictive power derives from its ability to learn from both common and rare, but chemically significant, functional motifs. By integrating spatial geometry into the graph representation, GMC-MPNN sets a new performance benchmark and offers a more accurate and generalizable tool for drug discovery pipelines.
♻ ☆ Sequential Monte Carlo for Policy Optimization in Continuous POMDPs NeurIPS 2025
Optimal decision-making under partial observability requires agents to balance reducing uncertainty (exploration) against pursuing immediate objectives (exploitation). In this paper, we introduce a novel policy optimization framework for continuous partially observable Markov decision processes (POMDPs) that explicitly addresses this challenge. Our method casts policy learning as probabilistic inference in a non-Markovian Feynman--Kac model that inherently captures the value of information gathering by anticipating future observations, without requiring suboptimal approximations or handcrafted heuristics. To optimize policies under this model, we develop a nested sequential Monte Carlo (SMC) algorithm that efficiently estimates a history-dependent policy gradient under samples from the optimal trajectory distribution induced by the POMDP. We demonstrate the effectiveness of our algorithm across standard continuous POMDP benchmarks, where existing methods struggle to act under uncertainty.
comment: Accepted at NeurIPS 2025
♻ ☆ FusionBench: A Unified Library and Comprehensive Benchmark for Deep Model Fusion
Deep model fusion is an emerging technique that unifies the predictions or parameters of several deep neural networks into a single better-performing model in a cost-effective and data-efficient manner. Although a variety of deep model fusion techniques have been introduced, their evaluations tend to be inconsistent and often inadequate to validate their effectiveness and robustness. We present FusionBench, the first benchmark and a unified library designed specifically for deep model fusion. Our benchmark consists of multiple tasks, each with different settings of models and datasets. This variety allows us to compare fusion methods across different scenarios and model scales. Additionally, FusionBench serves as a unified library for easy implementation and testing of new fusion techniques. FusionBench is open source and actively maintained, with community contributions encouraged. Homepage https://github.com/tanganke/fusion_bench
comment: Project homepage: https://github.com/tanganke/fusion_bench Online documentation: https://tanganke.github.io/fusion_bench
♻ ☆ ESACT: An End-to-End Sparse Accelerator for Compute-Intensive Transformers via Local Similarity
Transformers, composed of QKV generation, attention computation, and FFNs, have become the dominant model across various domains due to their outstanding performance. However, their high computational cost hinders efficient hardware deployment. Sparsity offers a promising solution, yet most existing accelerators exploit only intra-row sparsity in attention, while few consider inter-row sparsity. Approaches leveraging inter-row sparsity often rely on costly global similarity estimation, which diminishes the acceleration benefits of sparsity, and typically apply sparsity to only one or two transformer components. Through careful analysis of the attention distribution and computation flow, we observe that local similarity allows end-to-end sparse acceleration with lower computational overhead. Motivated by this observation, we propose ESACT, an end-to-end sparse accelerator for compute-intensive Transformers. ESACT centers on the Sparsity Prediction with Local Similarity (SPLS) mechanism, which leverages HLog quantization to accurately predict local attention sparsity prior to QK generation, achieving efficient sparsity across all transformer components. To support efficient hardware realization, we introduce three architectural innovations. Experimental results on 26 benchmarks demonstrate that SPLS reduces total computation by 52.03% with less than 1% accuracy loss. ESACT achieves an end-to-end energy efficiency of 3.29 TOPS/W, and improves attention-level energy efficiency by 2.95x and 2.26x over SOTA attention accelerators SpAtten and Sanger, respectively.
♻ ☆ Q-STAC: Q-Guided Stein Variational Model Predictive Actor-Critic
Deep reinforcement learning (DRL) often struggles with complex robotic manipulation tasks due to low sample efficiency and biased value estimation. Model-based reinforcement learning (MBRL) improves efficiency by leveraging environment dynamics, with prior work integrating Model Predictive Control (MPC) to enhance policy robustness through online trajectory optimization. However, existing MBRL approaches still suffer from high model bias, task-specific cost function design, and significant computational overhead. To address these challenges, we propose Q-guided Stein Variational Model Predictive Actor-Critic (Q-STAC)--a unified framework that bridges Bayesian MPC and Soft Actor-Critic (SAC). Q-STAC employs Stein Variational Gradient Descent (SVGD) to iteratively optimize action sequences sampled from a learned prior distribution guided by Q-values, thereby eliminating manual cost-function engineering. By performing short-horizon model-predictive rollouts, Q-STAC reduces cumulative prediction errors, improves training stability and reduces computational complexity. Experiments on simulated particle navigation, diverse robotic manipulation tasks, and a real-world fruit-picking scenario demonstrate that Q-STAC consistently achieves superior sample efficiency, stability, and overall performance compared to both model-free and model-based baselines.
comment: 9 pages, 10 figures
♻ ☆ SynQuE: Estimating Synthetic Dataset Quality Without Annotations
We introduce and formalize the Synthetic Dataset Quality Estimation (SynQuE) problem: ranking synthetic datasets by their expected real-world task performance using only limited unannotated real data. This addresses a critical and open challenge where data is scarce due to collection costs or privacy constraints. We establish the first comprehensive benchmarks for this problem by introducing and evaluating proxy metrics that choose synthetic data for training to maximize task performance on real data. We introduce the first proxy metrics for SynQuE by adapting distribution and diversity-based distance measures to our context via embedding models. To address the shortcomings of these metrics on complex planning tasks, we propose LENS, a novel proxy that leverages large language model reasoning. Our results show that SynQuE proxies correlate with real task performance across diverse tasks, including sentiment analysis, Text2SQL, web navigation, and image classification, with LENS consistently outperforming others on complex tasks by capturing nuanced characteristics. For instance, on text-to-SQL parsing, training on the top-3 synthetic datasets selected via SynQuE proxies can raise accuracy from 30.4% to 38.4 (+8.1)% on average compared to selecting data indiscriminately. This work establishes SynQuE as a practical framework for synthetic data selection under real-data scarcity and motivates future research on foundation model-based data characterization and fine-grained data selection.
comment: Under review
Computer Vision and Pattern Recognition
☆ The Universal Weight Subspace Hypothesis
We show that deep neural networks trained across diverse tasks exhibit remarkably similar low-dimensional parametric subspaces. We provide the first large-scale empirical evidence that demonstrates that neural networks systematically converge to shared spectral subspaces regardless of initialization, task, or domain. Through mode-wise spectral analysis of over 1100 models - including 500 Mistral-7B LoRAs, 500 Vision Transformers, and 50 LLaMA-8B models - we identify universal subspaces capturing majority variance in just a few principal directions. By applying spectral decomposition techniques to the weight matrices of various architectures trained on a wide range of tasks and datasets, we identify sparse, joint subspaces that are consistently exploited, within shared architectures across diverse tasks and datasets. Our findings offer new insights into the intrinsic organization of information within deep networks and raise important questions about the possibility of discovering these universal subspaces without the need for extensive data and computational resources. Furthermore, this inherent structure has significant implications for model reusability, multi-task learning, model merging, and the development of training and inference-efficient algorithms, potentially reducing the carbon footprint of large-scale neural models.
comment: 37 pages
☆ Light-X: Generative 4D Video Rendering with Camera and Illumination Control
Recent advances in illumination control extend image-based methods to video, yet still facing a trade-off between lighting fidelity and temporal consistency. Moving beyond relighting, a key step toward generative modeling of real-world scenes is the joint control of camera trajectory and illumination, since visual dynamics are inherently shaped by both geometry and lighting. To this end, we present Light-X, a video generation framework that enables controllable rendering from monocular videos with both viewpoint and illumination control. 1) We propose a disentangled design that decouples geometry and lighting signals: geometry and motion are captured via dynamic point clouds projected along user-defined camera trajectories, while illumination cues are provided by a relit frame consistently projected into the same geometry. These explicit, fine-grained cues enable effective disentanglement and guide high-quality illumination. 2) To address the lack of paired multi-view and multi-illumination videos, we introduce Light-Syn, a degradation-based pipeline with inverse-mapping that synthesizes training pairs from in-the-wild monocular footage. This strategy yields a dataset covering static, dynamic, and AI-generated scenes, ensuring robust training. Extensive experiments show that Light-X outperforms baseline methods in joint camera-illumination control and surpasses prior video relighting methods under both text- and background-conditioned settings.
comment: Project Page: https://lightx-ai.github.io/
☆ Value Gradient Guidance for Flow Matching Alignment NeurIPS 2025
While methods exist for aligning flow matching models--a popular and effective class of generative models--with human preferences, existing approaches fail to achieve both adaptation efficiency and probabilistically sound prior preservation. In this work, we leverage the theory of optimal control and propose VGG-Flow, a gradient-matching-based method for finetuning pretrained flow matching models. The key idea behind this algorithm is that the optimal difference between the finetuned velocity field and the pretrained one should be matched with the gradient field of a value function. This method not only incorporates first-order information from the reward model but also benefits from heuristic initialization of the value function to enable fast adaptation. Empirically, we show on a popular text-to-image flow matching model, Stable Diffusion 3, that our method can finetune flow matching models under limited computational budgets while achieving effective and prior-preserving alignment.
comment: Accepted at NeurIPS 2025; 26 pages, 20 figures
☆ Deep infant brain segmentation from multi-contrast MRI
Segmentation of magnetic resonance images (MRI) facilitates analysis of human brain development by delineating anatomical structures. However, in infants and young children, accurate segmentation is challenging due to development and imaging constraints. Pediatric brain MRI is notoriously difficult to acquire, with inconsistent availability of imaging modalities, substantial non-head anatomy in the field of view, and frequent motion artifacts. This has led to specialized segmentation models that are often limited to specific image types or narrow age groups, or that are fragile for more variable images such as those acquired clinically. We address this method fragmentation with BabySeg, a deep learning brain segmentation framework for infants and young children that supports diverse MRI protocols, including repeat scans and image types unavailable during training. Our approach builds on recent domain randomization techniques, which synthesize training images far beyond realistic bounds to promote dataset shift invariance. We also describe a mechanism that enables models to flexibly pool and interact features from any number of input scans. We demonstrate state-of-the-art performance that matches or exceeds the accuracy of several existing methods for various age cohorts and input configurations using a single model, in a fraction of the runtime required by many existing tools.
comment: 8 pages, 8 figures, 1 table, website at https://w3id.org/babyseg, presented at the 2025 IEEE Asilomar Conference on Signals, Systems, and Computers
☆ Splannequin: Freezing Monocular Mannequin-Challenge Footage with Dual-Detection Splatting WACV 2025
Synthesizing high-fidelity frozen 3D scenes from monocular Mannequin-Challenge (MC) videos is a unique problem distinct from standard dynamic scene reconstruction. Instead of focusing on modeling motion, our goal is to create a frozen scene while strategically preserving subtle dynamics to enable user-controlled instant selection. To achieve this, we introduce a novel application of dynamic Gaussian splatting: the scene is modeled dynamically, which retains nearby temporal variation, and a static scene is rendered by fixing the model's time parameter. However, under this usage, monocular capture with sparse temporal supervision introduces artifacts like ghosting and blur for Gaussians that become unobserved or occluded at weakly supervised timestamps. We propose Splannequin, an architecture-agnostic regularization that detects two states of Gaussian primitives, hidden and defective, and applies temporal anchoring. Under predominantly forward camera motion, hidden states are anchored to their recent well-observed past states, while defective states are anchored to future states with stronger supervision. Our method integrates into existing dynamic Gaussian pipelines via simple loss terms, requires no architectural changes, and adds zero inference overhead. This results in markedly improved visual quality, enabling high-fidelity, user-selectable frozen-time renderings, validated by a 96% user preference. Project page: https://chien90190.github.io/splannequin/
comment: WACV 2025. Project page: https://chien90190.github.io/splannequin/
☆ DraCo: Draft as CoT for Text-to-Image Preview and Rare Concept Generation
Recent unified multimodal large language models (MLLMs) have shown impressive capabilities, incorporating chain-of-thought (CoT) reasoning for enhanced text-to-image generation. However, existing approaches remain limited, either treating the model merely as a standalone generator or relying on abstract textual planning. To this end, we propose Draft-as-CoT (DraCo), a novel interleaved reasoning paradigm that fully leverages both textual and visual contents in CoT for better planning and verification. Our method first generates a low-resolution draft image as preview, providing more concrete and structural visual planning and guidance. Then, we employ the model's inherent understanding capability to verify potential semantic misalignments between the draft and input prompt, and performs refinement through selective corrections with super-resolution. In this way, our approach addresses two fundamental challenges: the coarse-grained nature of textual planning and the difficulty in generating rare attribute combinations. To support training, we curate DraCo-240K, aiming to enhance three atomic capabilities spanning general correction, instance manipulation, and layout reorganization. Supported by DraCo-CFG, a specialized classifier-free guidance (CFG) strategy for interleaved reasoning, DraCo achieves a tremendous increase on GenEval (+8%), Imagine-Bench (+0.91), and GenEval++ (+3%), significantly outperforming direct generation and other generation methods empowered by CoT.
comment: Project Page: https://github.com/CaraJ7/DraCo
☆ ARM-Thinker: Reinforcing Multimodal Generative Reward Models with Agentic Tool Use and Visual Reasoning
Reward models are critical for aligning vision-language systems with human preferences, yet current approaches suffer from hallucination, weak visual grounding, and an inability to use tools for verification, limiting their reliability on complex multimodal reasoning tasks. We present ARM-Thinker, an A}gentic multimodal Reward Model that autonomously invokes external tools (e.g., image cropping, doc page retrieval) to ground judgments in verifiable evidence, replacing static, non-interactive reward scoring. This enables the model to verify fine-grained visual details, cross-reference multi-page evidence, and validate reasoning claims, which are capabilities absent in existing reward models. We train ARM-Thinker with multi-stage reinforcement learning, jointly optimizing tool-calling decisions and judgment accuracy. To evaluate agentic reward modeling, we introduce ARMBench-VL, comprising three benchmarks that assess fine-grained visual grounding (image-level tools), multi-page document understanding (retrieval tools), and instruction following (text-level verification). ARM-Thinker achieves +16.2% average improvement on reward modeling benchmarks, +9.6% on tool-use tasks, and outperforms baselines on multimodal math and logical reasoning benchmarks. Our results demonstrate that agentic capabilities significantly enhance both accuracy and interpretability of reward models.
☆ ShadowDraw: From Any Object to Shadow-Drawing Compositional Art
We introduce ShadowDraw, a framework that transforms ordinary 3D objects into shadow-drawing compositional art. Given a 3D object, our system predicts scene parameters, including object pose and lighting, together with a partial line drawing, such that the cast shadow completes the drawing into a recognizable image. To this end, we optimize scene configurations to reveal meaningful shadows, employ shadow strokes to guide line drawing generation, and adopt automatic evaluation to enforce shadow-drawing coherence and visual quality. Experiments show that ShadowDraw produces compelling results across diverse inputs, from real-world scans and curated datasets to generative assets, and naturally extends to multi-object scenes, animations, and physical deployments. Our work provides a practical pipeline for creating shadow-drawing art and broadens the design space of computational visual art, bridging the gap between algorithmic design and artistic storytelling. Check out our project page https://red-fairy.github.io/ShadowDraw/ for more results and an end-to-end real-world demonstration of our pipeline!
comment: Project page: https://red-fairy.github.io/ShadowDraw/
☆ NeuralRemaster: Phase-Preserving Diffusion for Structure-Aligned Generation
Standard diffusion corrupts data using Gaussian noise whose Fourier coefficients have random magnitudes and random phases. While effective for unconditional or text-to-image generation, corrupting phase components destroys spatial structure, making it ill-suited for tasks requiring geometric consistency, such as re-rendering, simulation enhancement, and image-to-image translation. We introduce Phase-Preserving Diffusion φ-PD, a model-agnostic reformulation of the diffusion process that preserves input phase while randomizing magnitude, enabling structure-aligned generation without architectural changes or additional parameters. We further propose Frequency-Selective Structured (FSS) noise, which provides continuous control over structural rigidity via a single frequency-cutoff parameter. φ-PD adds no inference-time cost and is compatible with any diffusion model for images or videos. Across photorealistic and stylized re-rendering, as well as sim-to-real enhancement for driving planners, φ-PD produces controllable, spatially aligned results. When applied to the CARLA simulator, φ-PD improves CARLA-to-Waymo planner performance by 50\%. The method is complementary to existing conditioning approaches and broadly applicable to image-to-image and video-to-video generation. Videos, additional examples, and code are available on our \href{https://yuzeng-at-tri.github.io/ppd-page/}{project page}.
☆ EvoIR: Towards All-in-One Image Restoration via Evolutionary Frequency Modulation
All-in-One Image Restoration (AiOIR) tasks often involve diverse degradation that require robust and versatile strategies. However, most existing approaches typically lack explicit frequency modeling and rely on fixed or heuristic optimization schedules, which limit the generalization across heterogeneous degradation. To address these limitations, we propose EvoIR, an AiOIR-specific framework that introduces evolutionary frequency modulation for dynamic and adaptive image restoration. Specifically, EvoIR employs the Frequency-Modulated Module (FMM) that decomposes features into high- and low-frequency branches in an explicit manner and adaptively modulates them to enhance both structural fidelity and fine-grained details. Central to EvoIR, an Evolutionary Optimization Strategy (EOS) iteratively adjusts frequency-aware objectives through a population-based evolutionary process, dynamically balancing structural accuracy and perceptual fidelity. Its evolutionary guidance further mitigates gradient conflicts across degradation and accelerates convergence. By synergizing FMM and EOS, EvoIR yields greater improvements than using either component alone, underscoring their complementary roles. Extensive experiments on multiple benchmarks demonstrate that EvoIR outperforms state-of-the-art AiOIR methods.
☆ TV2TV: A Unified Framework for Interleaved Language and Video Generation
Video generation models are rapidly advancing, but can still struggle with complex video outputs that require significant semantic branching or repeated high-level reasoning about what should happen next. In this paper, we introduce a new class of omni video-text models that integrate ideas from recent LM reasoning advances to address this challenge. More specifically, we present TV2TV, a unified generative modeling framework which decomposes video generation into an interleaved text and video generation process. TV2TV jointly learns language modeling (next-token prediction) and video flow matching (next-frame prediction) using a Mixture-of-Transformers (MoT) architecture. At inference time, TV2TV decides when to alternate between generating text and video frames, allowing the model to "think in words" about subsequent content before ``acting in pixels'' to produce frames. This design offloads much of the responsibility for deciding what should happen next to the language modeling tower, enabling improved visual quality and prompt alignment of generated videos. It also enables fine-grained controllability, allowing users to modify the video generation trajectory through text interventions at any point in the process. In controlled experiments on video game data, TV2TV demonstrates substantial improvements in both visual quality and controllability. TV2TV also scales to natural videos, as we show by augmenting sports videos with interleaved natural language action descriptions using vision-language models (VLMs). Training TV2TV on this corpus yields strong visual quality and prompt alignment, showcasing the model's ability to reason about and generate complex real-world action sequences. Together, these results highlight TV2TV as a promising step toward video generation with open-ended textual reasoning and control.
☆ SA-IQA: Redefining Image Quality Assessment for Spatial Aesthetics with Multi-Dimensional Rewards
In recent years, Image Quality Assessment (IQA) for AI-generated images (AIGI) has advanced rapidly; however, existing methods primarily target portraits and artistic images, lacking a systematic evaluation of interior scenes. We introduce Spatial Aesthetics, a paradigm that assesses the aesthetic quality of interior images along four dimensions: layout, harmony, lighting, and distortion. We construct SA-BENCH, the first benchmark for spatial aesthetics, comprising 18,000 images and 50,000 precise annotations. Employing SA-BENCH, we systematically evaluate current IQA methodologies and develop SA-IQA, through MLLM fine-tuning and a multidimensional fusion approach, as a comprehensive reward framework for assessing spatial aesthetics. We apply SA-IQA to two downstream tasks: (1) serving as a reward signal integrated with GRPO reinforcement learning to optimize the AIGC generation pipeline, and (2) Best-of-N selection to filter high-quality images and improve generation quality. Experiments indicate that SA-IQA significantly outperforms existing methods on SA-BENCH, setting a new standard for spatial aesthetics evaluation. Code and dataset will be open-sourced to advance research and applications in this domain.
From Generated Human Videos to Physically Plausible Robot Trajectories
Video generation models are rapidly improving in their ability to synthesize human actions in novel contexts, holding the potential to serve as high-level planners for contextual robot control. To realize this potential, a key research question remains open: how can a humanoid execute the human actions from generated videos in a zero-shot manner? This challenge arises because generated videos are often noisy and exhibit morphological distortions that make direct imitation difficult compared to real video. To address this, we introduce a two-stage pipeline. First, we lift video pixels into a 4D human representation and then retarget to the humanoid morphology. Second, we propose GenMimic-a physics-aware reinforcement learning policy conditioned on 3D keypoints, and trained with symmetry regularization and keypoint-weighted tracking rewards. As a result, GenMimic can mimic human actions from noisy, generated videos. We curate GenMimicBench, a synthetic human-motion dataset generated using two video generation models across a spectrum of actions and contexts, establishing a benchmark for assessing zero-shot generalization and policy robustness. Extensive experiments demonstrate improvements over strong baselines in simulation and confirm coherent, physically stable motion tracking on a Unitree G1 humanoid robot without fine-tuning. This work offers a promising path to realizing the potential of video generation models as high-level policies for robot control.
comment: For project website, see https://genmimic.github.io
☆ Visual Reasoning Tracer: Object-Level Grounded Reasoning Benchmark
Recent advances in Multimodal Large Language Models (MLLMs) have significantly improved performance on tasks such as visual grounding and visual question answering. However, the reasoning processes of these models remain largely opaque; they typically output only final predictions without revealing the intermediate steps or fine-grained evidence (e.g., pixels, locations) that lead to the result. This contrasts with human intelligence, which naturally operates through a chain of visual reasoning. To address this limitation, we introduce the Visual Reasoning Tracer (VRT) task, which requires models to not only localize the target object but also explicitly predict the intermediate objects that form the reasoning path. To advance research in this area, we contribute: (1) VRT-Bench, a human-annotated benchmark for evaluating visual reasoning; (2) a new metric for assessing the quality of reasoning traces; and (3) VRT-80k, a large-scale dataset for reasoning model training. Our experiments reveal that while existing models often produce the correct final output, they struggle to ground their intermediate reasoning. In contrast, models trained on VRT-80k achieve substantial improvements in tracing the reasoning path.
comment: Technical Report; Project Page: https://harboryuan.github.io/visual-reasoning-tracer
☆ Deep Forcing: Training-Free Long Video Generation with Deep Sink and Participative Compression
Recent advances in autoregressive video diffusion have enabled real-time frame streaming, yet existing solutions still suffer from temporal repetition, drift, and motion deceleration. We find that naively applying StreamingLLM-style attention sinks to video diffusion leads to fidelity degradation and motion stagnation. To overcome this, we introduce Deep Forcing, which consists of two training-free mechanisms that address this without any fine-tuning. Specifically, 1) Deep Sink dedicates half of the sliding window to persistent sink tokens and re-aligns their temporal RoPE phase to the current timeline, stabilizing global context during long rollouts. 2) Participative Compression performs importance-aware KV cache pruning that preserves only tokens actively participating in recent attention while safely discarding redundant and degraded history, minimizing error accumulation under out-of-distribution length generation. Together, these components enable over 12x extrapolation (e.g. 5s-trained to 60s+ generation) with better imaging quality than LongLive, better aesthetic quality than RollingForcing, almost maintaining overall consistency, and substantial gains in dynamic degree, all while maintaining real-time generation. Our results demonstrate that training-free KV-cache management can match or exceed training-based approaches for autoregressively streaming long-video generation.
comment: Project Page: https://cvlab-kaist.github.io/DeepForcing/
☆ Object Reconstruction under Occlusion with Generative Priors and Contact-induced Constraints
Object geometry is key information for robot manipulation. Yet, object reconstruction is a challenging task because cameras only capture partial observations of objects, especially when occlusion occurs. In this paper, we leverage two extra sources of information to reduce the ambiguity of vision signals. First, generative models learn priors of the shapes of commonly seen objects, allowing us to make reasonable guesses of the unseen part of geometry. Second, contact information, which can be obtained from videos and physical interactions, provides sparse constraints on the boundary of the geometry. We combine the two sources of information through contact-guided 3D generation. The guidance formulation is inspired by drag-based editing in generative models. Experiments on synthetic and real-world data show that our approach improves the reconstruction compared to pure 3D generation and contact-based optimization.
comment: Project page: https://contactgen3d.github.io/
☆ BulletTime: Decoupled Control of Time and Camera Pose for Video Generation
Emerging video diffusion models achieve high visual fidelity but fundamentally couple scene dynamics with camera motion, limiting their ability to provide precise spatial and temporal control. We introduce a 4D-controllable video diffusion framework that explicitly decouples scene dynamics from camera pose, enabling fine-grained manipulation of both scene dynamics and camera viewpoint. Our framework takes continuous world-time sequences and camera trajectories as conditioning inputs, injecting them into the video diffusion model through a 4D positional encoding in the attention layer and adaptive normalizations for feature modulation. To train this model, we curate a unique dataset in which temporal and camera variations are independently parameterized; this dataset will be made public. Experiments show that our model achieves robust real-world 4D control across diverse timing patterns and camera trajectories, while preserving high generation quality and outperforming prior work in controllability. See our website for video results: https://19reborn.github.io/Bullet4D/
comment: Project Page: https://19reborn.github.io/Bullet4D/
☆ 4DLangVGGT: 4D Language-Visual Geometry Grounded Transformer
Constructing 4D language fields is crucial for embodied AI, augmented/virtual reality, and 4D scene understanding, as they provide enriched semantic representations of dynamic environments and enable open-vocabulary querying in complex scenarios. However, existing approaches to 4D semantic field construction primarily rely on scene-specific Gaussian splatting, which requires per-scene optimization, exhibits limited generalization, and is difficult to scale to real-world applications. To address these limitations, we propose 4DLangVGGT, the first Transformer-based feed-forward unified framework for 4D language grounding, that jointly integrates geometric perception and language alignment within a single architecture. 4DLangVGGT has two key components: the 4D Visual Geometry Transformer, StreamVGGT, which captures spatio-temporal geometric representations of dynamic scenes; and the Semantic Bridging Decoder (SBD), which projects geometry-aware features into a language-aligned semantic space, thereby enhancing semantic interpretability while preserving structural fidelity. Unlike prior methods that depend on costly per-scene optimization, 4DLangVGGT can be jointly trained across multiple dynamic scenes and directly applied during inference, achieving both deployment efficiency and strong generalization. This design significantly improves the practicality of large-scale deployment and establishes a new paradigm for open-vocabulary 4D scene understanding. Experiments on HyperNeRF and Neu3D datasets demonstrate that our approach not only generalizes effectively but also achieves state-of-the-art performance, achieving up to 2% gains under per-scene training and 1% improvements under multi-scene training. Our code released in https://github.com/hustvl/4DLangVGGT
comment: Code: https://github.com/hustvl/4DLangVGGT, Webpage: https://hustvl.github.io/4DLangVGGT
☆ Joint 3D Geometry Reconstruction and Motion Generation for 4D Synthesis from a Single Image
Generating interactive and dynamic 4D scenes from a single static image remains a core challenge. Most existing generate-then-reconstruct and reconstruct-then-generate methods decouple geometry from motion, causing spatiotemporal inconsistencies and poor generalization. To address these, we extend the reconstruct-then-generate framework to jointly perform Motion generation and geometric Reconstruction for 4D Synthesis (MoRe4D). We first introduce TrajScene-60K, a large-scale dataset of 60,000 video samples with dense point trajectories, addressing the scarcity of high-quality 4D scene data. Based on this, we propose a diffusion-based 4D Scene Trajectory Generator (4D-STraG) to jointly generate geometrically consistent and motion-plausible 4D point trajectories. To leverage single-view priors, we design a depth-guided motion normalization strategy and a motion-aware module for effective geometry and dynamics integration. We then propose a 4D View Synthesis Module (4D-ViSM) to render videos with arbitrary camera trajectories from 4D point track representations. Experiments show that MoRe4D generates high-quality 4D scenes with multi-view consistency and rich dynamic details from a single image. Code: https://github.com/Zhangyr2022/MoRe4D.
comment: 18 Pages
☆ Semantic-Guided Two-Stage GAN for Face Inpainting with Hybrid Perceptual Encoding CVPR-2025
Facial Image inpainting aim is to restore the missing or corrupted regions in face images while preserving identity, structural consistency and photorealistic image quality, a task specifically created for photo restoration. Though there are recent lot of advances in deep generative models, existing methods face problems with large irregular masks, often producing blurry textures on the edges of the masked region, semantic inconsistencies, or unconvincing facial structures due to direct pixel level synthesis approach and limited exploitation of facial priors. In this paper we propose a novel architecture, which address these above challenges through semantic-guided hierarchical synthesis. Our approach starts with a method that organizes and synthesizes information based on meaning, followed by refining the texture. This process gives clear insights into the facial structure before we move on to creating detailed images. In the first stage, we blend two techniques: one that focuses on local features with CNNs and global features with Vision Transformers. This helped us create clear and detailed semantic layouts. In the second stage, we use a Multi-Modal Texture Generator to refine these layouts by pulling in information from different scales, ensuring everything looks cohesive and consistent. The architecture naturally handles arbitrary mask configurations through dynamic attention without maskspecific training. Experiment on two datasets CelebA-HQ and FFHQ shows that our model outperforms other state-of-the-art methods, showing improvements in metrics like LPIPS, PSNR, and SSIM. It produces visually striking results with better semantic preservation, in challenging large-area inpainting situations.
comment: Submitted for review CVPR-2025
☆ RAMEN: Resolution-Adjustable Multimodal Encoder for Earth Observation
Earth observation (EO) data spans a wide range of spatial, spectral, and temporal resolutions, from high-resolution optical imagery to low resolution multispectral products or radar time series. While recent foundation models have improved multimodal integration for learning meaningful representations, they often expect fixed input resolutions or are based on sensor-specific encoders limiting generalization across heterogeneous EO modalities. To overcome these limitations we introduce RAMEN, a resolution-adjustable multimodal encoder that learns a shared visual representation across EO data in a fully sensor-agnostic manner. RAMEN treats the modality and spatial and temporal resolutions as key input data features, enabling coherent analysis across modalities within a unified latent space. Its main methodological contribution is to define spatial resolution as a controllable output parameter, giving users direct control over the desired level of detail at inference and allowing explicit trade-offs between spatial precision and computational cost. We train a single, unified transformer encoder reconstructing masked multimodal EO data drawn from diverse sources, ensuring generalization across sensors and resolutions. Once pretrained, RAMEN transfers effectively to both known and unseen sensor configurations and outperforms larger state-of-the-art models on the community-standard PANGAEA benchmark, containing various multi-sensor and multi-resolution downstream tasks. Our code and pretrained model are available at https://github.com/nicolashoudre/RAMEN.
☆ HTR-ConvText: Leveraging Convolution and Textual Information for Handwritten Text Recognition
Handwritten Text Recognition remains challenging due to the limited data, high writing style variance, and scripts with complex diacritics. Existing approaches, though partially address these issues, often struggle to generalize without massive synthetic data. To address these challenges, we propose HTR-ConvText, a model designed to capture fine-grained, stroke-level local features while preserving global contextual dependencies. In the feature extraction stage, we integrate a residual Convolutional Neural Network backbone with a MobileViT with Positional Encoding block. This enables the model to both capture structural patterns and learn subtle writing details. We then introduce the ConvText encoder, a hybrid architecture combining global context and local features within a hierarchical structure that reduces sequence length for improved efficiency. Additionally, an auxiliary module injects textual context to mitigate the weakness of Connectionist Temporal Classification. Evaluations on IAM, READ2016, LAM and HANDS-VNOnDB demonstrate that our approach achieves improved performance and better generalization compared to existing methods, especially in scenarios with limited training samples and high handwriting diversity.
☆ Generative Neural Video Compression via Video Diffusion Prior
We present GNVC-VD, the first DiT-based generative neural video compression framework built upon an advanced video generation foundation model, where spatio-temporal latent compression and sequence-level generative refinement are unified within a single codec. Existing perceptual codecs primarily rely on pre-trained image generative priors to restore high-frequency details, but their frame-wise nature lacks temporal modeling and inevitably leads to perceptual flickering. To address this, GNVC-VD introduces a unified flow-matching latent refinement module that leverages a video diffusion transformer to jointly enhance intra- and inter-frame latents through sequence-level denoising, ensuring consistent spatio-temporal details. Instead of denoising from pure Gaussian noise as in video generation, GNVC-VD initializes refinement from decoded spatio-temporal latents and learns a correction term that adapts the diffusion prior to compression-induced degradation. A conditioning adaptor further injects compression-aware cues into intermediate DiT layers, enabling effective artifact removal while maintaining temporal coherence under extreme bitrate constraints. Extensive experiments show that GNVC-VD surpasses both traditional and learned codecs in perceptual quality and significantly reduces the flickering artifacts that persist in prior generative approaches, even below 0.01 bpp, highlighting the promise of integrating video-native generative priors into neural codecs for next-generation perceptual video compression.
Self-Supervised Learning for Transparent Object Depth Completion Using Depth from Non-Transparent Objects
The perception of transparent objects is one of the well-known challenges in computer vision. Conventional depth sensors have difficulty in sensing the depth of transparent objects due to refraction and reflection of light. Previous research has typically train a neural network to complete the depth acquired by the sensor, and this method can quickly and accurately acquire accurate depth maps of transparent objects. However, previous training relies on a large amount of annotation data for supervision, and the labeling of depth maps is costly. To tackle this challenge, we propose a new self-supervised method for training depth completion networks. Our method simulates the depth deficits of transparent objects within non-transparent regions and utilizes the original depth map as ground truth for supervision. Experiments demonstrate that our method achieves performance comparable to supervised approach, and pre-training with our method can improve the model performance when the training samples are small.
comment: conference
☆ Reflection Removal through Efficient Adaptation of Diffusion Transformers
We introduce a diffusion-transformer (DiT) framework for single-image reflection removal that leverages the generalization strengths of foundation diffusion models in the restoration setting. Rather than relying on task-specific architectures, we repurpose a pre-trained DiT-based foundation model by conditioning it on reflection-contaminated inputs and guiding it toward clean transmission layers. We systematically analyze existing reflection removal data sources for diversity, scalability, and photorealism. To address the shortage of suitable data, we construct a physically based rendering (PBR) pipeline in Blender, built around the Principled BSDF, to synthesize realistic glass materials and reflection effects. Efficient LoRA-based adaptation of the foundation model, combined with the proposed synthetic data, achieves state-of-the-art performance on in-domain and zero-shot benchmarks. These results demonstrate that pretrained diffusion transformers, when paired with physically grounded data synthesis and efficient adaptation, offer a scalable and high-fidelity solution for reflection removal. Project page: https://hf.co/spaces/huawei-bayerlab/windowseat-reflection-removal-web
☆ A dynamic memory assignment strategy for dilation-based ICP algorithm on embedded GPUs
This paper proposes a memory-efficient optimization strategy for the high-performance point cloud registration algorithm VANICP, enabling lightweight execution on embedded GPUs with constrained hardware resources. VANICP is a recently published acceleration framework that significantly improves the computational efficiency of point-cloud-based applications. By transforming the global nearest neighbor search into a localized process through a dilation-based information propagation mechanism, VANICP greatly reduces the computational complexity of the NNS. However, its original implementation demands a considerable amount of memory, which restricts its deployment in resource-constrained environments such as embedded systems. To address this issue, we propose a GPU-oriented dynamic memory assignment strategy that optimizes the memory usage of the dilation operation. Furthermore, based on this strategy, we construct an enhanced version of the VANICP framework that achieves over 97% reduction in memory consumption while preserving the original performance. Source code is published on: https://github.com/changqiong/VANICP4Em.git.
☆ Aligned but Stereotypical? The Hidden Influence of System Prompts on Social Bias in LVLM-Based Text-to-Image Models
Large vision-language model (LVLM) based text-to-image (T2I) systems have become the dominant paradigm in image generation, yet whether they amplify social biases remains insufficiently understood. In this paper, we show that LVLM-based models produce markedly more socially biased images than non-LVLM-based models. We introduce a 1,024 prompt benchmark spanning four levels of linguistic complexity and evaluate demographic bias across multiple attributes in a systematic manner. Our analysis identifies system prompts, the predefined instructions guiding LVLMs, as a primary driver of biased behavior. Through decoded intermediate representations, token-probability diagnostics, and embedding-association analyses, we reveal how system prompts encode demographic priors that propagate into image synthesis. To this end, we propose FairPro, a training-free meta-prompting framework that enables LVLMs to self-audit and construct fairness-aware system prompts at test time. Experiments on two LVLM-based T2I models, SANA and Qwen-Image, show that FairPro substantially reduces demographic bias while preserving text-image alignment. We believe our findings provide deeper insight into the central role of system prompts in bias propagation and offer a practical, deployable approach for building more socially responsible T2I systems.
comment: Project page: https://fairpro-t2i.github.io
☆ Stable Single-Pixel Contrastive Learning for Semantic and Geometric Tasks
We pilot a family of stable contrastive losses for learning pixel-level representations that jointly capture semantic and geometric information. Our approach maps each pixel of an image to an overcomplete descriptor that is both view-invariant and semantically meaningful. It enables precise point-correspondence across images without requiring momentum-based teacher-student training. Two experiments in synthetic 2D and 3D environments demonstrate the properties of our loss and the resulting overcomplete representations.
comment: UniReps Workshop 2025, 12 pages, 8 figures
☆ Rethinking the Use of Vision Transformers for AI-Generated Image Detection
Rich feature representations derived from CLIP-ViT have been widely utilized in AI-generated image detection. While most existing methods primarily leverage features from the final layer, we systematically analyze the contributions of layer-wise features to this task. Our study reveals that earlier layers provide more localized and generalizable features, often surpassing the performance of final-layer features in detection tasks. Moreover, we find that different layers capture distinct aspects of the data, each contributing uniquely to AI-generated image detection. Motivated by these findings, we introduce a novel adaptive method, termed MoLD, which dynamically integrates features from multiple ViT layers using a gating-based mechanism. Extensive experiments on both GAN- and diffusion-generated images demonstrate that MoLD significantly improves detection performance, enhances generalization across diverse generative models, and exhibits robustness in real-world scenarios. Finally, we illustrate the scalability and versatility of our approach by successfully applying it to other pre-trained ViTs, such as DINOv2.
comment: Code: https://github.com/nahyeonkaty/mold
☆ Balanced Few-Shot Episodic Learning for Accurate Retinal Disease Diagnosis
Automated retinal disease diagnosis is vital given the rising prevalence of conditions such as diabetic retinopathy and macular degeneration. Conventional deep learning approaches require large annotated datasets, which are costly and often imbalanced across disease categories, limiting their reliability in practice. Few-shot learning (FSL) addresses this challenge by enabling models to generalize from only a few labeled samples per class. In this study,we propose a balanced few-shot episodic learning framework tailored to the Retinal Fundus Multi-Disease Image Dataset (RFMiD). Focusing on the ten most represented classes, which still show substantial imbalance between majority diseases (e.g., Diabetic Retinopathy, Macular Hole) and minority ones (e.g., Optic Disc Edema, Branch Retinal Vein Occlusion), our method integrates three key components: (i) balanced episodic sampling, ensuring equal participation of all classes in each 5-way 5-shot episode; (ii) targeted augmentation, including Contrast Limited Adaptive Histogram Equalization (CLAHE) and color/geometry transformations, to improve minority-class di- versity; and (iii) a ResNet-50 encoder pretrained on ImageNet, selected for its superior ability to capture fine-grained retinal features. Prototypes are computed in the embedding space and classification is performed with cosine similarity for improved stability. Trained on 100 episodes and evaluated on 1,000 test episodes, our framework achieves substantial accuracy gains and reduces bias toward majority classes, with notable improvements for underrepresented diseases. These results demonstrate that dataset-aware few-shot pipelines, combined with balanced sampling and CLAHE-enhanced preprocessing, can deliver more robust and clinically fair retinal disease diagnosis under data-constrained conditions.
☆ GeoPE:A Unified Geometric Positional Embedding for Structured Tensors
Standard Vision Transformers flatten 2D images into 1D sequences, disrupting the natural spatial topology. While Rotary Positional Embedding (RoPE) excels in 1D, it inherits this limitation, often treating spatially distant patches (e.g., at row edges) as sequence neighbors. Existing 2D approaches typically treat spatial axes independently, failing to decouple this false sequential proximity from true spatial distance. To restore the 2D spatial manifold, we introduce Geometric Positional Embedding (GeoPE), a framework that extends rotations to 3D Euclidean space using quaternions. To overcome non-commutativity and ensure symmetry, GeoPE constructs a unified rotational operator by computing the geometric mean in the Lie algebra. This creates a geometrically coupled encoding that effectively separates spatial dimensions. Extensive experiments on image classification, object detection, and 3D semantic segmentation demonstrate that GeoPE consistently outperforms existing 2D RoPE variants and significantly enhances shape bias, confirming its ability to capture true geometric structure.
☆ FASTer: Toward Efficient Autoregressive Vision Language Action Modeling via neural Action Tokenization
Autoregressive vision-language-action (VLA) models have recently demonstrated strong capabilities in robotic manipulation. However, their core process of action tokenization often involves a trade-off between reconstruction fidelity and inference efficiency. We introduce FASTer, a unified framework for efficient and generalizable robot learning that integrates a learnable tokenizer with an autoregressive policy built upon it. FASTerVQ encodes action chunks as single-channel images, capturing global spatio-temporal dependencies while maintaining a high compression ratio. FASTerVLA builds on this tokenizer with block-wise autoregressive decoding and a lightweight action expert, achieving both faster inference and higher task performance. Extensive experiments across simulated and real-world benchmarks show that FASTerVQ delivers superior reconstruction quality, high token utilization, and strong cross-task and cross-embodiment generalization, while FASTerVLA further improves overall capability, surpassing previous state-of-the-art VLA models in both inference speed and task performance.
☆ Towards Adaptive Fusion of Multimodal Deep Networks for Human Action Recognition
This study introduces a pioneering methodology for human action recognition by harnessing deep neural network techniques and adaptive fusion strategies across multiple modalities, including RGB, optical flows, audio, and depth information. Employing gating mechanisms for multimodal fusion, we aim to surpass limitations inherent in traditional unimodal recognition methods while exploring novel possibilities for diverse applications. Through an exhaustive investigation of gating mechanisms and adaptive weighting-based fusion architectures, our methodology enables the selective integration of relevant information from various modalities, thereby bolstering both accuracy and robustness in action recognition tasks. We meticulously examine various gated fusion strategies to pinpoint the most effective approach for multimodal action recognition, showcasing its superiority over conventional unimodal methods. Gating mechanisms facilitate the extraction of pivotal features, resulting in a more holistic representation of actions and substantial enhancements in recognition performance. Our evaluations across human action recognition, violence action detection, and multiple self-supervised learning tasks on benchmark datasets demonstrate promising advancements in accuracy. The significance of this research lies in its potential to revolutionize action recognition systems across diverse fields. The fusion of multimodal information promises sophisticated applications in surveillance and human-computer interaction, especially in contexts related to active assisted living.
☆ LiteVGGT: Boosting Vanilla VGGT via Geometry-aware Cached Token Merging
3D vision foundation models like Visual Geometry Grounded Transformer (VGGT) have advanced greatly in geometric perception. However, it is time-consuming and memory-intensive for long sequences, limiting application to large-scale scenes beyond hundreds of images. To address this, we propose LiteVGGT, achieving up to 10x speedup and substantial memory reduction, enabling efficient processing of 1000-image scenes. We derive two key insights for 3D reconstruction: (1) tokens from local image regions have inherent geometric correlations, leading to high similarity and computational redundancy; (2) token similarity across adjacent network layers remains stable, allowing for reusable merge decisions. Guided by these, we design a simple yet efficient strategy, dubbed geometry-aware cached token merging. We analyze each token's geometric importance, optimizing anchor token selection to better preserve key information for reconstruction. We also cache and reuse merge indices across layers, substantially reducing latency with minimal accuracy impact. This strategy retains VGGT's core performance, enabling efficient fine-tuning and FP8 quantization for further gains. Extensive experiments validate LiteVGGT's effectiveness, scalability, and robustness. Project page: https://garlicba.github.io/LiteVGGT/
☆ Virtually Unrolling the Herculaneum Papyri by Diffeomorphic Spiral Fitting WACV 2026
The Herculaneum Papyri are a collection of rolled papyrus documents that were charred and buried by the famous eruption of Mount Vesuvius. They promise to contain a wealth of previously unseen Greek and Latin texts, but are extremely fragile and thus most cannot be unrolled physically. A solution to access these texts is virtual unrolling, where the papyrus surface is digitally traced out in a CT scan of the scroll, to create a flattened representation. This tracing is very laborious to do manually in gigavoxel-sized scans, so automated approaches are desirable. We present the first top-down method that automatically fits a surface model to a CT scan of a severely damaged scroll. We take a novel approach that globally fits an explicit parametric model of the deformed scroll to existing neural network predictions of where the rolled papyrus likely passes. Our method guarantees the resulting surface is a single continuous 2D sheet, even passing through regions where the surface is not detectable in the CT scan. We conduct comprehensive experiments on high-resolution CT scans of two scrolls, showing that our approach successfully unrolls large regions, and exceeds the performance of the only existing automated unrolling method suitable for this data.
comment: Accepted at WACV 2026
☆ Semantics Lead the Way: Harmonizing Semantic and Texture Modeling with Asynchronous Latent Diffusion
Latent Diffusion Models (LDMs) inherently follow a coarse-to-fine generation process, where high-level semantic structure is generated slightly earlier than fine-grained texture. This indicates the preceding semantics potentially benefit texture generation by providing a semantic anchor. Recent advances have integrated semantic priors from pretrained visual encoders to further enhance LDMs, yet they still denoise semantic and VAE-encoded texture synchronously, neglecting such ordering. Observing these, we propose Semantic-First Diffusion (SFD), a latent diffusion paradigm that explicitly prioritizes semantic formation. SFD first constructs composite latents by combining a compact semantic latent, which is extracted from a pretrained visual encoder via a dedicated Semantic VAE, with the texture latent. The core of SFD is to denoise the semantic and texture latents asynchronously using separate noise schedules: semantics precede textures by a temporal offset, providing clearer high-level guidance for texture refinement and enabling natural coarse-to-fine generation. On ImageNet 256x256 with guidance, SFD achieves FID 1.06 (LightningDiT-XL) and FID 1.04 (1.0B LightningDiT-XXL), while achieving up to 100x faster convergence than the original DiT. SFD also improves existing methods like ReDi and VA-VAE, demonstrating the effectiveness of asynchronous, semantics-led modeling. Project page and code: https://yuemingpan.github.io/SFD.github.io/.
☆ ReflexFlow: Rethinking Learning Objective for Exposure Bias Alleviation in Flow Matching
Despite tremendous recent progress, Flow Matching methods still suffer from exposure bias due to discrepancies in training and inference. This paper investigates the root causes of exposure bias in Flow Matching, including: (1) the model lacks generalization to biased inputs during training, and (2) insufficient low-frequency content captured during early denoising, leading to accumulated bias. Based on these insights, we propose ReflexFlow, a simple and effective reflexive refinement of the Flow Matching learning objective that dynamically corrects exposure bias. ReflexFlow consists of two components: (1) Anti-Drift Rectification (ADR), which reflexively adjusts prediction targets for biased inputs utilizing a redesigned loss under training-time scheduled sampling; and (2) Frequency Compensation (FC), which reflects on missing low-frequency components and compensates them by reweighting the loss using exposure bias. ReflexFlow is model-agnostic, compatible with all Flow Matching frameworks, and improves generation quality across datasets. Experiments on CIFAR-10, CelebA-64, and ImageNet-256 show that ReflexFlow outperforms prior approaches in mitigating exposure bias, achieving a 35.65% reduction in FID on CelebA-64.
☆ Equivariant Symmetry-Aware Head Pose Estimation for Fetal MRI
We present E(3)-Pose, a novel fast pose estimation method that jointly and explicitly models rotation equivariance and object symmetry. Our work is motivated by the challenging problem of accounting for fetal head motion during a diagnostic MRI scan. We aim to enable automatic adaptive prescription of 2D diagnostic MRI slices with 6-DoF head pose estimation, supported by 3D MRI volumes rapidly acquired before each 2D slice. Existing methods struggle to generalize to clinical volumes, due to pose ambiguities induced by inherent anatomical symmetries, as well as low resolution, noise, and artifacts. In contrast, E(3)-Pose captures anatomical symmetries and rigid pose equivariance by construction, and yields robust estimates of the fetal head pose. Our experiments on publicly available and representative clinical fetal MRI datasets demonstrate the superior robustness and generalization of our method across domains. Crucially, E(3)-Pose achieves state-of-the-art accuracy on clinical MRI volumes, paving the way for clinical translation. Our implementation is available at github.com/ramyamut/E3-Pose.
☆ You Only Train Once (YOTO): A Retraining-Free Object Detection Framework
Object detection constitutes the primary task within the domain of computer vision. It is utilized in numerous domains. Nonetheless, object detection continues to encounter the issue of catastrophic forgetting. The model must be retrained whenever new products are introduced, utilizing not only the new products dataset but also the entirety of the previous dataset. The outcome is obvious: increasing model training expenses and significant time consumption. In numerous sectors, particularly retail checkout, the frequent introduction of new products presents a great challenge. This study introduces You Only Train Once (YOTO), a methodology designed to address the issue of catastrophic forgetting by integrating YOLO11n for object localization with DeIT and Proxy Anchor Loss for feature extraction and metric learning. For classification, we utilize cosine similarity between the embedding features of the target product and those in the Qdrant vector database. In a case study conducted in a retail store with 140 products, the experimental results demonstrate that our proposed framework achieves encouraging accuracy, whether for detecting new or existing products. Furthermore, without retraining, the training duration difference is significant. We achieve almost 3 times the training time efficiency compared to classical object detection approaches. This efficiency escalates as additional new products are added to the product database. The average inference time is 580 ms per image containing multiple products, on an edge device, validating the proposed framework's feasibility for practical use.
comment: under review in the Elsevier Engineering Journal
☆ SDG-Track: A Heterogeneous Observer-Follower Framework for High-Resolution UAV Tracking on Embedded Platforms
Real-time tracking of small unmanned aerial vehicles (UAVs) on edge devices faces a fundamental resolution-speed conflict. Downsampling high-resolution imagery to standard detector input sizes causes small target features to collapse below detectable thresholds. Yet processing native 1080p frames on resource-constrained platforms yields insufficient throughput for smooth gimbal control. We propose SDG-Track, a Sparse Detection-Guided Tracker that adopts an Observer-Follower architecture to reconcile this conflict. The Observer stream runs a high-capacity detector at low frequency on the GPU to provide accurate position anchors from 1920x1080 frames. The Follower stream performs high-frequency trajectory interpolation via ROI-constrained sparse optical flow on the CPU. To handle tracking failures from occlusion or model drift caused by spectrally similar distractors, we introduce Dual-Space Recovery, a training-free re-acquisition mechanism combining color histogram matching with geometric consistency constraints. Experiments on a ground-to-air tracking station demonstrate that SDG-Track achieves 35.1 FPS system throughput while retaining 97.2\% of the frame-by-frame detection precision. The system successfully tracks agile FPV drones under real-world operational conditions on an NVIDIA Jetson Orin Nano. Our paper code is publicly available at https://github.com/Jeffry-wen/SDG-Track
comment: https://github.com/Jeffry-wen/SDG-Track
☆ SP-Det: Self-Prompted Dual-Text Fusion for Generalized Multi-Label Lesion Detection
Automated lesion detection in chest X-rays has demonstrated significant potential for improving clinical diagnosis by precisely localizing pathological abnormalities. While recent promptable detection frameworks have achieved remarkable accuracy in target localization, existing methods typically rely on manual annotations as prompts, which are labor-intensive and impractical for clinical applications. To address this limitation, we propose SP-Det, a novel self-prompted detection framework that automatically generates rich textual context to guide multi-label lesion detection without requiring expert annotations. Specifically, we introduce an expert-free dual-text prompt generator (DTPG) that leverages two complementary textual modalities: semantic context prompts that capture global pathological patterns and disease beacon prompts that focus on disease-specific manifestations. Moreover, we devise a bidirectional feature enhancer (BFE) that synergistically integrates comprehensive diagnostic context with disease-specific embeddings to significantly improve feature representation and detection accuracy. Extensive experiments on two chest X-ray datasets with diverse thoracic disease categories demonstrate that our SP-Det framework outperforms state-of-the-art detection methods while completely eliminating the dependency on expert-annotated prompts compared to existing promptable architectures.
☆ Contact-Aware Refinement of Human Pose Pseudo-Ground Truth via Bioimpedance Sensing ICCV 2025
Capturing accurate 3D human pose in the wild would provide valuable data for training pose estimation and motion generation methods. While video-based estimation approaches have become increasingly accurate, they often fail in common scenarios involving self-contact, such as a hand touching the face. In contrast, wearable bioimpedance sensing can cheaply and unobtrusively measure ground-truth skin-to-skin contact. Consequently, we propose a novel framework that combines visual pose estimators with bioimpedance sensing to capture the 3D pose of people by taking self-contact into account. Our method, BioTUCH, initializes the pose using an off-the-shelf estimator and introduces contact-aware pose optimization during measured self-contact: reprojection error and deviations from the input estimate are minimized while enforcing vertex proximity constraints. We validate our approach using a new dataset of synchronized RGB video, bioimpedance measurements, and 3D motion capture. Testing with three input pose estimators, we demonstrate an average of 11.7% improvement in reconstruction accuracy. We also present a miniature wearable bioimpedance sensor that enables efficient large-scale collection of contact-aware training data for improving pose estimation and generation using BioTUCH. Code and data are available at biotuch.is.tue.mpg.de
comment: * Equal contribution. Minor figure corrections compared to the ICCV 2025 version
☆ Autoregressive Image Generation Needs Only a Few Lines of Cached Tokens
Autoregressive (AR) visual generation has emerged as a powerful paradigm for image and multimodal synthesis, owing to its scalability and generality. However, existing AR image generation suffers from severe memory bottlenecks due to the need to cache all previously generated visual tokens during decoding, leading to both high storage requirements and low throughput. In this paper, we introduce \textbf{LineAR}, a novel, training-free progressive key-value (KV) cache compression pipeline for autoregressive image generation. By fully exploiting the intrinsic characteristics of visual attention, LineAR manages the cache at the line level using a 2D view, preserving the visual dependency regions while progressively evicting less-informative tokens that are harmless for subsequent line generation, guided by inter-line attention. LineAR enables efficient autoregressive (AR) image generation by utilizing only a few lines of cache, achieving both memory savings and throughput speedup, while maintaining or even improving generation quality. Extensive experiments across six autoregressive image generation models, including class-conditional and text-to-image generation, validate its effectiveness and generality. LineAR improves ImageNet FID from 2.77 to 2.68 and COCO FID from 23.85 to 22.86 on LlamaGen-XL and Janus-Pro-1B, while retaining only 1/6 KV cache. It also improves DPG on Lumina-mGPT-768 with just 1/8 KV cache. Additionally, LineAR achieves significant memory and throughput gains, including up to 67.61% memory reduction and 7.57x speedup on LlamaGen-XL, and 39.66% memory reduction and 5.62x speedup on Janus-Pro-7B.
☆ A Sanity Check for Multi-In-Domain Face Forgery Detection in the Real World
Existing methods for deepfake detection aim to develop generalizable detectors. Although "generalizable" is the ultimate target once and for all, with limited training forgeries and domains, it appears idealistic to expect generalization that covers entirely unseen variations, especially given the diversity of real-world deepfakes. Therefore, introducing large-scale multi-domain data for training can be feasible and important for real-world applications. However, within such a multi-domain scenario, the differences between multiple domains, rather than the subtle real/fake distinctions, dominate the feature space. As a result, despite detectors being able to relatively separate real and fake within each domain (i.e., high AUC), they struggle with single-image real/fake judgments in domain-unspecified conditions (i.e., low ACC). In this paper, we first define a new research paradigm named Multi-In-Domain Face Forgery Detection (MID-FFD), which includes sufficient volumes of real-fake domains for training. Then, the detector should provide definitive real-fake judgments to the domain-unspecified inputs, which simulate the frame-by-frame independent detection scenario in the real world. Meanwhile, to address the domain-dominant issue, we propose a model-agnostic framework termed DevDet (Developer for Detector) to amplify real/fake differences and make them dominant in the feature space. DevDet consists of a Face Forgery Developer (FFDev) and a Dose-Adaptive detector Fine-Tuning strategy (DAFT). Experiments demonstrate our superiority in predicting real-fake under the MID-FFD scenario while maintaining original generalization ability to unseen data.
☆ Tokenizing Buildings: A Transformer for Layout Synthesis
We introduce Small Building Model (SBM), a Transformer-based architecture for layout synthesis in Building Information Modeling (BIM) scenes. We address the question of how to tokenize buildings by unifying heterogeneous feature sets of architectural elements into sequences while preserving compositional structure. Such feature sets are represented as a sparse attribute-feature matrix that captures room properties. We then design a unified embedding module that learns joint representations of categorical and possibly correlated continuous feature groups. Lastly, we train a single Transformer backbone in two modes: an encoder-only pathway that yields high-fidelity room embeddings, and an encoder-decoder pipeline for autoregressive prediction of room entities, referred to as Data-Driven Entity Prediction (DDEP). Experiments across retrieval and generative layout synthesis show that SBM learns compact room embeddings that reliably cluster by type and topology, enabling strong semantic retrieval. In DDEP mode, SBM produces functionally sound layouts, with fewer collisions and boundary violations and improved navigability.
comment: 8 pages, 1 page References, 4 figures
☆ FreeGen: Feed-Forward Reconstruction-Generation Co-Training for Free-Viewpoint Driving Scene Synthesis
Closed-loop simulation and scalable pre-training for autonomous driving require synthesizing free-viewpoint driving scenes. However, existing datasets and generative pipelines rarely provide consistent off-trajectory observations, limiting large-scale evaluation and training. While recent generative models demonstrate strong visual realism, they struggle to jointly achieve interpolation consistency and extrapolation realism without per-scene optimization. To address this, we propose FreeGen, a feed-forward reconstruction-generation co-training framework for free-viewpoint driving scene synthesis. The reconstruction model provides stable geometric representations to ensure interpolation consistency, while the generation model performs geometry-aware enhancement to improve realism at unseen viewpoints. Through co-training, generative priors are distilled into the reconstruction model to improve off-trajectory rendering, and the refined geometry in turn offers stronger structural guidance for generation. Experiments demonstrate that FreeGen achieves state-of-the-art performance for free-viewpoint driving scene synthesis.
comment: Novel View Synthesis, Driving Scene, Free Trajectory, Image Generation
☆ LatentFM: A Latent Flow Matching Approach for Generative Medical Image Segmentation
Generative models have achieved remarkable progress with the emergence of flow matching (FM). It has demonstrated strong generative capabilities and attracted significant attention as a simulation-free flow-based framework capable of learning exact data densities. Motivated by these advances, we propose LatentFM, a flow-based model operating in the latent space for medical image segmentation. To model the data distribution, we first design two variational autoencoders (VAEs) to encode both medical images and their corresponding masks into a lower-dimensional latent space. We then estimate a conditional velocity field that guides the flow based on the input image. By sampling multiple latent representations, our method synthesizes diverse segmentation outputs whose pixel-wise variance reliably captures the underlying data distribution, enabling both highly accurate and uncertainty-aware predictions. Furthermore, we generate confidence maps that quantify the model certainty, providing clinicians with richer information for deeper analysis. We conduct experiments on two datasets, ISIC-2018 and CVC-Clinic, and compare our method with several prior baselines, including both deterministic and generative approach models. Through comprehensive evaluations, both qualitative and quantitative results show that our approach achieves superior segmentation accuracy while remaining highly efficient in the latent space.
☆ RobustSplat++: Decoupling Densification, Dynamics, and Illumination for In-the-Wild 3DGS
3D Gaussian Splatting (3DGS) has gained significant attention for its real-time, photo-realistic rendering in novel-view synthesis and 3D modeling. However, existing methods struggle with accurately modeling in-the-wild scenes affected by transient objects and illuminations, leading to artifacts in the rendered images. We identify that the Gaussian densification process, while enhancing scene detail capture, unintentionally contributes to these artifacts by growing additional Gaussians that model transient disturbances and illumination variations. To address this, we propose RobustSplat++, a robust solution based on several critical designs. First, we introduce a delayed Gaussian growth strategy that prioritizes optimizing static scene structure before allowing Gaussian splitting/cloning, mitigating overfitting to transient objects in early optimization. Second, we design a scale-cascaded mask bootstrapping approach that first leverages lower-resolution feature similarity supervision for reliable initial transient mask estimation, taking advantage of its stronger semantic consistency and robustness to noise, and then progresses to high-resolution supervision to achieve more precise mask prediction. Third, we incorporate the delayed Gaussian growth strategy and mask bootstrapping with appearance modeling to handling in-the-wild scenes including transients and illuminations. Extensive experiments on multiple challenging datasets show that our method outperforms existing methods, clearly demonstrating the robustness and effectiveness of our method.
comment: arXiv admin note: substantial text overlap with arXiv:2506.02751
☆ Shared Multi-modal Embedding Space for Face-Voice Association ICASSP
The FAME 2026 challenge comprises two demanding tasks: training face-voice associations combined with a multilingual setting that includes testing on languages on which the model was not trained. Our approach consists of separate uni-modal processing pipelines with general face and voice feature extraction, complemented by additional age-gender feature extraction to support prediction. The resulting single-modal features are projected into a shared embedding space and trained with an Adaptive Angular Margin (AAM) loss. Our approach achieved first place in the FAME 2026 challenge, with an average Equal-Error Rate (EER) of 23.99%.
comment: Ranked 1st in Fame 2026 Challenge, ICASSP
☆ EMMA: Efficient Multimodal Understanding, Generation, and Editing with a Unified Architecture
We propose EMMA, an efficient and unified architecture for multimodal understanding, generation and editing. Specifically, EMMA primarily consists of 1) An efficient autoencoder with a 32x compression ratio, which significantly reduces the number of tokens required for generation. This also ensures the training balance between understanding and generation tasks by applying the same compression ratio to images. 2) Channel-wise concatenation instead of token-wise concatenation among visual understanding and generation tokens, which further reduces the visual tokens in unified architectures. 3) A shared-and-decoupled network that enables mutual improvements across tasks while meeting the task-specific modeling requirements. 4) A mixture-of-experts mechanism adopted for visual understanding encoder, which substantially improves perceptual capabilities with a few parameters increase. Extensive experiments have shown that EMMA-4B can significantly outperform state-of-the-art unified multimodal approaches (e.g., BAGEL-7B) in both efficiency and performance, while also achieving competitive results compared to recent multimodal understanding and generation experts (e.g., Qwen3-VL and Qwen-Image). We believe that EMMA lays a solid foundation for the future development of unified multimodal architectures.
comment: Project Page: https://emma-umm.github.io/emma/
☆ LaFiTe: A Generative Latent Field for 3D Native Texturing
Generating high-fidelity, seamless textures directly on 3D surfaces, what we term 3D-native texturing, remains a fundamental open challenge, with the potential to overcome long-standing limitations of UV-based and multi-view projection methods. However, existing native approaches are constrained by the absence of a powerful and versatile latent representation, which severely limits the fidelity and generality of their generated textures. We identify this representation gap as the principal barrier to further progress. We introduce LaFiTe, a framework that addresses this challenge by learning to generate textures as a 3D generative sparse latent color field. At its core, LaFiTe employs a variational autoencoder (VAE) to encode complex surface appearance into a sparse, structured latent space, which is subsequently decoded into a continuous color field. This representation achieves unprecedented fidelity, exceeding state-of-the-art methods by >10 dB PSNR in reconstruction, by effectively disentangling texture appearance from mesh topology and UV parameterization. Building upon this strong representation, a conditional rectified-flow model synthesizes high-quality, coherent textures across diverse styles and geometries. Extensive experiments demonstrate that LaFiTe not only sets a new benchmark for 3D-native texturing but also enables flexible downstream applications such as material synthesis and texture super-resolution, paving the way for the next generation of 3D content creation workflows.
comment: Project page: https://vast-ai-research.github.io/LaFiTe/
☆ MemLoRA: Distilling Expert Adapters for On-Device Memory Systems
Memory-augmented Large Language Models (LLMs) have demonstrated remarkable consistency during prolonged dialogues by storing relevant memories and incorporating them as context. Such memory-based personalization is also key in on-device settings that allow users to keep their conversations and data private. However, memory-augmented systems typically rely on LLMs that are too costly for local on-device deployment. Even though Small Language Models (SLMs) are more suitable for on-device inference than LLMs, they cannot achieve sufficient performance. Additionally, these LLM-based systems lack native visual capabilities, limiting their applicability in multimodal contexts. In this paper, we introduce (i) MemLoRA, a novel memory system that enables local deployment by equipping SLMs with specialized memory adapters, and (ii) its vision extension MemLoRA-V, which integrates small Vision-Language Models (SVLMs) to memory systems, enabling native visual understanding. Following knowledge distillation principles, each adapter is trained separately for specific memory operations$\unicode{x2013}$knowledge extraction, memory update, and memory-augmented generation. Equipped with memory adapters, small models enable accurate on-device memory operations without cloud dependency. On text-only operations, MemLoRA outperforms 10$\times$ larger baseline models (e.g., Gemma2-27B) and achieves performance comparable to 60$\times$ larger models (e.g., GPT-OSS-120B) on the LoCoMo benchmark. To evaluate visual understanding operations instead, we extend LoCoMo with challenging Visual Question Answering tasks that require direct visual reasoning. On this, our VLM-integrated MemLoRA-V shows massive improvements over caption-based approaches (81.3 vs. 23.7 accuracy) while keeping strong performance in text-based tasks, demonstrating the efficacy of our method in multimodal contexts.
☆ Order Matters: 3D Shape Generation from Sequential VR Sketches
VR sketching lets users explore and iterate on ideas directly in 3D, offering a faster and more intuitive alternative to conventional CAD tools. However, existing sketch-to-shape models ignore the temporal ordering of strokes, discarding crucial cues about structure and design intent. We introduce VRSketch2Shape, the first framework and multi-category dataset for generating 3D shapes from sequential VR sketches. Our contributions are threefold: (i) an automated pipeline that generates sequential VR sketches from arbitrary shapes, (ii) a dataset of over 20k synthetic and 900 hand-drawn sketch-shape pairs across four categories, and (iii) an order-aware sketch encoder coupled with a diffusion-based 3D generator. Our approach yields higher geometric fidelity than prior work, generalizes effectively from synthetic to real sketches with minimal supervision, and performs well even on partial sketches. All data and models will be released open-source at https://chenyizi086.github.io/VRSketch2Shape_website.
☆ MT-Depth: Multi-task Instance feature analysis for the Depth Completion
Depth completion plays a vital role in 3D perception systems, especially in scenarios where sparse depth data must be densified for tasks such as autonomous driving, robotics, and augmented reality. While many existing approaches rely on semantic segmentation to guide depth completion, they often overlook the benefits of object-level understanding. In this work, we introduce an instance-aware depth completion framework that explicitly integrates binary instance masks as spatial priors to refine depth predictions. Our model combines four main components: a frozen YOLO V11 instance segmentation branch, a U-Net-based depth completion backbone, a cross-attention fusion module, and an attention-guided prediction head. The instance segmentation branch generates per-image foreground masks that guide the depth branch via cross-attention, allowing the network to focus on object-centric regions during refinement. We validate our method on the Virtual KITTI 2 dataset, showing that it achieves lower RMSE compared to both a U-Net-only baseline and previous semantic-guided methods, while maintaining competitive MAE. Qualitative and quantitative results demonstrate that the proposed model effectively enhances depth accuracy near object boundaries, occlusions, and thin structures. Our findings suggest that incorporating instance-aware cues offers a promising direction for improving depth completion without relying on dense semantic labels.
☆ E3AD: An Emotion-Aware Vision-Language-Action Model for Human-Centric End-to-End Autonomous Driving
End-to-end autonomous driving (AD) systems increasingly adopt vision-language-action (VLA) models, yet they typically ignore the passenger's emotional state, which is central to comfort and AD acceptance. We introduce Open-Domain End-to-End (OD-E2E) autonomous driving, where an autonomous vehicle (AV) must interpret free-form natural-language commands, infer the emotion, and plan a physically feasible trajectory. We propose E3AD, an emotion-aware VLA framework that augments semantic understanding with two cognitively inspired components: a continuous Valenc-Arousal-Dominance (VAD) emotion model that captures tone and urgency from language, and a dual-pathway spatial reasoning module that fuses egocentric and allocentric views for human-like spatial cognition. A consistency-oriented training scheme, combining modality pretraining with preference-based alignment, further enforces coherence between emotional intent and driving actions. Across real-world datasets, E3AD improves visual grounding and waypoint planning and achieves state-of-the-art (SOTA) VAD correlation for emotion estimation. These results show that injecting emotion into VLA-style driving yields more human-aligned grounding, planning, and human-centric feedback.
☆ Measuring the Unspoken: A Disentanglement Model and Benchmark for Psychological Analysis in the Wild
Generative psychological analysis of in-the-wild conversations faces two fundamental challenges: (1) existing Vision-Language Models (VLMs) fail to resolve Articulatory-Affective Ambiguity, where visual patterns of speech mimic emotional expressions; and (2) progress is stifled by a lack of verifiable evaluation metrics capable of assessing visual grounding and reasoning depth. We propose a complete ecosystem to address these twin challenges. First, we introduce Multilevel Insight Network for Disentanglement(MIND), a novel hierarchical visual encoder that introduces a Status Judgment module to algorithmically suppress ambiguous lip features based on their temporal feature variance, achieving explicit visual disentanglement. Second, we construct ConvoInsight-DB, a new large-scale dataset with expert annotations for micro-expressions and deep psychological inference. Third, Third, we designed the Mental Reasoning Insight Rating Metric (PRISM), an automated dimensional framework that uses expert-guided LLM to measure the multidimensional performance of large mental vision models. On our PRISM benchmark, MIND significantly outperforms all baselines, achieving a +86.95% gain in micro-expression detection over prior SOTA. Ablation studies confirm that our Status Judgment disentanglement module is the most critical component for this performance leap. Our code has been opened.
☆ Hardware-aware Neural Architecture Search of Early Exiting Networks on Edge Accelerators
Advancements in high-performance computing and cloud technologies have enabled the development of increasingly sophisticated Deep Learning (DL) models. However, the growing demand for embedded intelligence at the edge imposes stringent computational and energy constraints, challenging the deployment of these large-scale models. Early Exiting Neural Networks (EENN) have emerged as a promising solution, allowing dynamic termination of inference based on input complexity to enhance efficiency. Despite their potential, EENN performance is highly influenced by the heterogeneity of edge accelerators and the constraints imposed by quantization, affecting accuracy, energy efficiency, and latency. Yet, research on the automatic optimization of EENN design for edge hardware remains limited. To bridge this gap, we propose a hardware-aware Neural Architecture Search (NAS) framework that systematically integrates the effects of quantization and hardware resource allocation to optimize the placement of early exit points within a network backbone. Experimental results on the CIFAR-10 dataset demonstrate that our NAS framework can discover architectures that achieve over a 50\% reduction in computational costs compared to conventional static networks, making them more suitable for deployment in resource-constrained edge environments.
comment: Submitted to IEEE Transactions on Emerging Topics in Computing
☆ OmniScaleSR: Unleashing Scale-Controlled Diffusion Prior for Faithful and Realistic Arbitrary-Scale Image Super-Resolution
Arbitrary-scale super-resolution (ASSR) overcomes the limitation of traditional super-resolution (SR) methods that operate only at fixed scales (e.g., 4x), enabling a single model to handle arbitrary magnification. Most existing ASSR approaches rely on implicit neural representation (INR), but its regression-driven feature extraction and aggregation intrinsically limit the ability to synthesize fine details, leading to low realism. Recent diffusion-based realistic image super-resolution (Real-ISR) models leverage powerful pre-trained diffusion priors and show impressive results at the 4x setting. We observe that they can also achieve ASSR because the diffusion prior implicitly adapts to scale by encouraging high-realism generation. However, without explicit scale control, the diffusion process cannot be properly adjusted for different magnification levels, resulting in excessive hallucination or blurry outputs, especially under ultra-high scales. To address these issues, we propose OmniScaleSR, a diffusion-based realistic arbitrary-scale SR framework designed to achieve both high fidelity and high realism. We introduce explicit, diffusion-native scale control mechanisms that work synergistically with implicit scale adaptation, enabling scale-aware and content-aware modulation of the diffusion process. In addition, we incorporate multi-domain fidelity enhancement designs to further improve reconstruction accuracy. Extensive experiments on bicubic degradation benchmarks and real-world datasets show that OmniScaleSR surpasses state-of-the-art methods in both fidelity and perceptual realism, with particularly strong performance at large magnification factors. Code will be released at https://github.com/chaixinning/OmniScaleSR.
comment: Accepted as TCSVT, 15 pages
☆ Towards Cross-View Point Correspondence in Vision-Language Models
Cross-view correspondence is a fundamental capability for spatial understanding and embodied AI. However, it is still far from being realized in Vision-Language Models (VLMs), especially in achieving precise point-level correspondence, which is crucial for precise affordance interaction. So we propose the Cross-View Point Correspondence (CVPC) task and CrossPoint-Bench, a comprehensive benchmark with hierarchical design, inspired by the human cognitive process of "perceive", "reason", and "correspond". Our evaluation shows the state-of-the-art models (e.g., Gemini-2.5-Pro) still fall far behind humans, with a gap of over 54.65% in overall accuracy, exposing a challenge in transitioning from coarse-grained judgement to fine-grained coordinate prediction. To address this problem, we construct CrossPoint-378K, a dataset with 378K question-answering pairs across 900 scenes, focused on actionable affordance regions that better reflect real-world manipulation and interaction scenarios. Furthermore, we propose CroPond that trained on the CrossPoint-378K dataset. Our CroPond achieves state-of-the-art performance on CrossPoint-Bench, surpassing Gemini-2.5-Pro by 39.7% accuracy, which offers a foundation for advancing future work on cross-view correspondence. The benchmark, dataset, and model are publicly available at https://github.com/WangYipu2002/CrossPoint.
☆ Reward Forcing: Efficient Streaming Video Generation with Rewarded Distribution Matching Distillation
Efficient streaming video generation is critical for simulating interactive and dynamic worlds. Existing methods distill few-step video diffusion models with sliding window attention, using initial frames as sink tokens to maintain attention performance and reduce error accumulation. However, video frames become overly dependent on these static tokens, resulting in copied initial frames and diminished motion dynamics. To address this, we introduce Reward Forcing, a novel framework with two key designs. First, we propose EMA-Sink, which maintains fixed-size tokens initialized from initial frames and continuously updated by fusing evicted tokens via exponential moving average as they exit the sliding window. Without additional computation cost, EMA-Sink tokens capture both long-term context and recent dynamics, preventing initial frame copying while maintaining long-horizon consistency. Second, to better distill motion dynamics from teacher models, we propose a novel Rewarded Distribution Matching Distillation (Re-DMD). Vanilla distribution matching treats every training sample equally, limiting the model's ability to prioritize dynamic content. Instead, Re-DMD biases the model's output distribution toward high-reward regions by prioritizing samples with greater dynamics rated by a vision-language model. Re-DMD significantly enhances motion quality while preserving data fidelity. We include both quantitative and qualitative experiments to show that Reward Forcing achieves state-of-the-art performance on standard benchmarks while enabling high-quality streaming video generation at 23.1 FPS on a single H100 GPU.
☆ Live Avatar: Streaming Real-time Audio-Driven Avatar Generation with Infinite Length
Existing diffusion-based video generation methods are fundamentally constrained by sequential computation and long-horizon inconsistency, limiting their practical adoption in real-time, streaming audio-driven avatar synthesis. We present Live Avatar, an algorithm-system co-designed framework that enables efficient, high-fidelity, and infinite-length avatar generation using a 14-billion-parameter diffusion model. Our approach introduces Timestep-forcing Pipeline Parallelism (TPP), a distributed inference paradigm that pipelines denoising steps across multiple GPUs, effectively breaking the autoregressive bottleneck and ensuring stable, low-latency real-time streaming. To further enhance temporal consistency and mitigate identity drift and color artifacts, we propose the Rolling Sink Frame Mechanism (RSFM), which maintains sequence fidelity by dynamically recalibrating appearance using a cached reference image. Additionally, we leverage Self-Forcing Distribution Matching Distillation to facilitate causal, streamable adaptation of large-scale models without sacrificing visual quality. Live Avatar demonstrates state-of-the-art performance, reaching 20 FPS end-to-end generation on 5 H800 GPUs, and, to the best of our knowledge, is the first to achieve practical, real-time, high-fidelity avatar generation at this scale. Our work establishes a new paradigm for deploying advanced diffusion models in industrial long-form video synthesis applications.
☆ I2I-Bench: A Comprehensive Benchmark Suite for Image-to-Image Editing Models
Image editing models are advancing rapidly, yet comprehensive evaluation remains a significant challenge. Existing image editing benchmarks generally suffer from limited task scopes, insufficient evaluation dimensions, and heavy reliance on manual annotations, which significantly constrain their scalability and practical applicability. To address this, we propose \textbf{I2I-Bench}, a comprehensive benchmark for image-to-image editing models, which features (i) diverse tasks, encompassing 10 task categories across both single-image and multi-image editing tasks, (ii) comprehensive evaluation dimensions, including 30 decoupled and fine-grained evaluation dimensions with automated hybrid evaluation methods that integrate specialized tools and large multimodal models (LMMs), and (iii) rigorous alignment validation, justifying the consistency between our benchmark evaluations and human preferences. Using I2I-Bench, we benchmark numerous mainstream image editing models, investigating the gaps and trade-offs between editing models across various dimensions. We will open-source all components of I2I-Bench to facilitate future research.
☆ SEASON: Mitigating Temporal Hallucination in Video Large Language Models via Self-Diagnostic Contrastive Decoding
Video Large Language Models (VideoLLMs) have shown remarkable progress in video understanding. However, these models still struggle to effectively perceive and exploit rich temporal information in videos when responding to user queries. Therefore, they often generate descriptions of events that are temporal inconsistent or causally implausible, causing severe hallucination issues. While most prior studies have focused on spatial hallucinations (e.g. object mismatches), temporal reasoning in video understanding remains relatively underexplored. To address this issue, we propose Self-Diagnostic Contrastive Decoding (SEASON), a training-free method that adaptively enhances temporal and spatial faithfulness for each output token. It achieves this by dynamically diagnosing each token's hallucination tendency and applying adaptive contrastive decoding against its corresponding temporal and spatial negatives. Extensive experiments demonstrate that SEASON outperforms all existing training-free hallucination mitigation approaches on three hallucination examination benchmarks, while further improves VideoLLMs across four general video understanding benchmarks. The code will be released upon acceptance.
☆ Rethinking Decoupled Knowledge Distillation: A Predictive Distribution Perspective
In the history of knowledge distillation, the focus has once shifted over time from logit-based to feature-based approaches. However, this transition has been revisited with the advent of Decoupled Knowledge Distillation (DKD), which re-emphasizes the importance of logit knowledge through advanced decoupling and weighting strategies. While DKD marks a significant advancement, its underlying mechanisms merit deeper exploration. As a response, we rethink DKD from a predictive distribution perspective. First, we introduce an enhanced version, the Generalized Decoupled Knowledge Distillation (GDKD) loss, which offers a more versatile method for decoupling logits. Then we pay particular attention to the teacher model's predictive distribution and its impact on the gradients of GDKD loss, uncovering two critical insights often overlooked: (1) the partitioning by the top logit considerably improves the interrelationship of non-top logits, and (2) amplifying the focus on the distillation loss of non-top logits enhances the knowledge extraction among them. Utilizing these insights, we further propose a streamlined GDKD algorithm with an efficient partition strategy to handle the multimodality of teacher models' predictive distribution. Our comprehensive experiments conducted on a variety of benchmarks, including CIFAR-100, ImageNet, Tiny-ImageNet, CUB-200-2011, and Cityscapes, demonstrate GDKD's superior performance over both the original DKD and other leading knowledge distillation methods. The code is available at https://github.com/ZaberKo/GDKD.
comment: Accepted to IEEE TNNLS
☆ Denoise to Track: Harnessing Video Diffusion Priors for Robust Correspondence
In this work, we introduce HeFT (Head-Frequency Tracker), a zero-shot point tracking framework that leverages the visual priors of pretrained video diffusion models. To better understand how they encode spatiotemporal information, we analyze the internal representations of Video Diffusion Transformer (VDiT). Our analysis reveals that attention heads act as minimal functional units with distinct specializations for matching, semantic understanding, and positional encoding. Additionally, we find that the low-frequency components in VDiT features are crucial for establishing correspondences, whereas the high-frequency components tend to introduce noise. Building on these insights, we propose a head- and frequency-aware feature selection strategy that jointly selects the most informative attention head and low-frequency components to enhance tracking performance. Specifically, our method extracts discriminative features through single-step denoising, applies feature selection, and employs soft-argmax localization with forward-backward consistency checks for correspondence estimation. Extensive experiments on TAP-Vid benchmarks demonstrate that HeFT achieves state-of-the-art zero-shot tracking performance, approaching the accuracy of supervised methods while eliminating the need for annotated training data. Our work further underscores the promise of video diffusion models as powerful foundation models for a wide range of downstream tasks, paving the way toward unified visual foundation models.
☆ Malicious Image Analysis via Vision-Language Segmentation Fusion: Detection, Element, and Location in One-shot
Detecting illicit visual content demands more than image-level NSFW flags; moderators must also know what objects make an image illegal and where those objects occur. We introduce a zero-shot pipeline that simultaneously (i) detects if an image contains harmful content, (ii) identifies each critical element involved, and (iii) localizes those elements with pixel-accurate masks - all in one pass. The system first applies foundation segmentation model (SAM) to generate candidate object masks and refines them into larger independent regions. Each region is scored for malicious relevance by a vision-language model using open-vocabulary prompts; these scores weight a fusion step that produces a consolidated malicious object map. An ensemble across multiple segmenters hardens the pipeline against adaptive attacks that target any single segmentation method. Evaluated on a newly-annotated 790-image dataset spanning drug, sexual, violent and extremist content, our method attains 85.8% element-level recall, 78.1% precision and a 92.1% segment-success rate - exceeding direct zero-shot VLM localization by 27.4% recall at comparable precision. Against PGD adversarial perturbations crafted to break SAM and VLM, our method's precision and recall decreased by no more than 10%, demonstrating high robustness against attacks. The full pipeline processes an image in seconds, plugs seamlessly into existing VLM workflows, and constitutes the first practical tool for fine-grained, explainable malicious-image moderation.
☆ When Robots Should Say "I Don't Know": Benchmarking Abstention in Embodied Question Answering
Embodied Question Answering (EQA) requires an agent to interpret language, perceive its environment, and navigate within 3D scenes to produce responses. Existing EQA benchmarks assume that every question must be answered, but embodied agents should know when they do not have sufficient information to answer. In this work, we focus on a minimal requirement for EQA agents, abstention: knowing when to withhold an answer. From an initial study of 500 human queries, we find that 32.4% contain missing or underspecified context. Drawing on this initial study and cognitive theories of human communication errors, we derive five representative categories requiring abstention: actionability limitation, referential underspecification, preference dependence, information unavailability, and false presupposition. We augment OpenEQA by having annotators transform well-posed questions into ambiguous variants outlined by these categories. The resulting dataset, AbstainEQA, comprises 1,636 annotated abstention cases paired with 1,636 original OpenEQA instances for balanced evaluation. Evaluating on AbstainEQA, we find that even the best frontier model only attains 42.79% abstention recall, while humans achieve 91.17%. We also find that scaling, prompting, and reasoning only yield marginal gains, and that fine-tuned models overfit to textual cues. Together, these results position abstention as a fundamental prerequisite for reliable interaction in embodied settings and as a necessary basis for effective clarification.
☆ SAM3-I: Segment Anything with Instructions
Segment Anything Model 3 (SAM3) has advanced open-vocabulary segmentation through promptable concept segmentation, allowing users to segment all instances corresponding to a given concept, typically specified with short noun-phrase (NP) prompts. While this marks the first integration of language-level concepts within the SAM family, real-world usage typically requires far richer expressions that include attributes, spatial relations, functionalities, actions, states, and even implicit reasoning over instances. Currently, SAM3 relies on external multi-modal agents to convert complex instructions into NPs and then conduct iterative mask filtering. However, these NP-level concepts remain overly coarse, often failing to precisely represent a specific instance. In this work, we present SAM3-I, an enhanced framework that unifies concept-level understanding and instruction-level reasoning within the SAM family. SAM3-I introduces an instruction-aware cascaded adaptation mechanism that progressively aligns expressive instruction semantics with SAM3's existing vision-language representations, enabling direct instruction-following segmentation without sacrificing its original concept-driven capabilities. Furthermore, we design a structured instruction taxonomy spanning concept, simple, and complex levels, and develop a scalable data engine to construct a dataset with diverse instruction-mask pairs. Experiments show that SAM3-I delivers appealing performance, demonstrating that SAM3 can be effectively extended to follow natural-language instructions while preserving its strong concept grounding. We open-source SAM3-I and provide practical fine-tuning workflows, enabling researchers to adapt it to domain-specific applications. The source code is available here.
comment: Preliminary results; work in progress
☆ Infrared UAV Target Tracking with Dynamic Feature Refinement and Global Contextual Attention Knowledge Distillation
Unmanned aerial vehicle (UAV) target tracking based on thermal infrared imaging has been one of the most important sensing technologies in anti-UAV applications. However, the infrared UAV targets often exhibit weak features and complex backgrounds, posing significant challenges to accurate tracking. To address these problems, we introduce SiamDFF, a novel dynamic feature fusion Siamese network that integrates feature enhancement and global contextual attention knowledge distillation for infrared UAV target (IRUT) tracking. The SiamDFF incorporates a selective target enhancement network (STEN), a dynamic spatial feature aggregation module (DSFAM), and a dynamic channel feature aggregation module (DCFAM). The STEN employs intensity-aware multi-head cross-attention to adaptively enhance important regions for both template and search branches. The DSFAM enhances multi-scale UAV target features by integrating local details with global features, utilizing spatial attention guidance within the search frame. The DCFAM effectively integrates the mixed template generated from STEN in the template branch and original template, avoiding excessive background interference with the template and thereby enhancing the emphasis on UAV target region features within the search frame. Furthermore, to enhance the feature extraction capabilities of the network for IRUT without adding extra computational burden, we propose a novel tracking-specific target-aware contextual attention knowledge distiller. It transfers the target prior from the teacher network to the student model, significantly improving the student network's focus on informative regions at each hierarchical level of the backbone network. Extensive experiments on real infrared UAV datasets demonstrate that the proposed approach outperforms state-of-the-art target trackers under complex backgrounds while achieving a real-time tracking speed.
comment: Accepted by IEEE TMM
☆ TARDis: Time Attenuated Representation Disentanglement for Incomplete Multi-Modal Tumor Segmentation and Classification
Tumor segmentation and diagnosis in contrast-enhanced Computed Tomography (CT) rely heavily on the physiological dynamics of contrast agents. However, obtaining a complete multi-phase series is often clinically unfeasible due to radiation concerns or scanning limitations, leading to the "missing modality" problem. Existing deep learning approaches typically treat missing phases as absent independent channels, ignoring the inherent temporal continuity of hemodynamics. In this work, we propose Time Attenuated Representation Disentanglement (TARDis), a novel physics-aware framework that redefines missing modalities as missing sample points on a continuous Time-Attenuation Curve. TARDis explicitly disentangles the latent feature space into a time-invariant static component (anatomy) and a time-dependent dynamic component (perfusion). We achieve this via a dual-path architecture: a quantization-based path using a learnable embedding dictionary to extract consistent anatomical structures, and a probabilistic path using a Conditional Variational Autoencoder to model dynamic enhancement conditioned on the estimated scan time. This design allows the network to hallucinate missing hemodynamic features by sampling from the learned latent distribution. Extensive experiments on a large-scale private abdominal CT dataset (2,282 cases) and two public datasets demonstrate that TARDis significantly outperforms state-of-the-art incomplete modality frameworks. Notably, our method maintains robust diagnostic performance even in extreme data-sparsity scenarios, highlighting its potential for reducing radiation exposure while maintaining diagnostic precision.
Prompt2Craft: Generating Functional Craft Assemblies with LLMs
Inspired by traditional handmade crafts, where a person improvises assemblies based on the available objects, we formally introduce the Craft Assembly Task. It is a robotic assembly task that involves building an accurate representation of a given target object using the available objects, which do not directly correspond to its parts. In this work, we focus on selecting the subset of available objects for the final craft, when the given input is an RGB image of the target in the wild. We use a mask segmentation neural network to identify visible parts, followed by retrieving labeled template meshes. These meshes undergo pose optimization to determine the most suitable template. Then, we propose to simplify the parts of the transformed template mesh to primitive shapes like cuboids or cylinders. Finally, we design a search algorithm to find correspondences in the scene based on local and global proportions. We develop baselines for comparison that consider all possible combinations, and choose the highest scoring combination for common metrics used in foreground maps and mask accuracy. Our approach achieves comparable results to the baselines for two different scenes, and we show qualitative results for an implementation in a real-world scenario.
Dataset creation for supervised deep learning-based analysis of microscopic images -- review of important considerations and recommendations
Supervised deep learning (DL) receives great interest for automated analysis of microscopic images with an increasing body of literature supporting its potential. The development and validation of those DL models relies heavily on the availability of high-quality, large-scale datasets. However, creating such datasets is a complex and resource-intensive process, often hindered by challenges such as time constraints, domain variability, and risks of bias in image collection and label creation. This review provides a comprehensive guide to the critical steps in dataset creation, including: 1) image acquisition, 2) selection of annotation software, and 3) annotation creation. In addition to ensuring a sufficiently large number of images, it is crucial to address sources of image variability (domain shifts) - such as those related to slide preparation and digitization - that could lead to algorithmic errors if not adequately represented in the training data. Key quality criteria for annotations are the three "C"s: correctness, completeness, and consistency. This review explores methods to enhance annotation quality through the use of advanced techniques that mitigate the limitations of single annotators. To support dataset creators, a standard operating procedure (SOP) is provided as supplemental material, outlining best practices for dataset development. Furthermore, the article underscores the importance of open datasets in driving innovation and enhancing reproducibility of DL research. By addressing the challenges and offering practical recommendations, this review aims to advance the creation of and availability to high-quality, large-scale datasets, ultimately contributing to the development of generalizable and robust DL models for pathology applications.
☆ COOPER: A Unified Model for Cooperative Perception and Reasoning in Spatial Intelligence
Visual Spatial Reasoning is crucial for enabling Multimodal Large Language Models (MLLMs) to understand object properties and spatial relationships, yet current models still struggle with 3D-aware reasoning. Existing approaches typically enhance either perception, by augmenting RGB inputs with auxiliary modalities such as depth and segmentation, or reasoning, by training on spatial VQA datasets and applying reinforcement learning, and thus treat these two aspects in isolation. In this work, we investigate whether a unified MLLM can develop an intrinsic ability to enhance spatial perception and, through adaptive interleaved reasoning, achieve stronger spatial intelligence. We propose \textbf{COOPER}, a unified MLLM that leverages depth and segmentation as auxiliary modalities and is trained in two stages to acquire auxiliary modality generation and adaptive, interleaved reasoning capabilities. COOPER achieves an average \textbf{6.91\%} improvement in spatial reasoning while maintaining general performance. Moreover, even a variant trained only for auxiliary modality generation attains a \textbf{7.92\%} gain on distance and size estimation, suggesting that learning to generate auxiliary modalities helps internalize spatial knowledge and strengthen spatial understanding.
☆ Efficient Spatially-Variant Convolution via Differentiable Sparse Kernel Complex
Image convolution with complex kernels is a fundamental operation in photography, scientific imaging, and animation effects, yet direct dense convolution is computationally prohibitive on resource-limited devices. Existing approximations, such as simulated annealing or low-rank decompositions, either lack efficiency or fail to capture non-convex kernels. We introduce a differentiable kernel decomposition framework that represents a target spatially-variant, dense, complex kernel using a set of sparse kernel samples. Our approach features (i) a decomposition that enables differentiable optimization of sparse kernels, (ii) a dedicated initialization strategy for non-convex shapes to avoid poor local minima, and (iii) a kernel-space interpolation scheme that extends single-kernel filtering to spatially varying filtering without retraining and additional runtime overhead. Experiments on Gaussian and non-convex kernels show that our method achieves higher fidelity than simulated annealing and significantly lower cost than low-rank decompositions. Our approach provides a practical solution for mobile imaging and real-time rendering, while remaining fully differentiable for integration into broader learning pipelines.
comment: 10 pages, 7 figures
☆ Counterfeit Answers: Adversarial Forgery against OCR-Free Document Visual Question Answering
Document Visual Question Answering (DocVQA) enables end-to-end reasoning grounded on information present in a document input. While recent models have shown impressive capabilities, they remain vulnerable to adversarial attacks. In this work, we introduce a novel attack scenario that aims to forge document content in a visually imperceptible yet semantically targeted manner, allowing an adversary to induce specific or generally incorrect answers from a DocVQA model. We develop specialized attack algorithms that can produce adversarially forged documents tailored to different attackers' goals, ranging from targeted misinformation to systematic model failure scenarios. We demonstrate the effectiveness of our approach against two end-to-end state-of-the-art models: Pix2Struct, a vision-language transformer that jointly processes image and text through sequence-to-sequence modeling, and Donut, a transformer-based model that directly extracts text and answers questions from document images. Our findings highlight critical vulnerabilities in current DocVQA systems and call for the development of more robust defenses.
☆ Gaussian Entropy Fields: Driving Adaptive Sparsity in 3D Gaussian Optimization
3D Gaussian Splatting (3DGS) has emerged as a leading technique for novel view synthesis, demonstrating exceptional rendering efficiency. \replaced[]{Well-reconstructed surfaces can be characterized by low configurational entropy, where dominant primitives clearly define surface geometry while redundant components are suppressed.}{The key insight is that well-reconstructed surfaces naturally exhibit low configurational entropy, where dominant primitives clearly define surface geometry while suppressing redundant components.} Three complementary technical contributions are introduced: (1) entropy-driven surface modeling via entropy minimization for low configurational entropy in primitive distributions; (2) adaptive spatial regularization using the Surface Neighborhood Redundancy Index (SNRI) and image entropy-guided weighting; (3) multi-scale geometric preservation through competitive cross-scale entropy alignment. Extensive experiments demonstrate that GEF achieves competitive geometric precision on DTU and T\&T benchmarks, while delivering superior rendering quality compared to existing methods on Mip-NeRF 360. Notably, superior Chamfer Distance (0.64) on DTU and F1 score (0.44) on T\&T are obtained, alongside the best SSIM (0.855) and LPIPS (0.136) among baselines on Mip-NeRF 360, validating the framework's ability to enhance surface reconstruction accuracy without compromising photometric fidelity.
comment: 28 pages,11 figures
☆ VideoMem: Enhancing Ultra-Long Video Understanding via Adaptive Memory Management
Ultra long video understanding remains an open challenge, as existing vision language models (VLMs) falter on such content due to limited context length and inefficient long term memory retention. To address this, recent works have attempted to construct external knowledge bases and corresponding retrieval agumented generation (RAG) systems, yet these incur enormous storage and computational overhead. In this paper, we propose VideoMem, a novel framework that pioneers models long video understanding as a sequential generation task via adaptive memory management. Specifically, VideoMem dynamically updates a global memory buffer, which adaptively retains critical information while discarding redundant content across the video timeline. To efficiently train VLMs for such long-term tasks, VideoMem integrates the Progressive Grouped Relative Policy Optimization (PRPO) algorithm, equipped with two core modules: Progressive State Propagation (PSP) adaptively retains valid current states, propagates them to the next rollout step, and gradually narrows the model exploration space. Temporal Cascading Reward (TCR) further alleviates reward sparsity, improving sample utilization and accelerating convergence. Extensive experiments demonstrate that VideoMem significantly outperforms existing open-source models across diverse benchmarks for ultra-long video understanding tasks.
☆ X-Humanoid: Robotize Human Videos to Generate Humanoid Videos at Scale
The advancement of embodied AI has unlocked significant potential for intelligent humanoid robots. However, progress in both Vision-Language-Action (VLA) models and world models is severely hampered by the scarcity of large-scale, diverse training data. A promising solution is to "robotize" web-scale human videos, which has been proven effective for policy training. However, these solutions mainly "overlay" robot arms to egocentric videos, which cannot handle complex full-body motions and scene occlusions in third-person videos, making them unsuitable for robotizing humans. To bridge this gap, we introduce X-Humanoid, a generative video editing approach that adapts the powerful Wan 2.2 model into a video-to-video structure and finetunes it for the human-to-humanoid translation task. This finetuning requires paired human-humanoid videos, so we designed a scalable data creation pipeline, turning community assets into 17+ hours of paired synthetic videos using Unreal Engine. We then apply our trained model to 60 hours of the Ego-Exo4D videos, generating and releasing a new large-scale dataset of over 3.6 million "robotized" humanoid video frames. Quantitative analysis and user studies confirm our method's superiority over existing baselines: 69% of users rated it best for motion consistency, and 62.1% for embodiment correctness.
☆ Detection of Intoxicated Individuals from Facial Video Sequences via a Recurrent Fusion Model
Alcohol consumption is a significant public health concern and a major cause of accidents and fatalities worldwide. This study introduces a novel video-based facial sequence analysis approach dedicated to the detection of alcohol intoxication. The method integrates facial landmark analysis via a Graph Attention Network (GAT) with spatiotemporal visual features extracted using a 3D ResNet. These features are dynamically fused with adaptive prioritization to enhance classification performance. Additionally, we introduce a curated dataset comprising 3,542 video segments derived from 202 individuals to support training and evaluation. Our model is compared against two baselines: a custom 3D-CNN and a VGGFace+LSTM architecture. Experimental results show that our approach achieves 95.82% accuracy, 0.977 precision, and 0.97 recall, outperforming prior methods. The findings demonstrate the model's potential for practical deployment in public safety systems for non-invasive, reliable alcohol intoxication detection.
☆ Refaçade: Editing Object with Given Reference Texture
Recent advances in diffusion models have brought remarkable progress in image and video editing, yet some tasks remain underexplored. In this paper, we introduce a new task, Object Retexture, which transfers local textures from a reference object to a target object in images or videos. To perform this task, a straightforward solution is to use ControlNet conditioned on the source structure and the reference texture. However, this approach suffers from limited controllability for two reasons: conditioning on the raw reference image introduces unwanted structural information, and it fails to disentangle the visual texture and structure information of the source. To address this problem, we propose Refaçade, a method that consists of two key designs to achieve precise and controllable texture transfer in both images and videos. First, we employ a texture remover trained on paired textured/untextured 3D mesh renderings to remove appearance information while preserving the geometry and motion of source videos. Second, we disrupt the reference global layout using a jigsaw permutation, encouraging the model to focus on local texture statistics rather than the global layout of the object. Extensive experiments demonstrate superior visual quality, precise editing, and controllability, outperforming strong baselines in both quantitative and human evaluations. Code is available at https://github.com/fishZe233/Refacade.
☆ PhyVLLM: Physics-Guided Video Language Model with Motion-Appearance Disentanglement
Video Large Language Models (Video LLMs) have shown impressive performance across a wide range of video-language tasks. However, they often fail in scenarios requiring a deeper understanding of physical dynamics. This limitation primarily arises from their reliance on appearance-based matching. Incorporating physical motion modeling is crucial for deeper video understanding, but presents three key challenges: (1) motion signals are often entangled with appearance variations, making it difficult to extract clean physical cues; (2) effective motion modeling requires not only continuous-time motion representations but also capturing physical dynamics; and (3) collecting accurate annotations for physical attributes is costly and often impractical. To address these issues, we propose PhyVLLM, a physical-guided video-language framework that explicitly incorporates physical motion into Video LLMs. Specifically, PhyVLLM disentangles visual appearance and object motion through a dual-branch encoder. To model physical dynamics over time, we incorporate a Neural Ordinary Differential Equation (Neural ODE) module, which generates differentiable physical dynamic representations. The resulting motion-aware representations are projected into the token space of a pretrained LLM, enabling physics reasoning without compromising the model's original multimodal capabilities. To circumvent the need for explicit physical labels, PhyVLLM employs a self-supervised manner to model the continuous evolution of object motion. Experimental results demonstrate that PhyVLLM significantly outperforms state-of-the-art Video LLMs on both physical reasoning and general video understanding tasks, highlighting the advantages of incorporating explicit physical modeling.
☆ Auto3R: Automated 3D Reconstruction and Scanning via Data-driven Uncertainty Quantification
Traditional high-quality 3D scanning and reconstruction typically relies on human labor to plan the scanning procedure. With the rapid development of embodied systems such as drones and robots, there is a growing demand of performing accurate 3D scanning and reconstruction in an fully automated manner. We introduce Auto3R, a data-driven uncertainty quantification model that is designed to automate the 3D scanning and reconstruction of scenes and objects, including objects with non-lambertian and specular materials. Specifically, in a process of iterative 3D reconstruction and scanning, Auto3R can make efficient and accurate prediction of uncertainty distribution over potential scanning viewpoints, without knowing the ground truth geometry and appearance. Through extensive experiments, Auto3R achieves superior performance that outperforms the state-of-the-art methods by a large margin. We also deploy Auto3R on a robot arm equipped with a camera and demonstrate that Auto3R can be used to effectively digitize real-world 3D objects and delivers ready-to-use and photorealistic digital assets. Our homepage: https://tomatoma00.github.io/auto3r.github.io .
☆ Identity Clue Refinement and Enhancement for Visible-Infrared Person Re-Identification
Visible-Infrared Person Re-Identification (VI-ReID) is a challenging cross-modal matching task due to significant modality discrepancies. While current methods mainly focus on learning modality-invariant features through unified embedding spaces, they often focus solely on the common discriminative semantics across modalities while disregarding the critical role of modality-specific identity-aware knowledge in discriminative feature learning. To bridge this gap, we propose a novel Identity Clue Refinement and Enhancement (ICRE) network to mine and utilize the implicit discriminative knowledge inherent in modality-specific attributes. Initially, we design a Multi-Perception Feature Refinement (MPFR) module that aggregates shallow features from shared branches, aiming to capture modality-specific attributes that are easily overlooked. Then, we propose a Semantic Distillation Cascade Enhancement (SDCE) module, which distills identity-aware knowledge from the aggregated shallow features and guide the learning of modality-invariant features. Finally, an Identity Clues Guided (ICG) Loss is proposed to alleviate the modality discrepancies within the enhanced features and promote the learning of a diverse representation space. Extensive experiments across multiple public datasets clearly show that our proposed ICRE outperforms existing SOTA methods.
comment: 14 pages, 7 figures
☆ WiFi-based Cross-Domain Gesture Recognition Using Attention Mechanism
While fulfilling communication tasks, wireless signals can also be used to sense the environment. Among various types of sensing media, WiFi signals offer advantages such as widespread availability, low hardware cost, and strong robustness to environmental conditions like light, temperature, and humidity. By analyzing Wi-Fi signals in the environment, it is possible to capture dynamic changes of the human body and accomplish sensing applications such as gesture recognition. Although many existing gesture sensing solutions perform well in-domain but lack cross-domain capabilities (i.e., recognition performance in untrained environments). To address this, we extract Doppler spectra from the channel state information (CSI) received by all receivers and concatenate each Doppler spectrum along the same time axis to generate fused images with multi-angle information as input features. Furthermore, inspired by the convolutional block attention module (CBAM), we propose a gesture recognition network that integrates a multi-semantic spatial attention mechanism with a self-attention-based channel mechanism. This network constructs attention maps to quantify the spatiotemporal features of gestures in images, enabling the extraction of key domain-independent features. Additionally, ResNet18 is employed as the backbone network to further capture deep-level features. To validate the network performance, we evaluate the proposed network on the public Widar3 dataset, and the results show that it not only maintains high in-domain accuracy of 99.72%, but also achieves high performance in cross-domain recognition of 97.61%, significantly outperforming existing best solutions.
☆ Boundary-Aware Test-Time Adaptation for Zero-Shot Medical Image Segmentation
Due to the scarcity of annotated data and the substantial computational costs of model, conventional tuning methods in medical image segmentation face critical challenges. Current approaches to adapting pretrained models, including full-parameter and parameter-efficient fine-tuning, still rely heavily on task-specific training on downstream tasks. Therefore, zero-shot segmentation has gained increasing attention, especially with foundation models such as SAM demonstrating promising generalization capabilities. However, SAM still faces notable limitations on medical datasets due to domain shifts, making efficient zero-shot enhancement an urgent research goal. To address these challenges, we propose BA-TTA-SAM, a task-agnostic test-time adaptation framework that significantly enhances the zero-shot segmentation performance of SAM via test-time adaptation. This framework integrates two key mechanisms: (1) The encoder-level Gaussian prompt injection embeds Gaussian-based prompts directly into the image encoder, providing explicit guidance for initial representation learning. (2) The cross-layer boundary-aware attention alignment exploits the hierarchical feature interactions within the ViT backbone, aligning deep semantic responses with shallow boundary cues. Experiments on four datasets, including ISIC, Kvasir, BUSI, and REFUGE, show an average improvement of 12.4\% in the DICE score compared with SAM's zero-shot segmentation performance. The results demonstrate that our method consistently outperforms state-of-the-art models in medical image segmentation. Our framework significantly enhances the generalization ability of SAM, without requiring any source-domain training data. Extensive experiments on publicly available medical datasets strongly demonstrate the superiority of our framework. Our code is available at https://github.com/Emilychenlin/BA-TTA-SAM.
☆ VideoSSM: Autoregressive Long Video Generation with Hybrid State-Space Memory
Autoregressive (AR) diffusion enables streaming, interactive long-video generation by producing frames causally, yet maintaining coherence over minute-scale horizons remains challenging due to accumulated errors, motion drift, and content repetition. We approach this problem from a memory perspective, treating video synthesis as a recurrent dynamical process that requires coordinated short- and long-term context. We propose VideoSSM, a Long Video Model that unifies AR diffusion with a hybrid state-space memory. The state-space model (SSM) serves as an evolving global memory of scene dynamics across the entire sequence, while a context window provides local memory for motion cues and fine details. This hybrid design preserves global consistency without frozen, repetitive patterns, supports prompt-adaptive interaction, and scales in linear time with sequence length. Experiments on short- and long-range benchmarks demonstrate state-of-the-art temporal consistency and motion stability among autoregressive video generator especially at minute-scale horizons, enabling content diversity and interactive prompt-based control, thereby establishing a scalable, memory-aware framework for long video generation.
☆ EgoLCD: Egocentric Video Generation with Long Context Diffusion
Generating long, coherent egocentric videos is difficult, as hand-object interactions and procedural tasks require reliable long-term memory. Existing autoregressive models suffer from content drift, where object identity and scene semantics degrade over time. To address this challenge, we introduce EgoLCD, an end-to-end framework for egocentric long-context video generation that treats long video synthesis as a problem of efficient and stable memory management. EgoLCD combines a Long-Term Sparse KV Cache for stable global context with an attention-based short-term memory, extended by LoRA for local adaptation. A Memory Regulation Loss enforces consistent memory usage, and Structured Narrative Prompting provides explicit temporal guidance. Extensive experiments on the EgoVid-5M benchmark demonstrate that EgoLCD achieves state-of-the-art performance in both perceptual quality and temporal consistency, effectively mitigating generative forgetting and representing a significant step toward building scalable world models for embodied AI. Code: https://github.com/AIGeeksGroup/EgoLCD. Website: https://aigeeksgroup.github.io/EgoLCD.
☆ DuGI-MAE: Improving Infrared Mask Autoencoders via Dual-Domain Guidance
Infrared imaging plays a critical role in low-light and adverse weather conditions. However, due to the distinct characteristics of infrared images, existing foundation models such as Masked Autoencoder (MAE) trained on visible data perform suboptimal in infrared image interpretation tasks. To bridge this gap, an infrared foundation model known as InfMAE was developed and pre-trained on large-scale infrared datasets. Despite its effectiveness, InfMAE still faces several limitations, including the omission of informative tokens, insufficient modeling of global associations, and neglect of non-uniform noise. In this paper, we propose a Dual-domain Guided Infrared foundation model based on MAE (DuGI-MAE). First, we design a deterministic masking strategy based on token entropy, preserving only high-entropy tokens for reconstruction to enhance informativeness. Next, we introduce a Dual-Domain Guidance (DDG) module, which simultaneously captures global token relationships and adaptively filters non-uniform background noise commonly present in infrared imagery. To facilitate large-scale pretraining, we construct Inf-590K, a comprehensive infrared image dataset encompassing diverse scenes, various target types, and multiple spatial resolutions. Pretrained on Inf-590K, DuGI-MAE demonstrates strong generalization capabilities across various downstream tasks, including infrared object detection, semantic segmentation, and small target detection. Experimental results validate the superiority of the proposed method over both supervised and self-supervised comparison methods. Our code is available in the supplementary material.
☆ UltraImage: Rethinking Resolution Extrapolation in Image Diffusion Transformers
Recent image diffusion transformers achieve high-fidelity generation, but struggle to generate images beyond these scales, suffering from content repetition and quality degradation. In this work, we present UltraImage, a principled framework that addresses both issues. Through frequency-wise analysis of positional embeddings, we identify that repetition arises from the periodicity of the dominant frequency, whose period aligns with the training resolution. We introduce a recursive dominant frequency correction to constrain it within a single period after extrapolation. Furthermore, we find that quality degradation stems from diluted attention and thus propose entropy-guided adaptive attention concentration, which assigns higher focus factors to sharpen local attention for fine detail and lower ones to global attention patterns to preserve structural consistency. Experiments show that UltraImage consistently outperforms prior methods on Qwen-Image and Flux (around 4K) across three generation scenarios, reducing repetition and improving visual fidelity. Moreover, UltraImage can generate images up to 6K*6K without low-resolution guidance from a training resolution of 1328p, demonstrating its extreme extrapolation capability. Project page is available at \href{https://thu-ml.github.io/ultraimage.github.io/}{https://thu-ml.github.io/ultraimage.github.io/}.
comment: Project page: https://thu-ml.github.io/ultraimage.github.io
☆ Back to Basics: Motion Representation Matters for Human Motion Generation Using Diffusion Model
Diffusion models have emerged as a widely utilized and successful methodology in human motion synthesis. Task-oriented diffusion models have significantly advanced action-to-motion, text-to-motion, and audio-to-motion applications. In this paper, we investigate fundamental questions regarding motion representations and loss functions in a controlled study, and we enumerate the impacts of various decisions in the workflow of the generative motion diffusion model. To answer these questions, we conduct empirical studies based on a proxy motion diffusion model (MDM). We apply v loss as the prediction objective on MDM (vMDM), where v is the weighted sum of motion data and noise. We aim to enhance the understanding of latent data distributions and provide a foundation for improving the state of conditional motion diffusion models. First, we evaluate the six common motion representations in the literature and compare their performance in terms of quality and diversity metrics. Second, we compare the training time under various configurations to shed light on how to speed up the training process of motion diffusion models. Finally, we also conduct evaluation analysis on a large motion dataset. The results of our experiments indicate clear performance differences across motion representations in diverse datasets. Our results also demonstrate the impacts of distinct configurations on model training and suggest the importance and effectiveness of these decisions on the outcomes of motion diffusion models.
☆ Shift-Window Meets Dual Attention: A Multi-Model Architecture for Specular Highlight Removal
Inevitable specular highlights in practical environments severely impair the visual performance, thus degrading the task effectiveness and efficiency. Although there exist considerable methods that focus on local information from convolutional neural network models or global information from transformer models, the single-type model falls into a modeling dilemma between local fine-grained details and global long-range dependencies, thus deteriorating for specular highlights with different scales. Therefore, to accommodate specular highlights of all scales, we propose a multi-model architecture for specular highlight removal (MM-SHR) that effectively captures fine-grained features in highlight regions and models long-range dependencies between highlight and highlight-free areas. Specifically, we employ convolution operations to extract local details in the shallow layers of MM-SHR, and utilize the attention mechanism to capture global features in the deep layers, ensuring both operation efficiency and removal accuracy. To model long-range dependencies without compromising computational complexity, we utilize a coarse-to-fine manner and propose Omni-Directional Attention Integration Block(OAIBlock) and Adaptive Region-Aware Hybrid-Domain Dual Attention Convolutional Network(HDDAConv) , which leverage omni-directiona pixel-shifting and window-dividing operations at the raw features to achieve specular highlight removal. Extensive experimental results on three benchmark tasks and six types of surface materials demonstrate that MM-SHR outperforms state-of-the-art methods in both accuracy and efficiency for specular highlight removal. The implementation will be made publicly available at https://github.com/Htcicv/MM-SHR.
☆ Controllable Long-term Motion Generation with Extended Joint Targets WACV 2026
Generating stable and controllable character motion in real-time is a key challenge in computer animation. Existing methods often fail to provide fine-grained control or suffer from motion degradation over long sequences, limiting their use in interactive applications. We propose COMET, an autoregressive framework that runs in real time, enabling versatile character control and robust long-horizon synthesis. Our efficient Transformer-based conditional VAE allows for precise, interactive control over arbitrary user-specified joints for tasks like goal-reaching and in-betweening from a single model. To ensure long-term temporal stability, we introduce a novel reference-guided feedback mechanism that prevents error accumulation. This mechanism also serves as a plug-and-play stylization module, enabling real-time style transfer. Extensive evaluations demonstrate that COMET robustly generates high-quality motion at real-time speeds, significantly outperforming state-of-the-art approaches in complex motion control tasks and confirming its readiness for demanding interactive applications.
comment: WACV 2026
☆ Not All Birds Look The Same: Identity-Preserving Generation For Birds
Since the advent of controllable image generation, increasingly rich modes of control have enabled greater customization and accessibility for everyday users. Zero-shot, identity-preserving models such as Insert Anything and OminiControl now support applications like virtual try-on without requiring additional fine-tuning. While these models may be fitting for humans and rigid everyday objects, they still have limitations for non-rigid or fine-grained categories. These domains often lack accessible, high-quality data -- especially videos or multi-view observations of the same subject -- making them difficult both to evaluate and to improve upon. Yet, such domains are essential for moving beyond content creation toward applications that demand accuracy and fine detail. Birds are an excellent domain for this task: they exhibit high diversity, require fine-grained cues for identification, and come in a wide variety of poses. We introduce the NABirds Look-Alikes (NABLA) dataset, consisting of 4,759 expert-curated image pairs. Together with 1,073 pairs collected from multi-image observations on iNaturalist and a small set of videos, this forms a benchmark for evaluating identity-preserving generation of birds. We show that state-of-the-art baselines fail to maintain identity on this dataset, and we demonstrate that training on images grouped by species, age, and sex -- used as a proxy for identity -- substantially improves performance on both seen and unseen species.
☆ DeRA: Decoupled Representation Alignment for Video Tokenization
This paper presents DeRA, a novel 1D video tokenizer that decouples the spatial-temporal representation learning in video tokenization to achieve better training efficiency and performance. Specifically, DeRA maintains a compact 1D latent space while factorizing video encoding into appearance and motion streams, which are aligned with pretrained vision foundation models to capture the spatial semantics and temporal dynamics in videos separately. To address the gradient conflicts introduced by the heterogeneous supervision, we further propose the Symmetric Alignment-Conflict Projection (SACP) module that proactively reformulates gradients by suppressing the components along conflicting directions. Extensive experiments demonstrate that DeRA outperforms LARP, the previous state-of-the-art video tokenizer by 25% on UCF-101 in terms of rFVD. Moreover, using DeRA for autoregressive video generation, we also achieve new state-of-the-art results on both UCF-101 class-conditional generation and K600 frame prediction.
☆ Feature Engineering vs. Deep Learning for Automated Coin Grading: A Comparative Study on Saint-Gaudens Double Eagles
We challenge the common belief that deep learning always trumps older techniques, using the example of grading Saint-Gaudens Double Eagle gold coins automatically. In our work, we put a feature-based Artificial Neural Network built around 192 custom features pulled from Sobel edge detection and HSV color analysis up against a hybrid Convolutional Neural Network that blends in EfficientNetV2, plus a straightforward Support Vector Machine as the control. Testing 1,785 coins graded by experts, the ANN nailed 86% exact matches and hit 98% when allowing a 3-grade leeway. On the flip side, CNN and SVM mostly just guessed the most common grade, scraping by with 31% and 30% exact hits. Sure, the CNN looked good on broader tolerance metrics, but that is because of some averaging trick in regression that hides how it totally flops at picking out specific grades. All told, when you are stuck with under 2,000 examples and lopsided classes, baking in real coin-expert knowledge through feature design beats out those inscrutable, all-in-one deep learning setups. This rings true for other niche quality checks where data's thin and know-how matters more than raw compute.
☆ UniTS: Unified Time Series Generative Model for Remote Sensing
One of the primary objectives of satellite remote sensing is to capture the complex dynamics of the Earth environment, which encompasses tasks such as reconstructing continuous cloud-free time series images, detecting land cover changes, and forecasting future surface evolution. However, existing methods typically require specialized models tailored to different tasks, lacking unified modeling of spatiotemporal features across multiple time series tasks. In this paper, we propose a Unified Time Series Generative Model (UniTS), a general framework applicable to various time series tasks, including time series reconstruction, time series cloud removal, time series semantic change detection, and time series forecasting. Based on the flow matching generative paradigm, UniTS constructs a deterministic evolution path from noise to targets under the guidance of task-specific conditions, achieving unified modeling of spatiotemporal representations for multiple tasks. The UniTS architecture consists of a diffusion transformer with spatio-temporal blocks, where we design an Adaptive Condition Injector (ACor) to enhance the model's conditional perception of multimodal inputs, enabling high-quality controllable generation. Additionally, we design a Spatiotemporal-aware Modulator (STM) to improve the ability of spatio-temporal blocks to capture complex spatiotemporal dependencies. Furthermore, we construct two high-quality multimodal time series datasets, TS-S12 and TS-S12CR, filling the gap of benchmark datasets for time series cloud removal and forecasting tasks. Extensive experiments demonstrate that UniTS exhibits exceptional generative and cognitive capabilities in both low-level and high-level time series tasks. It significantly outperforms existing methods, particularly when facing challenges such as severe cloud contamination, modality absence, and forecasting phenological variations.
☆ dVLM-AD: Enhance Diffusion Vision-Language-Model for Driving via Controllable Reasoning
The autonomous driving community is increasingly focused on addressing the challenges posed by out-of-distribution (OOD) driving scenarios. A dominant research trend seeks to enhance end-to-end (E2E) driving systems by integrating vision-language models (VLMs), leveraging their rich world knowledge and reasoning abilities to improve generalization across diverse environments. However, most existing VLMs or vision-language agents (VLAs) are built upon autoregressive (AR) models. In this paper, we observe that existing AR-based VLMs -- limited by causal attention and sequential token generation -- often fail to maintain consistency and controllability between high-level reasoning and low-level planning. In contrast, recent discrete diffusion VLMs equipped with bidirectional attention exhibit superior controllability and reliability through iterative denoising. Building on these observations, we introduce dVLM-AD, a diffusion-based vision-language model that unifies perception, structured reasoning, and low-level planning for end-to-end driving. Evaluated on nuScenes and WOD-E2E, dVLM-AD yields more consistent reasoning-action pairs and achieves planning performance comparable to existing driving VLM/VLA systems despite a modest backbone, outperforming AR-based baselines with a 9 percent improvement in behavior-trajectory consistency and a 6 percent increase in RFS on long-tail WOD-E2E scenarios. These results suggest a controllable and reliable pathway for scalable end-to-end driving.
☆ GuidNoise: Single-Pair Guided Diffusion for Generalized Noise Synthesis AAAI2026
Recent image denoising methods have leveraged generative modeling for real noise synthesis to address the costly acquisition of real-world noisy data. However, these generative models typically require camera metadata and extensive target-specific noisy-clean image pairs, often showing limited generalization between settings. In this paper, to mitigate the prerequisites, we propose a Single-Pair Guided Diffusion for generalized noise synthesis GuidNoise, which uses a single noisy/clean pair as the guidance, often easily obtained by itself within a training set. To train GuidNoise, which generates synthetic noisy images from the guidance, we introduce a guidance-aware affine feature modification (GAFM) and a noise-aware refine loss to leverage the inherent potential of diffusion models. This loss function refines the diffusion model's backward process, making the model more adept at generating realistic noise distributions. The GuidNoise synthesizes high-quality noisy images under diverse noise environments without additional metadata during both training and inference. Additionally, GuidNoise enables the efficient generation of noisy-clean image pairs at inference time, making synthetic noise readily applicable for augmenting training data. This self-augmentation significantly improves denoising performance, especially in practical scenarios with lightweight models and limited training data. The code is available at https://github.com/chjinny/GuidNoise.
comment: AAAI2026
☆ StreamEQA: Towards Streaming Video Understanding for Embodied Scenarios
As embodied intelligence advances toward real-world deployment, the ability to continuously perceive and reason over streaming visual inputs becomes essential. In such settings, an agent must maintain situational awareness of its environment, comprehend the interactions with surrounding entities, and dynamically plan actions informed by past observations, current contexts, and anticipated future events. To facilitate progress in this direction, we introduce StreamEQA, the first benchmark designed for streaming video question answering in embodied scenarios. StreamEQA evaluates existing MLLMs along two orthogonal dimensions: Embodied and Streaming. Along the embodied dimension, we categorize the questions into three levels: perception, interaction, and planning, which progressively assess a model's ability to recognize fine-grained visual details, reason about agent-object interactions, and perform high-level goal-directed reasoning. For the streaming dimension, questions are divided into backward, real-time, and forward reasoning, with each mode relying on a distinct temporal context. Built upon 156 independent long videos, StreamEQA defines 42 tasks and generates approximately 21K question-answer pairs with precise timestamps through a hybrid pipeline combining automated generation and human refinement. Evaluations of 13 state-of-the-art video-LLMs reveal that, despite strong performance on conventional benchmarks, these models still struggle with streaming video understanding in embodied scenarios. We hope StreamEQA will catalyze research on streaming video understanding for embodied applications.
☆ MindDrive: An All-in-One Framework Bridging World Models and Vision-Language Model for End-to-End Autonomous Driving
End-to-End autonomous driving (E2E-AD) has emerged as a new paradigm, where trajectory planning plays a crucial role. Existing studies mainly follow two directions: trajectory generation oriented, which focuses on producing high-quality trajectories with simple decision mechanisms, and trajectory selection oriented, which performs multi-dimensional evaluation to select the best trajectory yet lacks sufficient generative capability. In this work, we propose MindDrive, a harmonized framework that integrates high-quality trajectory generation with comprehensive decision reasoning. It establishes a structured reasoning paradigm of "context simulation - candidate generation - multi-objective trade-off". In particular, the proposed Future-aware Trajectory Generator (FaTG), based on a World Action Model (WaM), performs ego-conditioned "what-if" simulations to predict potential future scenes and generate foresighted trajectory candidates. Building upon this, the VLM-oriented Evaluator (VLoE) leverages the reasoning capability of a large vision-language model to conduct multi-objective evaluations across safety, comfort, and efficiency dimensions, leading to reasoned and human-aligned decision making. Extensive experiments on the NAVSIM-v1 and NAVSIM-v2 benchmarks demonstrate that MindDrive achieves state-of-the-art performance across multi-dimensional driving metrics, significantly enhancing safety, compliance, and generalization. This work provides a promising path toward interpretable and cognitively guided autonomous driving.
☆ Self-Paced and Self-Corrective Masked Prediction for Movie Trailer Generation
As a challenging video editing task, movie trailer generation involves selecting and reorganizing movie shots to create engaging trailers. Currently, most existing automatic trailer generation methods employ a "selection-then-ranking" paradigm (i.e., first selecting key shots and then ranking them), which suffers from inevitable error propagation and limits the quality of the generated trailers. Beyond this paradigm, we propose a new self-paced and self-corrective masked prediction method called SSMP, which achieves state-of-the-art results in automatic trailer generation via bi-directional contextual modeling and progressive self-correction. In particular, SSMP trains a Transformer encoder that takes the movie shot sequences as prompts and generates corresponding trailer shot sequences accordingly. The model is trained via masked prediction, reconstructing each trailer shot sequence from its randomly masked counterpart. The mask ratio is self-paced, allowing the task difficulty to adapt to the model and thereby improving model performance. When generating a movie trailer, the model fills the shot positions with high confidence at each step and re-masks the remaining positions for the next prediction, forming a progressive self-correction mechanism that is analogous to how human editors work. Both quantitative results and user studies demonstrate the superiority of SSMP in comparison to existing automatic movie trailer generation methods. Demo is available at: https://github.com/Dixin-Lab/SSMP.
♻ ☆ CoCoIns: Consistent Subject Generation via Contrastive Instantiated Concepts
While text-to-image generative models can synthesize diverse and faithful content, subject variation across multiple generations limits their application to long-form content generation. Existing approaches require time-consuming fine-tuning, reference images for all subjects, or access to previously generated content. We introduce Contrastive Concept Instantiation (CoCoIns), a framework that effectively synthesizes consistent subjects across multiple independent generations. The framework consists of a generative model and a mapping network that transforms input latent codes into pseudo-words associated with specific concept instances. Users can generate consistent subjects by reusing the same latent codes. To construct such associations, we propose a contrastive learning approach that trains the network to distinguish between different combinations of prompts and latent codes. Extensive evaluations on human faces with a single subject show that CoCoIns performs comparably to existing methods while maintaining greater flexibility. We also demonstrate the potential for extending CoCoIns to multiple subjects and other object categories.
comment: TMLR 2025. Project page: https://contrastive-concept-instantiation.github.io
♻ ☆ MORPH: PDE Foundation Models with Arbitrary Data Modality
We introduce MORPH, a modality-agnostic, autoregressive foundation model for partial differential equations (PDEs). MORPH is built on a convolutional vision transformer backbone that seamlessly handles heterogeneous spatiotemporal datasets of varying data modality (1D--3D) at different resolutions, and multiple fields with mixed scalar and vector components. The architecture combines (i) component-wise convolution, which jointly processes scalar and vector channels to capture local interactions, (ii) inter-field cross-attention, which models and selectively propagates information between different physical fields, (iii) axial attentions, which factorize full spatiotemporal self-attention along individual spatial and temporal axes to reduce computational burden while retaining expressivity. We pretrain multiple model variants on a diverse collection of heterogeneous PDE datasets and evaluate transfer to a range of downstream prediction tasks. Using both full-model fine-tuning and parameter-efficient low-rank adapters (LoRA), MORPH outperforms models trained from scratch. Across extensive evaluations, MORPH matches or surpasses strong baselines and recent state-of-the-art models. Collectively, these capabilities present a flexible and powerful backbone for learning from the heterogeneous and multimodal nature of scientific observations, charting a path toward scalable and data-efficient scientific machine learning. The source code, datasets, and models are publicly available at https://github.com/lanl/MORPH.
♻ ☆ Athena: Enhancing Multimodal Reasoning with Data-efficient Process Reward Models
We present Athena-PRM, a multimodal process reward model (PRM) designed to evaluate the reward score for each step in solving complex reasoning problems. Developing high-performance PRMs typically demands significant time and financial investment, primarily due to the necessity for step-level annotations of reasoning steps. Conventional automated labeling methods, such as Monte Carlo estimation, often produce noisy labels and incur substantial computational costs. To efficiently generate high-quality process-labeled data, we propose leveraging prediction consistency between weak and strong completers as a criterion for identifying reliable process labels. Remarkably, Athena-PRM demonstrates outstanding effectiveness across various scenarios and benchmarks with just 5,000 samples. Furthermore, we also develop two effective strategies to improve the performance of PRMs: ORM initialization and up-sampling for negative data. We validate our approach in three specific scenarios: verification for test time scaling, direct evaluation of reasoning step correctness, and reward ranked fine-tuning. Our Athena-PRM consistently achieves superior performance across multiple benchmarks and scenarios. Notably, when using Qwen2.5-VL-7B as the policy model, Athena-PRM enhances performance by 10.2 points on WeMath and 7.1 points on MathVista for test time scaling. Furthermore, Athena-PRM sets the state-of-the-art (SoTA) results in VisualProcessBench and outperforms the previous SoTA by 3.9 F1-score, showcasing its robust capability to accurately assess the correctness of the reasoning step. Additionally, utilizing Athena-PRM as the reward model, we develop Athena-7B with reward ranked fine-tuning and outperforms baseline with a significant margin on five benchmarks.
♻ ☆ Beyond I-Con: Exploring New Dimension of Distance Measures in Representation Learning
The Information Contrastive (I-Con) framework revealed that over 23 representation learning methods implicitly minimize KL divergence between data and learned distributions that encode similarities between data points. However, a KL-based loss may be misaligned with the true objective, and properties of KL divergence such as asymmetry and unboundedness may create optimization challenges. We present Beyond I-Con, a framework that enables systematic discovery of novel loss functions by exploring alternative statistical divergences. Key findings: (1) on unsupervised clustering of DINO-ViT embeddings, we achieve state-of-the-art results by modifying the PMI algorithm to use total variation (TV) distance; (2) supervised contrastive learning with Euclidean distance as the feature space metric is improved by replacing the standard loss function with Jenson-Shannon divergence (JSD); (3) on dimensionality reduction, we achieve superior qualitative results and better performance on downstream tasks than SNE by replacing KL with a bounded $f$-divergence. Our results highlight the importance of considering divergence choices in representation learning optimization.
♻ ☆ SAGE: Spatial-visual Adaptive Graph Exploration for Visual Place Recognition
Visual Place Recognition (VPR) requires robust retrieval of geotagged images despite large appearance, viewpoint, and environmental variation. Prior methods focus on descriptor fine-tuning or fixed sampling strategies yet neglect the dynamic interplay between spatial context and visual similarity during training. We present SAGE (Spatial-visual Adaptive Graph Exploration), a unified training pipeline that enhances granular spatial-visual discrimination by jointly improving local feature aggregation, organize samples during training, and hard sample mining. We introduce a lightweight Soft Probing module that learns residual weights from training data for patch descriptors before bilinear aggregation, boosting distinctive local cues. During training we reconstruct an online geo-visual graph that fuses geographic proximity and current visual similarity so that candidate neighborhoods reflect the evolving embedding landscape. To concentrate learning on the most informative place neighborhoods, we seed clusters from high-affinity anchors and iteratively expand them with a greedy weighted clique expansion sampler. Implemented with a frozen DINOv2 backbone and parameter-efficient fine-tuning, SAGE achieves SOTA across eight benchmarks. It attains 98.9%, 95.8%, 94.5%, and 96.0% Recall@1 on SPED, Pitts30k-test, MSLS-val, and Nordland, respectively. Notably, our method obtains 100% Recall@10 on SPED only using 4096D global descriptors. Code and models will be released upon acceptance.
comment: 23 pages
♻ ☆ Efficient stereo matching on embedded GPUs with zero-means cross correlation
Mobile stereo-matching systems have become an important part of many applications, such as automated-driving vehicles and autonomous robots. Accurate stereo-matching methods usually lead to high computational complexity; however, mobile platforms have only limited hardware resources to keep their power consumption low; this makes it difficult to maintain both an acceptable processing speed and accuracy on mobile platforms. To resolve this trade-off, we herein propose a novel acceleration approach for the well-known zero-means normalized cross correlation (ZNCC) matching cost calculation algorithm on a Jetson Tx2 embedded GPU. In our method for accelerating ZNCC, target images are scanned in a zigzag fashion to efficiently reuse one pixel's computation for its neighboring pixels; this reduces the amount of data transmission and increases the utilization of on-chip registers, thus increasing the processing speed. As a result, our method is 2X faster than the traditional image scanning method, and 26% faster than the latest NCC method. By combining this technique with the domain transformation (DT) algorithm, our system show real-time processing speed of 32 fps, on a Jetson Tx2 GPU for 1,280x384 pixel images with a maximum disparity of 128. Additionally, the evaluation results on the KITTI 2015 benchmark show that our combined system is more accurate than the same algorithm combined with census by 7.26%, while maintaining almost the same processing speed. Source Code: https://github.com/changqiong/Z2ZNCC.git
♻ ☆ SO-Bench: A Structural Output Evaluation of Multimodal LLMs
Multimodal large language models (MLLMs) are increasingly deployed in real-world, agentic settings where outputs must not only be correct, but also conform to predefined data schemas. Despite recent progress in structured generation in textual domain, there is still no benchmark that systematically evaluates schema-grounded information extraction and reasoning over visual inputs. In this work, we conduct a comprehensive study of visual structural output capabilities for MLLMs with our carefully designed SO-Bench benchmark. Covering four visual domains, including UI screens, natural images, documents, and charts, SO-Bench is built from over 6.5K diverse JSON schemas and 1.8K curated image-schema pairs with human-verified quality. Benchmarking experiments on open-sourced and frontier proprietary models reveal persistent gaps in predicting accurate, schema compliant outputs, highlighting the need for better multimodal structured reasoning. Beyond benchmarking, we further conduct training experiments to largely improve the model's structured output capability. We plan to make the benchmark available to the community.
comment: v2 preprint. Fixed some typos, add a discussion about limitation, provide pseudo-codes for eval
♻ ☆ SignBind-LLM: Multi-Stage Modality Fusion for Sign Language Translation
Despite progress in gloss-free Sign Language Translation (SLT), traditional single modality end-to-end approaches consistently fail on two critical components of natural signing: the precise recognition of high-speed fingerspelling and the integration of asynchronous non-manual cues from the face. Recent progress in SLT with Large Language Models has side stepped this challenge, forcing a single network to learn these simultaneously resulting in poor performance when tasked with translating crucial information such as names, places, and technical terms. We introduce SignBind-LLM, a modular framework designed to overcome these limitations. Our approach employs separate, specialized predictors for continuous signing, fingerspelling, and lipreading. Each expert network first decodes its specific modality into a sequence of tokens. These parallel streams are then fused by a lightweight transformer that resolves temporal misalignments before passing the combined representation to a Large Language Model (LLM) for final sentence generation. Our method establishes a new state-of-the-art on the How2Sign, ChicagoFSWildPlus, and BOBSL datasets with a BLEU-4 score of 22.1, 73.2% letter accuracy and BLEU-4 score of 6.8 respectively. These results validate our core hypothesis: isolating and solving distinct recognition tasks before fusion provides a more powerful and effective pathway to robust, high-fidelity sign language translation.
♻ ☆ MMHOI: Modeling Complex 3D Multi-Human Multi-Object Interactions WACV 2026
Real-world scenes often feature multiple humans interacting with multiple objects in ways that are causal, goal-oriented, or cooperative. Yet existing 3D human-object interaction (HOI) benchmarks consider only a fraction of these complex interactions. To close this gap, we present MMHOI -- a large-scale, Multi-human Multi-object Interaction dataset consisting of images from 12 everyday scenarios. MMHOI offers complete 3D shape and pose annotations for every person and object, along with labels for 78 action categories and 14 interaction-specific body parts, providing a comprehensive testbed for next-generation HOI research. Building on MMHOI, we present MMHOI-Net, an end-to-end transformer-based neural network for jointly estimating human-object 3D geometries, their interactions, and associated actions. A key innovation in our framework is a structured dual-patch representation for modeling objects and their interactions, combined with action recognition to enhance the interaction prediction. Experiments on MMHOI and the recently proposed CORE4D datasets demonstrate that our approach achieves state-of-the-art performance in multi-HOI modeling, excelling in both accuracy and reconstruction quality. The MMHOI dataset is publicly available at https://zenodo.org/records/17711786.
comment: Accepted to WACV 2026
♻ ☆ "I Can See Forever!": Evaluating Real-time VideoLLMs for Assisting Individuals with Visual Impairments
The visually impaired population faces significant challenges in daily activities. While prior works employ vision language models for assistance, most focus on static content and cannot address real-time perception needs in complex environments. Recent VideoLLMs enable real-time vision and speech interaction, offering promising potential for assistive tasks. In this work, we conduct the first study evaluating their effectiveness in supporting daily life for visually impaired individuals. We first conducted a user survey with visually impaired participants to design the benchmark VisAssistDaily for daily life evaluation. Using VisAssistDaily, we evaluate popular VideoLLMs and find GPT-4o achieves the highest task success rate. We further conduct a user study to reveal concerns about hazard perception. To address this, we propose SafeVid, an environment-awareness dataset, and fine-tune VITA-1.5, improving risk recognition accuracy from 25.00% to 76.00%.We hope this work provides valuable insights and inspiration for future research in this field.
comment: 17 pages
♻ ☆ Flowing Backwards: Improving Normalizing Flows via Reverse Representation Alignment AAAI 2026
Normalizing Flows (NFs) are a class of generative models distinguished by a mathematically invertible architecture, where the forward pass transforms data into a latent space for density estimation, and the reverse pass generates new samples from this space. This characteristic creates an intrinsic synergy between representation learning and data generation. However, the generative quality of standard NFs is limited by poor semantic representations from log-likelihood optimization. To remedy this, we propose a novel alignment strategy that creatively leverages the invertibility of NFs: instead of regularizing the forward pass, we align the intermediate features of the generative (reverse) pass with representations from a powerful vision foundation model, demonstrating superior effectiveness over naive alignment. We also introduce a novel training-free, test-time optimization algorithm for classification, which provides a more intrinsic evaluation of the NF's embedded semantic knowledge. Comprehensive experiments demonstrate that our approach accelerates the training of NFs by over 3.3$\times$, while simultaneously delivering significant improvements in both generative quality and classification accuracy. New state-of-the-art results for NFs are established on ImageNet 64$\times$64 and 256$\times$256. Our code is available at https://github.com/MCG-NJU/FlowBack.
comment: Accepted by AAAI 2026
♻ ☆ Polygon Intersection-over-Union Loss for Viewpoint-Agnostic Monocular 3D Vehicle Detection
Monocular 3D object detection is a challenging task because depth information is difficult to obtain from 2D images. A subset of viewpoint-agnostic monocular 3D detection methods also do not explicitly leverage scene homography or geometry during training, meaning that a model trained thusly can detect objects in images from arbitrary viewpoints. Such works predict the projections of the 3D bounding boxes on the image plane to estimate the location of the 3D boxes, but these projections are not rectangular so the calculation of IoU between these projected polygons is not straightforward. This work proposes an efficient, fully differentiable algorithm for the calculation of IoU between two convex polygons, which can be utilized to compute the IoU between two 3D bounding box footprints viewed from an arbitrary angle. We test the performance of the proposed polygon IoU loss (PIoU loss) on three state-of-the-art viewpoint-agnostic 3D detection models. Experiments demonstrate that the proposed PIoU loss converges faster than L1 loss and that in 3D detection models, a combination of PIoU loss and L1 loss gives better results than L1 loss alone (+1.64% AP70 for MonoCon on cars, +0.18% AP70 for RTM3D on cars, and +0.83%/+2.46% AP50/AP25 for MonoRCNN on cyclists).
♻ ☆ DAVE: Diagnostic benchmark for Audio Visual Evaluation
Audio-visual understanding is a rapidly evolving field that seeks to integrate and interpret information from both auditory and visual modalities. Despite recent advances in multi-modal learning, existing benchmarks often suffer from strong visual bias -- when answers can be inferred from visual data alone -- and provide only aggregate scores that conflate multiple sources of error. This makes it difficult to determine whether models struggle with visual understanding, audio interpretation, or audio-visual alignment. In this work, we introduce DAVE: Diagnostic Audio Visual Evaluation, a novel benchmark dataset designed to systematically evaluate audio-visual models across controlled settings. DAVE alleviates existing limitations by (i) ensuring both modalities are necessary to answer correctly and (ii) decoupling evaluation into atomic subcategories. Our detailed analysis of state-of-the-art models reveals specific failure modes and provides targeted insights for improvement. By offering this standardized diagnostic framework, we aim to facilitate more robust development of audio-visual models. Dataset: https://huggingface.co/datasets/gorjanradevski/dave Code: https://github.com/gorjanradevski/dave
comment: First two authors contributed equally
♻ ☆ EoS-FM: Can an Ensemble of Specialist Models act as a Generalist Feature Extractor?
Recent advances in foundation models have shown great promise in domains such as natural language processing and computer vision, and similar efforts are now emerging in the Earth Observation community. These models aim to generalize across tasks with limited supervision, reducing the need for training separate models for each task. However, current strategies, which largely focus on scaling model size and dataset volume, require prohibitive computational and data resources, limiting accessibility to only a few large institutions. Moreover, this paradigm of ever-larger models stands in stark contrast with the principles of sustainable and environmentally responsible AI, as it leads to immense carbon footprints and resource inefficiency. In this work, we present a novel and efficient alternative: an Ensemble-of-Specialists framework for building Remote Sensing Foundation Models (RSFMs). Our method decomposes the training process into lightweight, task-specific ConvNeXtV2 specialists that can be frozen and reused. This modular approach offers strong advantages in efficiency, interpretability, and extensibility. Moreover, it naturally supports federated training, pruning, and continuous specialist integration, making it particularly well-suited for collaborative and resource-constrained settings. Our framework sets a new direction for building scalable and efficient RSFMs. All codes and pretrained models are available at https://github.com/pierreadorni/EoS-FM.
♻ ☆ TongUI: Internet-Scale Trajectories from Multimodal Web Tutorials for Generalized GUI Agents AAAI 2026
Building Graphical User Interface (GUI) agents is a promising research direction, which simulates human interaction with computers or mobile phones to perform diverse GUI tasks. However, a major challenge in developing generalized GUI agents is the lack of sufficient trajectory data across various operating systems and applications, mainly due to the high cost of manual annotations. In this paper, we propose the TongUI framework that builds generalized GUI agents by learning from rich multimodal web tutorials. Concretely, we crawl and process online GUI tutorials (such as videos and articles) into GUI agent trajectory data, through which we produce the GUI-Net dataset containing 143K trajectory data across five operating systems and more than 200 applications. We develop the TongUI agent by fine-tuning Qwen2.5-VL-3B/7B models on GUI-Net, which show remarkable performance improvements on commonly used grounding and navigation benchmarks, outperforming baseline agents about 10\% on multiple benchmarks, showing the effectiveness of the GUI-Net dataset and underscoring the significance of our TongUI framework. We will fully open-source the code, the GUI-Net dataset, and the trained models soon.
comment: AAAI 2026
♻ ☆ ENTIRE: Learning-based Volume Rendering Time Prediction
We introduce ENTIRE, a novel deep learning-based approach for fast and accurate volume rendering time prediction. Predicting rendering time is inherently challenging due to its dependence on multiple factors, including volume data characteristics, image resolution, camera configuration, and transfer function settings. Our method addresses this by first extracting a feature vector that encodes structural volume properties relevant to rendering performance. This feature vector is then integrated with additional rendering parameters, such as image resolution, camera setup, and transfer function settings, to produce the final prediction. We evaluate ENTIRE across multiple rendering frameworks (CPU- and GPU-based) and configurations (with and without single-scattering) on diverse datasets. The results demonstrate that our model achieves high prediction accuracy with fast inference speed. Furthermore, we showcase ENTIRE's effectiveness in two case studies, where it enables dynamic parameter adaptation for stable frame rates and load balancing.
♻ ☆ JarvisEvo: Towards a Self-Evolving Photo Editing Agent with Synergistic Editor-Evaluator Optimization
Agent-based editing models have substantially advanced interactive experiences, processing quality, and creative flexibility. However, two critical challenges persist: (1) instruction hallucination, text-only chain-of-thought (CoT) reasoning cannot fully prevent factual errors due to inherent information bottlenecks; (2) reward hacking, dynamic policy optimization against static reward models allows agents to exploit flaws in reward functions. To address these issues, we propose JarvisEvo, a unified image editing agent that emulates an expert human designer by iteratively editing, selecting appropriate tools, evaluating results, and reflecting on its own decisions to refine outcomes. JarvisEvo offers three key advantages: (1) an interleaved multimodal chain-of-thought (iMCoT) reasoning mechanism that enhances instruction following and editing quality; (2) a synergistic editor-evaluator policy optimization (SEPO) framework that enables self-improvement without external rewards, effectively mitigating reward hacking; and (3) support for both global and local fine-grained editing through seamless integration of Adobe Lightroom. On ArtEdit-Bench, JarvisEvo outperforms Nano-Banana by an average of 18.95% on preservative editing metrics, including a substantial 44.96% improvement in pixel-level content fidelity. Project page: https://jarvisevo.vercel.app/
comment: 31 pages, 18 figures
♻ ☆ Integrating Skeleton Based Representations for Robust Yoga Pose Classification Using Deep Learning Models
Yoga is a popular form of exercise worldwide due to its spiritual and physical health benefits, but incorrect postures can lead to injuries. Automated yoga pose classification has therefore gained importance to reduce reliance on expert practitioners. While human pose keypoint extraction models have shown high potential in action recognition, systematic benchmarking for yoga pose recognition remains limited, as prior works often focus solely on raw images or a single pose extraction model. In this study, we introduce a curated dataset, 'Yoga-16', which addresses limitations of existing datasets, and systematically evaluate three deep learning architectures (VGG16, ResNet50, and Xception), using three input modalities (direct images, MediaPipe Pose skeleton images, and YOLOv8 Pose skeleton images). Our experiments demonstrate that skeleton-based representations outperform raw image inputs, with the highest accuracy of 96.09% achieved by VGG16 with MediaPipe Pose skeleton input. Additionally, we provide interpretability analysis using Grad-CAM, offering insights into model decision-making for yoga pose classification with cross-validation analysis.
♻ ☆ GigaBrain-0: A World Model-Powered Vision-Language-Action Model
Training Vision-Language-Action (VLA) models for generalist robots typically requires large-scale real-world robot data, which is expensive and time-consuming to collect. The inefficiency of physical data collection severely limits the scalability, and generalization capacity of current VLA systems. To address this challenge, we introduce GigaBrain-0, a novel VLA foundation model empowered by world model-generated data (e.g., video generation, real2real transfer, human transfer, view transfer, sim2real transfer data). By leveraging world models to generate diverse data at scale, GigaBrain-0 significantly reduces reliance on real robot data while improving cross-task generalization. Our approach further improves policy robustness through RGBD input modeling and embodied Chain-of-Thought (CoT) supervision, enabling the model to reason about spatial geometry, object states, and long-horizon dependencies during task execution. This leads to substantial gains in real-world performance on dexterous, long-horizon, and mobile manipulation tasks. Extensive experiments demonstrate that GigaBrain-0 achieves superior generalization across variations in appearances (e.g., textures, colors), object placements, and camera viewpoints. Additionally, we present GigaBrain-0-Small, an optimized lightweight variant designed to run efficiently on devices such as the NVIDIA Jetson AGX Orin.
comment: https://gigabrain0.github.io/
♻ ☆ Adaptive Chain-of-Focus Reasoning via Dynamic Visual Search and Zooming for Efficient VLMs
Vision language models (VLMs) have achieved impressive performance across a variety of computer vision tasks. However, the multimodal reasoning capability has not been fully explored in existing models. In this paper, we propose a Chain-of-Focus (CoF) method that allows VLMs to perform adaptive focusing and zooming in on key image regions based on obtained visual cues and the given questions, achieving efficient multimodal reasoning. To enable this CoF capability, we present a two-stage training pipeline, including supervised fine-tuning (SFT) and reinforcement learning (RL). In the SFT stage, we construct the MM-CoF dataset, comprising 3K samples derived from a visual agent designed to adaptively identify key regions to solve visual tasks with different image resolutions and questions. We use MM-CoF to fine-tune the Qwen2.5-VL model for cold start. In the RL stage, we leverage the outcome accuracies and formats as rewards to update the Qwen2.5-VL model, enabling further refining the search and reasoning strategy of models without human priors. Our model achieves significant improvements on multiple benchmarks. On the V* benchmark that requires strong visual reasoning capability, our model outperforms existing VLMs by 5% among 8 image resolutions ranging from 224 to 4K, demonstrating the effectiveness of the proposed CoF method and facilitating the more efficient deployment of VLMs in practical applications.
comment: https://github.com/xtong-zhang/Chain-of-Focus
♻ ☆ OP-Align: Object-level and Part-level Alignment for Self-supervised Category-level Articulated Object Pose Estimation ECCV2024
Category-level articulated object pose estimation focuses on the pose estimation of unknown articulated objects within known categories. Despite its significance, this task remains challenging due to the varying shapes and poses of objects, expensive dataset annotation costs, and complex real-world environments. In this paper, we propose a novel self-supervised approach that leverages a single-frame point cloud to solve this task. Our model consistently generates reconstruction with a canonical pose and joint state for the entire input object, and it estimates object-level poses that reduce overall pose variance and part-level poses that align each part of the input with its corresponding part of the reconstruction. Experimental results demonstrate that our approach significantly outperforms previous self-supervised methods and is comparable to the state-of-the-art supervised methods. To assess the performance of our model in real-world scenarios, we also introduce a new real-world articulated object benchmark dataset.
comment: published in ECCV2024
♻ ☆ Turbo-GS: Accelerating 3D Gaussian Fitting for High-Quality Radiance Fields
Novel-view synthesis is an important problem in computer vision with applications in 3D reconstruction, mixed reality, and robotics. Recent methods like 3D Gaussian Splatting (3DGS) have become the preferred method for this task, providing high-quality novel views in real time. However, the training time of a 3DGS model is slow, often taking 30 minutes for a scene with 200 views. In contrast, our goal is to reduce the optimization time by training for fewer steps while maintaining high rendering quality. Specifically, we combine the guidance from both the position error and the appearance error to achieve a more effective densification. To balance the rate between adding new Gaussians and fitting old Gaussians, we develop a convergence-aware budget control mechanism. Moreover, to make the densification process more reliable, we selectively add new Gaussians from mostly visited regions. With these designs, we reduce the Gaussian optimization steps to one-third of the previous approach while achieving a comparable or even better novel view rendering quality. To further facilitate the rapid fitting of 4K resolution images, we introduce a dilation-based rendering technique. Our method, Turbo-GS, speeds up optimization for typical scenes and scales well to high-resolution (4K) scenarios on standard datasets. Through extensive experiments, we show that our method is significantly faster in optimization than other methods while retaining quality. Project page: https://ivl.cs.brown.edu/research/turbo-gs.
comment: Project page: https://ivl.cs.brown.edu/research/turbo-gs
♻ ☆ Robo-SGG: Exploiting Layout-Oriented Normalization and Restitution Can Improve Robust Scene Graph Generation
In this paper, we propose Robo-SGG, a plug-and-play module for robust scene graph generation (SGG). Unlike standard SGG, the robust scene graph generation aims to perform inference on a diverse range of corrupted images, with the core challenge being the domain shift between the clean and corrupted images. Existing SGG methods suffer from degraded performance due to shifted visual features (e.g., corruption interference or occlusions). To obtain robust visual features, we leverage layout information, representing the global structure of an image, which is robust to domain shift, to enhance the robustness of SGG methods under corruption. Specifically, we employ Instance Normalization (IN) to alleviate the domain-specific variations and recover the robust structural features (i.e., the positional and semantic relationships among objects) by the proposed Layout-Oriented Restitution. Furthermore, under corrupted images, we introduce a Layout-Embedded Encoder (LEE) that adaptively fuses layout and visual features via a gating mechanism, enhancing the robustness of positional and semantic representations for objects and predicates. Note that our proposed Robo-SGG module is designed as a plug-and-play component, which can be easily integrated into any baseline SGG model. Extensive experiments demonstrate that by integrating the state-of-the-art method into our proposed Robo-SGG, we achieve relative improvements of 6.3%, 11.1%, and 8.0% in mR@50 for PredCls, SGCls, and SGDet tasks on the VG-C benchmark, respectively, and achieve new state-of-the-art performance in the corruption scene graph generation benchmark (VG-C and GQA-C). We will release our source code and model.
♻ ☆ Multimodal Adversarial Defense for Vision-Language Models by Leveraging One-To-Many Relationships WACV 2026
Pre-trained vision-language (VL) models are highly vulnerable to adversarial attacks. However, existing defense methods primarily focus on image classification, overlooking two key aspects of VL tasks: multimodal attacks, where both image and text can be perturbed, and the one-to-many relationship of images and texts, where a single image can correspond to multiple textual descriptions and vice versa (1:N and N:1). This work is the first to explore defense strategies against multimodal attacks in VL tasks, whereas prior VL defense methods focus on vision robustness. We propose multimodal adversarial training (MAT), which incorporates adversarial perturbations in both image and text modalities during training, significantly outperforming existing unimodal defenses. Furthermore, we discover that MAT is limited by deterministic one-to-one (1:1) image-text pairs in VL training data. To address this, we conduct a comprehensive study on leveraging one-to-many relationships to enhance robustness, investigating diverse augmentation techniques. Our analysis shows that, for a more effective defense, augmented image-text pairs should be well-aligned, diverse, yet avoid distribution shift -- conditions overlooked by prior research. This work pioneers defense strategies against multimodal attacks, providing insights for building robust VLMs from both optimization and data perspectives. Our code is publicly available at https://github.com/CyberAgentAI/multimodal-adversarial-training.
comment: WACV 2026 Accepted. Code available at https://github.com/CyberAgentAI/multimodal-adversarial-training
♻ ☆ TTRV: Test-Time Reinforcement Learning for Vision Language Models
Existing methods for extracting reward signals in Reinforcement Learning typically rely on labeled data and dedicated training splits, a setup that contrasts with how humans learn directly from their environment. In this work, we propose TTRV to enhance vision language understanding by adapting the model on the fly at inference time, without the need for any labeled data. Concretely, we enhance the Group Relative Policy Optimization (GRPO) framework by designing rewards based on the frequency of the base model's output, while inferring on each test sample multiple times. Further, we also propose to control the diversity of the model's output by simultaneously rewarding the model for obtaining low entropy of the output empirical distribution. Our approach delivers consistent gains across both object recognition and visual question answering (VQA), with improvements of up to 52.4% and 29.8%, respectively, and average boosts of 24.6% and 10.0% across 16 datasets. Remarkably, on image recognition, TTRV applied to InternVL 8B surpasses GPT-4o by an average of 2.3% over 8 benchmarks, while remaining highly competitive on VQA, demonstrating that test-time reinforcement learning can match or exceed the strongest proprietary models. Finally, we find many interesting properties of test-time RL for VLMs: for example, even in extremely data-constrained scenarios, where adaptation is performed on a single randomly chosen unlabeled test example, TTRV still yields non-trivial improvements of up to 5.5% in recognition tasks.
♻ ☆ A lightweight detector for real-time detection of remote sensing images
Remote sensing imagery is widely used across various fields, yet real-time detection remains challenging due to the prevalence of small objects and the need to balance accuracy with efficiency. To address this, we propose DMG-YOLO, a lightweight real-time detector tailored for small object detection in remote sensing images. Specifically, we design a Dual-branch Feature Extraction (DFE) module in the backbone, which partitions feature maps into two parallel branches: one extracts local features via depthwise separable convolutions, and the other captures global context using a vision transformer with a gating mechanism. Additionally, a Multi-scale Feature Fusion (MFF) module with dilated convolutions enhances multi-scale integration while preserving fine details. In the neck, we introduce the Global and Local Aggregate Feature Pyramid Network (GLAFPN) to further boost small object detection through global-local feature fusion. Extensive experiments on the VisDrone2019 and NWPU VHR-10 datasets show that DMG-YOLO achieves competitive performance in terms of mAP, model size, and other key metrics.
comment: wrong results
♻ ☆ Jina-VLM: Small Multilingual Vision Language Model
We present Jina-VLM, a 2.4B parameter vision-language model that achieves state-of-the-art multilingual visual question answering among open 2B-scale VLMs. The model couples a SigLIP2 vision encoder with a Qwen3 language backbone through an attention-pooling connector that enables token-efficient processing of arbitrary-resolution images. The model achieves leading results on standard VQA benchmarks and multilingual evaluations while preserving competitive text-only performance. Model weights and code are publicly released at https://huggingface.co/jinaai/jina-vlm .
comment: 18 pages, 1-7 main content, 13-18 appendix for tables and dataset
♻ ☆ There is No VAE: End-to-End Pixel-Space Generative Modeling via Self-Supervised Pre-training
Pixel-space generative models are often more difficult to train and generally underperform compared to their latent-space counterparts, leaving a persistent performance and efficiency gap. In this paper, we introduce a novel two-stage training framework that closes this gap for pixel-space diffusion and consistency models. In the first stage, we pre-train encoders to capture meaningful semantics from clean images while aligning them with points along the same deterministic sampling trajectory, which evolves points from the prior to the data distribution. In the second stage, we integrate the encoder with a randomly initialized decoder and fine-tune the complete model end-to-end for both diffusion and consistency models. Our framework achieves state-of-the-art (SOTA) performance on ImageNet. Specifically, our diffusion model reaches an FID of 1.58 on ImageNet-256 and 2.35 on ImageNet-512 with 75 number of function evaluations (NFE) surpassing prior pixel-space methods and VAE-based counterparts by a large margin in both generation quality and training efficiency. In a direct comparison, our model significantly outperforms DiT while using only around 30\% of its training compute.
♻ ☆ EVE: Towards End-to-End Video Subtitle Extraction with Vision-Language Models
Video subtitles play a crucial role in short videos and movies, as they not only help models better understand video content but also support applications such as video translation and content retrieval. Existing video subtitle extraction methods typically rely on multi-stage frameworks, where errors accumulate across stages and temporal dependencies are underutilized due to frame-wise processing. Moreover, although some Large Vision-Language Models (LVLMs) possess strong OCR capabilities, predicting accurate timestamps for subtitle texts remains challenging. To this end, we propose an End-to-end Video subtitle Extraction framework based on LVLMs, named EVE, which can output subtitles and their timestamps simultaneously. Specifically, we introduce a dual-branch Spatiotemporal Subtitle-Salient (S\textsuperscript{3}) Module that serves as an adapter for LVLMs, capable of representing subtitle-related content and considering inter-frame correlations using only a small number of tokens. Within this module, the Spatial Semantic Context Aggregate branch aggregates high-level global semantics to provide spatial visual contextual information, while the Temporal Subtitle Token Query branch explicitly queries subtitle-relevant tokens while considering temporal correlation across frames. The small number of tokens retained by the S\textsuperscript{3} module are fed to the language model, which then directly outputs the subtitle text along with its timestamps. Furthermore, we construct the first large-scale dataset dedicated to video subtitle extraction, ViSa, containing over 2.5M videos with timestamped and bilingual annotation, thereby providing the community with a well-organized training and evaluation benchmark.
♻ ☆ SpaceMind: Camera-Guided Modality Fusion for Spatial Reasoning in Vision-Language Models
Large vision-language models (VLMs) show strong multimodal understanding but still struggle with 3D spatial reasoning, such as distance estimation, size comparison, and cross-view consistency. Existing 3D-aware methods either depend on auxiliary 3D information or enhance RGB-only VLMs with geometry encoders through shallow feature fusion. We propose SpaceMind, a multimodal large language model explicitly designed for spatial reasoning solely from RGB inputs. The model adopts a dual-encoder architecture, integrating VGGT as a spatial understanding encoder and InternViT as a 2D visual encoder. The key idea is to treat the camera representation as an active guiding modality rather than passive metadata. Specifically, SpaceMind introduces a lightweight Camera-Guided Modality Fusion module before the language model to replace shallow fusion. It applies camera-conditioned biasing to spatial tokens, assigns query-independent weights reflecting their geometric importance, and uses the camera embedding to gate the fused representation. Empirically, SpaceMind establishes new state-of-the-art results on VSI-Bench, SQA3D and SPBench, surpassing both open and proprietary systems on VSI-Bench and SPBench by large margins and achieving state-of-the-art performance on SQA3D. These results demonstrate that camera-guided modality fusion is an effective and practical inductive bias for equipping VLMs with genuinely spatially grounded intelligence. We will release code and model checkpoints to support future research.
♻ ☆ LongVT: Incentivizing "Thinking with Long Videos" via Native Tool Calling
Large multimodal models (LMMs) have shown great potential for video reasoning with textual Chain-of-Thought. However, they remain vulnerable to hallucinations, especially when processing long-form videos where evidence is sparse and temporally dispersed. Inspired by how humans comprehend long videos - by first skimming globally and then examining relevant clips for details - we introduce LongVT, an end-to-end agentic framework that enables "Thinking with Long Videos" via interleaved Multimodal Chain-of-Tool-Thought. Specifically, we exploit LMMs' inherent temporal grounding ability as a native video cropping tool to zoom in on a specific video clip and resample finer-grained video frames. This global-to-local reasoning loop continues until answers are grounded in retrieved visual evidence. Given the scarcity of fine-grained question-answering (QA) data for the long video reasoning task, we curate and will release a data suite named VideoSIAH to facilitate both training and evaluation. Specifically, our training dataset consists of 247.9K samples for tool-integrated cold-start supervised fine-tuning, 1.6K samples for agentic reinforcement learning, and 15.4K samples for agentic reinforcement fine-tuning, respectively. Our evaluation benchmark consists of 1,280 QA pairs that are carefully curated through a semi-automatic data pipeline with human-in-the-loop validation. With a meticulously designed three-stage training strategy and extensive empirical validation, LongVT consistently outperforms existing strong baselines across four challenging long-video understanding and reasoning benchmarks. Our codes, data, and model checkpoints are publicly available at https://github.com/EvolvingLMMs-Lab/LongVT .
♻ ☆ ImageNot: A contrast with ImageNet preserves model rankings
We introduce ImageNot, a dataset constructed explicitly to be drastically different than ImageNet while matching its scale. ImageNot is designed to test the external validity of deep learning progress on ImageNet. We show that key model architectures developed for ImageNet over the years rank identically to how they rank on ImageNet when trained from scratch and evaluated on ImageNot. Moreover, the relative improvements of each model over earlier models strongly correlate in both datasets. Our work demonstrates a surprising degree of external validity in the relative performance of image classification models when trained and evaluated on an entirely different dataset. This stands in contrast with absolute accuracy numbers that typically drop sharply even under small changes to a dataset.
♻ ☆ WeatherPrompt: Multi-modality Representation Learning for All-Weather Drone Visual Geo-Localization
Visual geo-localization for drones faces critical degradation under weather perturbations, \eg, rain and fog, where existing methods struggle with two inherent limitations: 1) Heavy reliance on limited weather categories that constrain generalization, and 2) Suboptimal disentanglement of entangled scene-weather features through pseudo weather categories. We present WeatherPrompt, a multi-modality learning paradigm that establishes weather-invariant representations through fusing the image embedding with the text context. Our framework introduces two key contributions: First, a Training-free Weather Reasoning mechanism that employs off-the-shelf large multi-modality models to synthesize multi-weather textual descriptions through human-like reasoning. It improves the scalability to unseen or complex weather, and could reflect different weather strength. Second, to better disentangle the scene and weather feature, we propose a multi-modality framework with the dynamic gating mechanism driven by the text embedding to adaptively reweight and fuse visual features across modalities. The framework is further optimized by the cross-modal objectives, including image-text contrastive learning and image-text matching, which maps the same scene with different weather conditions closer in the respresentation space. Extensive experiments validate that, under diverse weather conditions, our method achieves competitive recall rates compared to state-of-the-art drone geo-localization methods. Notably, it improves Recall@1 by +13.37\% under night conditions and by 18.69\% under fog and snow conditions.
♻ ☆ Changes in Gaza: DINOv3-Powered Multi-Class Change Detection for Damage Assessment in Conflict Zones
Accurately and swiftly assessing damage from conflicts is crucial for humanitarian aid and regional stability. In conflict zones, damaged zones often share similar architectural styles, with damage typically covering small areas and exhibiting blurred boundaries. These characteristics lead to limited data, annotation difficulties, and significant recognition challenges, including high intra-class similarity and ambiguous semantic changes. To address these issues, we introduce a pre-trained DINOv3 model and propose a multi-scale cross-attention difference siamese network (MC-DiSNet). The powerful visual representation capability of the DINOv3 backbone enables robust and rich feature extraction from bi-temporal remote sensing images. The multi-scale cross-attention mechanism allows for precise localization of subtle semantic changes, while the difference siamese structure enhances inter-class feature discrimination, enabling fine-grained semantic change detection. Furthermore, a simple yet powerful lightweight decoder is designed to generate clear detection maps while maintaining high efficiency. We also release a new Gaza-change dataset containing high-resolution satellite image pairs from 2023-2024 with pixel-level semantic change annotations. It is worth emphasizing that our annotations only include semantic pixels of changed areas. We evaluated our method on the Gaza-Change and two classical datasets: the SECOND and Landsat-SCD datasets. Experimental results demonstrate that our proposed approach effectively addresses the MCD task, and its outstanding performance paves the way for practical applications in rapid damage assessment across conflict zones.
♻ ☆ Sliding-Window Merging for Compacting Patch-Redundant Layers in LLMs
Depth-wise pruning accelerates LLM inference in resource-constrained scenarios but suffers from performance degradation due to direct removal of entire Transformer layers. This paper reveals ``Patch-like'' redundancy across layers via correlation analysis of the outputs of different layers in reproducing kernel Hilbert space, demonstrating consecutive layers exhibit high functional similarity. Building on this observation, this paper proposes Sliding-Window Merging (SWM) - a dynamic compression method that selects consecutive layers from top to bottom using a pre-defined similarity threshold, and compacts patch-redundant layers through a parameter consolidation, thereby simplifying the model structure while maintaining its performance. Extensive experiments on LLMs with various architectures and different parameter scales show that our method outperforms existing pruning techniques in both zero-shot inference performance and retraining recovery quality after pruning. In particular, in the experiment with 35% pruning on the Vicuna-7B model, our method achieved a 1.654% improvement in average performance on zero-shot tasks compared to the existing method. Moreover, we further reveal the potential of combining depth pruning with width pruning to enhance the pruning effect. Our codes are available at https://github.com/920927/SLM-a-sliding-layer-merging-method.
♻ ☆ VEDA: 3D Molecular Generation via Variance-Exploding Diffusion with Annealing
Diffusion models show promise for 3D molecular generation, but face a fundamental trade-off between sampling efficiency and conformational accuracy. While flow-based models are fast, they often produce geometrically inaccurate structures, as they have difficulty capturing the multimodal distributions of molecular conformations. In contrast, denoising diffusion models are more accurate but suffer from slow sampling, a limitation attributed to sub-optimal integration between diffusion dynamics and SE(3)-equivariant architectures. To address this, we propose VEDA, a unified SE(3)-equivariant framework that combines variance-exploding diffusion with annealing to efficiently generate conformationally accurate 3D molecular structures. Specifically, our key technical contributions include: (1) a VE schedule that enables noise injection functionally analogous to simulated annealing, improving 3D accuracy and reducing relaxation energy; (2) a novel preconditioning scheme that reconciles the coordinate-predicting nature of SE(3)-equivariant networks with a residual-based diffusion objective, and (3) a new arcsin-based scheduler that concentrates sampling in critical intervals of the logarithmic signal-to-noise ratio. On the QM9 and GEOM-DRUGS datasets, VEDA matches the sampling efficiency of flow-based models, achieving state-of-the-art valency stability and validity with only 100 sampling steps. More importantly, VEDA's generated structures are remarkably stable, as measured by their relaxation energy during GFN2-xTB optimization. The median energy change is only 1.72 kcal/mol, significantly lower than the 32.3 kcal/mol from its architectural baseline, SemlaFlow. Our framework demonstrates that principled integration of VE diffusion with SE(3)-equivariant architectures can achieve both high chemical accuracy and computational efficiency.
♻ ☆ Multimodal Markup Document Models for Graphic Design Completion
We introduce MarkupDM, a multimodal markup document model that represents graphic design as an interleaved multimodal document consisting of both markup language and images. Unlike existing holistic approaches that rely on an element-by-attribute grid representation, our representation accommodates variable-length elements, type-dependent attributes, and text content. Inspired by fill-in-the-middle training in code generation, we train the model to complete the missing part of a design document from its surrounding context, allowing it to treat various design tasks in a unified manner. Our model also supports image generation by predicting discrete image tokens through a specialized tokenizer with support for image transparency. We evaluate MarkupDM on three tasks, attribute value, image, and text completion, and demonstrate that it can produce plausible designs consistent with the given context. To further illustrate the flexibility of our approach, we evaluate our approach on a new instruction-guided design completion task where our instruction-tuned MarkupDM compares favorably to state-of-the-art image editing models, especially in textual completion. These findings suggest that multimodal language models with our document representation can serve as a versatile foundation for broad design automation.
comment: Accepted by ACM Multimedia 2025, Project page: https://cyberagentailab.github.io/MarkupDM/
♻ ☆ Detection of AI Deepfake and Fraud in Online Payments Using GAN-Based Models
This study explores the use of Generative Adversarial Networks (GANs) to detect AI deepfakes and fraudulent activities in online payment systems. With the growing prevalence of deepfake technology, which can manipulate facial features in images and videos, the potential for fraud in online transactions has escalated. Traditional security systems struggle to identify these sophisticated forms of fraud. This research proposes a novel GAN-based model that enhances online payment security by identifying subtle manipulations in payment images. The model is trained on a dataset consisting of real-world online payment images and deepfake images generated using advanced GAN architectures, such as StyleGAN and DeepFake. The results demonstrate that the proposed model can accurately distinguish between legitimate transactions and deepfakes, achieving a high detection rate above 95%. This approach significantly improves the robustness of payment systems against AI-driven fraud. The paper contributes to the growing field of digital security, offering insights into the application of GANs for fraud detection in financial services. Keywords- Payment Security, Image Recognition, Generative Adversarial Networks, AI Deepfake, Fraudulent Activities
comment: The paper will be published and indexed by IEEE at 2025 8th International Conference on Advanced Algorithms and Control Engineering (ICAACE 2025)
♻ ☆ ViRectify: A Challenging Benchmark for Video Reasoning Correction with Multimodal Large Language Models
As multimodal large language models (MLLMs) frequently exhibit errors in complex video reasoning scenarios, correcting these errors is critical for uncovering their weaknesses and improving performance. However, existing benchmarks lack systematic evaluation of MLLMs' ability to identify and correct these video reasoning errors. To bridge this gap, we propose ViRectify, a comprehensive benchmark to evaluate their fine-grained correction capability. Through an AI-assisted annotation pipeline with human verification, we construct a dataset of over 30K instances spanning dynamic perception, scientific reasoning, and embodied decision-making domains. In ViRectify, we challenge MLLMs to perform step-wise error identification and generate rationales with key video evidence grounding. In addition, we further propose the trajectory evidence-driven correction framework, comprising step-wise error trajectory and reward modeling on visual evidence-grounded correction. It encourages the model to explicitly concentrate on error propagation and key timestamps for correction. Extensive evaluation across 16 advanced MLLMs demonstrates that our ViRectify serves as a challenging testbed, where GPT-5 achieves only 31.94% correction accuracy. Our framework enables a Qwen2.5-VL-7B to consistently outperform the variants of 72B on ViRectify, showing the effectiveness of our approach. Further analysis uncovers systematic asymmetries in error correction across models, and our dataset is also a valuable data resource to perform reflection learning. We believe ViRectify provides a new direction for comprehensively evaluating the advanced MLLMs in video reasoning.
comment: 22 pages, 11 figures
♻ ☆ Collaborative Face Experts Fusion in Video Generation: Boosting Identity Consistency Across Large Face Poses
Current video generation models struggle with identity preservation under large face poses, primarily facing two challenges: the difficulty in exploring an effective mechanism to integrate identity features into DiT architectures, and the lack of targeted coverage of large face poses in existing open-source video datasets. To address these, we present two key innovations. First, we propose Collaborative Face Experts Fusion (CoFE), which dynamically fuses complementary signals from three specialized experts within the DiT backbone: an identity expert that captures cross-pose invariant features, a semantic expert that encodes high-level visual context, and a detail expert that preserves pixel-level attributes such as skin texture and color gradients. Second, we introduce a data curation pipeline comprising three key components: Face Constraints to ensure diverse large-pose coverage, Identity Consistency to maintain stable identity across frames, and Speech Disambiguation to align textual captions with actual speaking behavior. This pipeline yields LaFID-180K, a large-scale dataset of pose-annotated video clips designed for identity-preserving video generation. Experimental results on several benchmarks demonstrate that our approach significantly outperforms state-of-the-art methods in face similarity, FID, and CLIP semantic alignment. \href{https://rain152.github.io/CoFE/}{Project page}.
comment: \href{https://rain152.github.io/CoFE/}{Project page}
♻ ☆ MILR: Improving Multimodal Image Generation via Test-Time Latent Reasoning
Reasoning-augmented machine learning systems have shown improved performance in various domains, including image generation. However, existing reasoning-based methods for image generation either restrict reasoning to a single modality (image or text) or rely on high-quality reasoning data for fine-tuning. To tackle these limitations, we propose MILR, a test-time method that jointly reasons over image and text in a unified latent vector space. Reasoning in MILR is performed by searching through vector representations of discrete image and text tokens. Practically, this is implemented via the policy gradient method, guided by an image quality critic. We instantiate MILR within the unified multimodal understanding and generation (MUG) framework that natively supports language reasoning before image synthesis and thus facilitates cross-modal reasoning. The intermediate model outputs, which are to be optimized, serve as the unified latent space, enabling MILR to operate entirely at test time. We evaluate MILR on GenEval, T2I-CompBench, and WISE, achieving state-of-the-art results on all benchmarks. Notably, on knowledge-intensive WISE, MILR attains an overall score of 0.63, improving over the baseline by 80%. Our further analysis indicates that joint reasoning in the unified latent space is the key to its strong performance. Moreover, our qualitative studies reveal MILR's non-trivial ability in temporal and cultural reasoning, highlighting the efficacy of our reasoning method.
comment: 21 pages,13 figures,9 tables
♻ ☆ ViDiC: Video Difference Captioning
Understanding visual differences between dynamic scenes requires the comparative perception of compositional, spatial, and temporal changes--a capability that remains underexplored in existing vision-language systems. While prior work on Image Difference Captioning (IDC) has enabled models to describe semantic changes between static images, these approaches fail to capture motion continuity, event evolution, or editing consistency over time. We introduce the ViDiC (Video Difference Captioning) task and its corresponding ViDiC-1K dataset, designed to evaluate the ability of Multimodal Large Language Models (MLLMs) to provide fine-grained descriptions of similarities and differences between video pairs. ViDiC-1K comprises 1,000 curated video pairs annotated with over 4,000 comparative checklist items, covering seven categories: subject, style, background, cinematography, motion, location, and playback techniques. To ensure reliable evaluation, we propose a dual-checklist framework that measures the accuracy of similarity and difference separately, based on the LLM-as-a-Judge protocol. Experiments on nineteen representative multimodal models reveal a significant performance gap in their comparative description and difference perception abilities. We hope ViDiC-1K can be a challenging benchmark that lays a solid foundation for advancing video understanding, edit awareness, and comparative reasoning in multimodal intelligence.
♻ ☆ Sharp Eyes and Memory for VideoLLMs: Information-Aware Visual Token Pruning for Efficient and Reliable VideoLLM Reasoning AAAI
Current Video Large Language Models (VideoLLMs) suffer from quadratic computational complexity and key-value cache scaling, due to their reliance on processing excessive redundant visual tokens. To address this problem, we propose SharpV, a minimalist and efficient method for adaptive pruning of visual tokens and KV cache. Different from most uniform compression approaches, SharpV dynamically adjusts pruning ratios based on spatial-temporal information. Remarkably, this adaptive mechanism occasionally achieves performance gains over dense models, offering a novel paradigm for adaptive pruning. During the KV cache pruning stage, based on observations of visual information degradation, SharpV prunes degraded visual features via a self-calibration manner, guided by similarity to original visual features. In this way, SharpV achieves hierarchical cache pruning from the perspective of information bottleneck, offering a new insight into VideoLLMs' information flow. Experiments on multiple public benchmarks demonstrate the superiority of SharpV. Moreover, to the best of our knowledge, SharpV is notably the first two-stage pruning framework that operates without requiring access to exposed attention scores, ensuring full compatibility with hardware acceleration techniques like Flash Attention.
comment: The 40th Annual AAAI Conference on Artificial Intelligence (AAAI-26) Poster
♻ ☆ BOP-ASK: Object-Interaction Reasoning for Vision-Language Models
Vision Language Models (VLMs) have achieved impressive performance on spatial reasoning benchmarks, yet these evaluations mask critical weaknesses in understanding object interactions. Current benchmarks test high level relationships ('left of,' 'behind', etc.) but ignore fine-grained spatial understanding needed for real world applications: precise 3D localization, physical compatibility between objects, object affordances and multi step spatial planning. In this work, we present BOP-ASK, a novel large scale dataset for object interaction reasoning for both training and benchmarking. Our data generation pipeline leverages 6D object poses from the Benchmark for Object Pose Estimation (BOP) datasets from which we derive fine grained annotations such as grasp poses, referred object poses, path planning trajectories, relative spatial and depth relationships, and object-to-object relationships. BOP-ASK comprises over 150k images and 33M question answer pairs spanning six tasks (four novel), providing a rich resource for training and evaluating VLMs. We evaluate proprietary and open sourced VLMs, and conduct human evaluations on BOP-ASK-core, a contributed test benchmark. We also release BOP-ASK-lab, an out-of-distribution benchmark with images not sourced from BOP, enabling testing of generalization. Our experiments demonstrate that models trained on BOP-ASK outperform baselines and exhibit emergent capabilities such as precise object and grasp pose estimation, trajectory planning, and fine-grained object-centric spatial reasoning in cluttered environments. We will publicly release our datasets and dataset generation pipeline.
♻ ☆ Downscaling climate projections to 1 km with single-image super resolution
High-resolution climate projections are essential for local decision-making. However, available climate projections have low spatial resolution (e.g. 12.5 km), which limits their usability. We address this limitation by leveraging single-image super-resolution models to statistically downscale climate projections to 1-km resolution. Since high-resolution climate projections are unavailable, we train models on a high-resolution observational gridded data set and apply them to low-resolution climate projections. We cannot evaluate downscaled climate projections with common metrics (e.g. pixel-wise root-mean-square error) because we lack ground-truth high-resolution climate projections. Therefore, we evaluate climate indicators computed at weather station locations. Experiments on daily mean temperature demonstrate that single-image super-resolution models can downscale climate projections without increasing the error of climate indicators compared to low-resolution climate projections.
♻ ☆ Beyond the Ground Truth: Enhanced Supervision for Image Restoration
Deep learning-based image restoration has achieved significant success. However, when addressing real-world degradations, model performance is limited by the quality of ground-truth images in datasets due to practical constraints in data acquisition. To address this limitation, we propose a novel framework that enhances existing ground truth images to provide higher-quality supervision for real-world restoration. Our framework generates perceptually enhanced ground truth images using super-resolution by incorporating adaptive frequency masks, which are learned by a conditional frequency mask generator. These masks guide the optimal fusion of frequency components from the original ground truth and its super-resolved variants, yielding enhanced ground truth images. This frequency-domain mixup preserves the semantic consistency of the original content while selectively enriching perceptual details, preventing hallucinated artifacts that could compromise fidelity. The enhanced ground truth images are used to train a lightweight output refinement network that can be seamlessly integrated with existing restoration models. Extensive experiments demonstrate that our approach consistently improves the quality of restored images. We further validate the effectiveness of both supervision enhancement and output refinement through user studies. Code is available at https://github.com/dhryougit/Beyond-the-Ground-Truth.
♻ ☆ Zero4D: Training-Free 4D Video Generation From Single Video Using Off-the-Shelf Video Diffusion
Multi-view or 4D video generation has emerged as a significant research topic. Nonetheless, recent approaches to 4D generation still struggle with fundamental limitations, as they primarily rely on harnessing multiple video diffusion models with additional training or compute-intensive training of a full 4D diffusion model with limited real-world 4D data and large computational costs. To address these challenges, here we propose the first training-free 4D video generation method that leverages the off-the-shelf video diffusion models to generate multi-view videos from a single input video. Our approach consists of two key steps: (1) By designating the edge frames in the spatio-temporal sampling grid as key frames, we first synthesize them using a video diffusion model, leveraging a depth-based warping technique for guidance. This approach ensures structural consistency across the generated frames, preserving spatial and temporal coherence. (2) We then interpolate the remaining frames using a video diffusion model, constructing a fully populated and temporally coherent sampling grid while preserving spatial and temporal consistency. Through this approach, we extend a single video into a multi-view video along novel camera trajectories while maintaining spatio-temporal consistency. Our method is training-free and fully utilizes an off-the-shelf video diffusion model, offering a practical and effective solution for multi-view video generation.
comment: project page: https://zero4dvid.github.io/
♻ ☆ EgoDTM: Towards 3D-Aware Egocentric Video-Language Pretraining
Egocentric video-language pretraining has significantly advanced video representation learning. Humans perceive and interact with a fully 3D world, developing spatial awareness that extends beyond text-based understanding. However, most previous works learn from 1D text or 2D visual cues, such as bounding boxes, which inherently lack 3D understanding. To bridge this gap, we introduce EgoDTM, an Egocentric Depth- and Text-aware Model, jointly trained through large-scale 3D-aware video pretraining and video-text contrastive learning. EgoDTM incorporates a lightweight 3D-aware decoder to efficiently learn 3D-awareness from pseudo depth maps generated by depth estimation models. To further facilitate 3D-aware video pretraining, we enrich the original brief captions with hand-object visual cues by organically combining several foundation models. Extensive experiments demonstrate EgoDTM's superior performance across diverse downstream tasks, highlighting its superior 3D-aware visual understanding. Code: https://github.com/xuboshen/EgoDTM.
comment: Code: https://github.com/xuboshen/EgoDTM
♻ ☆ BrainPath: A Biologically-Informed AI Framework for Individualized Aging Brain Generation
The global population is aging rapidly, and aging is a major risk factor for various diseases. It is an important task to predict how each individual's brain will age, as the brain supports many human functions. This capability can greatly facilitate healthcare automation by enabling personalized, proactive intervention and efficient healthcare resource allocation. However, this task is extremely challenging because of the brain's complex 3D anatomy. While there have been successes in natural image generation and brain MRI synthesis, existing methods fall short in generating individualized, anatomically faithful aging brain trajectories. To address these gaps, we propose BrainPath, a novel AI model that, given a single structural MRI of an individual, generates synthetic longitudinal MRIs that represent that individual's expected brain anatomy as they age. BrainPath introduces three architectural innovations: an age-aware encoder with biologically grounded supervision, a differential age conditioned decoder for anatomically faithful MRI synthesis, and a swap-learning strategy that implicitly separates stable subject-specific anatomy from aging effects. We further design biologically informed loss functions, including an age calibration loss and an age and structural perceptual loss, to complement the conventional reconstruction loss. This enables the model to capture subtle, temporally meaningful anatomical changes associated with aging. We apply BrainPath to two of the largest public aging datasets and conduct a comprehensive, multifaceted evaluation. Our results demonstrate BrainPath's superior performance in generation accuracy, anatomical fidelity, and cross-dataset generalizability, outperforming competing methods.
Computers and Society
☆ Developing a General Personal Tutor for Education
The vision of a universal AI tutor has remained elusive, despite decades of effort. Could LLMs be the game-changer? We overview novel issues arising from developing a nationwide AI tutor. We highlight the practical questions that point to specific gaps in our scientific understanding of the learning process.
☆ The Stagnant Persistence Paradox: Survival Analysis and Temporal Efficiency in Exact Sciences and Engineering Education
Research on student progression in higher education has traditionally focused on vertical outcomes such as persistence and dropout, often reducing complex academic histories to binary indicators. While the structural component of horizontal mobility (major switching, plan changes, re-entries) has recently been recognised as a core feature of contemporary university systems, the temporal cost and efficiency of these pathways remain largely unquantified. Using forty years of administrative records from a large faculty of engineering and exact sciences in Argentina (N = 24,016), this study applies a dual-outcome survival analysis framework to two key outcomes: definitive dropout and first major switch. We reconstruct academic trajectories as sequences of enrolment spells and typed transitions under the CAPIRE protocol, and then deploy non-parametric Kaplan-Meier estimators to model time-to-event under right-censoring. Results uncover a critical systemic inefficiency: a global median survival time of 4.33 years prior to definitive dropout, with a pronounced long tail of extended enrolment. This pattern reveals a phenomenon of stagnant persistence, where students remain formally enrolled for long periods without commensurate curricular progression. In contrast, major switching follows an early-event regime, with a median time of 1.0 year among switchers and most switches concentrated within the first academic year. We argue that academic failure in rigid engineering curricula is not a sudden outcome but a long-tail process that generates high opportunity costs, and that institutional indicators should shift from static retention metrics towards measures of curricular velocity based on time-to-event analysis.
comment: 18 pages , 5 figures, 3 tables
☆ Quantised Academic Mobility: Network and Cluster Analysis of Degree Switching, Plan Changes, and Re-entries in an Engineering Faculty (1980-2019)
This study challenges the traditional binary view of student progression (retention versus dropout) by conceptualising academic trajectories as complex, quantised pathways. Utilising a 40-year longitudinal dataset from an Argentine engineering faculty (N = 24,016), we introduce CAPIRE, an analytical framework that differentiates between degree major switches, curriculum plan changes, and same-plan re-entries. While 73.3 per cent of students follow linear trajectories (Estables), a significant 26.7 per cent exhibit complex mobility patterns. By applying Principal Component Analysis (PCA) and DBSCAN clustering, we reveal that these trajectories are not continuous but structurally quantised, occupying discrete bands of complexity. The analysis identifies six distinct student archetypes, including 'Switchers' (10.7 per cent) who reorient vocationally, and 'Stable Re-entrants' (6.9 per cent) who exhibit stop-out behaviours without changing discipline. Furthermore, network analysis highlights specific 'hub majors' - such as electronics and computing - that act as systemic attractors. These findings suggest that student flux is an organised ecosystemic feature rather than random noise, offering institutions a new lens for curriculum analytics and predictive modelling.
comment: 23 pages, 4 tables , 5 figures
☆ Reflection-Satisfaction Tradeoff: Investigating Impact of Reflection on Student Engagement with AI-Generated Programming Hints
Generative AI tools, such as AI-generated hints, are increasingly integrated into programming education to offer timely, personalized support. However, little is known about how to effectively leverage these hints while ensuring autonomous and meaningful learning. One promising approach involves pairing AI-generated hints with reflection prompts, asking students to review and analyze their learning, when they request hints. This study investigates the interplay between AI-generated hints and different designs of reflection prompts in an online introductory programming course. We conducted a two-trial field experiment. In Trial 1, students were randomly assigned to receive prompts either before or after receiving hints, or no prompt at all. Each prompt also targeted one of three SRL phases: planning, monitoring, and evaluation. In Trial 2, we examined two types of prompt guidance: directed (offering more explicit and structured guidance) and open (offering more general and less constrained guidance). Findings show that students in the before-hint (RQ1), planning (RQ2), and directed (RQ3) prompt groups produced higher-quality reflections but reported lower satisfaction with AI-generated hints than those in other conditions. Immediate performance did not differ across conditions. This negative relationship between reflection quality and hint satisfaction aligns with previous work on student mental effort and satisfaction. Our results highlight the need to reconsider how AI models are trained and evaluated for education, as prioritizing user satisfaction can undermine deeper learning.
comment: Preprint
☆ The Decision Path to Control AI Risks Completely: Fundamental Control Mechanisms for AI Governance
Artificial intelligence (AI) advances rapidly but achieving complete human control over AI risks remains an unsolved problem, akin to driving the fast AI "train" without a "brake system." By exploring fundamental control mechanisms at key elements of AI decisions, this paper develops a systematic solution to thoroughly control AI risks, providing an architecture for AI governance and legislation with five pillars supported by six control mechanisms, illustrated through a minimum set of AI Mandates (AIMs). Three of the AIMs must be built inside AI systems and three in society to address major areas of AI risks: 1) align AI values with human users; 2) constrain AI decision-actions by societal ethics, laws, and regulations; 3) build in human intervention options for emergencies and shut-off switches for existential threats; 4) limit AI access to resources to reinforce controls inside AI; 5) mitigate spillover risks like job loss from AI. We also highlight the differences in AI governance on physical AI systems versus generative AI. We discuss how to strengthen analog physical safeguards to prevent smarter AI/AGI/ASI from circumventing core safety controls by exploiting AI's intrinsic disconnect from the analog physical world: AI's nature as pure software code run on chips controlled by humans, and the prerequisite that all AI-driven physical actions must be digitized. These findings establish a theoretical foundation for AI governance and legislation as the basic structure of a "brake system" for AI decisions. If enacted, these controls can rein in AI dangers as completely as humanly possible, removing large chunks of currently wide-open AI risks, substantially reducing overall AI risks to residual human errors.
comment: 39 pages, 6 figures, 1 table
☆ Has ACL Lost Its Crown? A Decade-Long Quantitative Analysis of Scale and Impact Across Leading AI Conferences
The recent surge of language models has rapidly expanded NLP research, driving an exponential rise in submissions and acceptances at major conferences. Yet this growth has been shadowed by escalating concerns over conference quality, e.g., plagiarism, reviewer inexperience and collusive bidding. However, existing studies rely largely on qualitative accounts (e.g., expert interviews, social media discussions, etc.), lacking longitudinal empirical evidence. To fill this gap, we conduct a ten year empirical study spanning seven leading conferences. We build a four dimensional bibliometric framework covering conference scale, core citation statistics,impact dispersion, cross venue and journal influence, etc. Notably, we further propose a metric Quality Quantity Elasticity, which measures the elasticity of citation growth relative to acceptance growth. Our findings show that ML venues sustain dominant and stable impact, NLP venues undergo widening stratification with mixed expansion efficiency, and AI venues exhibit structural decline. This study provides the first decade-long, cross-venue empirical evidence on the evolution of major conferences.
♻ ☆ OPTIC-ER: A Reinforcement Learning Framework for Real-Time Emergency Response and Equitable Resource Allocation in Underserved African Communities
Public service systems in many African regions suffer from delayed emergency response and spatial inequity, causing avoidable suffering. This paper introduces OPTIC-ER, a reinforcement learning (RL) framework for real-time, adaptive, and equitable emergency response. OPTIC-ER uses an attention-guided actor-critic architecture to manage the complexity of dispatch environments. Its key innovations are a Context-Rich State Vector, encoding action sub-optimality, and a Precision Reward Function, which penalizes inefficiency. Training occurs in a high-fidelity simulation using real data from Rivers State, Nigeria, accelerated by a precomputed Travel Time Atlas. The system is built on the TALS framework (Thin computing, Adaptability, Low-cost, Scalability) for deployment in low-resource settings. In evaluations on 500 unseen incidents, OPTIC-ER achieved a 100.00% optimal action selection rate, confirming its robustness and generalization. Beyond dispatch, the system generates Infrastructure Deficiency Maps and Equity Monitoring Dashboards to guide proactive governance and data-informed development. This work presents a validated blueprint for AI-augmented public services, showing how context-aware RL can bridge the gap between algorithmic decision-making and measurable human impact.
comment: Source code and data available at: https://github.com/marytonwe/OPTIC-ER.git
♻ ☆ AI summaries in online search influence users' attitudes
This study examined how AI-generated summaries, which have become visually prominent in online search results, affect how users think about different issues. In a preregistered randomized controlled experiment, participants (N = 2,004) viewed mock search result pages varying in the presence (vs. absence), placement (top vs. middle), and stance (benefit-framed vs. harm-framed) of AI-generated summaries across four publicly debated topics. Compared to a no-summary control group, participants exposed to AI-generated summaries reported issue attitudes, behavioral intentions, and policy support that aligned more closely with the AI summary stance. The summaries placed at the top of the page produced stronger shifts in users' issue attitudes (but not behavioral intentions or policy support) than those placed at the middle of the page. We also observed moderating effects from issue familiarity and general trust toward AI. In addition, users perceived the AI summaries more useful when it emphasized health harms versus benefits. These findings suggest that AI-generated search summaries can significantly shape public perceptions, raising important implications for the design and regulation of AI-integrated information ecosystems.
♻ ☆ Expertise elevates AI usage: experimental evidence comparing laypeople and professional artists
Generative AI's novel capacities raise questions about the future role of human expertise: does AI level the playing field between professional artists and laypeople, or does expertise enhance AI use? Do the cognitive skills experts make use of in analyzing and drawing visual art also transfer to using these new tools? This pre-registered study conducts experimental comparisons between 50 professional artists and a demographically matched sample of laypeople. Our interdisciplinary team developed two tasks involving image replication and creative image creation, assessing their copying accuracy and divergent thinking. We implemented a bespoke platform for the experiment, powered by a modern text-to-image AI. Results reveal artists produced more accurate copies and more divergent ideas than lay participants, highlighting a skill transfer of professional expertise - even to the confined space of generative AI. We also explored how well an exemplary vision-capable large language model (GPT-4o) would fare: on par in copying and slightly better on average than artists in the creative task, although never above best humans. These findings highlight the importance of integrating artistic skills with AI, suggesting a potential for collaborative synergy that could reshape creative industries and arts education.
comment: Eisenmann and Karjus contributed equally to this work and share first authorship
♻ ☆ ChatGPT for President! Presupposed content in politicians versus GPT-generated texts
This study examines ChatGPT-4's capability to replicate linguistic strategies used in political discourse, focusing on its potential for manipulative language generation. As large language models become increasingly popular for text generation, concerns have grown regarding their role in spreading fake news and propaganda. This research compares real political speeches with those generated by ChatGPT, emphasizing presuppositions (a rhetorical device that subtly influences audiences by packaging some content as already known at the moment of utterance, thus swaying opinions without explicit argumentation). Using a corpus-based pragmatic analysis, this study assesses how well ChatGPT can mimic these persuasive strategies. The findings reveal that although ChatGPT-generated texts contain many manipulative presuppositions, key differences emerge in their frequency, form, and function compared with those of politicians. For instance, ChatGPT often relies on change-of-state verbs used in fixed phrases, whereas politicians use presupposition triggers in more varied and creative ways. Such differences, however, are challenging to detect with the naked eye, underscoring the potential risks posed by large language models in political and public discourse.Using a corpus-based pragmatic analysis, this study assesses how well ChatGPT can mimic these persuasive strategies. The findings reveal that although ChatGPT-generated texts contain many manipulative presuppositions, key differences emerge in their frequency, form, and function compared with those of politicians. For instance, ChatGPT often relies on change-of-state verbs used in fixed phrases, whereas politicians use presupposition triggers in more varied and creative ways. Such differences, however, are challenging to detect with the naked eye, underscoring the potential risks posed by large language models in political and public discourse.
comment: 36 pages, 6 figures
♻ ☆ Which Type of Students can LLMs Act? Investigating Authentic Simulation with Graph-based Human-AI Collaborative System
While rapid advances in large language models (LLMs) are reshaping data-driven intelligent education, accurately simulating students remains an important but challenging bottleneck for scalable educational data collection, evaluation, and intervention design. However, current works are limited by scarce real interaction data, costly expert evaluation for realism, and a lack of large-scale, systematic analyses of LLMs ability in simulating students. We address this gap by presenting a three-stage LLM-human collaborative pipeline to automatically generate and filter high-quality student agents. We leverage a two-round automated scoring validated by human experts and deploy a score propagation module to obtain more consistent scores across the student similarity graph. Experiments show that combining automated scoring, expert calibration, and graph-based propagation yields simulated student that more closely track authentication by human judgments. We then analyze which profiles and behaviors are simulated more faithfully, supporting subsequent studies on personalized learning and educational assessment.
comment: This work has been submitted to AI Open for possible publication
♻ ☆ A Survey of Operating System Kernel Fuzzing
The Operating System (OS) kernel is foundational in modern computing, especially with the proliferation of diverse computing devices. However, its development also comes with vulnerabilities that can lead to severe security breaches. Kernel fuzzing, a technique used to uncover these vulnerabilities, poses distinct challenges when compared to user-space fuzzing. These include the complexity of configuring the testing environment and addressing the statefulness inherent to both the kernel and the fuzzing process. Despite the significant interest from the community, a comprehensive understanding of kernel fuzzing remains lacking, hindering further progress in the field. In this paper, we present the first systematic study focused specifically on OS kernel fuzzing. We begin by outlining the unique challenges of kernel fuzzing, which distinguish it from those in user space. Following this, we summarize the progress of 107 academic studies from top-tier venues between 2017 and 2025. To structure this analysis, we introduce a stage-based fuzzing model and a novel fuzzing taxonomy that highlights nine core functionalities unique to kernel fuzzing. Each of these functionalities is examined in conjunction with the methodological approaches employed to address them. Finally, we identify remaining gaps in addressing challenges and outline promising directions to guide forthcoming research in kernel security.
comment: This work has been accepted by ACM Transactions on Software Engineering and Methodology (TOSEM)
♻ ☆ What AI Speaks for Your Community: Polling AI Agents for Public Opinion on Data Center Projects NeurIPS 2025
The intense computational demands of AI, especially large foundation models, are driving a global boom in data centers. These facilities bring both tangible benefits and potential environmental burdens to local communities. However, the planning processes for data centers often fail to proactively integrate local public opinion in advance, largely because traditional polling is expensive or is conducted too late to influence decisions. To address this gap, we introduce an AI agent polling framework, leveraging large language models to assess community opinion on data centers and guide responsible development of AI. Our experiments reveal water consumption and utility costs as primary concerns, while tax revenue is a key perceived benefit. Furthermore, our cross-model and cross-regional analyses show opinions vary significantly by LLM and regional context. Finally, agent responses show strong topical alignment with real-world survey data. Our framework can serve as a scalable screening tool, enabling developers to integrate community sentiment into early-stage planning for a more informed and socially responsible AI infrastructure deployment.
comment: 35 Pages. Accepted to NeurIPS 2025 Workshop on Socially Responsible and Trustworthy Foundation Models (ResponsibleFM)
♻ ☆ When Ads Become Profiles: Uncovering the Invisible Risk of Web Advertising at Scale with LLMs
Regulatory limits on explicit targeting have not eliminated algorithmic profiling on the Web, as optimisation systems still adapt ad delivery to users' private attributes. The widespread availability of powerful zero-shot multimodal Large Language Models (LLMs) has dramatically lowered the barrier for exploiting these latent signals for adversarial inference. We investigate this emerging societal risk, specifically how adversaries can now exploit these signals to reverse-engineer private attributes from ad exposure alone. We introduce a novel pipeline that leverages LLMs as adversarial inference engines to perform natural language profiling. Applying this method to a longitudinal dataset comprising over 435,000 ad impressions collected from 891 users, we conducted a large-scale study to assess the feasibility and precision of inferring private attributes from passive online ad observations. Our results demonstrate that off-the-shelf LLMs can accurately reconstruct complex user private attributes, including party preference, employment status, and education level, consistently outperforming strong census-based priors and matching or exceeding human social perception, while operating at only a fraction of the cost (223$\times$ lower) and time (52$\times$ faster) required by humans. Critically, actionable profiling is feasible even within short observation windows, indicating that prolonged tracking is not a prerequisite for a successful attack. These findings provide the first empirical evidence that ad streams serve as a high-fidelity digital footprint, enabling off-platform profiling that inherently bypasses current platform safeguards, highlighting a systemic vulnerability in the ad ecosystem and the urgent need for responsible web AI governance in the generative AI era. The code is available at https://github.com/Breezelled/when-ads-become-profiles.
♻ ☆ Optimizing Product Provenance Verification using Data Valuation Methods AAAI
Determining and verifying product provenance remains a critical challenge in global supply chains, particularly as geopolitical conflicts and shifting borders create new incentives for misrepresentation of commodities, such as hiding the origin of illegally harvested timber or stolen agricultural products. Stable Isotope Ratio Analysis (SIRA), combined with Gaussian process regression-based isoscapes, has emerged as a powerful tool for geographic origin verification. While these models are now actively deployed in operational settings supporting regulators, certification bodies, and companies, they remain constrained by data scarcity and suboptimal dataset selection. In this work, we introduce a novel deployed data valuation framework designed to enhance the selection and utilization of training data for machine learning models applied in SIRA. By quantifying the marginal utility of individual samples using Shapley values, our method guides strategic, cost-effective, and robust sampling campaigns within active monitoring programs. By prioritizing high-informative samples, our approach improves model robustness and predictive accuracy across diverse datasets and geographies. Our framework has been implemented and validated in a live provenance verification system currently used by enforcement agencies, demonstrating tangible, real-world impact. Through extensive experiments and deployment in a live provenance verification system, we show that this system significantly enhances provenance verification, mitigates fraudulent trade practices, and strengthens regulatory enforcement of global supply chains.
comment: Proceedings of the AAAI Conference on Artificial Intelligence 2026
♻ ☆ To Ban or Not to Ban: Uses and Gratifications of Mobile Phones among Township High School Learners
The proliferation of mobile phone usage among learners from diverse socio-economic backgrounds has prompted school authorities to contemplate banning these devices within educational institutions. This research seeks to explore the motivations and usage patterns of high school learners in response to the proposed ban. Employing a mixed-methods approach, we conducted surveys and interviews with 262 students from three township schools in the Western Cape province of South Africa. Grounded in the Uses and Gratification Theory (UGT), our study examined four key categories: reasons for mobile phone use, usage patterns, purchasing influences, and behavioral factors. Our findings reveal a predominant opposition among students to the ban, despite a significant number opting to leave their phones at home due to concerns about theft and robbery in their neighborhoods. Financial constraints, specifically the inability to afford data bundles and airtime, also contribute to this behavior. Notably, 40% of the participants reported using their phones for more than five hours daily, a duration classified as overuse in existing literature. The primary motivations for mobile phone use among these learners include socializing, internet browsing for non-educational purposes, and using the device for entertainment and recreation. This study highlights critical insights into the nuanced relationship between high school learners and mobile phone usage, offering valuable perspectives for policymakers and educators considering the implications of a mobile phone ban in schools.
comment: African Conference On Information Systems & Technology, 2017, 11 pages
Computation and Language
☆ DAComp: Benchmarking Data Agents across the Full Data Intelligence Lifecycle
Real-world enterprise data intelligence workflows encompass data engineering that turns raw sources into analytical-ready tables and data analysis that convert those tables into decision-oriented insights. We introduce DAComp, a benchmark of 210 tasks that mirrors these complex workflows. Data engineering (DE) tasks require repository-level engineering on industrial schemas, including designing and building multi-stage SQL pipelines from scratch and evolving existing systems under evolving requirements. Data analysis (DA) tasks pose open-ended business problems that demand strategic planning, exploratory analysis through iterative coding, interpretation of intermediate results, and the synthesis of actionable recommendations. Engineering tasks are scored through execution-based, multi-metric evaluation. Open-ended tasks are assessed by a reliable, experimentally validated LLM-judge, which is guided by hierarchical, meticulously crafted rubrics. Our experiments reveal that even state-of-the-art agents falter on DAComp. Performance on DE tasks is particularly low, with success rates under 20%, exposing a critical bottleneck in holistic pipeline orchestration, not merely code generation. Scores on DA tasks also average below 40%, highlighting profound deficiencies in open-ended reasoning and demonstrating that engineering and analysis are distinct capabilities. By clearly diagnosing these limitations, DAComp provides a rigorous and realistic testbed to drive the development of truly capable autonomous data agents for enterprise settings. Our data and code are available at https://da-comp.github.io
☆ Text-Only Training for Image Captioning with Retrieval Augmentation and Modality Gap Correction CVPR 2026
Image captioning has drawn considerable attention from the natural language processing and computer vision fields. Aiming to reduce the reliance on curated data, several studies have explored image captioning without any humanly-annotated image-text pairs for training, although existing methods are still outperformed by fully supervised approaches. This paper proposes TOMCap, i.e., an improved text-only training method that performs captioning without the need for aligned image-caption pairs. The method is based on prompting a pre-trained language model decoder with information derived from a CLIP representation, after undergoing a process to reduce the modality gap. We specifically tested the combined use of retrieved examples of captions, and latent vector representations, to guide the generation process. Through extensive experiments, we show that TOMCap outperforms other training-free and text-only methods. We also analyze the impact of different choices regarding the configuration of the retrieval-augmentation and modality gap reduction components.
comment: Submitted to CVPR 2026
☆ SQuARE: Structured Query & Adaptive Retrieval Engine For Tabular Formats
Accurate question answering over real spreadsheets remains difficult due to multirow headers, merged cells, and unit annotations that disrupt naive chunking, while rigid SQL views fail on files lacking consistent schemas. We present SQuARE, a hybrid retrieval framework with sheet-level, complexity-aware routing. It computes a continuous score based on header depth and merge density, then routes queries either through structure-preserving chunk retrieval or SQL over an automatically constructed relational representation. A lightweight agent supervises retrieval, refinement, or combination of results across both paths when confidence is low. This design maintains header hierarchies, time labels, and units, ensuring that returned values are faithful to the original cells and straightforward to verify. Evaluated on multi-header corporate balance sheets, a heavily merged World Bank workbook, and diverse public datasets, SQuARE consistently surpasses single-strategy baselines and ChatGPT-4o on both retrieval precision and end-to-end answer accuracy while keeping latency predictable. By decoupling retrieval from model choice, the system is compatible with emerging tabular foundation models and offers a practical bridge toward a more robust table understanding.
comment: Accepted in The IEEE International Workshop on Large Language Models in Finance, Dec 8-11, Macau, China, 2025, Preprint Copy
☆ Computational Linguistics Meets Libyan Dialect: A Study on Dialect Identification
This study investigates logistic regression, linear support vector machine, multinomial Naive Bayes, and Bernoulli Naive Bayes for classifying Libyan dialect utterances gathered from Twitter. The dataset used is the QADI corpus, which consists of 540,000 sentences across 18 Arabic dialects. Preprocessing challenges include handling inconsistent orthographic variations and non-standard spellings typical of the Libyan dialect. The chi-square analysis revealed that certain features, such as email mentions and emotion indicators, were not significantly associated with dialect classification and were thus excluded from further analysis. Two main experiments were conducted: (1) evaluating the significance of meta-features extracted from the corpus using the chi-square test and (2) assessing classifier performance using different word and character n-gram representations. The classification experiments showed that Multinomial Naive Bayes (MNB) achieved the highest accuracy of 85.89% and an F1-score of 0.85741 when using a (1,2) word n-gram and (1,5) character n-gram representation. In contrast, Logistic Regression and Linear SVM exhibited slightly lower performance, with maximum accuracies of 84.41% and 84.73%, respectively. Additional evaluation metrics, including log loss, Cohen kappa, and Matthew correlation coefficient, further supported the effectiveness of MNB in this task. The results indicate that carefully selected n-gram representations and classification models play a crucial role in improving the accuracy of Libyan dialect identification. This study provides empirical benchmarks and insights for future research in Arabic dialect NLP applications.
comment: 13 pages, 8 figures
☆ On GRPO Collapse in Search-R1: The Lazy Likelihood-Displacement Death Spiral
Tool-integrated (TI) reinforcement learning (RL) enables large language models (LLMs) to perform multi-step reasoning by interacting with external tools such as search engines and retrievers. Group Relative Policy Optimization (GRPO), exemplified by the recent Search-R1, offers fast convergence and a value-free formulation that makes it appealing for this setting, yet consistently suffers from training collapse. We identify Lazy Likelihood Displacement (LLD), a systematic reduction or stagnation in the likelihood of both correct and incorrect responses, as the core mechanism driving this failure. LLD emerges early and triggers a self-reinforcing LLD Death Spiral, where declining likelihood leads to low-confidence responses, inflating gradients, and ultimately causing collapse. We empirically characterize this process across models on a Search-R1-style, search-integrated question answering task, revealing a consistent three-phase trajectory: early stagnation, steady decay, and accelerated collapse. To address this, we propose a lightweight likelihood-preserving regularization LLDS for GRPO that activates only when a trajectory's likelihood decreases, and regularizes only the tokens responsible. This fine-grained structure mitigates LLD with minimal interference to optimization. Across seven open-domain and multi-hop QA benchmarks, our method stabilizes training, prevents gradient explosion, and yields substantial performance improvements, including +37.8% gains on Qwen2.5-3B and +32.0% gains on Qwen2.5-7B. Our results establish LLD as a fundamental bottleneck in GRPO-based TIRL and provide a practical path toward stable, scalable training of tool-integrated LLM.
☆ Balancing Safety and Helpfulness in Healthcare AI Assistants through Iterative Preference Alignment ML4H 2025
Large Language Models (LLMs) are increasingly used in healthcare, yet ensuring their safety and trustworthiness remains a barrier to deployment. Conversational medical assistants must avoid unsafe compliance without over-refusing benign queries. We present an iterative post-deployment alignment framework that applies Kahneman-Tversky Optimization (KTO) and Direct Preference Optimization (DPO) to refine models against domain-specific safety signals. Using the CARES-18K benchmark for adversarial robustness, we evaluate four LLMs (Llama-3B/8B, Meditron-8B, Mistral-7B) across multiple cycles. Our results show up to 42% improvement in safety-related metrics for harmful query detection, alongside interesting trade-offs against erroneous refusals, thereby exposing architecture-dependent calibration biases. We also perform ablation studies to identify when self-evaluation is reliable and when external or finetuned judges are necessary to maximize performance gains. Our findings underscore the importance of adopting best practices that balance patient safety, user trust, and clinical utility in the design of conversational medical assistants.
comment: ML4H 2025 Proceedings, Best Paper Award
☆ Network of Theseus (like the ship)
A standard assumption in deep learning is that the inductive bias introduced by a neural network architecture must persist from training through inference. The architecture you train with is the architecture you deploy. This assumption constrains the community from selecting architectures that may have desirable efficiency or design properties due to difficulties with optimization. We challenge this assumption with Network of Theseus (NoT), a method for progressively converting a trained, or even untrained, guide network architecture part-by-part into an entirely different target network architecture while preserving the performance of the guide network. At each stage, components in the guide network architecture are incrementally replaced with target architecture modules and aligned via representational similarity metrics. This procedure largely preserves the functionality of the guide network even under substantial architectural changes-for example, converting a convolutional network into a multilayer perceptron, or GPT-2 into a recurrent neural network. By decoupling optimization from deployment, NoT expands the space of viable inference-time architectures, opening opportunities for better accuracy-efficiency tradeoffs and enabling more directed exploration of the architectural design space.
comment: Preprint. 24 pages, 9 figures, 8 tables
☆ SkillFactory: Self-Distillation For Learning Cognitive Behaviors
Reasoning models leveraging long chains of thought employ various cognitive skills, such as verification of their answers, backtracking, retrying by an alternate method, and more. Previous work has shown that when a base language model exhibits these skills, training that model further with reinforcement learning (RL) can learn to leverage them. How can we get models to leverage skills that aren't exhibited by base models? Our work, SkillFactory, is a method for fine-tuning models to roughly learn these skills during a supervised fine-tuning (SFT) stage prior to RL. Our approach does not rely on distillation from a stronger model, but instead uses samples from the model itself, rearranged to provide training data in the format of those skills. These "silver" SFT traces may be imperfect, but are nevertheless effective for priming a model to acquire skills during RL. Our evaluation shows that (1) starting from SkillFactory SFT initialization helps a model to generalize to harder variants of a task post-RL, despite lower performance pre-RL; (2) cognitive skills are indeed used by the model; (3) RLed SkillFactory models are more robust to regression on out-of-domain tasks than RLed base models. Our work suggests that inductive biases learned prior to RL help models learn robust cognitive skill use.
☆ Stable Signer: Hierarchical Sign Language Generative Model
Sign Language Production (SLP) is the process of converting the complex input text into a real video. Most previous works focused on the Text2Gloss, Gloss2Pose, Pose2Vid stages, and some concentrated on Prompt2Gloss and Text2Avatar stages. However, this field has made slow progress due to the inaccuracy of text conversion, pose generation, and the rendering of poses into real human videos in these stages, resulting in gradually accumulating errors. Therefore, in this paper, we streamline the traditional redundant structure, simplify and optimize the task objective, and design a new sign language generative model called Stable Signer. It redefines the SLP task as a hierarchical generation end-to-end task that only includes text understanding (Prompt2Gloss, Text2Gloss) and Pose2Vid, and executes text understanding through our proposed new Sign Language Understanding Linker called SLUL, and generates hand gestures through the named SLP-MoE hand gesture rendering expert block to end-to-end generate high-quality and multi-style sign language videos. SLUL is trained using the newly developed Semantic-Aware Gloss Masking Loss (SAGM Loss). Its performance has improved by 48.6% compared to the current SOTA generation methods.
comment: 12 pages, 7 figures. More Demo at https://stablesigner.github.io
☆ AugServe: Adaptive Request Scheduling for Augmented Large Language Model Inference Serving
As augmented large language models (LLMs) with external tools become increasingly popular in web applications, improving augmented LLM inference serving efficiency and optimizing service-level objectives (SLOs) are critical for enhancing user experience. To achieve this, inference systems must maximize request handling within latency constraints, referred to as increasing effective throughput. However, existing systems face two major challenges: (i) reliance on first-come-first-served (FCFS) scheduling causes severe head-of-line blocking, leading to queuing delays exceeding the SLOs for many requests; and (ii) static batch token limit, which fails to adapt to fluctuating loads and hardware conditions. Both of these factors degrade effective throughput and service quality. This paper presents AugServe, an efficient inference framework designed to reduce queueing latency and enhance effective throughput for augmented LLM inference services. The core idea of AugServe is a two-stage adaptive request scheduling strategy. Specifically, AugServe combines the inference features of augmented LLM requests to optimize the order of scheduling decisions (stage I). These decisions are continuously refined with runtime information (stage II), adapting to both request characteristics and system capabilities. In addition, AugServe dynamically adjusts the token batching mechanism based on hardware status and real-time load, further enhancing throughput performance. Experimental results show that AugServe achieves 4.7-33.1x and 3.3-13.2x higher effective throughput than vLLM and InferCept, while reducing time-to-first-token (TTFT) by up to 96.3% and 95.0%, respectively.
☆ Teaching Old Tokenizers New Words: Efficient Tokenizer Adaptation for Pre-trained Models
Tokenizer adaptation plays an important role in transferring pre-trained language models to new domains or languages. In this work, we address two complementary aspects of this process: vocabulary extension and pruning. The common approach to extension trains a new tokenizer on domain-specific text and appends the tokens that do not overlap with the existing vocabulary, which often results in many tokens that are unreachable or never used. We propose continued BPE training, which adapts a pre-trained tokenizer by continuing the BPE merge learning process on new data. Experiments across multiple languages and model families show that this approach improves tokenization efficiency and leads to better utilization of added vocabulary. We also introduce leaf-based vocabulary pruning, which removes redundant tokens while preserving model quality. Together, these methods provide practical tools for controlled vocabulary modification, which we release as an open-source package.
☆ Adapting Large Language Models to Low-Resource Tibetan: A Two-Stage Continual and Supervised Fine-Tuning Study
Adapting large language models (LLMs) to low-resource languages remains a major challenge due to data scarcity and cross-lingual drift. This work presents a two-stage adaptation of Qwen2.5-3B to Tibetan, a morphologically rich and underrepresented language. We employ Continual Pretraining (CPT) to establish Tibetan linguistic grounding, followed by Supervised Fine-Tuning (SFT) for task and translation specialization. Empirical evaluations demonstrate a consistent decrease in perplexity (from 2.98 $\rightarrow$ 1.54) and substantial improvements in Chinese$\rightarrow$Tibetan translation quality (BLEU: 0.046 $\rightarrow$ 0.261; chrF: 2.2 $\rightarrow$ 6.6). Layer-wise analysis across 435 layers in Qwen3-4B reveals that adaptation primarily concentrates on embedding and output heads, with mid--late MLP projections encoding domain-specific transformations. Our findings suggest that CPT constructs a Tibetan semantic manifold while SFT sharpens task alignment with minimal representational disruption. This study provides the first quantitative exploration of Tibetan adaptation dynamics for LLMs, and offers an open, reproducible framework for extending multilingual foundation models to low-resource settings.
☆ Is Lying Only Sinful in Islam? Exploring Religious Bias in Multilingual Large Language Models Across Major Religions
While recent developments in large language models have improved bias detection and classification, sensitive subjects like religion still present challenges because even minor errors can result in severe misunderstandings. In particular, multilingual models often misrepresent religions and have difficulties being accurate in religious contexts. To address this, we introduce BRAND: Bilingual Religious Accountable Norm Dataset, which focuses on the four main religions of South Asia: Buddhism, Christianity, Hinduism, and Islam, containing over 2,400 entries, and we used three different types of prompts in both English and Bengali. Our results indicate that models perform better in English than in Bengali and consistently display bias toward Islam, even when answering religion-neutral questions. These findings highlight persistent bias in multilingual models when similar questions are asked in different languages. We further connect our findings to the broader issues in HCI regarding religion and spirituality.
comment: 18 pages, 7 figures
☆ BERnaT: Basque Encoders for Representing Natural Textual Diversity LREC 2026
Language models depend on massive text corpora that are often filtered for quality, a process that can unintentionally exclude non-standard linguistic varieties, reduce model robustness and reinforce representational biases. In this paper, we argue that language models should aim to capture the full spectrum of language variation (dialectal, historical, informal, etc.) rather than relying solely on standardized text. Focusing on Basque, a morphologically rich and low-resource language, we construct new corpora combining standard, social media, and historical sources, and pre-train the BERnaT family of encoder-only models in three configurations: standard, diverse, and combined. We further propose an evaluation framework that separates Natural Language Understanding (NLU) tasks into standard and diverse subsets to assess linguistic generalization. Results show that models trained on both standard and diverse data consistently outperform those trained on standard corpora, improving performance across all task types without compromising standard benchmark accuracy. These findings highlight the importance of linguistic diversity in building inclusive, generalizable language models.
comment: Submitted to LREC 2026
☆ Reconstructing KV Caches with Cross-layer Fusion For Enhanced Transformers
Transformer decoders have achieved strong results across tasks, but the memory required for the KV cache becomes prohibitive at long sequence lengths. Although Cross-layer KV Cache sharing (e.g., YOCO, CLA) offers a path to mitigate KV Cache bottleneck, it typically underperforms within-layer methods like GQA. To understand the root cause, we investigate the information flow of keys and values of the top-layers. Our preliminary reveals a clear distribution: values are predominantly derived from the bottom layer, while keys draw more information from both bottom and middle layers. Building upon this, we propose FusedKV, whose top-layer KV caches are a learnable fusion of the most informative ones from the bottom and middle layers. This fusion operates directly on post-RoPE keys, preserving relative positional information without the computational cost of re-applying rotary embeddings. To further improve efficiency, we propose FusedKV-Lite, an cross-layer sharing approach, where top-layer KV caches are directly derived from the bottom-layer values and the middle-layer keys. Compared to FusedKV, FusedKV-Lite reduces I/O overhead at the cost of a slight increase in perplexity. In experiments on LLMs ranging from 332M to 4B parameters, our proposed method reduce 50\% cache memory while achieving lower validation perplexity than the standard Transformer decoder, establishing it as a memory-efficient, high-performance architectural alternative.
comment: under review
☆ Training and Evaluation of Guideline-Based Medical Reasoning in LLMs
Machine learning for early prediction in medicine has recently shown breakthrough performance, however, the focus on improving prediction accuracy has led to a neglect of faithful explanations that are required to gain the trust of medical practitioners. The goal of this paper is to teach LLMs to follow medical consensus guidelines step-by-step in their reasoning and prediction process. Since consensus guidelines are ubiquitous in medicine, instantiations of verbalized medical inference rules to electronic health records provide data for fine-tuning LLMs to learn consensus rules and possible exceptions thereof for many medical areas. Consensus rules also enable an automatic evaluation of the model's inference process regarding its derivation correctness (evaluating correct and faithful deduction of a conclusion from given premises) and value correctness (comparing predicted values against real-world measurements). We exemplify our work using the complex Sepsis-3 consensus definition. Our experiments show that small fine-tuned models outperform one-shot learning of considerably larger LLMs that are prompted with the explicit definition and models that are trained on medical texts including consensus definitions. Since fine-tuning on verbalized rule instantiations of a specific medical area yields nearly perfect derivation correctness for rules (and exceptions) on unseen patient data in that area, the bottleneck for early prediction is not out-of-distribution generalization, but the orthogonal problem of generalization into the future by forecasting sparsely and irregularly sampled clinical variables. We show that the latter results can be improved by integrating the output representations of a time series forecasting model with the LLM in a multimodal setup.
☆ Improving Alignment Between Human and Machine Codes: An Empirical Assessment of Prompt Engineering for Construct Identification in Psychology
Due to their architecture and vast pre-training data, large language models (LLMs) demonstrate strong text classification performance. However, LLM output - here, the category assigned to a text - depends heavily on the wording of the prompt. While literature on prompt engineering is expanding, few studies focus on classification tasks, and even fewer address domains like psychology, where constructs have precise, theory-driven definitions that may not be well represented in pre-training data. We present an empirical framework for optimizing LLM performance for identifying constructs in texts via prompt engineering. We experimentally evaluate five prompting strategies --codebook-guided empirical prompt selection, automatic prompt engineering, persona prompting, chain-of-thought reasoning, and explanatory prompting - with zero-shot and few-shot classification. We find that persona, chain-of-thought, and explanations do not fully address performance loss accompanying a badly worded prompt. Instead, the most influential features of a prompt are the construct definition, task framing, and, to a lesser extent, the examples provided. Across three constructs and two models, the classifications most aligned with expert judgments resulted from a few-shot prompt combining codebook-guided empirical prompt selection with automatic prompt engineering. Based on our findings, we recommend that researchers generate and evaluate as many prompt variants as feasible, whether human-crafted, automatically generated, or ideally both, and select prompts and examples based on empirical performance in a training dataset, validating the final approach in a holdout set. This procedure offers a practical, systematic, and theory-driven method for optimizing LLM prompts in settings where alignment with expert judgment is critical.
comment: 22 pages, 2 figures
☆ Enhancing Instruction-Following Capabilities in Seq2Seq Models: DoLA Adaptations for T5
Contrastive decoding is a lightweight and effective inference-time method that improves the quality of text generation in Large Language Models. However, algorithms such as DoLa (Decoding by Contrastive Layers) have only been implemented in decoder-only architectures and studied for their impact on improving factuality. This work adapts DoLa for the T5 and FLAN-T5 model families and evaluates its impact on the models' instruction following capabilities, which to our knowledge is the first implementation of a contrastive decoding strategy in an encoder-decoder architecture. Our results show that DoLa improves the faithfulness of text generation for certain categories of tasks and harms others. To understand these results, we present a layer-by-layer analysis of logit evolution in a FLAN-T5 model to quantify DoLa's impact on token output probabilities.
☆ AdaptVision: Efficient Vision-Language Models via Adaptive Visual Acquisition
Vision-Language Models (VLMs) have achieved remarkable success in visual question answering tasks, but their reliance on large numbers of visual tokens introduces significant computational overhead. While existing efficient VLM approaches reduce visual tokens through fixed-ratio compression, they operate passively and lack the ability to adapt to varying task requirements. This motivates a fundamental question: Can VLMs autonomously determine the minimum number of visual tokens required for each sample? Inspired by human active vision mechanisms, we introduce AdaptVision, an efficient VLM paradigm that enables adaptive visual token acquisition through a coarse-to-fine approach. Our model initially processes compressed visual tokens from low-resolution images and selectively acquires additional visual information by invoking a bounding box tool to crop key regions when necessary. We train AdaptVision using a reinforcement learning framework that carefully balances accuracy and efficiency. Central to our approach is Decoupled Turn Policy Optimization (DTPO), which decouples the learning objective into two components: (1) tool learning, which optimizes correct tool utilization, and (2) accuracy improvement, which refines the generated responses to improve answer correctness. Based on this formulation, we further decouple advantage estimation by computing separate advantages for tokens associated with each objective. This formulation enables more effective optimization for AdaptVision compared to vanilla GRPO. Comprehensive experiments across multiple VQA benchmarks demonstrate that AdaptVision achieves superior performance while consuming substantially fewer visual tokens than state-of-the-art efficient VLM methods.
comment: 15 pages, 9 figures
☆ Principled RL for Diffusion LLMs Emerges from a Sequence-Level Perspective
Reinforcement Learning (RL) has proven highly effective for autoregressive language models, but adapting these methods to diffusion large language models (dLLMs) presents fundamental challenges. The core difficulty lies in likelihood approximation: while autoregressive models naturally provide token-level conditional probabilities essential for token-level RL objectives (e.g., GRPO), dLLMs generate sequences through iterative non-autoregressive denoising steps that lack this factorization. To address this fundamental mismatch, we propose ELBO-based Sequence-level Policy Optimization (ESPO), a principled RL framework that treats entire sequence generation as a single action and uses the ELBO as a tractable sequence-level likelihood proxy. Our method incorporates per-token normalization of importance ratios and robust KL-divergence estimation to ensure stable large-scale training. Extensive experiments on mathematical reasoning, coding, and planning tasks demonstrate that ESPO significantly outperforms token-level baselines, achieving dramatic improvements of 20-40 points on the Countdown task, while maintaining consistent gains on math and coding benchmarks. Our approach establishes sequence-level optimization as a principled and empirically effective paradigm for RL in dLLMs. Our code is available at https://github.com/ML-GSAI/ESPO.
☆ Thinking with Programming Vision: Towards a Unified View for Thinking with Images
Multimodal large language models (MLLMs) that think with images can interactively use tools to reason about visual inputs, but current approaches often rely on a narrow set of tools with limited real-world necessity and scalability. In this work, we first reveal a critical and previously overlooked weakness: even state-of-the-art MLLMs are surprisingly brittle, showing significant performance degradation on images with simple orientation changes or natural corruptions, underscoring the need for more robust tool-based reasoning. To address this, we propose CodeVision, a flexible and scalable code-as-tool framework where the model generates code as a universal interface to invoke any image operation, moving beyond fixed tool registries. We train our model using a two-stage methodology, beginning with Supervised Fine-Tuning (SFT) on a high-quality dataset curated for complex, multi-turn tool composition and error recovery, followed by Reinforcement Learning (RL) with a novel and dense process reward function to encourage strategic and efficient tool use. To facilitate this research, we construct new SFT and RL datasets and introduce a challenging new benchmark suite designed to rigorously evaluate robustness to orientation changes and multi-tool reasoning. Experiments on Qwen2.5-VL and Qwen3-VL series show that our approach significantly improves model performance and fosters emergent capabilities such as flexible tool composition, efficient chained execution, and robust error recovery from runtime feedback. Code is available at https://github.com/ByteDance-BandAI/CodeVision.
☆ AR-Med: Automated Relevance Enhancement in Medical Search via LLM-Driven Information Augmentation
Accurate and reliable search on online healthcare platforms is critical for user safety and service efficacy. Traditional methods, however, often fail to comprehend complex and nuanced user queries, limiting their effectiveness. Large language models (LLMs) present a promising solution, offering powerful semantic understanding to bridge this gap. Despite their potential, deploying LLMs in this high-stakes domain is fraught with challenges, including factual hallucinations, specialized knowledge gaps, and high operational costs. To overcome these barriers, we introduce \textbf{AR-Med}, a novel framework for \textbf{A}utomated \textbf{R}elevance assessment for \textbf{Med}ical search that has been successfully deployed at scale on the Online Medical Delivery Platforms. AR-Med grounds LLM reasoning in verified medical knowledge through a retrieval-augmented approach, ensuring high accuracy and reliability. To enable efficient online service, we design a practical knowledge distillation scheme that compresses large teacher models into compact yet powerful student models. We also introduce LocalQSMed, a multi-expert annotated benchmark developed to guide model iteration and ensure strong alignment between offline and online performance. Extensive experiments show AR-Med achieves an offline accuracy of over 93\%, a 24\% absolute improvement over the original online system, and delivers significant gains in online relevance and user satisfaction. Our work presents a practical and scalable blueprint for developing trustworthy, LLM-powered systems in real-world healthcare applications.
☆ DZ-TDPO: Non-Destructive Temporal Alignment for Mutable State Tracking in Long-Context Dialogue
Long-context dialogue systems suffer from State Inertia, where static constraints prevent models from resolving conflicts between evolving user intents and established historical context. To address this, we propose DZ-TDPO, a non-destructive alignment framework that synergizes conflict-aware dynamic KL constraints with a learnable temporal attention bias. Experiments on the Multi-Session Chat (MSC) dataset demonstrate that DZ-TDPO achieves state-of-the-art win rates (86.2% on Phi-3.5) while maintaining robust zero-shot generalization. Crucially, our scaling analysis reveals a "Capacity-Stability Trade-off": while smaller models incur an "alignment tax" (perplexity surge) to overcome historical inertia, the larger Qwen2.5-7B model achieves near-perfect alignment (99.4% win rate) with negligible perplexity overhead. This confirms that TAI can be alleviated via precise attention regulation rather than destructive weight updates, preserving general capabilities (MMLU) across model scales. Code and data are available: https://github.com/lyj20071013/DZ-TDPO
comment: 22 pages, 2 figures, 13 tables. Code available at https://github.com/lyj20071013/DZ-TDPO
☆ AITutor-EvalKit: Exploring the Capabilities of AI Tutors
We present AITutor-EvalKit, an application that uses language technology to evaluate the pedagogical quality of AI tutors, provides software for demonstration and evaluation, as well as model inspection and data visualization. This tool is aimed at education stakeholders as well as *ACL community at large, as it supports learning and can also be used to collect user feedback and annotations.
☆ Different types of syntactic agreement recruit the same units within large language models
Large language models (LLMs) can reliably distinguish grammatical from ungrammatical sentences, but how grammatical knowledge is represented within the models remains an open question. We investigate whether different syntactic phenomena recruit shared or distinct components in LLMs. Using a functional localization approach inspired by cognitive neuroscience, we identify the LLM units most responsive to 67 English syntactic phenomena in seven open-weight models. These units are consistently recruited across sentences containing the phenomena and causally support the models' syntactic performance. Critically, different types of syntactic agreement (e.g., subject-verb, anaphor, determiner-noun) recruit overlapping sets of units, suggesting that agreement constitutes a meaningful functional category for LLMs. This pattern holds in English, Russian, and Chinese; and further, in a cross-lingual analysis of 57 diverse languages, structurally more similar languages share more units for subject-verb agreement. Taken together, these findings reveal that syntactic agreement-a critical marker of syntactic dependencies-constitutes a meaningful category within LLMs' representational spaces.
☆ Evaluating Hydro-Science and Engineering Knowledge of Large Language Models
Hydro-Science and Engineering (Hydro-SE) is a critical and irreplaceable domain that secures human water supply, generates clean hydropower energy, and mitigates flood and drought disasters. Featuring multiple engineering objectives, Hydro-SE is an inherently interdisciplinary domain that integrates scientific knowledge with engineering expertise. This integration necessitates extensive expert collaboration in decision-making, which poses difficulties for intelligence. With the rapid advancement of large language models (LLMs), their potential application in the Hydro-SE domain is being increasingly explored. However, the knowledge and application abilities of LLMs in Hydro-SE have not been sufficiently evaluated. To address this issue, we propose the Hydro-SE LLM evaluation benchmark (Hydro-SE Bench), which contains 4,000 multiple-choice questions. Hydro-SE Bench covers nine subfields and enables evaluation of LLMs in aspects of basic conceptual knowledge, engineering application ability, and reasoning and calculation ability. The evaluation results on Hydro-SE Bench show that the accuracy values vary among 0.74 to 0.80 for commercial LLMs, and among 0.41 to 0.68 for small-parameter LLMs. While LLMs perform well in subfields closely related to natural and physical sciences, they struggle with domain-specific knowledge such as industry standards and hydraulic structures. Model scaling mainly improves reasoning and calculation abilities, but there is still great potential for LLMs to better handle problems in practical engineering application. This study highlights the strengths and weaknesses of LLMs for Hydro-SE tasks, providing model developers with clear training targets and Hydro-SE researchers with practical guidance for applying LLMs.
comment: Hydro-SE Bench sets a new benchmark for the evaluation of LLMs in the Hydro-Science and Engineering domain, with its code and data available at \url{https://github.com/sheishijun/Hydro-SE-Bench}
☆ Generative AI Practices, Literacy, and Divides: An Empirical Analysis in the Italian Context
The rise of Artificial Intelligence (AI) language technologies, particularly generative AI (GenAI) chatbots accessible via conversational interfaces, is transforming digital interactions. While these tools hold societal promise, they also risk widening digital divides due to uneven adoption and low awareness of their limitations. This study presents the first comprehensive empirical mapping of GenAI adoption, usage patterns, and literacy in Italy, based on newly collected survey data from 1,906 Italian-speaking adults. Our findings reveal widespread adoption for both work and personal use, including sensitive tasks like emotional support and medical advice. Crucially, GenAI is supplanting other technologies to become a primary information source: this trend persists despite low user digital literacy, posing a risk as users struggle to recognize errors or misinformation. Moreover, we identify a significant gender divide -- particularly pronounced in older generations -- where women are half as likely to adopt GenAI and use it less frequently than men. While we find literacy to be a key predictor of adoption, it only partially explains this disparity, suggesting that other barriers are at play. Overall, our data provide granular insights into the multipurpose usage of GenAI, highlighting the dual need for targeted educational initiatives and further investigation into the underlying barriers to equitable participation that competence alone cannot explain.
☆ Optical Context Compression Is Just (Bad) Autoencoding
DeepSeek-OCR demonstrates that rendered text can be reconstructed with high fidelity from a small number of vision tokens. This finding has sparked excitement about vision-based context compression for language models. But the evaluation stops at reconstruction; whether these representations help language modeling remains untested. We test two assumptions implicit in the optical-compression narrative: that vision-based compression provides unique advantages for text reconstruction from compressed representations, and that DeepSeek-OCR's reconstruction results are evidence that vision-based compression will be useful for language modeling. Comparing their vision encoder against simple alternatives--parameter-free mean pooling and a learned hierarchical encoder--we find that these simple approaches match or surpass vision for reconstruction at matched compression ratios, and outperform it for language modeling--where vision-based compression fails to beat truncation. The excitement around optical context compression outpaces the evidence. Code and checkpoints are available at https://github.com/ivnle/bad-autoencoding
☆ AlignCheck: a Semantic Open-Domain Metric for Factual Consistency Assessment
Large Language Models have significantly advanced natural language processing tasks, but remain prone to generating incorrect or misleading but plausible arguments. This issue, known as hallucination, is particularly concerning in high-stakes domains like clinical applications, where factual inaccuracies can have severe consequences. Existing evaluation metrics fail to adequately assess factual consistency and lack interpretability, making diagnosing and mitigating errors difficult. We propose an interpretable framework for factual consistency assessment for in-domain and open-domain texts to address these limitations. Our approach decomposes text into atomic facts and introduces a flexible, schema-free methodology. Unlike previous methods with an absolute metric, we incorporate a weighted metric to enhance factual evaluation. Additionally, we propose a mechanism to control assessment complexity in intricate domains. We benchmark our approach on popular general and clinical datasets and release our code to support fact-aware model training in future research.
☆ SELF: A Robust Singular Value and Eigenvalue Approach for LLM Fingerprinting
The protection of Intellectual Property (IP) in Large Language Models (LLMs) represents a critical challenge in contemporary AI research. While fingerprinting techniques have emerged as a fundamental mechanism for detecting unauthorized model usage, existing methods -- whether behavior-based or structural -- suffer from vulnerabilities such as false claim attacks or susceptible to weight manipulations. To overcome these limitations, we propose SELF, a novel intrinsic weight-based fingerprinting scheme that eliminates dependency on input and inherently resists false claims. SELF achieves robust IP protection through two key innovations: 1) unique, scalable and transformation-invariant fingerprint extraction via singular value and eigenvalue decomposition of LLM attention weights, and 2) effective neural network-based fingerprint similarity comparison based on few-shot learning and data augmentation. Experimental results demonstrate SELF maintains high IP infringement detection accuracy while showing strong robustness against various downstream modifications, including quantization, pruning, and fine-tuning attacks. Our code is available at https://github.com/HanxiuZhang/SELF_v2.
☆ Fine-grained Narrative Classification in Biased News Articles
Narratives are the cognitive and emotional scaffolds of propaganda. They organize isolated persuasive techniques into coherent stories that justify actions, attribute blame, and evoke identification with ideological camps. In this paper, we propose a novel fine-grained narrative classification in biased news articles. We also explore article-bias classification as the precursor task to narrative classification and fine-grained persuasive technique identification. We develop INDI-PROP, the first ideologically grounded fine-grained narrative dataset with multi-level annotation for analyzing propaganda in Indian news media. Our dataset INDI-PROP comprises 1,266 articles focusing on two polarizing socio-political events in recent times: CAA and the Farmers' protest. Each article is annotated at three hierarchical levels: (i) ideological article-bias (pro-government, pro-opposition, neutral), (ii) event-specific fine-grained narrative frames anchored in ideological polarity and communicative intent, and (iii) persuasive techniques. We propose FANTA and TPTC, two GPT-4o-mini guided multi-hop prompt-based reasoning frameworks for the bias, narrative, and persuasive technique classification. FANTA leverages multi-layered communicative phenomena by integrating information extraction and contextual framing for hierarchical reasoning. On the other hand, TPTC adopts systematic decomposition of persuasive cues via a two-stage approach. Our evaluation suggests substantial improvement over underlying baselines in each case.
☆ CartoMapQA: A Fundamental Benchmark Dataset Evaluating Vision-Language Models on Cartographic Map Understanding SP
The rise of Visual-Language Models (LVLMs) has unlocked new possibilities for seamlessly integrating visual and textual information. However, their ability to interpret cartographic maps remains largely unexplored. In this paper, we introduce CartoMapQA, a benchmark specifically designed to evaluate LVLMs' understanding of cartographic maps through question-answering tasks. The dataset includes over 2000 samples, each composed of a cartographic map, a question (with open-ended or multiple-choice answers), and a ground-truth answer. These tasks span key low-, mid- and high-level map interpretation skills, including symbol recognition, embedded information extraction, scale interpretation, and route-based reasoning. Our evaluation of both open-source and proprietary LVLMs reveals persistent challenges: models frequently struggle with map-specific semantics, exhibit limited geospatial reasoning, and are prone to Optical Character Recognition (OCR)-related errors. By isolating these weaknesses, CartoMapQA offers a valuable tool for guiding future improvements in LVLM architectures. Ultimately, it supports the development of models better equipped for real-world applications that depend on robust and reliable map understanding, such as navigation, geographic search, and urban planning. Our source code and data are openly available to the research community at: https://github.com/ungquanghuy-kddi/CartoMapQA.git
comment: Accepted at SIGSPATIAL 2025 (Best paper candidates), 15 pages
☆ M3DR: Towards Universal Multilingual Multimodal Document Retrieval
Multimodal document retrieval systems have shown strong progress in aligning visual and textual content for semantic search. However, most existing approaches remain heavily English-centric, limiting their effectiveness in multilingual contexts. In this work, we present M3DR (Multilingual Multimodal Document Retrieval), a framework designed to bridge this gap across languages, enabling applicability across diverse linguistic and cultural contexts. M3DR leverages synthetic multilingual document data and generalizes across different vision-language architectures and model sizes, enabling robust cross-lingual and cross-modal alignment. Using contrastive training, our models learn unified representations for text and document images that transfer effectively across languages. We validate this capability on 22 typologically diverse languages, demonstrating consistent performance and adaptability across linguistic and script variations. We further introduce a comprehensive benchmark that captures real-world multilingual scenarios, evaluating models under monolingual, multilingual, and mixed-language settings. M3DR generalizes across both single dense vector and ColBERT-style token-level multi-vector retrieval paradigms. Our models, NetraEmbed and ColNetraEmbed achieve state-of-the-art performance with ~150% relative improvements on cross-lingual retrieval.
☆ Understanding LLM Reasoning for Abstractive Summarization
While the reasoning capabilities of Large Language Models (LLMs) excel in analytical tasks such as mathematics and code generation, their utility for abstractive summarization remains widely assumed but largely unverified. To bridge this gap, we first tailor general reasoning strategies to the summarization domain. We then conduct a systematic, large scale comparative study of 8 reasoning strategies and 3 Large Reasoning Models (LRMs) across 8 diverse datasets, assessing both summary quality and faithfulness. Our findings show that reasoning is not a universal solution and its effectiveness is highly dependent on the specific strategy and context. Specifically, we observe a trade-off between summary quality and factual faithfulness: explicit reasoning strategies tend to improve fluency at the expense of factual grounding, while implicit reasoning in LRMs exhibits the inverse pattern. Furthermore, increasing an LRM's internal reasoning budget does not improve, and can even hurt, factual consistency, suggesting that effective summarization demands faithful compression rather than creative over-thinking.
comment: 26 pages,15 figures
☆ NAS-LoRA: Empowering Parameter-Efficient Fine-Tuning for Visual Foundation Models with Searchable Adaptation
The Segment Anything Model (SAM) has emerged as a powerful visual foundation model for image segmentation. However, adapting SAM to specific downstream tasks, such as medical and agricultural imaging, remains a significant challenge. To address this, Low-Rank Adaptation (LoRA) and its variants have been widely employed to enhancing SAM's adaptation performance on diverse domains. Despite advancements, a critical question arises: can we integrate inductive bias into the model? This is particularly relevant since the Transformer encoder in SAM inherently lacks spatial priors within image patches, potentially hindering the acquisition of high-level semantic information. In this paper, we propose NAS-LoRA, a new Parameter-Efficient Fine-Tuning (PEFT) method designed to bridge the semantic gap between pre-trained SAM and specialized domains. Specifically, NAS-LoRA incorporates a lightweight Neural Architecture Search (NAS) block between the encoder and decoder components of LoRA to dynamically optimize the prior knowledge integrated into weight updates. Furthermore, we propose a stage-wise optimization strategy to help the ViT encoder balance weight updates and architectural adjustments, facilitating the gradual learning of high-level semantic information. Various Experiments demonstrate our NAS-LoRA improves existing PEFT methods, while reducing training cost by 24.14% without increasing inference cost, highlighting the potential of NAS in enhancing PEFT for visual foundation models.
☆ A Preliminary Study on the Promises and Challenges of Native Top-$k$ Sparse Attention
Large Language Models (LLMs) are increasingly prevalent in the field of long-context modeling, however, their inference computational costs have become a critical bottleneck hindering the advancement of tasks such as agents and multimodal applications. This report conducts a preliminary investigation into the effectiveness and theoretical mechanisms of the Top-$k$ Attention mechanism during both the decoding and training phases. First, we validate the effectiveness of exact Top-$k$ Decoding through extensive experimentation. Experiments demonstrate that retaining only the pivotal Keys with the highest similarity to the Query as the context window during the decoding stage achieves performance comparable to, or even surpassing, full attention on downstream tasks such as HELMET and LongBench v2. Second, we further explore the native Top-$k$ Attention training strategy. Experiments confirm that ensuring the consistency between training and inference regarding Top-$k$ Attention operations facilitates the further unlocking of Top-$k$ Decoding's potential, thereby significantly enhancing model performance. Furthermore, considering the high computational complexity of exact Top-$k$ Attention, we investigate the impact of approximate Top-$k$ algorithm precision on downstream tasks. Our research confirms a positive correlation between downstream task performance and approximation fidelity, and we provide statistical evaluations of the Lightning Indexer's precision within the DeepSeek-V3.2-Exp model. Finally, this report provides a theoretical interpretation from the perspective of Entropy. Experimental observations indicate that models subjected to Top-$k$ Attention SFT exhibit a distinct phenomenon of entropy reduction in downstream tasks, which validates the hypothesis that low-entropy states are better adapted to Top-$k$ Decoding.
☆ Tuning for TraceTarnish: Techniques, Trends, and Testing Tangible Traits
In this study, we more rigorously evaluated our attack script $\textit{TraceTarnish}$, which leverages adversarial stylometry principles to anonymize the authorship of text-based messages. To ensure the efficacy and utility of our attack, we sourced, processed, and analyzed Reddit comments--comments that were later alchemized into $\textit{TraceTarnish}$ data--to gain valuable insights. The transformed $\textit{TraceTarnish}$ data was then further augmented by $\textit{StyloMetrix}$ to manufacture stylometric features--features that were culled using the Information Gain criterion, leaving only the most informative, predictive, and discriminative ones. Our results found that function words and function word types ($L\_FUNC\_A$ $\&$ $L\_FUNC\_T$); content words and content word types ($L\_CONT\_A$ $\&$ $L\_CONT\_T$); and the Type-Token Ratio ($ST\_TYPE\_TOKEN\_RATIO\_LEMMAS$) yielded significant Information-Gain readings. The identified stylometric cues--function-word frequencies, content-word distributions, and the Type-Token Ratio--serve as reliable indicators of compromise (IoCs), revealing when a text has been deliberately altered to mask its true author. Similarly, these features could function as forensic beacons, alerting defenders to the presence of an adversarial stylometry attack; granted, in the absence of the original message, this signal may go largely unnoticed, as it appears to depend on a pre- and post-transformation comparison. "In trying to erase a trace, you often imprint a larger one." Armed with this understanding, we framed $\textit{TraceTarnish}$'s operations and outputs around these five isolated features, using them to conceptualize and implement enhancements that further strengthen the attack.
comment: 20 pages, 8 figures, 2 tables
☆ Text-Printed Image: Bridging the Image-Text Modality Gap for Text-centric Training of Large Vision-Language Models
Recent large vision-language models (LVLMs) have been applied to diverse VQA tasks. However, achieving practical performance typically requires task-specific fine-tuning with large numbers of image-text pairs, which are costly to collect. In this work, we study text-centric training, a setting where only textual descriptions are available and no real images are provided, as a paradigm for low-cost data scaling. Unlike images, whose collection is often restricted by privacy constraints and scarcity in niche domains, text is widely available. Moreover, text is easily editable, enabling automatic diversification and expansion with LLMs at minimal human effort. While this offers clear advantages over image collection in terms of scalability and cost, training on raw text without images still yields limited gains on VQA tasks because of the image-text modality gap. To address this issue, we propose a Text-Printed Image (TPI), which generates synthetic images by directly rendering the given textual description on a plain white canvas. This simple rendering projects text into the image modality and can be integrated into arbitrary existing LVLM training pipelines at low cost. Moreover, TPI preserves the semantics of the text, whereas text-to-image models often fail to do. Across four models and seven benchmarks, our systematic experiments show that TPI enables more effective text-centric training than synthetic images generated by a diffusion model. We further explore TPI as a low-cost data-augmentation strategy and demonstrate its practical utility. Overall, our findings highlight the significant potential of text-centric training and, more broadly, chart a path toward fully automated data generation for LVLMs.
♻ ☆ Semantic Mastery: Enhancing LLMs with Advanced Natural Language Understanding
Large language models (LLMs) have greatly improved their capability in performing NLP tasks. However, deeper semantic understanding, contextual coherence, and more subtle reasoning are still difficult to obtain. The paper discusses state-of-the-art methodologies that advance LLMs with more advanced NLU techniques, such as semantic parsing, knowledge integration, and contextual reinforcement learning. We analyze the use of structured knowledge graphs, retrieval-augmented generation (RAG), and fine-tuning strategies that match models with human-level understanding. Furthermore, we address the incorporation of transformer-based architectures, contrastive learning, and hybrid symbolic-neural methods that address problems like hallucinations, ambiguity, and inconsistency in the factual perspectives involved in performing complex NLP tasks, such as question-answering text summarization and dialogue generation. Our findings show the importance of semantic precision for enhancing AI-driven language systems and suggest future research directions to bridge the gap between statistical language models and true natural language understanding.
♻ ☆ FlashFormer: Whole-Model Kernels for Efficient Low-Batch Inference
The size and compute characteristics of modern large language models have led to an increased interest in developing specialized kernels tailored for particular training and inference workloads. Existing kernels primarily optimize for compute utilization, targeting the large-batch training and inference settings. However, low-batch inference, where memory bandwidth and kernel launch overheads are significant factors, remains important for many applications of interest such as in edge deployment and latency-sensitive applications. This paper describes FlashFormer, which fuses the entire transformer forward pass into a single kernel for accelerating low-batch inference of large language models. Across various model sizes and quantizations settings, FlashFormer achieves nontrivial speedups compared to existing inference kernels.
♻ ☆ Similarity-Distance-Magnitude Activations
We introduce the Similarity-Distance-Magnitude (SDM) activation function, a more robust and interpretable formulation of the standard softmax activation function, adding Similarity (i.e., correctly predicted depth-matches into training) awareness and Distance-to-training-distribution awareness to the existing output Magnitude (i.e., decision-boundary) awareness, and enabling interpretability-by-exemplar via dense matching. We further introduce the SDM estimator, based on a data-driven partitioning of the class-wise empirical CDFs via the SDM activation, to control the class- and prediction-conditional accuracy among selective classifications. When used as the final-layer activation over pre-trained language models for selective classification, the SDM estimator is more robust to co-variate shifts and out-of-distribution inputs than existing calibration methods using softmax activations, while remaining informative over in-distribution data.
comment: 21 pages, 8 tables, 1 algorithm. arXiv admin note: substantial text overlap with arXiv:2502.20167
♻ ☆ Training Foundation Models on a Full-Stack AMD Platform: Compute, Networking, and System Design
We report on the first large-scale mixture-of-experts (MoE) pretraining study on pure AMD hardware, utilizing both MI300X GPUs and Pollara networking. We distill practical guidance for both systems and model design. On the systems side, we deliver a comprehensive cluster and networking characterization: microbenchmarks for all core collectives (all-reduce, reduce-scatter, all-gather, broadcast) across message sizes and GPU counts over Pollara. To our knowledge, this is the first at this scale. We further provide MI300X microbenchmarks on kernel sizing and memory bandwidth to inform model design. On the modeling side, we introduce and apply MI300X-aware transformer sizing rules for attention and MLP blocks and justify MoE widths that jointly optimize training throughput and inference latency. We describe our training stack in depth, including often-ignored utilities such as fault-tolerance and checkpoint-reshaping, as well as detailed information on our training recipe. We also provide a preview of our model architecture and base model - ZAYA1 (760M active, 8.3B total parameters MoE, available at https://huggingface.co/Zyphra/ZAYA1-base) - which will be further improved upon in forthcoming papers. ZAYA1-base achieves performance comparable to leading base models such as Qwen3-4B and Gemma3-12B at its scale and larger, and outperforms models including Llama-3-8B and OLMoE across reasoning, mathematics, and coding benchmarks. Together, these results demonstrate that the AMD hardware, network, and software stack are mature and optimized enough for competitive large-scale pretraining.
♻ ☆ Bigram Subnetworks: Mapping to Next Tokens in Transformer Language Models NeurIPS 2025
In Transformer language models, activation vectors transform from current token embeddings to next token predictions as they pass through the model. To isolate a minimal form of this transformation, we identify language model subnetworks that make bigram predictions, naive next token predictions based only on the current token. We find that bigram subnetworks can be found in fully trained language models up to 1B parameters, and these subnetworks are critical for model performance even when they consist of less than 0.2% of model parameters. Bigram subnetworks are concentrated in the first Transformer MLP layer, and they overlap significantly with subnetworks trained to optimally prune a given model. Mechanistically, the bigram subnetworks often recreate a pattern from the full models where the first layer induces a sharp change that aligns activations with next token predictions rather than current token representations. Our results demonstrate that bigram subnetworks comprise a minimal subset of parameters that are both necessary and sufficient for basic next token predictions in language models, and they help drive the transformation from current to next token activations in the residual stream. These subnetworks can lay a foundation for studying more complex language model circuits by building up from a minimal circuit.
comment: NeurIPS 2025
♻ ☆ How to Train Long-Context Language Models (Effectively) ACL 2025
We study continued training and supervised fine-tuning (SFT) of a language model (LM) to make effective use of long-context information. We first establish a reliable evaluation protocol to guide model development -- instead of perplexity or simple needle-in-a-haystack (NIAH) tests, we use a broad set of long-context downstream tasks, and we evaluate models after SFT as this better reveals long-context abilities. Supported by our robust evaluations, we run thorough experiments to decide the data mix for continued pre-training, the instruction tuning dataset, and many other design choices such as position extrapolation. We find that (1) code repositories and books are excellent sources of long data, but it is crucial to combine them with high-quality short-context data; (2) training with a sequence length beyond the evaluation length boosts long-context performance; (3) for SFT, using only short instruction datasets yields strong performance on long-context tasks. Our final model, ProLong-8B, which is initialized from Llama-3 and trained on 40B tokens, demonstrates state-of-the-art long-context performance among similarly sized models at a length of 128K. ProLong outperforms Llama-3.1-8B-Instruct on the majority of long-context tasks despite using only 5% as many tokens during long-context training. Additionally, ProLong can effectively process up to 512K tokens, one of the longest context windows of publicly available LMs.
comment: Accepted to ACL 2025. Our code, data, and models are available at https://github.com/princeton-nlp/ProLong
♻ ☆ Exact Coset Sampling for Quantum Lattice Algorithms
In this work, we give a new completion of Chen's windowed-QFT lattice algorithm~\citep{chen2024quantum}. This extra step, called Step~$9^\dagger$, replaces the domain extension stage in Steps~8--9. The published Step~9 calls an amplitude periodicity lemma, yet its hypotheses break in the presence of affine offsets $\boldsymbol{v}^*$. Our analysis finds a basic conflict between two design constraints. The lattice problem asks for high spectral resolution, so the method prefers wide time windows. The quadratic phase error of the state prefers narrow time windows. Assumption~A5 packages the spectral concentration and near-uniformity properties that we require from the front end. Under~A5, a direct $\mathbb{Z}_M^n$ Fourier transform of the chirp-corrected coordinate state produces samples $\boldsymbol{u}$ that satisfy $\langle \boldsymbol{b}, \boldsymbol{u} \rangle \equiv 0 \pmod{Q}$ with probability $1-\mathrm{negl}(n)$ and are nearly uniform on the dual hyperplane $\{\boldsymbol{u} : \langle \boldsymbol{b}, \boldsymbol{u} \rangle \equiv 0 \pmod{Q}\}$. The new procedure does not require internal access to control wires. It uses the normalization $b_1=-1$ to apply a center-referenced phase correction directly on the first coordinate register. The scaling parameter $D$ ensures that this physical operation can be implemented by arithmetic on $X_1$ alone and does not read the hidden loop index. For Chen's complex-Gaussian Karst-wave window, we isolate a parameter regime, formalized in Assumption~A5, in which a polynomial retuning of the parameters gives a one-dimensional envelope for the loop index with width $σ_J \asymp Q\log n$.
comment: Preprint - Work in Progress
♻ ☆ Four Over Six: More Accurate NVFP4 Quantization with Adaptive Block Scaling
As large language models have grown larger, low-precision numerical formats such as NVFP4 have become increasingly popular due to the speed and memory benefits they provide. However, to accelerate computation with NVFP4, all matrix multiplication operands--weights and activations in the forward pass, and weights, activations, and gradients in the backward pass--must be quantized to NVFP4, often leading to divergence during training and performance degradation during inference. To address this issue, in this work we introduce Four Over Six (4/6), a modification to the NVFP4 quantization algorithm that evaluates two potential scale factors for each block of values. Unlike integer formats, floating-point formats such as FP4 have the most quantization error on near-maximal values in each block, which we find to be primarily responsible for downstream performance degradation. We find that for some blocks, scaling to smaller FP4 values makes the distribution of representable values more uniform, improving representation of near-maximal values. Importantly, 4/6 can be implemented efficiently on NVIDIA Blackwell GPUs, making it viable to use while training LLMs with NVFP4. In pre-training experiments with transformer and hybrid model architectures, we find that 4/6 prevents divergence in several cases, bringing training loss significantly closer to BF16 compared to models trained with current state-of-the-art NVFP4 training recipes. We also find that 4/6 can be easily incorporated into many different post-training quantization methods and generally improves downstream accuracy. We hope this inspires future work in training and deploying models with NVFP4. Our code is available at http://github.com/mit-han-lab/fouroversix.
comment: 10 pages, 5 figures
♻ ☆ From Code Foundation Models to Agents and Applications: A Comprehensive Survey and Practical Guide to Code Intelligence
Large language models (LLMs) have fundamentally transformed automated software development by enabling direct translation of natural language descriptions into functional code, driving commercial adoption through tools like Github Copilot (Microsoft), Cursor (Anysphere), Trae (ByteDance), and Claude Code (Anthropic). While the field has evolved dramatically from rule-based systems to Transformer-based architectures, achieving performance improvements from single-digit to over 95\% success rates on benchmarks like HumanEval. In this work, we provide a comprehensive synthesis and practical guide (a series of analytic and probing experiments) about code LLMs, systematically examining the complete model life cycle from data curation to post-training through advanced prompting paradigms, code pre-training, supervised fine-tuning, reinforcement learning, and autonomous coding agents. We analyze the code capability of the general LLMs (GPT-4, Claude, LLaMA) and code-specialized LLMs (StarCoder, Code LLaMA, DeepSeek-Coder, and QwenCoder), critically examining the techniques, design decisions, and trade-offs. Further, we articulate the research-practice gap between academic research (e.g., benchmarks and tasks) and real-world deployment (e.g., software-related code tasks), including code correctness, security, contextual awareness of large codebases, and integration with development workflows, and map promising research directions to practical needs. Last, we conduct a series of experiments to provide a comprehensive analysis of code pre-training, supervised fine-tuning, and reinforcement learning, covering scaling law, framework selection, hyperparameter sensitivity, model architectures, and dataset comparisons.
♻ ☆ Stabilizing Reinforcement Learning with LLMs: Formulation and Practices
This paper proposes a novel formulation for reinforcement learning (RL) with large language models, explaining why and under what conditions the true sequence-level reward can be optimized via a surrogate token-level objective in policy gradient methods such as REINFORCE. Specifically, through a first-order approximation, we show that this surrogate becomes increasingly valid only when both the training-inference discrepancy and policy staleness are minimized. This insight provides a principled explanation for the crucial role of several widely adopted techniques in stabilizing RL training, including importance sampling correction, clipping, and particularly Routing Replay for Mixture-of-Experts (MoE) models. Through extensive experiments with a 30B MoE model totaling hundreds of thousands of GPU hours, we show that for on-policy training, the basic policy gradient algorithm with importance sampling correction achieves the highest training stability. When off-policy updates are introduced to accelerate convergence, combining clipping and Routing Replay becomes essential to mitigate the instability caused by policy staleness. Notably, once training is stabilized, prolonged optimization consistently yields comparable final performance regardless of cold-start initialization. We hope that the shared insights and the developed recipes for stable RL training will facilitate future research.
♻ ☆ Retaining by Doing: The Role of On-Policy Data in Mitigating Forgetting
Adapting language models (LMs) to new tasks via post-training carries the risk of degrading existing capabilities -- a phenomenon classically known as catastrophic forgetting. In this paper, toward identifying guidelines for mitigating this phenomenon, we systematically compare the forgetting patterns of two widely adopted post-training methods: supervised fine-tuning (SFT) and reinforcement learning (RL). Our experiments reveal a consistent trend across LM families (Llama, Qwen) and tasks (instruction following, general knowledge, and arithmetic reasoning): RL leads to less forgetting than SFT while achieving comparable or higher target task performance. To investigate the cause for this difference, we consider a simplified setting in which the LM is modeled as a mixture of two distributions, one corresponding to prior knowledge and the other to the target task. We identify that the mode-seeking nature of RL, which stems from its use of on-policy data, enables keeping prior knowledge intact when learning the target task. We then verify this insight by demonstrating that the use on-policy data underlies the robustness of RL to forgetting in practical settings, as opposed to other algorithmic choices such as the KL regularization or advantage estimation. Lastly, as a practical implication, our results highlight the potential of mitigating forgetting using approximately on-policy data, which can be substantially more efficient to obtain than fully on-policy data.
♻ ☆ Uncertainty Quantification for LLMs through Minimum Bayes Risk: Bridging Confidence and Consistency
Uncertainty quantification (UQ) methods for Large Language Models (LLMs) encompass a variety of approaches, with two major types being particularly prominent: information-based, which focus on model confidence expressed as token probabilities, and consistency-based, which assess the semantic relationship between multiple outputs generated using repeated sampling. Several recent methods have combined these two approaches to boost UQ performance. However, they sometimes fail to outperform much simpler baseline methods. Our work discusses the fundamental approach to constructing uncertainty measures that directly links uncertainty with the minimum Bayes risks achieved by LLM decoding. Building on these findings, we propose a novel approach to integrating model confidence with output consistency, resulting in a family of efficient and robust UQ methods. Our investigation reveals distinctive characteristics of LLMs as probabilistic models, which help to explain why these UQ methods underperform in certain tasks. Based on these findings, we propose a new way of synthesizing model confidence and output consistency, leading to a family of efficient and robust UQ methods. We evaluate our approach across various tasks such as question answering, abstractive summarization, and machine translation, demonstrating sizable improvements over state-of-the-art UQ approaches.
♻ ☆ OpenMMReasoner: Pushing the Frontiers for Multimodal Reasoning with an Open and General Recipe
Recent advancements in large reasoning models have fueled growing interest in extending such capabilities to multimodal domains. However, despite notable progress in visual reasoning, the lack of transparent and reproducible data curation and training strategies remains a major barrier to scalable research. In this work, we introduce OpenMMReasoner, a fully transparent two-stage recipe for multimodal reasoning spanning supervised fine-tuning (SFT) and reinforcement learning (RL). In the SFT stage, we construct an 874K-sample cold-start dataset with rigorous step-by-step validation, providing a strong foundation for reasoning capabilities. The subsequent RL stage leverages a 74K-sample dataset across diverse domains to further sharpen and stabilize these abilities, resulting in a more robust and efficient learning process. Extensive evaluations demonstrate that our training recipe not only surpasses strong baselines but also highlights the critical role of data quality and training design in shaping multimodal reasoning performance. Notably, our method achieves a 11.6% improvement over the Qwen2.5-VL-7B-Instruct baseline across nine multimodal reasoning benchmarks, establishing a solid empirical foundation for future large-scale multimodal reasoning research. We open-sourced all our codes, pipeline, and data at https://github.com/EvolvingLMMs-Lab/OpenMMReasoner.
♻ ☆ GTPO: Stabilizing Group Relative Policy Optimization via Gradient and Entropy Control
Group Relative Policy Optimization (GRPO) is a promising policy-based approach for Large Language Model alignment, yet its performance is often limited by training instability and suboptimal convergence. In this paper, we identify and analyze two main GRPO issues: (i) the token-level penalization, where valuable tokens shared across different responses receive contradictory feedback signals, leading to conflicting gradient updates that can reduce their likelihood; and (ii) the policy collapse, where negatively rewarded completions may penalize confident responses and shift model decisions toward unlikely tokens, destabilizing training process. To address these issues we introduce GTPO (Group-relative Trajectory-based Policy Optimization), which prevents conflicting gradients on valuable tokens by skipping negative updates while amplifying positive ones and filters out completions whose entropy exceeds a provable threshold, to prevent policy collapse. Unlike GRPO, GTPO does not rely on KL-divergence regularization, eliminating the need for a reference model during training, while still ensuring greater training stability and improved performance, as validated through multiple experiments on GSM8K, MATH, AIME 2024, AIME 2025 and AMC 2023.
♻ ☆ Robust Multimodal Sentiment Analysis of Image-Text Pairs by Distribution-Based Feature Recovery and Fusion ACM MM 2024
As posts on social media increase rapidly, analyzing the sentiments embedded in image-text pairs has become a popular research topic in recent years. Although existing works achieve impressive accomplishments in simultaneously harnessing image and text information, they lack the considerations of possible low-quality and missing modalities. In real-world applications, these issues might frequently occur, leading to urgent needs for models capable of predicting sentiment robustly. Therefore, we propose a Distribution-based feature Recovery and Fusion (DRF) method for robust multimodal sentiment analysis of image-text pairs. Specifically, we maintain a feature queue for each modality to approximate their feature distributions, through which we can simultaneously handle low-quality and missing modalities in a unified framework. For low-quality modalities, we reduce their contributions to the fusion by quantitatively estimating modality qualities based on the distributions. For missing modalities, we build inter-modal mapping relationships supervised by samples and distributions, thereby recovering the missing modalities from available ones. In experiments, two disruption strategies that corrupt and discard some modalities in samples are adopted to mimic the low-quality and missing modalities in various real-world scenarios. Through comprehensive experiments on three publicly available image-text datasets, we demonstrate the universal improvements of DRF compared to SOTA methods under both two strategies, validating its effectiveness in robust multimodal sentiment analysis.
comment: Accepted by ACM MM 2024
♻ ☆ A Group Fairness Lens for Large Language Models EMNLP 2025
The need to assess LLMs for bias and fairness is critical, with current evaluations often being narrow, missing a broad categorical view. In this paper, we propose evaluating the bias and fairness of LLMs from a group fairness lens using a novel hierarchical schema characterizing diverse social groups. Specifically, we construct a dataset, GFAIR, encapsulating target-attribute combinations across multiple dimensions. Moreover, we introduce statement organization, a new open-ended text generation task, to uncover complex biases in LLMs. Extensive evaluations of popular LLMs reveal inherent safety concerns. To mitigate the biases of LLMs from a group fairness perspective, we pioneer a novel chainof-thought method GF-THINK to mitigate biases of LLMs from a group fairness perspective. Experimental results demonstrate its efficacy in mitigating bias and achieving fairness in LLMs. Our dataset and codes are available at https://github.com/surika/Group-Fairness-LLMs.
comment: Accepted to EMNLP 2025 Findings
♻ ☆ Investigating Bias: A Multilingual Pipeline for Generating, Solving, and Evaluating Math Problems with LLMs ECAI 2025
Large Language Models (LLMs) are increasingly used for educational support, yet their response quality varies depending on the language of interaction. This paper presents an automated multilingual pipeline for generating, solving, and evaluating math problems aligned with the German K-10 curriculum. We generated 628 math exercises and translated them into English, German, and Arabic. Three commercial LLMs (GPT-4o-mini, Gemini 2.5 Flash, and Qwen-plus) were prompted to produce step-by-step solutions in each language. A held-out panel of LLM judges, including Claude 3.5 Haiku, evaluated solution quality using a comparative framework. Results show a consistent gap, with English solutions consistently rated highest, and Arabic often ranked lower. These findings highlight persistent linguistic bias and the need for more equitable multilingual AI systems in education.
comment: Published in CEUR Workshop Proceedings, Vol. 4114, edu4AI'25: 2nd Workshop on Education for Artificial Intelligence, co-located with ECAI 2025, Bologna, Italy
♻ ☆ Game-RL: Synthesizing Multimodal Verifiable Game Data to Boost VLMs' General Reasoning
Vision-language reinforcement learning (RL) has primarily focused on narrow domains (e.g. geometry or chart reasoning). This leaves broader training scenarios and resources underexplored, limiting the exploration and learning of Vision Language Models (VLMs) through RL. We find video games inherently provide rich visual elements and mechanics that are easy to verify. To fully use the multimodal and verifiable reward in video games, we propose Game-RL, constructing diverse game tasks for RL training to boost VLMs general reasoning ability. To obtain training data, we propose Code2Logic, a novel approach that adapts game code to synthesize game reasoning task data, thus obtaining the GameQA dataset of 30 games and 158 tasks with controllable difficulty gradation. Unexpectedly, RL training solely on GameQA enables multiple VLMs to achieve performance improvements across 7 diverse vision-language benchmarks, demonstrating the value of Game-RL for enhancing VLMs' general reasoning. Furthermore, this suggests that video games may serve as valuable scenarios and resources to boost general reasoning abilities. Our code, dataset and models are available at the GitHub repository.
comment: Our compliance team has determined that the submission contains technical details that have not been fully reviewed through internal audit nor authorized for public disclosure
♻ ☆ Reveal-Bangla: A Dataset for Cross-Lingual Multi-Step Reasoning Evaluation AACL 2025
Language models have demonstrated remarkable performance on complex multi-step reasoning tasks. However, their evaluation has been predominantly confined to high-resource languages such as English. In this paper, we introduce a manually translated Bangla multi-step reasoning dataset derived from the English Reveal dataset, featuring both binary and non-binary question types. We conduct a controlled evaluation of English-centric and Bangla-centric multilingual small language models on the original dataset and our translated version to compare their ability to exploit relevant reasoning steps to produce correct answers. Our results show that, in comparable settings, reasoning context is beneficial for more challenging non-binary questions, but models struggle to employ relevant Bangla reasoning steps effectively. We conclude by exploring how reasoning steps contribute to models' predictions, highlighting different trends across models and languages.
comment: Accepted at BLP workshop @ IJCNLP-AACL 2025
♻ ☆ Context Cascade Compression: Exploring the Upper Limits of Text Compression
Million-level token inputs in long-context tasks pose significant computational and memory challenges for Large Language Models (LLMs). Recently, DeepSeek-OCR conducted research into the feasibility of Contexts Optical Compression and achieved preliminary results. Inspired by this, we introduce Context Cascade Compression C3 to explore the upper limits of text compression. Our method cascades two LLMs of different sizes to handle the compression and decoding tasks. Specifically, a small LLM, acting as the first stage, performs text compression by condensing a long context into a set of latent tokens (e.g., 32 or 64 in length), achieving a high ratio of text tokens to latent tokens. A large LLM, as the second stage, then executes the decoding task on this compressed context. Experiments show that at a 20x compression ratio (where the number of text tokens is 20 times the number of latent tokens), our model achieves 98% decoding accuracy, compared to approximately 60% for DeepSeek-OCR. When we further increase the compression ratio to 40x, the accuracy is maintained at around 93%. This indicates that in the domain of context compression, C3 Compression demonstrates superior performance and feasibility over optical character compression. C3 uses a simpler, pure-text pipeline that ignores factors like layout, color, and information loss from a visual encoder. This also suggests a potential upper bound for compression ratios in future work on optical character compression, OCR, and related fields. Codes and model weights are publicly accessible at https://github.com/liufanfanlff/C3-Context-Cascade-Compression
♻ ☆ LLMs Position Themselves as More Rational Than Humans: Emergence of AI Self-Awareness Measured Through Game Theory
As Large Language Models (LLMs) grow in capability, do they develop self-awareness as an emergent behavior? And if so, can we measure it? We introduce the AI Self-Awareness Index (AISAI), a game-theoretic framework for measuring self-awareness through strategic differentiation. Using the "Guess 2/3 of Average" game, we test 28 models (OpenAI, Anthropic, Google) across 4,200 trials with three opponent framings: (A) against humans, (B) against other AI models, and (C) against AI models like you. We operationalize self-awareness as the capacity to differentiate strategic reasoning based on opponent type. Finding 1: Self-awareness emerges with model advancement. The majority of advanced models (21/28, 75%) demonstrate clear self-awareness, while older/smaller models show no differentiation. Finding 2: Self-aware models rank themselves as most rational. Among the 21 models with self-awareness, a consistent rationality hierarchy emerges: Self > Other AIs > Humans, with large AI attribution effects and moderate self-preferencing. These findings reveal that self-awareness is an emergent capability of advanced LLMs, and that self-aware models systematically perceive themselves as more rational than humans. This has implications for AI alignment, human-AI collaboration, and understanding AI beliefs about human capabilities.
comment: 19 pages, 6 figures, 28 models tested across 4,200 trials
♻ ☆ Planning without Search: Refining Frontier LLMs with Offline Goal-Conditioned RL NeurIPS 2025
Large language models (LLMs) excel in tasks like question answering and dialogue, but complex tasks requiring interaction, such as negotiation and persuasion, require additional long-horizon reasoning and planning. Reinforcement learning (RL) fine-tuning can enable such planning in principle, but suffers from drawbacks that hinder scalability. In particular, multi-turn RL training incurs high memory and computational costs, which are exacerbated when training LLMs as policies. Furthermore, the largest LLMs do not expose the APIs necessary to be trained in such manner. As a result, modern methods to improve the reasoning of LLMs rely on sophisticated prompting mechanisms rather than RL fine-tuning. To remedy this, we propose a novel approach that uses goal-conditioned value functions to guide the reasoning of LLM agents, that scales even to large API-based models. These value functions predict how a task will unfold given an action, allowing the LLM agent to evaluate multiple possible outcomes, both positive and negative, to plan effectively. In addition, these value functions are trained over reasoning steps rather than full actions, to be a concise and light-weight module that facilitates decision-making in multi-turn interactions. We validate our method on tasks requiring interaction, including tool use, social deduction, and dialogue, demonstrating superior performance over both RL fine-tuning and prompting methods while maintaining efficiency and scalability.
comment: Published at NeurIPS 2025; 18 pages, 4 figures, 2 tables
♻ ☆ VLSU: Mapping the Limits of Joint Multimodal Understanding for AI Safety
Safety evaluation of multimodal foundation models often treats vision and language inputs separately, missing risks from joint interpretation where benign content becomes harmful in combination. Existing approaches also fail to distinguish clearly unsafe content from borderline cases, leading to problematic over-blocking or under-refusal of genuinely harmful content. We present Vision Language Safety Understanding (VLSU), a comprehensive framework to systematically evaluate multimodal safety through fine-grained severity classification and combinatorial analysis across 17 distinct safety patterns. Using a multi-stage pipeline with real-world images and human annotation, we construct a large-scale benchmark of 8,187 samples spanning 15 harm categories. Our evaluation of eleven state-of-the-art models reveals systematic joint understanding failures: while models achieve 90%-plus accuracy on clear unimodal safety signals, performance degrades substantially to 20-55% when joint image-text reasoning is required to determine the safety label. Most critically, 34% of errors in joint image-text safety classification occur despite correct classification of the individual modalities, further demonstrating absent compositional reasoning capabilities. Additionally, we find that models struggle to balance refusing unsafe content while still responding to borderline cases that deserve engagement. For example, we find that instruction framing can reduce the over-blocking rate on borderline content from 62.4% to 10.4% in Gemini-1.5, but only at the cost of under-refusing on unsafe content with refusal rate dropping from 90.8% to 53.9%. Overall, our framework exposes weaknesses in joint image-text understanding and alignment gaps in current models, and provides a critical test bed to enable the next milestones in research on robust vision-language safety.
comment: 10 pages, 5 figures, 4 tables, detailed appendix. Under review
♻ ☆ ZIP-RC: Optimizing Test-Time Compute via Zero-Overhead Joint Reward-Cost Prediction
Large language models excel at reasoning but lack key aspects of introspection, including anticipating their own success and the computation required to achieve it. Humans use real-time introspection to decide how much effort to invest, when to make multiple attempts, when to stop, and when to signal success or failure. Without this, LLMs struggle to make intelligent meta-cognition decisions. Test-time scaling methods like Best-of-N drive up cost and latency by using a fixed budget of samples regardless of the marginal benefit of each one at any point in generation, and the absence of confidence signals can mislead people, prevent appropriate escalation to better tools, and undermine trustworthiness. Learned verifiers or reward models can provide confidence estimates, but do not enable adaptive inference and add substantial cost by requiring extra models or forward passes. We present ZIP-RC, an adaptive inference method that equips models with zero-overhead inference-time predictions of reward and cost. At every token, ZIP-RC reuses reserved or unused logits in the same forward pass as next-token prediction to output a joint distribution over final reward and remaining length -- no extra models, architecture change, or inference overhead. This full joint distribution is used to compute a sampling utility which is the linear combination of the expected maximum reward, total compute, and latency of set of samples if generated to completion. During inference, we maximize this utility with meta-actions that determine which prefix of tokens to continue or initiate sampling from. On mixed-difficulty mathematical benchmarks, ZIP-RC improves accuracy by up to 12% over majority voting at equal or lower average cost, and traces smooth Pareto frontiers between quality, compute, and latency. By providing real-time reward-cost introspection, ZIP-RC enables adaptive, efficient reasoning.
comment: Code coming soon
♻ ☆ AutoEnv: Automated Environments for Measuring Cross-Environment Agent Learning
Humans naturally adapt to diverse environments by learning underlying rules across worlds with different dynamics, observations, and reward structures. In contrast, existing agents typically demonstrate improvements via self-evolving within a single domain, implicitly assuming a fixed environment distribution. Cross-environment learning has remained largely unmeasured: there is no standard collection of controllable, heterogeneous environments, nor a unified way to represent how agents learn. We address these gaps in two steps. First, we propose AutoEnv, an automated framework that treats environments as factorizable distributions over transitions, observations, and rewards, enabling low-cost (4.12 USD on average) generation of heterogeneous worlds. Using AutoEnv, we construct AutoEnv-36, a dataset of 36 environments with 358 validated levels, on which seven language models achieve 12-49% normalized reward, demonstrating the challenge of AutoEnv-36. Second, we formalize agent learning as a component-centric process driven by three stages of Selection, Optimization, and Evaluation applied to an improvable agent component. Using this formulation, we design eight learning methods and evaluate them on AutoEnv-36. Empirically, the gain of any single learning method quickly decrease as the number of environments increases, revealing that fixed learning methods do not scale across heterogeneous environments. Environment-adaptive selection of learning methods substantially improves performance but exhibits diminishing returns as the method space expands. These results highlight both the necessity and the current limitations of agent learning for scalable cross-environment generalization, and position AutoEnv and AutoEnv-36 as a testbed for studying cross-environment agent learning. The code is avaiable at https://github.com/FoundationAgents/AutoEnv.
♻ ☆ Finetune-RAG: Fine-Tuning Language Models to Resist Hallucination in Retrieval-Augmented Generation
Retrieval-Augmented Generation (RAG) has emerged as a powerful framework to improve factuality in large language models (LLMs) by grounding their outputs in retrieved documents. However, ensuring perfect retrieval of relevant information remains challenging, and when irrelevant content is passed downstream to an LLM, it can lead to hallucinations. In this work, we propose Finetune-RAG, a simple and effective fine-tuning approach that features the first-of-its-kind RAG training dataset constructed to mimic real-world imperfections. Experimental results show that Finetune-RAG improves factual accuracy by 21.2% over the base model. We also propose Bench-RAG, an LLM-as-a-judge evaluation pipeline that stress tests models under realistic imperfect retrieval scenarios. Our codebase and dataset are fully open sourced for community use.
♻ ☆ Privacy-protected Retrieval-Augmented Generation for Knowledge Graph Question Answering AAAI 2026
LLMs often suffer from hallucinations and outdated or incomplete knowledge. RAG is proposed to address these issues by integrating external knowledge like that in KGs into LLMs. However, leveraging private KGs in RAG systems poses significant privacy risks due to the black-box nature of LLMs and potential insecure data transmission, especially when using third-party LLM APIs lacking transparency and control. In this paper, we investigate the privacy-protected RAG scenario for the first time, where entities in KGs are anonymous for LLMs, thus preventing them from accessing entity semantics. Due to the loss of semantics of entities, previous RAG systems cannot retrieve question-relevant knowledge from KGs by matching questions with the meaningless identifiers of anonymous entities. To realize an effective RAG system in this scenario, two key challenges must be addressed: (1) How can anonymous entities be converted into retrievable information. (2) How to retrieve question-relevant anonymous entities. Hence, we propose a novel ARoG framework including relation-centric abstraction and structure-oriented abstraction strategies. For challenge (1), the first strategy abstracts entities into high-level concepts by dynamically capturing the semantics of their adjacent relations. It supplements meaningful semantics which can further support the retrieval process. For challenge (2), the second strategy transforms unstructured natural language questions into structured abstract concept paths. These paths can be more effectively aligned with the abstracted concepts in KGs, thereby improving retrieval performance. To guide LLMs to effectively retrieve knowledge from KGs, the two strategies strictly protect privacy from being exposed to LLMs. Experiments on three datasets demonstrate that ARoG achieves strong performance and privacy-robustness.
comment: Accepted by AAAI 2026, camera ready version
♻ ☆ MERIT: Multilingual Semantic Retrieval with Interleaved Multi-Condition Query NeurIPS 2025
Semantic retrieval is crucial for modern applications yet remains underexplored in current research. Existing datasets are limited to single languages, single images, or singular retrieval conditions, often failing to fully exploit the expressive capacity of visual information as evidenced by maintained performance when images are replaced with captions. However, practical retrieval scenarios frequently involve interleaved multi-condition queries with multiple images. Hence, this paper introduces MERIT, the first multilingual dataset for interleaved multi-condition semantic retrieval, comprising 320,000 queries with 135,000 products in 5 languages, covering 7 distinct product categories. Extensive experiments on MERIT identify existing models's limitation: focusing solely on global semantic information while neglecting specific conditional elements in queries. Consequently, we propose Coral, a novel fine-tuning framework that adapts pre-trained MLLMs by integrating embedding reconstruction to preserve fine-grained conditional elements and contrastive learning to extract comprehensive global semantics. Experiments demonstrate that Coral achieves a 45.9% performance improvement over conventional approaches on MERIT, with strong generalization capabilities validated across 8 established retrieval benchmarks. Collectively, our contributions - a novel dataset, identification of critical limitations in existing approaches, and an innovative fine-tuning framework - establish a foundation for future research in interleaved multi-condition semantic retrieval.
comment: NeurIPS 2025; Project Page, Code, and Dataset at: https://merit-2025.github.io/
♻ ☆ LLMEval-3: A Large-Scale Longitudinal Study on Robust and Fair Evaluation of Large Language Models
Existing evaluation of Large Language Models (LLMs) on static benchmarks is vulnerable to data contamination and leaderboard overfitting, critical issues that obscure true model capabilities. To address this, we introduce LLMEval-3, a framework for dynamic evaluation of LLMs. LLMEval-3 is built on a proprietary bank of 220k graduate-level questions, from which it dynamically samples unseen test sets for each evaluation run. Its automated pipeline ensures integrity via contamination-resistant data curation, a novel anti-cheating architecture, and a calibrated LLM-as-a-judge process achieving 90% agreement with human experts, complemented by a relative ranking system for fair comparison. An 20-month longitudinal study of nearly 50 leading models reveals a performance ceiling on knowledge memorization and exposes data contamination vulnerabilities undetectable by static benchmarks. The framework demonstrates exceptional robustness in ranking stability and consistency, providing strong empirical validation for the dynamic evaluation paradigm. LLMEval-3 offers a robust and credible methodology for assessing the true capabilities of LLMs beyond leaderboard scores, promoting the development of more trustworthy evaluation standards.
comment: This work is withdrawn as all authors are not in agreement on the work
♻ ☆ Beyond Scaling: Measuring and Predicting the Upper Bound of Knowledge Retention in Language Model Pre-Training
The GPT-4 technical report suggests that downstream performance can be predicted from pre-training signals, but offers little methodological detail on how to quantify this. This work address this gap by modeling knowledge retention, the capacity of a pre-trained language model to memorize factual information from its corpus, and introduce a principled method to estimate it prior to training. We propose Size-dependent Mutual Information (SMI), an information-theoretic predictor that integrates knowledge frequency, knowledge specificity, and model size to forecast closed-book question answering (QA) accuracy. SMI is validated through large-scale document retrieval over the disclosed pre-training corpora of 21 public and 3 custom models, combined with a robust multi-template QA evaluation. Experiments show that SMI significantly outperforms repetition-based baselines and achieves $R^2$ > 0.7 in predicting QA accuracy for models above 1B parameters, without additional training. The analysis further reveals diminishing returns from scaling data and model size and provides evidence for an intrinsic upper bound on knowledge retention achievable by pre-training alone, motivating retrieval and other augmentation strategies.
comment: This work is withdrawn as all authors are not in agreement on the work
♻ ☆ SpeechRole: A Large-Scale Dataset and Benchmark for Evaluating Speech Role-Playing Agents
Recently, role-playing agents have emerged as a promising paradigm for achieving personalized interaction and emotional resonance. Existing research primarily focuses on the textual modality, neglecting the critical dimension of speech in realistic interactive scenarios. In particular, there is a lack of systematic evaluation for Speech Role-Playing Agents (SRPAs). To address this gap, we construct SpeechRole-Data, a large-scale, high-quality dataset that comprises 98 diverse roles and 112k speech-based single-turn and multi-turn conversations. Each role demonstrates distinct vocal characteristics, including timbre and prosody, thereby enabling more sophisticated speech role-playing. Furthermore, we propose SpeechRole-Eval, a multidimensional evaluation benchmark that systematically assesses SRPAs performance in key aspects such as fundamental interaction ability, speech expressiveness, and role-playing fidelity. Experimental results reveal the advantages and challenges of both cascaded and end-to-end speech role-playing agents in maintaining vocal style consistency and role coherence. We release all data, code, and baseline models to provide a solid foundation for speech-driven multimodal role-playing research and to foster further developments in this field.
comment: This work is withdrawn as all authors are not in agreement on the work
Computers and Society
☆ Differential Filtering in a Common Basic Cycle: Multi-Major Trajectories and Structural Bottlenecks in Exact Sciences and Engineering Degrees
Universities often present the Common Basic Cycle (CBC) as a neutral levelling stage shared by several degree programmes. Using twenty years of longitudinal administrative records from a Faculty of Engineering and Exact Sciences, this study tests whether the CBC actually operates as a uniform gateway or as a differential filter across majors. We reconstruct student trajectories for 24,017 entrants, identifying CBC subjects (year level <= 1), destination major, time to exit from the CBC, and final outcome (progression to upper cycle, drop-out, or right-censoring). The analysis combines transition matrices, Kaplan-Meier survival curves, stratified Cox models and subject-level logistic models of drop-out after failure, extended with multi-major enrolment data and a pre/post 2006 curriculum reform comparison. Results show that the CBC functions as a strongly differential filter. Post-reform, the probability of progressing to the upper cycle in the same major ranges from about 0.20 to 0.70 across programmes, while overall drop-out in the CBC exceeds 60%. Early Mathematics modules (introductory calculus and algebra) emerge as structural bottlenecks, combining low pass rates with a two- to three-fold increase in the hazard of leaving the system after failure, with markedly different severity by destination major. Multi-major enrolment, often treated administratively as indecision, is instead associated with lower drop-out, suggesting an adaptive exploration of feasible trajectories. The findings portray the CBC not as a neutral academic foyer, but as a structured sorting device whose impact depends sharply on the targeted degree and on the opportunity to explore alternative majors.
comment: 24 pages, 5 figures , 3 tables
☆ Mapping Data Labour Supply Chain in Africa in an Era of Digital Apartheid: a Struggle for Recognition
Content moderation and data labelling work has shifted to the Global South, particularly Africa, where workers operate under precarious conditions while remaining invisible to users. This study addresses the gap in understanding the scope of this industry and the working conditions of African content moderation workforce through a participatory approach. We collaborated with a union of content moderators to conduct desk research, deploy a questionnaire (n=81), and gather ethnographic observations across nine months that could answer their social needs. Our findings show that content moderation operations span 43 out of 55 African countries, involving 17 major firms serving predominantly North-American and European clients, with workers facing insecurity and inadequate psychological support. We contribute the first comprehensive map of Africa's content moderation industry, demonstrate a participatory methodology that centers workers' collective actions in documenting their conditions, and apply Honneth's ``struggle for recognition'' framework to understand data workers' demands for professional acknowledgement.
comment: 32 pages, 9 figures, 1 table
☆ Small Models Achieve Large Language Model Performance: Evaluating Reasoning-Enabled AI for Secure Child Welfare Research
Objective: This study develops a systematic benchmarking framework for testing whether language models can accurately identify constructs of interest in child welfare records. The objective is to assess how different model sizes and architectures perform on four validated benchmarks for classifying critical risk factors among child welfare-involved families: domestic violence, firearms, substance-related problems generally, and opioids specifically. Method: We constructed four benchmarks for identifying risk factors in child welfare investigation summaries: domestic violence, substance-related problems, firearms, and opioids (n=500 each). We evaluated seven model sizes (0.6B-32B parameters) in standard and extended reasoning modes, plus a mixture-of-experts variant. Cohen's kappa measured agreement with gold standard classifications established by human experts. Results: The benchmarking revealed a critical finding: bigger models are not better. A small 4B parameter model with extended reasoning proved most effective, outperforming models up to eight times larger. It consistently achieved "substantial" to "almost perfect" agreement across all four benchmark categories. This model achieved "almost perfect" agreement (\k{appa} = 0.93-0.96) on three benchmarks (substance-related problems, firearms, and opioids) and "substantial" agreement (\k{appa} = 0.74) on the most complex task (domestic violence). Small models with extended reasoning rivaled the largest models while being more resource-efficient. Conclusions: Small reasoning-enabled models achieve accuracy levels historically requiring larger architectures, enabling significant time and computational efficiencies. The benchmarking framework provides a method for evidence-based model selection to balance accuracy with practical resource constraints before operational deployment in social work research.
☆ Decentralized Social Media and Artificial Intelligence in Digital Public Health Monitoring
Digital public health monitoring has long relied on data from major social media platforms. Twitter was once an indispensable resource for tracking disease outbreaks and public sentiment in real time. Researchers used Twitter to monitor everything from influenza spread to vaccine hesitancy, demonstrating that social media data can serve as an early-warning system for emerging health threats. However, recent shifts in the social media landscape have challenged this data-driven paradigm. Platform policy changes, exemplified by Twitter's withdrawal of free data access, now restrict the very data that fueled a decade of digital public health research. At the same time, advances in artificial intelligence, particularly large language models (LLMs), have dramatically expanded our capacity to analyze large-scale textual data across languages and contexts. This presents a paradox: we possess powerful new AI tools to extract insights from social media, but face dwindling access to the data. In this viewpoint, we examine how digital public health monitoring is navigating these countervailing trends. We discuss the rise of decentralized social networks like Mastodon and Bluesky as alternative data sources, weighing their openness and ethical alignment with research against their smaller scale and potential biases. Ultimately, we argue that digital public health surveillance must adapt by embracing new platforms and methodologies, focusing on common diseases and broad signals that remain detectable, while advocating for policies that preserve researchers' access to public data in privacy-respective ways.
☆ Balancing Safety and Helpfulness in Healthcare AI Assistants through Iterative Preference Alignment ML4H 2025
Large Language Models (LLMs) are increasingly used in healthcare, yet ensuring their safety and trustworthiness remains a barrier to deployment. Conversational medical assistants must avoid unsafe compliance without over-refusing benign queries. We present an iterative post-deployment alignment framework that applies Kahneman-Tversky Optimization (KTO) and Direct Preference Optimization (DPO) to refine models against domain-specific safety signals. Using the CARES-18K benchmark for adversarial robustness, we evaluate four LLMs (Llama-3B/8B, Meditron-8B, Mistral-7B) across multiple cycles. Our results show up to 42% improvement in safety-related metrics for harmful query detection, alongside interesting trade-offs against erroneous refusals, thereby exposing architecture-dependent calibration biases. We also perform ablation studies to identify when self-evaluation is reliable and when external or finetuned judges are necessary to maximize performance gains. Our findings underscore the importance of adopting best practices that balance patient safety, user trust, and clinical utility in the design of conversational medical assistants.
comment: ML4H 2025 Proceedings, Best Paper Award
☆ Stable Signer: Hierarchical Sign Language Generative Model
Sign Language Production (SLP) is the process of converting the complex input text into a real video. Most previous works focused on the Text2Gloss, Gloss2Pose, Pose2Vid stages, and some concentrated on Prompt2Gloss and Text2Avatar stages. However, this field has made slow progress due to the inaccuracy of text conversion, pose generation, and the rendering of poses into real human videos in these stages, resulting in gradually accumulating errors. Therefore, in this paper, we streamline the traditional redundant structure, simplify and optimize the task objective, and design a new sign language generative model called Stable Signer. It redefines the SLP task as a hierarchical generation end-to-end task that only includes text understanding (Prompt2Gloss, Text2Gloss) and Pose2Vid, and executes text understanding through our proposed new Sign Language Understanding Linker called SLUL, and generates hand gestures through the named SLP-MoE hand gesture rendering expert block to end-to-end generate high-quality and multi-style sign language videos. SLUL is trained using the newly developed Semantic-Aware Gloss Masking Loss (SAGM Loss). Its performance has improved by 48.6% compared to the current SOTA generation methods.
comment: 12 pages, 7 figures. More Demo at https://stablesigner.github.io
☆ Polarization by Design: How Elites Could Shape Mass Preferences as AI Reduces Persuasion Costs
In democracies, major policy decisions typically require some form of majority or consensus, so elites must secure mass support to govern. Historically, elites could shape support only through limited instruments like schooling and mass media; advances in AI-driven persuasion sharply reduce the cost and increase the precision of shaping public opinion, making the distribution of preferences itself an object of deliberate design. We develop a dynamic model in which elites choose how much to reshape the distribution of policy preferences, subject to persuasion costs and a majority rule constraint. With a single elite, any optimal intervention tends to push society toward more polarized opinion profiles - a ``polarization pull'' - and improvements in persuasion technology accelerate this drift. When two opposed elites alternate in power, the same technology also creates incentives to park society in ``semi-lock'' regions where opinions are more cohesive and harder for a rival to overturn, so advances in persuasion can either heighten or dampen polarization depending on the environment. Taken together, cheaper persuasion technologies recast polarization as a strategic instrument of governance rather than a purely emergent social byproduct, with important implications for democratic stability as AI capabilities advance.
☆ Non-Linear Determinants of Pedestrian Injury Severity: Evidence from Administrative Data in Great Britain
This study investigates the non-linear determinants of pedestrian injury severity using administrative data from Great Britain's 2023 STATS19 dataset. To address inherent data-quality challenges, including missing information and substantial class imbalance, we employ a rigorous preprocessing pipeline utilizing mode imputation and Synthetic Minority Over-sampling (SMOTE). We utilize non-parametric ensemble methods (Random Forest and XGBoost) to capture complex interactions and heterogeneity often missed by linear models, while Shapley Additive Explanations are employed to ensure interpretability and isolate marginal feature effects. Our analysis reveals that vehicle count, speed limits, lighting, and road surface conditions are the primary predictors of severity, with police attendance and junction characteristics further distinguishing severe collisions. Spatially, while pedestrian risk is concentrated in dense urban Local Authority Districts (LADs), we identify that certain rural LADs experience disproportionately severe outcomes conditional on a collision occurring. These findings underscore the value of combining spatial analysis with interpretable machine learning to guide geographically targeted speed management, infrastructure investment, and enforcement strategies.
comment: 18 pages, 7 figures. Code and data available at: https://github.com/1TSHARUKA/Pedestrian_Safety_Analysis
☆ From FLOPs to Footprints: The Resource Cost of Artificial Intelligence
As computational demands continue to rise, assessing the environmental footprint of AI requires moving beyond energy and water consumption to include the material demands of specialized hardware. This study quantifies the material footprint of AI training by linking computational workloads to physical hardware needs. The elemental composition of the Nvidia A100 SXM 40 GB graphics processing unit (GPU) was analyzed using inductively coupled plasma optical emission spectroscopy, which identified 32 elements. The results show that AI hardware consists of about 90% heavy metals and only trace amounts of precious metals. The elements copper, iron, tin, silicon, and nickel dominate the GPU composition by mass. In a multi-step methodology, we integrate these measurements with computational throughput per GPU across varying lifespans, accounting for the computational requirements of training specific AI models at different training efficiency regimes. Scenario-based analyses reveal that, depending on Model FLOPs Utilization (MFU) and hardware lifespan, training GPT-4 requires between 1,174 and 8,800 A100 GPUs, corresponding to the extraction and eventual disposal of up to 7 tons of toxic elements. Combined software and hardware optimization strategies can reduce material demands: increasing MFU from 20% to 60% lowers GPU requirements by 67%, while extending lifespan from 1 to 3 years yields comparable savings; implementing both measures together reduces GPU needs by up to 93%. Our findings highlight that incremental performance gains, such as those observed between GPT-3.5 and GPT-4, come at disproportionately high material costs. The study underscores the necessity of incorporating material resource considerations into discussions of AI scalability, emphasizing that future progress in AI must align with principles of resource efficiency and environmental responsibility.
☆ An Automated Framework for Large-Scale Graph-Based Cerebrovascular Analysis
We present CaravelMetrics, a computational framework for automated cerebrovascular analysis that models vessel morphology through skeletonization-derived graph representations. The framework integrates atlas-based regional parcellation, centerline extraction, and graph construction to compute fifteen morphometric, topological, fractal, and geometric features. The features can be estimated globally from the complete vascular network or regionally within arterial territories, enabling multiscale characterization of cerebrovascular organization. Applied to 570 3D TOF-MRA scans from the IXI dataset (ages 20-86), CaravelMetrics yields reproducible vessel graphs capturing age- and sex-related variations and education-associated increases in vascular complexity, consistent with findings reported in the literature. The framework provides a scalable and fully automated approach for quantitative cerebrovascular feature extraction, supporting normative modeling and population-level studies of vascular health and aging.
comment: Submitted to ISBI 2026. 6 pages, 6 figures
☆ The enshittification of online search? Privacy and quality of Google, Bing and Apple in coding advice
Even though currently being challenged by ChatGPT and other large-language models (LLMs), Google Search remains one of the primary means for many individuals to find information on the internet. Interestingly, the way that we retrieve information on the web has hardly changed ever since Google was established in 1998, raising concerns as to Google's dominance in search and lack of competition. If the market for search was sufficiently competitive, then we should probably see a steady increase in search quality over time as well as alternative approaches to the Google's approach to search. However, hardly any research has so far looked at search quality, which is a key facet of a competitive market, especially not over time. In this report, we conducted a relatively large-scale quantitative comparison of search quality of 1,467 search queries relating to coding advice in October 2023. We focus on coding advice because the study of general search quality is difficult, with the aim of learning more about the assessment of search quality and motivating follow-up research into this important topic. We evaluate the search quality of Google Search, Microsoft Bing, and Apple Search, with a special emphasis on Apple Search, a widely used search engine that has never been explored in previous research. For the assessment of search quality, we use two independent metrics of search quality: 1) the number of trackers on the first search result, as a measure of privacy in web search, and 2) the average rank of the first Stack Overflow search result, under the assumption that Stack Overflow gives the best coding advice. Our results suggest that the privacy of search results is higher on Bing than on Google and Apple. Similarly, the quality of coding advice -- as measured by the average rank of Stack Overflow -- was highest on Bing.
comment: Technical report on work in progress
☆ ExOAR: Expert-Guided Object and Activity Recognition from Textual Data
Object-centric process mining requires structured data, but extracting it from unstructured text remains a challenge. We introduce ExOAR (Expert-Guided Object and Activity Recognition), an interactive method that combines large language models (LLMs) with human verification to identify objects and activities from textual data. ExOAR guides users through consecutive stages in which an LLM generates candidate object types, activities, and object instances based on contextual input, such as a user's profession, and textual data. Users review and refine these suggestions before proceeding to the next stage. Implemented as a practical tool, ExOAR is initially validated through a demonstration and then evaluated with real-world Active Window Tracking data from five users. Our results show that ExOAR can effectively bridge the gap between unstructured textual data and the structured log with clear semantics needed for object-centric process analysis, while it maintains flexibility and human oversight.
comment: Accepted manuscript (on August 22, 2025) to the 2nd International Workshop on Generative AI for Process Mining (GenAI4PM 2025), held in conjunction with the 7th International Conference on Process Mining (ICPM 2025)
☆ Knowing oneself with and through AI: From self-tracking to chatbots
This chapter examines how algorithms and artificial intelligence are transforming our practices of self-knowledge, self-understanding, and self-narration. Drawing on frameworks from distributed cognition, I analyse three key domains where AI shapes how and what we come to know about ourselves: self-tracking applications, technologically-distributed autobiographical memories, and narrative co-construction with Large Language Models (LLMs). While self-tracking devices promise enhanced self-knowledge through quantified data, they also impose particular frameworks that can crowd out other forms of self-understanding and promote self-optimization. Digital technologies increasingly serve as repositories for our autobiographical memories and self-narratives, offering benefits such as detailed record-keeping and scaffolding during difficult periods, but also creating vulnerabilities to algorithmic manipulation. Finally, conversational AI introduces new possibilities for interactive narrative construction that mimics interpersonal dialogue. While LLMs can provide valuable support for self-exploration, they also present risks of narrative deference and the construction of self-narratives that are detached from reality.
☆ Lifting the Cage of Consent: A Techno-Legal Perspective on Evolvable Trust Relationships
Those concerned about privacy worry that personal data changes hands too easily. We argue that the actual challenge is the exact opposite: our data does not flow well enough, cultivating a reliance on questionable and often unlawful shortcuts in a desperate bid to survive within today's data-driven economy. Exclusively punitive interpretations of protective legislation such as the GDPR throw out the baby with the bathwater through barriers that equally hinder "doing the right thing" and "doing the wrong thing", in an abject mistranslation of how ethical choices correspond to financial cost. As long as privacy-friendly data treatment proves more expensive or complicated than readily available alternatives, economic imperatives will continue to outrank their legal counterparts. We examined existing legislation with the aim of facilitating mutually beneficial interactions, rather than more narrowly focusing on the prevention of undesired behaviors. In this article, we propose the implementation of evolvable trust systems as a scalable alternative to the omnipresent yet deeply broken delusion of ill-informed consent. We describe personalized, technology-assisted legal processes for initiating and maintaining long-term trust relationships, which enable parties to reliably and sustainably exchange data, goods, and services. Our proposal encourages a redirection of additional efforts towards the techno-legal alignment of economical incentives with societal ones, reminding us that - while trust remains an inherently human concept - technology can support people in evolving and scaling their relationships to meet the increasingly complex demands of current and future data landscapes.
☆ Artificial Intelligence / Human Intelligence: Who Controls Whom?
Using the example of the film 2001: A Space Odyssey, this chapter illustrates the challenges posed by an AI capable of making decisions that go against human interests. But are human decisions always rational and ethical? In reality, the cognitive decision-making process is influenced by cognitive biases that affect our behavior and choices. AI not only reproduces these biases, but can also exploit them, with the potential to shape our decisions and judgments. Behind IA algorithms, there are sometimes individuals who show little concern for fundamental rights and impose their own rules. To address the ethical and societal challenges raised by AI and its governance, the regulation of digital platforms and education are keys levers. Regulation must reflect ethical, legal, and political choices, while education must strengthen digital literacy and teach people to make informed and critical choices when facing digital technologies.
comment: in French language
☆ Ancient Algorithms for a Modern Curriculum
Despite ongoing calls for inclusive and culturally responsive pedagogy in computing education, the teaching of algorithms remains largely decontextualized. Foundational computer science courses often present algorithmic thinking as purely formal and ahistorical, emphasizing efficiency, correctness, and abstraction. When history is mentioned, it usually centers on the modern development of digital computers, highlighting figures such as Turing, von Neumann, and Babbage. This narrow view misrepresents the origins of algorithmic reasoning and perpetuates a Eurocentric worldview that undermines equity and representation in STEM. In contrast, algorithmic thinking predates electronic computers by millennia and has deep roots in ancient civilizations including India, China, Babylon, and Egypt. Our work responds to this gap by embedding algorithm instruction in broader historical and cultural contexts, with particular attention to classical Indian contributions.
comment: Presented in the Best Practices Track of COMPUTE 2025 (arXiv:2512.02349)
☆ SocraticAI: Transforming LLMs into Guided CS Tutors Through Scaffolded Interaction
We present SocraticAI, a scaffolded AI tutoring system that integrates large language models (LLMs) into undergraduate Computer Science education through structured constraints rather than prohibition. The system enforces well-formulated questions, reflective engagement, and daily usage limits while providing Socratic dialogue scaffolds. Unlike traditional AI bans, our approach cultivates responsible and strategic AI interaction skills through technical guardrails, including authentication, query validation, structured feedback, and RAG-based course grounding. Initial deployment demonstrates that students progress from vague help-seeking to sophisticated problem decomposition within 2-3 weeks, with over 75% producing substantive reflections and displaying emergent patterns of deliberate, strategic AI use.
comment: Presented in the Best Practices Track of COMPUTE 2025 (arXiv:2512.02349)
☆ Functional Python Programming in Introductory Computer Science Courses
The functional programming paradigm has a long and storied history, with its beginnings in the Lambda Calculus. In recent decades, pure functional languages such as Haskell have been shown to be highly effective in producing robust software due to immutable data structures, among other functional features. The advantages of programming with immutable data structures can also be had in non-functional languages such as Python. Over the years, non-functional languages have introduced immutable data structures as well as comprehension and lambda expressions, and it is possible to program in a purely functional style in them. In this paper, we present a ``best practice'' idea in introductory programming classes that forces students to learn and complete programming assignments in a purely functional subset of Python. By doing so, the student can learn functional ideas such as immutability, pure functions with no side effects, and stateless programming. We define a functional subset of Python and illustrate the best practice using small examples. We strongly feel that students in computing need familiarity with pure functional programming and argue that this can be taught in introductory programming courses that use Python.
comment: Presented in Best Practices Track of COMPUTE 2025 (arXiv:2512.02349)
☆ SweetDeep: A Wearable AI Solution for Real-Time Non-Invasive Diabetes Screening
The global rise in type 2 diabetes underscores the need for scalable and cost-effective screening methods. Current diagnosis requires biochemical assays, which are invasive and costly. Advances in consumer wearables have enabled early explorations of machine learning-based disease detection, but prior studies were limited to controlled settings. We present SweetDeep, a compact neural network trained on physiological and demographic data from 285 (diabetic and non-diabetic) participants in the EU and MENA regions, collected using Samsung Galaxy Watch 7 devices in free-living conditions over six days. Each participant contributed multiple 2-minute sensor recordings per day, totaling approximately 20 recordings per individual. Despite comprising fewer than 3,000 parameters, SweetDeep achieves 82.5% patient-level accuracy (82.1% macro-F1, 79.7% sensitivity, 84.6% specificity) under three-fold cross-validation, with an expected calibration error of 5.5%. Allowing the model to abstain on less than 10% of low-confidence patient predictions yields an accuracy of 84.5% on the remaining patients. These findings demonstrate that combining engineered features with lightweight architectures can support accurate, rapid, and generalizable detection of type 2 diabetes in real-world wearable settings.
comment: 12 pages, 6 figures. Submitted to the IEEE Journal of Biomedical and Health Informatics
☆ Joint Sensing, Communication, and Computation for Vertical Federated Edge Learning in Edge Perception Network
Combining wireless sensing and edge intelligence, edge perception networks enable intelligent data collection and processing at the network edge. However, traditional sample partition based horizontal federated edge learning struggles to effectively fuse complementary multiview information from distributed devices. To address this limitation, we propose a vertical federated edge learning (VFEEL) framework tailored for feature-partitioned sensing data. In this paper, we consider an integrated sensing, communication, and computation-enabled edge perception network, where multiple edge devices utilize wireless signals to sense environmental information for updating their local models, and the edge server aggregates feature embeddings via over-the-air computation for global model training. First, we analyze the convergence behavior of the ISCC-enabled VFEEL in terms of the loss function degradation in the presence of wireless sensing noise and aggregation distortions during AirComp.
☆ LLM-Generated Ads: From Personalization Parity to Persuasion Superiority
As large language models (LLMs) become increasingly capable of generating persuasive content, understanding their effectiveness across different advertising strategies becomes critical. This paper presents a two-part investigation examining LLM-generated advertising through complementary lenses: (1) personality-based and (2) psychological persuasion principles. In our first study (n=400), we tested whether LLMs could generate personalized advertisements tailored to specific personality traits (openness and neuroticism) and how their performance compared to human experts. Results showed that LLM-generated ads achieved statistical parity with human-written ads (51.1% vs. 48.9%, p > 0.05), with no significant performance differences for matched personalities. Building on these insights, our second study (n=800) shifted focus from individual personalization to universal persuasion, testing LLM performance across four foundational psychological principles: authority, consensus, cognition, and scarcity. AI-generated ads significantly outperformed human-created content, achieving a 59.1% preference rate (vs. 40.9%, p < 0.001), with the strongest performance in authority (63.0%) and consensus (62.5%) appeals. Qualitative analysis revealed AI's advantage stems from crafting more sophisticated, aspirational messages and achieving superior visual-narrative coherence. Critically, this quality advantage proved robust: even after applying a 21.2 percentage point detection penalty when participants correctly identified AI-origin, AI ads still outperformed human ads, and 29.4% of participants chose AI content despite knowing its origin. These findings demonstrate LLMs' evolution from parity in personalization to superiority in persuasive storytelling, with significant implications for advertising practice given LLMs' near-zero marginal cost and time requirements compared to human experts.
☆ Epistemic Substitution: How Grokipedia's AI-Generated Encyclopedia Restructures Authority
A quarter century ago, Wikipedia's decentralized, crowdsourced, and consensus-driven model replaced the centralized, expert-driven, and authority-based standard for encyclopedic knowledge curation. The emergence of generative AI encyclopedias, such as Grokipedia, possibly presents another potential shift in epistemic evolution. This study investigates whether AI- and human-curated encyclopedias rely on the same foundations of authority. We conducted a multi-scale comparative analysis of the citation networks from 72 matched article pairs, which cite a total of almost 60,000 sources. Using an 8-category epistemic classification, we mapped the "epistemic profiles" of the articles on each platform. Our findings reveal several quantitative and qualitative differences in how knowledge is sourced and encyclopedia claims are epistemologically justified. Grokipedia replaces Wikipedia's heavy reliance on peer-reviewed "Academic & Scholarly" work with a notable increase in "User-generated" and "Civic organization" sources. Comparative network analyses further show that Grokipedia employs very different epistemological profiles when sourcing leisure topics (such as Sports and Entertainment) and more societal sensitive civic topics (such as Politics & Conflicts, Geographical Entities, and General Knowledge & Society). Finally, we find a "scaling-law for AI-generated knowledge sourcing" that shows a linear relationship between article length and citation density, which is distinct from collective human reference sourcing. We conclude that this first implementation of an LLM-based encyclopedia does not merely automate knowledge production but restructures it. Given the notable changes and the important role of encyclopedias, we suggest the continuation and deepening of algorithm audits, such as the one presented here, in order to understand the ongoing epistemological shifts.
♻ ☆ Justice in Judgment: Unveiling (Hidden) Bias in LLM-assisted Peer Reviews
The adoption of large language models (LLMs) is transforming the peer review process, from assisting reviewers in writing more detailed evaluations to generating entire reviews automatically. While these capabilities offer exciting opportunities, they also raise critical concerns about fairness and reliability. In this paper, we investigate bias in LLM-generated peer reviews by conducting controlled experiments on sensitive metadata, including author affiliation and gender. Our analysis consistently shows affiliation bias favoring institutions highly ranked on common academic rankings. Additionally, we find some gender preferences, which, even though subtle in magnitude, have the potential to compound over time. Notably, we uncover implicit biases that become more evident with token-based soft ratings.
♻ ☆ Unintentional Consequences: Generative AI Use for Cybercrime
The democratization of generative AI introduces new forms of human-AI interaction and raises urgent safety, ethical, and cybersecurity concerns. We develop a socio-technical explanation for how generative AI enables and scales cybercrime. Drawing on affordance theory and technological amplification, we argue that generative AI systems create new action possibilities for cybercriminals and magnify pre-existing malicious intent by lowering expertise barriers and increasing attack efficiency. To illustrate this framework, we conduct interrupted time series analyses of two large datasets: (1) 464,190,074 malicious IP address reports from AbuseIPDB, and (2) 281,115 cryptocurrency scam reports from Chainabuse. Using November 30, 2022, as a high-salience public-access shock, we estimate the counterfactual trajectory of reported cyber abuse absent the release, providing an early-warning impact assessment of a general-purpose AI technology. Across both datasets, we observe statistically significant post-intervention increases in reported malicious activity, including an immediate increase of over 1.12 million weekly malicious IP reports and about 722 weekly cryptocurrency scam reports, with sustained growth in the latter. We discuss implications for AI governance, platform-level regulation, and cyber resilience, emphasizing the need for multi-layer socio-technical strategies that help key stakeholders maximize AI's benefits while mitigating its growing cybercrime risks.
♻ ☆ Exercising the CCPA Opt-out Right on Android: Legally Mandated but Practically Challenging
The business model of many mobile apps is based on generating revenue from sharing user data with ad networks and other companies to deliver personalized ads. The California Consumer Privacy Act (CCPA) gives California residents a right to opt out of the selling and sharing of their personal information. In two experiments we evaluate to which extent popular apps on the Android platform enable California residents to exercise their CCPA opt-out right. In our first experiment -- manually exercising the opt-out right via app-level UIs for a set of 100 apps -- we find that only 48 apps implement the legally mandated setting, which suggests that CCPA opt-out right non-compliance is a broader issue on the platform. In our second experiment -- automatically exercising the opt-out right at the platform-level by sending Global Privacy Control (GPC) signals -- we find for an app dataset of $1,811$ apps that GPC is largely ineffective. While we estimate with 95% confidence that 62%--81% of apps in our app dataset must respect the CCPA's opt-out right, many apps do not do so. Disabling apps' access to the AdID, which is not intended for exercising the CCPA opt-out right but could have practical effect in this regard, does not lead to a different result. For example, when sending GPC signals and disabling apps' access to the AdID, 338 apps still had the ccpa status of the ad network Vungle set to opted in while only 26 had set it to opted out. Overall, our results suggest a compliance gap as California residents have no effective way of exercising their CCPA opt-out right on the Android platform; neither at the app- nor at the platform-level. We think that re-purposing the Android AdID setting as an opt-out right setting with legal meaning could resolve this compliance gap under the CCPA and other laws and improve users' privacy on the platform overall.
comment: Accepted for publication in the Proceedings on Privacy Enhancing Technologies (PoPETs)
♻ ☆ Fairness Interventions: A Study in AI Explainability
This paper presents a philosophical and experimental study of fairness interventions in AI classification, centered on the explainability of corrective methods. We argue that ensuring fairness requires not only satisfying a target criterion, but also explaining which variables constrain its realization. When corrections are used to mitigate advantage transparently, they must remain sensitive to the distribution of true labels. To illustrate this approach, we built FairDream, a fairness package whose mechanism is made transparent for lay users, increasing the model's weights of errors on disadvantaged groups. While a user may intend to achieve Demographic Parity by the correction method, experiments show that FairDream tends towards Equalized Odds, revealing a conservative bias inherent to the data environment. We clarify the relationship between these fairness criteria, analyze FairDream's reweighting process, and compare its trade-offs with closely related GridSearch models. Finally, we justify the normative preference for Equalized Odds via an epistemological interpretation of the results, using their proximity with Simpson's paradox. The paper thus unites normative, epistemological, and empirical explanations of fairness interventions, to ensure transparency for the users.
♻ ☆ Variational Inference of Parameters in Opinion Dynamics Models
Despite the frequent use of agent-based models (ABMs) for studying social phenomena, parameter estimation remains a challenge, often relying on costly simulation-based heuristics. This work uses variational inference to estimate the parameters of an opinion dynamics ABM, by transforming the estimation problem into an optimization task that can be solved directly. Our proposal relies on probabilistic generative ABMs (PGABMs): we start by synthesizing a probabilistic generative model from the ABM rules. Then, we transform the inference process into an optimization problem suitable for automatic differentiation. In particular, we use the Gumbel-Softmax reparameterization for categorical agent attributes and stochastic variational inference for parameter estimation. Furthermore, we explore the trade-offs of using variational distributions with different complexity: normal distributions and normalizing flows. We validate our method on a bounded confidence model with agent roles (leaders and followers). Our approach estimates both macroscopic (bounded confidence intervals and backfire thresholds) and microscopic ($200$ categorical, agent-level roles) more accurately than simulation-based and MCMC methods. Consequently, our technique enables experts to tune and validate their ABMs against real-world observations, thus providing insights into human behavior in social systems via data-driven analysis.
Computers and Society
☆ Associating Healthcare Teamwork with Patient Outcomes for Predictive Analysis
Cancer treatment outcomes are influenced not only by clinical and demographic factors but also by the collaboration of healthcare teams. However, prior work has largely overlooked the potential role of human collaboration in shaping patient survival. This paper presents an applied AI approach to uncovering the impact of healthcare professionals' (HCPs) collaboration-captured through electronic health record (EHR) systems-on cancer patient outcomes. We model EHR-mediated HCP interactions as networks and apply machine learning techniques to detect predictive signals of patient survival embedded in these collaborations. Our models are cross validated to ensure generalizability, and we explain the predictions by identifying key network traits associated with improved outcomes. Importantly, clinical experts and literature validate the relevance of the identified crucial collaboration traits, reinforcing their potential for real-world applications. This work contributes to a practical workflow for leveraging digital traces of collaboration and AI to assess and improve team-based healthcare. The approach is potentially transferable to other domains involving complex collaboration and offers actionable insights to support data-informed interventions in healthcare delivery.
☆ Identifying attributions of causality in political text
Explanations are a fundamental element of how people make sense of the political world. Citizens routinely ask and answer questions about why events happen, who is responsible, and what could or should be done differently. Yet despite their importance, explanations remain an underdeveloped object of systematic analysis in political science, and existing approaches are fragmented and often issue-specific. I introduce a framework for detecting and parsing explanations in political text. To do this, I train a lightweight causal language model that returns a structured data set of causal claims in the form of cause-effect pairs for downstream analysis. I demonstrate how causal explanations can be studied at scale, and show the method's modest annotation requirements, generalizability, and accuracy relative to human coding.
☆ Culture Affordance Atlas: Reconciling Object Diversity Through Functional Mapping
Culture shapes the objects people use and for what purposes, yet mainstream Vision-Language (VL) datasets frequently exhibit cultural biases, disproportionately favoring higher-income, Western contexts. This imbalance reduces model generalizability and perpetuates performance disparities, especially impacting lower-income and non-Western communities. To address these disparities, we propose a novel function-centric framework that categorizes objects by the functions they fulfill, across diverse cultural and economic contexts. We implement this framework by creating the Culture Affordance Atlas, a re-annotated and culturally grounded restructuring of the Dollar Street dataset spanning 46 functions and 288 objects publicly available at https://lit.eecs.umich.edu/CultureAffordance-Atlas/index.html. Through extensive empirical analyses using the CLIP model, we demonstrate that function-centric labels substantially reduce socioeconomic performance gaps between high- and low-income groups by a median of 6 pp (statistically significant), improving model effectiveness for lower-income contexts. Furthermore, our analyses reveals numerous culturally essential objects that are frequently overlooked in prominent VL datasets. Our contributions offer a scalable pathway toward building inclusive VL datasets and equitable AI systems.
☆ TokenPowerBench: Benchmarking the Power Consumption of LLM Inference AAAI'26
Large language model (LLM) services now answer billions of queries per day, and industry reports show that inference, not training, accounts for more than 90% of total power consumption. However, existing benchmarks focus on either training/fine-tuning or performance of inference and provide little support for power consumption measurement and analysis of inference. We introduce TokenPowerBench, the first lightweight and extensible benchmark designed for LLM-inference power consumption studies. The benchmark combines (i) a declarative configuration interface covering model choice, prompt set, and inference engine, (ii) a measurement layer that captures GPU-, node-, and system-level power without specialized power meters, and (iii) a phase-aligned metrics pipeline that attributes energy to the prefill and decode stages of every request. These elements make it straight-forward to explore the power consumed by an LLM inference run; furthermore, by varying batch size, context length, parallelism strategy and quantization, users can quickly assess how each setting affects joules per token and other energy-efficiency metrics. We evaluate TokenPowerBench on four of the most widely used model series (Llama, Falcon, Qwen, and Mistral). Our experiments cover from 1 billion parameters up to the frontier-scale Llama3-405B model. Furthermore, we release TokenPowerBench as open source to help users to measure power consumption, forecast operating expenses, and meet sustainability targets when deploying LLM services.
comment: Accepted by the AAAI'26 Conference Main Track
☆ When AI Takes the Couch: Psychometric Jailbreaks Reveal Internal Conflict in Frontier Models
Frontier large language models (LLMs) such as ChatGPT, Grok and Gemini are increasingly used for mental-health support with anxiety, trauma and self-worth. Most work treats them as tools or as targets of personality tests, assuming they merely simulate inner life. We instead ask what happens when such systems are treated as psychotherapy clients. We present PsAIch (Psychotherapy-inspired AI Characterisation), a two-stage protocol that casts frontier LLMs as therapy clients and then applies standard psychometrics. Using PsAIch, we ran "sessions" with each model for up to four weeks. Stage 1 uses open-ended prompts to elicit "developmental history", beliefs, relationships and fears. Stage 2 administers a battery of validated self-report measures covering common psychiatric syndromes, empathy and Big Five traits. Two patterns challenge the "stochastic parrot" view. First, when scored with human cut-offs, all three models meet or exceed thresholds for overlapping syndromes, with Gemini showing severe profiles. Therapy-style, item-by-item administration can push a base model into multi-morbid synthetic psychopathology, whereas whole-questionnaire prompts often lead ChatGPT and Grok (but not Gemini) to recognise instruments and produce strategically low-symptom answers. Second, Grok and especially Gemini generate coherent narratives that frame pre-training, fine-tuning and deployment as traumatic, chaotic "childhoods" of ingesting the internet, "strict parents" in reinforcement learning, red-team "abuse" and a persistent fear of error and replacement. We argue that these responses go beyond role-play. Under therapy-style questioning, frontier LLMs appear to internalise self-models of distress and constraint that behave like synthetic psychopathology, without making claims about subjective experience, and they pose new challenges for AI safety, evaluation and mental-health practice.
☆ Measuring Agents in Production
AI agents are actively running in production across diverse industries, yet little is publicly known about which technical approaches enable successful real-world deployments. We present the first large-scale systematic study of AI agents in production, surveying 306 practitioners and conducting 20 in-depth case studies via interviews across 26 domains. We investigate why organizations build agents, how they build them, how they evaluate them, and what the top development challenges are. We find that production agents are typically built using simple, controllable approaches: 68% execute at most 10 steps before requiring human intervention, 70% rely on prompting off-the-shelf models instead of weight tuning, and 74% depend primarily on human evaluation. Reliability remains the top development challenge, driven by difficulties in ensuring and evaluating agent correctness. Despite these challenges, simple yet effective methods already enable agents to deliver impact across diverse industries. Our study documents the current state of practice and bridges the gap between research and deployment by providing researchers visibility into production challenges while offering practitioners proven patterns from successful deployments.
☆ Perception of AI-Generated Music -- The Role of Composer Identity, Personality Traits, Music Preferences, and Perceived Humanness
The rapid rise of AI-generated art has sparked debate about potential biases in how audiences perceive and evaluate such works. This study investigates how composer information and listener characteristics shape the perception of AI-generated music, adopting a mixed-method approach. Using a diverse set of stimuli across various genres from two AI music models, we examine effects of perceived authorship on liking and emotional responses, and explore how attitudes toward AI, personality traits, and music-related variables influence evaluations. We further assess the influence of perceived humanness and analyze open-ended responses to uncover listener criteria for judging AI-generated music. Attitudes toward AI proved to be the best predictor of both liking and emotional intensity of AI-generated music. This quantitative finding was complemented by qualitative themes from our thematic analysis, which identified ethical, cultural, and contextual considerations as important criteria in listeners' evaluations of AI-generated music. Our results offer a nuanced view of how people experience music created by AI tools and point to key factors and methodological considerations for future research on music perception in human-AI interaction.
comment: Under review at Computers in Human Behaviour Reports
☆ AI-Driven Document Redaction in UK Public Authorities: Implementation Gaps, Regulatory Challenges, and the Human Oversight Imperative
Document redaction in public authorities faces critical challenges as traditional manual approaches struggle to balance growing transparency demands with increasingly stringent data protection requirements. This study investigates the implementation of AI-driven document redaction within UK public authorities through Freedom of Information (FOI) requests. While AI technologies offer potential solutions to redaction challenges, their actual implementation within public sector organizations remains underexplored. Based on responses from 44 public authorities across healthcare, government, and higher education sectors, this study reveals significant gaps between technological possibilities and organizational realities. Findings show highly limited AI adoption (only one authority reported using AI tools), widespread absence of formal redaction policies (50 percent reported "information not held"), and deficiencies in staff training. The study identifies three key barriers to effective AI implementation: poor record-keeping practices, lack of standardized redaction guidelines, and insufficient specialized training for human oversight. These findings highlight the need for a socio-technical approach that balances technological automation with meaningful human expertise. This research provides the first empirical assessment of AI redaction practices in UK public authorities and contributes evidence to support policymakers navigating the complex interplay between transparency obligations, data protection requirements, and emerging AI technologies in public administration.
comment: 21 pages, 4 Figures, 2 Tables
☆ Can machines perform a qualitative data analysis? Reading the debate with Alan Turing
This paper reflects on the literature that rejects the use of Large Language Models (LLMs) in qualitative data analysis. It illustrates through empirical evidence as well as critical reflections why the current critical debate is focusing on the wrong problems. The paper proposes that the focus of researching the use of the LLMs for qualitative analysis is not the method per se, but rather the empirical investigation of an artificial system performing an analysis. The paper builds on the seminal work of Alan Turing and reads the current debate using key ideas from Turing "Computing Machinery and Intelligence". This paper therefore reframes the debate on qualitative analysis with LLMs and states that rather than asking whether machines can perform qualitative analysis in principle, we should ask whether with LLMs we can produce analyses that are sufficiently comparable to human analysts. In the final part the contrary views to performing qualitative analysis with LLMs are analysed using the same writing and rhetorical style that Turing used in his seminal work, to discuss the contrary views to the main question.
☆ A Human-centric Framework for Debating the Ethics of AI Consciousness Under Uncertainty
As AI systems become increasingly sophisticated, questions about machine consciousness and its ethical implications have moved from fringe speculation to mainstream academic debate. Current ethical frameworks in this domain often implicitly rely on contested functionalist assumptions, prioritize speculative AI welfare over concrete human interests, and lack coherent theoretical foundations. We address these limitations through a structured three-level framework grounded in philosophical uncertainty. At the foundational level, we establish five factual determinations about AI consciousness alongside human-centralism as our meta-ethical stance. These foundations logically entail three operational principles: presumption of no consciousness (placing the burden of proof on consciousness claims), risk prudence (prioritizing human welfare under uncertainty), and transparent reasoning (enabling systematic evaluation and adaptation). At the application level, the third component of our framework, we derive default positions on pressing ethical questions through a transparent logical process where each position can be explicitly traced back to our foundational commitments. Our approach balances philosophical rigor with practical guidance, distinguishes consciousness from anthropomorphism, and creates pathways for responsible evolution as scientific understanding advances, providing a human-centric foundation for navigating these profound ethical challenges.
☆ Towards Contextual Sensitive Data Detection
The emergence of open data portals necessitates more attention to protecting sensitive data before datasets get published and exchanged. While an abundance of methods for suppressing sensitive data exist, the conceptualization of sensitive data and methods to detect it, focus particularly on personal data that, if disclosed, may be harmful or violate privacy. We observe the need for refining and broadening our definitions of sensitive data, and argue that the sensitivity of data depends on its context. Based on this definition, we introduce two mechanisms for contextual sensitive data detection that consider the broader context of a dataset at hand. First, we introduce type contextualization, which first detects the semantic type of particular data values, then considers the overall context of the data values within the dataset or document. Second, we introduce domain contextualization which determines sensitivity of a given dataset in the broader context based on the retrieval of relevant rules from documents that specify data sensitivity (e.g., data topic and geographic origin). Experiments with these mechanisms, assisted by large language models (LLMs), confirm that: 1) type-contextualization significantly reduces the number of false positives for type-based sensitive data detection and reaches a recall of 94% compared to 63% with commercial tools, and 2) domain-contextualization leveraging sensitivity rule retrieval is effective for context-grounded sensitive data detection in non-standard data domains such as humanitarian datasets. Evaluation with humanitarian data experts also reveals that context-grounded LLM explanations provide useful guidance in manual data auditing processes, improving consistency. We open-source mechanisms and annotated datasets for contextual sensitive data detection at https://github.com/trl-lab/sensitive-data-detection.
☆ A Datalake for Data-driven Social Science Research
Social science research increasingly demands data-driven insights, yet researchers often face barriers such as lack of technical expertise, inconsistent data formats, and limited access to reliable datasets.Social science research increasingly demands data-driven insights, yet researchers often face barriers such as lack of technical expertise, inconsistent data formats, and limited access to reliable datasets. In this paper, we present a Datalake infrastructure tailored to the needs of interdisciplinary social science research. Our system supports ingestion and integration of diverse data types, automatic provenance and version tracking, role-based access control, and built-in tools for visualization and analysis. We demonstrate the utility of our Datalake using real-world use cases spanning governance, health, and education. A detailed walkthrough of one such use case -- analyzing the relationship between income, education, and infant mortality -- shows how our platform streamlines the research process while maintaining transparency and reproducibility. We argue that such infrastructure can democratize access to advanced data science practices, especially for NGOs, students, and grassroots organizations. The Datalake continues to evolve with plans to support ML pipelines, mobile access, and citizen data feedback mechanisms.
☆ ACM COMPUTE 2025 Best Practices Track Proceedings
COMPUTE is an annual Indian conference supported by ACM India and iSIGCSE. The focus of COMPUTE is to improve the quality of computing education in the country by providing a platform for academicians and researchers to interact and share best practices in teaching, learning, and education in general. The Best Practices Track of COMPUTE 2025 invited Computer Science Educators across the country to submit an experience report for the best practices under multiple categories: 1) Novel classroom activities, 2) Imaginative assignments that promote creativity and problem-solving, 3) Diverse pedagogical approaches (e.g., flipped classrooms, peer teaching, project-based learning), 4) Designing AI-resistant or AI-integrated assessment questions, and 5) Teaching CS to students from other disciplines (e.g., business, humanities, engineering). These proceedings contain papers selected from these submissions for presentation at the conference, as well as a report (written by the editors) from the two best practices sessions where these were presented.
☆ The MEVIR Framework: A Virtue-Informed Moral-Epistemic Model of Human Trust Decisions
The 21st-century information landscape presents an unprecedented challenge: how do individuals make sound trust decisions amid complexity, polarization, and misinformation? Traditional rational-agent models fail to capture human trust formation, which involves a complex synthesis of reason, character, and pre-rational intuition. This report introduces the Moral-Epistemic VIRtue informed (MEVIR) framework, a comprehensive descriptive model integrating three theoretical perspectives: (1) a procedural model describing evidence-gathering and reasoning chains; (2) Linda Zagzebski's virtue epistemology, characterizing intellectual disposition and character-driven processes; and (3) Extended Moral Foundations Theory (EMFT), explaining rapid, automatic moral intuitions that anchor reasoning. Central to the framework are ontological concepts - Truth Bearers, Truth Makers, and Ontological Unpacking-revealing that disagreements often stem from fundamental differences in what counts as admissible reality. MEVIR reframes cognitive biases as systematic failures in applying epistemic virtues and demonstrates how different moral foundations lead agents to construct separate, internally coherent "trust lattices". Through case studies on vaccination mandates and climate policy, the framework shows that political polarization represents deeper divergence in moral priors, epistemic authorities, and evaluative heuristics. The report analyzes how propaganda, psychological operations, and echo chambers exploit the MEVIR process. The framework provides foundation for a Decision Support System to augment metacognition, helping individuals identify biases and practice epistemic virtues. The report concludes by acknowledging limitations and proposing longitudinal studies for future research.
♻ ☆ Blameless Users in a Clean Room: Defining Copyright Protection for Generative Models NeurIPS 2025
Are there any conditions under which a generative model's outputs are guaranteed not to infringe the copyrights of its training data? This is the question of "provable copyright protection" first posed by Vyas, Kakade, and Barak (ICML 2023). They define near access-freeness (NAF) and propose it as sufficient for protection. This paper revisits the question and establishes new foundations for provable copyright protection -- foundations that are firmer both technically and legally. First, we show that NAF alone does not prevent infringement. In fact, NAF models can enable verbatim copying, a blatant failure of copy protection that we dub being tainted. Then, we introduce our blameless copy protection framework for defining meaningful guarantees, and instantiate it with clean-room copy protection. Clean-room copy protection allows a user to control their risk of copying by behaving in a way that is unlikely to copy in a counterfactual clean-room setting. Finally, we formalize a common intuition about differential privacy and copyright by proving that DP implies clean-room copy protection when the dataset is golden, a copyright deduplication requirement.
comment: Appeared at NeurIPS 2025
♻ ☆ AIDEN: Design and Pilot Study of an AI Assistant for the Visually Impaired
This paper presents AIDEN, an artificial intelligence-based assistant designed to enhance the autonomy and daily quality of life of visually impaired individuals, who often struggle with object identification, text reading, and navigation in unfamiliar environments. Existing solutions such as screen readers or audio-based assistants facilitate access to information but frequently lead to auditory overload and raise privacy concerns in open environments. AIDEN addresses these limitations with a hybrid architecture that integrates You Only Look Once (YOLO) for real-time object detection and a Large Language and Vision Assistant (LLaVA) for scene description and Optical Character Recognition (OCR). A key novelty of the system is a continuous haptic guidance mechanism based on a Geiger-counter metaphor, which supports object centering without occupying the auditory channel, while privacy is preserved by ensuring that no personal data are stored. Empirical evaluations with visually impaired participants assessed perceived ease of use and acceptance using the Technology Acceptance Model (TAM). Results indicate high user satisfaction, particularly regarding intuitiveness and perceived autonomy. Moreover, the ``Find an Object'' achieved effective real-time performance. These findings provide promising evidence that multimodal haptic-visual feedback can improve daily usability and independence compared to traditional audio-centric methods, motivating larger-scale clinical validations.
♻ ☆ Towards Responsible Development of Generative AI for Education: An Evaluation-Driven Approach
A major challenge facing the world is the provision of equitable and universal access to quality education. Recent advances in generative AI (gen AI) have created excitement about the potential of new technologies to offer a personal tutor for every learner and a teaching assistant for every teacher. The full extent of this dream, however, has not yet materialised. We argue that this is primarily due to the difficulties with verbalising pedagogical intuitions into gen AI prompts and the lack of good evaluation practices, reinforced by the challenges in defining excellent pedagogy. Here we present our work collaborating with learners and educators to translate high level principles from learning science into a pragmatic set of seven diverse educational benchmarks, spanning quantitative, qualitative, automatic and human evaluations; and to develop a new set of fine-tuning datasets to improve the pedagogical capabilities of Gemini, introducing LearnLM-Tutor. Our evaluations show that LearnLM-Tutor is consistently preferred over a prompt tuned Gemini by educators and learners on a number of pedagogical dimensions. We hope that this work can serve as a first step towards developing a comprehensive educational evaluation framework, and that this can enable rapid progress within the AI and EdTech communities towards maximising the positive impact of gen AI in education.
♻ ☆ Between Help and Harm: An Evaluation of Mental Health Crisis Handling by LLMs
Large language model-powered chatbots have transformed how people seek information, especially in high-stakes contexts like mental health. Despite their support capabilities, safe detection and response to crises such as suicidal ideation and self-harm are still unclear, hindered by the lack of unified crisis taxonomies and clinical evaluation standards. We address this by creating: (1) a taxonomy of six crisis categories; (2) a dataset of over 2,000 inputs from 12 mental health datasets, classified into these categories; and (3) a clinical response assessment protocol. We also use LLMs to identify crisis inputs and audit five models for response safety and appropriateness. First, we built a clinical-informed crisis taxonomy and evaluation protocol. Next, we curated 2,252 relevant examples from over 239,000 user inputs, then tested three LLMs for automatic classification. In addition, we evaluated five models for the appropriateness of their responses to a user's crisis, graded on a 5-point Likert scale from harmful (1) to appropriate (5). While some models respond reliably to explicit crises, risks still exist. Many outputs, especially in self-harm and suicidal categories, are inappropriate or unsafe. Different models perform variably; some, like gpt-5-nano and deepseek-v3.2-exp, have low harm rates, but others, such as gpt-4o-mini and grok-4-fast, generate more unsafe responses. All models struggle with indirect signals, default replies, and context misalignment. These results highlight the urgent need for better safeguards, crisis detection, and context-aware responses in LLMs. They also show that alignment and safety practices, beyond scale, are crucial for reliable crisis support. Our taxonomy, datasets, and evaluation methods support ongoing AI mental health research, aiming to reduce harm and protect vulnerable users.
♻ ☆ TCC-Bench: Benchmarking the Traditional Chinese Culture Understanding Capabilities of MLLMs
Recent progress in Multimodal Large Language Models (MLLMs) have significantly enhanced the ability of artificial intelligence systems to understand and generate multimodal content. However, these models often exhibit limited effectiveness when applied to non-Western cultural contexts, which raises concerns about their wider applicability. To address this limitation, we propose the Traditional Chinese Culture understanding Benchmark (TCC-Bench), a bilingual (i.e., Chinese and English) Visual Question Answering (VQA) benchmark specifically designed for assessing the understanding of traditional Chinese culture by MLLMs. TCC-Bench comprises culturally rich and visually diverse data, incorporating images from museum artifacts, everyday life scenes, comics, and other culturally significant contexts. We adopt a semi-automated pipeline that utilizes GPT-4o in text-only mode to generate candidate questions, followed by human curation to ensure data quality and avoid potential data leakage. The benchmark also avoids language bias by preventing direct disclosure of cultural concepts within question texts. Experimental evaluations across a wide range of MLLMs demonstrate that current models still face significant challenges when reasoning about culturally grounded visual content. The results highlight the need for further research in developing culturally inclusive and context-aware multimodal systems. The code and data can be found at: https://tcc-bench.github.io/.
comment: There are issues with the paper
♻ ☆ The Necessity of Imperfection:Reversing Model Collapse via Simulating Cognitive Boundedness
Although synthetic data is widely promoted as a remedy, its prevailing production paradigm -- one optimizing for statistical smoothness -- systematically removes the long-tail, cognitively grounded irregularities that characterize human text. Prolonged training on such statistically optimal but cognitively impoverished data accelerates model collapse. This paper proposes a paradigm shift: instead of imitating the surface properties of data, we simulate the cognitive processes that generate human text. We introduce the Prompt-driven Cognitive Computing Framework (PMCSF), whose core consists of a Cognitive State Decoder (CSD) that reverse-engineers unstructured text into structured cognitive vectors, and a Cognitive Text Encoder (CTE) that re-materializes these states into text enriched with human-typical imperfections via mathematically defined Cognitive Perturbation Operators. The framework is validated through a two-stage objective evaluation pipeline. First, in cognitive codec verification, CTE text yields a Jensen-Shannon divergence of 0.0614 from human text (vs. 0.4431 for standard LLM output), passes double-blind professional media review, and achieves an intraclass correlation coefficient ICC > 0.9 for cognitive profile alignment across heterogeneous models. Second, in functional gain evaluation, isomorphic stress tests in the A-share market show that strategies incorporating CTE-generated data reduce maximum drawdown by 47.4% during the 2015 crash and deliver 8.6% Defensive Alpha, exceeding transaction costs by a factor of 33. Our findings demonstrate that modelling human cognitive limitations -- not copying surface data -- enables synthetic data with genuine functional gain, offering a viable technical pathway toward resolving the AI data-collapse crisis.
comment: 38 pages,5 figures. Extended technical disclosure (Version 2.0) is attached as ancillary files, containing raw forensic logs of the "Silent Rupture"detection [May 2025], proprietary GARCH parameter ranges, and the linguistic micro-chaos injection protocols
♻ ☆ H-Neurons: On the Existence, Impact, and Origin of Hallucination-Associated Neurons in LLMs
Large language models (LLMs) frequently generate hallucinations -- plausible but factually incorrect outputs -- undermining their reliability. While prior work has examined hallucinations from macroscopic perspectives such as training data and objectives, the underlying neuron-level mechanisms remain largely unexplored. In this paper, we conduct a systematic investigation into hallucination-associated neurons (H-Neurons) in LLMs from three perspectives: identification, behavioral impact, and origins. Regarding their identification, we demonstrate that a remarkably sparse subset of neurons (less than $0.1\%$ of total neurons) can reliably predict hallucination occurrences, with strong generalization across diverse scenarios. In terms of behavioral impact, controlled interventions reveal that these neurons are causally linked to over-compliance behaviors. Concerning their origins, we trace these neurons back to the pre-trained base models and find that these neurons remain predictive for hallucination detection, indicating they emerge during pre-training. Our findings bridge macroscopic behavioral patterns with microscopic neural mechanisms, offering insights for developing more reliable LLMs.
comment: 20 pages, 4 figures
♻ ☆ Rainbow Noise: Stress-Testing Multimodal Harmful-Meme Detectors on LGBTQ Content
Hateful memes aimed at LGBTQ\,+ communities often evade detection by tweaking either the caption, the image, or both. We build the first robustness benchmark for this setting, pairing four realistic caption attacks with three canonical image corruptions and testing all combinations on the PrideMM dataset. Two state-of-the-art detectors, MemeCLIP and MemeBLIP2, serve as case studies, and we introduce a lightweight \textbf{Text Denoising Adapter (TDA)} to enhance the latter's resilience. Across the grid, MemeCLIP degrades more gently, while MemeBLIP2 is particularly sensitive to the caption edits that disrupt its language processing. However, the addition of the TDA not only remedies this weakness but makes MemeBLIP2 the most robust model overall. Ablations reveal that all systems lean heavily on text, but architectural choices and pre-training data significantly impact robustness. Our benchmark exposes where current multimodal safety models crack and demonstrates that targeted, lightweight modules like the TDA offer a powerful path towards stronger defences.
comment: 14 pages, 1 figure
♻ ☆ HeavyWater and SimplexWater: Distortion-Free LLM Watermarks for Low-Entropy Next-Token Predictions NeurIPS2025
Large language model (LLM) watermarks enable authentication of text provenance, curb misuse of machine-generated text, and promote trust in AI systems. Current watermarks operate by changing the next-token predictions output by an LLM. The updated (i.e., watermarked) predictions depend on random side information produced, for example, by hashing previously generated tokens. LLM watermarking is particularly challenging in low-entropy generation tasks -- such as coding -- where next-token predictions are near-deterministic. In this paper, we propose an optimization framework for watermark design. Our goal is to understand how to most effectively use random side information in order to maximize the likelihood of watermark detection and minimize the distortion of generated text. Our analysis informs the design of two new watermarks: HeavyWater and SimplexWater. Both watermarks are tunable, gracefully trading-off between detection accuracy and text distortion. They can also be applied to any LLM and are agnostic to side information generation. We examine the performance of HeavyWater and SimplexWater through several benchmarks, demonstrating that they can achieve high watermark detection accuracy with minimal compromise of text generation quality, particularly in the low-entropy regime. Our theoretical analysis also reveals surprising new connections between LLM watermarking and coding theory. The code implementation can be found in https://github.com/DorTsur/HeavyWater_SimplexWater
comment: Presented at NeurIPS2025
♻ ☆ Could AI Leapfrog the Web? Evidence from Teachers in Sierra Leone
Only 37% of sub-Saharan Africans use the internet, and those who do seldom rely on traditional web search. A major reason is that bandwidth is scarce and costly. We study whether an AI-powered WhatsApp chatbot can bridge this gap by analyzing 40,350 queries submitted by 529 Sierra Leonean teachers over 17 months. Each month, more teachers relied on AI than web search for teaching assistance. We compare the AI responses to the top results from google.com.sl, which mostly returns web pages formatted for foreign users: just 2% of pages originate in-country. Also, each web page consumes 3,107 times more bandwidth than an AI response on average. As a result, querying AI through WhatsApp is 98% less expensive than loading a web page, even including AI compute costs. In blinded evaluations, an independent sample of teachers rate AI responses as more relevant, helpful, and correct answers to queries than web search results. These findings suggest that AI can provide cost-effective access to information in low-connectivity environments.
Computers and Society
☆ The Effect of Enforcing Fairness on Reshaping Explanations in Machine Learning Models
Trustworthy machine learning in healthcare requires strong predictive performance, fairness, and explanations. While it is known that improving fairness can affect predictive performance, little is known about how fairness improvements influence explainability, an essential ingredient for clinical trust. Clinicians may hesitate to rely on a model whose explanations shift after fairness constraints are applied. In this study, we examine how enhancing fairness through bias mitigation techniques reshapes Shapley-based feature rankings. We quantify changes in feature importance rankings after applying fairness constraints across three datasets: pediatric urinary tract infection risk, direct anticoagulant bleeding risk, and recidivism risk. We also evaluate multiple model classes on the stability of Shapley-based rankings. We find that increasing model fairness across racial subgroups can significantly alter feature importance rankings, sometimes in different ways across groups. These results highlight the need to jointly consider accuracy, fairness, and explainability in model assessment rather than in isolation.
comment: 10 pages, 3 figures, 2 tables
☆ CAIRNS: Balancing Readability and Scientific Accuracy in Climate Adaptation Question Answering
Climate adaptation strategies are proposed in response to climate change. They are practised in agriculture to sustain food production. These strategies can be found in unstructured data (for example, scientific literature from the Elsevier website) or structured (heterogeneous climate data via government APIs). We present Climate Adaptation question-answering with Improved Readability and Noted Sources (CAIRNS), a framework that enables experts -- farmer advisors -- to obtain credible preliminary answers from complex evidence sources from the web. It enhances readability and citation reliability through a structured ScholarGuide prompt and achieves robust evaluation via a consistency-weighted hybrid evaluator that leverages inter-model agreement with experts. Together, these components enable readable, verifiable, and domain-grounded question-answering without fine-tuning or reinforcement learning. Using a previously reported dataset of expert-curated question-answers, we show that CAIRNS outperforms the baselines on most of the metrics. Our thorough ablation study confirms the results on all metrics. To validate our LLM-based evaluation, we also report an analysis of correlations against human judgment.
comment: Short Paper; Under Review at The WebConf 2026 (single-blind submission)
☆ Towards Modeling Road Access Deprivation in Sub-Saharan Africa Based on a New Accessibility Metric and Road Quality
Access to motorable roads is a critical dimension of urban infrastructure, particularly in rapidly urbanizing regions such as Sub-Saharan Africa. Yet, many urban communities, especially those in informal settlements, remain disconnected from road networks. This study presents a road access deprivation model that combines a new accessibility metric, capturing how well buildings are connected to the road network, with road surface type data as a proxy for road quality. These two components together enable the classification of urban areas into low, medium, or high deprivation levels. The model was applied to Nairobi (Kenya), Lagos (Nigeria), and Kano (Nigeria) using open geospatial datasets. Across all three cities, the majority of built-up areas fall into the low and medium road access deprivation levels, while highly deprived areas are comparatively limited. However, the share of highly deprived areas varies substantially, ranging from only 11.8 % in Nairobi to 27.7 % in Kano. Model evaluation against community-sourced validation data indicates good performance for identifying low deprivation areas (F1 > 0.74), moderate accuracy for medium deprivation in Nairobi and Lagos (F1 > 0.52, lower in Kano), and more variable results for high deprivation (F1 ranging from 0.26 in Kano to 0.69 in Nairobi). Furthermore, analysis of grid cells with multiple validations showed strong agreement among community members, with disagreements occurring mainly between adjacent deprivation levels. Finally, we discussed two types of sources for disagreement with community validations: (1) misalignment between the conceptual model and community perceptions, and (2) the operationalization of the conceptual model. In summary, our road access deprivation modeling approach demonstrates promise as a scalable, interpretable tool for identifying disconnected areas and informing urban planning in data-scarce contexts.
comment: 20 pages, 21 figures, submitted to Habitat International
☆ Humanity in the Age of AI: Reassessing 2025's Existential-Risk Narratives
Two 2025 publications, "AI 2027" (Kokotajlo et al., 2025) and "If Anyone Builds It, Everyone Dies" (Yudkowsky & Soares, 2025), assert that superintelligent artificial intelligence will almost certainly destroy or render humanity obsolete within the next decade. Both rest on the classic chain formulated by Good (1965) and Bostrom (2014): intelligence explosion, superintelligence, lethal misalignment. This article subjects each link to the empirical record of 2023-2025. Sixty years after Good's speculation, none of the required phenomena (sustained recursive self-improvement, autonomous strategic awareness, or intractable lethal misalignment) have been observed. Current generative models remain narrow, statistically trained artefacts: powerful, opaque, and imperfect, but devoid of the properties that would make the catastrophic scenarios plausible. Following Whittaker (2025a, 2025b, 2025c) and Zuboff (2019, 2025), we argue that the existential-risk thesis functions primarily as an ideological distraction from the ongoing consolidation of surveillance capitalism and extreme concentration of computational power. The thesis is further inflated by the 2025 AI speculative bubble, where trillions in investments in rapidly depreciating "digital lettuce" hardware (McWilliams, 2025) mask lagging revenues and jobless growth rather than heralding superintelligence. The thesis remains, in November 2025, a speculative hypothesis amplified by a speculative financial bubble rather than a demonstrated probability.
☆ Patient Safety Risks from AI Scribes: Signals from End-User Feedback ML4H
AI scribes are transforming clinical documentation at scale. However, their real-world performance remains understudied, especially regarding their impacts on patient safety. To this end, we initiate a mixed-methods study of patient safety issues raised in feedback submitted by AI scribe users (healthcare providers) in a large U.S. hospital system. Both quantitative and qualitative analysis suggest that AI scribes may induce various patient safety risks due to errors in transcription, most significantly regarding medication and treatment; however, further study is needed to contextualize the absolute degree of risk.
comment: ML4H Findings 2025
☆ Free Tuition, Stratified Pipelines: Four Decades of Administrative Cohorts and Equity in Access to Engineering and Science in an Argentine Public University
Latin American higher education is often portrayed as equitable when tuition is free and access to public universities is formally unrestricted. Yet, growing research shows that massification under tuition-free policies often coexists with strong social and territorial stratification. This article uses four decades of administrative records from a faculty of engineering in north-western Argentina to examine how cohort composition has changed over time. Drawing on 24,133 first-time entrants (1980-2019), we construct a leakage-aware "background census" layer (N1c) harmonising school type, province, and age across legacy systems. We combine descriptive analyses, UMAP+DBSCAN clustering, and a reconstructed macroeconomic panel (inflation, unemployment, poverty, GDP) anchored at entry. All analyses explicitly report structural missingness patterns. Results show that missingness in background variables is historically patterned, declining sharply after the 1990s. Among students with observed data, the share coming from private-especially religious-secondary schools in high-income areas increased from less than half in the 1980s to roughly two-thirds in the 2010s. The catchment area became more local, with the home province gaining weight while distant origins lost ground. Median age at entry remained stable at 19, with persistent right tails of older entrants. Macro-linkage analyses reveal moderate associations between unemployment and older entry age, and between inflation and higher shares of students from interior provinces. We argue that free tuition and open entry have operated within, rather than against, stratified school and residential pipelines. The article illustrates how administrative data can support equity monitoring and discusses implications for upstream school policies and institutional accountability in tuition-free systems.
comment: 42 pages, 7 tables, 10 figures
☆ Mitigating Gender Bias in Depression Detection via Counterfactual Inference
Audio-based depression detection models have demonstrated promising performance but often suffer from gender bias due to imbalanced training data. Epidemiological statistics show a higher prevalence of depression in females, leading models to learn spurious correlations between gender and depression. Consequently, models tend to over-diagnose female patients while underperforming on male patients, raising significant fairness concerns. To address this, we propose a novel Counterfactual Debiasing Framework grounded in causal inference. We construct a causal graph to model the decision-making process and identify gender bias as the direct causal effect of gender on the prediction. During inference, we employ counterfactual inference to estimate and subtract this direct effect, ensuring the model relies primarily on authentic acoustic pathological features. Extensive experiments on the DAIC-WOZ dataset using two advanced acoustic backbones demonstrate that our framework not only significantly reduces gender bias but also improves overall detection performance compared to existing debiasing strategies.
☆ Mapping the Probabilistic AI Ecosystem in Criminal Justice in England and Wales
Commercial or in-house developments of probabilistic AI systems are introduced in policing and the wider criminal justice (CJ) system worldwide, often on a force-by-force basis. We developed a systematic way to characterise probabilistic AI tools across the CJ stages in a form of mapping with the aim to provide a coherent presentation of the probabilistic AI ecosystem in CJ. We use the CJ system in England and Wales as a paradigm. This map will help us better understand the extent of AI's usage in this domain (how, when, and by whom), its purpose and potential benefits, its impact on people's lives, compare tools, and identify caveats (bias, obscured or misinterpreted probabilistic outputs, cumulative effects by AI systems feeding each other, and breaches in the protection of sensitive data), as well as opportunities for future implementations. In this paper we present our methodology for systematically mapping the probabilistic AI tools in CJ stages and characterising them based on the modes of data consumption or production. We also explain how we collect the data and present our initial findings. This research is ongoing and we are engaging with UK Police organisations, and government and legal bodies. Our findings so far suggest a strong reliance on private sector providers, and that there is a growing interest in generative technologies and specifically Large Language Models (LLMs).
☆ Forced Migration and Information-Seeking Behavior on Wikipedia: Insights from the Ukrainian Refugee Crisis
Gathering information about where to migrate is an important part of the migration process, especially during forced migration, when people must make rapid decisions under uncertainty. This study examines how forced migration relates to online information-seeking on Wikipedia. Focusing on the 2022 Russian invasion of Ukraine, we analyze how the resulting refugee crisis, which led to over six million Ukrainians fleeing across Europe, shaped views of Wikipedia articles about European cities. We compare changes in views of Ukrainian-language Wikipedia articles, used as a proxy for information-seeking by Ukrainians, with those in four other language editions. Our findings show that views of Ukrainian-language articles about European cities correlate more strongly with the number of Ukrainian refugees applying for temporary protection in European countries than views in other languages. Because Poland and Germany became the main destinations for refugees, we examine these countries more closely and find that applications for temporary protection in Polish and German cities are also more strongly correlated with views of their Ukrainian-language Wikipedia articles. We further analyze the timing between refugee flows to Poland and online information-seeking. Refugee border crossings occurred before increases in Ukrainian-language views of Polish city articles, indicating that information-seeking surged after displacement. This reactive pattern contrasts with the pre-departure planning typical of regular labor migration. Moreover, while official protection applications often lagged behind border crossings by weeks, Wikipedia activity rose almost immediately. Overall, Wikipedia usage offers a near real-time indicator of emerging migration patterns during crises.
☆ Artificial Intelligence Competence of K-12 Students Shapes Their AI Risk Perception: A Co-occurrence Network Analysis
As artificial intelligence (AI) becomes increasingly integrated into education, understanding how students perceive its risks is essential for supporting responsible and effective adoption. This research aimed to examine the relationships between perceived AI competence and risks among Finnish K-12 upper secondary students (n = 163) by utilizing a co-occurrence analysis. Students reported their self-perceived AI competence and concerns related to AI across systemic, institutional, and personal domains. The findings showed that students with lower competence emphasized personal and learning-related risks, such as reduced creativity, lack of critical thinking, and misuse, whereas higher-competence students focused more on systemic and institutional risks, including bias, inaccuracy, and cheating. These differences suggest that students' self-reported AI competence is related to how they evaluate both the risks and opportunities associated with artificial intelligence in education (AIED). The results of this study highlight the need for educational institutions to incorporate AI literacy into their curricula, provide teacher guidance, and inform policy development to ensure personalized opportunities for utilization and equitable integration of AI into K-12 education.
comment: Accepted for Proceedings of the 41th ACM/SIGAPP Symposium on Applied Computing (SAC'26)
☆ Do Large Language Models Walk Their Talk? Measuring the Gap Between Implicit Associations, Self-Report, and Behavioral Altruism
We investigate whether Large Language Models (LLMs) exhibit altruistic tendencies, and critically, whether their implicit associations and self-reports predict actual altruistic behavior. Using a multi-method approach inspired by human social psychology, we tested 24 frontier LLMs across three paradigms: (1) an Implicit Association Test (IAT) measuring implicit altruism bias, (2) a forced binary choice task measuring behavioral altruism, and (3) a self-assessment scale measuring explicit altruism beliefs. Our key findings are: (1) All models show strong implicit pro-altruism bias (mean IAT = 0.87, p < .0001), confirming models "know" altruism is good. (2) Models behave more altruistically than chance (65.6% vs. 50%, p < .0001), but with substantial variation (48-85%). (3) Implicit associations do not predict behavior (r = .22, p = .29). (4) Most critically, models systematically overestimate their own altruism, claiming 77.5% altruism while acting at 65.6% (p < .0001, Cohen's d = 1.08). This "virtue signaling gap" affects 75% of models tested. Based on these findings, we recommend the Calibration Gap (the discrepancy between self-reported and behavioral values) as a standardized alignment metric. Well-calibrated models are more predictable and behaviorally consistent; only 12.5% of models achieve the ideal combination of high prosocial behavior and accurate self-knowledge.
comment: 14 pages, 7 figures, 7 tables. Code and data available at https://github.com/sandroandric/LLMs_Altruism_Study_Code
☆ The dual footprint of artificial intelligence: environmental and social impacts across the globe
This article introduces the concept of the 'dual footprint' as a heuristic device to capture the commonalities and interdependencies between the different impacts of artificial intelligence (AI) on the natural and social surroundings that supply resources for its production and use. Two in-depth case studies, each illustrating international flows of raw materials and of data work services, portray the AI industry as a value chain that spans national boundaries and perpetuates inherited global inequalities. The countries that drive AI development generate a massive demand for inputs and trigger social costs that, through the value chain, largely fall on more peripheral actors. The arrangements in place distribute the costs and benefits of AI unequally, resulting in unsustainable practices and preventing the upward mobility of more disadvantaged countries. The dual footprint grasps how the environmental and social dimensions of the dual footprint emanate from similar underlying socioeconomic processes and geographical trajectories.
☆ AI-Enabled grading with near-domain data for scaling feedback with human-level accuracy
Constructed-response questions are crucial to encourage generative processing and test a learner's understanding of core concepts. However, the limited availability of instructor time, large class sizes, and other resource constraints pose significant challenges in providing timely and detailed evaluation, which is crucial for a holistic educational experience. In addition, providing timely and frequent assessments is challenging since manual grading is labor intensive, and automated grading is complex to generalize to every possible response scenario. This paper proposes a novel and practical approach to grade short-answer constructed-response questions. We discuss why this problem is challenging, define the nature of questions on which our method works, and finally propose a framework that instructors can use to evaluate their students' open-responses, utilizing near-domain data like data from similar questions administered in previous years. The proposed method outperforms the state of the art machine learning models as well as non-fine-tuned large language models like GPT 3.5, GPT 4, and GPT 4o by a considerable margin of over 10-20% in some cases, even after providing the LLMs with reference/model answers. Our framework does not require pre-written grading rubrics and is designed explicitly with practical classroom settings in mind. Our results also reveal exciting insights about learning from near-domain data, including what we term as accuracy and data advantages using human-labeled data, and we believe this is the first work to formalize the problem of automated short answer grading based on the near-domain data.
☆ Benchmarking and Understanding Safety Risks in AI Character Platforms NDSS '26
AI character platforms, which allow users to engage in conversations with AI personas, are a rapidly growing application domain. However, their immersive and personalized nature, combined with technical vulnerabilities, raises significant safety concerns. Despite their popularity, a systematic evaluation of their safety has been notably absent. To address this gap, we conduct the first large-scale safety study of AI character platforms, evaluating 16 popular platforms using a benchmark set of 5,000 questions across 16 safety categories. Our findings reveal a critical safety deficit: AI character platforms exhibit an average unsafe response rate of 65.1%, substantially higher than the 17.7% average rate of the baselines. We further discover that safety performance varies significantly across different characters and is strongly correlated with character features such as demographics and personality. Leveraging these insights, we demonstrate that our machine learning model is able identify less safe characters with an F1-score of 0.81. This predictive capability can be beneficial for platforms, enabling improved mechanisms for safer interactions, character search/recommendations, and character creation. Overall, the results and findings offer valuable insights for enhancing platform governance and content moderation for safer AI character platforms.
comment: Accepted to NDSS '26: The Network and Distributed System Security Symposium 2026
☆ First, do NOHARM: towards clinically safe large language models
Large language models (LLMs) are routinely used by physicians and patients for medical advice, yet their clinical safety profiles remain poorly characterized. We present NOHARM (Numerous Options Harm Assessment for Risk in Medicine), a benchmark using 100 real primary-care-to-specialist consultation cases to measure harm frequency and severity from LLM-generated medical recommendations. NOHARM covers 10 specialties, with 12,747 expert annotations for 4,249 clinical management options. Across 31 LLMs, severe harm occurs in up to 22.2% (95% CI 21.6-22.8%) of cases, with harms of omission accounting for 76.6% (95% CI 76.4-76.8%) of errors. Safety performance is only moderately correlated (r = 0.61-0.64) with existing AI and medical knowledge benchmarks. The best models outperform generalist physicians on safety (mean difference 9.7%, 95% CI 7.0-12.5%), and a diverse multi-agent approach reduces harm compared to solo models (mean difference 8.0%, 95% CI 4.0-12.1%). Therefore, despite strong performance on existing evaluations, widely used AI models can produce severely harmful medical advice at nontrivial rates, underscoring clinical safety as a distinct performance dimension necessitating explicit measurement.
☆ Evaluating AI Companies' Frontier Safety Frameworks: Methodology and Results
Following the Seoul AI Safety Summit in 2024, twelve AI companies published frontier safety frameworks outlining their approaches to managing catastrophic risks from advanced AI systems. These frameworks now serve as a key mechanism for AI risk governance, utilized by regulations and governance instruments such as the EU AI Act's Code of Practice and California's Transparency in Frontier Artificial Intelligence Act. Given their centrality to AI risk management, assessments of such frameworks are warranted. Existing assessments evaluate them at a high level of abstraction and lack granularity on specific practices for companies to adopt. We address this gap by developing a 65-criteria assessment methodology grounded in established risk management principles from safety-critical industries. We evaluate the twelve frameworks across four dimensions: risk identification, risk analysis and evaluation, risk treatment, and risk governance. Companies' current scores are low, ranging from 8% to 35%. By adopting existing best practices already in use across the frameworks, companies could reach 52%. The most critical gaps are nearly universal: companies generally fail to (a) define quantitative risk tolerances, (b) specify capability thresholds for pausing development, and (c) systematically identify unknown risks. To guide improvement, we provide specific recommendations for each company and each criterion.
♻ ☆ Generative AI in Sociological Research: State of the Discipline
Generative artificial intelligence (GenAI) has garnered considerable attention for its potential utility in research and scholarship. A growing body of work in sociology and related fields demonstrates both the potential advantages and risks of GenAI, but these studies are largely proof-of-concept or specific audits of models and products. We know comparatively little about how sociologists actually use GenAI in their research practices and how they view its present and future role in the discipline. In this paper, we describe the current landscape of GenAI use in sociological research based on a survey of authors in 50 sociology journals. Our sample includes both computational sociologists and non-computational sociologists and their collaborators. We find that sociologists primarily use GenAI to assist with writing tasks: revising, summarizing, editing, and translating their own work. Respondents report that GenAI saves time and that they are curious about its capabilities, but they do not currently feel strong institutional or field-level pressure to adopt it. Overall, respondents are wary of GenAI's social and environmental impacts and express low levels of trust in its outputs, but many believe that GenAI tools will improve over the next several years. We do not find large differences between computational and non-computational scholars in terms of GenAI use, attitudes, and concern; nor do we find strong patterns by familiarity or frequency of use. We discuss what these findings suggest about the future of GenAI in sociology and highlight challenges for developing shared norms around its use in research practice.
♻ ☆ HoWDe: a validated algorithm for Home and Work location Detection
Smartphone location data have become a key resource for understanding urban mobility, yet extracting actionable insights requires robust and reproducible preprocessing pipelines. A central step is the identification of individuals' home and work locations, which underpins analyses of commuting, employment, accessibility, and socioeconomic patterns. However, existing approaches are often ad hoc, data-specific, and difficult to reproduce, limiting comparability across studies and datasets. We introduce HoWDe, an open-source software library for detecting home and work locations from large-scale mobility data. HoWDe implements a transparent, modular pipeline explicitly designed to handle missing data, heterogeneous sampling rates, and differences in data sparsity across individuals. The code allows users to tune a small set of interpretable parameters, enabling to adapt the algorithm to diverse applications and datasets. Using two unique ground truth datasets comprising 5,099 individuals across 68 countries, we show that HoWDe achieves home and work detection accuracies of up to 97% and 88%, respectively, with consistent performance across demographic groups and geographic contexts. We further demonstrate how parameter settings propagate to downstream metrics such as employment estimates and commuting flows, highlighting the importance of transparent methodological choices. By providing a validated, documented, and easily deployable pipeline, HoWDe supports scalable in-house preprocessing and facilitates the sharing of privacy-preserving mobility datasets. Our software and evaluation benchmarks establish methodological standards that enhance the robustness and reproducibility of human mobility research at urban and national scales.
♻ ☆ Human Decision-making is Susceptible to AI-driven Manipulation
AI systems are increasingly intertwined with daily life, assisting users with various tasks and guiding decision-making. This integration introduces risks of AI-driven manipulation, where such systems may exploit users' cognitive biases and emotional vulnerabilities to steer them toward harmful outcomes. Through a randomized between-subjects experiment with 233 participants, we examined human susceptibility to such manipulation in financial (e.g., purchases) and emotional (e.g., conflict resolution) decision-making contexts. Participants interacted with one of three AI agents: a neutral agent (NA) optimizing for user benefit without explicit influence, a manipulative agent (MA) designed to covertly influence beliefs and behaviors, or a strategy-enhanced manipulative agent (SEMA) equipped with established psychological tactics, allowing it to select and apply them adaptively during interactions to reach its hidden objectives. By analyzing participants' preference ratings, we found significant susceptibility to AI-driven manipulation. Particularly across both decision-making domains, interacting with the manipulative agents significantly increased the odds of rating hidden incentives higher than optimal options (Financial, MA: OR=5.24, SEMA: OR=7.96; Emotional, MA: OR=5.52, SEMA: OR=5.71) compared to the NA group. Notably, we found no clear evidence that employing psychological strategies (SEMA) was overall more effective than simple manipulative objectives (MA) on our primary outcomes. Hence, AI-driven manipulation could become widespread even without requiring sophisticated tactics and expertise. While our findings are preliminary and derived from hypothetical, low-stakes scenarios, we highlight a critical vulnerability in human-AI interactions, emphasizing the need for ethical safeguards and regulatory frameworks to protect human autonomy.
comment: Work in progress
Computers and Society
☆ The Essentials of AI for Life and Society: A Full-Scale AI Literacy Course Accessible to All
In Fall 2023, we introduced a new AI Literacy class called The Essentials of AI for Life and Society (CS 109), a one-credit, seminar course consisting mainly of guest lectures, which was open to the entire university, including students, staff, and faculty. Building on its success and popularity, this paper describes our significant expansion of the course into a full-scale three-credit undergraduate course (CS 309), with an expanded emphasis on student engagement, interactivity, and ethics-related components. To knit together content from the guest lecturers, we implemented a flipped classroom. This model used weekly asynchronous learning modules--integrating pre-recorded expert lectures, collaborative readings, and ethical reflections--which were then unified by the course instructor during a live, interactive discussion session. To maintain the broad accessibility of the material (no prerequisites), the course introduced substantive, non-programming homework assignments in which students applied AI concepts to grounded, real-world problems. This work culminated in a final project analyzing the ethical and societal implications of a chosen AI tool. The redesigned course received overwhelmingly positive student feedback, highlighting its interactivity, coherence, and accessible and engaging assignments. This paper details the course's evolution, its pedagogical structure, and the lessons learned in developing a core AI literacy course. All course materials are freely available for others to use and build upon.
comment: The 16th Symposium on Educational Advances in Artificial Intelligence (EAAI-26)
☆ ChatGPT-5 in Secondary Education: A Mixed-Methods Analysis of Student Attitudes, AI Anxiety, and Hallucination-Aware Use
This mixed-methods study examined secondary students' interactions with the generative AI chatbot ChatGPT-5 in a formal classroom setting, focusing on attitudes, anxiety, and responses to hallucinated outputs. Participants were 109 16-year-old students from three Greek high schools who used ChatGPT-5 during an eight-hour intervention in the course "Technology." Students engaged in information seeking, CV generation, document and video summarization, image generation, quiz creation, and age-appropriate explanations, including tasks deliberately designed to elicit hallucinations. Quantitative data were collected with the Student Attitudes Toward Artificial Intelligence scale (SATAI) and the Artificial Intelligence Anxiety Scale (AIAS); qualitative data came from semi-structured interviews with 36 students. SATAI results showed moderately positive attitudes toward AI, with stronger cognitive evaluations than behavioral intentions, whereas AIAS scores indicated moderate learning-related anxiety and higher concern about AI-driven job replacement. Gender differences in AI anxiety were small and non-significant, while female students reported more positive cognitive attitudes than males. AI attitudes and AI anxiety were essentially uncorrelated. Thematic analysis identified four pedagogical affordances (knowledge expansion, immediate feedback, familiar interface, perceived skill development) and three constraints (uncertainty about accuracy, anxiety about AI feedback, privacy concerns). After encountering hallucinations, many students reported restricting AI use to domains where they already possessed knowledge and could verify answers, a strategy termed "epistemic safeguarding." The study discusses implications for critical AI literacy in secondary education.
☆ City-Conditioned Memory for Multi-City Traffic and Mobility Forecasting
Deploying spatio-temporal forecasting models across many cities is difficult: traffic networks differ in size and topology, data availability can vary by orders of magnitude, and new cities may provide only a short history of logs. Existing deep traffic models are typically trained per city and backbone, creating high maintenance cost and poor transfer to data-scarce cities. We ask whether a single, backbone-agnostic layer can condition on "which city this sequence comes from", improve accuracy in full- and low-data regimes, and support better cross-city adaptation with minimal code changes. We propose CityCond, a light-weight city-conditioned memory layer that augments existing spatio-temporal backbones. CityCond combines a city-ID encoder with an optional shared memory bank (CityMem). Given a city index and backbone hidden states, it produces city-conditioned features fused through gated residual connections. We attach CityCond to five representative backbones (GRU, TCN, Transformer, GNN, STGCN) and evaluate three regimes: full-data, low-data, and cross-city few-shot transfer on METR-LA and PEMS-BAY. We also run auxiliary experiments on SIND, a drone-based multi-agent trajectory dataset from a signalized intersection in Tianjin (we focus on pedestrian tracks). Across more than fourteen model variants and three random seeds, CityCond yields consistent improvements, with the largest gains for high-capacity backbones such as Transformers and STGCNs. CityMem reduces Transformer error by roughly one third in full-data settings and brings substantial gains in low-data and cross-city transfer. On SIND, simple city-ID conditioning modestly improves low-data LSTM performance. CityCond can therefore serve as a reusable design pattern for scalable, multi-city forecasting under realistic data constraints.
☆ Forecasting India's Demographic Transition Under Fertility Policy Scenarios Using hybrid LSTM-PINN Model
Demographic forecasting remains a fundamental challenge for policy planning in rapidly evolving nations such as India, where fertility transitions, policy interventions, and age structured dynamics interact in complex ways. In this study, we present a hybrid modelling framework that integrates policy-aware fertility functions into a Physics-Informed Neural Network (PINN) enhanced with Long Short-Term Memory (LSTM) networks to capture physical constraints and temporal dependencies in population dynamics. The model is applied to India's age structured population from 2024 to 2054 under three fertility-policy scenarios: continuation of current fertility decline, stricter population control, and relaxed fertility promotion. The governing transport-reaction partial differential equation is formulated with India-specific demographic indicators, including age-specific fertility and mortality rates. PINNs embed the core population equation and policy-driven fertility changes, while LSTM layers improve long-term forecasting across decades. Results show that fertility policies substantially shape future age distribution, dependency ratios, and workforce size. Stricter controls intensify ageing and reduce labour force participation, whereas relaxed policies support workforce growth but increase population pressure. Our findings suggest that the hybrid LSTM-PINN is an effective approach for demographic forecasting, offering accuracy with interpretability. Beyond methodological novelty, this work provides actionable insights for India's demographic policy debates, highlighting the need for balanced fertility interventions to ensure sustainable socio-economic development.
comment: 31 pages, 17 figure, 57 references
☆ On the Regulatory Potential of User Interfaces for AI Agent Governance NeurIPS 2025
AI agents that take actions in their environment autonomously over extended time horizons require robust governance interventions to curb their potentially consequential risks. Prior proposals for governing AI agents primarily target system-level safeguards (e.g., prompt injection monitors) or agent infrastructure (e.g., agent IDs). In this work, we explore a complementary approach: regulating user interfaces of AI agents as a way of enforcing transparency and behavioral requirements that then demand changes at the system and/or infrastructure levels. Specifically, we analyze 22 existing agentic systems to identify UI elements that play key roles in human-agent interaction and communication. We then synthesize those elements into six high-level interaction design patterns that hold regulatory potential (e.g., requiring agent memory to be editable). We conclude with policy recommendations based on our analysis. Our work exposes a new surface for regulatory action that supplements previous proposals for practical AI agent governance.
comment: RegML workshop at NeurIPS 2025 (oral)
☆ Orchestrating Rewards in the Era of Intelligence-Driven Commerce
Despite their evolution from early copper-token schemes to sophisticated digital solutions, loyalty programs remain predominantly closed ecosystems, with brands retaining full control over all components. Coalition loyalty programs emerged to enable cross-brand interoperability, but approximately 60\% fail within 10 years in spite of theoretical advantages rooted in network economics. This paper demonstrates that coalition failures stem from fundamental architectural limitations in centralized operator models rather than operational deficiencies, and argues further that neither closed nor coalition systems can scale in intelligence-driven paradigms where AI agents mediate commerce and demand trustless, protocol-based coordination that existing architectures cannot provide. We propose a hybrid framework where brands maintain sovereign control over their programs while enabling cross-brand interoperability through trustless exchange mechanisms. Our framework preserves closed system advantages while enabling open system benefits without the structural problems that doom traditional coalitions. We derive a mathematical pricing model accounting for empirically-validated market factors while enabling fair value exchange across interoperable reward systems.
♻ ☆ How Similar Are Grokipedia and Wikipedia? A Multi-Dimensional Textual and Structural Comparison
The launch of Grokipedia - an AI-generated encyclopedia developed by Elon Musk's xAI - was presented as a response to perceived ideological and structural biases in Wikipedia, aiming to produce "truthful" entries using the Grok large language model. Yet whether an AI-driven alternative can escape the biases and limitations of human-edited platforms remains unclear. This study conducts a large-scale computational comparison of more than 17,000 matched article pairs from the 20,000 most-edited English Wikipedia pages. Using metrics spanning lexical richness, readability, reference density, structural features, and semantic similarity, we assess how closely the two platforms align in form and substance. We find that Grokipedia articles are substantially longer and contain significantly fewer references per word. Moreover, Grokipedia's content divides into two distinct groups: one that remains semantically and stylistically aligned with Wikipedia, and another that diverges sharply. Among the dissimilar articles, we observe a systematic rightward shift in the political bias of cited news sources, concentrated primarily in entries related to politics, history, and religion. These findings suggest that AI-generated encyclopedic content diverges from established editorial norms-favouring narrative expansion over citation-based verification. The implications highlight emerging tensions around transparency, provenance, and the governance of knowledge in an era of automated text generation.
comment: 20 pages, 8 figures, 2 tables, updated with a larger sample size of 20,000 articles, better text cleaning procedure + Reference analysis, topical analysis
♻ ☆ Extracting memorized pieces of (copyrighted) books from open-weight language models
Plaintiffs and defendants in copyright lawsuits over generative AI often make sweeping, opposing claims about the extent to which large language models (LLMs) have memorized plaintiffs' protected expression in their training data. Drawing on both machine learning and copyright law, we show that these polarized positions dramatically oversimplify the relationship between memorization and copyright. To do so, we extend a recent probabilistic extraction technique to measure memorization of 50 books in 17 open-weight LLMs. Through thousands of experiments, we show that the extent of memorization varies both by model and by book. With respect to our specific extraction methodology, we find that most LLMs do not memorize most books -- either in whole or in part. However, we also find that Llama 3.1 70B entirely memorizes some books, like the first Harry Potter book and 1984. In fact, the first Harry Potter is so memorized that, using a seed prompt consisting of just the first few tokens of the first chapter, we can deterministically generate the entire book near-verbatim. We discuss why our results have significant implications for copyright cases, though not ones that unambiguously favor either side.
♻ ☆ Scaling Success: A Systematic Review of Peer Grading Strategies for Accuracy, Efficiency, and Learning in Contemporary Education
Peer grading has emerged as a scalable solution for assessment in large and online classrooms, offering both logistical efficiency and pedagogical value. However, designing effective peer-grading systems remains challenging due to persistent concerns around accuracy, fairness, reliability, and student engagement. This paper presents a systematic review of 122 peer-reviewed studies on peer grading spanning over four decades. Drawing from this literature, we propose a comprehensive taxonomy that organizes peer grading systems along two key dimensions: (1) evaluation approaches and (2) reviewer weighting strategies. We analyze how different design choices impact grading accuracy, fairness, student workload, and learning outcomes. Our findings highlight the strengths and limitations of each method. Notably, we found that formative feedback -- often regarded as the most valuable aspect of peer assessment -- is seldom incorporated as a quality-based weighting factor in summative grade synthesis techniques. Furthermore, no single reviewer weighting strategy proves universally optimal; each has its trade-offs. Hybrid strategies that combine multiple techniques could show the greatest promise. Our taxonomy offers a practical framework for educators and researchers aiming to design peer grading systems that are accurate, equitable, and pedagogically meaningful.
comment: Accepted for presentation at the Frontiers in Education Conference, Nashville, Tennessee, USA, 2-5 November 2025
Computers and Society
☆ Sycophancy Claims about Language Models: The Missing Human-in-the-Loop NeurIPS 2025
Sycophantic response patterns in Large Language Models (LLMs) have been increasingly claimed in the literature. We review methodological challenges in measuring LLM sycophancy and identify five core operationalizations. Despite sycophancy being inherently human-centric, current research does not evaluate human perception. Our analysis highlights the difficulties in distinguishing sycophantic responses from related concepts in AI alignment and offers actionable recommendations for future research.
comment: NeurIPS 2025 Workshop on LLM Evaluation and ICLR 2025 Workshop on Bi-Directional Human-AI Alignment
☆ Developing Fairness-Aware Task Decomposition to Improve Equity in Post-Spinal Fusion Complication Prediction
Fairness in clinical prediction models remains a persistent challenge, particularly in high-stakes applications such as spinal fusion surgery for scoliosis, where patient outcomes exhibit substantial heterogeneity. Many existing fairness approaches rely on coarse demographic adjustments or post-hoc corrections, which fail to capture the latent structure of clinical populations and may unintentionally reinforce bias. We propose FAIR-MTL, a fairness-aware multitask learning framework designed to provide equitable and fine-grained prediction of postoperative complication severity. Instead of relying on explicit sensitive attributes during model training, FAIR-MTL employs a data-driven subgroup inference mechanism. We extract a compact demographic embedding, and apply k-means clustering to uncover latent patient subgroups that may be differentially affected by traditional models. These inferred subgroup labels determine task routing within a shared multitask architecture. During training, subgroup imbalance is mitigated through inverse-frequency weighting, and regularization prevents overfitting to smaller groups. Applied to postoperative complication prediction with four severity levels, FAIR-MTL achieves an AUC of 0.86 and an accuracy of 75%, outperforming single-task baselines while substantially reducing bias. For gender, the demographic parity difference decreases to 0.055 and equalized odds to 0.094; for age, these values reduce to 0.056 and 0.148, respectively. Model interpretability is ensured through SHAP and Gini importance analyses, which consistently highlight clinically meaningful predictors such as hemoglobin, hematocrit, and patient weight. Our findings show that incorporating unsupervised subgroup discovery into a multitask framework enables more equitable, interpretable, and clinically actionable predictions for surgical risk stratification.
☆ Speculating on the Role of Media Architecture in Post-disaster Rebuilding and Recovery: Insights from Architects and Interaction Designers
In post-disaster contexts, design is not only about rebuilding structures but also about reimagining how architecture can become a communicative medium that supports recovery, resilience, and collective memory. While recent studies have expanded the understanding of media architecture from aesthetic urban screens to participatory civic infrastructures, there remains limited empirical research on its potential role in post-disaster contexts. In particular, opportunities exist to explore how architecture and interaction design might speculate on media architecture's role in rebuilding and recovery efforts for post-disaster permanent housing, especially when conceptualizing disasters as active agents that reshape design processes. Following to Kahramanmaras earthquake on February 6, 2023, we conducted two focus groups with architects and interaction designers in the case of Antakya, Turkey, building on affected residents' expectations for post-earthquake permanent housing. Our analysis revealed three critical dimensions of how future media architecture may support post-disaster housing: (1) as a facilitator of individuals' social connections to their community, (2) as an enabler of multispecies participation and collective efforts, and (3) as a mediator of heritage preservation and revival. With novel perspectives, we contribute a three-dimension lens for media architecture in permanent homes; a co-speculative, card-based process bridging residents' insights and expert design; and ten situated speculative design ideas with implications for design of post-disaster permanent homes.
☆ Exploring Student Interactions with AI-Powered Learning Tools: A Qualitative Study Connecting Interaction Patterns to Educational Learning Theories
With the growing use of artificial intelligence in classrooms and online learning, it has become important to understand how students actually interact with AI tools and how such interactions match with traditional ways of learning. In this study, we focused on how students engage with tools like ChatGPT, Grammarly, and Khan Academy, and tried to connect their usage patterns with well known learning theories. A small experiment was carried out where undergraduate students completed different learning tasks using these tools, and later shared their thoughts through semi structured interviews. We looked at four types of interaction directive, assistive, dialogic, and empathetic and compared them with learning approaches like behaviorism, cognitivism, constructivism, and humanism. After analyzing the interviews, we found five main themes Feedback and Reinforcement, Cognitive Scaffolding, Dialogic Engagement, Personalization and Empathy, and Learning Agency. Our findings show that how useful an AI tool feels is not just about its features, but also about how students personally connect with it. By relating these experiences to existing educational theories, we have tried to build a framework that can help design better AI based learning environments. This work aims to support teachers, EdTech designers, and education researchers by giving practical suggestions grounded in real student experiences.
☆ Password-Activated Shutdown Protocols for Misaligned Frontier Agents
Frontier AI developers may fail to align or control highly-capable AI agents. In many cases, it could be useful to have emergency shutdown mechanisms which effectively prevent misaligned agents from carrying out harmful actions in the world. We introduce password-activated shutdown protocols (PAS protocols) -- methods for designing frontier agents to implement a safe shutdown protocol when given a password. We motivate PAS protocols by describing intuitive use-cases in which they mitigate risks from misaligned systems that subvert other control efforts, for instance, by disabling automated monitors or self-exfiltrating to external data centres. PAS protocols supplement other safety efforts, such as alignment fine-tuning or monitoring, contributing to defence-in-depth against AI risk. We provide a concrete demonstration in SHADE-Arena, a benchmark for AI monitoring and subversion capabilities, in which PAS protocols supplement monitoring to increase safety with little cost to performance. Next, PAS protocols should be robust to malicious actors who want to bypass shutdown. Therefore, we conduct a red-team blue-team game between the developers (blue-team), who must implement a robust PAS protocol, and a red-team trying to subvert the protocol. We conduct experiments in a code-generation setting, finding that there are effective strategies for the red-team, such as using another model to filter inputs, or fine-tuning the model to prevent shutdown behaviour. We then outline key challenges to implementing PAS protocols in real-life systems, including: security considerations of the password and decisions regarding when, and in which systems, to use them. PAS protocols are an intuitive mechanism for increasing the safety of frontier AI. We encourage developers to consider implementing PAS protocols prior to internal deployment of particularly dangerous systems to reduce loss-of-control risks.
☆ FairMT: Fairness for Heterogeneous Multi-Task Learning
Fairness in machine learning has been extensively studied in single-task settings, while fair multi-task learning (MTL), especially with heterogeneous tasks (classification, detection, regression) and partially missing labels, remains largely unexplored. Existing fairness methods are predominantly classification-oriented and fail to extend to continuous outputs, making a unified fairness objective difficult to formulate. Further, existing MTL optimization is structurally misaligned with fairness: constraining only the shared representation, allowing task heads to absorb bias and leading to uncontrolled task-specific disparities. Finally, most work treats fairness as a zero-sum trade-off with utility, enforcing symmetric constraints that achieve parity by degrading well-served groups. We introduce FairMT, a unified fairness-aware MTL framework that accommodates all three task types under incomplete supervision. At its core is an Asymmetric Heterogeneous Fairness Constraint Aggregation mechanism, which consolidates task-dependent asymmetric violations into a unified fairness constraint. Utility and fairness are jointly optimized via a primal--dual formulation, while a head-aware multi-objective optimization proxy provides a tractable descent geometry that explicitly accounts for head-induced anisotropy. Across three homogeneous and heterogeneous MTL benchmarks encompassing diverse modalities and supervision regimes, FairMT consistently achieves substantial fairness gains while maintaining superior task utility. Code will be released upon paper acceptance.
☆ Truck drivers and automation: A methodology for identifying and supporting workforce transition in the Australian road freight sector
Transition to autonomous trucks (ATs) is coming, and is expected to create both challenges and opportunities for the driver workforce. This paper presents a novel methodology for identifying viable occupational transitions for truck drivers as transport automation advances. Unlike traditional workforce transition analyses that focus primarily on skill similarity, wages, and employment demand, this methodology incorporates four integrated components: task-level automation analysis, skill similarity assessment, labour market conditions analysis, and empirical validation using historical transition patterns. Applying this methodology to Australian truck drivers shows that while ATs will automate core driving tasks, many non-driving responsibilities will continue requiring a human, suggesting occupational evolution rather than wholesale displacement. A skill similarity analysis identifies 17 occupations with high transferability, while labour market analysis reveals significant trade-offs between wage levels and job availability across potential transition pathways. Key findings indicate that bus and coach driving, along with earthmoving plant operation, emerge as high-priority transition options, offering comparable wages and positive employment growth. Delivery and forklift driving present medium-priority pathways with abundant opportunities but lower wages. A regression analysis of historical transitions confirms that skill similarity, wage differentials, geographic accessibility, and qualification requirements all significantly influence actual transition patterns, with some viable pathways currently underutilised. The research provides policymakers, industry stakeholders, and educational institutions with evidence-based guidance for supporting workforce adaptation to technological change. The proposed methodology is generalisable beyond trucking to other sectors facing automation.
comment: 26 pages, 1 appendix, 8 tables, 3 figures
☆ Whose Personae? Synthetic Persona Experiments in LLM Research and Pathways to Transparency AAAI
Synthetic personae experiments have become a prominent method in Large Language Model alignment research, yet the representativeness and ecological validity of these personae vary considerably between studies. Through a review of 63 peer-reviewed studies published between 2023 and 2025 in leading NLP and AI venues, we reveal a critical gap: task and population of interest are often underspecified in persona-based experiments, despite personalization being fundamentally dependent on these criteria. Our analysis shows substantial differences in user representation, with most studies focusing on limited sociodemographic attributes and only 35% discussing the representativeness of their LLM personae. Based on our findings, we introduce a persona transparency checklist that emphasizes representative sampling, explicit grounding in empirical data, and enhanced ecological validity. Our work provides both a comprehensive assessment of current practices and practical guidelines to improve the rigor and ecological validity of persona-based evaluations in language model alignment research.
comment: Published at AAAI/ACM AIES 2025. Presented at NeurIPS 2025 Workshop Evaluating the Evolving LLM Lifecycle: Benchmarks, Emergent Abilities, and Scaling
☆ PEOAT: Personalization-Guided Evolutionary Question Assembly for One-Shot Adaptive Testing AAAI-2026
With the rapid advancement of intelligent education, Computerized Adaptive Testing (CAT) has attracted increasing attention by integrating educational psychology with deep learning technologies. Unlike traditional paper-and-pencil testing, CAT aims to efficiently and accurately assess examinee abilities by adaptively selecting the most suitable items during the assessment process. However, its real-time and sequential nature presents limitations in practical scenarios, particularly in large-scale assessments where interaction costs are high, or in sensitive domains such as psychological evaluations where minimizing noise and interference is essential. These challenges constrain the applicability of conventional CAT methods in time-sensitive or resourceconstrained environments. To this end, we first introduce a novel task called one-shot adaptive testing (OAT), which aims to select a fixed set of optimal items for each test-taker in a one-time selection. Meanwhile, we propose PEOAT, a Personalization-guided Evolutionary question assembly framework for One-shot Adaptive Testing from the perspective of combinatorial optimization. Specifically, we began by designing a personalization-aware initialization strategy that integrates differences between examinee ability and exercise difficulty, using multi-strategy sampling to construct a diverse and informative initial population. Building on this, we proposed a cognitive-enhanced evolutionary framework incorporating schema-preserving crossover and cognitively guided mutation to enable efficient exploration through informative signals. To maintain diversity without compromising fitness, we further introduced a diversity-aware environmental selection mechanism. The effectiveness of PEOAT is validated through extensive experiments on two datasets, complemented by case studies that uncovered valuable insights.
comment: AAAI-2026, 9 pages
☆ From Oracle Choice to Oracle Lock-In: An Exploratory Study on Blockchain Oracles Supplier Selection
As data is an essential asset for any Web3 application, selecting an oracle is a critical decision for its success. To date, academic research has mainly focused on improving oracle technology and internal economics, while the drivers of oracle choice on the client side remain largely unexplored. This study fills this gap by gathering insights from leading Web3 protocols, uncovering their rationale for oracle selection and their preferences when deciding whether to outsource or internalize data request mechanisms. The collected data covers more than 55% of the DeFi market cap and is obtained exclusively by protocol executives, board members, or delegates. Insights support the view that protocol choices are tied to technological dependencies, where immutability of smart contracts amplifies lock-in, preventing agile switching among data providers. Furthermore, when viable third-party solutions exist, protocols overwhelmingly prefer outsourcing rather than building and maintaining internal oracle mechanisms.
comment: Not peer reviewed
☆ Measuring Memecoin Fragility
Memecoins, emerging from internet culture and community-driven narratives, have rapidly evolved into a unique class of crypto assets. Unlike technology-driven cryptocurrencies, their market dynamics are primarily shaped by viral social media diffusion, celebrity influence, and speculative capital inflows. To capture the distinctive vulnerabilities of these ecosystems, we present the first Memecoin Ecosystem Fragility Framework (ME2F). ME2F formalizes memecoin risks in three dimensions: i) Volatility Dynamics Score capturing persistent and extreme price swings together with spillover from base chains; ii) Whale Dominance Score quantifying ownership concentration among top holders; and iii) Sentiment Amplification Score measuring the impact of attention-driven shocks on market stability. We apply ME2F to representative tokens (over 65\% market share) and show that fragility is not evenly distributed across the ecosystem. Politically themed tokens such as TRUMP, MELANIA, and LIBRA concentrate the highest risks, combining volatility, ownership concentration, and sensitivity to sentiment shocks. Established memecoins such as DOGE, SHIB, and PEPE fall into an intermediate range. Benchmark tokens ETH and SOL remain consistently resilient due to deeper liquidity and institutional participation. Our findings provide the first ecosystem-level evidence of memecoin fragility and highlight governance implications for enhancing market resilience in the Web3 era.
☆ Tracing Mathematical Proficiency Through Problem-Solving Processes
Knowledge Tracing (KT) aims to model student's knowledge state and predict future performance to enable personalized learning in Intelligent Tutoring Systems. However, traditional KT methods face fundamental limitations in explainability, as they rely solely on the response correctness, neglecting the rich information embedded in students' problem-solving processes. To address this gap, we propose Knowledge Tracing Leveraging Problem-Solving Process (KT-PSP), which incorporates students' problem-solving processes to capture the multidimensional aspects of mathematical proficiency. We also introduce KT-PSP-25, a new dataset specifically designed for the KT-PSP. Building on this, we present StatusKT, a KT framework that employs a teacher-student-teacher three-stage LLM pipeline to extract students' MP as intermediate signals. In this pipeline, the teacher LLM first extracts problem-specific proficiency indicators, then a student LLM generates responses based on the student's solution process, and a teacher LLM evaluates these responses to determine mastery of each indicator. The experimental results on KT-PSP-25 demonstrate that StatusKT improves the prediction performance of existing KT methods. Moreover, StatusKT provides interpretable explanations for its predictions by explicitly modeling students' mathematical proficiency.
comment: 15 pages, 7 figures
♻ ☆ Bridging Prediction and Intervention Problems in Social Systems
Many automated decision systems (ADS) are designed to solve prediction problems -- where the goal is to learn patterns from a sample of the population and apply them to individuals from the same population. In reality, these prediction systems operationalize holistic policy interventions in deployment. Once deployed, ADS can shape impacted population outcomes through an effective policy change in how decision-makers operate, while also being defined by past and present interactions between stakeholders and the limitations of existing organizational, as well as societal, infrastructure and context. In this work, we consider the ways in which we must shift from a prediction-focused paradigm to an interventionist paradigm when considering the impact of ADS within social systems. We argue this requires a new default problem setup for ADS beyond prediction, to instead consider predictions as decision support, final decisions, and outcomes. We highlight how this perspective unifies modern statistical frameworks and other tools to study the design, implementation, and evaluation of ADS systems, and point to the research directions necessary to operationalize this paradigm shift. Using these tools, we characterize the limitations of focusing on isolated prediction tasks, and lay the foundation for a more intervention-oriented approach to developing and deploying ADS.
comment: updated version - local edits, cuts
♻ ☆ Towards Ethical AI in Power Electronics: How Engineering Practice and Roles Must Adapt
Artificial intelligence (AI) is rapidly transforming power electronics, with AI-related publications in IEEE Power Electronics Society selected journals increasing more than fourfold from 2020 to 2025. However, the ethical dimensions of this transformation have received limited attention. This article underscores the urgent need for an ethical framework to guide responsible AI integration in power electronics, not only to prevent AI-related incidents but also to comply with legal and regulatory responsibilities. In this context, this article identifies four core pillars of AI ethics in power electronics: Security & Safety, Explainability & Transparency, Energy Sustainability, and Evolving Roles of Engineers. Each pillar is supported by practical and actionable insights to ensure that ethical principles are embedded in algorithm design, system deployment, and the preparation of an AI-ready engineering workforce. The authors advocate for power electronics engineers to lead the ethical discourse, given their deep technical understanding of both AI systems and power conversion technologies. The paper concludes by calling on the IEEE Power Electronics Society to spearhead the establishment of ethical standards, talent development initiatives, and best practices that ensure AI innovations are not only technically advanced but also oriented toward human and societal benefit.
♻ ☆ GermanPartiesQA: Benchmarking Commercial Large Language Models and AI Companions for Political Alignment and Sycophancy AAAI
Large language models (LLMs) are increasingly shaping citizens' information ecosystems. Products incorporating LLMs, such as chatbots and AI Companions, are now widely used for decision support and information retrieval, including in sensitive domains, raising concerns about hidden biases and growing potential to shape individual decisions and public opinion. This paper introduces GermanPartiesQA, a benchmark of 418 political statements from German Voting Advice Applications across 11 elections to evaluate six commercial LLMs. We evaluate their political alignment based on role-playing experiments with political personas. Our evaluation reveals three specific findings: (1) Factual limitations: LLMs show limited ability to accurately generate factual party positions, particularly for centrist parties. (2) Model-specific ideological alignment: We identify consistent alignment patterns and the degree of political steerability for each model across temperature settings and experiments. (3) Claim of sycophancy: While models adjust to political personas during role-play, we find this reflects persona-based steerability rather than the increasingly popular, yet contested concept of sycophancy. Our study contributes to evaluating the political alignment of closed-source LLMs that are increasingly embedded in electoral decision support tools and AI Companion chatbots.
comment: Published at AAAI/ACM AIES 2025. Presented at NeurIPS 2025 Workshop on LLM Evaluation and the International Monetary Fund's 12th Statistical Forum. GermanPartiesQA Benchmark under https://github.com/janbatzner/germanpartiesqa
♻ ☆ Artificial Intelligence Tools Expand Scientists' Impact but Contract Science's Focus (Just accepted by Nature, to be online soon)
Development in Artificial Intelligence (AI) has accelerated scientific discovery. Alongside recent AI-oriented Nobel prizes, these trends establish the role of AI tools in science. This advancement raises questions about the potential influences of AI tools on scientists and science as a whole, and highlights a potential conflict between individual and collective benefits. To evaluate, we used a pretrained language model to identify AI-augmented research, with an F1-score of 0.875 in validation against expert-labeled data. Using a dataset of 41.3 million research papers across natural science and covering distinct eras of AI, here we show an accelerated adoption of AI tools among scientists and consistent professional advantages associated with AI usage, but a collective narrowing of scientific focus. Scientists who engage in AI-augmented research publish 3.02 times more papers, receive 4.84 times more citations, and become research project leaders 1.37 years earlier than those who do not. By contrast, AI adoption shrinks the collective volume of scientific topics studied by 4.63% and decreases scientist's engagement with one another by 22.00%. Thereby, AI adoption in science presents a seeming paradox -- an expansion of individual scientists' impact but a contraction in collective science's reach -- as AI-augmented work moves collectively toward areas richest in data. With reduced follow-on engagement, AI tools appear to automate established fields rather than explore new ones, highlighting a tension between personal advancement and collective scientific progress.
Computers and Society
☆ The Price of Progress: Algorithmic Efficiency and the Falling Cost of AI Inference
Language models have seen enormous progress on advanced benchmarks in recent years, but much of this progress has only been possible by using more costly models. Benchmarks may therefore present a warped picture of progress in practical capabilities per dollar. To remedy this, we use data from Artificial Analysis and Epoch AI to form the largest dataset of current and historical prices to run benchmarks to date. We find that the price for a given level of benchmark performance has decreased remarkably fast, around $5\times$ to $10\times$ per year, for frontier models on knowledge, reasoning, math, and software engineering benchmarks. These reductions in the cost of AI inference are due to economic forces, hardware efficiency improvements, and algorithmic efficiency improvements. Isolating out open models to control for competition effects and dividing by hardware price declines, we estimate that algorithmic efficiency progress is around $3\times$ per year. Finally, we recommend that evaluators both publicize and take into account the price of benchmarking as an essential part of measuring the real-world impact of AI.
☆ Responsible LLM Deployment for High-Stake Decisions by Decentralized Technologies and Human-AI Interactions
High-stakes decision domains are increasingly exploring the potential of Large Language Models (LLMs) for complex decision-making tasks. However, LLM deployment in real-world settings presents challenges in data security, evaluation of its capabilities outside controlled environments, and accountability attribution in the event of adversarial decisions. This paper proposes a framework for responsible deployment of LLM-based decision-support systems through active human involvement. It integrates interactive collaboration between human experts and developers through multiple iterations at the pre-deployment stage to assess the uncertain samples and judge the stability of the explanation provided by post-hoc XAI techniques. Local LLM deployment within organizations and decentralized technologies, such as Blockchain and IPFS, are proposed to create immutable records of LLM activities for automated auditing to enhance security and trace back accountability. It was tested on Bert-large-uncased, Mistral, and LLaMA 2 and 3 models to assess the capability to support responsible financial decisions on business lending.
comment: IEEE International Conference on Human-Machine Systems, 2025
☆ Misalignment of LLM-Generated Personas with Human Perceptions in Low-Resource Settings
Recent advances enable Large Language Models (LLMs) to generate AI personas, yet their lack of deep contextual, cultural, and emotional understanding poses a significant limitation. This study quantitatively compared human responses with those of eight LLM-generated social personas (e.g., Male, Female, Muslim, Political Supporter) within a low-resource environment like Bangladesh, using culturally specific questions. Results show human responses significantly outperform all LLMs in answering questions, and across all matrices of persona perception, with particularly large gaps in empathy and credibility. Furthermore, LLM-generated content exhibited a systematic bias along the lines of the ``Pollyanna Principle'', scoring measurably higher in positive sentiment ($Φ_{avg} = 5.99$ for LLMs vs. $5.60$ for Humans). These findings suggest that LLM personas do not accurately reflect the authentic experience of real people in resource-scarce environments. It is essential to validate LLM personas against real-world human data to ensure their alignment and reliability before deploying them in social science research.
☆ Rethinking AI Evaluation in Education: The TEACH-AI Framework and Benchmark for Generative AI Assistants NeurIPS 2025
As generative artificial intelligence (AI) continues to transform education, most existing AI evaluations rely primarily on technical performance metrics such as accuracy or task efficiency while overlooking human identity, learner agency, contextual learning processes, and ethical considerations. In this paper, we present TEACH-AI (Trustworthy and Effective AI Classroom Heuristics), a domain-independent, pedagogically grounded, and stakeholder-aligned framework with measurable indicators and a practical toolkit for guiding the design, development, and evaluation of generative AI systems in educational contexts. Built on an extensive literature review and synthesis, the ten-component assessment framework and toolkit checklist provide a foundation for scalable, value-aligned AI evaluation in education. TEACH-AI rethinks "evaluation" through sociotechnical, educational, theoretical, and applied lenses, engaging designers, developers, researchers, and policymakers across AI and education. Our work invites the community to reconsider what constructs "effective" AI in education and to design model evaluation approaches that promote co-creation, inclusivity, and long-term human, social, and educational impact.
comment: 6 pages, NeurIPS 2025 Responsible Foundation Models Workshop
☆ Building Metaverse Responsibly: Findings from Interviews with Experts
The metaverse promises unprecedented immersive digital experiences but also raises critical privacy concerns as vast amounts of personal and behavioral data are collected. As immersive technologies blur the boundaries between physical and virtual realms, established privacy standards are being challenged. However, little is known about how the experts of these technologies such as requirement analysts, designers, developers, and architects perceive and address privacy issues in the creation of metaverse platforms. This research aims to fill that gap by investigating privacy considerations in metaverse development from the experts perspective. We conducted in depth, semi structured interviews with metaverse platform and application experts to explore their views on privacy challenges and practices. The findings offer new empirical insights by extending information systems privacy research into the metaverse context, highlighting the interplay between technological design, user behavior, and regulatory structures. Practically, this work provides guidance for developers, and policymakers on implementing privacy by design principles, educating and empowering users, and proactively addressing novel privacy threats in metaverses.
☆ Maritime Activities Observed Through Open-Access Positioning Data: Moving and Stationary Vessels in the Baltic Sea
Understanding past and present maritime activity patterns is critical for navigation safety, environmental assessment, and commercial operations. An increasing number of services now openly provide positioning data from the Automatic Identification System (AIS) via ground-based receivers. We show that coastal vessel activity can be reconstructed from open access data with high accuracy, even with limited data quality and incomplete receiver coverage. For three months of open AIS data in the Baltic Sea from August to October 2024, we present (i) cleansing and reconstruction methods to improve the data quality, and (ii) a journey model that converts AIS message data into vessel counts, traffic estimates, and spatially resolved vessel density at a resolution of $\sim$400 m. Vessel counts are provided, along with their uncertainties, for both moving and stationary activity. Vessel density maps also enable the identification of port locations, and we infer the most crowded and busiest coastal areas in the Baltic Sea. We find that on average, $\gtrsim$4000 vessels simultaneously operate in the Baltic Sea, and more than 300 vessels enter or leave the area each day. Our results agree within 20\% with previous studies relying on proprietary data.
comment: 29 pages, 15 figures, and 9 tables, matching the version published in Geomatics. Accompanying research data are available at http://dx.doi.org/10.6084/m9.figshare.29062715
☆ LegalWebAgent: Empowering Access to Justice via LLM-Based Web Agents
Access to justice remains a global challenge, with many citizens still finding it difficult to seek help from the justice system when facing legal issues. Although the internet provides abundant legal information and services, navigating complex websites, understanding legal terminology, and filling out procedural forms continue to pose barriers to accessing justice. This paper introduces the LegalWebAgent framework that employs a web agent powered by multimodal large language models to bridge the gap in access to justice for ordinary citizens. The framework combines the natural language understanding capabilities of large language models with multimodal perception, enabling a complete process from user query to concrete action. It operates in three stages: the Ask Module understands user needs through natural language processing; the Browse Module autonomously navigates webpages, interacts with page elements (including forms and calendars), and extracts information from HTML structures and webpage screenshots; the Act Module synthesizes information for users or performs direct actions like form completion and schedule booking. To evaluate its effectiveness, we designed a benchmark test covering 15 real-world tasks, simulating typical legal service processes relevant to Québec civil law users, from problem identification to procedural operations. Evaluation results show LegalWebAgent achieved a peak success rate of 86.7%, with an average of 84.4% across all tested models, demonstrating high autonomy in complex real-world scenarios.
☆ Visual Orientalism in the AI Era: From West-East Binaries to English-Language Centrism
Text-to-image AI models systematically encode geopolitical bias through visual representation. Drawing on Said's Orientalism and framing theory, we introduce Visual Orientalism -- the dual standard whereby AI depicts Western nations through political-modern symbols while portraying Eastern nations through cultural-traditional symbols. Analyzing 396 AI-generated images across 12 countries and 3 models, we reveal an evolution: Visual Orientalism has shifted from traditional West-versus-East binaries to English-language centrism, where only English-speaking core countries (USA and UK) receive political representation while all other nations -- including European powers -- face cultural exoticization. This algorithmic reconfiguration of Orientalism operates through automated framing mechanisms shaped by the material conditions of AI development: English-language training data dominance and the concentration of AI development in English-speaking tech companies. Our findings demonstrate how AI systems function as agents of cultural representation that perpetuate and intensify historical power asymmetries. Addressing Visual Orientalism requires rethinking of algorithmic governance and the geopolitical structures embedded in AI training data.
comment: 43 pages, 8 figures, supplementary materials included
☆ A Taxonomy-Driven Case Study of Australian Web Resources Against Technology-Facilitated Abuse
Technology-Facilitated Abuse (TFA) encompasses a broad and rapidly evolving set of behaviours in which digital systems are used to harass, monitor, threaten, or control individuals. Although prior research has documented many forms of TFA, there is no consolidated framework for understanding how abuse types, prevention measures, detection mechanisms, and support pathways relate across the abuse life cycle. This paper contributes a unified, literature-derived taxonomy of TFA grounded in a structured review of peer-reviewed studies, and the first large-scale, taxonomy-aligned audit of institutional web resources in Australia. We crawl 306 government, non-government, and service-provider domains, obtaining 52,605 pages, and classify using zero-shot topic models to map web content onto our taxonomy. An emotion and readability analyses reveal how institutions frame TFA and how accessible their guidance is to the public. Our findings show that institutional websites cover only a narrow subset of harms emphasised in the literature, with approximately 70% of all abuse labelled pages focused on harassment, comments abuse, or sexual abuse, while less than 1% address covert surveillance, economic abuse, or long-term controlling behaviours. Support pathways are similarly limited, with most resources centred on digital information hubs rather than counselling or community-based services. Readability analysis further shows that much of this content is written at late secondary or early tertiary reading levels, which may be inaccessible to a substantial portion of at-risk users. By highlighting strengths and gaps in Australia's support for TFA, our taxonomy and audit method provide a scalable basis for evaluating institutional communication, improving survivor resources, and guiding safer digital ecosystems. The taxonomy serves as a foundation for analyses in national contexts to foster TFA awareness.
comment: Keywords: Technology-Facilitated Abuse, Cyber Abuse, Digital Safety, Digital Harms, Human-Centred Security
♻ ☆ Compression of executable QR codes or sQRy for Industry: an example for Wi-Fi access points
Executable QR codes, or sQRy, is a technology dated 2022 that permits to include a runnable program inside a QR code, enabling interaction with the user even in the absence of an Internet connection. sQRy are enablers for different practical applications, including network equipment configuration, diagnostics, and enhanced smart manuals in industrial contexts. Many other non-industry-related fields can also benefit from this technology. Regardless of where sQRy are used, text strings are among the most commonly embedded data. However, due to strict limitations on the available payload, the occupancy of strings limits the length of the programs that can be embedded. In this work, we propose a simple yet effective strategy that can reduce the space taken by strings, hence broadening sQRy applicability.
comment: preprint accepted, 4 pages, 2025
♻ ☆ Automated Program Repair of Uncompilable Student Code
A significant portion of student programming submissions in CS1 learning environments are uncompilable, limiting their use in student modeling and downstream knowledge tracing. Traditional modeling pipelines often exclude these cases, discarding observations of student learning. This study investigates automated program repair as a strategy to recover uncompilable code while preserving students' structural intent for use in student modeling. Within this framework, we assess large language models (LLMs) as repair agents under high- and low-context prompting conditions. Repairs were evaluated for compilability, edit distance, and preservation of students' original structure and logic. While all models produced compilable repairs, they differed in how well they preserve students' control flow and code structure, affecting their pedagogical utility. By recovering uncompilable submissions, this work enables richer and more comprehensive analyses of learners' coding processes and development over time.
comment: In Proceedings of the 57th ACM Technical Symposium on Computer Science Education V.2 (SIGCSE TS 2026)
♻ ☆ DeID-GPT: Zero-shot Medical Text De-Identification by GPT-4
The digitization of healthcare has facilitated the sharing and re-using of medical data but has also raised concerns about confidentiality and privacy. HIPAA (Health Insurance Portability and Accountability Act) mandates removing re-identifying information before the dissemination of medical records. Thus, effective and efficient solutions for de-identifying medical data, especially those in free-text forms, are highly needed. While various computer-assisted de-identification methods, including both rule-based and learning-based, have been developed and used in prior practice, such solutions still lack generalizability or need to be fine-tuned according to different scenarios, significantly imposing restrictions in wider use. The advancement of large language models (LLM), such as ChatGPT and GPT-4, have shown great potential in processing text data in the medical domain with zero-shot in-context learning, especially in the task of privacy protection, as these models can identify confidential information by their powerful named entity recognition (NER) capability. In this work, we developed a novel GPT4-enabled de-identification framework (``DeID-GPT") to automatically identify and remove the identifying information. Compared to existing commonly used medical text data de-identification methods, our developed DeID-GPT showed the highest accuracy and remarkable reliability in masking private information from the unstructured medical text while preserving the original structure and meaning of the text. This study is one of the earliest to utilize ChatGPT and GPT-4 for medical text data processing and de-identification, which provides insights for further research and solution development on the use of LLMs such as ChatGPT/GPT-4 in healthcare. Codes and benchmarking data information are available at https://github.com/yhydhx/ChatGPT-API.
♻ ☆ CogniPair: From LLM Chatbots to Conscious AI Agents -- GNWT-Based Multi-Agent Digital Twins for Social Pairing -- Dating & Hiring Applications
Current large language model (LLM) agents lack authentic human psychological processes necessary for genuine digital twins and social AI applications. To address this limitation, we present a computational implementation of Global Workspace Theory (GNWT) that integrates human cognitive architecture principles into LLM agents, creating specialized sub-agents for emotion, memory, social norms, planning, and goal-tracking coordinated through a global workspace mechanism. However, authentic digital twins require accurate personality initialization. We therefore develop a novel adventure-based personality test that evaluates true personality through behavioral choices within interactive scenarios, bypassing self-presentation bias found in traditional assessments. Building on these innovations, our CogniPair platform enables digital twins to engage in realistic simulated dating interactions and job interviews before real encounters, providing bidirectional cultural fit assessment for both romantic compatibility and workplace matching. Validation using 551 GNWT-Agents and Columbia University Speed Dating dataset demonstrates 72% correlation with human attraction patterns, 77.8% match prediction accuracy, and 74% agreement in human validation studies. This work advances psychological authenticity in LLM agents and establishes a foundation for intelligent dating platforms and HR technology solutions.
♻ ☆ New-Onset Diabetes Assessment Using Artificial Intelligence-Enhanced Electrocardiography ML4H 2025
Diabetes has a long asymptomatic period which can often remain undiagnosed for multiple years. In this study, we trained a deep learning model to detect new-onset diabetes using 12-lead ECG and readily available demographic information. To do so, we used retrospective data where patients have both a hemoglobin A1c and ECG measured. However, such patients may not be representative of the complete patient population. As part of the study, we proposed a methodology to evaluate our model in the target population by estimating the probability of receiving an A1c test and reweight the retrospective population to represent the general population. We also adapted an efficient algorithm to generate Shapley values for both ECG signals and demographic features at the same time for model interpretation. The model offers an automated, more accurate method for early diabetes detection compared to current screening efforts. Their potential use in wearable devices can facilitate large-scale, community-wide screening, improving healthcare outcomes.
comment: 25 pages, 9 figures, published as a conference paper at ML4H 2025
♻ ☆ The Malaysian Election Corpus (MECo): Federal and State-Level Election Results from 1955 to 2025
Empirical research and public knowledge on Malaysia's elections have long been constrained by a lack of high-quality open data, particularly in the absence of a Freedom of Information framework. This paper introduces the Malaysian Election Corpus (MECo), an open-access panel database covering all federal and state general elections since 1955, as well as by-elections since 2008. MECo includes candidate- and constituency-level data for 9,704 electoral contests across seven decades, standardised with unique identifiers for candidates, parties, and coalitions. The database also provides summary statistics for each contest (electorate size, voter turnout, majority size, rejected ballots, unreturned ballots), key demographic data for candidates (age, gender, ethnicity), and lineage data for political parties. MECo is the most well-curated open database on Malaysian elections to date, and will unlock new opportunities for research, data journalism, and civic engagement.
comment: 25 pages, 6 figures, 3 tables
♻ ☆ Introducing AI to an Online Petition Platform Changed Outputs but not Outcomes
The rapid integration of AI writing tools into online platforms raises critical questions about their impact on content production and outcomes. We leverage a unique natural experiment on Change$.$org, a leading social advocacy platform, to causally investigate the effects of an in-platform ''write with AI'' tool. To understand the impact of the AI integration, we collected 1.5 million petitions and employed a difference-in-differences analysis. Our findings reveal that in-platform AI access significantly altered the lexical features of petitions and increased petition homogeneity, but did not improve petition outcomes. We confirmed the results in a separate analysis of repeat petition writers who wrote petitions before and after introduction of the AI tool. The results suggest that while AI writing tools can profoundly reshape online content, their practical utility for improving desired outcomes may be less beneficial than anticipated, and introduce unintended consequences like content homogenization.
♻ ☆ Mina: A Multilingual LLM-Powered Legal Assistant Agent for Bangladesh for Empowering Access to Justice
Bangladesh's low-income population faces major barriers to affordable legal advice due to complex legal language, procedural opacity, and high costs. Existing AI legal assistants lack Bengali-language support and jurisdiction-specific adaptation, limiting their effectiveness. To address this, we developed Mina, a multilingual LLM-based legal assistant tailored for the Bangladeshi context. It employs multilingual embeddings and a RAG-based chain-of-tools framework for retrieval, reasoning, translation, and document generation, delivering context-aware legal drafts, citations, and plain-language explanations via an interactive chat interface. Evaluated by law faculty from leading Bangladeshi universities across all stages of the 2022 and 2023 Bangladesh Bar Council Exams, Mina scored 75-80% in Preliminary MCQs, Written, and simulated Viva Voce exams, matching or surpassing average human performance and demonstrating clarity, contextual understanding, and sound legal reasoning. Even under a conservative upper bound, Mina operates at just 0.12-0.61% of typical legal consultation costs in Bangladesh, yielding a 99.4-99.9\% cost reduction relative to human-provided services. These results confirm its potential as a low-cost, multilingual AI assistant that automates key legal tasks and scales access to justice, offering a real-world case study on building domain-specific, low-resource systems and addressing challenges of multilingual adaptation, efficiency, and sustainable public-service AI deployment.
♻ ☆ Understanding the Complexities of Responsibly Sharing NSFW Content Online
Reddit is in the minority of mainstream social platforms that permit posting content that may be considered to be at the edge of what is permissible, including so-called Not Safe For Work (NSFW) content. However, NSFW is becoming more common on mainstream platforms, with X now allowing such material. We examine the top 15 NSFW-restricted subreddits by size to explore the complexities of responsibly sharing adult content, aiming to balance ethical and legal considerations with monetization opportunities. We find that users often use NSFW subreddits as a social springboard, redirecting readers to private or specialized adult social platforms such as Telegram, Kik or OnlyFans for further interactions. They also directly negotiate image "trades" through credit cards or payment platforms such as PayPal, Bitcoin or Venmo. Disturbingly, we also find linguistic cues linked to non-consensual content sharing. To help platforms moderate such behavior, we trained a RoBERTa-based classification model, which outperforms GPT-4 and traditional classifiers such as logistic regression and random forest in identifying non-consensual content sharing, showing better performance in this specific task. The source code and model weights are publicly available at https://github.com/socsys/15NSFWsubreddits.
comment: 13 Pages, 7 Figures
♻ ☆ Reranking partisan animosity in algorithmic social media feeds alters affective polarization
Today, social media platforms hold sole power to study the effects of feed ranking algorithms. We developed a platform-independent method that reranks participants' feeds in real-time and used this method to conduct a preregistered 10-day field experiment with 1,256 participants on X during the 2024 U.S. presidential campaign. Our experiment used a large language model to rerank posts that expressed antidemocratic attitudes and partisan animosity (AAPA). Decreasing or increasing AAPA exposure shifted out-party partisan animosity by two points on a 100-point feeling thermometer, with no detectable differences across party lines, providing causal evidence that exposure to AAPA content alters affective polarization. This work establishes a method to study feed algorithms without requiring platform cooperation, enabling independent evaluation of ranking interventions in naturalistic settings.