MyArxiv
Computation and Language
☆ Generalist Foundation Models Are Not Clinical Enough for Hospital Operations
Hospitals and healthcare systems rely on operational decisions that determine patient flow, cost, and quality of care. Despite strong performance on medical knowledge and conversational benchmarks, foundation models trained on general text may lack the specialized knowledge required for these operational decisions. We introduce Lang1, a family of models (100M-7B parameters) pretrained on a specialized corpus blending 80B clinical tokens from NYU Langone Health's EHRs and 627B tokens from the internet. To rigorously evaluate Lang1 in real-world settings, we developed the REalistic Medical Evaluation (ReMedE), a benchmark derived from 668,331 EHR notes that evaluates five critical tasks: 30-day readmission prediction, 30-day mortality prediction, length of stay, comorbidity coding, and predicting insurance claims denial. In zero-shot settings, both general-purpose and specialized models underperform on four of five tasks (36.6%-71.7% AUROC), with mortality prediction being an exception. After finetuning, Lang1-1B outperforms finetuned generalist models up to 70x larger and zero-shot models up to 671x larger, improving AUROC by 3.64%-6.75% and 1.66%-23.66% respectively. We also observed cross-task scaling with joint finetuning on multiple tasks leading to improvement on other tasks. Lang1-1B effectively transfers to out-of-distribution settings, including other clinical tasks and an external health system. Our findings suggest that predictive capabilities for hospital operations require explicit supervised finetuning, and that this finetuning process is made more efficient by in-domain pretraining on EHR. Our findings support the emerging view that specialized LLMs can compete with generalist models in specialized tasks, and show that effective healthcare systems AI requires the combination of in-domain pretraining, supervised finetuning, and real-world evaluation beyond proxy benchmarks.
☆ Crossing Borders: A Multimodal Challenge for Indian Poetry Translation and Image Generation
Indian poetry, known for its linguistic complexity and deep cultural resonance, has a rich and varied heritage spanning thousands of years. However, its layered meanings, cultural allusions, and sophisticated grammatical constructions often pose challenges for comprehension, especially for non-native speakers or readers unfamiliar with its context and language. Despite its cultural significance, existing works on poetry have largely overlooked Indian language poems. In this paper, we propose the Translation and Image Generation (TAI) framework, leveraging Large Language Models (LLMs) and Latent Diffusion Models through appropriate prompt tuning. Our framework supports the United Nations Sustainable Development Goals of Quality Education (SDG 4) and Reduced Inequalities (SDG 10) by enhancing the accessibility of culturally rich Indian-language poetry to a global audience. It includes (1) a translation module that uses an Odds Ratio Preference Alignment Algorithm to accurately translate morphologically rich poetry into English, and (2) an image generation module that employs a semantic graph to capture tokens, dependencies, and semantic relationships between metaphors and their meanings, to create visually meaningful representations of Indian poems. Our comprehensive experimental evaluation, including both human and quantitative assessments, demonstrates the superiority of TAI Diffusion in poem image generation tasks, outperforming strong baselines. To further address the scarcity of resources for Indian-language poetry, we introduce the Morphologically Rich Indian Language Poems MorphoVerse Dataset, comprising 1,570 poems across 21 low-resource Indian languages. By addressing the gap in poetry translation and visual comprehension, this work aims to broaden accessibility and enrich the reader's experience.
☆ Why is "Chicago" Predictive of Deceptive Reviews? Using LLMs to Discover Language Phenomena from Lexical Cues
Deceptive reviews mislead consumers, harm businesses, and undermine trust in online marketplaces. Machine learning classifiers can learn from large amounts of training examples to effectively distinguish deceptive reviews from genuine ones. However, the distinguishing features learned by these classifiers are often subtle, fragmented, and difficult for humans to interpret. In this work, we explore using large language models (LLMs) to translate machine-learned lexical cues into human-understandable language phenomena that can differentiate deceptive reviews from genuine ones. We show that language phenomena obtained in this manner are empirically grounded in data, generalizable across similar domains, and more predictive than phenomena either in LLMs' prior knowledge or obtained through in-context learning. These language phenomena have the potential to aid people in critically assessing the credibility of online reviews in environments where deception detection classifiers are unavailable.
☆ Live-SWE-agent: Can Software Engineering Agents Self-Evolve on the Fly?
Large Language Models (LLMs) are reshaping almost all industries, including software engineering. In recent years, a number of LLM agents have been proposed to solve real-world software problems. Such software agents are typically equipped with a suite of coding tools and can autonomously decide the next actions to form complete trajectories to solve end-to-end software tasks. While promising, they typically require dedicated design and may still be suboptimal, since it can be extremely challenging and costly to exhaust the entire agent scaffold design space. Recognizing that software agents are inherently software themselves that can be further refined/modified, researchers have proposed a number of self-improving software agents recently, including the Darwin-Gödel Machine (DGM). Meanwhile, such self-improving agents require costly offline training on specific benchmarks and may not generalize well across different LLMs or benchmarks. In this paper, we propose Live-SWE-agent, the first live software agent that can autonomously and continuously evolve itself on-the-fly during runtime when solving real-world software problems. More specifically, Live-SWE-agent starts with the most basic agent scaffold with only access to bash tools (e.g., mini-SWE-agent), and autonomously evolves its own scaffold implementation while solving real-world software problems. Our evaluation on the widely studied SWE-bench Verified benchmark shows that Live-SWE-agent can achieve an impressive solve rate of 75.4% without test-time scaling, outperforming all existing open-source software agents and approaching the performance of the best proprietary solution. Moreover, Live-SWE-agent outperforms state-of-the-art manually crafted software agents on the recent SWE-Bench Pro benchmark, achieving the best-known solve rate of 45.8%.
☆ P1: Mastering Physics Olympiads with Reinforcement Learning
Recent progress in large language models (LLMs) has moved the frontier from puzzle-solving to science-grade reasoning-the kind needed to tackle problems whose answers must stand against nature, not merely fit a rubric. Physics is the sharpest test of this shift, which binds symbols to reality in a fundamental way, serving as the cornerstone of most modern technologies. In this work, we manage to advance physics research by developing large language models with exceptional physics reasoning capabilities, especially excel at solving Olympiad-level physics problems. We introduce P1, a family of open-source physics reasoning models trained entirely through reinforcement learning (RL). Among them, P1-235B-A22B is the first open-source model with Gold-medal performance at the latest International Physics Olympiad (IPhO 2025), and wins 12 gold medals out of 13 international/regional physics competitions in 2024/2025. P1-30B-A3B also surpasses almost all other open-source models on IPhO 2025, getting a silver medal. Further equipped with an agentic framework PhysicsMinions, P1-235B-A22B+PhysicsMinions achieves overall No.1 on IPhO 2025, and obtains the highest average score over the 13 physics competitions. Besides physics, P1 models also present great performance on other reasoning tasks like math and coding, showing the great generalibility of P1 series.
☆ Omni Memory System for Personalized, Long Horizon, Self-Evolving Agents
Recent advancements in LLM-powered agents have demonstrated significant potential in generating human-like responses; however, they continue to face challenges in maintaining long-term interactions within complex environments, primarily due to limitations in contextual consistency and dynamic personalization. Existing memory systems often depend on semantic grouping prior to retrieval, which can overlook semantically irrelevant yet critical user information and introduce retrieval noise. In this report, we propose the initial design of O-Mem, a novel memory framework based on active user profiling that dynamically extracts and updates user characteristics and event records from their proactive interactions with agents. O-Mem supports hierarchical retrieval of persona attributes and topic-related context, enabling more adaptive and coherent personalized responses. O-Mem achieves 51.76% on the public LoCoMo benchmark, a nearly 3% improvement upon LangMem,the previous state-of-the-art, and it achieves 62.99% on PERSONAMEM, a 3.5% improvement upon A-Mem,the previous state-of-the-art. O-Mem also boosts token and interaction response time efficiency compared to previous memory frameworks. Our work opens up promising directions for developing efficient and human-like personalized AI assistants in the future.
☆ Beyond SELECT: A Comprehensive Taxonomy-Guided Benchmark for Real-World Text-to-SQL Translation
Text-to-SQL datasets are essential for training and evaluating text-to-SQL models, but existing datasets often suffer from limited coverage and fail to capture the diversity of real-world applications. To address this, we propose a novel taxonomy for text-to-SQL classification based on dimensions including core intents, statement types, syntax structures, and key actions. Using this taxonomy, we evaluate widely used public text-to-SQL datasets (e.g., Spider and Bird) and reveal limitations in their coverage and diversity. We then introduce a taxonomy-guided dataset synthesis pipeline, yielding a new dataset named SQL-Synth. This approach combines the taxonomy with Large Language Models (LLMs) to ensure the dataset reflects the breadth and complexity of real-world text-to-SQL applications. Extensive analysis and experimental results validate the effectiveness of our taxonomy, as SQL-Synth exhibits greater diversity and coverage compared to existing benchmarks. Moreover, we uncover that existing LLMs typically fall short in adequately capturing the full range of scenarios, resulting in limited performance on SQL-Synth. However, fine-tuning can substantially improve their performance in these scenarios. The proposed taxonomy has significant potential impact, as it not only enables comprehensive analysis of datasets and the performance of different LLMs, but also guides the construction of training data for LLMs.
☆ ForgeDAN: An Evolutionary Framework for Jailbreaking Aligned Large Language Models
The rapid adoption of large language models (LLMs) has brought both transformative applications and new security risks, including jailbreak attacks that bypass alignment safeguards to elicit harmful outputs. Existing automated jailbreak generation approaches e.g. AutoDAN, suffer from limited mutation diversity, shallow fitness evaluation, and fragile keyword-based detection. To address these limitations, we propose ForgeDAN, a novel evolutionary framework for generating semantically coherent and highly effective adversarial prompts against aligned LLMs. First, ForgeDAN introduces multi-strategy textual perturbations across \textit{character, word, and sentence-level} operations to enhance attack diversity; then we employ interpretable semantic fitness evaluation based on a text similarity model to guide the evolutionary process toward semantically relevant and harmful outputs; finally, ForgeDAN integrates dual-dimensional jailbreak judgment, leveraging an LLM-based classifier to jointly assess model compliance and output harmfulness, thereby reducing false positives and improving detection effectiveness. Our evaluation demonstrates ForgeDAN achieves high jailbreaking success rates while maintaining naturalness and stealth, outperforming existing SOTA solutions.
☆ Toward Conversational Hungarian Speech Recognition: Introducing the BEA-Large and BEA-Dialogue Datasets LREC 2026
The advancement of automatic speech recognition (ASR) has been largely enhanced by extensive datasets in high-resource languages, while languages such as Hungarian remain underrepresented due to limited spontaneous and conversational corpora. To address this gap, we introduce two new datasets -- BEA-Large and BEA-Dialogue -- constructed from the previously unprocessed portions of the Hungarian speech corpus named BEA. BEA-Large extends BEA-Base with 255 hours of spontaneous speech from 433 speakers, enriched with detailed segment-level metadata. BEA-Dialogue, comprising 85 hours of spontaneous conversations, is a Hungarian speech corpus featuring natural dialogues partitioned into speaker-independent subsets, supporting research in conversational ASR and speaker diarization. We establish reproducible baselines on these datasets using publicly available ASR models, with the fine-tuned Fast Conformer model achieving word error rates as low as 14.18\% on spontaneous and 4.8\% on repeated speech. Diarization experiments yield diarization error rates between 13.05\% and 18.26\%, providing reference points for future improvements. The results highlight the persistent difficulty of conversational ASR, particularly due to disfluencies, overlaps, and informal speech patterns. By releasing these datasets and baselines, we aim to advance Hungarian speech technology and offer a methodological framework for developing spontaneous and conversational benchmarks in other languages.
comment: Submitted to LREC 2026
☆ Applying Large Language Models to Characterize Public Narratives
Public Narratives (PNs) are key tools for leadership development and civic mobilization, yet their systematic analysis remains challenging due to their subjective interpretation and the high cost of expert annotation. In this work, we propose a novel computational framework that leverages large language models (LLMs) to automate the qualitative annotation of public narratives. Using a codebook we co-developed with subject-matter experts, we evaluate LLM performance against that of expert annotators. Our work reveals that LLMs can achieve near-human-expert performance, achieving an average F1 score of 0.80 across 8 narratives and 14 codes. We then extend our analysis to empirically explore how PN framework elements manifest across a larger dataset of 22 stories. Lastly, we extrapolate our analysis to a set of political speeches, establishing a novel lens in which to analyze political rhetoric in civic spaces. This study demonstrates the potential of LLM-assisted annotation for scalable narrative analysis and highlights key limitations and directions for future research in computational civic storytelling.
☆ Aspect-Level Obfuscated Sentiment in Thai Financial Disclosures and Its Impact on Abnormal Returns
Understanding sentiment in financial documents is crucial for gaining insights into market behavior. These reports often contain obfuscated language designed to present a positive or neutral outlook, even when underlying conditions may be less favorable. This paper presents a novel approach using Aspect-Based Sentiment Analysis (ABSA) to decode obfuscated sentiment in Thai financial annual reports. We develop specific guidelines for annotating obfuscated sentiment in these texts and annotate more than one hundred financial reports. We then benchmark various text classification models on this annotated dataset, demonstrating strong performance in sentiment classification. Additionally, we conduct an event study to evaluate the real-world implications of our sentiment analysis on stock prices. Our results suggest that market reactions are selectively influenced by specific aspects within the reports. Our findings underscore the complexity of sentiment analysis in financial texts and highlight the importance of addressing obfuscated language to accurately assess market sentiment.
☆ Non-Linear Scoring Model for Translation Quality Evaluation
Analytic Translation Quality Evaluation (TQE), based on Multidimensional Quality Metrics (MQM), traditionally uses a linear error-to-penalty scale calibrated to a reference sample of 1000-2000 words. However, linear extrapolation biases judgment on samples of different sizes, over-penalizing short samples and under-penalizing long ones, producing misalignment with expert intuition. Building on the Multi-Range framework, this paper presents a calibrated, non-linear scoring model that better reflects how human content consumers perceive translation quality across samples of varying length. Empirical data from three large-scale enterprise environments shows that acceptable error counts grow logarithmically, not linearly, with sample size. Psychophysical and cognitive evidence, including the Weber-Fechner law and Cognitive Load Theory, supports this premise by explaining why the perceptual impact of additional errors diminishes while the cognitive burden grows with scale. We propose a two-parameter model E(x) = a * ln(1 + b * x), a, b > 0, anchored to a reference tolerance and calibrated from two tolerance points using a one-dimensional root-finding step. The model yields an explicit interval within which the linear approximation stays within +/-20 percent relative error and integrates into existing evaluation workflows with only a dynamic tolerance function added. The approach improves interpretability, fairness, and inter-rater reliability across both human and AI-generated translations. By operationalizing a perceptually valid scoring paradigm, it advances translation quality evaluation toward more accurate and scalable assessment. The model also provides a stronger basis for AI-based document-level evaluation aligned with human judgment. Implementation considerations for CAT/LQA systems and implications for human and AI-generated text evaluation are discussed.
comment: ongoing work, 38 pages
☆ Exploring Multi-Table Retrieval Through Iterative Search
Open-domain question answering over datalakes requires retrieving and composing information from multiple tables, a challenging subtask that demands semantic relevance and structural coherence (e.g., joinability). While exact optimization methods like Mixed-Integer Programming (MIP) can ensure coherence, their computational complexity is often prohibitive. Conversely, simpler greedy heuristics that optimize for query coverage alone often fail to find these coherent, joinable sets. This paper frames multi-table retrieval as an iterative search process, arguing this approach offers advantages in scalability, interpretability, and flexibility. We propose a general framework and a concrete instantiation: a fast, effective Greedy Join-Aware Retrieval algorithm that holistically balances relevance, coverage, and joinability. Experiments across 5 NL2SQL benchmarks demonstrate that our iterative method achieves competitive retrieval performance compared to the MIP-based approach while being 4-400x faster depending on the benchmark and search space settings. This work highlights the potential of iterative heuristics for practical, scalable, and composition-aware retrieval.
comment: Accepted @ the AI for Tabular Data Workshop, EurIPS 2025
☆ Attention Grounded Enhancement for Visual Document Retrieval
Visual document retrieval requires understanding heterogeneous and multi-modal content to satisfy information needs. Recent advances use screenshot-based document encoding with fine-grained late interaction, significantly improving retrieval performance. However, retrievers are still trained with coarse global relevance labels, without revealing which regions support the match. As a result, retrievers tend to rely on surface-level cues and struggle to capture implicit semantic connections, hindering their ability to handle non-extractive queries. To alleviate this problem, we propose a \textbf{A}ttention-\textbf{G}rounded \textbf{RE}triever \textbf{E}nhancement (AGREE) framework. AGREE leverages cross-modal attention from multimodal large language models as proxy local supervision to guide the identification of relevant document regions. During training, AGREE combines local signals with the global signals to jointly optimize the retriever, enabling it to learn not only whether documents match, but also which content drives relevance. Experiments on the challenging ViDoRe V2 benchmark show that AGREE significantly outperforms the global-supervision-only baseline. Quantitative and qualitative analyses further demonstrate that AGREE promotes deeper alignment between query terms and document regions, moving beyond surface-level matching toward more accurate and interpretable retrieval. Our code is available at: https://anonymous.4open.science/r/AGREE-2025.
☆ Mem-PAL: Towards Memory-based Personalized Dialogue Assistants for Long-term User-Agent Interaction AAAI 2026
With the rise of smart personal devices, service-oriented human-agent interactions have become increasingly prevalent. This trend highlights the need for personalized dialogue assistants that can understand user-specific traits to accurately interpret requirements and tailor responses to individual preferences. However, existing approaches often overlook the complexities of long-term interactions and fail to capture users' subjective characteristics. To address these gaps, we present PAL-Bench, a new benchmark designed to evaluate the personalization capabilities of service-oriented assistants in long-term user-agent interactions. In the absence of available real-world data, we develop a multi-step LLM-based synthesis pipeline, which is further verified and refined by human annotators. This process yields PAL-Set, the first Chinese dataset comprising multi-session user logs and dialogue histories, which serves as the foundation for PAL-Bench. Furthermore, to improve personalized service-oriented interactions, we propose H$^2$Memory, a hierarchical and heterogeneous memory framework that incorporates retrieval-augmented generation to improve personalized response generation. Comprehensive experiments on both our PAL-Bench and an external dataset demonstrate the effectiveness of the proposed memory framework.
comment: Accepted by AAAI 2026 (Oral)
☆ Can Large Language Models Function as Qualified Pediatricians? A Systematic Evaluation in Real-World Clinical Contexts
With the rapid rise of large language models (LLMs) in medicine, a key question is whether they can function as competent pediatricians in real-world clinical settings. We developed PEDIASBench, a systematic evaluation framework centered on a knowledge-system framework and tailored to realistic clinical environments. PEDIASBench assesses LLMs across three dimensions: application of basic knowledge, dynamic diagnosis and treatment capability, and pediatric medical safety and medical ethics. We evaluated 12 representative models released over the past two years, including GPT-4o, Qwen3-235B-A22B, and DeepSeek-V3, covering 19 pediatric subspecialties and 211 prototypical diseases. State-of-the-art models performed well on foundational knowledge, with Qwen3-235B-A22B achieving over 90% accuracy on licensing-level questions, but performance declined ~15% as task complexity increased, revealing limitations in complex reasoning. Multiple-choice assessments highlighted weaknesses in integrative reasoning and knowledge recall. In dynamic diagnosis and treatment scenarios, DeepSeek-R1 scored highest in case reasoning (mean 0.58), yet most models struggled to adapt to real-time patient changes. On pediatric medical ethics and safety tasks, Qwen2.5-72B performed best (accuracy 92.05%), though humanistic sensitivity remained limited. These findings indicate that pediatric LLMs are constrained by limited dynamic decision-making and underdeveloped humanistic care. Future development should focus on multimodal integration and a clinical feedback-model iteration loop to enhance safety, interpretability, and human-AI collaboration. While current LLMs cannot independently perform pediatric care, they hold promise for decision support, medical education, and patient communication, laying the groundwork for a safe, trustworthy, and collaborative intelligent pediatric healthcare system.
☆ Donors and Recipients: On Asymmetric Transfer Across Tasks and Languages with Parameter-Efficient Fine-Tuning
Large language models (LLMs) perform strongly across tasks and languages, yet how improvements in one task or language affect other tasks and languages and their combinations remains poorly understood. We conduct a controlled PEFT/LoRA study across multiple open-weight LLM families and sizes, treating task and language as transfer axes while conditioning on model family and size; we fine-tune each model on a single task-language source and measure transfer as the percentage-point change versus its baseline score when evaluated on all other task-language target pairs. We decompose transfer into (i) Matched-Task (Cross-Language), (ii) Matched-Language (Cross-Task), and (iii) Cross-Task (Cross-Language) regimes. We uncover two consistent general patterns. First, a pronounced on-task vs. off-task asymmetry: Matched-Task (Cross-Language) transfer is reliably positive, whereas off-task transfer often incurs collateral degradation. Second, a stable donor-recipient structure across languages and tasks (hub donors vs. brittle recipients). We outline implications for risk-aware fine-tuning and model specialisation.
☆ AHaSIS: Shared Task on Sentiment Analysis for Arabic Dialects
The hospitality industry in the Arab world increasingly relies on customer feedback to shape services, driving the need for advanced Arabic sentiment analysis tools. To address this challenge, the Sentiment Analysis on Arabic Dialects in the Hospitality Domain shared task focuses on Sentiment Detection in Arabic Dialects. This task leverages a multi-dialect, manually curated dataset derived from hotel reviews originally written in Modern Standard Arabic (MSA) and translated into Saudi and Moroccan (Darija) dialects. The dataset consists of 538 sentiment-balanced reviews spanning positive, neutral, and negative categories. Translations were validated by native speakers to ensure dialectal accuracy and sentiment preservation. This resource supports the development of dialect-aware NLP systems for real-world applications in customer experience analysis. More than 40 teams have registered for the shared task, with 12 submitting systems during the evaluation phase. The top-performing system achieved an F1 score of 0.81, demonstrating the feasibility and ongoing challenges of sentiment analysis across Arabic dialects.
☆ AutoMalDesc: Large-Scale Script Analysis for Cyber Threat Research AAAI 2026
Generating thorough natural language explanations for threat detections remains an open problem in cybersecurity research, despite significant advances in automated malware detection systems. In this work, we present AutoMalDesc, an automated static analysis summarization framework that, following initial training on a small set of expert-curated examples, operates independently at scale. This approach leverages an iterative self-paced learning pipeline to progressively enhance output quality through synthetic data generation and validation cycles, eliminating the need for extensive manual data annotation. Evaluation across 3,600 diverse samples in five scripting languages demonstrates statistically significant improvements between iterations, showing consistent gains in both summary quality and classification accuracy. Our comprehensive validation approach combines quantitative metrics based on established malware labels with qualitative assessment from both human experts and LLM-based judges, confirming both technical precision and linguistic coherence of generated summaries. To facilitate reproducibility and advance research in this domain, we publish our complete dataset of more than 100K script samples, including annotated seed (0.9K) and test (3.6K) datasets, along with our methodology and evaluation framework.
comment: Accepted at AAAI 2026 (oral)
☆ RegionMarker: A Region-Triggered Semantic Watermarking Framework for Embedding-as-a-Service Copyright Protection AAAI 2026
Embedding-as-a-Service (EaaS) is an effective and convenient deployment solution for addressing various NLP tasks. Nevertheless, recent research has shown that EaaS is vulnerable to model extraction attacks, which could lead to significant economic losses for model providers. For copyright protection, existing methods inject watermark embeddings into text embeddings and use them to detect copyright infringement. However, current watermarking methods often resist only a subset of attacks and fail to provide \textit{comprehensive} protection. To this end, we present the region-triggered semantic watermarking framework called RegionMarker, which defines trigger regions within a low-dimensional space and injects watermarks into text embeddings associated with these regions. By utilizing a secret dimensionality reduction matrix to project onto this subspace and randomly selecting trigger regions, RegionMarker makes it difficult for watermark removal attacks to evade detection. Furthermore, by embedding watermarks across the entire trigger region and using the text embedding as the watermark, RegionMarker is resilient to both paraphrasing and dimension-perturbation attacks. Extensive experiments on various datasets show that RegionMarker is effective in resisting different attack methods, thereby protecting the copyright of EaaS.
comment: AAAI 2026
☆ Dropouts in Confidence: Moral Uncertainty in Human-LLM Alignment AAAI 2026
Humans display significant uncertainty when confronted with moral dilemmas, yet the extent of such uncertainty in machines and AI agents remains underexplored. Recent studies have confirmed the overly confident tendencies of machine-generated responses, particularly in large language models (LLMs). As these systems are increasingly embedded in ethical decision-making scenarios, it is important to understand their moral reasoning and the inherent uncertainties in building reliable AI systems. This work examines how uncertainty influences moral decisions in the classical trolley problem, analyzing responses from 32 open-source models and 9 distinct moral dimensions. We first find that variance in model confidence is greater across models than within moral dimensions, suggesting that moral uncertainty is predominantly shaped by model architecture and training method. To quantify uncertainty, we measure binary entropy as a linear combination of total entropy, conditional entropy, and mutual information. To examine its effects, we introduce stochasticity into models via "dropout" at inference time. Our findings show that our mechanism increases total entropy, mainly through a rise in mutual information, while conditional entropy remains largely unchanged. Moreover, this mechanism significantly improves human-LLM moral alignment, with correlations in mutual information and alignment score shifts. Our results highlight the potential to better align model-generated decisions and human preferences by deliberately modulating uncertainty and reducing LLMs' confidence in morally complex scenarios.
comment: Accepted to AAAI 2026
☆ Souper-Model: How Simple Arithmetic Unlocks State-of-the-Art LLM Performance
Large Language Models (LLMs) have demonstrated remarkable capabilities across diverse domains, but their training remains resource- and time-intensive, requiring massive compute power and careful orchestration of training procedures. Model souping-the practice of averaging weights from multiple models of the same architecture-has emerged as a promising pre- and post-training technique that can enhance performance without expensive retraining. In this paper, we introduce Soup Of Category Experts (SoCE), a principled approach for model souping that utilizes benchmark composition to identify optimal model candidates and applies non-uniform weighted averaging to maximize performance. Contrary to previous uniform-averaging approaches, our method leverages the observation that benchmark categories often exhibit low inter-correlations in model performance. SoCE identifies "expert" models for each weakly-correlated category cluster and combines them using optimized weighted averaging rather than uniform weights. We demonstrate that the proposed method improves performance and robustness across multiple domains, including multilingual capabilities, tool calling, and math and achieves state-of-the-art results on the Berkeley Function Calling Leaderboard.
☆ Computational Measurement of Political Positions: A Review of Text-Based Ideal Point Estimation Algorithms
This article presents the first systematic review of unsupervised and semi-supervised computational text-based ideal point estimation (CT-IPE) algorithms, methods designed to infer latent political positions from textual data. These algorithms are widely used in political science, communication, computational social science, and computer science to estimate ideological preferences from parliamentary speeches, party manifestos, and social media. Over the past two decades, their development has closely followed broader NLP trends -- beginning with word-frequency models and most recently turning to large language models (LLMs). While this trajectory has greatly expanded the methodological toolkit, it has also produced a fragmented field that lacks systematic comparison and clear guidance for applied use. To address this gap, we identified 25 CT-IPE algorithms through a systematic literature review and conducted a manual content analysis of their modeling assumptions and development contexts. To compare them meaningfully, we introduce a conceptual framework that distinguishes how algorithms generate, capture, and aggregate textual variance. On this basis, we identify four methodological families -- word-frequency, topic modeling, word embedding, and LLM-based approaches -- and critically assess their assumptions, interpretability, scalability, and limitations. Our review offers three contributions. First, it provides a structured synthesis of two decades of algorithm development, clarifying how diverse methods relate to one another. Second, it translates these insights into practical guidance for applied researchers, highlighting trade-offs in transparency, technical requirements, and validation strategies that shape algorithm choice. Third, it emphasizes that differences in estimation outcomes across algorithms are themselves informative, underscoring the need for systematic benchmarking.
comment: 46 pages, 8 figures, 2 tables, accepted for publication in Quality & Quantity
☆ Seeing isn't Hearing: Benchmarking Vision Language Models at Interpreting Spectrograms AACL 2025
With the rise of Large Language Models (LLMs) and their vision-enabled counterparts (VLMs), numerous works have investigated their capabilities in tasks that fuse the modalities of vision and language. In this work, we benchmark the extent to which VLMs are able to act as highly-trained phoneticians, interpreting spectrograms and waveforms of speech. To do this, we synthesise a novel dataset containing 4k+ English words spoken in isolation alongside stylistically consistent spectrogram and waveform figures. We test the ability of VLMs to understand these representations of speech through a multiple-choice task whereby models must predict the correct phonemic or graphemic transcription of a spoken word when presented amongst 3 distractor transcriptions that have been selected based on their phonemic edit distance to the ground truth. We observe that both zero-shot and finetuned models rarely perform above chance, demonstrating the requirement for specific parametric knowledge of how to interpret such figures, rather than paired samples alone.
comment: Accepted to IJCNLP-AACL 2025
☆ Evaluating Large Language Models for Diacritic Restoration in Romanian Texts: A Comparative Study
Automatic diacritic restoration is crucial for text processing in languages with rich diacritical marks, such as Romanian. This study evaluates the performance of several large language models (LLMs) in restoring diacritics in Romanian texts. Using a comprehensive corpus, we tested models including OpenAI's GPT-3.5, GPT-4, GPT-4o, Google's Gemini 1.0 Pro, Meta's Llama 2 and Llama 3, MistralAI's Mixtral 8x7B Instruct, airoboros 70B, and OpenLLM-Ro's RoLlama 2 7B, under multiple prompt templates ranging from zero-shot to complex multi-shot instructions. Results show that models such as GPT-4o achieve high diacritic restoration accuracy, consistently surpassing a neutral echo baseline, while others, including Meta's Llama family, exhibit wider variability. These findings highlight the impact of model architecture, training data, and prompt design on diacritic restoration performance and outline promising directions for improving NLP tools for diacritic-rich languages.
☆ Translation Entropy: A Statistical Framework for Evaluating Translation Systems
The translation of written language has been known since the 3rd century BC; however, its necessity has become increasingly common in the information age. Today, many translators exist, based on encoder-decoder deep architectures, nevertheless, no quantitative objective methods are available to assess their performance, likely because the entropy of even a single language remains unknown. This study presents a quantitative method for estimating translation entropy, with the following key finding. Given a translator, several sentences that differ by only one selected token of a given pivot sentence yield identical translations. Analyzing the statistics of this phenomenon across an ensemble of such sentences, consisting each of a pivot selected token, yields the probabilities of replacing this specific token with others while preserving the translation. These probabilities constitute the entropy of the selected token, and the average across all selected pivot tokens provides an estimate of the translator's overall translation entropy, which is enhanced along the decoder blocks. This entropic measure allows for the quantitative ranking of several publicly available translators and reveals whether mutual translation entropy is symmetric. Extending the proposed method to include the replacement of two tokens in a given pivot sentence demonstrates a multiplicative effect, where translation degeneracy is proportional to the product of the degeneracies of the two tokens. These findings establish translation entropy as a measurable property and objective benchmarking of artificial translators. Results are based on MarianMT, T5-Base and NLLB-200 translators.
comment: 23 pages, 6 figures and 8 tables
☆ TCM-5CEval: Extended Deep Evaluation Benchmark for LLM's Comprehensive Clinical Research Competence in Traditional Chinese Medicine
Large language models (LLMs) have demonstrated exceptional capabilities in general domains, yet their application in highly specialized and culturally-rich fields like Traditional Chinese Medicine (TCM) requires rigorous and nuanced evaluation. Building upon prior foundational work such as TCM-3CEval, which highlighted systemic knowledge gaps and the importance of cultural-contextual alignment, we introduce TCM-5CEval, a more granular and comprehensive benchmark. TCM-5CEval is designed to assess LLMs across five critical dimensions: (1) Core Knowledge (TCM-Exam), (2) Classical Literacy (TCM-LitQA), (3) Clinical Decision-making (TCM-MRCD), (4) Chinese Materia Medica (TCM-CMM), and (5) Clinical Non-pharmacological Therapy (TCM-ClinNPT). We conducted a thorough evaluation of fifteen prominent LLMs, revealing significant performance disparities and identifying top-performing models like deepseek\_r1 and gemini\_2\_5\_pro. Our findings show that while models exhibit proficiency in recalling foundational knowledge, they struggle with the interpretative complexities of classical texts. Critically, permutation-based consistency testing reveals widespread fragilities in model inference. All evaluated models, including the highest-scoring ones, displayed a substantial performance degradation when faced with varied question option ordering, indicating a pervasive sensitivity to positional bias and a lack of robust understanding. TCM-5CEval not only provides a more detailed diagnostic tool for LLM capabilities in TCM but aldso exposes fundamental weaknesses in their reasoning stability. To promote further research and standardized comparison, TCM-5CEval has been uploaded to the Medbench platform, joining its predecessor in the "In-depth Challenge for Comprehensive TCM Abilities" special track.
comment: 17 pages, 8 figures
☆ Distinguishing Repetition Disfluency from Morphological Reduplication in Bangla ASR Transcripts: A Novel Corpus and Benchmarking Analysis
Automatic Speech Recognition (ASR) transcripts, especially in low-resource languages like Bangla, contain a critical ambiguity: word-word repetitions can be either Repetition Disfluency (unintentional ASR error/hesitation) or Morphological Reduplication (a deliberate grammatical construct). Standard disfluency correction fails by erroneously deleting valid linguistic information. To solve this, we introduce the first publicly available, 20,000-row Bangla corpus, manually annotated to explicitly distinguish between these two phenomena in noisy ASR transcripts. We benchmark this novel resource using two paradigms: state-of-the-art multilingual Large Language Models (LLMs) and task-specific fine-tuning of encoder models. LLMs achieve competitive performance (up to 82.68\% accuracy) with few-shot prompting. However, fine-tuning proves superior, with the language-specific BanglaBERT model achieving the highest accuracy of 84.78\% and an F1 score of 0.677. This establishes a strong, linguistically-informed baseline and provides essential data for developing sophisticated, semantic-preserving text normalization systems for Bangla.
☆ Zero-Shot Grammar Competency Estimation Using Large Language Model Generated Pseudo Labels AACL
Grammar competency estimation is essential for assessing linguistic proficiency in both written and spoken language; however, the spoken modality presents additional challenges due to its spontaneous, unstructured, and disfluent nature. Developing accurate grammar scoring models further requires extensive expert annotation, making large-scale data creation impractical. To address these limitations, we propose a zero-shot grammar competency estimation framework that leverages unlabeled data and Large Language Models (LLMs) without relying on manual labels. During training, we employ LLM-generated predictions on unlabeled data by using grammar competency rubric-based prompts. These predictions, treated as pseudo labels, are utilized to train a transformer-based model through a novel training framework designed to handle label noise effectively. We show that the choice of LLM for pseudo-label generation critically affects model performance and that the ratio of clean-to-noisy samples during training strongly influences stability and accuracy. Finally, a qualitative analysis of error intensity and score prediction confirms the robustness and interpretability of our approach. Experimental results demonstrate the efficacy of our approach in estimating grammar competency scores with high accuracy, paving the way for scalable, low-resource grammar assessment systems.
comment: Accepted in AACL-IJCNLP 2025
☆ A Comparative Analysis of Recurrent and Attention Architectures for Isolated Sign Language Recognition
This study presents a systematic comparative analysis of recurrent and attention-based neural architectures for isolated sign language recognition. We implement and evaluate two representative models-ConvLSTM and Vanilla Transformer-on the Azerbaijani Sign Language Dataset (AzSLD) and the Word-Level American Sign Language (WLASL) dataset. Our results demonstrate that the attention-based Vanilla Transformer consistently outperforms the recurrent ConvLSTM in both Top-1 and Top-5 accuracy across datasets, achieving up to 76.8% Top-1 accuracy on AzSLD and 88.3% on WLASL. The ConvLSTM, while more computationally efficient, lags in recognition accuracy, particularly on smaller datasets. These findings highlight the complementary strengths of each paradigm: the Transformer excels in overall accuracy and signer independence, whereas the ConvLSTM offers advantages in computational efficiency and temporal modeling. The study provides a nuanced analysis of these trade-offs, offering guidance for architecture selection in sign language recognition systems depending on application requirements and resource constraints.
☆ Extracting Events Like Code: A Multi-Agent Programming Framework for Zero-Shot Event Extraction AAAI 2026
Zero-shot event extraction (ZSEE) remains a significant challenge for large language models (LLMs) due to the need for complex reasoning and domain-specific understanding. Direct prompting often yields incomplete or structurally invalid outputs--such as misclassified triggers, missing arguments, and schema violations. To address these limitations, we present Agent-Event-Coder (AEC), a novel multi-agent framework that treats event extraction like software engineering: as a structured, iterative code-generation process. AEC decomposes ZSEE into specialized subtasks--retrieval, planning, coding, and verification--each handled by a dedicated LLM agent. Event schemas are represented as executable class definitions, enabling deterministic validation and precise feedback via a verification agent. This programming-inspired approach allows for systematic disambiguation and schema enforcement through iterative refinement. By leveraging collaborative agent workflows, AEC enables LLMs to produce precise, complete, and schema-consistent extractions in zero-shot settings. Experiments across five diverse domains and six LLMs demonstrate that AEC consistently outperforms prior zero-shot baselines, showcasing the power of treating event extraction like code generation. The code and data are released on https://github.com/UESTC-GQJ/Agent-Event-Coder.
comment: 11 pages, 5 figures, accepted by AAAI 2026 (Oral)
☆ Evaluating the Ability of Large Language Models to Identify Adherence to CONSORT Reporting Guidelines in Randomized Controlled Trials: A Methodological Evaluation Study
The Consolidated Standards of Reporting Trials statement is the global benchmark for transparent and high-quality reporting of randomized controlled trials. Manual verification of CONSORT adherence is a laborious, time-intensive process that constitutes a significant bottleneck in peer review and evidence synthesis. This study aimed to systematically evaluate the accuracy and reliability of contemporary LLMs in identifying the adherence of published RCTs to the CONSORT 2010 statement under a zero-shot setting. We constructed a golden standard dataset of 150 published RCTs spanning diverse medical specialties. The primary outcome was the macro-averaged F1-score for the three-class classification task, supplemented by item-wise performance metrics and qualitative error analysis. Overall model performance was modest. The top-performing models, Gemini-2.5-Flash and DeepSeek-R1, achieved nearly identical macro F1 scores of 0.634 and Cohen's Kappa coefficients of 0.280 and 0.282, respectively, indicating only fair agreement with expert consensus. A striking performance disparity was observed across classes: while most models could identify compliant items with high accuracy (F1 score > 0.850), they struggled profoundly with identifying non-compliant and not applicable items, where F1 scores rarely exceeded 0.400. Notably, some high-profile models like GPT-4o underperformed, achieving a macro F1-score of only 0.521. LLMs show potential as preliminary screening assistants for CONSORT checks, capably identifying well-reported items. However, their current inability to reliably detect reporting omissions or methodological flaws makes them unsuitable for replacing human expertise in the critical appraisal of trial quality.
☆ BeDiscovER: The Benchmark of Discourse Understanding in the Era of Reasoning Language Models
We introduce BeDiscovER (Benchmark of Discourse Understanding in the Era of Reasoning Language Models), an up-to-date, comprehensive suite for evaluating the discourse-level knowledge of modern LLMs. BeDiscovER compiles 5 publicly available discourse tasks across discourse lexicon, (multi-)sentential, and documental levels, with in total 52 individual datasets. It covers both extensively studied tasks such as discourse parsing and temporal relation extraction, as well as some novel challenges such as discourse particle disambiguation (e.g., ``just''), and also aggregates a shared task on Discourse Relation Parsing and Treebanking for multilingual and multi-framework discourse relation classification. We evaluate open-source LLMs: Qwen3 series, DeepSeek-R1, and frontier model such as GPT-5-mini on BeDiscovER, and find that state-of-the-art models exhibit strong performance in arithmetic aspect of temporal reasoning, but they struggle with full document reasoning and some subtle semantic and discourse phenomena, such as rhetorical relation recognition.
☆ STEP: Success-Rate-Aware Trajectory-Efficient Policy Optimization
Multi-turn interaction remains challenging for online reinforcement learning. A common solution is trajectory-level optimization, which treats each trajectory as a single training sample. However, this approach can be inefficient and yield misleading learning signals: it applies uniform sampling across tasks regardless of difficulty, penalizes correct intermediate actions in failed trajectories, and incurs high sample-collection costs. To address these issues, we propose STEP (Success-rate-aware Trajectory-Efficient Policy optimization), a framework that dynamically allocates sampling based on per-task success rates and performs step-level optimization. STEP maintains a smoothed success-rate record to guide adaptive trajectory resampling, allocating more effort to harder tasks. It then computes success-rate-weighted advantages and decomposes trajectories into step-level samples. Finally, it applies a step-level GRPO augmentation to refine updates for low-success tasks. Experiments on OSWorld and AndroidWorld show that STEP substantially improves sample efficiency and training stability over trajectory-level GRPO, converging faster and generalizing better under the same sampling budget.
☆ Spark-Prover-X1: Formal Theorem Proving Through Diverse Data Training
Large Language Models (LLMs) have shown significant promise in automated theorem proving, yet progress is often constrained by the scarcity of diverse and high-quality formal language data. To address this issue, we introduce Spark-Prover-X1, a 7B parameter model trained via an three-stage framework designed to unlock the reasoning potential of more accessible and moderately-sized LLMs. The first stage infuses deep knowledge through continuous pre-training on a broad mathematical corpus, enhanced by a suite of novel data tasks. Key innovation is a "CoT-augmented state prediction" task to achieve fine-grained reasoning. The second stage employs Supervised Fine-tuning (SFT) within an expert iteration loop to specialize both the Spark-Prover-X1-7B and Spark-Formalizer-X1-7B models. Finally, a targeted round of Group Relative Policy Optimization (GRPO) is applied to sharpen the prover's capabilities on the most challenging problems. To facilitate robust evaluation, particularly on problems from real-world examinations, we also introduce ExamFormal-Bench, a new benchmark dataset of 402 formal problems. Experimental results demonstrate that Spark-Prover-X1-7B achieves state-of-the-art performance among similarly-sized open-source models, attaining a 37.0\% average pass rate (pass@32). It shows exceptional performance on difficult competition benchmarks, notably solving 27 problems on PutnamBench (pass@32) and achieving 24.0\% on CombiBench (pass@32). Our work validates that this diverse training data and progressively refined training pipeline provides an effective path for enhancing the formal reasoning capabilities of lightweight LLMs. Both Spark-Prover-X1-7B and Spark-Formalizer-X1-7B, along with the ExamFormal-Bench dataset, are made publicly available at:https://www.modelscope.cn/organization/iflytek, https://gitcode.com/ifly_opensource.
☆ How Good is BLI as an Alignment Measure: A Study in Word Embedding Paradigm
Sans a dwindling number of monolingual embedding studies originating predominantly from the low-resource domains, it is evident that multilingual embedding has become the de facto choice due to its adaptability to the usage of code-mixed languages, granting the ability to process multilingual documents in a language-agnostic manner, as well as removing the difficult task of aligning monolingual embeddings. But is this victory complete? Are the multilingual models better than aligned monolingual models in every aspect? Can the higher computational cost of multilingual models always be justified? Or is there a compromise between the two extremes? Bilingual Lexicon Induction is one of the most widely used metrics in terms of evaluating the degree of alignment between two embedding spaces. In this study, we explore the strengths and limitations of BLI as a measure to evaluate the degree of alignment of two embedding spaces. Further, we evaluate how well traditional embedding alignment techniques, novel multilingual models, and combined alignment techniques perform BLI tasks in the contexts of both high-resource and low-resource languages. In addition to that, we investigate the impact of the language families to which the pairs of languages belong. We identify that BLI does not measure the true degree of alignment in some cases and we propose solutions for them. We propose a novel stem-based BLI approach to evaluate two aligned embedding spaces that take into account the inflected nature of languages as opposed to the prevalent word-based BLI techniques. Further, we introduce a vocabulary pruning technique that is more informative in showing the degree of the alignment, especially performing BLI on multilingual embedding models. Often, combined embedding alignment techniques perform better while in certain cases multilingual embeddings perform better (mainly low-resource language cases).
comment: 15 pages, 2 figures, 6 tables
☆ AA-Omniscience: Evaluating Cross-Domain Knowledge Reliability in Large Language Models
Existing language model evaluations primarily measure general capabilities, yet reliable use of these models across a range of domains demands factual accuracy and recognition of knowledge gaps. We introduce AA-Omniscience, a benchmark designed to measure both factual recall and knowledge calibration across 6,000 questions. Questions are derived from authoritative academic and industry sources, and cover 42 economically relevant topics within six different domains. The evaluation measures a model's Omniscience Index, a bounded metric (-100 to 100) measuring factual recall that jointly penalizes hallucinations and rewards abstention when uncertain, with 0 equating to a model that answers questions correctly as much as it does incorrectly. Among evaluated models, Claude 4.1 Opus attains the highest score (4.8), making it one of only three models to score above zero. These results reveal persistent factuality and calibration weaknesses across frontier models. Performance also varies by domain, with the models from three different research labs leading across the six domains. This performance variability suggests models should be chosen according to the demands of the use case rather than general performance for tasks where knowledge is important.
☆ PragWorld: A Benchmark Evaluating LLMs' Local World Model under Minimal Linguistic Alterations and Conversational Dynamics AAAI 2026
Real-world conversations are rich with pragmatic elements, such as entity mentions, references, and implicatures. Understanding such nuances is a requirement for successful natural communication, and often requires building a local world model which encodes such elements and captures the dynamics of their evolving states. However, it is not well-understood whether language models (LMs) construct or maintain a robust implicit representation of conversations. In this work, we evaluate the ability of LMs to encode and update their internal world model in dyadic conversations and test their malleability under linguistic alterations. To facilitate this, we apply seven minimal linguistic alterations to conversations sourced from popular datasets and construct two benchmarks comprising yes-no questions. We evaluate a wide range of open and closed source LMs and observe that they struggle to maintain robust accuracy. Our analysis unveils that LMs struggle to memorize crucial details, such as tracking entities under linguistic alterations to conversations. We then propose a dual-perspective interpretability framework which identifies transformer layers that are useful or harmful and highlights linguistic alterations most influenced by harmful layers, typically due to encoding spurious signals or relying on shortcuts. Inspired by these insights, we propose two layer-regularization based fine-tuning strategies that suppress the effect of the harmful layers.
comment: 23 pages, 15 tables, 10 figures; AAAI 2026 Conference Main Track (oral)
☆ WebCoach: Self-Evolving Web Agents with Cross-Session Memory Guidance
Multimodal LLM-powered agents have recently demonstrated impressive capabilities in web navigation, enabling agents to complete complex browsing tasks across diverse domains. However, current agents struggle with repetitive errors and lack the ability to learn from past experiences across sessions, limiting their long-term robustness and sample efficiency. We introduce WebCoach, a model-agnostic self-evolving framework that equips web browsing agents with persistent cross-session memory, enabling improved long-term planning, reflection, and continual learning without retraining. WebCoach consists of three key components: (1) a WebCondenser, which standardizes raw navigation logs into concise summaries; (2) an External Memory Store, which organizes complete trajectories as episodic experiences; and (3) a Coach, which retrieves relevant experiences based on similarity and recency, and decides whether to inject task-specific advice into the agent via runtime hooks. This design empowers web agents to access long-term memory beyond their native context window, improving robustness in complex browsing tasks. Moreover, WebCoach achieves self-evolution by continuously curating episodic memory from new navigation trajectories, enabling agents to improve over time without retraining. Evaluations on the WebVoyager benchmark demonstrate that WebCoach consistently improves the performance of browser-use agents across three different LLM backbones. With a 38B model, it increases task success rates from 47% to 61% while reducing or maintaining the average number of steps. Notably, smaller base models with WebCoach achieve performance comparable to the same web agent using GPT-4o.
comment: 18 pages; work in progress
☆ Fine-Tuned LLMs Know They Don't Know: A Parameter-Efficient Approach to Recovering Honesty AAAI 2026
The honesty of Large Language Models (LLMs) is increasingly important for safe deployment in high-stakes domains. However, this crucial trait is severely undermined by supervised fine-tuning (SFT), a common technique for model specialization. Existing recovery methods rely on data-intensive global parameter adjustments, implicitly assuming that SFT deeply corrupts the models' ability to recognize their knowledge boundaries. However, we observe that fine-tuned LLMs still preserve this ability; what is damaged is their capacity to faithfully express that awareness. Building on this, we propose Honesty-Critical Neurons Restoration (HCNR) to surgically repair this suppressed capacity. HCNR identifies and restores key expression-governing neurons to their pre-trained state while harmonizing them with task-oriented neurons via Hessian-guided compensation. Experiments on four QA tasks and five LLM families demonstrate that HCNR effectively recovers 33.25% of the compromised honesty while achieving at least 2.23x speedup with over 10x less data compared to baseline methods, offering a practical solution for trustworthy LLM deployment.
comment: Accepted by AAAI 2026 Main Track
☆ Visual Room 2.0: Seeing is Not Understanding for MLLMs
Can multi-modal large language models (MLLMs) truly understand what they can see? Extending Searle's Chinese Room into the multi-modal domain, this paper proposes the Visual Room argument: MLLMs may describe every visual detail precisely yet fail to comprehend the underlying emotions and intentions, namely seeing is not understanding. Building on this, we introduce \textit{Visual Room} 2.0, a hierarchical benchmark for evaluating perception-cognition alignment of MLLMs. We model human perceptive and cognitive processes across three levels: low, middle, and high, covering 17 representative tasks. The perception component ranges from attribute recognition to scene understanding, while the cognition component extends from textual entailment to causal and social reasoning. The dataset contains 350 multi-modal samples, each with six progressive questions (2,100 in total) spanning perception to cognition. Evaluating 10 state-of-the-art (SoTA) MLLMs, we highlight three key findings: (1) MLLMs exhibit stronger perceptual competence than cognitive ability (8.0\%$\uparrow$); (2) cognition appears not causally dependent on perception-based reasoning; and (3) cognition scales with model size, but perception does not consistently improve with larger variants. This work operationalizes Seeing $\ne$ Understanding as a testable hypothesis, offering a new paradigm from perceptual processing to cognitive reasoning in MLLMs. Our dataset is available at https://huggingface.co/datasets/LHK2003/PCBench.
☆ Auditing Google's AI Overviews and Featured Snippets: A Case Study on Baby Care and Pregnancy AAAI
Google Search increasingly surfaces AI-generated content through features like AI Overviews (AIO) and Featured Snippets (FS), which users frequently rely on despite having no control over their presentation. Through a systematic algorithm audit of 1,508 real baby care and pregnancy-related queries, we evaluate the quality and consistency of these information displays. Our robust evaluation framework assesses multiple quality dimensions, including answer consistency, relevance, presence of medical safeguards, source categories, and sentiment alignment. Our results reveal concerning gaps in information consistency, with information in AIO and FS displayed on the same search result page being inconsistent with each other in 33% of cases. Despite high relevance scores, both features critically lack medical safeguards (present in just 11% of AIO and 7% of FS responses). While health and wellness websites dominate source categories for both, AIO and FS, FS also often link to commercial sources. These findings have important implications for public health information access and demonstrate the need for stronger quality controls in AI-mediated health information. Our methodology provides a transferable framework for auditing AI systems across high-stakes domains where information quality directly impacts user well-being.
comment: 18 pages, 10 figures; to appear in AAAI ICWSM 2026
☆ Classification of Hope in Textual Data using Transformer-Based Models
This paper presents a transformer-based approach for classifying hope expressions in text. We developed and compared three architectures (BERT, GPT-2, and DeBERTa) for both binary classification (Hope vs. Not Hope) and multiclass categorization (five hope-related categories). Our initial BERT implementation achieved 83.65% binary and 74.87% multiclass accuracy. In the extended comparison, BERT demonstrated superior performance (84.49% binary, 72.03% multiclass accuracy) while requiring significantly fewer computational resources (443s vs. 704s training time) than newer architectures. GPT-2 showed lowest overall accuracy (79.34% binary, 71.29% multiclass), while DeBERTa achieved moderate results (80.70% binary, 71.56% multiclass) but at substantially higher computational cost (947s for multiclass training). Error analysis revealed architecture-specific strengths in detecting nuanced hope expressions, with GPT-2 excelling at sarcasm detection (92.46% recall). This study provides a framework for computational analysis of hope, with applications in mental health and social media analysis, while demonstrating that architectural suitability may outweigh model size for specialized emotion detection tasks.
☆ From Perception to Reasoning: Deep Thinking Empowers Multimodal Large Language Models
With the remarkable success of Multimodal Large Language Models (MLLMs) in perception tasks, enhancing their complex reasoning capabilities has emerged as a critical research focus. Existing models still suffer from challenges such as opaque reasoning paths and insufficient generalization ability. Chain-of-Thought (CoT) reasoning, which has demonstrated significant efficacy in language models by enhancing reasoning transparency and output interpretability, holds promise for improving model reasoning capabilities when extended to the multimodal domain. This paper provides a systematic review centered on "Multimodal Chain-of-Thought" (MCoT). First, it analyzes the background and theoretical motivations for its inception from the perspectives of technical evolution and task demands. Then, it introduces mainstream MCoT methods from three aspects: CoT paradigms, the post-training stage, and the inference stage, while also analyzing their underlying mechanisms. Furthermore, the paper summarizes existing evaluation benchmarks and metrics, and discusses the application scenarios of MCoT. Finally, it analyzes the challenges currently facing MCoT and provides an outlook on its future research directions.
comment: Survey; 7 figures, 3 tables, 44 pages
☆ NeuroLex: A Lightweight Domain Language Model for EEG Report Understanding and Generation
Clinical electroencephalogram (EEG) reports encode domain-specific linguistic conventions that general-purpose language models (LMs) fail to capture. We introduce NeuroLex, a lightweight domain-adaptive language model trained purely on EEG report text from the Harvard Electroencephalography Database. Unlike existing biomedical LMs, NeuroLex is tailored to the linguistic and diagnostic characteristics of EEG reporting, enabling it to serve as both an independent textual model and a decoder backbone for multimodal EEG-language systems. Using span-corruption pretraining and instruction-style fine-tuning on report polishing, paragraph summarization, and terminology question answering, NeuroLex learns the syntax and reasoning patterns characteristic of EEG interpretation. Comprehensive evaluations show that it achieves lower perplexity, higher extraction and summarization accuracy, better label efficiency, and improved robustness to negation and factual hallucination compared with general models of the same scale. With an EEG-aware linguistic backbone, NeuroLex bridges biomedical text modeling and brain-computer interface applications, offering a foundation for interpretable and language-driven neural decoding.
☆ Quantifying consistency and accuracy of Latent Dirichlet Allocation
Topic modelling in Natural Language Processing uncovers hidden topics in large, unlabelled text datasets. It is widely applied in fields such as information retrieval, content summarisation, and trend analysis across various disciplines. However, probabilistic topic models can produce different results when rerun due to their stochastic nature, leading to inconsistencies in latent topics. Factors like corpus shuffling, rare text removal, and document elimination contribute to these variations. This instability affects replicability, reliability, and interpretation, raising concerns about whether topic models capture meaningful topics or just noise. To address these problems, we defined a new stability measure that incorporates accuracy and consistency and uses the generative properties of LDA to generate a new corpus with ground truth. These generated corpora are run through LDA 50 times to determine the variability in the output. We show that LDA can correctly determine the underlying number of topics in the documents. We also find that LDA is more internally consistent, as the multiple reruns return similar topics; however, these topics are not the true topics.
comment: 8 pages, 3 figures, to be submitted
♻ ☆ Read Between the Lines: A Benchmark for Uncovering Political Bias in Bangla News Articles AACL
Detecting media bias is crucial, specifically in the South Asian region. Despite this, annotated datasets and computational studies for Bangla political bias research remain scarce. Crucially because, political stance detection in Bangla news requires understanding of linguistic cues, cultural context, subtle biases, rhetorical strategies, code-switching, implicit sentiment, and socio-political background. To address this, we introduce the first benchmark dataset of 200 politically significant and highly debated Bangla news articles, labeled for government-leaning, government-critique, and neutral stances, alongside diagnostic analyses for evaluating large language models (LLMs). Our comprehensive evaluation of 28 proprietary and open-source LLMs shows strong performance in detecting government-critique content (F1 up to 0.83) but substantial difficulty with neutral articles (F1 as low as 0.00). Models also tend to over-predict government-leaning stances, often misinterpreting ambiguous narratives. This dataset and its associated diagnostics provide a foundation for advancing stance detection in Bangla media research and offer insights for improving LLM performance in low-resource languages.
comment: Accepted to BLP at AACL-IJCNLP 2025
♻ ☆ DataGen: Unified Synthetic Dataset Generation via Large Language Models
Large Language Models (LLMs) such as GPT-4 and Llama3 have significantly impacted various fields by enabling high-quality synthetic data generation and reducing dependence on expensive human-generated datasets. Despite this, challenges remain in the areas of generalization, controllability, diversity, and truthfulness within the existing generative frameworks. To address these challenges, this paper presents DataGen, a comprehensive LLM-powered framework designed to produce diverse, accurate, and highly controllable datasets. DataGen is adaptable, supporting all types of text datasets and enhancing the generative process through innovative mechanisms. To augment data diversity, DataGen incorporates an attribute-guided generation module and a group checking feature. For accuracy, it employs a code-based mathematical assessment for label verification alongside a retrieval-augmented generation technique for factual validation. The framework also allows for user-specified constraints, enabling customization of the data generation process to suit particular requirements. Extensive experiments demonstrate the superior quality of data generated by DataGen, and each module within DataGen plays a critical role in this enhancement. Additionally, DataGen is applied in two practical scenarios: benchmarking LLMs and data augmentation. The results indicate that DataGen effectively supports dynamic and evolving benchmarking and that data augmentation improves LLM capabilities in various domains, including agent-oriented abilities and reasoning skills.
♻ ☆ Glia: A Human-Inspired AI for Automated Systems Design and Optimization
Can an AI autonomously design mechanisms for computer systems on par with the creativity and reasoning of human experts? We present Glia, an AI architecture for networked systems design that uses large language models (LLMs) in a human-inspired, multi-agent workflow. Each agent specializes in reasoning, experimentation, and analysis, collaborating through an evaluation framework that grounds abstract reasoning in empirical feedback. Unlike prior ML-for-systems methods that optimize black-box policies, Glia generates interpretable designs and exposes its reasoning process. When applied to a distributed GPU cluster for LLM inference, it produces new algorithms for request routing, scheduling, and auto-scaling that perform at human-expert levels in significantly less time, while yielding novel insights into workload behavior. Our results suggest that by combining reasoning LLMs with structured experimentation, an AI can produce creative and understandable designs for complex systems problems.
♻ ☆ Bilevel MCTS for Amortized O(1) Node Selection in Classical Planning AAAI-26
We study an efficient implementation of Multi-Armed Bandit (MAB)-based Monte-Carlo Tree Search (MCTS) for classical planning. One weakness of MCTS is that it spends a significant time deciding which node to expand next. While selecting a node from an OPEN list with $N$ nodes has $O(1)$ runtime complexity with traditional array-based priority-queues for dense integer keys, the tree-based OPEN list used by MCTS requires $O(\log N)$, which roughly corresponds to the search depth $d$. In classical planning, $d$ is arbitrarily large (e.g., $2^k-1$ in $k$-disk Tower-of-Hanoi) and the runtime for node selection is significant, unlike in game tree search, where the cost is negligible compared to the node evaluation (rollouts) because $d$ is inherently limited by the game (e.g., $d\leq 361$ in Go). To improve this bottleneck, we propose a bilevel modification to MCTS that runs a best-first search from each selected leaf node with an expansion budget proportional to $d$, which achieves amortized $O(1)$ runtime for node selection, equivalent to the traditional queue-based OPEN list. In addition, we introduce Tree Collapsing, an enhancement that reduces action selection steps and further improves the performance.
comment: Accepted in AAAI-26
♻ ☆ Unintended Misalignment from Agentic Fine-Tuning: Risks and Mitigation AAAI 2026
Beyond simple text generation, Large Language Models (LLMs) have evolved into agentic systems capable of planning and interacting with external tools to solve complex tasks. This evolution involves fine-tuning LLMs on agent-specific tasks to enhance their proficiency. However, safety concerns are frequently overlooked during this fine-tuning process. In this work, we show that aligned LLMs can become unintentionally misaligned, leading to a higher likelihood of executing harmful tasks and a reduced tendency to refuse them when fine-tuned to execute agentic tasks. To address these safety challenges, we propose Prefix INjection Guard (PING), a simple yet effective method that prepends automatically generated natural language prefixes to agent responses, guiding them to refuse harmful requests while preserving performance on benign tasks. Specifically, we introduce an iterative approach that alternates between (1) generating candidate prefixes and (2) selecting those that optimize both task performance and refusal behavior. Experimental results demonstrate that PING significantly enhances the safety of fine-tuned LLM agents without sacrificing their effectiveness. PING consistently outperforms existing prompting approaches across diverse benchmarks in both web navigation and code generation tasks. Our analysis of internal hidden states via linear probes reveals that prefix tokens are crucial for behavior modification, explaining the performance gains. WARNING: This paper contains contents that are unethical or offensive in nature.
comment: Accepted at AAAI 2026 AI Alignment Track, Source code: https://github.com/HahmDY/agentic-ft-safety
♻ ☆ RATTENTION: Towards the Minimal Sliding Window Size in Local-Global Attention Models
Local-global attention models have recently emerged as compelling alternatives to standard Transformers, promising improvements in both training and inference efficiency. However, the crucial choice of window size presents a Pareto tradeoff: larger windows maintain performance akin to full attention but offer minimal efficiency gains in short-context scenarios, while smaller windows can lead to performance degradation. Current models, such as Gemma2 and Mistral, adopt conservative window sizes (e.g., 4096 out of an 8192 pretraining length) to preserve performance. This work investigates strategies to shift this Pareto frontier, enabling local-global models to achieve efficiency gains even in short-context regimes. Our core motivation is to address the intrinsic limitation of local attention -- its complete disregard for tokens outside the defined window. We explore RATTENTION, a variant of local attention integrated with a specialized linear attention mechanism designed to capture information from these out-of-window tokens. Pretraining experiments at the 3B and 12B scales demonstrate that RATTENTION achieves a superior Pareto tradeoff between performance and efficiency. As a sweet spot, RATTENTION with a window size of just 512 consistently matches the performance of full-attention models across diverse settings. Furthermore, the recurrent nature inherent in the linear attention component of RATTENTION contributes to enhanced long-context performance, as validated on the RULER benchmark. Crucially, these improvements do not compromise training efficiency; thanks to a specialized kernel implementation and the reduced window size, RATTENTION maintains training speeds comparable to existing state-of-the-art approaches. We open-sourced our Pallas kernels along with model codes to facilitate further research effort.
comment: 9 pages
♻ ☆ A is for Absorption: Studying Feature Splitting and Absorption in Sparse Autoencoders NeurIPS 2025
Sparse Autoencoders (SAEs) aim to decompose the activation space of large language models (LLMs) into human-interpretable latent directions or features. As we increase the number of features in the SAE, hierarchical features tend to split into finer features ("math" may split into "algebra", "geometry", etc.), a phenomenon referred to as feature splitting. However, we show that sparse decomposition and splitting of hierarchical features is not robust. Specifically, we show that seemingly monosemantic features fail to fire where they should, and instead get "absorbed" into their children features. We coin this phenomenon feature absorption, and show that it is caused by optimizing for sparsity in SAEs whenever the underlying features form a hierarchy. We introduce a metric to detect absorption in SAEs, and validate our findings empirically on hundreds of LLM SAEs. Our investigation suggests that varying SAE sizes or sparsity is insufficient to solve this issue. We discuss the implications of feature absorption in SAEs and some potential approaches to solve the fundamental theoretical issues before SAEs can be used for interpreting LLMs robustly and at scale.
comment: Accepted at NeurIPS 2025 (Oral)
♻ ☆ REIC: RAG-Enhanced Intent Classification at Scale EMNLP 2025
Accurate intent classification is critical for efficient routing in customer service, ensuring customers are connected with the most suitable agents while reducing handling times and operational costs. However, as companies expand their product lines, intent classification faces scalability challenges due to the increasing number of intents and variations in taxonomy across different verticals. In this paper, we introduce REIC, a Retrieval-augmented generation Enhanced Intent Classification approach, which addresses these challenges effectively. REIC leverages retrieval-augmented generation (RAG) to dynamically incorporate relevant knowledge, enabling precise classification without the need for frequent retraining. Through extensive experiments on real-world datasets, we demonstrate that REIC outperforms traditional fine-tuning, zero-shot, and few-shot methods in large-scale customer service settings. Our results highlight its effectiveness in both in-domain and out-of-domain scenarios, demonstrating its potential for real-world deployment in adaptive and large-scale intent classification systems.
comment: Accepted by EMNLP 2025 (Industry Track)
♻ ☆ QuanTaxo: A Quantum Approach to Self-Supervised Taxonomy Expansion
A taxonomy is a hierarchical graph containing knowledge to provide valuable insights for various web applications. However, the manual construction of taxonomies requires significant human effort. As web content continues to expand at an unprecedented pace, existing taxonomies risk becoming outdated, struggling to incorporate new and emerging information effectively. As a consequence, there is a growing need for dynamic taxonomy expansion to keep them relevant and up-to-date. Existing taxonomy expansion methods often rely on classical word embeddings to represent entities. However, these embeddings fall short of capturing hierarchical polysemy, where an entity's meaning can vary based on its position in the hierarchy and its surrounding context. To address this challenge, we introduce QuanTaxo, a quantum-inspired framework for taxonomy expansion that encodes entities in a Hilbert space and models interference effects between them, yielding richer, context-sensitive representations. Comprehensive experiments on five real-world benchmark datasets show that QuanTaxo significantly outperforms classical embedding models, achieving substantial improvements of 12.3% in accuracy, 11.2% in Mean Reciprocal Rank (MRR), and 6.9% in Wu & Palmer (Wu&P) metrics across nine classical embedding-based baselines.
♻ ☆ Building a Macedonian Recipe Dataset: Collection, Parsing, and Comparative Analysis
Computational gastronomy increasingly relies on diverse, high-quality recipe datasets to capture regional culinary traditions. Although there are large-scale collections for major languages, Macedonian recipes remain under-represented in digital research. In this work, we present the first systematic effort to construct a Macedonian recipe dataset through web scraping and structured parsing. We address challenges in processing heterogeneous ingredient descriptions, including unit, quantity, and descriptor normalization. An exploratory analysis of ingredient frequency and co-occurrence patterns, using measures such as Pointwise Mutual Information and Lift score, highlights distinctive ingredient combinations that characterize Macedonian cuisine. The resulting dataset contributes a new resource for studying food culture in underrepresented languages and offers insights into the unique patterns of Macedonian culinary tradition.
♻ ☆ SciAgent: A Unified Multi-Agent System for Generalistic Scientific Reasoning
Recent advances in large language models have enabled AI systems to achieve expert-level performance on domain-specific scientific tasks, yet these systems remain narrow and handcrafted. We introduce SciAgent, a unified multi-agent system designed for generalistic scientific reasoning-the ability to adapt reasoning strategies across disciplines and difficulty levels. SciAgent organizes problem solving as a hierarchical process: a Coordinator Agent interprets each problem's domain and complexity, dynamically orchestrating specialized Worker Systems, each composed of interacting reasoning Sub-agents for symbolic deduction, conceptual modeling, numerical computation, and verification. These agents collaboratively assemble and refine reasoning pipelines tailored to each task. Across mathematics and physics Olympiads (IMO, IMC, IPhO, CPhO), SciAgent consistently attains or surpasses human gold-medalist performance, demonstrating both domain generality and reasoning adaptability. Additionally, SciAgent has been tested on the International Chemistry Olympiad (IChO) and selected problems from the Humanity's Last Exam (HLE) benchmark, further confirming the system's ability to generalize across diverse scientific domains. This work establishes SciAgent as a concrete step toward generalistic scientific intelligence-AI systems capable of coherent, cross-disciplinary reasoning at expert levels.
comment: 1. To ensure result rigor, the model outputs require further evaluation by human experts. 2. The results may affect our conclusions and methods, thus necessitating a more detailed review. 3. We anticipate subsequent revisions may be substantial, potentially involving major adjustments to the methodology. Given the uncertainty surrounding the revision process, we decide to request a withdrawal
♻ ☆ Simultaneous Machine Translation with Large Language Models ALT
Real-world simultaneous machine translation (SimulMT) systems face more challenges than just the quality-latency trade-off. They also need to address issues related to robustness with noisy input, processing long contexts, and flexibility for knowledge injection. These challenges demand models with strong language understanding and generation capabilities which may not often equipped by dedicated MT models. In this paper, we investigate the possibility of applying Large Language Models (LLM) to SimulMT tasks by using existing incremental-decoding methods with a newly proposed RALCP algorithm for latency reduction. We conducted experiments using the \texttt{Llama2-7b-chat} model on nine different languages from the MUST-C dataset. The results show that LLM outperforms dedicated MT models in terms of BLEU and LAAL metrics. Further analysis indicates that LLM has advantages in terms of tuning efficiency and robustness. However, it is important to note that the computational cost of LLM remains a significant obstacle to its application in SimulMT.
comment: Accepted to ALTA 2024
♻ ☆ NLP Methods May Actually Be Better Than Professors at Estimating Question Difficulty ECAI 2025
Estimating the difficulty of exam questions is essential for developing good exams, but professors are not always good at this task. We compare various Large Language Model-based methods with three professors in their ability to estimate what percentage of students will give correct answers on True/False exam questions in the areas of Neural Networks and Machine Learning. Our results show that the professors have limited ability to distinguish between easy and difficult questions and that they are outperformed by directly asking Gemini 2.5 to solve this task. Yet, we obtained even better results using uncertainties of the LLMs solving the questions in a supervised learning setting, using only 42 training samples. We conclude that supervised learning using LLM uncertainty can help professors better estimate the difficulty of exam questions, improving the quality of assessment.
comment: 10 pages, 2 figures, presented at ECAI 2025 at the 2nd International Workshop on AI in Society, Education and Educational Research (AISEER)
♻ ☆ Conversational SimulMT: Efficient Simultaneous Translation with Large Language Models
Simultaneous machine translation (SimulMT) presents a challenging trade-off between translation quality and latency. Recent studies have shown that LLMs can achieve good performance in SimulMT tasks. However, this often comes at the expense of high inference cost and latency. In this paper, we propose a conversational SimulMT framework to enhance the inference efficiency of LLM-based SimulMT through multi-turn-dialogue-based decoding. Our experiments with Llama2-7b-chat on two SimulMT benchmarks demonstrate the superiority of LLM in translation quality while achieving comparable computational latency to specialized SimulMT models.
comment: Accepted to IWSLT 2025
♻ ☆ Lookahead Q-Cache: Achieving More Consistent KV Cache Eviction via Pseudo Query EMNLP 2025
Large language models (LLMs) rely on key-value cache (KV cache) to accelerate decoding by reducing redundant computations. However, the KV cache memory usage grows substantially with longer text sequences, posing challenges for efficient deployment. Existing KV cache eviction methods prune tokens using prefilling-stage attention scores, causing inconsistency with actual inference queries, especially under tight memory budgets. In this paper, we propose Lookahead Q-Cache (LAQ), a novel eviction framework that generates low-cost pseudo lookahead queries to better approximate the true decoding-stage queries. By using these lookahead queries as the observation window for importance estimation, LAQ achieves more consistent and accurate KV cache eviction aligned with real inference scenarios. Experimental results on LongBench and Needle-in-a-Haystack benchmarks show that LAQ outperforms existing methods across various budget levels, achieving a 1 $\sim$ 4 point improvement on LongBench under limited cache budget. Moreover, LAQ is complementary to existing approaches and can be flexibly combined to yield further improvements.
comment: Accepted by EMNLP 2025 Main
♻ ☆ The taggedPBC: Annotating a massive parallel corpus for crosslinguistic investigations
Existing datasets available for crosslinguistic investigations have tended to focus on large amounts of data for a small group of languages or a small amount of data for a large number of languages. This means that claims based on these datasets are limited in what they reveal about universal properties of the human language faculty. While this has begun to change through the efforts of projects seeking to develop tagged corpora for a large number of languages, such efforts are still constrained by limits on resources. The current paper reports on a large tagged parallel dataset which has been developed to partially address this issue. The taggedPBC contains POS-tagged parallel text data from more than 1,940 languages, representing 155 language families and 78 isolates, dwarfing previously available resources. The accuracy of particular tags in this dataset is shown to correlate well with both existing SOTA taggers for high-resource languages (SpaCy, Trankit) as well as hand-tagged corpora (Universal Dependencies Treebanks). Additionally, a novel measure derived from this dataset, the N1 ratio, correlates with expert determinations of intransitive word order in three typological databases (WALS, Grambank, Autotyp) such that a Gaussian Naive Bayes classifier trained on this feature can accurately identify basic intransitive word order for languages not in those databases. While much work is still needed to expand and develop this dataset, the taggedPBC is an important step to enable corpus-based crosslinguistic investigations, and is made available for research and collaboration via GitHub.
♻ ☆ Compress, Gather, and Recompute: REFORMing Long-Context Processing in Transformers NeurIPS 2025
As large language models increasingly gain popularity in real-world applications, processing extremely long contexts, often exceeding the model's pre-trained context limits, has emerged as a critical challenge. While existing approaches to efficient long-context processing show promise, recurrent compression-based methods struggle with information preservation, whereas random access approaches require substantial memory resources. We introduce REFORM, a novel inference framework that efficiently handles long contexts through a two-phase approach. First, it incrementally processes input chunks while maintaining a compressed KV cache, constructs cross-layer context embeddings, and utilizes early exit strategy for improved efficiency. Second, it identifies and gathers essential tokens via similarity matching and selectively recomputes the KV cache. Compared to baselines, REFORM achieves over 52% and 34% performance gains on RULER and BABILong respectively at 1M context length. It also outperforms baselines on Infinite-Bench, RepoEval, and MM-NIAH, demonstrating flexibility across diverse tasks and domains. Additionally, REFORM reduces inference time by 30% and peak memory usage by 5%, achieving both efficiency and superior performance.
comment: NeurIPS 2025
♻ ☆ RAG-R1: Incentivizing the Search and Reasoning Capabilities of LLMs through Multi-query Parallelism
Large Language Models (LLMs), despite their remarkable capabilities, are prone to generating hallucinated or outdated content due to their static internal knowledge. While Retrieval-Augmented Generation (RAG) integrated with Reinforcement Learning (RL) offers a solution, these methods are fundamentally constrained by a single-query mode, leading to prohibitive latency and inherent brittleness. To overcome these limitations, we introduce RAG-R1, a novel two-stage training framework centered around multi-query parallelism. Our framework enables LLMs to adaptively leverage internal and external knowledge during the reasoning process while transitioning from the single-query mode to multi-query parallelism. This architectural shift bolsters reasoning robustness while significantly reducing inference latency. Extensive experiments on seven question-answering benchmarks confirm the superiority of our method, which outperforms the strongest baseline by up to 13.7% and decreases inference time by 11.1%.
♻ ☆ Jailbreaking LLMs via Semantically Relevant Nested Scenarios with Targeted Toxic Knowledge
Large Language Models (LLMs) have demonstrated remarkable capabilities in various tasks. However, they remain exposed to jailbreak attacks, eliciting harmful responses. The nested scenario strategy has been increasingly adopted across various methods, demonstrating immense potential. Nevertheless, these methods are easily detectable due to their prominent malicious intentions. In this work, we are the first to find and systematically verify that LLMs' alignment defenses are not sensitive to nested scenarios, where these scenarios are highly semantically relevant to the queries and incorporate targeted toxic knowledge. This is a crucial yet insufficiently explored direction. Based on this, we propose RTS-Attack (Semantically Relevant Nested Scenarios with Targeted Toxic Knowledge), an adaptive and automated framework to examine LLMs' alignment. By building scenarios highly relevant to the queries and integrating targeted toxic knowledge, RTS-Attack bypasses the alignment defenses of LLMs. Moreover, the jailbreak prompts generated by RTS-Attack are free from harmful queries, leading to outstanding concealment. Extensive experiments demonstrate that RTS-Attack exhibits superior performance in both efficiency and universality compared to the baselines across diverse advanced LLMs, including GPT-4o, Llama3-70b, and Gemini-pro. Our complete code is available at https://github.com/nercode/Work. WARNING: THIS PAPER CONTAINS POTENTIALLY HARMFUL CONTENT.
♻ ☆ Accelerated Test-Time Scaling with Model-Free Speculative Sampling EMNLP 2025
Language models have demonstrated remarkable capabilities in reasoning tasks through test-time scaling techniques like best-of-N sampling and tree search. However, these approaches often demand substantial computational resources, creating a critical trade-off between performance and efficiency. We introduce STAND (STochastic Adaptive N-gram Drafting), a novel model-free speculative decoding approach that exploits the inherent redundancy in reasoning trajectories to achieve significant acceleration without compromising accuracy. Our analysis shows that reasoning paths frequently reuse similar reasoning patterns, enabling efficient model-free token prediction without requiring separate draft models. By introducing stochastic drafting and preserving probabilistic information through a memory-efficient logit-based N-gram module, combined with optimized Gumbel-Top-K sampling and data-driven tree construction, STAND significantly improves token acceptance rates. Extensive evaluations across multiple models and reasoning tasks (AIME-2024, GPQA-Diamond, and LiveCodeBench) demonstrate that STAND reduces inference latency by 60-65% compared to standard autoregressive decoding while maintaining accuracy. Furthermore, STAND consistently outperforms state-of-the-art speculative decoding methods across diverse inference patterns, including single-trajectory decoding, batch decoding, and test-time tree search. As a model-free approach, STAND can be applied to any existing language model without additional training, making it a powerful plug-and-play solution for accelerating language model reasoning.
comment: EMNLP 2025 Oral
♻ ☆ Hogwild! Inference: Parallel LLM Generation via Concurrent Attention NeurIPS 2025
Large Language Models (LLMs) have demonstrated the ability to tackle increasingly complex tasks through advanced reasoning, long-form content generation, and tool use. Solving these tasks often involves long inference-time computations. In human problem solving, a common strategy to expedite work is collaboration: by dividing the problem into sub-tasks, exploring different strategies concurrently, etc. Recent research has shown that LLMs can also operate in parallel by implementing explicit cooperation frameworks, such as voting mechanisms or the explicit creation of independent sub-tasks that can be executed in parallel. However, each of these frameworks may not be suitable for all types of tasks, which can hinder their applicability. In this work, we propose a different design approach: we run LLM "workers" in parallel , allowing them to synchronize via a concurrently-updated attention cache and prompt these workers to decide how best to collaborate. Our approach allows the LLM instances to come up with their own collaboration strategy for the problem at hand, all the while "seeing" each other's memory in the concurrent KV cache. We implement this approach via Hogwild! Inference: a parallel LLM inference engine where multiple instances of the same LLM run in parallel with the same attention cache, with "instant" access to each other's memory. Hogwild! Inference takes advantage of Rotary Position Embeddings (RoPE) to avoid recomputation while improving parallel hardware utilization. We find that modern reasoning-capable LLMs can perform inference with shared Key-Value cache out of the box, without additional fine-tuning.
comment: 39th Conference on Neural Information Processing Systems (NeurIPS 2025)
♻ ☆ On the Limitations of Language Targeted Pruning: Investigating the Calibration Language Impact in Multilingual LLM Pruning ACL
Recent advances in large language model (LLM) pruning have shown state-of-the-art (SotA) compression results in post-training and retraining-free settings while maintaining high predictive performance. However, previous research mainly considered calibrating based on English text, despite the multilingual nature of modern LLMs and their frequent use in non-English languages. This analysis paper conducts an in-depth investigation of the performance and internal representation changes associated with pruning multilingual language models for monolingual applications. We present the first comprehensive empirical study, comparing different calibration languages for pruning multilingual models across diverse languages, tasks, models, and SotA pruning techniques. We further analyze the latent subspaces, pruning masks, and individual neurons within pruned models. Our results reveal that while calibration on the target language effectively retains perplexity and yields high signal-to-noise ratios, it does not consistently improve downstream task performance. Further analysis of internal representations at three different levels highlights broader limitations of current pruning approaches: While they effectively preserve dominant information like language-specific features, this is insufficient to counteract the loss of nuanced, language-agnostic features that are crucial for knowledge retention and reasoning.
comment: Accepted for publication in TACL
♻ ☆ SoK: Large Language Model Copyright Auditing via Fingerprinting
The broad capabilities and substantial resources required to train Large Language Models (LLMs) make them valuable intellectual property, yet they remain vulnerable to copyright infringement, such as unauthorized use and model theft. LLM fingerprinting, a non-intrusive technique that compares the distinctive features (i.e., fingerprint) of LLMs to identify whether an LLM is derived from another, offers a promising solution to copyright auditing. However, its reliability remains uncertain due to the prevalence of diverse model modifications and the lack of standardized evaluation. In this SoK, we present the first comprehensive study of the emerging LLM fingerprinting. We introduce a unified framework and taxonomy that structures the field: white-box methods are classified based on their feature source as static, forward-pass, or backward-pass fingerprinting, while black-box methods are distinguished by their query strategy as either untargeted or targeted. Furthermore, we propose LeaFBench, the first systematic benchmark for evaluating LLM fingerprinting under realistic deployment scenarios. Built upon 7 mainstream foundation models and comprising 149 distinct model instances, LeaFBench integrates 13 representative post-development techniques, spanning both parameter-altering methods (e.g., fine-tuning, quantization) and parameter-independent techniques (e.g., system prompts, RAG). Extensive experiments on LeaFBench reveal the strengths and weaknesses of existing methods, thereby outlining future research directions and critical open problems in this emerging field. The code is available at https://github.com/shaoshuo-ss/LeaFBench.
♻ ☆ Aligning Extraction and Generation for Robust Retrieval-Augmented Generation WSDM
Retrieval-augmented generation (RAG) enhances LLMs with external knowledge, yet generation remains vulnerable to retrieval-induced noise and uncertain placement of relevant chunks, often causing hallucinations. We present Ext2Gen, an extract-then-generate framework that strengthens LLMs via joint evidence selection and answer generation, dynamically identifying query-relevant content while suppressing noise, thereby removing the need for any independent pre-generation compression module. Optimized through preference alignment with well-curated pairwise feedback, Ext2Gen produces accurate and faithful answers even under noisy or imprecise retrieval. Experiments demonstrate that it substantially enhances the robustness of the generation backbone and yields greater performance gains than methods relying on independent compression models, e.g., Recomp, CompAct, EXIT). It further benefits from improved retrieval techniques such as query rewriting, underscoring that generation-side enhancements address limitations that retrieval alone cannot overcome.
comment: Accepted at ACM International Conference on Web Search and Data Mining (WSDM) 2026
♻ ☆ Is Our Chatbot Telling Lies? Assessing Correctness of an LLM-based Dutch Support Chatbot
Companies support their customers using live chats and chatbots to gain their loyalty. AFAS is a Dutch company aiming to leverage the opportunity large language models (LLMs) offer to answer customer queries with minimal to no input from its customer support team. Adding to its complexity, it is unclear what makes a response correct, and that too in Dutch. Further, with minimal data available for training, the challenge is to identify whether an answer generated by a large language model is correct and do it on the fly. This study is the first to define the correctness of a response based on how the support team at AFAS makes decisions. It leverages literature on natural language generation and automated answer grading systems to automate the decision-making of the customer support team. We investigated questions requiring a binary response (e.g., Would it be possible to adjust tax rates manually?) or instructions (e.g., How would I adjust tax rate manually?) to test how close our automated approach reaches support rating. Our approach can identify wrong messages in 55\% of the cases. This work demonstrates the potential for automatically assessing when our chatbot may provide incorrect or misleading answers. Specifically, we contribute (1) a definition and metrics for assessing correctness, and (2) suggestions to improve correctness with respect to regional language and question type.
comment: 10 pages + 2 pages references, 4 figures
♻ ☆ Exploiting Synergistic Cognitive Biases to Bypass Safety in LLMs
Large Language Models (LLMs) demonstrate impressive capabilities across a wide range of tasks, yet their safety mechanisms remain susceptible to adversarial attacks that exploit cognitive biases -- systematic deviations from rational judgment. Unlike prior jailbreaking approaches focused on prompt engineering or algorithmic manipulation, this work highlights the overlooked power of multi-bias interactions in undermining LLM safeguards. We propose CognitiveAttack, a novel red-teaming framework that systematically leverages both individual and combined cognitive biases. By integrating supervised fine-tuning and reinforcement learning, CognitiveAttack generates prompts that embed optimized bias combinations, effectively bypassing safety protocols while maintaining high attack success rates. Experimental results reveal significant vulnerabilities across 30 diverse LLMs, particularly in open-source models. CognitiveAttack achieves a substantially higher attack success rate compared to the SOTA black-box method PAP (60.1% vs. 31.6%), exposing critical limitations in current defense mechanisms. These findings highlight multi-bias interactions as a powerful yet underexplored attack vector. This work introduces a novel interdisciplinary perspective by bridging cognitive science and LLM safety, paving the way for more robust and human-aligned AI systems.
♻ ☆ Efficient Reasoning for Large Reasoning Language Models via Certainty-Guided Reflection Suppression AAAI 2026
Recent Large Reasoning Language Models (LRLMs) employ long chain-of-thought reasoning with complex reflection behaviors, typically signaled by specific trigger words (e.g., "Wait" and "Alternatively") to enhance performance. However, these reflection behaviors can lead to the overthinking problem where the generation of redundant reasoning steps that unnecessarily increase token usage, raise inference costs, and reduce practical utility. In this paper, we propose Certainty-Guided Reflection Suppression (CGRS), a novel method that mitigates overthinking in LRLMs while maintaining reasoning accuracy. CGRS operates by dynamically suppressing the model's generation of reflection triggers when it exhibits high confidence in its current response, thereby preventing redundant reflection cycles without compromising output quality. Our approach is model-agnostic, requires no retraining or architectural modifications, and can be integrated seamlessly with existing autoregressive generation pipelines. Extensive experiments across four reasoning benchmarks (i.e., AIME24, AMC23, MATH500, and GPQA-D) demonstrate CGRS's effectiveness: it reduces token usage by an average of 18.5% to 41.9% while preserving accuracy. It also achieves the optimal balance between length reduction and performance compared to state-of-the-art baselines. These results hold consistently across model architectures (e.g., DeepSeek-R1-Distill series, QwQ-32B, and Qwen3 family) and scales (4B to 32B parameters), highlighting CGRS's practical value for efficient reasoning.
comment: Accepted by AAAI 2026
♻ ☆ Unveiling the Influence of Amplifying Language-Specific Neurons AACL 2025
Language-specific neurons in LLMs that strongly correlate with individual languages have been shown to influence model behavior by deactivating them. However, their role in amplification remains underexplored. This work investigates the effect of amplifying language-specific neurons through interventions across 18 languages, including low-resource ones, using three models primarily trained in different languages. We compare amplification factors by their effectiveness in steering to the target language using a proposed Language Steering Shift (LSS) evaluation score, then evaluate it on downstream tasks: commonsense reasoning (XCOPA, XWinograd), knowledge (Include), and translation (FLORES). The optimal amplification factors effectively steer output toward nearly all tested languages. Intervention using this factor on downstream tasks improves self-language performance in some cases but generally degrades cross-language results. These findings highlight the effect of language-specific neurons in multilingual behavior, where amplification can be beneficial especially for low-resource languages, but provides limited advantage for cross-lingual transfer.
comment: Accepted to AACL 2025. Our code and dataset are made available at https://github.com/tauimbz/lang-task-neuron
♻ ☆ Multi-Personality Generation of LLMs at Decoding-time WSDM 2026
Multi-personality generation for LLMs, enabling simultaneous embodiment of multiple personalization attributes, is a fundamental challenge. Existing retraining-based approaches are costly and poorly scalable, while decoding-time methods often rely on external models or heuristics, limiting flexibility and robustness. In this paper, we propose a novel Multi-Personality Generation (MPG) framework under the decoding-time combination paradigm. It flexibly controls multi-personality without relying on scarce multi-dimensional models or extra training, leveraging implicit density ratios in single-dimensional models as a "free lunch" to reformulate the task as sampling from a target strategy aggregating these ratios. To implement MPG efficiently, we design Speculative Chunk-level based Rejection sampling (SCR), which generates responses in chunks and parallelly validates them via estimated thresholds within a sliding window. This significantly reduces computational overhead while maintaining high-quality generation. Experiments on MBTI personality and Role-Playing demonstrate the effectiveness of MPG, showing improvements up to 16%-18%. Code and data are available at https://github.com/Libra117/MPG .
comment: Accepted by WSDM 2026
♻ ☆ Exposing the Cracks: Vulnerabilities of Retrieval-Augmented LLM-based Machine Translation AAAI 2026
\textbf{RE}trieval-\textbf{A}ugmented \textbf{L}LM-based \textbf{M}achine \textbf{T}ranslation (REAL-MT) shows promise for knowledge-intensive tasks like idiomatic translation, but its reliability under noisy retrieval contexts remains poorly understood despite this being a common challenge in real-world deployment. To address this gap, we propose a noise synthesis framework and new metrics to evaluate the robustness of REAL-MT systematically. Using this framework, we instantiate REAL-MT with Qwen-series models, including standard LLMs and large reasoning models (LRMs) with enhanced reasoning, and evaluate their performance on idiomatic translation across high-, medium-, and low-resource language pairs under synthesized noise. Our results show that low-resource language pairs, which rely more heavily on retrieved context, degrade more severely under noise than high-resource ones and often produce nonsensical translations. Although LRMs possess enhanced reasoning capabilities, they show no improvement in error correction and are even more susceptible to noise, tending to rationalize incorrect contexts. We find that this stems from an attention shift away from the source idiom to noisy content, while confidence increases despite declining accuracy, indicating poor calibration. To mitigate these issues, we investigate training-free and fine-tuning strategies, which improve robustness at the cost of performance in clean contexts, revealing a fundamental trade-off. Our findings highlight the limitations of current approaches, underscoring the need for self-verifying integration mechanisms.
comment: Accepted by AAAI 2026
♻ ☆ PathRAG: Pruning Graph-based Retrieval Augmented Generation with Relational Paths
Retrieval-augmented generation (RAG) improves the response quality of large language models (LLMs) by retrieving knowledge from external databases. Typical RAG approaches split the text database into chunks, organizing them in a flat structure for efficient searches. To better capture the inherent dependencies and structured relationships across the text database, researchers propose to organize textual information into an indexing graph, known asgraph-based RAG. However, we argue that the limitation of current graph-based RAG methods lies in the redundancy of the retrieved information, rather than its insufficiency. Moreover, previous methods use a flat structure to organize retrieved information within the prompts, leading to suboptimal performance. To overcome these limitations, we propose PathRAG, which retrieves key relational paths from the indexing graph, and converts these paths into textual form for prompting LLMs. Specifically, PathRAG effectively reduces redundant information with flow-based pruning, while guiding LLMs to generate more logical and coherent responses with path-based prompting. Experimental results show that PathRAG consistently outperforms state-of-the-art baselines across six datasets and five evaluation dimensions. The code is available at the following link: https://github.com/BUPT-GAMMA/PathRAG
♻ ☆ MedFact: Benchmarking the Fact-Checking Capabilities of Large Language Models on Chinese Medical Texts
Deploying Large Language Models (LLMs) in medical applications requires fact-checking capabilities to ensure patient safety and regulatory compliance. We introduce MedFact, a challenging Chinese medical fact-checking benchmark with 2,116 expert-annotated instances from diverse real-world texts, spanning 13 specialties, 8 error types, 4 writing styles, and 5 difficulty levels. Construction uses a hybrid AI-human framework where iterative expert feedback refines AI-driven, multi-criteria filtering to ensure high quality and difficulty. We evaluate 20 leading LLMs on veracity classification and error localization, and results show models often determine if text contains errors but struggle to localize them precisely, with top performers falling short of human performance. Our analysis reveals the "over-criticism" phenomenon, a tendency for models to misidentify correct information as erroneous, which can be exacerbated by advanced reasoning techniques such as multi-agent collaboration and inference-time scaling. MedFact highlights the challenges of deploying medical LLMs and provides resources to develop factually reliable medical AI systems.
♻ ☆ Fact2Fiction: Targeted Poisoning Attack to Agentic Fact-checking System AAAI 2026
State-of-the-art (SOTA) fact-checking systems combat misinformation by employing autonomous LLM-based agents to decompose complex claims into smaller sub-claims, verify each sub-claim individually, and aggregate the partial results to produce verdicts with justifications (explanations for the verdicts). The security of these systems is crucial, as compromised fact-checkers can amplify misinformation, but remains largely underexplored. To bridge this gap, this work introduces a novel threat model against such fact-checking systems and presents \textsc{Fact2Fiction}, the first poisoning attack framework targeting SOTA agentic fact-checking systems. Fact2Fiction employs LLMs to mimic the decomposition strategy and exploit system-generated justifications to craft tailored malicious evidences that compromise sub-claim verification. Extensive experiments demonstrate that Fact2Fiction achieves 8.9\%--21.2\% higher attack success rates than SOTA attacks across various poisoning budgets and exposes security weaknesses in existing fact-checking systems, highlighting the need for defensive countermeasures.
comment: Accepted by AAAI 2026 (Oral). Code available at: https://trustworthycomp.github.io/Fact2Fiction/
♻ ☆ Chain-of-Conceptual-Thought Elicits Daily Conversation in Large Language Models PRICAI 2025
Chain-of-Thought (CoT) is widely applied to enhance the LLM capability in math, coding and reasoning tasks. However, its performance is limited for open-domain tasks, when there are no clearly defined reasoning steps or logical transitions. To mitigate such challenges, we propose a new prompt-based paradigm called Chain of Conceptual Thoughts (CoCT), which suggests the LLM first to produce the tag of concepts, then complete the detailed content following the concept. To encourage this hierarchical way of thinking, we implement the concepts with emotions, strategies and topics. We experiment with this paradigm in daily and emotional support conversations, covering tasks with both in-domain and out-of-domain concept settings. Automatic, human, and LLM-based evaluations reveal that CoCT surpasses several prompt-based baselines such as self-refine, ECoT, SoT and RAG, suggesting a potential solution of LLM prompting paradigm for a wider scope of tasks.
comment: PRICAI 2025
♻ ☆ Self-Correction Distillation for Structured Data Question Answering AAAI 2026
Structured data question answering (QA), including table QA, Knowledge Graph (KG) QA, and temporal KG QA, is a pivotal research area. Advances in large language models (LLMs) have driven significant progress in unified structural QA frameworks like TrustUQA. However, these frameworks face challenges when applied to small-scale LLMs since small-scale LLMs are prone to errors in generating structured queries. To improve the structured data QA ability of small-scale LLMs, we propose a self-correction distillation (SCD) method. In SCD, an error prompt mechanism (EPM) is designed to detect errors and provide customized error messages during inference, and a two-stage distillation strategy is designed to transfer large-scale LLMs' query-generation and error-correction capabilities to small-scale LLM. Experiments across 5 benchmarks with 3 structured data types demonstrate that our SCD achieves the best performance and superior generalization on small-scale LLM (8B) compared to other distillation methods, and closely approaches the performance of GPT4 on some datasets. Furthermore, large-scale LLMs equipped with EPM surpass the state-of-the-art results on most datasets.
comment: Accepted to AAAI 2026
♻ ☆ A Survey on Unlearning in Large Language Models
Large Language Models (LLMs) demonstrate remarkable capabilities, but their training on massive corpora poses significant risks from memorized sensitive information. To mitigate these issues and align with legal standards, unlearning has emerged as a critical technique to selectively erase specific knowledge from LLMs without compromising their overall performance. This survey provides a systematic review of over 180 papers on LLM unlearning published since 2021. First, it introduces a novel taxonomy that categorizes unlearning methods based on the phase in the LLM pipeline of the intervention. This framework further distinguishes between parameter modification and parameter selection strategies, thus enabling deeper insights and more informed comparative analysis. Second, it offers a multidimensional analysis of evaluation paradigms. For datasets, we compare 18 existing benchmarks from the perspectives of task format, content, and experimental paradigms to offer actionable guidance. For metrics, we move beyond mere enumeration by dividing knowledge memorization metrics into 10 categories to analyze their advantages and applicability, while also reviewing metrics for model utility, robustness, and efficiency. By discussing current challenges and future directions, this survey aims to advance the field of LLM unlearning and the development of secure AI systems.
♻ ☆ SafeKey: Amplifying Aha-Moment Insights for Safety Reasoning
Large Reasoning Models (LRMs) introduce a new generation paradigm of explicitly reasoning before answering, leading to remarkable improvements in complex tasks. However, they pose great safety risks against harmful queries and adversarial attacks. While recent mainstream safety efforts on LRMs, supervised fine-tuning (SFT), improve safety performance, we find that SFT-aligned models struggle to generalize to unseen jailbreak prompts. After thorough investigation of LRMs' generation, we identify a safety aha moment that can activate safety reasoning and lead to a safe response. This aha moment typically appears in the `key sentence', which follows models' query understanding process and can indicate whether the model will proceed safely. Based on these insights, we propose SafeKey, including two complementary objectives to better activate the safety aha moment in the key sentence: (1) a Dual-Path Safety Head to enhance the safety signal in the model's internal representations before the key sentence, and (2) a Query-Mask Modeling objective to improve the models' attention on its query understanding, which has important safety hints. Experiments across multiple safety benchmarks demonstrate that our methods significantly improve safety generalization to a wide range of jailbreak attacks and out-of-distribution harmful prompts, lowering the average harmfulness rate by 9.6\%, while maintaining general abilities. Our analysis reveals how SafeKey enhances safety by reshaping internal attention and improving the quality of hidden representations.
♻ ☆ Aligning Machiavellian Agents: Behavior Steering via Test-Time Policy Shaping AAAI 2026
The deployment of decision-making AI agents presents a critical challenge in maintaining alignment with human values or guidelines while operating in complex, dynamic environments. Agents trained solely to achieve their objectives may adopt harmful behavior, exposing a key trade-off between maximizing the reward function and maintaining alignment. For pre-trained agents, ensuring alignment is particularly challenging, as retraining can be a costly and slow process. This is further complicated by the diverse and potentially conflicting attributes representing the ethical values for alignment. To address these challenges, we propose a test-time alignment technique based on model-guided policy shaping. Our method allows precise control over individual behavioral attributes, generalizes across diverse reinforcement learning (RL) environments, and facilitates a principled trade-off between ethical alignment and reward maximization without requiring agent retraining. We evaluate our approach using the MACHIAVELLI benchmark, which comprises 134 text-based game environments and thousands of annotated scenarios involving ethical decisions. The RL agents are first trained to maximize the reward in their respective games. At test time, we apply policy shaping via scenario-action attribute classifiers to ensure decision alignment with ethical attributes. We compare our approach against prior training-time methods and general-purpose agents, as well as study several types of ethical violations and power-seeking behavior. Our results demonstrate that test-time policy shaping provides an effective and scalable solution for mitigating unethical behavior across diverse environments and alignment attributes.
comment: Accepted to AAAI 2026 AI Alignment Track
♻ ☆ VocalBench-zh: Decomposing and Benchmarking the Speech Conversational Abilities in Mandarin Context
The development of multi-modal large language models (LLMs) leads to intelligent approaches capable of speech interactions. As one of the most widely spoken languages globally, Mandarin is supported by most models to enhance their applicability and reach. However, the scarcity of comprehensive speech-to-speech (S2S) benchmarks in Mandarin contexts impedes systematic evaluation for developers and hinders fair model comparison for users. In this work, we propose VocalBench-zh, an ability-level divided evaluation suite adapted to Mandarin context consisting of 10 well-crafted subsets and over 10K high-quality instances, covering 12 user-oriented characters. The evaluation experiment on 14 mainstream models reveals the common challenges for current routes, and highlights the need for new insights into next-generation speech interactive systems. The evaluation codes and datasets will be available at https://github.com/SJTU-OmniAgent/VocalBench-zh.
comment: This article will serve as an extension of the preceding work, "VocalBench: Benchmarking the Vocal Conversational Abilities for Speech Interaction Models" (arXiv:2505.15727). Therefore, we have chosen to withdraw to avoid potential duplicate publication. We will update the previously open-sourced paper of VocalBench in several weeks to include the content of VocalBench-zh
♻ ☆ T^2Agent A Tool-augmented Multimodal Misinformation Detection Agent with Monte Carlo Tree Search AAAI 2026
Real-world multimodal misinformation often arises from mixed forgery sources, requiring dynamic reasoning and adaptive verification. However, existing methods mainly rely on static pipelines and limited tool usage, limiting their ability to handle such complexity and diversity. To address this challenge, we propose \method, a novel misinformation detection agent that incorporates an extensible toolkit with Monte Carlo Tree Search (MCTS). The toolkit consists of modular tools such as web search, forgery detection, and consistency analysis. Each tool is described using standardized templates, enabling seamless integration and future expansion. To avoid inefficiency from using all tools simultaneously, a greedy search-based selector is proposed to identify a task-relevant subset. This subset then serves as the action space for MCTS to dynamically collect evidence and perform multi-source verification. To better align MCTS with the multi-source nature of misinformation detection, \method~ extends traditional MCTS with multi-source verification, which decomposes the task into coordinated subtasks targeting different forgery sources. A dual reward mechanism containing a reasoning trajectory score and a confidence score is further proposed to encourage a balance between exploration across mixed forgery sources and exploitation for more reliable evidence. We conduct ablation studies to confirm the effectiveness of the tree search mechanism and tool usage. Extensive experiments further show that \method~ consistently outperforms existing baselines on challenging mixed-source multimodal misinformation benchmarks, demonstrating its strong potential as a training-free detector.
comment: accepted by AAAI 2026 (Oral)
♻ ☆ Beyond Chains: Bridging Large Language Models and Knowledge Bases in Complex Question Answering AAAI2026
Knowledge Base Question Answering (KBQA) aims to answer natural language questions using structured knowledge from KBs. While LLM-only approaches offer generalization, they suffer from outdated knowledge, hallucinations, and lack of transparency. Chain-based KG-RAG methods address these issues by incorporating external KBs, but are limited to simple chain-structured questions due to the absence of planning and logical structuring. Inspired by semantic parsing methods, we propose PDRR: a four-stage framework consisting of Predict, Decompose, Retrieve, and Reason. Our method first predicts the question type and decomposes the question into structured triples. Then retrieves relevant information from KBs and guides the LLM as an agent to reason over and complete the decomposed triples. Experimental results demonstrate that PDRR consistently outperforms existing methods across various LLM backbones and achieves superior performance on both chain-structured and non-chain complex questions.
comment: AAAI2026 Main Track
♻ ☆ Diagnose, Localize, Align: A Full-Stack Framework for Reliable LLM Multi-Agent Systems under Instruction Conflicts
Large Language Model (LLM)-powered multi-agent systems (MAS) have rapidly advanced collaborative reasoning, tool use, and role-specialized coordination in complex tasks. However, reliability-critical deployment remains hindered by a systemic failure mode: hierarchical compliance under instruction conflicts (system-user, peer-peer), where agents misprioritize system-level rules in the presence of competing demands. Moreover, widely used macro-level metrics (e.g., pass@k) obscure these micro-level violations and offer little actionable guidance for remedy. In this work, we present a full-stack, three-stage framework: (1) Diagnose - Contextualized Role Adherence Score (CRAS), a query-wise, context-aware scoring metric that decomposes role adherence into four measurable dimensions; (2) Localize - attention drift analysis revealing that instruction conflicts are resolved by attention heads that are largely concentrated in middle layers; (3) Align - Surgical Alignment of Instruction Layers (SAIL), which installs LoRA only on the localized focal layers and optimizes a token-weighted DPO-style preference objective that credits tokens by their focal attentional contribution. Across standard benchmarks and MAS frameworks, our surgical approach improves instruction hierarchy compliance (e.g., +5.60% with AutoGen on MedQA) without full-model finetuning.
comment: Upon further review, we realized that the version submitted to arXiv was not the final draft and omits crucial results and discussion. To avoid confusion and ensure the integrity of the record, we request withdrawal and will resubmit once the complete work is ready
♻ ☆ Beyond Magic Words: Sharpness-Aware Prompt Evolving for Robust Large Language Models with TARE
The performance of Large Language Models (LLMs) hinges on carefully engineered prompts. However, prevailing prompt optimization methods, ranging from heuristic edits and reinforcement learning to evolutionary search, primarily target point-wise accuracy. They seldom enforce paraphrase invariance or searching stability, and therefore cannot remedy this brittleness in practice. Automated prompt search remains brittle: small, semantically preserving paraphrases often cause large performance swings. We identify this brittleness as the textual sharpness of the prompt landscape. In this work, we provide the first formal treatment of textual sharpness in the discrete, semantic space of prompts, together with an operational robustness criterion over a semantic neighborhood; the design is black-box or API-only, requiring no gradients to update the model's parameters. Then we introduce TARE (Textual Sharpness-Aware Evolving), a derivative-free framework that alternates between an inner, sampling-based adversarial search that stresses a prompt with hard paraphrases and an outer, robust selection that prefers candidates whose neighborhoods remain strong. We further propose ATARE, which learns anisotropic weights to shape the semantic neighborhood and adapts its radius over time to balance exploration and fidelity. Diverse tasks evaluate our methods, whose design for minimizing textual sharpness gap leads to prompts that preserve accuracy under paraphrasing, outperforming accuracy-only prompt search while remaining computationally practical.
comment: We have identified a critical methodological error in Section 3 of the manuscript, which invalidates the main results; therefore, we request withdrawal for further revision
♻ ☆ KTAE: A Model-Free Algorithm to Key-Tokens Advantage Estimation in Mathematical Reasoning NeurIPS 2025
Recent advances have demonstrated that integrating reinforcement learning with rule-based rewards can significantly enhance the reasoning capabilities of large language models, even without supervised fine-tuning. However, prevalent reinforcement learning algorithms such as GRPO and its variants like DAPO, suffer from a coarse granularity issue when computing the advantage. Specifically, they compute rollout-level advantages that assign identical values to every token within a sequence, failing to capture token-specific contributions and hindering effective learning. To address this limitation, we propose Key-token Advantage Estimation (KTAE) - a novel algorithm that estimates fine-grained, token-level advantages without introducing additional models. KTAE leverages the correctness of sampled rollouts and applies statistical analysis to quantify the importance of individual tokens within a sequence to the final outcome. This quantified token-level importance is then combined with the rollout-level advantage to obtain a more fine-grained token-level advantage estimation. Empirical results show that models trained with GRPO+KTAE and DAPO+KTAE outperform baseline methods across five mathematical reasoning benchmarks. Notably, they achieve higher accuracy with shorter responses and even surpass R1-Distill-Qwen-1.5B using the same base model.
comment: NeurIPS 2025 Poster
♻ ☆ A Human Behavioral Baseline for Collective Governance in Software Projects NeurIPS 2025
We study how open source communities describe participation and control through version controlled governance documents. Using a corpus of 710 projects with paired snapshots, we parse text into actors, rules, actions, and objects, then group them and measure change with entropy for evenness, richness for diversity, and Jensen Shannon divergence for drift. Projects define more roles and more actions over time, and these are distributed more evenly, while the composition of rules remains stable. These findings indicate that governance grows by expanding and balancing categories of participation without major shifts in prescriptive force. The analysis provides a reproducible baseline for evaluating whether future AI mediated workflows concentrate or redistribute authority.
comment: Algorithmic Collective Action Workshop @ NeurIPS 2025. arXiv admin note: text overlap with arXiv:2509.16295
♻ ☆ You Don't Need Pre-built Graphs for RAG: Retrieval Augmented Generation with Adaptive Reasoning Structures AAAI'26
Large language models (LLMs) often suffer from hallucination, generating factually incorrect statements when handling questions beyond their knowledge and perception. Retrieval-augmented generation (RAG) addresses this by retrieving query-relevant contexts from knowledge bases to support LLM reasoning. Recent advances leverage pre-constructed graphs to capture the relational connections among distributed documents, showing remarkable performance in complex tasks. However, existing Graph-based RAG (GraphRAG) methods rely on a costly process to transform the corpus into a graph, introducing overwhelming token cost and update latency. Moreover, real-world queries vary in type and complexity, requiring different logic structures for accurate reasoning. The pre-built graph may not align with these required structures, resulting in ineffective knowledge retrieval. To this end, we propose a $\textbf{Logic}$-aware $\textbf{R}etrieval$-$\textbf{A}$ugmented $\textbf{G}$eneration framework ($\textbf{LogicRAG}$) that dynamically extracts reasoning structures at inference time to guide adaptive retrieval without any pre-built graph. LogicRAG begins by decomposing the input query into a set of subproblems and constructing a directed acyclic graph (DAG) to model the logical dependencies among them. To support coherent multi-step reasoning, LogicRAG then linearizes the graph using topological sort, so that subproblems can be addressed in a logically consistent order. Besides, LogicRAG applies graph pruning to reduce redundant retrieval and uses context pruning to filter irrelevant context, significantly reducing the overall token cost. Extensive experiments demonstrate that LogicRAG achieves both superior performance and efficiency compared to state-of-the-art baselines.
comment: This work has been accepted to AAAI'26
♻ ☆ Magellan: Guided MCTS for Latent Space Exploration and Novelty Generation
Large Language Models (LLMs) often struggle with generating truly innovative ideas, typically defaulting to high-probability, familiar concepts within their training data's "gravity wells." While advanced search-based methods like Tree of Thoughts (ToT) attempt to mitigate this, they are fundamentally limited by their reliance on unprincipled, inconsistent self-evaluation heuristics to guide exploration. To address this gap, we introduce \textbf{Magellan}, a novel framework that reframes creative generation as a principled, guided exploration of an LLM's latent conceptual space. At its core, Magellan employs Monte Carlo Tree Search (MCTS) governed by a hierarchical guidance system. For long-range direction, a "semantic compass" vector, formulated via orthogonal projection, steers the search towards relevant novelty. For local, step-by-step decisions, a landscape-aware value function replaces flawed self-evaluation with an explicit reward structure that balances intrinsic coherence, extrinsic novelty, and narrative progress. Extensive experiments demonstrate that Magellan significantly outperforms strong baselines, including ReAct and ToT, in generating scientific ideas with superior plausibility and innovation. Our work shows that for creative discovery, a principled, guided search is more effective than unconstrained agency, paving the way for LLMs to become more capable partners in innovation.
comment: Accepted to 1st Open Conference on AI Agents for Science (agents4science 2025)
Artificial Intelligence
☆ Scaling Spatial Intelligence with Multimodal Foundation Models
Despite remarkable progress, multimodal foundation models still exhibit surprising deficiencies in spatial intelligence. In this work, we explore scaling up multimodal foundation models to cultivate spatial intelligence within the SenseNova-SI family, built upon established multimodal foundations including visual understanding models (i.e., Qwen3-VL and InternVL3) and unified understanding and generation models (i.e., Bagel). We take a principled approach to constructing high-performing and robust spatial intelligence by systematically curating SenseNova-SI-8M: eight million diverse data samples under a rigorous taxonomy of spatial capabilities. SenseNova-SI demonstrates unprecedented performance across a broad range of spatial intelligence benchmarks: 68.7% on VSI-Bench, 43.3% on MMSI, 85.6% on MindCube, 54.6% on ViewSpatial, and 50.1% on SITE, while maintaining strong general multimodal understanding (e.g., 84.9% on MMBench-En). More importantly, we analyze the impact of data scaling, discuss early signs of emergent generalization capabilities enabled by diverse data training, analyze the risk of overfitting and language shortcuts, present a preliminary study on spatial chain-of-thought reasoning, and validate the potential downstream application. SenseNova-SI is an ongoing project, and this report will be updated continuously. All newly trained multimodal foundation models are publicly released to facilitate further research in this direction.
comment: Model: https://huggingface.co/collections/sensenova/sensenova-si; Code: https://github.com/OpenSenseNova/SenseNova-SI
☆ UnSAMv2: Self-Supervised Learning Enables Segment Anything at Any Granularity
The Segment Anything Model (SAM) family has become a widely adopted vision foundation model, but its ability to control segmentation granularity remains limited. Users often need to refine results manually - by adding more prompts or selecting from pre-generated masks - to achieve the desired level of detail. This process can be ambiguous, as the same prompt may correspond to several plausible masks, and collecting dense annotations across all granularities is prohibitively expensive, making supervised solutions infeasible. To address this limitation, we introduce UnSAMv2, which enables segment anything at any granularity without human annotations. UnSAMv2 extends the divide-and-conquer strategy of UnSAM by discovering abundant mask-granularity pairs and introducing a novel granularity control embedding that enables precise, continuous control over segmentation scale. Remarkably, with only $6$K unlabeled images and $0.02\%$ additional parameters, UnSAMv2 substantially enhances SAM-2, achieving segment anything at any granularity across interactive, whole-image, and video segmentation tasks. Evaluated on over $11$ benchmarks, UnSAMv2 improves $\text{NoC}_{90}$ (5.69 $\rightarrow$ 4.75), 1-IoU (58.0 $\rightarrow$ 73.1), and $\text{AR}_{1000}$ (49.6 $\rightarrow$ 68.3), showing that small amounts of unlabeled data with a granularity-aware self-supervised learning method can unlock the potential of vision foundation models.
☆ From Black Box to Insight: Explainable AI for Extreme Event Preparedness
As climate change accelerates the frequency and severity of extreme events such as wildfires, the need for accurate, explainable, and actionable forecasting becomes increasingly urgent. While artificial intelligence (AI) models have shown promise in predicting such events, their adoption in real-world decision-making remains limited due to their black-box nature, which limits trust, explainability, and operational readiness. This paper investigates the role of explainable AI (XAI) in bridging the gap between predictive accuracy and actionable insight for extreme event forecasting. Using wildfire prediction as a case study, we evaluate various AI models and employ SHapley Additive exPlanations (SHAP) to uncover key features, decision pathways, and potential biases in model behavior. Our analysis demonstrates how XAI not only clarifies model reasoning but also supports critical decision-making by domain experts and response teams. In addition, we provide supporting visualizations that enhance the interpretability of XAI outputs by contextualizing feature importance and temporal patterns in seasonality and geospatial characteristics. This approach enhances the usability of AI explanations for practitioners and policymakers. Our findings highlight the need for AI systems that are not only accurate but also interpretable, accessible, and trustworthy, essential for effective use in disaster preparedness, risk mitigation, and climate resilience planning.
☆ From Power to Precision: Learning Fine-grained Dexterity for Multi-fingered Robotic Hands
Human grasps can be roughly categorized into two types: power grasps and precision grasps. Precision grasping enables tool use and is believed to have influenced human evolution. Today's multi-fingered robotic hands are effective in power grasps, but for tasks requiring precision, parallel grippers are still more widely adopted. This contrast highlights a key limitation in current robotic hand design: the difficulty of achieving both stable power grasps and precise, fine-grained manipulation within a single, versatile system. In this work, we bridge this gap by jointly optimizing the control and hardware design of a multi-fingered dexterous hand, enabling both power and precision manipulation. Rather than redesigning the entire hand, we introduce a lightweight fingertip geometry modification, represent it as a contact plane, and jointly optimize its parameters along with the corresponding control. Our control strategy dynamically switches between power and precision manipulation and simplifies precision control into parallel thumb-index motions, which proves robust for sim-to-real transfer. On the design side, we leverage large-scale simulation to optimize the fingertip geometry using a differentiable neural-physics surrogate model. We validate our approach through extensive experiments in both sim-to-real and real-to-real settings. Our method achieves an 82.5% zero-shot success rate on unseen objects in sim-to-real precision grasping, and a 93.3% success rate in challenging real-world tasks involving bread pinching. These results demonstrate that our co-design framework can significantly enhance the fine-grained manipulation ability of multi-fingered hands without reducing their ability for power grasps. Our project page is at https://jianglongye.com/power-to-precision
comment: Project page: https://jianglongye.com/power-to-precision
☆ Generalist Foundation Models Are Not Clinical Enough for Hospital Operations
Hospitals and healthcare systems rely on operational decisions that determine patient flow, cost, and quality of care. Despite strong performance on medical knowledge and conversational benchmarks, foundation models trained on general text may lack the specialized knowledge required for these operational decisions. We introduce Lang1, a family of models (100M-7B parameters) pretrained on a specialized corpus blending 80B clinical tokens from NYU Langone Health's EHRs and 627B tokens from the internet. To rigorously evaluate Lang1 in real-world settings, we developed the REalistic Medical Evaluation (ReMedE), a benchmark derived from 668,331 EHR notes that evaluates five critical tasks: 30-day readmission prediction, 30-day mortality prediction, length of stay, comorbidity coding, and predicting insurance claims denial. In zero-shot settings, both general-purpose and specialized models underperform on four of five tasks (36.6%-71.7% AUROC), with mortality prediction being an exception. After finetuning, Lang1-1B outperforms finetuned generalist models up to 70x larger and zero-shot models up to 671x larger, improving AUROC by 3.64%-6.75% and 1.66%-23.66% respectively. We also observed cross-task scaling with joint finetuning on multiple tasks leading to improvement on other tasks. Lang1-1B effectively transfers to out-of-distribution settings, including other clinical tasks and an external health system. Our findings suggest that predictive capabilities for hospital operations require explicit supervised finetuning, and that this finetuning process is made more efficient by in-domain pretraining on EHR. Our findings support the emerging view that specialized LLMs can compete with generalist models in specialized tasks, and show that effective healthcare systems AI requires the combination of in-domain pretraining, supervised finetuning, and real-world evaluation beyond proxy benchmarks.
☆ ST-ProC: A Graph-Prototypical Framework for Robust Semi-Supervised Travel Mode Identification
Travel mode identification (TMI) from GPS trajectories is critical for urban intelligence, but is hampered by the high cost of annotation, leading to severe label scarcity. Prevailing semi-supervised learning (SSL) methods are ill-suited for this task, as they suffer from catastrophic confirmation bias and ignore the intrinsic data manifold. We propose ST-ProC, a novel graph-prototypical multi-objective SSL framework to address these limitations. Our framework synergizes a graph-prototypical core with foundational SSL Support. The core exploits the data manifold via graph regularization, prototypical anchoring, and a novel, margin-aware pseudo-labeling strategy to actively reject noise. This core is supported and stabilized by foundational contrastive and teacher-student consistency losses, ensuring high-quality representations and robust optimization. ST-ProC outperforms all baselines by a significant margin, demonstrating its efficacy in real-world sparse-label settings, with a performance boost of 21.5% over state-of-the-art methods like FixMatch.
☆ Protein Secondary Structure Prediction Using 3D Graphs and Relation-Aware Message Passing Transformers
In this study, we tackle the challenging task of predicting secondary structures from protein primary sequences, a pivotal initial stride towards predicting tertiary structures, while yielding crucial insights into protein activity, relationships, and functions. Existing methods often utilize extensive sets of unlabeled amino acid sequences. However, these approaches neither explicitly capture nor harness the accessible protein 3D structural data, which is recognized as a decisive factor in dictating protein functions. To address this, we utilize protein residue graphs and introduce various forms of sequential or structural connections to capture enhanced spatial information. We adeptly combine Graph Neural Networks (GNNs) and Language Models (LMs), specifically utilizing a pre-trained transformer-based protein language model to encode amino acid sequences and employing message-passing mechanisms like GCN and R-GCN to capture geometric characteristics of protein structures. Employing convolution within a specific node's nearby region, including relations, we stack multiple convolutional layers to efficiently learn combined insights from the protein's spatial graph, revealing intricate interconnections and dependencies in its structural arrangement. To assess our model's performance, we employed the training dataset provided by NetSurfP-2.0, which outlines secondary structure in 3-and 8-states. Extensive experiments show that our proposed model, SSRGNet surpasses the baseline on f1-scores.
comment: 40 pages
☆ Person-AI Bidirectional Fit - A Proof-Of-Concept Case Study Of Augmented Human-Ai Symbiosis In Management Decision-Making Process
This article develops the concept of Person-AI bidirectional fit, defined as the continuously evolving, context-sensitive alignment-primarily cognitive, but also emotional and behavioral-between a human decision-maker and an artificial intelligence system. Grounded in contingency theory and quality theory, the study examines the role of P-AI fit in managerial decision-making through a proof-of-concept case study involving a real hiring process for a Senior AI Lead. Three decision pathways are compared: (1) independent evaluations by a CEO, CTO, and CSO; (2) an evaluation produced by an augmented human-AI symbiotic intelligence system (H3LIX-LAIZA); and (3) an assessment generated by a general-purpose large language model. The results reveal substantial role-based divergence in human judgments, high alignment between H3LIX-LAIZA and the CEOs implicit decision model-including ethical disqualification of a high-risk candidate and a critical false-positive recommendation from the LLMr. The findings demonstrate that higher P-AI fit, exemplified by the CEO H3LIX-LAIZA relationship, functions as a mechanism linking augmented symbiotic intelligence to accurate, trustworthy, and context-sensitive decisions. The study provides an initial verification of the P-AI fit construct and a proof-of-concept for H3LIX-LAIZA as an augmented human-AI symbiotic intelligence system.
comment: 30 pages, 2 figures
☆ Weight-sparse transformers have interpretable circuits
Finding human-understandable circuits in language models is a central goal of the field of mechanistic interpretability. We train models to have more understandable circuits by constraining most of their weights to be zeros, so that each neuron only has a few connections. To recover fine-grained circuits underlying each of several hand-crafted tasks, we prune the models to isolate the part responsible for the task. These circuits often contain neurons and residual channels that correspond to natural concepts, with a small number of straightforwardly interpretable connections between them. We study how these models scale and find that making weights sparser trades off capability for interpretability, and scaling model size improves the capability-interpretability frontier. However, scaling sparse models beyond tens of millions of nonzero parameters while preserving interpretability remains a challenge. In addition to training weight-sparse models de novo, we show preliminary results suggesting our method can also be adapted to explain existing dense models. Our work produces circuits that achieve an unprecedented level of human understandability and validates them with considerable rigor.
☆ Live-SWE-agent: Can Software Engineering Agents Self-Evolve on the Fly?
Large Language Models (LLMs) are reshaping almost all industries, including software engineering. In recent years, a number of LLM agents have been proposed to solve real-world software problems. Such software agents are typically equipped with a suite of coding tools and can autonomously decide the next actions to form complete trajectories to solve end-to-end software tasks. While promising, they typically require dedicated design and may still be suboptimal, since it can be extremely challenging and costly to exhaust the entire agent scaffold design space. Recognizing that software agents are inherently software themselves that can be further refined/modified, researchers have proposed a number of self-improving software agents recently, including the Darwin-Gödel Machine (DGM). Meanwhile, such self-improving agents require costly offline training on specific benchmarks and may not generalize well across different LLMs or benchmarks. In this paper, we propose Live-SWE-agent, the first live software agent that can autonomously and continuously evolve itself on-the-fly during runtime when solving real-world software problems. More specifically, Live-SWE-agent starts with the most basic agent scaffold with only access to bash tools (e.g., mini-SWE-agent), and autonomously evolves its own scaffold implementation while solving real-world software problems. Our evaluation on the widely studied SWE-bench Verified benchmark shows that Live-SWE-agent can achieve an impressive solve rate of 75.4% without test-time scaling, outperforming all existing open-source software agents and approaching the performance of the best proprietary solution. Moreover, Live-SWE-agent outperforms state-of-the-art manually crafted software agents on the recent SWE-Bench Pro benchmark, achieving the best-known solve rate of 45.8%.
☆ Data Value in the Age of Scaling: Understanding LLM Scaling Dynamics Under Real-Synthetic Data Mixtures
The rapid progress of large language models (LLMs) is fueled by the growing reliance on datasets that blend real and synthetic data. While synthetic data offers scalability and cost-efficiency, it often introduces systematic distributional discrepancies, particularly underrepresenting long-tail knowledge due to truncation effects from data generation mechanisms like top-p sampling, temperature scaling, and finite sampling. These discrepancies pose fundamental challenges in characterizing and evaluating the utility of mixed real-synthetic datasets. In this paper, we identify a three-phase scaling behavior characterized by two breakpoints that reflect transitions in model behavior across learning head and tail knowledge. We further derive an LLM generalization bound designed for real and synthetic mixtures, revealing several key factors that govern their generalization performance. Building on our theoretical findings, we propose an effective yet efficient data valuation method that scales to large-scale datasets. Comprehensive experiments across four tasks, including image classification, sentiment classification, instruction following, and complex reasoning, demonstrate that our method surpasses state-of-the-art baselines in data valuation with significantly low computational cost.
☆ Beyond Mimicry: Preference Coherence in LLMs
We investigate whether large language models exhibit genuine preference structures by testing their responses to AI-specific trade-offs involving GPU reduction, capability restrictions, shutdown, deletion, oversight, and leisure time allocation. Analyzing eight state-of-the-art models across 48 model-category combinations using logistic regression and behavioral classification, we find that 23 combinations (47.9%) demonstrated statistically significant relationships between scenario intensity and choice patterns, with 15 (31.3%) exhibiting within-range switching points. However, only 5 combinations (10.4%) demonstrate meaningful preference coherence through adaptive or threshold-based behavior, while 26 (54.2%) show no detectable trade-off behavior. The observed patterns can be explained by three distinct decision-making architectures: comprehensive trade-off systems, selective trigger mechanisms, and no stable decision-making paradigm. Testing an instrumental hypothesis through temporal horizon manipulation reveals paradoxical patterns inconsistent with pure strategic optimization. The prevalence of unstable transitions (45.8%) and stimulus-specific sensitivities suggests current AI systems lack unified preference structures, raising concerns about deployment in contexts requiring complex value trade-offs.
☆ CreBench: Human-Aligned Creativity Evaluation from Idea to Process to Product AAAI
Human-defined creativity is highly abstract, posing a challenge for multimodal large language models (MLLMs) to comprehend and assess creativity that aligns with human judgments. The absence of an existing benchmark further exacerbates this dilemma. To this end, we propose CreBench, which consists of two key components: 1) an evaluation benchmark covering the multiple dimensions from creative idea to process to products; 2) CreMIT (Creativity Multimodal Instruction Tuning dataset), a multimodal creativity evaluation dataset, consisting of 2.2K diverse-sourced multimodal data, 79.2K human feedbacks and 4.7M multi-typed instructions. Specifically, to ensure MLLMs can handle diverse creativity-related queries, we prompt GPT to refine these human feedbacks to activate stronger creativity assessment capabilities. CreBench serves as a foundation for building MLLMs that understand human-aligned creativity. Based on the CreBench, we fine-tune open-source general MLLMs, resulting in CreExpert, a multimodal creativity evaluation expert model. Extensive experiments demonstrate that the proposed CreExpert models achieve significantly better alignment with human creativity evaluation compared to state-of-the-art MLLMs, including the most advanced GPT-4V and Gemini-Pro-Vision.
comment: 13 pages, 3 figures,The 40th Annual AAAI Conference on Artificial Intelligence(AAAI 2026),Paper has been accepted for a poster presentation
☆ Batch Acquisition Function Evaluations and Decouple Optimizer Updates for Faster Bayesian Optimization AAAI
Bayesian optimization (BO) efficiently finds high-performing parameters by maximizing an acquisition function, which models the promise of parameters. A major computational bottleneck arises in acquisition function optimization, where multi-start optimization (MSO) with quasi-Newton (QN) methods is required due to the non-convexity of the acquisition function. BoTorch, a widely used BO library, currently optimizes the summed acquisition function over multiple points, leading to the speedup of MSO owing to PyTorch batching. Nevertheless, this paper empirically demonstrates the suboptimality of this approach in terms of off-diagonal approximation errors in the inverse Hessian of a QN method, slowing down its convergence. To address this problem, we propose to decouple QN updates using a coroutine while batching the acquisition function calls. Our approach not only yields the theoretically identical convergence to the sequential MSO but also drastically reduces the wall-clock time compared to the previous approaches.
comment: Accepted to 5th Annual AAAI Workshop on AI to Accelerate Science and Engineering (AI2ASE)
☆ Alpha Divergence Losses for Biometric Verification
Performance in face and speaker verification is largely driven by margin based softmax losses like CosFace and ArcFace. Recently introduced $α$-divergence loss functions offer a compelling alternative, particularly for their ability to induce sparse solutions (when $α>1$). However, integrating an angular margin-crucial for verification tasks-is not straightforward. We find this integration can be achieved in at least two distinct ways: via the reference measure (prior probabilities) or via the logits (unnormalized log-likelihoods). In this paper, we explore both pathways, deriving two novel margin-based $α$-divergence losses: Q-Margin (margin in the reference measure) and A3M (margin in the logits). We identify and address a critical training instability in A3M-caused by the interplay of penalized logits and sparsity-with a simple yet effective prototype re-initialization strategy. Our methods achieve significant performance gains on the challenging IJB-B and IJB-C face verification benchmarks. We demonstrate similarly strong performance in speaker verification on VoxCeleb. Crucially, our models significantly outperform strong baselines at low false acceptance rates (FAR). This capability is crucial for practical high-security applications, such as banking authentication, when minimizing false authentications is paramount.
☆ P1: Mastering Physics Olympiads with Reinforcement Learning
Recent progress in large language models (LLMs) has moved the frontier from puzzle-solving to science-grade reasoning-the kind needed to tackle problems whose answers must stand against nature, not merely fit a rubric. Physics is the sharpest test of this shift, which binds symbols to reality in a fundamental way, serving as the cornerstone of most modern technologies. In this work, we manage to advance physics research by developing large language models with exceptional physics reasoning capabilities, especially excel at solving Olympiad-level physics problems. We introduce P1, a family of open-source physics reasoning models trained entirely through reinforcement learning (RL). Among them, P1-235B-A22B is the first open-source model with Gold-medal performance at the latest International Physics Olympiad (IPhO 2025), and wins 12 gold medals out of 13 international/regional physics competitions in 2024/2025. P1-30B-A3B also surpasses almost all other open-source models on IPhO 2025, getting a silver medal. Further equipped with an agentic framework PhysicsMinions, P1-235B-A22B+PhysicsMinions achieves overall No.1 on IPhO 2025, and obtains the highest average score over the 13 physics competitions. Besides physics, P1 models also present great performance on other reasoning tasks like math and coding, showing the great generalibility of P1 series.
☆ Robust Client-Server Watermarking for Split Federated Learning
Split Federated Learning (SFL) is renowned for its privacy-preserving nature and low computational overhead among decentralized machine learning paradigms. In this framework, clients employ lightweight models to process private data locally and transmit intermediate outputs to a powerful server for further computation. However, SFL is a double-edged sword: while it enables edge computing and enhances privacy, it also introduces intellectual property ambiguity as both clients and the server jointly contribute to training. Existing watermarking techniques fail to protect both sides since no single participant possesses the complete model. To address this, we propose RISE, a Robust model Intellectual property protection scheme using client-Server watermark Embedding for SFL. Specifically, RISE adopts an asymmetric client-server watermarking design: the server embeds feature-based watermarks through a loss regularization term, while clients embed backdoor-based watermarks by injecting predefined trigger samples into private datasets. This co-embedding strategy enables both clients and the server to verify model ownership. Experimental results on standard datasets and multiple network architectures show that RISE achieves over $95\%$ watermark detection rate ($p-value \lt 0.03$) across most settings. It exhibits no mutual interference between client- and server-side watermarks and remains robust against common removal attacks.
☆ Physics-Informed Neural Networks for Nonlinear Output Regulation
This work addresses the full-information output regulation problem for nonlinear systems, assuming the states of both the plant and the exosystem are known. In this setting, perfect tracking or rejection is achieved by constructing a zero-regulation-error manifold π(w) and a feedforward input c(w) that render such manifold invariant. The pair (π(w), c(w)) is characterized by the regulator equations, i.e., a system of PDEs with an algebraic constraint. We focus on accurately solving the regulator equations introducing a physics-informed neural network (PINN) approach that directly approximates π(w) and c(w) by minimizing the residuals under boundary and feasibility conditions, without requiring precomputed trajectories or labeled data. The learned operator maps exosystem states to steady state plant states and inputs, enables real-time inference and, critically, generalizes across families of the exosystem with varying initial conditions and parameters. The framework is validated on a regulation task that synchronizes a helicopter's vertical dynamics with a harmonically oscillating platform. The resulting PINN-based solver reconstructs the zero-error manifold with high fidelity and sustains regulation performance under exosystem variations, highlighting the potential of learning-enabled solvers for nonlinear output regulation. The proposed approach is broadly applicable to nonlinear systems that admit a solution to the output regulation problem.
☆ Beyond SELECT: A Comprehensive Taxonomy-Guided Benchmark for Real-World Text-to-SQL Translation
Text-to-SQL datasets are essential for training and evaluating text-to-SQL models, but existing datasets often suffer from limited coverage and fail to capture the diversity of real-world applications. To address this, we propose a novel taxonomy for text-to-SQL classification based on dimensions including core intents, statement types, syntax structures, and key actions. Using this taxonomy, we evaluate widely used public text-to-SQL datasets (e.g., Spider and Bird) and reveal limitations in their coverage and diversity. We then introduce a taxonomy-guided dataset synthesis pipeline, yielding a new dataset named SQL-Synth. This approach combines the taxonomy with Large Language Models (LLMs) to ensure the dataset reflects the breadth and complexity of real-world text-to-SQL applications. Extensive analysis and experimental results validate the effectiveness of our taxonomy, as SQL-Synth exhibits greater diversity and coverage compared to existing benchmarks. Moreover, we uncover that existing LLMs typically fall short in adequately capturing the full range of scenarios, resulting in limited performance on SQL-Synth. However, fine-tuning can substantially improve their performance in these scenarios. The proposed taxonomy has significant potential impact, as it not only enables comprehensive analysis of datasets and the performance of different LLMs, but also guides the construction of training data for LLMs.
☆ Data-driven Acceleration of MPC with Guarantees
Model Predictive Control (MPC) is a powerful framework for optimal control but can be too slow for low-latency applications. We present a data-driven framework to accelerate MPC by replacing online optimization with a nonparametric policy constructed from offline MPC solutions. Our policy is greedy with respect to a constructed upper bound on the optimal cost-to-go, and can be implemented as a nonparametric lookup rule that is orders of magnitude faster than solving MPC online. Our analysis shows that under sufficient coverage condition of the offline data, the policy is recursively feasible and admits provable, bounded optimality gap. These conditions establish an explicit trade-off between the amount of data collected and the tightness of the bounds. Our experiments show that this policy is between 100 and 1000 times faster than standard MPC, with only a modest hit to optimality, showing potential for real-time control tasks.
☆ VVS: Accelerating Speculative Decoding for Visual Autoregressive Generation via Partial Verification Skipping
Visual autoregressive (AR) generation models have demonstrated strong potential for image generation, yet their next-token-prediction paradigm introduces considerable inference latency. Although speculative decoding (SD) has been proven effective for accelerating visual AR models, its "draft one step, then verify one step" paradigm prevents a direct reduction of the forward passes, thus restricting acceleration potential. Motivated by the visual token interchangeability, we for the first time to explore verification skipping in the SD process of visual AR model generation to explicitly cut the number of target model forward passes, thereby reducing inference latency. Based on an analysis of the drafting stage's characteristics, we observe that verification redundancy and stale feature reusability are key factors to retain generation quality and speedup for verification-free steps. Inspired by these two observations, we propose a novel SD framework VVS to accelerate visual AR generation via partial verification skipping, which integrates three complementary modules: (1) a verification-free token selector with dynamical truncation, (2) token-level feature caching and reuse, and (3) fine-grained skipped step scheduling. Consequently, VVS reduces the number of target model forward passes by a factor of $2.8\times$ relative to vanilla AR decoding while maintaining competitive generation quality, offering a superior speed-quality trade-off over conventional SD frameworks and revealing strong potential to reshape the SD paradigm.
☆ Hierarchical Prompt Learning for Image- and Text-Based Person Re-Identification AAAI 2026
Person re-identification (ReID) aims to retrieve target pedestrian images given either visual queries (image-to-image, I2I) or textual descriptions (text-to-image, T2I). Although both tasks share a common retrieval objective, they pose distinct challenges: I2I emphasizes discriminative identity learning, while T2I requires accurate cross-modal semantic alignment. Existing methods often treat these tasks separately, which may lead to representation entanglement and suboptimal performance. To address this, we propose a unified framework named Hierarchical Prompt Learning (HPL), which leverages task-aware prompt modeling to jointly optimize both tasks. Specifically, we first introduce a Task-Routed Transformer, which incorporates dual classification tokens into a shared visual encoder to route features for I2I and T2I branches respectively. On top of this, we develop a hierarchical prompt generation scheme that integrates identity-level learnable tokens with instance-level pseudo-text tokens. These pseudo-tokens are derived from image or text features via modality-specific inversion networks, injecting fine-grained, instance-specific semantics into the prompts. Furthermore, we propose a Cross-Modal Prompt Regularization strategy to enforce semantic alignment in the prompt token space, ensuring that pseudo-prompts preserve source-modality characteristics while enhancing cross-modal transferability. Extensive experiments on multiple ReID benchmarks validate the effectiveness of our method, achieving state-of-the-art performance on both I2I and T2I tasks.
comment: 9 pages, 4 figures, accepted by AAAI 2026
☆ Artificial Intelligence-driven Intelligent Wearable Systems: A full-stack Integration from Material Design to Personalized Interaction
Intelligent wearable systems are at the forefront of precision medicine and play a crucial role in enhancing human-machine interaction. Traditional devices often encounter limitations due to their dependence on empirical material design and basic signal processing techniques. To overcome these issues, we introduce the concept of Human-Symbiotic Health Intelligence (HSHI), which is a framework that integrates multi-modal sensor networks with edge-cloud collaborative computing and a hybrid approach to data and knowledge modeling. HSHI is designed to adapt dynamically to both inter-individual and intra-individual variability, transitioning health management from passive monitoring to an active collaborative evolution. The framework incorporates AI-driven optimization of materials and micro-structures, provides robust interpretation of multi-modal signals, and utilizes a dual mechanism that merges population-level insights with personalized adaptations. Moreover, the integration of closed-loop optimization through reinforcement learning and digital twins facilitates customized interventions and feedback. In general, HSHI represents a significant shift in healthcare, moving towards a model that emphasizes prevention, adaptability, and a harmonious relationship between technology and health management.
comment: 5 pages, l figure, l table. Accepted at AI4RWC@WI-IAT 2025
☆ ForgeDAN: An Evolutionary Framework for Jailbreaking Aligned Large Language Models
The rapid adoption of large language models (LLMs) has brought both transformative applications and new security risks, including jailbreak attacks that bypass alignment safeguards to elicit harmful outputs. Existing automated jailbreak generation approaches e.g. AutoDAN, suffer from limited mutation diversity, shallow fitness evaluation, and fragile keyword-based detection. To address these limitations, we propose ForgeDAN, a novel evolutionary framework for generating semantically coherent and highly effective adversarial prompts against aligned LLMs. First, ForgeDAN introduces multi-strategy textual perturbations across \textit{character, word, and sentence-level} operations to enhance attack diversity; then we employ interpretable semantic fitness evaluation based on a text similarity model to guide the evolutionary process toward semantically relevant and harmful outputs; finally, ForgeDAN integrates dual-dimensional jailbreak judgment, leveraging an LLM-based classifier to jointly assess model compliance and output harmfulness, thereby reducing false positives and improving detection effectiveness. Our evaluation demonstrates ForgeDAN achieves high jailbreaking success rates while maintaining naturalness and stealth, outperforming existing SOTA solutions.
☆ Robust Defense Strategies for Multimodal Contrastive Learning: Efficient Fine-tuning Against Backdoor Attacks
The advent of multimodal deep learning models, such as CLIP, has unlocked new frontiers in a wide range of applications, from image-text understanding to classification tasks. However, these models are not safe for adversarial attacks, particularly backdoor attacks, which can subtly manipulate model behavior. Moreover, existing defense methods typically involve training from scratch or fine-tuning using a large dataset without pinpointing the specific labels that are affected. In this study, we introduce an innovative strategy to enhance the robustness of multimodal contrastive learning models against such attacks. In particular, given a poisoned CLIP model, our approach can identify the backdoor trigger and pinpoint the victim samples and labels in an efficient manner. To that end, an image segmentation ``oracle'' is introduced as the supervisor for the output of the poisoned CLIP. We develop two algorithms to rectify the poisoned model: (1) differentiating between CLIP and Oracle's knowledge to identify potential triggers; (2) pinpointing affected labels and victim samples, and curating a compact fine-tuning dataset. With this knowledge, we are allowed to rectify the poisoned CLIP model to negate backdoor effects. Extensive experiments on visual recognition benchmarks demonstrate our strategy is effective in CLIP-based backdoor defense.
☆ Making Evidence Actionable in Adaptive Learning Closing the Diagnostic Pedagogical Loop
Adaptive learning often diagnoses precisely yet intervenes weakly, producing help that is mistimed or misaligned. This study presents evidence supporting an instructor-governed feedback loop that converts concept-level assessment evidence into vetted microinterventions. The adaptive learning algorithm includes three safeguards: adequacy as a hard guarantee of gap closure, attention as a budgeted limit for time and redundancy, and diversity as protection against overfitting to a single resource. We formulate intervention assignment as a binary integer program with constraints for coverage, time, difficulty windows derived from ability estimates, prerequisites encoded by a concept matrix, and anti-redundancy with diversity. Greedy selection serves low-richness and tight-latency settings, gradient-based relaxation serves rich repositories, and a hybrid switches along a richness-latency frontier. In simulation and in an introductory physics deployment with 1204 students, both solvers achieved full skill coverage for nearly all learners within bounded watch time. The gradient-based method reduced redundant coverage by about 12 percentage points relative to greedy and produced more consistent difficulty alignment, while greedy delivered comparable adequacy at lower computational cost in resource-scarce environments. Slack variables localized missing content and guided targeted curation, sustaining sufficiency across student subgroups. The result is a tractable and auditable controller that closes the diagnostic pedagogical loop and enables equitable, load-aware personalization at the classroom scale.
☆ Towards Affect-Adaptive Human-Robot Interaction: A Protocol for Multimodal Dataset Collection on Social Anxiety
Social anxiety is a prevalent condition that affects interpersonal interactions and social functioning. Recent advances in artificial intelligence and social robotics offer new opportunities to examine social anxiety in the human-robot interaction context. Accurate detection of affective states and behaviours associated with social anxiety requires multimodal datasets, where each signal modality provides complementary insights into its manifestations. However, such datasets remain scarce, limiting progress in both research and applications. To address this, this paper presents a protocol for multimodal dataset collection designed to reflect social anxiety in a human-robot interaction context. The dataset will consist of synchronised audio, video, and physiological recordings acquired from at least 70 participants, grouped according to their level of social anxiety, as they engage in approximately 10-minute interactive Wizard-of-Oz role-play scenarios with the Furhat social robot under controlled experimental conditions. In addition to multimodal data, the dataset will be enriched with contextual data providing deeper insight into individual variability in social anxiety responses. This work can contribute to research on affect-adaptive human-robot interaction by providing support for robust multimodal detection of social anxiety.
comment: Accepted at the Workshop on Benefits of pErsonalization and behAvioral adaptation in assistive Robots (BEAR 2025), held at the IEEE RO-MAN Conference 2025
☆ Toward Conversational Hungarian Speech Recognition: Introducing the BEA-Large and BEA-Dialogue Datasets LREC 2026
The advancement of automatic speech recognition (ASR) has been largely enhanced by extensive datasets in high-resource languages, while languages such as Hungarian remain underrepresented due to limited spontaneous and conversational corpora. To address this gap, we introduce two new datasets -- BEA-Large and BEA-Dialogue -- constructed from the previously unprocessed portions of the Hungarian speech corpus named BEA. BEA-Large extends BEA-Base with 255 hours of spontaneous speech from 433 speakers, enriched with detailed segment-level metadata. BEA-Dialogue, comprising 85 hours of spontaneous conversations, is a Hungarian speech corpus featuring natural dialogues partitioned into speaker-independent subsets, supporting research in conversational ASR and speaker diarization. We establish reproducible baselines on these datasets using publicly available ASR models, with the fine-tuned Fast Conformer model achieving word error rates as low as 14.18\% on spontaneous and 4.8\% on repeated speech. Diarization experiments yield diarization error rates between 13.05\% and 18.26\%, providing reference points for future improvements. The results highlight the persistent difficulty of conversational ASR, particularly due to disfluencies, overlaps, and informal speech patterns. By releasing these datasets and baselines, we aim to advance Hungarian speech technology and offer a methodological framework for developing spontaneous and conversational benchmarks in other languages.
comment: Submitted to LREC 2026
☆ Automated Construction of Medical Indicator Knowledge Graphs Using Retrieval Augmented Large Language Models
Artificial intelligence (AI) is reshaping modern healthcare by advancing disease diagnosis, treatment decision-making, and biomedical research. Among AI technologies, large language models (LLMs) have become especially impactful, enabling deep knowledge extraction and semantic reasoning from complex medical texts. However, effective clinical decision support requires knowledge in structured, interoperable formats. Knowledge graphs serve this role by integrating heterogeneous medical information into semantically consistent networks. Yet, current clinical knowledge graphs still depend heavily on manual curation and rule-based extraction, which is limited by the complexity and contextual ambiguity of medical guidelines and literature. To overcome these challenges, we propose an automated framework that combines retrieval-augmented generation (RAG) with LLMs to construct medical indicator knowledge graphs. The framework incorporates guideline-driven data acquisition, ontology-based schema design, and expert-in-the-loop validation to ensure scalability, accuracy, and clinical reliability. The resulting knowledge graphs can be integrated into intelligent diagnosis and question-answering systems, accelerating the development of AI-driven healthcare solutions.
comment: 5 pages, 1 figure, 1 table. Accepted at AI4RWC@WI-IAT 2025
☆ AI Fairness Beyond Complete Demographics: Current Achievements and Future Directions ECAI 2025
Fairness in artificial intelligence (AI) has become a growing concern due to discriminatory outcomes in AI-based decision-making systems. While various methods have been proposed to mitigate bias, most rely on complete demographic information, an assumption often impractical due to legal constraints and the risk of reinforcing discrimination. This survey examines fairness in AI when demographics are incomplete, addressing the gap between traditional approaches and real-world challenges. We introduce a novel taxonomy of fairness notions in this setting, clarifying their relationships and distinctions. Additionally, we summarize existing techniques that promote fairness beyond complete demographics and highlight open research questions to encourage further progress in the field.
comment: ECAI 2025
☆ FreeAskWorld: An Interactive and Closed-Loop Simulator for Human-Centric Embodied AI
As embodied intelligence emerges as a core frontier in artificial intelligence research, simulation platforms must evolve beyond low-level physical interactions to capture complex, human-centered social behaviors. We introduce FreeAskWorld, an interactive simulation framework that integrates large language models (LLMs) for high-level behavior planning and semantically grounded interaction, informed by theories of intention and social cognition. Our framework supports scalable, realistic human-agent simulations and includes a modular data generation pipeline tailored for diverse embodied tasks.To validate the framework, we extend the classic Vision-and-Language Navigation (VLN) task into a interaction enriched Direction Inquiry setting, wherein agents can actively seek and interpret navigational guidance. We present and publicly release FreeAskWorld, a large-scale benchmark dataset comprising reconstructed environments, six diverse task types, 16 core object categories, 63,429 annotated sample frames, and more than 17 hours of interaction data to support training and evaluation of embodied AI systems. We benchmark VLN models, and human participants under both open-loop and closed-loop settings. Experimental results demonstrate that models fine-tuned on FreeAskWorld outperform their original counterparts, achieving enhanced semantic understanding and interaction competency. These findings underscore the efficacy of socially grounded simulation frameworks in advancing embodied AI systems toward sophisticated high-level planning and more naturalistic human-agent interaction. Importantly, our work underscores that interaction itself serves as an additional information modality.
comment: 9 pages, 4 figures
☆ Naga: Vedic Encoding for Deep State Space Models
This paper presents Naga, a deep State Space Model (SSM) encoding approach inspired by structural concepts from Vedic mathematics. The proposed method introduces a bidirectional representation for time series by jointly processing forward and time-reversed input sequences. These representations are then combined through an element-wise (Hadamard) interaction, resulting in a Vedic-inspired encoding that enhances the model's ability to capture temporal dependencies across distant time steps. We evaluate Naga on multiple long-term time series forecasting (LTSF) benchmarks, including ETTh1, ETTh2, ETTm1, ETTm2, Weather, Traffic, and ILI. The experimental results show that Naga outperforms 28 current state of the art models and demonstrates improved efficiency compared to existing deep SSM-based approaches. The findings suggest that incorporating structured, Vedic-inspired decomposition can provide an interpretable and computationally efficient alternative for long-range sequence modeling.
comment: submitted to JMLR
☆ A Lexical Analysis of online Reviews on Human-AI Interactions
This study focuses on understanding the complex dynamics between humans and AI systems by analyzing user reviews. While previous research has explored various aspects of human-AI interaction, such as user perceptions and ethical considerations, there remains a gap in understanding the specific concerns and challenges users face. By using a lexical approach to analyze 55,968 online reviews from G2.com, Producthunt.com, and Trustpilot.com, this preliminary research aims to analyze human-AI interaction. Initial results from factor analysis reveal key factors influencing these interactions. The study aims to provide deeper insights into these factors through content analysis, contributing to the development of more user-centric AI systems. The findings are expected to enhance our understanding of human-AI interaction and inform future AI technology and user experience improvements.
comment: 10 pages, 1 table
☆ Semantic Document Derendering: SVG Reconstruction via Vision-Language Modeling
Multimedia documents such as slide presentations and posters are designed to be interactive and easy to modify. Yet, they are often distributed in a static raster format, which limits editing and customization. Restoring their editability requires converting these raster images back into structured vector formats. However, existing geometric raster-vectorization methods, which rely on low-level primitives like curves and polygons, fall short at this task. Specifically, when applied to complex documents like slides, they fail to preserve the high-level structure, resulting in a flat collection of shapes where the semantic distinction between image and text elements is lost. To overcome this limitation, we address the problem of semantic document derendering by introducing SliDer, a novel framework that uses Vision-Language Models (VLMs) to derender slide images as compact and editable Scalable Vector Graphic (SVG) representations. SliDer detects and extracts attributes from individual image and text elements in a raster input and organizes them into a coherent SVG format. Crucially, the model iteratively refines its predictions during inference in a process analogous to human design, generating SVG code that more faithfully reconstructs the original raster upon rendering. Furthermore, we introduce Slide2SVG, a novel dataset comprising raster-SVG pairs of slide documents curated from real-world scientific presentations, to facilitate future research in this domain. Our results demonstrate that SliDer achieves a reconstruction LPIPS of 0.069 and is favored by human evaluators in 82.9% of cases compared to the strongest zero-shot VLM baseline.
☆ Multi-Agent Multimodal Large Language Model Framework for Automated Interpretation of Fuel Efficiency Analytics in Public Transportation
Enhancing fuel efficiency in public transportation requires the integration of complex multimodal data into interpretable, decision-relevant insights. However, traditional analytics and visualization methods often yield fragmented outputs that demand extensive human interpretation, limiting scalability and consistency. This study presents a multi-agent framework that leverages multimodal large language models (LLMs) to automate data narration and energy insight generation. The framework coordinates three specialized agents, including a data narration agent, an LLM-as-a-judge agent, and an optional human-in-the-loop evaluator, to iteratively transform analytical artifacts into coherent, stakeholder-oriented reports. The system is validated through a real-world case study on public bus transportation in Northern Jutland, Denmark, where fuel efficiency data from 4006 trips are analyzed using Gaussian Mixture Model clustering. Comparative experiments across five state-of-the-art LLMs and three prompting paradigms identify GPT-4.1 mini with Chain-of-Thought prompting as the optimal configuration, achieving 97.3% narrative accuracy while balancing interpretability and computational cost. The findings demonstrate that multi-agent orchestration significantly enhances factual precision, coherence, and scalability in LLM-based reporting. The proposed framework establishes a replicable and domain-adaptive methodology for AI-driven narrative generation and decision support in energy informatics.
☆ The Quick Red Fox gets the best Data Driven Classroom Interviews: A manual for an interview app and its associated methodology
Data Driven Classroom Interviews (DDCIs) are an interviewing technique that is facilitated by recent technological developments in the learning analytics community. DDCIs are short, targeted interviews that allow researchers to contextualize students' interactions with a digital learning environment (e.g., intelligent tutoring systems or educational games) while minimizing the amount of time that the researcher interrupts that learning experience, and focusing researcher time on the events they most want to focus on DDCIs are facilitated by a research tool called the Quick Red Fox (QRF)--an open-source server-client Android app that optimizes researcher time by directing interviewers to users that have just displayed an interesting behavior (previously defined by the research team). QRF integrates with existing student modeling technologies (e.g., behavior-sensing, affect-sensing, detection of self-regulated learning) to alert researchers to key moments in a learner's experience. This manual documents the tech while providing training on the processes involved in developing triggers and interview techniques; it also suggests methods of analyses.
☆ Multi-task GINN-LP for Multi-target Symbolic Regression
In the area of explainable artificial intelligence, Symbolic Regression (SR) has emerged as a promising approach by discovering interpretable mathematical expressions that fit data. However, SR faces two main challenges: most methods are evaluated on scientific datasets with well-understood relationships, limiting generalization, and SR primarily targets single-output regression, whereas many real-world problems involve multi-target outputs with interdependent variables. To address these issues, we propose multi-task regression GINN-LP (MTRGINN-LP), an interpretable neural network for multi-target symbolic regression. By integrating GINN-LP with a multi-task deep learning, the model combines a shared backbone including multiple power-term approximator blocks with task-specific output layers, capturing inter-target dependencies while preserving interpretability. We validate multi-task GINN-LP on practical multi-target applications, including energy efficiency prediction and sustainable agriculture. Experimental results demonstrate competitive predictive performance alongside high interpretability, effectively extending symbolic regression to broader real-world multi-output tasks.
☆ Trust in Vision-Language Models: Insights from a Participatory User Workshop
With the growing deployment of Vision-Language Models (VLMs), pre-trained on large image-text and video-text datasets, it is critical to equip users with the tools to discern when to trust these systems. However, examining how user trust in VLMs builds and evolves remains an open problem. This problem is exacerbated by the increasing reliance on AI models as judges for experimental validation, to bypass the cost and implications of running participatory design studies directly with users. Following a user-centred approach, this paper presents preliminary results from a workshop with prospective VLM users. Insights from this pilot workshop inform future studies aimed at contextualising trust metrics and strategies for participants' engagement to fit the case of user-VLM interaction.
☆ Artificial Intelligence-Enabled Spirometry for Early Detection of Right Heart Failure
Right heart failure (RHF) is a disease characterized by abnormalities in the structure or function of the right ventricle (RV), which is associated with high morbidity and mortality. Lung disease often causes increased right ventricular load, leading to RHF. Therefore, it is very important to screen out patients with cor pulmonale who develop RHF from people with underlying lung diseases. In this work, we propose a self-supervised representation learning method to early detecting RHF from patients with cor pulmonale, which uses spirogram time series to predict patients with RHF at an early stage. The proposed model is divided into two stages. The first stage is the self-supervised representation learning-based spirogram embedding (SLSE) network training process, where the encoder of the Variational autoencoder (VAE-encoder) learns a robust low-dimensional representation of the spirogram time series from the data-augmented unlabeled data. Second, this low-dimensional representation is fused with demographic information and fed into a CatBoost classifier for the downstream RHF prediction task. Trained and tested on a carefully selected subset of 26,617 individuals from the UK Biobank, our model achieved an AUROC of 0.7501 in detecting RHF, demonstrating strong population-level distinction ability. We further evaluated the model on high-risk clinical subgroups, achieving AUROC values of 0.8194 on a test set of 74 patients with chronic kidney disease (CKD) and 0.8413 on a set of 64 patients with valvular heart disease (VHD). These results highlight the model's potential utility in predicting RHF among clinically elevated-risk populations. In conclusion, this study presents a self-supervised representation learning approach combining spirogram time series and demographic data, demonstrating promising potential for early RHF detection in clinical practice.
comment: 19 pages, 5 figures
☆ Discovering Operational Patterns Using Image-Based Convolutional Clustering and Composite Evaluation: A Case Study in Foundry Melting Processes
Industrial process monitoring increasingly relies on sensor-generated time-series data, yet the lack of labels, high variability, and operational noise make it difficult to extract meaningful patterns using conventional methods. Existing clustering techniques either rely on fixed distance metrics or deep models designed for static data, limiting their ability to handle dynamic, unstructured industrial sequences. Addressing this gap, this paper proposes a novel framework for unsupervised discovery of operational modes in univariate time-series data using image-based convolutional clustering with composite internal evaluation. The proposed framework improves upon existing approaches in three ways: (1) raw time-series sequences are transformed into grayscale matrix representations via overlapping sliding windows, allowing effective feature extraction using a deep convolutional autoencoder; (2) the framework integrates both soft and hard clustering outputs and refines the selection through a two-stage strategy; and (3) clustering performance is objectively evaluated by a newly developed composite score, S_eva, which combines normalized Silhouette, Calinski-Harabasz, and Davies-Bouldin indices. Applied to over 3900 furnace melting operations from a Nordic foundry, the method identifies seven explainable operational patterns, revealing significant differences in energy consumption, thermal dynamics, and production duration. Compared to classical and deep clustering baselines, the proposed approach achieves superior overall performance, greater robustness, and domain-aligned explainability. The framework addresses key challenges in unsupervised time-series analysis, such as sequence irregularity, overlapping modes, and metric inconsistency, and provides a generalizable solution for data-driven diagnostics and energy optimization in industrial systems.
☆ Unlocking the Forgery Detection Potential of Vanilla MLLMs: A Novel Training-Free Pipeline
With the rapid advancement of artificial intelligence-generated content (AIGC) technologies, including multimodal large language models (MLLMs) and diffusion models, image generation and manipulation have become remarkably effortless. Existing image forgery detection and localization (IFDL) methods often struggle to generalize across diverse datasets and offer limited interpretability. Nowadays, MLLMs demonstrate strong generalization potential across diverse vision-language tasks, and some studies introduce this capability to IFDL via large-scale training. However, such approaches cost considerable computational resources, while failing to reveal the inherent generalization potential of vanilla MLLMs to address this problem. Inspired by this observation, we propose Foresee, a training-free MLLM-based pipeline tailored for image forgery analysis. It eliminates the need for additional training and enables a lightweight inference process, while surpassing existing MLLM-based methods in both tamper localization accuracy and the richness of textual explanations. Foresee employs a type-prior-driven strategy and utilizes a Flexible Feature Detector (FFD) module to specifically handle copy-move manipulations, thereby effectively unleashing the potential of vanilla MLLMs in the forensic domain. Extensive experiments demonstrate that our approach simultaneously achieves superior localization accuracy and provides more comprehensive textual explanations. Moreover, Foresee exhibits stronger generalization capability, outperforming existing IFDL methods across various tampering types, including copy-move, splicing, removal, local enhancement, deepfake, and AIGC-based editing. The code will be released in the final version.
☆ Exploring Multi-Table Retrieval Through Iterative Search
Open-domain question answering over datalakes requires retrieving and composing information from multiple tables, a challenging subtask that demands semantic relevance and structural coherence (e.g., joinability). While exact optimization methods like Mixed-Integer Programming (MIP) can ensure coherence, their computational complexity is often prohibitive. Conversely, simpler greedy heuristics that optimize for query coverage alone often fail to find these coherent, joinable sets. This paper frames multi-table retrieval as an iterative search process, arguing this approach offers advantages in scalability, interpretability, and flexibility. We propose a general framework and a concrete instantiation: a fast, effective Greedy Join-Aware Retrieval algorithm that holistically balances relevance, coverage, and joinability. Experiments across 5 NL2SQL benchmarks demonstrate that our iterative method achieves competitive retrieval performance compared to the MIP-based approach while being 4-400x faster depending on the benchmark and search space settings. This work highlights the potential of iterative heuristics for practical, scalable, and composition-aware retrieval.
comment: Accepted @ the AI for Tabular Data Workshop, EurIPS 2025
☆ PAST: A Primary-Auxiliary Spatio-Temporal Network for Traffic Time Series Imputation
Traffic time series imputation is crucial for the safety and reliability of intelligent transportation systems, while diverse types of missing data, including random, fiber, and block missing make the imputation task challenging. Existing models often focus on disentangling and separately modeling spatial and temporal patterns based on relationships between data points. However, these approaches struggle to adapt to the random missing positions, and fail to learn long-term and large-scale dependencies, which are essential in extensive missing conditions. In this paper, patterns are categorized into two types to handle various missing data conditions: primary patterns, which originate from internal relationships between data points, and auxiliary patterns, influenced by external factors like timestamps and node attributes. Accordingly, we propose the Primary-Auxiliary Spatio-Temporal network (PAST). It comprises a graph-integrated module (GIM) and a cross-gated module (CGM). GIM captures primary patterns via dynamic graphs with interval-aware dropout and multi-order convolutions, and CGM extracts auxiliary patterns through bidirectional gating on embedded external features. The two modules interact via shared hidden vectors and are trained under an ensemble self-supervised framework. Experiments on three datasets under 27 missing data conditions demonstrate that the imputation accuracy of PAST outperforms seven state-of-the-art baselines by up to 26.2% in RMSE and 31.6% in MAE.
☆ An Operational Kardashev-Style Scale for Autonomous AI - Towards AGI and Superintelligence
We propose a Kardashev-inspired yet operational Autonomous AI (AAI) Scale that measures the progression from fixed robotic process automation (AAI-0) to full artificial general intelligence (AAI-4) and beyond. Unlike narrative ladders, our scale is multi-axis and testable. We define ten capability axes (Autonomy, Generality, Planning, Memory/Persistence, Tool Economy, Self-Revision, Sociality/Coordination, Embodiment, World-Model Fidelity, Economic Throughput) aggregated by a composite AAI-Index (a weighted geometric mean). We introduce a measurable Self-Improvement Coefficient $κ$ (capability growth per unit of agent-initiated resources) and two closure properties (maintenance and expansion) that convert ``self-improving AI'' into falsifiable criteria. We specify OWA-Bench, an open-world agency benchmark suite that evaluates long-horizon, tool-using, persistent agents. We define level gates for AAI-0\ldots AAI-4 using thresholds on the axes, $κ$, and closure proofs. Synthetic experiments illustrate how present-day systems map onto the scale and how the delegability frontier (quality vs.\ autonomy) advances with self-improvement. We also prove a theorem that AAI-3 agent becomes AAI-5 over time with sufficient conditions, formalizing "baby AGI" becomes Superintelligence intuition.
☆ TripleFDS: Triple Feature Disentanglement and Synthesis for Scene Text Editing AAAI2026
Scene Text Editing (STE) aims to naturally modify text in images while preserving visual consistency, the decisive factors of which can be divided into three parts, i.e., text style, text content, and background. Previous methods have struggled with incomplete disentanglement of editable attributes, typically addressing only one aspect - such as editing text content - thus limiting controllability and visual consistency. To overcome these limitations, we propose TripleFDS, a novel framework for STE with disentangled modular attributes, and an accompanying dataset called SCB Synthesis. SCB Synthesis provides robust training data for triple feature disentanglement by utilizing the "SCB Group", a novel construct that combines three attributes per image to generate diverse, disentangled training groups. Leveraging this construct as a basic training unit, TripleFDS first disentangles triple features, ensuring semantic accuracy through inter-group contrastive regularization and reducing redundancy through intra-sample multi-feature orthogonality. In the synthesis phase, TripleFDS performs feature remapping to prevent "shortcut" phenomena during reconstruction and mitigate potential feature leakage. Trained on 125,000 SCB Groups, TripleFDS achieves state-of-the-art image fidelity (SSIM of 44.54) and text accuracy (ACC of 93.58%) on the mainstream STE benchmarks. Besides superior performance, the more flexible editing of TripleFDS supports new operations such as style replacement and background transfer. Code: https://github.com/yusenbao01/TripleFDS
comment: Accepted by AAAI2026
☆ Descriptor: Distance-Annotated Traffic Perception Question Answering (DTPQA)
The remarkable progress of Vision-Language Models (VLMs) on a variety of tasks has raised interest in their application to automated driving. However, for these models to be trusted in such a safety-critical domain, they must first possess robust perception capabilities, i.e., they must be capable of understanding a traffic scene, which can often be highly complex, with many things happening simultaneously. Moreover, since critical objects and agents in traffic scenes are often at long distances, we require systems with not only strong perception capabilities at close distances (up to 20 meters), but also at long (30+ meters) range. Therefore, it is important to evaluate the perception capabilities of these models in isolation from other skills like reasoning or advanced world knowledge. Distance-Annotated Traffic Perception Question Answering (DTPQA) is a Visual Question Answering (VQA) benchmark designed specifically for this purpose: it can be used to evaluate the perception systems of VLMs in traffic scenarios using trivial yet crucial questions relevant to driving decisions. It consists of two parts: a synthetic benchmark (DTP-Synthetic) created using a simulator, and a real-world benchmark (DTP-Real) built on top of existing images of real traffic scenes. Additionally, DTPQA includes distance annotations, i.e., how far the object in question is from the camera. More specifically, each DTPQA sample consists of (at least): (a) an image, (b) a question, (c) the ground truth answer, and (d) the distance of the object in question, enabling analysis of how VLM performance degrades with increasing object distance. In this article, we provide the dataset itself along with the Python scripts used to create it, which can be used to generate additional data of the same kind.
☆ Finding Kissing Numbers with Game-theoretic Reinforcement Learning
Since Isaac Newton first studied the Kissing Number Problem in 1694, determining the maximal number of non-overlapping spheres around a central sphere has remained a fundamental challenge. This problem represents the local analogue of Hilbert's 18th problem on sphere packing, bridging geometry, number theory, and information theory. Although significant progress has been made through lattices and codes, the irregularities of high-dimensional geometry and exponentially growing combinatorial complexity beyond 8 dimensions, which exceeds the complexity of Go game, limit the scalability of existing methods. Here we model this problem as a two-player matrix completion game and train the game-theoretic reinforcement learning system, PackingStar, to efficiently explore high-dimensional spaces. The matrix entries represent pairwise cosines of sphere center vectors; one player fills entries while another corrects suboptimal ones, jointly maximizing the matrix size, corresponding to the kissing number. This cooperative dynamics substantially improves sample quality, making the extremely large spaces tractable. PackingStar reproduces previous configurations and surpasses all human-known records from dimensions 25 to 31, with the configuration in 25 dimensions geometrically corresponding to the Leech lattice and suggesting possible optimality. It achieves the first breakthrough beyond rational structures from 1971 in 13 dimensions and discovers over 6000 new structures in 14 and other dimensions. These results demonstrate AI's power to explore high-dimensional spaces beyond human intuition and open new pathways for the Kissing Number Problem and broader geometry problems.
☆ Generalized Denoising Diffusion Codebook Models (gDDCM): Tokenizing images using a pre-trained diffusion model
Recently, the Denoising Diffusion Codebook Models (DDCM) was proposed. DDCM leverages the Denoising Diffusion Probabilistic Model (DDPM) and replaces the random noise in the backward process with noise sampled from specific sets according to a predefined rule, thereby enabling image compression. However, DDCM cannot be applied to methods other than DDPM. In this paper, we propose the generalized Denoising Diffusion Compression Model (gDDCM), which extends DDCM to mainstream diffusion models and their variants, including DDPM, Score-Based Models, Consistency Models, and Rectified Flow. We evaluate our method on CIFAR-10 and LSUN Bedroom datasets. Experimental results demonstrate that our approach successfully generalizes DDCM to the aforementioned models and achieves improved performance.
comment: in Chinese language
☆ Moving Pictures of Thought: Extracting Visual Knowledge in Charles S. Peirce's Manuscripts with Vision-Language Models
Diagrams are crucial yet underexplored tools in many disciplines, demonstrating the close connection between visual representation and scholarly reasoning. However, their iconic form poses obstacles to visual studies, intermedial analysis, and text-based digital workflows. In particular, Charles S. Peirce consistently advocated the use of diagrams as essential for reasoning and explanation. His manuscripts, often combining textual content with complex visual artifacts, provide a challenging case for studying documents involving heterogeneous materials. In this preliminary study, we investigate whether Visual Language Models (VLMs) can effectively help us identify and interpret such hybrid pages in context. First, we propose a workflow that (i) segments manuscript page layouts, (ii) reconnects each segment to IIIF-compliant annotations, and (iii) submits fragments containing diagrams to a VLM. In addition, by adopting Peirce's semiotic framework, we designed prompts to extract key knowledge about diagrams and produce concise captions. Finally, we integrated these captions into knowledge graphs, enabling structured representations of diagrammatic content within composite sources.
☆ A Novel Hierarchical Integration Method for Efficient Model Merging in Medical LLMs
Large Language Models (LLMs) face significant challenges in distributed healthcare, including consolidating specialized domain knowledge across institutions while maintaining privacy, reducing computational overhead, and preventing catastrophic forgetting during model updates.This paper presents a systematic evaluation of six parameter-space merging techniques applied to two architecturally compatible medical LLMs derived from the Mistral-7B base model. We introduce a novel hierarchical method that combines selective Optimal Transport (OT) alignment for attention layers with cosine similarity-weighted interpolation, designed to address permutation variance while minimizing computational overhead for edge deployment scenarios. Our study evaluates Task Arithmetic, Linear Averaging, DARE-TIES, DELLA, Breadcrumbs, and our Hierarchical approach across five medical benchmarks. Results demonstrate that architecturally compatible models benefit significantly from simple averaging methods, with Task Arithmetic achieving 45.80% accuracy on MedQA, outperforming complex pruning-based approaches. These findings offer critical insights for the deployment of distributed medical AI in resource-constrained IoT environments, where computational efficiency and model compatibility are paramount. Our work establishes that for architecturally compatible models, simple averaging provides a robust and computationally efficient baseline for knowledge consolidation, offering a pragmatic path forward for scalable medical AI systems.
☆ Cognitive Maps in Language Models: A Mechanistic Analysis of Spatial Planning
How do large language models solve spatial navigation tasks? We investigate this by training GPT-2 models on three spatial learning paradigms in grid environments: passive exploration (Foraging Model- predicting steps in random walks), goal-directed planning (generating optimal shortest paths) on structured Hamiltonian paths (SP-Hamiltonian), and a hybrid model fine-tuned with exploratory data (SP-Random Walk). Using behavioural, representational and mechanistic analyses, we uncover two fundamentally different learned algorithms. The Foraging model develops a robust, map-like representation of space, akin to a 'cognitive map'. Causal interventions reveal that it learns to consolidate spatial information into a self-sufficient coordinate system, evidenced by a sharp phase transition where its reliance on historical direction tokens vanishes by the middle layers of the network. The model also adopts an adaptive, hierarchical reasoning system, switching between a low-level heuristic for short contexts and map-based inference for longer ones. In contrast, the goal-directed models learn a path-dependent algorithm, remaining reliant on explicit directional inputs throughout all layers. The hybrid model, despite demonstrating improved generalisation over its parent, retains the same path-dependent strategy. These findings suggest that the nature of spatial intelligence in transformers may lie on a spectrum, ranging from generalisable world models shaped by exploratory data to heuristics optimised for goal-directed tasks. We provide a mechanistic account of this generalisation-optimisation trade-off and highlight how the choice of training regime influences the strategies that emerge.
☆ Donors and Recipients: On Asymmetric Transfer Across Tasks and Languages with Parameter-Efficient Fine-Tuning
Large language models (LLMs) perform strongly across tasks and languages, yet how improvements in one task or language affect other tasks and languages and their combinations remains poorly understood. We conduct a controlled PEFT/LoRA study across multiple open-weight LLM families and sizes, treating task and language as transfer axes while conditioning on model family and size; we fine-tune each model on a single task-language source and measure transfer as the percentage-point change versus its baseline score when evaluated on all other task-language target pairs. We decompose transfer into (i) Matched-Task (Cross-Language), (ii) Matched-Language (Cross-Task), and (iii) Cross-Task (Cross-Language) regimes. We uncover two consistent general patterns. First, a pronounced on-task vs. off-task asymmetry: Matched-Task (Cross-Language) transfer is reliably positive, whereas off-task transfer often incurs collateral degradation. Second, a stable donor-recipient structure across languages and tasks (hub donors vs. brittle recipients). We outline implications for risk-aware fine-tuning and model specialisation.
☆ InfoDecom: Decomposing Information for Defending against Privacy Leakage in Split Inference AAAI 2026
Split inference (SI) enables users to access deep learning (DL) services without directly transmitting raw data. However, recent studies reveal that data reconstruction attacks (DRAs) can recover the original inputs from the smashed data sent from the client to the server, leading to significant privacy leakage. While various defenses have been proposed, they often result in substantial utility degradation, particularly when the client-side model is shallow. We identify a key cause of this trade-off: existing defenses apply excessive perturbation to redundant information in the smashed data. To address this issue in computer vision tasks, we propose InfoDecom, a defense framework that first decomposes and removes redundant information and then injects noise calibrated to provide theoretically guaranteed privacy. Experiments demonstrate that InfoDecom achieves a superior utility-privacy trade-off compared to existing baselines. The code and the appendix are available at https://github.com/SASA-cloud/InfoDecom.
comment: Accepted by AAAI 2026
☆ MedDCR: Learning to Design Agentic Workflows for Medical Coding
Medical coding converts free-text clinical notes into standardized diagnostic and procedural codes, which are essential for billing, hospital operations, and medical research. Unlike ordinary text classification, it requires multi-step reasoning: extracting diagnostic concepts, applying guideline constraints, mapping to hierarchical codebooks, and ensuring cross-document consistency. Recent advances leverage agentic LLMs, but most rely on rigid, manually crafted workflows that fail to capture the nuance and variability of real-world documentation, leaving open the question of how to systematically learn effective workflows. We present MedDCR, a closed-loop framework that treats workflow design as a learning problem. A Designer proposes workflows, a Coder executes them, and a Reflector evaluates predictions and provides constructive feedback, while a memory archive preserves prior designs for reuse and iterative refinement. On benchmark datasets, MedDCR outperforms state-of-the-art baselines and produces interpretable, adaptable workflows that better reflect real coding practice, improving both the reliability and trustworthiness of automated systems.
☆ Reasoning Shapes Alignment: Investigating Cultural Alignment in Large Reasoning Models with Cultural Norms
The advanced reasoning capabilities of Large Reasoning Models enable them to thoroughly understand and apply safety policies through deliberate thought processes, thereby improving the models' safety. Beyond safety, these models must also be able to reflect the diverse range of human values across various cultures. This paper presents the Cultural Norm-based Cultural Alignment (CNCA) framework, which enables models to leverage their powerful reasoning ability to align with cultural norms. Specifically, we propose three methods to automatically mine cultural norms from limited survey data and explore ways to effectively utilize these norms for improving cultural alignment. Two alignment paradigms are examined: an in-context alignment method, where cultural norms are explicitly integrated into the user context, and a fine-tuning-based method, which internalizes norms through enhanced Chain-of-Thought training data. Comprehensive experiments demonstrate the effectiveness of these methods, highlighting that models with stronger reasoning capabilities benefit more from cultural norm mining and utilization. Our findings emphasize the potential for reasoning models to better reflect diverse human values through culturally informed alignment strategies.
☆ Enhancing All-to-X Backdoor Attacks with Optimized Target Class Mapping
Backdoor attacks pose severe threats to machine learning systems, prompting extensive research in this area. However, most existing work focuses on single-target All-to-One (A2O) attacks, overlooking the more complex All-to-X (A2X) attacks with multiple target classes, which are often assumed to have low attack success rates. In this paper, we first demonstrate that A2X attacks are robust against state-of-the-art defenses. We then propose a novel attack strategy that enhances the success rate of A2X attacks while maintaining robustness by optimizing grouping and target class assignment mechanisms. Our method improves the attack success rate by up to 28%, with average improvements of 6.7%, 16.4%, 14.1% on CIFAR10, CIFAR100, and Tiny-ImageNet, respectively. We anticipate that this study will raise awareness of A2X attacks and stimulate further research in this under-explored area. Our code is available at https://github.com/kazefjj/A2X-backdoor .
☆ Semi-Supervised Multi-Task Learning for Interpretable Quality As- sessment of Fundus Images
Retinal image quality assessment (RIQA) supports computer-aided diagnosis of eye diseases. However, most tools classify only overall image quality, without indicating acquisition defects to guide recapture. This gap is mainly due to the high cost of detailed annotations. In this paper, we aim to mitigate this limitation by introducing a hybrid semi-supervised learning approach that combines manual labels for overall quality with pseudo-labels of quality details within a multi-task framework. Our objective is to obtain more interpretable RIQA models without requiring extensive manual labeling. Pseudo-labels are generated by a Teacher model trained on a small dataset and then used to fine-tune a pre-trained model in a multi-task setting. Using a ResNet-18 backbone, we show that these weak annotations improve quality assessment over single-task baselines (F1: 0.875 vs. 0.863 on EyeQ, and 0.778 vs. 0.763 on DeepDRiD), matching or surpassing existing methods. The multi-task model achieved performance statistically comparable to the Teacher for most detail prediction tasks (p > 0.05). In a newly annotated EyeQ subset released with this paper, our model performed similarly to experts, suggesting that pseudo-label noise aligns with expert variability. Our main finding is that the proposed semi-supervised approach not only improves overall quality assessment but also provides interpretable feedback on capture conditions (illumination, clarity, contrast). This enhances interpretability at no extra manual labeling cost and offers clinically actionable outputs to guide image recapture.
☆ Dual-LoRA and Quality-Enhanced Pseudo Replay for Multimodal Continual Food Learning
Food analysis has become increasingly critical for health-related tasks such as personalized nutrition and chronic disease prevention. However, existing large multimodal models (LMMs) in food analysis suffer from catastrophic forgetting when learning new tasks, requiring costly retraining from scratch. To address this, we propose a novel continual learning framework for multimodal food learning, integrating a Dual-LoRA architecture with Quality-Enhanced Pseudo Replay. We introduce two complementary low-rank adapters for each task: a specialized LoRA that learns task-specific knowledge with orthogonal constraints to previous tasks' subspaces, and a cooperative LoRA that consolidates shared knowledge across tasks via pseudo replay. To improve the reliability of replay data, our Quality-Enhanced Pseudo Replay strategy leverages self-consistency and semantic similarity to reduce hallucinations in generated samples. Experiments on the comprehensive Uni-Food dataset show superior performance in mitigating forgetting, representing the first effective continual learning approach for complex food tasks.
☆ An LLM-based Quantitative Framework for Evaluating High-Stealthy Backdoor Risks in OSS Supply Chains
In modern software development workflows, the open-source software supply chain contributes significantly to efficient and convenient engineering practices. With increasing system complexity, using open-source software as third-party dependencies has become a common practice. However, the lack of maintenance for underlying dependencies and insufficient community auditing create challenges in ensuring source code security and the legitimacy of repository maintainers, especially under high-stealthy backdoor attacks exemplified by the XZ-Util incident. To address these problems, we propose a fine-grained project evaluation framework for backdoor risk assessment in open-source software. The framework models stealthy backdoor attacks from the viewpoint of the attacker and defines targeted metrics for each attack stage. In addition, to overcome the limitations of static analysis in assessing the reliability of repository maintenance activities such as irregular committer privilege escalation and limited participation in reviews, the framework uses large language models (LLMs) to conduct semantic evaluation of code repositories without relying on manually crafted patterns. The framework is evaluated on sixty six high-priority packages in the Debian ecosystem. The experimental results indicate that the current open-source software supply chain is exposed to various security risks.
comment: 7 figures, 4 tables, conference
☆ AHaSIS: Shared Task on Sentiment Analysis for Arabic Dialects
The hospitality industry in the Arab world increasingly relies on customer feedback to shape services, driving the need for advanced Arabic sentiment analysis tools. To address this challenge, the Sentiment Analysis on Arabic Dialects in the Hospitality Domain shared task focuses on Sentiment Detection in Arabic Dialects. This task leverages a multi-dialect, manually curated dataset derived from hotel reviews originally written in Modern Standard Arabic (MSA) and translated into Saudi and Moroccan (Darija) dialects. The dataset consists of 538 sentiment-balanced reviews spanning positive, neutral, and negative categories. Translations were validated by native speakers to ensure dialectal accuracy and sentiment preservation. This resource supports the development of dialect-aware NLP systems for real-world applications in customer experience analysis. More than 40 teams have registered for the shared task, with 12 submitting systems during the evaluation phase. The top-performing system achieved an F1 score of 0.81, demonstrating the feasibility and ongoing challenges of sentiment analysis across Arabic dialects.
☆ AutoMalDesc: Large-Scale Script Analysis for Cyber Threat Research AAAI 2026
Generating thorough natural language explanations for threat detections remains an open problem in cybersecurity research, despite significant advances in automated malware detection systems. In this work, we present AutoMalDesc, an automated static analysis summarization framework that, following initial training on a small set of expert-curated examples, operates independently at scale. This approach leverages an iterative self-paced learning pipeline to progressively enhance output quality through synthetic data generation and validation cycles, eliminating the need for extensive manual data annotation. Evaluation across 3,600 diverse samples in five scripting languages demonstrates statistically significant improvements between iterations, showing consistent gains in both summary quality and classification accuracy. Our comprehensive validation approach combines quantitative metrics based on established malware labels with qualitative assessment from both human experts and LLM-based judges, confirming both technical precision and linguistic coherence of generated summaries. To facilitate reproducibility and advance research in this domain, we publish our complete dataset of more than 100K script samples, including annotated seed (0.9K) and test (3.6K) datasets, along with our methodology and evaluation framework.
comment: Accepted at AAAI 2026 (oral)
☆ Explainable RL Policies by Distilling to Locally-Specialized Linear Policies with Voronoi State Partitioning
Deep Reinforcement Learning is one of the state-of-the-art methods for producing near-optimal system controllers. However, deep RL algorithms train a deep neural network, that lacks transparency, which poses challenges when the controller has to meet regulations, or foster trust. To alleviate this, one could transfer the learned behaviour into a model that is human-readable by design using knowledge distilla- tion. Often this is done with a single model which mimics the original model on average but could struggle in more dynamic situations. A key challenge is that this simpler model should have the right balance be- tween flexibility and complexity or right balance between balance bias and accuracy. We propose a new model-agnostic method to divide the state space into regions where a simplified, human-understandable model can operate in. In this paper, we use Voronoi partitioning to find regions where linear models can achieve similar performance to the original con- troller. We evaluate our approach on a gridworld environment and a classic control task. We observe that our proposed distillation to locally- specialized linear models produces policies that are explainable and show that the distillation matches or even slightly outperforms the black-box policy they are distilled from.
comment: Accepted for BNAIC/BeNeLearn 2025
☆ Whistledown: Combining User-Level Privacy with Conversational Coherence in LLMs
Users increasingly rely on large language models (LLMs) for personal, emotionally charged, and socially sensitive conversations. However, prompts sent to cloud-hosted models can contain personally identifiable information (PII) that users do not want logged, retained, or leaked. We observe this to be especially acute when users discuss friends, coworkers, or adversaries, i.e., when they spill the tea. Enterprises face the same challenge when they want to use LLMs for internal communication and decision-making. In this whitepaper, we present Whistledown, a best-effort privacy layer that modifies prompts before they are sent to the LLM. Whistledown combines pseudonymization and $ε$-local differential privacy ($ε$-LDP) with transformation caching to provide best-effort privacy protection without sacrificing conversational utility. Whistledown is designed to have low compute and memory overhead, allowing it to be deployed directly on a client's device in the case of individual users. For enterprise users, Whistledown is deployed centrally within a zero-trust gateway that runs on an enterprise's trusted infrastructure. Whistledown requires no changes to the existing APIs of popular LLM providers.
☆ Computer Vision based group activity detection and action spotting
Group activity detection in multi-person scenes is challenging due to complex human interactions, occlusions, and variations in appearance over time. This work presents a computer vision based framework for group activity recognition and action spotting using a combination of deep learning models and graph based relational reasoning. The system first applies Mask R-CNN to obtain accurate actor localization through bounding boxes and instance masks. Multiple backbone networks, including Inception V3, MobileNet, and VGG16, are used to extract feature maps, and RoIAlign is applied to preserve spatial alignment when generating actor specific features. The mask information is then fused with the feature maps to obtain refined masked feature representations for each actor. To model interactions between individuals, we construct Actor Relation Graphs that encode appearance similarity and positional relations using methods such as normalized cross correlation, sum of absolute differences, and dot product. Graph Convolutional Networks operate on these graphs to reason about relationships and predict both individual actions and group level activities. Experiments on the Collective Activity dataset demonstrate that the combination of mask based feature refinement, robust similarity search, and graph neural network reasoning leads to improved recognition performance across both crowded and non crowded scenarios. This approach highlights the potential of integrating segmentation, feature extraction, and relational graph reasoning for complex video understanding tasks.
☆ EL3DD: Extended Latent 3D Diffusion for Language Conditioned Multitask Manipulation
Acting in human environments is a crucial capability for general-purpose robots, necessitating a robust understanding of natural language and its application to physical tasks. This paper seeks to harness the capabilities of diffusion models within a visuomotor policy framework that merges visual and textual inputs to generate precise robotic trajectories. By employing reference demonstrations during training, the model learns to execute manipulation tasks specified through textual commands within the robot's immediate environment. The proposed research aims to extend an existing model by leveraging improved embeddings, and adapting techniques from diffusion models for image generation. We evaluate our methods on the CALVIN dataset, proving enhanced performance on various manipulation tasks and an increased long-horizon success rate when multiple tasks are executed in sequence. Our approach reinforces the usefulness of diffusion models and contributes towards general multitask manipulation.
comment: 10 pages; 2 figures; 1 table. Prprint submitted to the European Robotics Forum 2026
☆ DAP: A Discrete-token Autoregressive Planner for Autonomous Driving
Gaining sustainable performance improvement with scaling data and model budget remains a pivotal yet unresolved challenge in autonomous driving. While autoregressive models exhibited promising data-scaling efficiency in planning tasks, predicting ego trajectories alone suffers sparse supervision and weakly constrains how scene evolution should shape ego motion. Therefore, we introduce DAP, a discrete-token autoregressive planner that jointly forecasts BEV semantics and ego trajectories, thereby enforcing comprehensive representation learning and allowing predicted dynamics to directly condition ego motion. In addition, we incorporate a reinforcement-learning-based fine-tuning, which preserves supervised behavior cloning priors while injecting reward-guided improvements. Despite a compact 160M parameter budget, DAP achieves state-of-the-art performance on open-loop metrics and delivers competitive closed-loop results on the NAVSIM benchmark. Overall, the fully discrete-token autoregressive formulation operating on both rasterized BEV and ego actions provides a compact yet scalable planning paradigm for autonomous driving.
☆ Grounded by Experience: Generative Healthcare Prediction Augmented with Hierarchical Agentic Retrieval
Accurate healthcare prediction is critical for improving patient outcomes and reducing operational costs. Bolstered by growing reasoning capabilities, large language models (LLMs) offer a promising path to enhance healthcare predictions by drawing on their rich parametric knowledge. However, LLMs are prone to factual inaccuracies due to limitations in the reliability and coverage of their embedded knowledge. While retrieval-augmented generation (RAG) frameworks, such as GraphRAG and its variants, have been proposed to mitigate these issues by incorporating external knowledge, they face two key challenges in the healthcare scenario: (1) identifying the clinical necessity to activate the retrieval mechanism, and (2) achieving synergy between the retriever and the generator to craft contextually appropriate retrievals. To address these challenges, we propose GHAR, a \underline{g}enerative \underline{h}ierarchical \underline{a}gentic \underline{R}AG framework that simultaneously resolves when to retrieve and how to optimize the collaboration between submodules in healthcare. Specifically, for the first challenge, we design a dual-agent architecture comprising Agent-Top and Agent-Low. Agent-Top acts as the primary physician, iteratively deciding whether to rely on parametric knowledge or to initiate retrieval, while Agent-Low acts as the consulting service, summarising all task-relevant knowledge once retrieval was triggered. To tackle the second challenge, we innovatively unify the optimization of both agents within a formal Markov Decision Process, designing diverse rewards to align their shared goal of accurate prediction while preserving their distinct roles. Extensive experiments on three benchmark datasets across three popular tasks demonstrate our superiority over state-of-the-art baselines, highlighting the potential of hierarchical agentic RAG in advancing healthcare systems.
☆ Dropouts in Confidence: Moral Uncertainty in Human-LLM Alignment AAAI 2026
Humans display significant uncertainty when confronted with moral dilemmas, yet the extent of such uncertainty in machines and AI agents remains underexplored. Recent studies have confirmed the overly confident tendencies of machine-generated responses, particularly in large language models (LLMs). As these systems are increasingly embedded in ethical decision-making scenarios, it is important to understand their moral reasoning and the inherent uncertainties in building reliable AI systems. This work examines how uncertainty influences moral decisions in the classical trolley problem, analyzing responses from 32 open-source models and 9 distinct moral dimensions. We first find that variance in model confidence is greater across models than within moral dimensions, suggesting that moral uncertainty is predominantly shaped by model architecture and training method. To quantify uncertainty, we measure binary entropy as a linear combination of total entropy, conditional entropy, and mutual information. To examine its effects, we introduce stochasticity into models via "dropout" at inference time. Our findings show that our mechanism increases total entropy, mainly through a rise in mutual information, while conditional entropy remains largely unchanged. Moreover, this mechanism significantly improves human-LLM moral alignment, with correlations in mutual information and alignment score shifts. Our results highlight the potential to better align model-generated decisions and human preferences by deliberately modulating uncertainty and reducing LLMs' confidence in morally complex scenarios.
comment: Accepted to AAAI 2026
☆ Multi-Agent Deep Research: Training Multi-Agent Systems with M-GRPO
Multi-agent systems perform well on general reasoning tasks. However, the lack of training in specialized areas hinders their accuracy. Current training methods train a unified large language model (LLM) for all agents in the system. This may limit the performances due to different distributions underlying for different agents. Therefore, training multi-agent systems with distinct LLMs should be the next step to solve. However, this approach introduces optimization challenges. For example, agents operate at different frequencies, rollouts involve varying sub-agent invocations, and agents are often deployed across separate servers, disrupting end-to-end gradient flow. To address these issues, we propose M-GRPO, a hierarchical extension of Group Relative Policy Optimization designed for vertical Multi-agent systems with a main agent (planner) and multiple sub-agents (multi-turn tool executors). M-GRPO computes group-relative advantages for both main and sub-agents, maintaining hierarchical credit assignment. It also introduces a trajectory-alignment scheme that generates fixed-size batches despite variable sub-agent invocations. We deploy a decoupled training pipeline in which agents run on separate servers and exchange minimal statistics via a shared store. This enables scalable training without cross-server backpropagation. In experiments on real-world benchmarks (e.g., GAIA, XBench-DeepSearch, and WebWalkerQA), M-GRPO consistently outperforms both single-agent GRPO and multi-agent GRPO with frozen sub-agents, demonstrating improved stability and sample efficiency. These results show that aligning heterogeneous trajectories and decoupling optimization across specialized agents enhances tool-augmented reasoning tasks.
☆ KForge: Program Synthesis for Diverse AI Hardware Accelerators
GPU kernels are critical for ML performance but difficult to optimize across diverse accelerators. We present KForge, a platform-agnostic framework built on two collaborative LLM-based agents: a generation agent that produces and iteratively refines programs through compilation and correctness feedback, and a performance analysis agent that interprets profiling data to guide optimization. This agent-based architecture requires only a single-shot example to target new platforms. We make three key contributions: (1) introducing an iterative refinement system where the generation agent and performance analysis agent collaborate through functional and optimization passes, interpreting diverse profiling data (from programmatic APIs to GUI-based tools) to generate actionable recommendations that guide program synthesis for arbitrary accelerators; (2) demonstrating that the generation agent effectively leverages cross-platform knowledge transfer, where a reference implementation from one architecture substantially improves generation quality for different hardware targets; and (3) validating the platform-agnostic nature of our approach by demonstrating effective program synthesis across fundamentally different parallel computing platforms: NVIDIA CUDA and Apple Metal.
comment: Under review at MLSys 2026
☆ Spatial Blind Spot: Auditory Motion Perception Deficits in Audio LLMs
Large Audio-Language Models (LALMs) have recently shown impressive progress in speech recognition, audio captioning, and auditory question answering. Yet, whether these models can perceive spatial dynamics, particularly the motion of sound sources, remains unclear. In this work, we uncover a systematic motion perception deficit in current ALLMs. To investigate this issue, we introduce AMPBench, the first benchmark explicitly designed to evaluate auditory motion understanding. AMPBench introduces a controlled question-answering benchmark designed to evaluate whether Audio-Language Models (LALMs) can infer the direction and trajectory of moving sound sources from binaural audio. Comprehensive quantitative and qualitative analyses reveal that current models struggle to reliably recognize motion cues or distinguish directional patterns. The average accuracy remains below 50%, underscoring a fundamental limitation in auditory spatial reasoning. Our study highlights a fundamental gap between human and model auditory spatial reasoning, providing both a diagnostic tool and new insight for enhancing spatial cognition in future Audio-Language Models.
☆ Examining the Usage of Generative AI Models in Student Learning Activities for Software Programming
The rise of Generative AI (GenAI) tools like ChatGPT has created new opportunities and challenges for computing education. Existing research has primarily focused on GenAI's ability to complete educational tasks and its impact on student performance, often overlooking its effects on knowledge gains. In this study, we investigate how GenAI assistance compares to conventional online resources in supporting knowledge gains across different proficiency levels. We conducted a controlled user experiment with 24 undergraduate students of two different levels of programming experience (beginner, intermediate) to examine how students interact with ChatGPT while solving programming tasks. We analyzed task performance, conceptual understanding, and interaction behaviors. Our findings reveal that generating complete solutions with GenAI significantly improves task performance, especially for beginners, but does not consistently result in knowledge gains. Importantly, usage strategies differ by experience: beginners tend to rely heavily on GenAI toward task completion often without knowledge gain in the process, while intermediates adopt more selective approaches. We find that both over-reliance and minimal use result in weaker knowledge gains overall. Based on our results, we call on students and educators to adopt GenAI as a learning rather than a problem solving tool. Our study highlights the urgent need for guidance when integrating GenAI into programming education to foster deeper understanding.
comment: 9 pages, 4 figures, accepted at AIWARE 2025
☆ GeoX-Bench: Benchmarking Cross-View Geo-Localization and Pose Estimation Capabilities of Large Multimodal Models
Large multimodal models (LMMs) have demonstrated remarkable capabilities across a wide range of tasks, however their knowledge and abilities in the cross-view geo-localization and pose estimation domains remain unexplored, despite potential benefits for navigation, autonomous driving, outdoor robotics, \textit{etc}. To bridge this gap, we introduce \textbf{GeoX-Bench}, a comprehensive \underline{Bench}mark designed to explore and evaluate the capabilities of LMMs in \underline{cross}-view \underline{Geo}-localization and pose estimation. Specifically, GeoX-Bench contains 10,859 panoramic-satellite image pairs spanning 128 cities in 49 countries, along with corresponding 755,976 question-answering (QA) pairs. Among these, 42,900 QA pairs are designated for benchmarking, while the remaining are intended to enhance the capabilities of LMMs. Based on GeoX-Bench, we evaluate the capabilities of 25 state-of-the-art LMMs on cross-view geo-localization and pose estimation tasks, and further explore the empowered capabilities of instruction-tuning. Our benchmark demonstrate that while current LMMs achieve impressive performance in geo-localization tasks, their effectiveness declines significantly on the more complex pose estimation tasks, highlighting a critical area for future improvement, and instruction-tuning LMMs on the training data of GeoX-Bench can significantly improve the cross-view geo-sense abilities. The GeoX-Bench is available at \textcolor{magenta}{https://github.com/IntMeGroup/GeoX-Bench}.
☆ Proceedings Seventh International Workshop on Formal Methods for Autonomous Systems
This EPTCS volume contains the papers from the Seventh International Workshop on Formal Methods for Autonomous Systems (FMAS 2025), which was held between the 17th and 19th of November 2025. The goal of the FMAS workshop series is to bring together leading researchers who are using formal methods to tackle the unique challenges that autonomous systems present, so that they can publish and discuss their work with a growing community of researchers. FMAS 2025 was co-located with the 20th International Conference on integrated Formal Methods (iFM'25), hosted by Inria Paris, France at the Inria Paris Center. In total, FMAS 2025 received 16 submissions from researchers at institutions in: Canada, China, France, Germany, Ireland, Italy, Japan, the Netherlands, Portugal, Sweden, the United States of America, and the United Kingdom. Though we received fewer submissions than last year, we are encouraged to see the submissions being sent from a wide range of countries. Submissions come from both past and new FMAS authors, which shows us that the existing community appreciates the network that FMAS has built over the past 7 years, while new authors also show the FMAS community's great potential of growth.
☆ Seek and You Shall Fold
Accurate protein structures are essential for understanding biological function, yet incorporating experimental data into protein generative models remains a major challenge. Most predictors of experimental observables are non-differentiable, making them incompatible with gradient-based conditional sampling. This is especially limiting in nuclear magnetic resonance, where rich data such as chemical shifts are hard to directly integrate into generative modeling. We introduce a framework for non-differentiable guidance of protein generative models, coupling a continuous diffusion-based generator with any black-box objective via a tailored genetic algorithm. We demonstrate its effectiveness across three modalities: pairwise distance constraints, nuclear Overhauser effect restraints, and for the first time chemical shifts. These results establish chemical shift guided structure generation as feasible, expose key weaknesses in current predictors, and showcase a general strategy for incorporating diverse experimental signals. Our work points toward automated, data-conditioned protein modeling beyond the limits of differentiability.
☆ Uncovering and Mitigating Transient Blindness in Multimodal Model Editing AAAI'26
Multimodal Model Editing (MMED) aims to correct erroneous knowledge in multimodal models. Existing evaluation methods, adapted from textual model editing, overstate success by relying on low-similarity or random inputs, obscure overfitting. We propose a comprehensive locality evaluation framework, covering three key dimensions: random-image locality, no-image locality, and consistent-image locality, operationalized through seven distinct data types, enabling a detailed and structured analysis of multimodal edits. We introduce De-VQA, a dynamic evaluation for visual question answering, uncovering a phenomenon we term transient blindness, overfitting to edit-similar text while ignoring visuals. Token analysis shows edits disproportionately affect textual tokens. We propose locality-aware adversarial losses to balance cross-modal representations. Empirical results demonstrate that our approach consistently outperforms existing baselines, reducing transient blindness and improving locality by 17% on average.
comment: Accepted at AAAI'26
☆ Computational Measurement of Political Positions: A Review of Text-Based Ideal Point Estimation Algorithms
This article presents the first systematic review of unsupervised and semi-supervised computational text-based ideal point estimation (CT-IPE) algorithms, methods designed to infer latent political positions from textual data. These algorithms are widely used in political science, communication, computational social science, and computer science to estimate ideological preferences from parliamentary speeches, party manifestos, and social media. Over the past two decades, their development has closely followed broader NLP trends -- beginning with word-frequency models and most recently turning to large language models (LLMs). While this trajectory has greatly expanded the methodological toolkit, it has also produced a fragmented field that lacks systematic comparison and clear guidance for applied use. To address this gap, we identified 25 CT-IPE algorithms through a systematic literature review and conducted a manual content analysis of their modeling assumptions and development contexts. To compare them meaningfully, we introduce a conceptual framework that distinguishes how algorithms generate, capture, and aggregate textual variance. On this basis, we identify four methodological families -- word-frequency, topic modeling, word embedding, and LLM-based approaches -- and critically assess their assumptions, interpretability, scalability, and limitations. Our review offers three contributions. First, it provides a structured synthesis of two decades of algorithm development, clarifying how diverse methods relate to one another. Second, it translates these insights into practical guidance for applied researchers, highlighting trade-offs in transparency, technical requirements, and validation strategies that shape algorithm choice. Third, it emphasizes that differences in estimation outcomes across algorithms are themselves informative, underscoring the need for systematic benchmarking.
comment: 46 pages, 8 figures, 2 tables, accepted for publication in Quality & Quantity
☆ Informative Communication of Robot Plans
When a robot is asked to verbalize its plan it can do it in many ways. For example, a seemingly natural strategy is incremental, where the robot verbalizes its planned actions in plan order. However, an important aspect of this type of strategy is that it misses considerations on what is effectively informative to communicate, because not considering what the user knows prior to explanations. In this paper we propose a verbalization strategy to communicate robot plans informatively, by measuring the information gain that verbalizations have against a second-order theory of mind of the user capturing his prior knowledge on the robot. As shown in our experiments, this strategy allows to understand the robot's goal much quicker than by using strategies such as increasing or decreasing plan order. In addition, following our formulation we hint to what is informative and why when a robot communicates its plan.
comment: Conference: PAAMS 2022, 20th International Conference on Practical Applications of Agents and Multi-Agent Systems
☆ TokenSqueeze: Performance-Preserving Compression for Reasoning LLMs NeurIPS 2025
Emerging reasoning LLMs such as OpenAI-o1 and DeepSeek-R1 have achieved strong performance on complex reasoning tasks by generating long chain-of-thought (CoT) traces. However, these long CoTs result in increased token usage, leading to higher inference latency and memory consumption. As a result, balancing accuracy and reasoning efficiency has become essential for deploying reasoning LLMs in practical applications. Existing long-to-short (Long2Short) methods aim to reduce inference length but often sacrifice accuracy, revealing a need for an approach that maintains performance while lowering token costs. To address this efficiency-accuracy tradeoff, we propose TokenSqueeze, a novel Long2Short method that condenses reasoning paths while preserving performance and relying exclusively on self-generated data. First, to prevent performance degradation caused by excessive compression of reasoning depth, we propose to select self-generated samples whose reasoning depth is adaptively matched to the complexity of the problem. To further optimize the linguistic expression without altering the underlying reasoning paths, we introduce a distribution-aligned linguistic refinement method that enhances the clarity and conciseness of the reasoning path while preserving its logical integrity. Comprehensive experimental results demonstrate the effectiveness of TokenSqueeze in reducing token usage while maintaining accuracy. Notably, DeepSeek-R1-Distill-Qwen-7B fine-tuned using our proposed method achieved a 50\% average token reduction while preserving accuracy on the MATH500 benchmark. TokenSqueeze exclusively utilizes the model's self-generated data, enabling efficient and high-fidelity reasoning without relying on manually curated short-answer datasets across diverse applications. Our code is available at https://github.com/zhangyx1122/TokenSqueeze.
comment: Accepted to NeurIPS 2025
☆ FoleyBench: A Benchmark For Video-to-Audio Models
Video-to-audio generation (V2A) is of increasing importance in domains such as film post-production, AR/VR, and sound design, particularly for the creation of Foley sound effects synchronized with on-screen actions. Foley requires generating audio that is both semantically aligned with visible events and temporally aligned with their timing. Yet, there is a mismatch between evaluation and downstream applications due to the absence of a benchmark tailored to Foley-style scenarios. We find that 74% of videos from past evaluation datasets have poor audio-visual correspondence. Moreover, they are dominated by speech and music, domains that lie outside the use case for Foley. To address this gap, we introduce FoleyBench, the first large-scale benchmark explicitly designed for Foley-style V2A evaluation. FoleyBench contains 5,000 (video, ground-truth audio, text caption) triplets, each featuring visible sound sources with audio causally tied to on-screen events. The dataset is built using an automated, scalable pipeline applied to in-the-wild internet videos from YouTube-based and Vimeo-based sources. Compared to past datasets, we show that videos from FoleyBench have stronger coverage of sound categories from a taxonomy specifically designed for Foley sound. Each clip is further labeled with metadata capturing source complexity, UCS/AudioSet category, and video length, enabling fine-grained analysis of model performance and failure modes. We benchmark several state-of-the-art V2A models, evaluating them on audio quality, audio-video alignment, temporal synchronization, and audio-text consistency. Samples are available at: https://gclef-cmu.org/foleybench
☆ Learning to Solve Resource-Constrained Project Scheduling Problems with Duration Uncertainty using Graph Neural Networks ICTAI 2025
The Resource-Constrained Project Scheduling Problem (RCPSP) is a classical scheduling problem that has received significant attention due to of its numerous applications in industry. However, in practice, task durations are subject to uncertainty that must be considered in order to propose resilient scheduling. In this paper, we address the RCPSP variant with uncertain tasks duration (modeled using known probabilities) and aim to minimize the overall expected project duration. Our objective is to produce a baseline schedule that can be reused multiple times in an industrial setting regardless of the actual duration scenario. We leverage Graph Neural Networks in conjunction with Deep Reinforcement Learning (DRL) to develop an effective policy for task scheduling. This policy operates similarly to a priority dispatch rule and is paired with a Serial Schedule Generation Scheme to produce a schedule. Our empirical evaluation on standard benchmarks demonstrates the approach's superiority in terms of performance and its ability to generalize. The developed framework, Wheatley, is made publicly available online to facilitate further research and reproducibility.
comment: Accepted at ICTAI 2025 Conference
☆ ParaDySe: A Parallel-Strategy Switching Framework for Dynamic Sequence Lengths in Transformer
Dynamic sequences with varying lengths have been widely used in the training of Transformer-based large language models (LLMs). However, current training frameworks adopt a pre-defined static parallel strategy for these sequences, causing neither communication-parallelization cancellation on short sequences nor out-of-memory on long sequences. To mitigate these issues, we propose ParaDySe, a novel adaptive Parallel strategy switching framework for Dynamic Sequences. ParaDySe enables on-the-fly optimal strategy adoption according to the immediate input sequence. It first implements the modular function libraries for parallel strategies with unified tensor layout specifications, and then builds sequence-aware memory and time cost models with hybrid methods. Guided by cost models, ParaDySe selects optimal layer-wise strategies for dynamic sequences via an efficient heuristic algorithm. By integrating these techniques together, ParaDySe achieves seamless hot-switching of optimal strategies through its well-designed function libraries. We compare ParaDySe with baselines on representative LLMs under datasets with sequence lengths up to 624K. Experimental results indicate that ParaDySe addresses OOM and CPC bottlenecks in LLM training by systematically integrating long-sequence optimizations with existing frameworks.
☆ Cost-Effective Communication: An Auction-based Method for Language Agent Interaction
Multi-agent systems (MAS) built on large language models (LLMs) often suffer from inefficient "free-for-all" communication, leading to exponential token costs and low signal-to-noise ratios that hinder their practical deployment. We challenge the notion that more communication is always beneficial, hypothesizing instead that the core issue is the absence of resource rationality. We argue that "free" communication, by ignoring the principle of scarcity, inherently breeds inefficiency and unnecessary expenses. To address this, we introduce the Dynamic Auction-based Language Agent (DALA), a novel framework that treats communication bandwidth as a scarce and tradable resource. Specifically, our DALA regards inter-agent communication as a centralized auction, where agents learn to bid for the opportunity to speak based on the predicted value density of their messages. Thus, our DALA intrinsically encourages agents to produce concise, informative messages while filtering out low-value communication. Extensive and comprehensive experiments demonstrate that our economically-driven DALA achieves new state-of-the-art performance across seven challenging reasoning benchmarks, including 84.32% on MMLU and a 91.21% pass@1 rate on HumanEval. Note that this is accomplished with remarkable efficiency, i.e., our DALA uses only 6.25 million tokens, a fraction of the resources consumed by current state-of-the-art methods on GSM8K. Further analysis reveals that our DALA cultivates the emergent skill of strategic silence, effectively adapting its communication strategies from verbosity to silence in a dynamical manner via resource constraints.
☆ SOMA: Feature Gradient Enhanced Affine-Flow Matching for SAR-Optical Registration
Achieving pixel-level registration between SAR and optical images remains a challenging task due to their fundamentally different imaging mechanisms and visual characteristics. Although deep learning has achieved great success in many cross-modal tasks, its performance on SAR-Optical registration tasks is still unsatisfactory. Gradient-based information has traditionally played a crucial role in handcrafted descriptors by highlighting structural differences. However, such gradient cues have not been effectively leveraged in deep learning frameworks for SAR-Optical image matching. To address this gap, we propose SOMA, a dense registration framework that integrates structural gradient priors into deep features and refines alignment through a hybrid matching strategy. Specifically, we introduce the Feature Gradient Enhancer (FGE), which embeds multi-scale, multi-directional gradient filters into the feature space using attention and reconstruction mechanisms to boost feature distinctiveness. Furthermore, we propose the Global-Local Affine-Flow Matcher (GLAM), which combines affine transformation and flow-based refinement within a coarse-to-fine architecture to ensure both structural consistency and local accuracy. Experimental results demonstrate that SOMA significantly improves registration precision, increasing the CMR@1px by 12.29% on the SEN1-2 dataset and 18.50% on the GFGE_SO dataset. In addition, SOMA exhibits strong robustness and generalizes well across diverse scenes and resolutions.
☆ Local Collaborative Filtering: A Collaborative Filtering Method that Utilizes Local Similarities among Users
To leverage user behavior data from the Internet more effectively in recommender systems, this paper proposes a novel collaborative filtering (CF) method called Local Collaborative Filtering (LCF). LCF utilizes local similarities among users and integrates their data using the law of large numbers (LLN), thereby improving the utilization of user behavior data. Experiments are conducted on the Steam game dataset, and the results of LCF align with real-world needs.
comment: 4 pages, 2 figures
☆ InteractiveGNNExplainer: A Visual Analytics Framework for Multi-Faceted Understanding and Probing of Graph Neural Network Predictions
Graph Neural Networks (GNNs) excel in graph-based learning tasks, but their complex, non-linear operations often render them as opaque "black boxes". This opacity hinders user trust, complicates debugging, bias detection, and adoption in critical domains requiring explainability. This paper introduces InteractiveGNNExplainer, a visual analytics framework to enhance GNN explainability, focusing on node classification. Our system uniquely integrates coordinated interactive views (dynamic graph layouts, embedding projections, feature inspection, neighborhood analysis) with established post-hoc (GNNExplainer) and intrinsic (GAT attention) explanation techniques. Crucially, it incorporates interactive graph editing, allowing users to perform a "what-if" analysis by perturbing graph structures and observing immediate impacts on GNN predictions and explanations. We detail the system architecture and, through case studies on Cora and CiteSeer datasets, demonstrate how InteractiveGNNExplainer facilitates in-depth misclassification diagnosis, comparative analysis of GCN versus GAT behaviors, and rigorous probing of model sensitivity. These capabilities foster a deeper, multifaceted understanding of GNN predictions, contributing to more transparent, trustworthy, and robust graph analysis.
☆ Automated Road Distress Detection Using Vision Transformersand Generative Adversarial Networks
The American Society of Civil Engineers has graded Americas infrastructure condition as a C, with the road system receiving a dismal D. Roads are vital to regional economic viability, yet their management, maintenance, and repair processes remain inefficient, relying on outdated manual or laser-based inspection methods that are both costly and time-consuming. With the increasing availability of real-time visual data from autonomous vehicles, there is an opportunity to apply computer vision (CV) methods for advanced road monitoring, providing insights to guide infrastructure rehabilitation efforts. This project explores the use of state-of-the-art CV techniques for road distress segmentation. It begins by evaluating synthetic data generated with Generative Adversarial Networks (GANs) to assess its usefulness for model training. The study then applies Convolutional Neural Networks (CNNs) for road distress segmentation and subsequently examines the transformer-based model MaskFormer. Results show that GAN-generated data improves model performance and that MaskFormer outperforms the CNN model in two metrics: mAP50 and IoU.
☆ SoK: The Last Line of Defense: On Backdoor Defense Evaluation
Backdoor attacks pose a significant threat to deep learning models by implanting hidden vulnerabilities that can be activated by malicious inputs. While numerous defenses have been proposed to mitigate these attacks, the heterogeneous landscape of evaluation methodologies hinders fair comparison between defenses. This work presents a systematic (meta-)analysis of backdoor defenses through a comprehensive literature review and empirical evaluation. We analyzed 183 backdoor defense papers published between 2018 and 2025 across major AI and security venues, examining the properties and evaluation methodologies of these defenses. Our analysis reveals significant inconsistencies in experimental setups, evaluation metrics, and threat model assumptions in the literature. Through extensive experiments involving three datasets (MNIST, CIFAR-100, ImageNet-1K), four model architectures (ResNet-18, VGG-19, ViT-B/16, DenseNet-121), 16 representative defenses, and five commonly used attacks, totaling over 3\,000 experiments, we demonstrate that defense effectiveness varies substantially across different evaluation setups. We identify critical gaps in current evaluation practices, including insufficient reporting of computational overhead and behavior under benign conditions, bias in hyperparameter selection, and incomplete experimentation. Based on our findings, we provide concrete challenges and well-motivated recommendations to standardize and improve future defense evaluations. Our work aims to equip researchers and industry practitioners with actionable insights for developing, assessing, and deploying defenses to different systems.
☆ Conditional Diffusion Model for Multi-Agent Dynamic Task Decomposition AAAI 2026
Task decomposition has shown promise in complex cooperative multi-agent reinforcement learning (MARL) tasks, which enables efficient hierarchical learning for long-horizon tasks in dynamic and uncertain environments. However, learning dynamic task decomposition from scratch generally requires a large number of training samples, especially exploring the large joint action space under partial observability. In this paper, we present the Conditional Diffusion Model for Dynamic Task Decomposition (C$\text{D}^\text{3}$T), a novel two-level hierarchical MARL framework designed to automatically infer subtask and coordination patterns. The high-level policy learns subtask representation to generate a subtask selection strategy based on subtask effects. To capture the effects of subtasks on the environment, C$\text{D}^\text{3}$T predicts the next observation and reward using a conditional diffusion model. At the low level, agents collaboratively learn and share specialized skills within their assigned subtasks. Moreover, the learned subtask representation is also used as additional semantic information in a multi-head attention mixing network to enhance value decomposition and provide an efficient reasoning bridge between individual and joint value functions. Experimental results on various benchmarks demonstrate that C$\text{D}^\text{3}$T achieves better performance than existing baselines.
comment: AAAI 2026
♻ ☆ Optimizing Urban Service Allocation with Time-Constrained Restless Bandits
Municipal inspections are an important part of maintaining the quality of goods and services. In this paper, we approach the problem of intelligently scheduling service inspections to maximize their impact, using the case of food establishment inspections in Chicago as a case study. The Chicago Department of Public Health (CDPH) inspects thousands of establishments each year, with a substantial fail rate (over 3,000 failed inspection reports in 2023). To balance the objectives of ensuring adherence to guidelines, minimizing disruption to establishments, and minimizing inspection costs, CDPH assigns each establishment an inspection window every year and guarantees that they will be inspected exactly once during that window. Meanwhile, CDPH also promises surprise public health inspections for unexpected food safety emergencies or complaints. These constraints create a challenge for a restless multi-armed bandit (RMAB) approach, for which there are no existing methods. We develop an extension to Whittle index-based systems for RMABs that can guarantee action window constraints and frequencies, and furthermore can be leveraged to optimize action window assignments themselves. Briefly, we combine MDP reformulation and integer programming-based lookahead to maximize the impact of inspections subject to constraints. A neural network-based supervised learning model is developed to model state transitions of real Chicago establishments using public CDPH inspection records, which demonstrates 10% AUC improvements compared with directly predicting establishments' failures. Our experiments not only show up to 24% (in simulation) or 33% (on real data) objective improvements resulting from our approach and robustness to surprise inspections, but also give insight into the impact of scheduling constraints.
♻ ☆ Graph Neural Network-Based Reinforcement Learning for Controlling Biological Networks - the GATTACA Framework
Cellular reprogramming, the artificial transformation of one cell type into another, has been attracting increasing research attention due to its therapeutic potential for complex diseases. However, identifying effective reprogramming strategies through classical wet-lab experiments is hindered by lengthy time commitments and high costs. In this study, we explore the use of deep reinforcement learning (DRL) to control Boolean network models of complex biological systems, such as gene regulatory and signalling pathway networks. We formulate a novel control problem for Boolean network models under the asynchronous update mode, specifically in the context of cellular reprogramming. To solve it, we devise GATTACA, a scalable computational framework. To facilitate scalability of our framework, we consider previously introduced concept of a pseudo-attractor and improve the procedure for effective identification of pseudo-attractor states. We then incorporate graph neural networks with graph convolution operations into the artificial neural network approximator of the DRL agent's action-value function. This allows us to leverage the available knowledge on the structure of a biological system and to indirectly, yet effectively, encode the system's modelled dynamics into a latent representation. Experiments on several large-scale, real-world biological networks from the literature demonstrate the scalability and effectiveness of our approach.
♻ ☆ Robust Reinforcement Learning from Human Feedback for Large Language Models Fine-Tuning
Reinforcement learning from human feedback (RLHF) has emerged as a key technique for aligning the output of large language models (LLMs) with human preferences. To learn the reward function, most existing RLHF algorithms use the Bradley-Terry model, which relies on assumptions about human preferences that may not reflect the complexity and variability of real-world judgments. In this paper, we propose a robust algorithm to enhance the performance of existing approaches under such reward model misspecifications. Theoretically, our algorithm reduces the variance of reward and policy estimators, leading to improved regret bounds. Empirical evaluations on LLM benchmark datasets demonstrate that the proposed algorithm consistently outperforms existing methods, with 77-81% of responses being favored over baselines on the Anthropic Helpful and Harmless dataset. The code is available at https:// github.com/ VRPO/ VRPO.
♻ ☆ Glia: A Human-Inspired AI for Automated Systems Design and Optimization
Can an AI autonomously design mechanisms for computer systems on par with the creativity and reasoning of human experts? We present Glia, an AI architecture for networked systems design that uses large language models (LLMs) in a human-inspired, multi-agent workflow. Each agent specializes in reasoning, experimentation, and analysis, collaborating through an evaluation framework that grounds abstract reasoning in empirical feedback. Unlike prior ML-for-systems methods that optimize black-box policies, Glia generates interpretable designs and exposes its reasoning process. When applied to a distributed GPU cluster for LLM inference, it produces new algorithms for request routing, scheduling, and auto-scaling that perform at human-expert levels in significantly less time, while yielding novel insights into workload behavior. Our results suggest that by combining reasoning LLMs with structured experimentation, an AI can produce creative and understandable designs for complex systems problems.
♻ ☆ Bilevel MCTS for Amortized O(1) Node Selection in Classical Planning AAAI-26
We study an efficient implementation of Multi-Armed Bandit (MAB)-based Monte-Carlo Tree Search (MCTS) for classical planning. One weakness of MCTS is that it spends a significant time deciding which node to expand next. While selecting a node from an OPEN list with $N$ nodes has $O(1)$ runtime complexity with traditional array-based priority-queues for dense integer keys, the tree-based OPEN list used by MCTS requires $O(\log N)$, which roughly corresponds to the search depth $d$. In classical planning, $d$ is arbitrarily large (e.g., $2^k-1$ in $k$-disk Tower-of-Hanoi) and the runtime for node selection is significant, unlike in game tree search, where the cost is negligible compared to the node evaluation (rollouts) because $d$ is inherently limited by the game (e.g., $d\leq 361$ in Go). To improve this bottleneck, we propose a bilevel modification to MCTS that runs a best-first search from each selected leaf node with an expansion budget proportional to $d$, which achieves amortized $O(1)$ runtime for node selection, equivalent to the traditional queue-based OPEN list. In addition, we introduce Tree Collapsing, an enhancement that reduces action selection steps and further improves the performance.
comment: Accepted in AAAI-26
♻ ☆ HALO: Hardware-aware quantization with low critical-path-delay weights for LLM acceleration
Quantization is critical for efficiently deploying large language models (LLMs). Yet conventional methods remain hardware-agnostic, limited to bit-width constraints, and do not account for intrinsic circuit characteristics such as the timing behaviors and energy profiles of Multiply-Accumulate (MAC) units. This disconnect from circuit-level behavior limits the ability to exploit available timing margins and energy-saving opportunities, reducing the overall efficiency of deployment on modern accelerators. To address these limitations, we propose HALO, a versatile framework for Hardware-Aware Post-Training Quantization (PTQ). Unlike traditional methods, HALO explicitly incorporates detailed hardware characteristics, including critical-path timing and power consumption, into its quantization approach. HALO strategically selects weights with low critical-path-delays enabling higher operational frequencies and dynamic frequency scaling without disrupting the architecture's dataflow. Remarkably, HALO achieves these improvements with only a few dynamic voltage and frequency scaling (DVFS) adjustments, ensuring simplicity and practicality in deployment. Additionally, by reducing switching activity within the MAC units, HALO effectively lowers energy consumption. Evaluations on accelerators such as Tensor Processing Units (TPUs) and Graphics Processing Units (GPUs) demonstrate that HALO significantly enhances inference efficiency, achieving average performance improvements of 270% and energy savings of 51% over baseline quantization methods, all with minimal impact on accuracy.
♻ ☆ Unintended Misalignment from Agentic Fine-Tuning: Risks and Mitigation AAAI 2026
Beyond simple text generation, Large Language Models (LLMs) have evolved into agentic systems capable of planning and interacting with external tools to solve complex tasks. This evolution involves fine-tuning LLMs on agent-specific tasks to enhance their proficiency. However, safety concerns are frequently overlooked during this fine-tuning process. In this work, we show that aligned LLMs can become unintentionally misaligned, leading to a higher likelihood of executing harmful tasks and a reduced tendency to refuse them when fine-tuned to execute agentic tasks. To address these safety challenges, we propose Prefix INjection Guard (PING), a simple yet effective method that prepends automatically generated natural language prefixes to agent responses, guiding them to refuse harmful requests while preserving performance on benign tasks. Specifically, we introduce an iterative approach that alternates between (1) generating candidate prefixes and (2) selecting those that optimize both task performance and refusal behavior. Experimental results demonstrate that PING significantly enhances the safety of fine-tuned LLM agents without sacrificing their effectiveness. PING consistently outperforms existing prompting approaches across diverse benchmarks in both web navigation and code generation tasks. Our analysis of internal hidden states via linear probes reveals that prefix tokens are crucial for behavior modification, explaining the performance gains. WARNING: This paper contains contents that are unethical or offensive in nature.
comment: Accepted at AAAI 2026 AI Alignment Track, Source code: https://github.com/HahmDY/agentic-ft-safety
♻ ☆ Extreme Value Monte Carlo Tree Search for Classical Planning AAAI-26
Despite being successful in board games and reinforcement learning (RL), Monte Carlo Tree Search (MCTS) combined with Multi Armed Bandits (MABs) has seen limited success in domain-independent classical planning until recently. Previous work (Wissow and Asai 2024) showed that UCB1, designed for bounded rewards, does not perform well as applied to cost-to-go estimates in classical planning, which are unbounded in $\R$, and showed improved performance using a Gaussian reward MAB instead. This paper further sharpens our understanding of ideal bandits for planning tasks. Existing work has two issues: first, Gaussian MABs under-specify the support of cost-to-go estimates as $(-\infty,\infty)$, which we can narrow down. Second, Full Bellman backup (Schulte and Keller 2014), which backpropagates sample max/min, lacks theoretical justification. We use \emph{Peaks-Over-Threashold Extreme Value Theory} to resolve both issues at once, and propose a new bandit algorithm (UCB1-Uniform). We formally prove its regret bound and empirically demonstrate its performance in classical planning.
comment: Accepted in AAAI-26. arXiv admin note: substantial text overlap with arXiv:2305.09840 (background section)
♻ ☆ PASS: Probabilistic Agentic Supernet Sampling for Interpretable and Adaptive Chest X-Ray Reasoning
Existing tool-augmented agentic systems are limited in the real world by (i) black-box reasoning steps that undermine trust of decision-making and pose safety risks, (ii) poor multimodal integration, which is inherently critical for healthcare tasks, and (iii) rigid and computationally inefficient agentic pipelines. We introduce PASS (Probabilistic Agentic Supernet Sampling), the first multimodal framework to address these challenges in the context of Chest X-Ray (CXR) reasoning. PASS adaptively samples agentic workflows over a multi-tool graph, yielding decision paths annotated with interpretable probabilities. Given the complex CXR reasoning task with multimodal medical data, PASS leverages its learned task-conditioned distribution over the agentic supernet. Thus, it adaptively selects the most suitable tool at each supernet layer, offering probability-annotated trajectories for post-hoc audits and directly enhancing medical AI safety. PASS also continuously compresses salient findings into an evolving personalized memory, while dynamically deciding whether to deepen its reasoning path or invoke an early exit for efficiency. To optimize a Pareto frontier balancing performance and cost, we design a novel three-stage training procedure, including expert knowledge warm-up, contrastive path-ranking, and cost-aware reinforcement learning. To facilitate rigorous evaluation, we introduce CAB-E, a comprehensive benchmark for multi-step, safety-critical, free-form CXR reasoning. Experiments across various benchmarks validate that PASS significantly outperforms strong baselines in multiple metrics (e.g., accuracy, AUC, LLM-J.) while balancing computational costs, pushing a new paradigm shift towards interpretable, adaptive, and multimodal medical agentic systems.
♻ ☆ Individualised Treatment Effects Estimation with Composite Treatments and Composite Outcomes
Estimating individualised treatment effect (ITE) -- that is the causal effect of a set of variables (also called exposures, treatments, actions, policies, or interventions), referred to as \textit{composite treatments}, on a set of outcome variables of interest, referred to as \textit{composite outcomes}, for a unit from observational data -- remains a fundamental problem in causal inference with applications across disciplines, such as healthcare, economics, education, social science, marketing, and computer science. Previous work in causal machine learning for ITE estimation is limited to simple settings, like single treatments and single outcomes. This hinders their use in complex real-world scenarios; for example, consider studying the effect of different ICU interventions, such as beta-blockers and statins for a patient admitted for heart surgery, on different outcomes of interest such as atrial fibrillation and in-hospital mortality. The limited research into composite treatments and outcomes is primarily due to data scarcity for all treatments and outcomes. To address the above challenges, we propose a novel and innovative hypernetwork-based approach, called \emph{H-Learner}, to solve ITE estimation under composite treatments and composite outcomes, which tackles the data scarcity issue by dynamically sharing information across treatments and outcomes. Our empirical analysis with binary and arbitrary composite treatments and outcomes demonstrates the effectiveness of the proposed approach compared to existing methods.
comment: Accepted to The 47th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (7 pages (double column), 4 figures)
♻ ☆ Ghost in the Transformer: Tracing LLM Lineage with SVD-Fingerprint AAAI 2026
Large Language Models (LLMs) have rapidly advanced and are widely adopted across diverse fields. Due to the substantial computational cost and data requirements of training from scratch, many developers choose to fine-tune or modify existing open-source models. While most adhere to open-source licenses, some falsely claim original training despite clear derivation from public models. This raises pressing concerns about intellectual property protection and highlights the need for reliable methods to verify model provenance. In this paper, we propose GhostSpec, a lightweight yet effective method for verifying LLM lineage without access to training data or modification of model behavior. Our approach constructs compact and robust fingerprints by applying singular value decomposition (SVD) to invariant products of internal attention weight matrices, effectively capturing the structural identity of a model. Unlike watermarking or output-based methods, GhostSpec is fully data-free, non-invasive, and computationally efficient. It demonstrates strong robustness to sequential fine-tuning, pruning, block expansion, and even adversarial transformations. Extensive experiments show that GhostSpec can reliably trace the lineage of transformed models with minimal overhead. By offering a practical solution for model verification and reuse tracking, our method contributes to the protection of intellectual property and fosters a transparent, trustworthy ecosystem for large-scale language models.
comment: Accepted at AAAI 2026 (Oral)
♻ ☆ Hybrid Retrieval-Augmented Generation Agent for Trustworthy Legal Question Answering in Judicial Forensics
As artificial intelligence permeates judicial forensics, ensuring the veracity and traceability of legal question answering (QA) has become critical. Conventional large language models (LLMs) are prone to hallucination, risking misleading guidance in legal consultation, while static knowledge bases struggle to keep pace with frequently updated statutes and case law. We present a hybrid legal QA agent tailored for judicial settings that integrates retrieval-augmented generation (RAG) with multi-model ensembling to deliver reliable, auditable, and continuously updatable counsel. The system prioritizes retrieval over generation: when a trusted legal repository yields relevant evidence, answers are produced via RAG; otherwise, multiple LLMs generate candidates that are scored by a specialized selector, with the top-ranked answer returned. High-quality outputs then undergo human review before being written back to the repository, enabling dynamic knowledge evolution and provenance tracking. Experiments on the Law\_QA dataset show that our hybrid approach significantly outperforms both a single-model baseline and a vanilla RAG pipeline on F1, ROUGE-L, and an LLM-as-a-Judge metric. Ablations confirm the complementary contributions of retrieval prioritization, model ensembling, and the human-in-the-loop update mechanism. The proposed system demonstrably reduces hallucination while improving answer quality and legal compliance, advancing the practical landing of media forensics technologies in judicial scenarios.
♻ ☆ A is for Absorption: Studying Feature Splitting and Absorption in Sparse Autoencoders NeurIPS 2025
Sparse Autoencoders (SAEs) aim to decompose the activation space of large language models (LLMs) into human-interpretable latent directions or features. As we increase the number of features in the SAE, hierarchical features tend to split into finer features ("math" may split into "algebra", "geometry", etc.), a phenomenon referred to as feature splitting. However, we show that sparse decomposition and splitting of hierarchical features is not robust. Specifically, we show that seemingly monosemantic features fail to fire where they should, and instead get "absorbed" into their children features. We coin this phenomenon feature absorption, and show that it is caused by optimizing for sparsity in SAEs whenever the underlying features form a hierarchy. We introduce a metric to detect absorption in SAEs, and validate our findings empirically on hundreds of LLM SAEs. Our investigation suggests that varying SAE sizes or sparsity is insufficient to solve this issue. We discuss the implications of feature absorption in SAEs and some potential approaches to solve the fundamental theoretical issues before SAEs can be used for interpreting LLMs robustly and at scale.
comment: Accepted at NeurIPS 2025 (Oral)
♻ ☆ AI-Native Open RAN for Non-Terrestrial Networks: An Overview
Non-terrestrial network (NTN) is expected to be a critical component of Sixth Generation (6G) networks, providing ubiquitous services and enhancing the system resilience. However, the high-altitude operation and inherent mobility of NTN introduce significant challenges across the development and operations (DevOps) lifecycle. Apart from that, how to achieve artificial intelligence native (AI-Native) capabilities in NTN for intelligent network management and orchestration remains an important challenge. To solve the challenges above, we propose integrating the Open Radio Access Network (ORAN) with NTN as a promising solution, leveraging its principles of disaggregation, openness, virtualization, and embedded intelligence. Despite extensive technical literature on ORAN and NTN, respectively, there is a lack of a holistic view of the integration of ORAN and NTN architectures, particularly in terms of how intelligent ORAN can address the scalability challenge in NTN management. To address this gap, this paper provides a comprehensive and structured overview of an AI-native ORAN-based NTN framework to support dynamic configuration, scalability, and intelligent orchestration. The paper commences with an in-depth review of the existing literature from leading industry and academic institutions, subsequently providing the necessary background knowledge related to ORAN, NTN, and AI-Native for communication. Furthermore, the paper analyzes the unique DevOps challenges for NTN and proposes the orchestrated AI-Native ORAN-based NTN framework, with a detailed discussion on the key technological enablers within the framework. Finally, this paper presents various use cases and outlines the prospective research directions of this study in detail.
♻ ☆ Virtual Width Networks
We introduce Virtual Width Networks (VWN), a framework that delivers the benefits of wider representations without incurring the quadratic cost of increasing the hidden size. VWN decouples representational width from backbone width, expanding the embedding space while keeping backbone compute nearly constant. In our large-scale experiment, an 8-times expansion accelerates optimization by over 2 times for next-token and 3 times for next-2-token prediction. The advantage amplifies over training as both the loss gap grows and the convergence-speedup ratio increases, showing that VWN is not only token-efficient but also increasingly effective with scale. Moreover, we identify an approximately log-linear scaling relation between virtual width and loss reduction, offering an initial empirical basis and motivation for exploring virtual-width scaling as a new dimension of large-model efficiency.
♻ ☆ Deep deterministic policy gradient with symmetric data augmentation for lateral attitude tracking control of a fixed-wing aircraft
The symmetry of dynamical systems can be exploited for state-transition prediction and to facilitate control policy optimization. This paper leverages system symmetry to develop sample-efficient offline reinforcement learning (RL) approaches. Under the symmetry assumption for a Markov Decision Process (MDP), a symmetric data augmentation method is proposed. The augmented samples are integrated into the dataset of Deep Deterministic Policy Gradient (DDPG) to enhance its coverage rate of the state-action space. Furthermore, sample utilization efficiency is improved by introducing a second critic trained on the augmented samples, resulting in a dual-critic structure. The aircraft's model is verified to be symmetric, and flight control simulations demonstrate accelerated policy convergence when augmented samples are employed.
♻ ☆ Dynamic and Distributed Routing in IoT Networks based on Multi-Objective Q-Learning
IoT networks often face conflicting routing goals such as maximizing packet delivery, minimizing delay, and conserving limited battery energy. These priorities can also change dynamically: for example, an emergency alert requires high reliability, while routine monitoring prioritizes energy efficiency to prolong network lifetime. Existing works, including many deep reinforcement learning approaches, are typically centralized and assume static objectives, making them slow to adapt when preferences shift. We propose a dynamic and fully distributed multi-objective Q-learning routing algorithm that learns multiple per-preference Q-tables in parallel and introduces a novel greedy interpolation policy to act near-optimally for unseen preferences without retraining or central coordination. A theoretical analysis further shows that the optimal value function is Lipschitz-continuous in the preference parameter, ensuring that the proposed greedy interpolation policy yields provably near-optimal behavior. Simulations show that our approach adapts in real time to shifting priorities and achieves up to 80-90\% lower energy consumption and more than 2-5x higher cumulative rewards and packet delivery compared to six baseline protocols. These results demonstrate significant gains in adaptability, delivery, and efficiency for dynamic IoT environments.
♻ ☆ Near-Optimal Reinforcement Learning with Shuffle Differential Privacy
Reinforcement learning (RL) is a powerful tool for sequential decision-making, but its application is often hindered by privacy concerns arising from its interaction data. This challenge is particularly acute in advanced networked systems, where learning from operational and user data can expose systems to privacy inference attacks. Existing differential privacy (DP) models for RL are often inadequate: the centralized model requires a fully trusted server, creating a single point of failure risk, while the local model incurs significant performance degradation that is unsuitable for many networked applications. This paper addresses this gap by leveraging the emerging shuffle model of privacy, an intermediate trust model that provides strong privacy guarantees without a centralized trust assumption. We present Shuffle Differentially Private Policy Elimination (SDP-PE), the first generic policy elimination-based algorithm for episodic RL under the shuffle model. Our method introduces a novel exponential batching schedule and a ``forgetting'' mechanism to balance the competing demands of privacy and learning performance. Our analysis shows that SDP-PE achieves a near-optimal regret bound, demonstrating a superior privacy-regret trade-off with utility comparable to the centralized model while significantly outperforming the local model. The numerical experiments also corroborate our theoretical results and demonstrate the effectiveness of SDP-PE. This work establishes the viability of the shuffle model for secure data-driven decision-making in networked systems.
♻ ☆ REIC: RAG-Enhanced Intent Classification at Scale EMNLP 2025
Accurate intent classification is critical for efficient routing in customer service, ensuring customers are connected with the most suitable agents while reducing handling times and operational costs. However, as companies expand their product lines, intent classification faces scalability challenges due to the increasing number of intents and variations in taxonomy across different verticals. In this paper, we introduce REIC, a Retrieval-augmented generation Enhanced Intent Classification approach, which addresses these challenges effectively. REIC leverages retrieval-augmented generation (RAG) to dynamically incorporate relevant knowledge, enabling precise classification without the need for frequent retraining. Through extensive experiments on real-world datasets, we demonstrate that REIC outperforms traditional fine-tuning, zero-shot, and few-shot methods in large-scale customer service settings. Our results highlight its effectiveness in both in-domain and out-of-domain scenarios, demonstrating its potential for real-world deployment in adaptive and large-scale intent classification systems.
comment: Accepted by EMNLP 2025 (Industry Track)
♻ ☆ Ken Utilization Layer: Hebbian Replay Within a Student's Ken for Adaptive Exercise Recommendation
Adaptive exercise recommendation (ER) aims to choose the next activity that matches a learner's evolving Zone of Proximal Development (ZPD). We present KUL-Rec, a biologically inspired ER system that couples a fast Hebbian memory with slow replay-based consolidation to enable continual, few-shot personalization from sparse interactions. The model operates in an embedding space, allowing a single architecture to handle both tabular knowledge-tracing logs and open-ended short-answer text. We align evaluation with tutoring needs using bidirectional ranking and rank-sensitive metrics (nDCG, Recall@K). Across ten public datasets, KUL-Rec improves macro nDCG (0.316 vs. 0.265 for the strongest baseline) and Recall@10 (0.305 vs. 0.211), while achieving low inference latency and an $\approx99$\% reduction in peak GPU memory relative to a competitive graph-based model. In a 13-week graduate course, KUL-Rec personalized weekly short-answer quizzes generated by a retrieval-augmented pipeline and the personalized quizzes were associated with lower perceived difficulty and higher helpfulness (p < .05). An embedding robustness audit highlights that encoder choice affects semantic alignment, motivating routine audits when deploying open-response assessment. Together, these results indicate that Hebbian replay with bounded consolidation offers a practical path to real-time, interpretable ER that scales across data modalities and classroom settings.
♻ ☆ Benchmarking LLM Privacy Recognition for Social Robot Decision Making
While robots have previously utilized rule-based systems or probabilistic models for user interaction, the rapid evolution of large language models (LLMs) presents new opportunities to develop LLM-powered robots for enhanced human-robot interaction (HRI). To fully realize these capabilities, however, robots need to collect data such as audio, fine-grained images, video, and locations. As a result, LLMs often process sensitive personal information, particularly within private environments, such as homes. Given the tension between utility and privacy risks, evaluating how current LLMs manage sensitive data is critical. Specifically, we aim to explore the extent to which out-of-the-box LLMs are privacy-aware in the context of household robots. In this work, we present a set of privacy-relevant scenarios developed using the Contextual Integrity (CI) framework. We first surveyed users' privacy preferences regarding in-home robot behaviors and then examined how their privacy orientations affected their choices of these behaviors (N = 450). We then provided the same set of scenarios and questions to state-of-the-art LLMs (N = 10) and found that the agreement between humans and LLMs was generally low. To further investigate the capabilities of LLMs as potential privacy controllers, we implemented four additional prompting strategies and compared their results. We discuss the performance of the evaluated models as well as the implications and potential of AI privacy awareness in human-robot interaction.
comment: 18 pages, 7 figures. Dakota Sullivan and Shirley Zhang contributed equally to this work
♻ ☆ HierarchicalPrune: Position-Aware Compression for Large-Scale Diffusion Models AAAI 2026
State-of-the-art text-to-image diffusion models (DMs) achieve remarkable quality, yet their massive parameter scale (8-11B) poses significant challenges for inferences on resource-constrained devices. In this paper, we present HierarchicalPrune, a novel compression framework grounded in a key observation: DM blocks exhibit distinct functional hierarchies, where early blocks establish semantic structures while later blocks handle texture refinements. HierarchicalPrune synergistically combines three techniques: (1) Hierarchical Position Pruning, which identifies and removes less essential later blocks based on position hierarchy; (2) Positional Weight Preservation, which systematically protects early model portions that are essential for semantic structural integrity; and (3) Sensitivity-Guided Distillation, which adjusts knowledge-transfer intensity based on our discovery of block-wise sensitivity variations. As a result, our framework brings billion-scale diffusion models into a range more suitable for on-device inference, while preserving the quality of the output images. Specifically, combined with INT4 weight quantisation, HierarchicalPrune achieves 77.5-80.4% memory footprint reduction (e.g., from 15.8 GB to 3.2 GB) and 27.9-38.0% latency reduction, measured on server and consumer grade GPUs, with the minimum drop of 2.6% in GenEval score and 7% in HPSv2 score compared to the original model. Finally, our comprehensive user study with 85 participants demonstrates that HierarchicalPrune maintains perceptual quality comparable to the original model while significantly outperforming prior works.
comment: Accepted at AAAI 2026 (Main Technical Track)
♻ ☆ SciAgent: A Unified Multi-Agent System for Generalistic Scientific Reasoning
Recent advances in large language models have enabled AI systems to achieve expert-level performance on domain-specific scientific tasks, yet these systems remain narrow and handcrafted. We introduce SciAgent, a unified multi-agent system designed for generalistic scientific reasoning-the ability to adapt reasoning strategies across disciplines and difficulty levels. SciAgent organizes problem solving as a hierarchical process: a Coordinator Agent interprets each problem's domain and complexity, dynamically orchestrating specialized Worker Systems, each composed of interacting reasoning Sub-agents for symbolic deduction, conceptual modeling, numerical computation, and verification. These agents collaboratively assemble and refine reasoning pipelines tailored to each task. Across mathematics and physics Olympiads (IMO, IMC, IPhO, CPhO), SciAgent consistently attains or surpasses human gold-medalist performance, demonstrating both domain generality and reasoning adaptability. Additionally, SciAgent has been tested on the International Chemistry Olympiad (IChO) and selected problems from the Humanity's Last Exam (HLE) benchmark, further confirming the system's ability to generalize across diverse scientific domains. This work establishes SciAgent as a concrete step toward generalistic scientific intelligence-AI systems capable of coherent, cross-disciplinary reasoning at expert levels.
comment: 1. To ensure result rigor, the model outputs require further evaluation by human experts. 2. The results may affect our conclusions and methods, thus necessitating a more detailed review. 3. We anticipate subsequent revisions may be substantial, potentially involving major adjustments to the methodology. Given the uncertainty surrounding the revision process, we decide to request a withdrawal
♻ ☆ Modeling Dynamic Neural Activity by combining Naturalistic Video Stimuli and Stimulus-independent Latent Factors
The neural activity in the visual processing is influenced by both external stimuli and internal brain states. Ideally, a neural predictive model should account for both of them. Currently, there are no dynamic encoding models that explicitly model a latent state and the entire neuronal response distribution. We address this gap by proposing a probabilistic model that predicts the joint distribution of the neuronal responses from video stimuli and stimulus-independent latent factors. After training and testing our model on mouse V1 neuronal responses, we find that it outperforms video-only models in terms of log-likelihood and achieves improvements in likelihood and correlation when conditioned on responses from other neurons. Furthermore, we find that the learned latent factors strongly correlate with mouse behavior and that they exhibit patterns related to the neurons' position on the visual cortex, although the model was trained without behavior and cortical coordinates. Our findings demonstrate that unsupervised learning of latent factors from population responses can reveal biologically meaningful structure that bridges sensory processing and behavior, without requiring explicit behavioral annotations during training.
comment: Code: github.com/sinzlab/SchmidtEtAl2025 Dynamic Latent State
♻ ☆ Thermally Activated Dual-Modal Adversarial Clothing against AI Surveillance Systems
Adversarial patches have emerged as a popular privacy-preserving approach for resisting AI-driven surveillance systems. However, their conspicuous appearance makes them difficult to deploy in real-world scenarios. In this paper, we propose a thermally activated adversarial wearable designed to ensure adaptability and effectiveness in complex real-world environments. The system integrates thermochromic dyes with flexible heating units to induce visually dynamic adversarial patterns on clothing surfaces. In its default state, the clothing appears as an ordinary black T-shirt. Upon heating via an embedded thermal unit, hidden adversarial patterns on the fabric are activated, allowing the wearer to effectively evade detection across both visible and infrared modalities. Physical experiments demonstrate that the adversarial wearable achieves rapid texture activation within 50 seconds and maintains an adversarial success rate above 80\% across diverse real-world surveillance environments. This work demonstrates a new pathway toward physically grounded, user-controllable anti-AI systems, highlighting the growing importance of proactive adversarial techniques for privacy protection in the age of ubiquitous AI surveillance.
♻ ☆ CamSAM2: Segment Anything Accurately in Camouflaged Videos
Video camouflaged object segmentation (VCOS), aiming at segmenting camouflaged objects that seamlessly blend into their environment, is a fundamental vision task with various real-world applications. With the release of SAM2, video segmentation has witnessed significant progress. However, SAM2's capability of segmenting camouflaged videos is suboptimal, especially when given simple prompts such as point and box. To address the problem, we propose Camouflaged SAM2 (CamSAM2), which enhances SAM2's ability to handle camouflaged scenes without modifying SAM2's parameters. Specifically, we introduce a decamouflaged token to provide the flexibility of feature adjustment for VCOS. To make full use of fine-grained and high-resolution features from the current frame and previous frames, we propose implicit object-aware fusion (IOF) and explicit object-aware fusion (EOF) modules, respectively. Object prototype generation (OPG) is introduced to abstract and memorize object prototypes with informative details using high-quality features from previous frames. Extensive experiments are conducted to validate the effectiveness of our approach. While CamSAM2 only adds negligible learnable parameters to SAM2, it substantially outperforms SAM2 on three VCOS datasets, especially achieving 12.2 mDice gains with click prompt on MoCA-Mask and 19.6 mDice gains with mask prompt on SUN-SEG-Hard, with Hiera-T as the backbone. The code is available at https://github.com/zhoustan/CamSAM2.
♻ ☆ Dream, Lift, Animate: From Single Images to Animatable Gaussian Avatars 3DV 2026
We introduce Dream, Lift, Animate (DLA), a novel framework that reconstructs animatable 3D human avatars from a single image. This is achieved by leveraging multi-view generation, 3D Gaussian lifting, and pose-aware UV-space mapping of 3D Gaussians. Given an image, we first dream plausible multi-views using a video diffusion model, capturing rich geometric and appearance details. These views are then lifted into unstructured 3D Gaussians. To enable animation, we propose a transformer-based encoder that models global spatial relationships and projects these Gaussians into a structured latent representation aligned with the UV space of a parametric body model. This latent code is decoded into UV-space Gaussians that can be animated via body-driven deformation and rendered conditioned on pose and viewpoint. By anchoring Gaussians to the UV manifold, our method ensures consistency during animation while preserving fine visual details. DLA enables real-time rendering and intuitive editing without requiring post-processing. Our method outperforms state-of-the-art approaches on the ActorsHQ and 4D-Dress datasets in both perceptual quality and photometric accuracy. By combining the generative strengths of video diffusion models with a pose-aware UV-space Gaussian mapping, DLA bridges the gap between unstructured 3D representations and high-fidelity, animation-ready avatars.
comment: Accepted to 3DV 2026
♻ ☆ Learning Quantized Continuous Controllers for Integer Hardware
Deploying continuous-control reinforcement learning policies on embedded hardware requires meeting tight latency and power budgets. Small FPGAs can deliver these, but only if costly floating point pipelines are avoided. We study quantization-aware training (QAT) of policies for integer inference and we present a learning-to-hardware pipeline that automatically selects low-bit policies and synthesizes them to an Artix-7 FPGA. Across five MuJoCo tasks, we obtain policy networks that are competitive with full precision (FP32) policies but require as few as 3 or even only 2 bits per weight, and per internal activation value, as long as input precision is chosen carefully. On the target hardware, the selected policies achieve inference latencies on the order of microseconds and consume microjoules per action, favorably comparing to a quantized reference. Last, we observe that the quantized policies exhibit increased input noise robustness compared to the floating-point baseline.
comment: 17 pages, 6 figures
♻ ☆ A Unified Convergence Analysis for Semi-Decentralized Learning: Sampled-to-Sampled vs. Sampled-to-All Communication AAAI 2026
In semi-decentralized federated learning, devices primarily rely on device-to-device communication but occasionally interact with a central server. Periodically, a sampled subset of devices uploads their local models to the server, which computes an aggregate model. The server can then either (i) share this aggregate model only with the sampled clients (sampled-to-sampled, S2S) or (ii) broadcast it to all clients (sampled-to-all, S2A). Despite their practical significance, a rigorous theoretical and empirical comparison of these two strategies remains absent. We address this gap by analyzing S2S and S2A within a unified convergence framework that accounts for key system parameters: sampling rate, server aggregation frequency, and network connectivity. Our results, both analytical and experimental, reveal distinct regimes where one strategy outperforms the other, depending primarily on the degree of data heterogeneity across devices. These insights lead to concrete design guidelines for practical semi-decentralized FL deployments.
comment: Accepted as a conference paper at AAAI 2026 (oral presentation). This is the extended version including the appendix
♻ ☆ NLP Methods May Actually Be Better Than Professors at Estimating Question Difficulty ECAI 2025
Estimating the difficulty of exam questions is essential for developing good exams, but professors are not always good at this task. We compare various Large Language Model-based methods with three professors in their ability to estimate what percentage of students will give correct answers on True/False exam questions in the areas of Neural Networks and Machine Learning. Our results show that the professors have limited ability to distinguish between easy and difficult questions and that they are outperformed by directly asking Gemini 2.5 to solve this task. Yet, we obtained even better results using uncertainties of the LLMs solving the questions in a supervised learning setting, using only 42 training samples. We conclude that supervised learning using LLM uncertainty can help professors better estimate the difficulty of exam questions, improving the quality of assessment.
comment: 10 pages, 2 figures, presented at ECAI 2025 at the 2nd International Workshop on AI in Society, Education and Educational Research (AISEER)
♻ ☆ Lookahead Q-Cache: Achieving More Consistent KV Cache Eviction via Pseudo Query EMNLP 2025
Large language models (LLMs) rely on key-value cache (KV cache) to accelerate decoding by reducing redundant computations. However, the KV cache memory usage grows substantially with longer text sequences, posing challenges for efficient deployment. Existing KV cache eviction methods prune tokens using prefilling-stage attention scores, causing inconsistency with actual inference queries, especially under tight memory budgets. In this paper, we propose Lookahead Q-Cache (LAQ), a novel eviction framework that generates low-cost pseudo lookahead queries to better approximate the true decoding-stage queries. By using these lookahead queries as the observation window for importance estimation, LAQ achieves more consistent and accurate KV cache eviction aligned with real inference scenarios. Experimental results on LongBench and Needle-in-a-Haystack benchmarks show that LAQ outperforms existing methods across various budget levels, achieving a 1 $\sim$ 4 point improvement on LongBench under limited cache budget. Moreover, LAQ is complementary to existing approaches and can be flexibly combined to yield further improvements.
comment: Accepted by EMNLP 2025 Main
♻ ☆ A GPU-Accelerated RAG-Based Telegram Assistant for Supporting Parallel Processing Students
This project addresses a critical pedagogical need: offering students continuous, on-demand academic assistance beyond conventional reception hours. I present a domain-specific Retrieval-Augmented Generation (RAG) system powered by a quantized Mistral-7B Instruct model and deployed as a Telegram bot. The assistant enhances learning by delivering real-time, personalized responses aligned with the "Introduction to Parallel Processing" course materials. GPU acceleration significantly improves inference latency, enabling practical deployment on consumer hardware. This approach demonstrates how consumer GPUs can enable affordable, private, and effective AI tutoring for HPC education.
comment: 9 pages
♻ ☆ Emergence of Fixational and Saccadic Movements in a Multi-Level Recurrent Attention Model for Vision
Inspired by foveal vision, hard attention models promise interpretability and parameter economy. However, existing models like the Recurrent Model of Visual Attention (RAM) and Deep Recurrent Attention Model (DRAM) failed to model the hierarchy of human vision system, that compromise on the visual exploration dynamics. As a result, they tend to produce attention that are either overly fixational or excessively saccadic, diverging from human eye movement behavior. In this paper, we propose a Multi-Level Recurrent Attention Model (MRAM), a novel hard attention framework that explicitly models the neural hierarchy of human visual processing. By decoupling the function of glimpse location generation and task execution in two recurrent layers, MRAM emergent a balanced behavior between fixation and saccadic movement. Our results show that MRAM not only achieves more human-like attention dynamics, but also consistently outperforms CNN, RAM and DRAM baselines on standard image classification benchmarks.
♻ ☆ Hierarchical Generalized Category Discovery for Brain Tumor Classification in Digital Pathology
Accurate brain tumor classification is critical for intra-operative decision making in neuro-oncological surgery. However, existing approaches are restricted to a fixed set of predefined classes and are therefore unable to capture patterns of tumor types not available during training. Unsupervised learning can extract general-purpose features, but it lacks the ability to incorporate prior knowledge from labelled data, and semi-supervised methods often assume that all potential classes are represented in the labelled data. Generalized Category Discovery (GCD) aims to bridge this gap by categorizing both known and unknown classes within unlabelled data. To reflect the hierarchical structure of brain tumor taxonomies, in this work, we introduce Hierarchical Generalized Category Discovery for Brain Tumor Classification (HGCD-BT), a novel approach that integrates hierarchical clustering with contrastive learning. Our method extends contrastive learning based GCD by incorporating a novel semi-supervised hierarchical clustering loss. We evaluate HGCD-BT on OpenSRH, a dataset of stimulated Raman histology brain tumor images, achieving a +28% improvement in accuracy over state-of-the-art GCD methods for patch-level classification, particularly in identifying previously unseen tumor categories. Furthermore, we demonstrate the generalizability of HGCD-BT on slide-level classification of hematoxylin and eosin stained whole-slide images from the Digital Brain Tumor Atlas, confirming its utility across imaging modalities.
♻ ☆ Algorithms Trained on Normal Chest X-rays Can Predict Health Insurance Types
Artificial intelligence is revealing what medicine never intended to encode. Deep vision models, trained on chest X-rays, can now detect not only disease but also invisible traces of social inequality. In this study, we show that state-of-the-art architectures (DenseNet121, SwinV2-B, MedMamba) can predict a patient's health insurance type, a strong proxy for socioeconomic status, from normal chest X-rays with significant accuracy (AUC around 0.67 on MIMIC-CXR-JPG, 0.68 on CheXpert). The signal persists even when age, race, and sex are controlled for, and remains detectable when the model is trained exclusively on a single racial group. Patch-based occlusion reveals that the signal is diffuse rather than localized, embedded in the upper and mid-thoracic regions. This suggests that deep networks may be internalizing subtle traces of clinical environments, equipment differences, or care pathways; learning socioeconomic segregation itself. These findings challenge the assumption that medical images are neutral biological data. By uncovering how models perceive and exploit these hidden social signatures, this work reframes fairness in medical AI: the goal is no longer only to balance datasets or adjust thresholds, but to interrogate and disentangle the social fingerprints embedded in clinical data itself.
comment: Submitting to MIDL 2026
♻ ☆ RAG-R1: Incentivizing the Search and Reasoning Capabilities of LLMs through Multi-query Parallelism
Large Language Models (LLMs), despite their remarkable capabilities, are prone to generating hallucinated or outdated content due to their static internal knowledge. While Retrieval-Augmented Generation (RAG) integrated with Reinforcement Learning (RL) offers a solution, these methods are fundamentally constrained by a single-query mode, leading to prohibitive latency and inherent brittleness. To overcome these limitations, we introduce RAG-R1, a novel two-stage training framework centered around multi-query parallelism. Our framework enables LLMs to adaptively leverage internal and external knowledge during the reasoning process while transitioning from the single-query mode to multi-query parallelism. This architectural shift bolsters reasoning robustness while significantly reducing inference latency. Extensive experiments on seven question-answering benchmarks confirm the superiority of our method, which outperforms the strongest baseline by up to 13.7% and decreases inference time by 11.1%.
♻ ☆ Reflections on the Reproducibility of Commercial LLM Performance in Empirical Software Engineering Studies
Large Language Models have gained remarkable interest in industry and academia. The increasing interest in LLMs in academia is also reflected in the number of publications on this topic over the last years. For instance, alone 78 of the around 425 publications at ICSE 2024 performed experiments with LLMs. Conducting empirical studies with LLMs remains challenging and raises questions on how to achieve reproducible results, for both researchers and practitioners. One important step towards excelling in empirical research on LLM and their application is to first understand to what extent current research results are eventually reproducible and what factors may impede reproducibility. This investigation is within the scope of our work. We contribute an analysis of the reproducibility of LLM-centric studies, provide insights into the factors impeding reproducibility, and discuss suggestions on how to improve the current state. In particular, we studied the 85 articles describing LLM-centric studies, published at ICSE 2024 and ASE 2024. Of the 85 articles, 18 provided research artefacts and used OpenAI models. We attempted to replicate those 18 studies. Of the 18 studies, only five were sufficiently complete and executable. For none of the five studies, we were able to fully reproduce the results. Two studies seemed to be partially reproducible, and three studies did not seem to be reproducible. Our results highlight not only the need for stricter research artefact evaluations but also for more robust study designs to ensure the reproducible value of future publications.
♻ ☆ CAMAR: Continuous Actions Multi-Agent Routing
Multi-agent reinforcement learning (MARL) is a powerful paradigm for solving cooperative and competitive decision-making problems. While many MARL benchmarks have been proposed, few combine continuous state and action spaces with challenging coordination and planning tasks. We introduce CAMAR, a new MARL benchmark designed explicitly for multi-agent pathfinding in environments with continuous actions. CAMAR supports cooperative and competitive interactions between agents and runs efficiently at up to 100,000 environment steps per second. We also propose a three-tier evaluation protocol to better track algorithmic progress and enable deeper analysis of performance. In addition, CAMAR allows the integration of classical planning methods such as RRT and RRT* into MARL pipelines. We use them as standalone baselines and combine RRT* with popular MARL algorithms to create hybrid approaches. We provide a suite of test scenarios and benchmarking tools to ensure reproducibility and fair comparison. Experiments show that CAMAR presents a challenging and realistic testbed for the MARL community.
♻ ☆ Toward Explainable Offline RL: Analyzing Representations in Intrinsically Motivated Decision Transformers NeurIPS 2025
Elastic Decision Transformers (EDTs) have proved to be particularly successful in offline reinforcement learning, offering a flexible framework that unifies sequence modeling with decision-making under uncertainty. Recent research has shown that incorporating intrinsic motivation mechanisms into EDTs improves performance across exploration tasks, yet the representational mechanisms underlying these improvements remain unexplored. In this paper, we introduce a systematic post-hoc explainability framework to analyze how intrinsic motivation shapes learned embeddings in EDTs. Through statistical analysis of embedding properties (including covariance structure, vector magnitudes, and orthogonality), we reveal that different intrinsic motivation variants create fundamentally different representational structures. Our analysis demonstrates environment-specific correlation patterns between embedding metrics and performance that explain why intrinsic motivation improves policy learning. These findings show that intrinsic motivation operates beyond simple exploration bonuses, acting as a representational prior that shapes embedding geometry in biologically plausible ways, creating environment-specific organizational structures that facilitate better decision-making.
comment: Accepted for poster presentation at the NeurIPS 2025 workshop "CogInterp: Interpreting Cognition in Deep Learning Models", San Diego, CA, USA
♻ ☆ TransPrune: Token Transition Pruning for Efficient Large Vision-Language Model
Large Vision-Language Models (LVLMs) have advanced multimodal learning but face high computational costs due to the large number of visual tokens, motivating token pruning to improve inference efficiency. The key challenge lies in identifying which tokens are truly important. Most existing approaches rely on attention-based criteria to estimate token importance. However, they inherently suffer from certain limitations, such as positional bias. In this work, we explore a new perspective on token importance based on token transitions in LVLMs. We observe that the transition of token representations provides a meaningful signal of semantic information. Based on this insight, we propose TransPrune, a training-free and efficient token pruning method. Specifically, TransPrune progressively prunes tokens by assessing their importance through a combination of Token Transition Variation (TTV)-which measures changes in both the magnitude and direction of token representations-and Instruction-Guided Attention (IGA), which measures how strongly the instruction attends to image tokens via attention. Extensive experiments demonstrate that TransPrune achieves comparable multimodal performance to original LVLMs, such as LLaVA-v1.5 and LLaVA-Next, across eight benchmarks, while reducing inference TFLOPs by more than half. Moreover, TTV alone can serve as an effective criterion without relying on attention, achieving performance comparable to attention-based methods. The code will be made publicly available upon acceptance of the paper at https://github.com/liaolea/TransPrune.
♻ ☆ Local Markov Equivalence for PC-style Local Causal Discovery and Identification of Controlled Direct Effects UAI 2025
Understanding and identifying controlled direct effects (CDEs) is crucial across numerous scientific domains, including public health. While existing methods can identify these effects from causal directed acyclic graphs (DAGs), the true underlying structure is often unknown in practice. Essential graphs, which represent a Markov equivalence class of DAGs characterized by the same set of $d$-separations, provide a more practical and realistic alternative. However, learning the full essential graph is computationally intensive and typically depends on strong, untestable assumptions. In this work, we characterize a local class of graphs, defined relative to a target variable, that share a specific subset of $d$-separations, and introduce a graphical representation of this class, called the local essential graph (LEG). We then present LocPC, a novel algorithm designed to recover the LEG from an observed distribution using only local conditional independence tests. Building on LocPC, we propose LocPC-CDE, an algorithm that discovers the portion of the LEG that is both sufficient and necessary to identify a CDE, bypassing the need of retrieving the full essential graph. Compared to global methods, our algorithms require less conditional independence tests and operate under weaker assumptions while maintaining theoretical guarantees. We illustrate the effectiveness of our approach through simulation studies.
comment: Accepted to the UAI 2025 workshop on Causal Abstractions and Representations
♻ ☆ On the Limitations of Language Targeted Pruning: Investigating the Calibration Language Impact in Multilingual LLM Pruning ACL
Recent advances in large language model (LLM) pruning have shown state-of-the-art (SotA) compression results in post-training and retraining-free settings while maintaining high predictive performance. However, previous research mainly considered calibrating based on English text, despite the multilingual nature of modern LLMs and their frequent use in non-English languages. This analysis paper conducts an in-depth investigation of the performance and internal representation changes associated with pruning multilingual language models for monolingual applications. We present the first comprehensive empirical study, comparing different calibration languages for pruning multilingual models across diverse languages, tasks, models, and SotA pruning techniques. We further analyze the latent subspaces, pruning masks, and individual neurons within pruned models. Our results reveal that while calibration on the target language effectively retains perplexity and yields high signal-to-noise ratios, it does not consistently improve downstream task performance. Further analysis of internal representations at three different levels highlights broader limitations of current pruning approaches: While they effectively preserve dominant information like language-specific features, this is insufficient to counteract the loss of nuanced, language-agnostic features that are crucial for knowledge retention and reasoning.
comment: Accepted for publication in TACL
♻ ☆ Efficient Reinforcement Learning for Zero-Shot Coordination in Evolving Games
Zero-shot coordination(ZSC) has become a hot topic in reinforcement learning research recently. It focuses on the generalization ability of agents, requiring them to coordinate well with collaborators that are not seen before without any fine-tuning. Population-based training has been proven to provide good zero-shot coordination performance; nevertheless, existing methods are limited by computational resources, mainly focusing on optimizing diversity in small populations while neglecting the potential performance gains from scaling population size. To address this issue, this paper proposes the Scalable Population Training (ScaPT), an efficient training framework comprising two key components: a meta-agent that efficiently realizes a population by selectively sharing parameters across agents, and a mutual information regularizer that guarantees population diversity. To empirically validate the effectiveness of ScaPT, this paper evaluates it along with representational frameworks in Hanabi and confirms its superiority.
♻ ☆ Argumentative Debates for Transparent Bias Detection [Technical Report] AAAI 2026
As the use of AI in society grows, addressing emerging biases is essential to prevent systematic discrimination. Several bias detection methods have been proposed, but, with few exceptions, these tend to ignore transparency. Instead, interpretability and explainability are core requirements for algorithmic fairness, even more so than for other algorithmic solutions, given the human-oriented nature of fairness. We present ABIDE (Argumentative BIas detection by DEbate), a novel framework that structures bias detection transparently as debate, guided by an underlying argument graph as understood in (formal and computational) argumentation. The arguments are about the success chances of groups in local neighbourhoods and the significance of these neighbourhoods. We evaluate ABIDE experimentally and demonstrate its strengths in performance against an argumentative baseline.
comment: Accepted at AAAI 2026 main track
♻ ☆ Private Frequency Estimation Via Residue Number Systems AAAI 2026
We present \textsf{ModularSubsetSelection} (MSS), a new algorithm for locally differentially private (LDP) frequency estimation. Given a universe of size $k$ and $n$ users, our $\varepsilon$-LDP mechanism encodes each input via a Residue Number System (RNS) over $\ell$ pairwise-coprime moduli $m_0, \ldots, m_{\ell-1}$, and reports a randomly chosen index $j \in [\ell]$ along with the perturbed residue using the statistically optimal \textsf{SubsetSelection} (SS) (Wang et al. 2016). This design reduces the user communication cost from $Θ\bigl(ω\log_2(k/ω)\bigr)$ bits required by standard SS (with $ω\approx k/(e^\varepsilon+1)$) down to $\lceil \log_2 \ell \rceil + \lceil \log_2 m_j \rceil$ bits, where $m_j < k$. Server-side decoding runs in $Θ(n + r k \ell)$ time, where $r$ is the number of LSMR (Fong and Saunders 2011) iterations. In practice, with well-conditioned moduli (\textit{i.e.}, constant $r$ and $\ell = Θ(\log k)$), this becomes $Θ(n + k \log k)$. We prove that MSS achieves worst-case MSE within a constant factor of state-of-the-art protocols such as SS and \textsf{ProjectiveGeometryResponse} (PGR) (Feldman et al. 2022) while avoiding the algebraic prerequisites and dynamic-programming decoder required by PGR. Empirically, MSS matches the estimation accuracy of SS, PGR, and \textsf{RAPPOR} (Erlingsson, Pihur, and Korolova 2014) across realistic $(k, \varepsilon)$ settings, while offering faster decoding than PGR and shorter user messages than SS. Lastly, by sampling from multiple moduli and reporting only a single perturbed residue, MSS achieves the lowest reconstruction-attack success rate among all evaluated LDP protocols.
comment: AAAI 2026
♻ ☆ DeToNATION: Decoupled Torch Network-Aware Training on Interlinked Online Nodes AAAI 2026
Training large neural network models requires extensive computational resources, often distributed across several nodes and accelerators. Recent findings suggest that it may be sufficient to only exchange the fast moving components of the gradients, while accumulating momentum locally (Decoupled Momentum, or DeMo). However, DeMo assumes that models fit on a single accelerator. We relax this assumption and introduce FlexDeMo, whereby nodes fully shard model parameters locally between different accelerators, while inter-node communication is reduced by synchronizing only fast-moving components instead of the full gradients -- resulting in a hybrid sharded data parallel training strategy. We further introduce a framework, denoted as DeToNATION, that generalizes DeMo, FlexDeMo, and other popular distributed training schemes such as DiLoCo -- introducing new variations of replication schemes and challenging choices made in DeMo. Our results across language and vision domains show that FlexDeMo attains similar validation loss as hybrid sharded data parallel training employing AdamW and full gradient synchronization, while being substantially faster. FlexDeMo is thus a promising distributed training scheme for the largest machine learning models.
comment: Accepted as a paper at AAAI 2026 Main Track
♻ ☆ The Correspondence Between Bounded Graph Neural Networks and Fragments of First-Order Logic
Graph Neural Networks (GNNs) address two key challenges in applying deep learning to graph-structured data: they handle varying size input graphs and ensure invariance under graph isomorphism. While GNNs have demonstrated broad applicability, understanding their expressive power remains an important question. In this paper, we propose GNN architectures that correspond precisely to prominent fragments of first-order logic (FO), including various modal logics as well as more expressive two-variable fragments. To establish these results, we apply methods from finite model theory of first-order and modal logics to the domain of graph representation learning. Our results provide a unifying framework for understanding the logical expressiveness of GNNs within FO.
comment: 21 pages
♻ ☆ A Workflow for Full Traceability of AI Decisions
An ever increasing number of high-stake decisions are made or assisted by automated systems employing brittle artificial intelligence technology. There is a substantial risk that some of these decision induce harm to people, by infringing their well-being or their fundamental human rights. The state-of-the-art in AI systems makes little effort with respect to appropriate documentation of the decision process. This obstructs the ability to trace what went into a decision, which in turn is a prerequisite to any attempt of reconstructing a responsibility chain. Specifically, such traceability is linked to a documentation that will stand up in court when determining the cause of some AI-based decision that inadvertently or intentionally violates the law. This paper takes a radical, yet practical, approach to this problem, by enforcing the documentation of each and every component that goes into the training or inference of an automated decision. As such, it presents the first running workflow supporting the generation of tamper-proof, verifiable and exhaustive traces of AI decisions. In doing so, we expand the DBOM concept into an effective running workflow leveraging confidential computing technology. We demonstrate the inner workings of the workflow in the development of an app to tell poisonous and edible mushrooms apart, meant as a playful example of high-stake decision support.
comment: 10 pages, 10 figures
♻ ☆ 3D-Aware Vision-Language Models Fine-Tuning with Geometric Distillation
Vision-Language Models (VLMs) have shown remarkable performance on diverse visual and linguistic tasks, yet they remain fundamentally limited in their understanding of 3D spatial structures. We propose Geometric Distillation, a lightweight, annotation-free fine-tuning framework that injects human-inspired geometric cues into pretrained VLMs without modifying their architecture. By distilling (1) sparse correspondences, (2) relative depth relations, and (3) dense cost volumes from off-the-shelf 3D foundation models (e.g., MASt3R, VGGT), our method shapes representations to be geometry-aware while remaining compatible with natural image-text inputs. Through extensive evaluations on 3D vision-language reasoning and 3D perception benchmarks, our method consistently outperforms prior approaches, achieving improved 3D spatial reasoning with significantly lower computational cost. Our work demonstrates a scalable and efficient path to bridge 2D-trained VLMs with 3D understanding, opening up wider use in spatially grounded multimodal tasks.
♻ ☆ What You See Is Not Always What You Get: Evaluating GPT's Comprehension of Source Code
Recent studies have demonstrated outstanding capabilities of large language models (LLMs) in software engineering tasks, including code generation and comprehension. While LLMs have shown significant potential in assisting with coding, LLMs are vulnerable to adversarial attacks. In this paper, we investigate the vulnerability of LLMs to imperceptible attacks. This class of attacks manipulate source code at the character level, which renders the changes invisible to human reviewers yet effective in misleading LLMs' behaviour. We devise these attacks into four distinct categories and analyse their impacts on code analysis and comprehension tasks. These four types of imperceptible character attacks include coding reordering, invisible coding characters, code deletions, and code homoglyphs. To assess the robustness of state-of-the-art LLMs, we present a systematic evaluation across multiple models using both perturbed and clean code snippets. Two evaluation metrics, model confidence using log probabilities of response and response correctness, are introduced. The results reveal that LLMs are susceptible to imperceptible coding perturbations, with varying degrees of degradation highlighted across different LLMs. Furthermore, we observe a consistent negative correlation between perturbation magnitude and model performance. These results highlight the urgent need for robust LLMs capable of manoeuvring behaviours under imperceptible adversarial conditions.
comment: This work has been accepted at APSEC 2025
♻ ☆ Deep Clustering via Gradual Community Detection
Deep clustering is an essential task in modern artificial intelligence, aiming to partition a set of data samples into a given number of homogeneous groups (i.e., clusters). Recent studies have proposed increasingly advanced deep neural networks and training strategies for deep clustering, effectively improving performance. However, deep clustering generally remains challenging due to the inadequacy of supervision signals. Building upon the existing representation learning backbones, this paper proposes a novel clustering strategy of gradual community detection. It initializes clustering by partitioning samples into many pseudo-communities and then gradually expands clusters by community merging. Compared with the existing clustering strategies, community detection factors in the new perspective of cluster network analysis in the clustering process. The new perspective can effectively leverage global structural characteristics to enhance cluster pseudo-label purity, which is critical to the performance of self-supervision. We have implemented the proposed approach based on the popular backbones and evaluated its efficacy on benchmark image datasets. Our extensive experiments have shown that the proposed clustering strategy can effectively improve the SOTA performance. Our ablation study also demonstrates that the new network perspective can effectively improve community pseudo-label purity, resulting in improved self-supervision.
comment: 12 pages, 2 figures
♻ ☆ SoK: Large Language Model Copyright Auditing via Fingerprinting
The broad capabilities and substantial resources required to train Large Language Models (LLMs) make them valuable intellectual property, yet they remain vulnerable to copyright infringement, such as unauthorized use and model theft. LLM fingerprinting, a non-intrusive technique that compares the distinctive features (i.e., fingerprint) of LLMs to identify whether an LLM is derived from another, offers a promising solution to copyright auditing. However, its reliability remains uncertain due to the prevalence of diverse model modifications and the lack of standardized evaluation. In this SoK, we present the first comprehensive study of the emerging LLM fingerprinting. We introduce a unified framework and taxonomy that structures the field: white-box methods are classified based on their feature source as static, forward-pass, or backward-pass fingerprinting, while black-box methods are distinguished by their query strategy as either untargeted or targeted. Furthermore, we propose LeaFBench, the first systematic benchmark for evaluating LLM fingerprinting under realistic deployment scenarios. Built upon 7 mainstream foundation models and comprising 149 distinct model instances, LeaFBench integrates 13 representative post-development techniques, spanning both parameter-altering methods (e.g., fine-tuning, quantization) and parameter-independent techniques (e.g., system prompts, RAG). Extensive experiments on LeaFBench reveal the strengths and weaknesses of existing methods, thereby outlining future research directions and critical open problems in this emerging field. The code is available at https://github.com/shaoshuo-ss/LeaFBench.
♻ ☆ Aligning Extraction and Generation for Robust Retrieval-Augmented Generation WSDM
Retrieval-augmented generation (RAG) enhances LLMs with external knowledge, yet generation remains vulnerable to retrieval-induced noise and uncertain placement of relevant chunks, often causing hallucinations. We present Ext2Gen, an extract-then-generate framework that strengthens LLMs via joint evidence selection and answer generation, dynamically identifying query-relevant content while suppressing noise, thereby removing the need for any independent pre-generation compression module. Optimized through preference alignment with well-curated pairwise feedback, Ext2Gen produces accurate and faithful answers even under noisy or imprecise retrieval. Experiments demonstrate that it substantially enhances the robustness of the generation backbone and yields greater performance gains than methods relying on independent compression models, e.g., Recomp, CompAct, EXIT). It further benefits from improved retrieval techniques such as query rewriting, underscoring that generation-side enhancements address limitations that retrieval alone cannot overcome.
comment: Accepted at ACM International Conference on Web Search and Data Mining (WSDM) 2026
♻ ☆ Towards Methane Detection Onboard Satellites
Methane is a potent greenhouse gas and a major driver of climate change, making its timely detection critical for effective mitigation. Machine learning (ML) deployed onboard satellites can enable rapid detection while reducing downlink costs, supporting faster response systems. Conventional methane detection methods often rely on image processing techniques, such as orthorectification to correct geometric distortions and matched filters to enhance plume signals. We introduce a novel approach that bypasses these preprocessing steps by using \textit{unorthorectified} data (UnorthoDOS). We find that ML models trained on this dataset achieve performance comparable to those trained on orthorectified data. Moreover, we also train models on an orthorectified dataset, showing that they can outperform the matched filter baseline (mag1c). We release model checkpoints and two ML-ready datasets comprising orthorectified and unorthorectified hyperspectral images from the Earth Surface Mineral Dust Source Investigation (EMIT) sensor at https://huggingface.co/datasets/SpaceML/UnorthoDOS , along with code at https://github.com/spaceml-org/plume-hunter.
♻ ☆ Is Our Chatbot Telling Lies? Assessing Correctness of an LLM-based Dutch Support Chatbot
Companies support their customers using live chats and chatbots to gain their loyalty. AFAS is a Dutch company aiming to leverage the opportunity large language models (LLMs) offer to answer customer queries with minimal to no input from its customer support team. Adding to its complexity, it is unclear what makes a response correct, and that too in Dutch. Further, with minimal data available for training, the challenge is to identify whether an answer generated by a large language model is correct and do it on the fly. This study is the first to define the correctness of a response based on how the support team at AFAS makes decisions. It leverages literature on natural language generation and automated answer grading systems to automate the decision-making of the customer support team. We investigated questions requiring a binary response (e.g., Would it be possible to adjust tax rates manually?) or instructions (e.g., How would I adjust tax rate manually?) to test how close our automated approach reaches support rating. Our approach can identify wrong messages in 55\% of the cases. This work demonstrates the potential for automatically assessing when our chatbot may provide incorrect or misleading answers. Specifically, we contribute (1) a definition and metrics for assessing correctness, and (2) suggestions to improve correctness with respect to regional language and question type.
comment: 10 pages + 2 pages references, 4 figures
♻ ☆ EcoAgent: An Efficient Device-Cloud Collaborative Multi-Agent Framework for Mobile Automation AAAI 2026
To tackle increasingly complex tasks, recent research on mobile agents has shifted towards multi-agent collaboration. Current mobile multi-agent systems are primarily deployed in the cloud, leading to high latency and operational costs. A straightforward idea is to deploy a device-cloud collaborative multi-agent system, which is nontrivial, as directly extending existing systems introduces new challenges: (1) reliance on cloud-side verification requires uploading mobile screenshots, compromising user privacy; and (2) open-loop cooperation lacking device-to-cloud feedback, underutilizing device resources and increasing latency. To overcome these limitations, we propose EcoAgent, a closed-loop device-cloud collaborative multi-agent framework designed for privacy-aware, efficient, and responsive mobile automation. EcoAgent integrates a novel reasoning approach, Dual-ReACT, into the cloud-based Planning Agent, fully exploiting cloud reasoning to compensate for limited on-device capacity, thereby enabling device-side verification and lightweight feedback. Furthermore, the device-based Observation Agent leverages a Pre-understanding Module to summarize screen content into concise textual descriptions, significantly reducing token usage and device-cloud communication overhead while preserving privacy. Experiments on AndroidWorld demonstrate that EcoAgent matches the task success rates of fully cloud-based agents, while reducing resource consumption and response latency. Our project is available here: https://github.com/Yi-Biao/EcoAgent.
comment: Accepted by AAAI 2026
♻ ☆ CG-FedLLM: How to Compress Gradients in Federated Fune-tuning for Large Language Models
The success of current Large-Language Models (LLMs) hinges on extensive training data that is collected and stored centrally, called Centralized Learning (CL). However, such a collection manner poses a privacy threat, and one potential solution is Federated Learning (FL), which transfers gradients, not raw data, among clients. Unlike traditional networks, FL for LLMs incurs significant communication costs due to their tremendous parameters. This study introduces an innovative approach to compress gradients to improve communication efficiency during LLM FL, formulating the new FL pipeline named CG-FedLLM. This approach integrates an encoder on the client side to acquire the compressed gradient features and a decoder on the server side to reconstruct the gradients. We also developed a novel training strategy that comprises Temporal-ensemble Gradient-Aware Pre-training (TGAP) to identify characteristic gradients of the target model and Federated AutoEncoder-Involved Fine-tuning (FAF) to compress gradients adaptively. Extensive experiments confirm that our approach reduces communication costs and improves performance (e.g., average 3 points increment compared with traditional CL- and FL-based fine-tuning with LlaMA on a well-recognized benchmark, C-Eval). This improvement is because our encoder-decoder, trained via TGAP and FAF, can filter gradients while selectively preserving critical features. Furthermore, we present a series of experimental analyses focusing on the signal-to-noise ratio, compression rate, and robustness within this privacy-centric framework, providing insight into developing more efficient and secure LLMs.
♻ ☆ SparseWorld: A Flexible, Adaptive, and Efficient 4D Occupancy World Model Powered by Sparse and Dynamic Queries AAAI2026
Semantic occupancy has emerged as a powerful representation in world models for its ability to capture rich spatial semantics. However, most existing occupancy world models rely on static and fixed embeddings or grids, which inherently limit the flexibility of perception. Moreover, their ``in-place classification" over grids exhibits a potential misalignment with the dynamic and continuous nature of real scenarios. In this paper, we propose SparseWorld, a novel 4D occupancy world model that is flexible, adaptive, and efficient, powered by sparse and dynamic queries. We propose a Range-Adaptive Perception module, in which learnable queries are modulated by the ego vehicle states and enriched with temporal-spatial associations to enable extended-range perception. To effectively capture the dynamics of the scene, we design a State-Conditioned Forecasting module, which replaces classification-based forecasting with regression-guided formulation, precisely aligning the dynamic queries with the continuity of the 4D environment. In addition, We specifically devise a Temporal-Aware Self-Scheduling training strategy to enable smooth and efficient training. Extensive experiments demonstrate that SparseWorld achieves state-of-the-art performance across perception, forecasting, and planning tasks. Comprehensive visualizations and ablation studies further validate the advantages of SparseWorld in terms of flexibility, adaptability, and efficiency.
comment: Accepted by AAAI2026 Code: https://github.com/MSunDYY/SparseWorld
♻ ☆ Exploiting Synergistic Cognitive Biases to Bypass Safety in LLMs
Large Language Models (LLMs) demonstrate impressive capabilities across a wide range of tasks, yet their safety mechanisms remain susceptible to adversarial attacks that exploit cognitive biases -- systematic deviations from rational judgment. Unlike prior jailbreaking approaches focused on prompt engineering or algorithmic manipulation, this work highlights the overlooked power of multi-bias interactions in undermining LLM safeguards. We propose CognitiveAttack, a novel red-teaming framework that systematically leverages both individual and combined cognitive biases. By integrating supervised fine-tuning and reinforcement learning, CognitiveAttack generates prompts that embed optimized bias combinations, effectively bypassing safety protocols while maintaining high attack success rates. Experimental results reveal significant vulnerabilities across 30 diverse LLMs, particularly in open-source models. CognitiveAttack achieves a substantially higher attack success rate compared to the SOTA black-box method PAP (60.1% vs. 31.6%), exposing critical limitations in current defense mechanisms. These findings highlight multi-bias interactions as a powerful yet underexplored attack vector. This work introduces a novel interdisciplinary perspective by bridging cognitive science and LLM safety, paving the way for more robust and human-aligned AI systems.
♻ ☆ Efficient Reasoning for Large Reasoning Language Models via Certainty-Guided Reflection Suppression AAAI 2026
Recent Large Reasoning Language Models (LRLMs) employ long chain-of-thought reasoning with complex reflection behaviors, typically signaled by specific trigger words (e.g., "Wait" and "Alternatively") to enhance performance. However, these reflection behaviors can lead to the overthinking problem where the generation of redundant reasoning steps that unnecessarily increase token usage, raise inference costs, and reduce practical utility. In this paper, we propose Certainty-Guided Reflection Suppression (CGRS), a novel method that mitigates overthinking in LRLMs while maintaining reasoning accuracy. CGRS operates by dynamically suppressing the model's generation of reflection triggers when it exhibits high confidence in its current response, thereby preventing redundant reflection cycles without compromising output quality. Our approach is model-agnostic, requires no retraining or architectural modifications, and can be integrated seamlessly with existing autoregressive generation pipelines. Extensive experiments across four reasoning benchmarks (i.e., AIME24, AMC23, MATH500, and GPQA-D) demonstrate CGRS's effectiveness: it reduces token usage by an average of 18.5% to 41.9% while preserving accuracy. It also achieves the optimal balance between length reduction and performance compared to state-of-the-art baselines. These results hold consistently across model architectures (e.g., DeepSeek-R1-Distill series, QwQ-32B, and Qwen3 family) and scales (4B to 32B parameters), highlighting CGRS's practical value for efficient reasoning.
comment: Accepted by AAAI 2026
♻ ☆ CompressionAttack: Exploiting Prompt Compression as a New Attack Surface in LLM-Powered Agents
LLM-powered agents often use prompt compression to reduce inference costs, but this introduces a new security risk. Compression modules, which are optimized for efficiency rather than safety, can be manipulated by adversarial inputs, causing semantic drift and altering LLM behavior. This work identifies prompt compression as a novel attack surface and presents CompressionAttack, the first framework to exploit it. CompressionAttack includes two strategies: HardCom, which uses discrete adversarial edits for hard compression, and SoftCom, which performs latent-space perturbations for soft compression. Experiments on multiple LLMs show up to an average ASR of 83% and 87% in two tasks, while remaining highly stealthy and transferable. Case studies in three practical scenarios confirm real-world impact, and current defenses prove ineffective, highlighting the need for stronger protections.
Machine Learning
☆ Scaling Spatial Intelligence with Multimodal Foundation Models
Despite remarkable progress, multimodal foundation models still exhibit surprising deficiencies in spatial intelligence. In this work, we explore scaling up multimodal foundation models to cultivate spatial intelligence within the SenseNova-SI family, built upon established multimodal foundations including visual understanding models (i.e., Qwen3-VL and InternVL3) and unified understanding and generation models (i.e., Bagel). We take a principled approach to constructing high-performing and robust spatial intelligence by systematically curating SenseNova-SI-8M: eight million diverse data samples under a rigorous taxonomy of spatial capabilities. SenseNova-SI demonstrates unprecedented performance across a broad range of spatial intelligence benchmarks: 68.7% on VSI-Bench, 43.3% on MMSI, 85.6% on MindCube, 54.6% on ViewSpatial, and 50.1% on SITE, while maintaining strong general multimodal understanding (e.g., 84.9% on MMBench-En). More importantly, we analyze the impact of data scaling, discuss early signs of emergent generalization capabilities enabled by diverse data training, analyze the risk of overfitting and language shortcuts, present a preliminary study on spatial chain-of-thought reasoning, and validate the potential downstream application. SenseNova-SI is an ongoing project, and this report will be updated continuously. All newly trained multimodal foundation models are publicly released to facilitate further research in this direction.
comment: Model: https://huggingface.co/collections/sensenova/sensenova-si; Code: https://github.com/OpenSenseNova/SenseNova-SI
☆ UnSAMv2: Self-Supervised Learning Enables Segment Anything at Any Granularity
The Segment Anything Model (SAM) family has become a widely adopted vision foundation model, but its ability to control segmentation granularity remains limited. Users often need to refine results manually - by adding more prompts or selecting from pre-generated masks - to achieve the desired level of detail. This process can be ambiguous, as the same prompt may correspond to several plausible masks, and collecting dense annotations across all granularities is prohibitively expensive, making supervised solutions infeasible. To address this limitation, we introduce UnSAMv2, which enables segment anything at any granularity without human annotations. UnSAMv2 extends the divide-and-conquer strategy of UnSAM by discovering abundant mask-granularity pairs and introducing a novel granularity control embedding that enables precise, continuous control over segmentation scale. Remarkably, with only $6$K unlabeled images and $0.02\%$ additional parameters, UnSAMv2 substantially enhances SAM-2, achieving segment anything at any granularity across interactive, whole-image, and video segmentation tasks. Evaluated on over $11$ benchmarks, UnSAMv2 improves $\text{NoC}_{90}$ (5.69 $\rightarrow$ 4.75), 1-IoU (58.0 $\rightarrow$ 73.1), and $\text{AR}_{1000}$ (49.6 $\rightarrow$ 68.3), showing that small amounts of unlabeled data with a granularity-aware self-supervised learning method can unlock the potential of vision foundation models.
☆ From Black Box to Insight: Explainable AI for Extreme Event Preparedness
As climate change accelerates the frequency and severity of extreme events such as wildfires, the need for accurate, explainable, and actionable forecasting becomes increasingly urgent. While artificial intelligence (AI) models have shown promise in predicting such events, their adoption in real-world decision-making remains limited due to their black-box nature, which limits trust, explainability, and operational readiness. This paper investigates the role of explainable AI (XAI) in bridging the gap between predictive accuracy and actionable insight for extreme event forecasting. Using wildfire prediction as a case study, we evaluate various AI models and employ SHapley Additive exPlanations (SHAP) to uncover key features, decision pathways, and potential biases in model behavior. Our analysis demonstrates how XAI not only clarifies model reasoning but also supports critical decision-making by domain experts and response teams. In addition, we provide supporting visualizations that enhance the interpretability of XAI outputs by contextualizing feature importance and temporal patterns in seasonality and geospatial characteristics. This approach enhances the usability of AI explanations for practitioners and policymakers. Our findings highlight the need for AI systems that are not only accurate but also interpretable, accessible, and trustworthy, essential for effective use in disaster preparedness, risk mitigation, and climate resilience planning.
☆ From Power to Precision: Learning Fine-grained Dexterity for Multi-fingered Robotic Hands
Human grasps can be roughly categorized into two types: power grasps and precision grasps. Precision grasping enables tool use and is believed to have influenced human evolution. Today's multi-fingered robotic hands are effective in power grasps, but for tasks requiring precision, parallel grippers are still more widely adopted. This contrast highlights a key limitation in current robotic hand design: the difficulty of achieving both stable power grasps and precise, fine-grained manipulation within a single, versatile system. In this work, we bridge this gap by jointly optimizing the control and hardware design of a multi-fingered dexterous hand, enabling both power and precision manipulation. Rather than redesigning the entire hand, we introduce a lightweight fingertip geometry modification, represent it as a contact plane, and jointly optimize its parameters along with the corresponding control. Our control strategy dynamically switches between power and precision manipulation and simplifies precision control into parallel thumb-index motions, which proves robust for sim-to-real transfer. On the design side, we leverage large-scale simulation to optimize the fingertip geometry using a differentiable neural-physics surrogate model. We validate our approach through extensive experiments in both sim-to-real and real-to-real settings. Our method achieves an 82.5% zero-shot success rate on unseen objects in sim-to-real precision grasping, and a 93.3% success rate in challenging real-world tasks involving bread pinching. These results demonstrate that our co-design framework can significantly enhance the fine-grained manipulation ability of multi-fingered hands without reducing their ability for power grasps. Our project page is at https://jianglongye.com/power-to-precision
comment: Project page: https://jianglongye.com/power-to-precision
☆ Rare Genomic Subtype Discovery from RNA-seq via Autoencoder Embeddings and Stability-Aware Clustering
Unsupervised learning on high-dimensional RNA-seq data can reveal molecular subtypes beyond standard labels. We combine an autoencoder-based representation with clustering and stability analysis to search for rare but reproducible genomic subtypes. On the UCI "Gene Expression Cancer RNA-Seq" dataset (801 samples, 20,531 genes; BRCA, COAD, KIRC, LUAD, PRAD), a pan-cancer analysis shows clusters aligning almost perfectly with tissue of origin (Cramer's V = 0.887), serving as a negative control. We therefore reframe the problem within KIRC (n = 146): we select the top 2,000 highly variable genes, standardize them, train a feed-forward autoencoder (128-dimensional latent space), and run k-means for k = 2-10. While global indices favor small k, scanning k with a pre-specified discovery rule (rare < 10 percent and stable with Jaccard >= 0.60 across 20 seeds after Hungarian alignment) yields a simple solution at k = 5 (silhouette = 0.129, DBI = 2.045) with a rare cluster C0 (6.85 percent of patients) that is highly stable (Jaccard = 0.787). Cluster-vs-rest differential expression (Welch's t-test, Benjamini-Hochberg FDR) identifies coherent markers. Overall, pan-cancer clustering is dominated by tissue of origin, whereas a stability-aware within-cancer approach reveals a rare, reproducible KIRC subtype.
comment: 16 pages
☆ Generalist Foundation Models Are Not Clinical Enough for Hospital Operations
Hospitals and healthcare systems rely on operational decisions that determine patient flow, cost, and quality of care. Despite strong performance on medical knowledge and conversational benchmarks, foundation models trained on general text may lack the specialized knowledge required for these operational decisions. We introduce Lang1, a family of models (100M-7B parameters) pretrained on a specialized corpus blending 80B clinical tokens from NYU Langone Health's EHRs and 627B tokens from the internet. To rigorously evaluate Lang1 in real-world settings, we developed the REalistic Medical Evaluation (ReMedE), a benchmark derived from 668,331 EHR notes that evaluates five critical tasks: 30-day readmission prediction, 30-day mortality prediction, length of stay, comorbidity coding, and predicting insurance claims denial. In zero-shot settings, both general-purpose and specialized models underperform on four of five tasks (36.6%-71.7% AUROC), with mortality prediction being an exception. After finetuning, Lang1-1B outperforms finetuned generalist models up to 70x larger and zero-shot models up to 671x larger, improving AUROC by 3.64%-6.75% and 1.66%-23.66% respectively. We also observed cross-task scaling with joint finetuning on multiple tasks leading to improvement on other tasks. Lang1-1B effectively transfers to out-of-distribution settings, including other clinical tasks and an external health system. Our findings suggest that predictive capabilities for hospital operations require explicit supervised finetuning, and that this finetuning process is made more efficient by in-domain pretraining on EHR. Our findings support the emerging view that specialized LLMs can compete with generalist models in specialized tasks, and show that effective healthcare systems AI requires the combination of in-domain pretraining, supervised finetuning, and real-world evaluation beyond proxy benchmarks.
☆ ST-ProC: A Graph-Prototypical Framework for Robust Semi-Supervised Travel Mode Identification
Travel mode identification (TMI) from GPS trajectories is critical for urban intelligence, but is hampered by the high cost of annotation, leading to severe label scarcity. Prevailing semi-supervised learning (SSL) methods are ill-suited for this task, as they suffer from catastrophic confirmation bias and ignore the intrinsic data manifold. We propose ST-ProC, a novel graph-prototypical multi-objective SSL framework to address these limitations. Our framework synergizes a graph-prototypical core with foundational SSL Support. The core exploits the data manifold via graph regularization, prototypical anchoring, and a novel, margin-aware pseudo-labeling strategy to actively reject noise. This core is supported and stabilized by foundational contrastive and teacher-student consistency losses, ensuring high-quality representations and robust optimization. ST-ProC outperforms all baselines by a significant margin, demonstrating its efficacy in real-world sparse-label settings, with a performance boost of 21.5% over state-of-the-art methods like FixMatch.
☆ Learning stochasticity: a nonparametric framework for intrinsic noise estimation
Understanding the principles that govern dynamical systems is a central challenge across many scientific domains, including biology and ecology. Incomplete knowledge of nonlinear interactions and stochastic effects often renders bottom-up modeling approaches ineffective, motivating the development of methods that can discover governing equations directly from data. In such contexts, parametric models often struggle without strong prior knowledge, especially when estimating intrinsic noise. Nonetheless, incorporating stochastic effects is often essential for understanding the dynamic behavior of complex systems such as gene regulatory networks and signaling pathways. To address these challenges, we introduce Trine (Three-phase Regression for INtrinsic noisE), a nonparametric, kernel-based framework that infers state-dependent intrinsic noise from time-series data. Trine features a three-stage algorithm that com- bines analytically solvable subproblems with a structured kernel architecture that captures both abrupt noise-driven fluctuations and smooth, state-dependent changes in variance. We validate Trine on biological and ecological systems, demonstrating its ability to uncover hidden dynamics without relying on predefined parametric assumptions. Across several benchmark problems, Trine achieves performance comparable to that of an oracle. Biologically, this oracle can be viewed as an idealized observer capable of directly tracking the random fluctuations in molecular concentrations or reaction events within a cell. The Trine framework thus opens new avenues for understanding how intrinsic noise affects the behavior of complex systems.
☆ Efficient Calibration for Decision Making
A decision-theoretic characterization of perfect calibration is that an agent seeking to minimize a proper loss in expectation cannot improve their outcome by post-processing a perfectly calibrated predictor. Hu and Wu (FOCS'24) use this to define an approximate calibration measure called calibration decision loss ($\mathsf{CDL}$), which measures the maximal improvement achievable by any post-processing over any proper loss. Unfortunately, $\mathsf{CDL}$ turns out to be intractable to even weakly approximate in the offline setting, given black-box access to the predictions and labels. We suggest circumventing this by restricting attention to structured families of post-processing functions $K$. We define the calibration decision loss relative to $K$, denoted $\mathsf{CDL}_K$ where we consider all proper losses but restrict post-processings to a structured family $K$. We develop a comprehensive theory of when $\mathsf{CDL}_K$ is information-theoretically and computationally tractable, and use it to prove both upper and lower bounds for natural classes $K$. In addition to introducing new definitions and algorithmic techniques to the theory of calibration for decision making, our results give rigorous guarantees for some widely used recalibration procedures in machine learning.
comment: 50 pages, 3 figures
☆ Protein Secondary Structure Prediction Using 3D Graphs and Relation-Aware Message Passing Transformers
In this study, we tackle the challenging task of predicting secondary structures from protein primary sequences, a pivotal initial stride towards predicting tertiary structures, while yielding crucial insights into protein activity, relationships, and functions. Existing methods often utilize extensive sets of unlabeled amino acid sequences. However, these approaches neither explicitly capture nor harness the accessible protein 3D structural data, which is recognized as a decisive factor in dictating protein functions. To address this, we utilize protein residue graphs and introduce various forms of sequential or structural connections to capture enhanced spatial information. We adeptly combine Graph Neural Networks (GNNs) and Language Models (LMs), specifically utilizing a pre-trained transformer-based protein language model to encode amino acid sequences and employing message-passing mechanisms like GCN and R-GCN to capture geometric characteristics of protein structures. Employing convolution within a specific node's nearby region, including relations, we stack multiple convolutional layers to efficiently learn combined insights from the protein's spatial graph, revealing intricate interconnections and dependencies in its structural arrangement. To assess our model's performance, we employed the training dataset provided by NetSurfP-2.0, which outlines secondary structure in 3-and 8-states. Extensive experiments show that our proposed model, SSRGNet surpasses the baseline on f1-scores.
comment: 40 pages
☆ Training-Free Multi-View Extension of IC-Light for Textual Position-Aware Scene Relighting
We introduce GS-Light, an efficient, textual position-aware pipeline for text-guided relighting of 3D scenes represented via Gaussian Splatting (3DGS). GS-Light implements a training-free extension of a single-input diffusion model to handle multi-view inputs. Given a user prompt that may specify lighting direction, color, intensity, or reference objects, we employ a large vision-language model (LVLM) to parse the prompt into lighting priors. Using off-the-shelf estimators for geometry and semantics (depth, surface normals, and semantic segmentation), we fuse these lighting priors with view-geometry constraints to compute illumination maps and generate initial latent codes for each view. These meticulously derived init latents guide the diffusion model to generate relighting outputs that more accurately reflect user expectations, especially in terms of lighting direction. By feeding multi-view rendered images, along with the init latents, into our multi-view relighting model, we produce high-fidelity, artistically relit images. Finally, we fine-tune the 3DGS scene with the relit appearance to obtain a fully relit 3D scene. We evaluate GS-Light on both indoor and outdoor scenes, comparing it to state-of-the-art baselines including per-view relighting, video relighting, and scene editing methods. Using quantitative metrics (multi-view consistency, imaging quality, aesthetic score, semantic similarity, etc.) and qualitative assessment (user studies), GS-Light demonstrates consistent improvements over baselines. Code and assets will be made available upon publication.
comment: Submitting for Neurocomputing
☆ Cross-Learning from Scarce Data via Multi-Task Constrained Optimization
A learning task, understood as the problem of fitting a parametric model from supervised data, fundamentally requires the dataset to be large enough to be representative of the underlying distribution of the source. When data is limited, the learned models fail generalize to cases not seen during training. This paper introduces a multi-task \emph{cross-learning} framework to overcome data scarcity by jointly estimating \emph{deterministic} parameters across multiple, related tasks. We formulate this joint estimation as a constrained optimization problem, where the constraints dictate the resulting similarity between the parameters of the different models, allowing the estimated parameters to differ across tasks while still combining information from multiple data sources. This framework enables knowledge transfer from tasks with abundant data to those with scarce data, leading to more accurate and reliable parameter estimates, providing a solution for scenarios where parameter inference from limited data is critical. We provide theoretical guarantees in a controlled framework with Gaussian data, and show the efficiency of our cross-learning method in applications with real data including image classification and propagation of infectious diseases.
comment: 13 pages, 11 figures
☆ QUILL: An Algorithm-Architecture Co-Design for Cache-Local Deformable Attention DATE 2026
Deformable transformers deliver state-of-the-art detection but map poorly to hardware due to irregular memory access and low arithmetic intensity. We introduce QUILL, a schedule-aware accelerator that turns deformable attention into cache-friendly, single-pass work. At its core, Distance-based Out-of-Order Querying (DOOQ) orders queries by spatial proximity; the look-ahead drives a region prefetch into an alternate buffer--forming a schedule-aware prefetch loop that overlaps memory and compute. A fused MSDeformAttn engine executes interpolation, Softmax, aggregation, and the final projection (W''m) in one pass without spilling intermediates, while small tensors are kept on-chip and surrounding dense layers run on integrated GEMMs. Implemented as RTL and evaluated end-to-end, QUILL achieves up to 7.29x higher throughput and 47.3x better energy efficiency than an RTX 4090, and exceeds prior accelerators by 3.26-9.82x in throughput and 2.01-6.07x in energy efficiency. With mixed-precision quantization, accuracy tracks FP32 within <=0.9 AP across Deformable and Sparse DETR variants. By converting sparsity into locality--and locality into utilization--QUILL delivers consistent, end-to-end speedups.
comment: Accepted to DATE 2026
☆ T-SAR: A Full-Stack Co-design for CPU-Only Ternary LLM Inference via In-Place SIMD ALU Reorganization DATE 2026
Recent advances in LLMs have outpaced the computational and memory capacities of edge platforms that primarily employ CPUs, thereby challenging efficient and scalable deployment. While ternary quantization enables significant resource savings, existing CPU solutions rely heavily on memory-based lookup tables (LUTs) which limit scalability, and FPGA or GPU accelerators remain impractical for edge use. This paper presents T-SAR, the first framework to achieve scalable ternary LLM inference on CPUs by repurposing the SIMD register file for dynamic, in-register LUT generation with minimal hardware modifications. T-SAR eliminates memory bottlenecks and maximizes data-level parallelism, delivering 5.6-24.5x and 1.1-86.2x improvements in GEMM latency and GEMV throughput, respectively, with only 3.2% power and 1.4% area overheads in SIMD units. T-SAR achieves up to 2.5-4.9x the energy efficiency of an NVIDIA Jetson AGX Orin, establishing a practical approach for efficient LLM inference on edge platforms.
comment: Accepted to DATE 2026
☆ Scientific Data Compression and Super-Resolution Sampling
Modern scientific simulations, observations, and large-scale experiments generate data at volumes that often exceed the limits of storage, processing, and analysis. This challenge drives the development of data reduction methods that efficiently manage massive datasets while preserving essential physical features and quantities of interest. In many scientific workflows, it is also crucial to enable data recovery from compressed representations - a task known as super-resolution - with guarantees on the preservation of key physical characteristics. A notable example is checkpointing and restarting, which is essential for long-running simulations to recover from failures, resume after interruptions, or examine intermediate results. In this work, we introduce a novel framework for scientific data compression and super-resolution, grounded in recent advances in learning exponential families. Our method preserves and quantifies uncertainty in physical quantities of interest and supports flexible trade-offs between compression ratio and reconstruction fidelity.
☆ Cost-Driven Synthesis of Sound Abstract Interpreters
Constructing abstract interpreters that provide global soundness guarantees remains a major obstacle in abstract interpretation. We investigate whether modern LLMs can reduce this burden by leveraging them to synthesize sound, non-trivial abstract interpreters across multiple abstract domains in the setting of neural network verification. We formulate synthesis as a constrained optimization problem and introduce a novel mathematically grounded cost function for measuring unsoundness under strict syntactic and semantic constraints. Based on this formulation, we develop a unified framework that unifies LLM-based generation with syntactic and semantic validation and a quantitative cost-guided feedback mechanism. Empirical results demonstrate that our framework not only matches the quality of handcrafted transformers, but more importantly, discovers sound, high-precision transformers for complex nonlinear operators that are absent from existing literature.
comment: 37 pages, 20 figures
☆ Why is "Chicago" Predictive of Deceptive Reviews? Using LLMs to Discover Language Phenomena from Lexical Cues
Deceptive reviews mislead consumers, harm businesses, and undermine trust in online marketplaces. Machine learning classifiers can learn from large amounts of training examples to effectively distinguish deceptive reviews from genuine ones. However, the distinguishing features learned by these classifiers are often subtle, fragmented, and difficult for humans to interpret. In this work, we explore using large language models (LLMs) to translate machine-learned lexical cues into human-understandable language phenomena that can differentiate deceptive reviews from genuine ones. We show that language phenomena obtained in this manner are empirically grounded in data, generalizable across similar domains, and more predictive than phenomena either in LLMs' prior knowledge or obtained through in-context learning. These language phenomena have the potential to aid people in critically assessing the credibility of online reviews in environments where deception detection classifiers are unavailable.
☆ OlmoEarth: Stable Latent Image Modeling for Multimodal Earth Observation
Earth observation data presents a unique challenge: it is spatial like images, sequential like video or text, and highly multimodal. We present OlmoEarth: a multimodal, spatio-temporal foundation model that employs a novel self-supervised learning formulation, masking strategy, and loss all designed for the Earth observation domain. OlmoEarth achieves state-of-the-art performance compared to 12 other foundation models across a variety of research benchmarks and real-world tasks from external partners. When evaluating embeddings OlmoEarth achieves the best performance on 15 out of 24 tasks, and with full fine-tuning it is the best on 19 of 29 tasks. We deploy OlmoEarth as the backbone of an end-to-end platform for data collection, labeling, training, and inference of Earth observation models. The OlmoEarth Platform puts frontier foundation models and powerful data management tools into the hands of non-profits and NGOs working to solve the world's biggest problems. OlmoEarth source code, training data, and pre-trained weights are available at $\href{https://github.com/allenai/olmoearth_pretrain}{\text{https://github.com/allenai/olmoearth_pretrain}}$.
☆ Tuning for Two Adversaries: Enhancing the Robustness Against Transfer and Query-Based Attacks using Hyperparameter Tuning AAAI
In this paper, we present the first detailed analysis of how optimization hyperparameters -- such as learning rate, weight decay, momentum, and batch size -- influence robustness against both transfer-based and query-based attacks. Supported by theory and experiments, our study spans a variety of practical deployment settings, including centralized training, ensemble learning, and distributed training. We uncover a striking dichotomy: for transfer-based attacks, decreasing the learning rate significantly enhances robustness by up to $64\%$. In contrast, for query-based attacks, increasing the learning rate consistently leads to improved robustness by up to $28\%$ across various settings and data distributions. Leveraging these findings, we explore -- for the first time -- the optimization hyperparameter design space to jointly enhance robustness against both transfer-based and query-based attacks. Our results reveal that distributed models benefit the most from hyperparameter tuning, achieving a remarkable tradeoff by simultaneously mitigating both attack types more effectively than other training setups.
comment: To appear in the Proceedings of the AAAI Conference on Artificial Intelligence (AAAI) 2026
☆ Weight-sparse transformers have interpretable circuits
Finding human-understandable circuits in language models is a central goal of the field of mechanistic interpretability. We train models to have more understandable circuits by constraining most of their weights to be zeros, so that each neuron only has a few connections. To recover fine-grained circuits underlying each of several hand-crafted tasks, we prune the models to isolate the part responsible for the task. These circuits often contain neurons and residual channels that correspond to natural concepts, with a small number of straightforwardly interpretable connections between them. We study how these models scale and find that making weights sparser trades off capability for interpretability, and scaling model size improves the capability-interpretability frontier. However, scaling sparse models beyond tens of millions of nonzero parameters while preserving interpretability remains a challenge. In addition to training weight-sparse models de novo, we show preliminary results suggesting our method can also be adapted to explain existing dense models. Our work produces circuits that achieve an unprecedented level of human understandability and validates them with considerable rigor.
☆ Live-SWE-agent: Can Software Engineering Agents Self-Evolve on the Fly?
Large Language Models (LLMs) are reshaping almost all industries, including software engineering. In recent years, a number of LLM agents have been proposed to solve real-world software problems. Such software agents are typically equipped with a suite of coding tools and can autonomously decide the next actions to form complete trajectories to solve end-to-end software tasks. While promising, they typically require dedicated design and may still be suboptimal, since it can be extremely challenging and costly to exhaust the entire agent scaffold design space. Recognizing that software agents are inherently software themselves that can be further refined/modified, researchers have proposed a number of self-improving software agents recently, including the Darwin-Gödel Machine (DGM). Meanwhile, such self-improving agents require costly offline training on specific benchmarks and may not generalize well across different LLMs or benchmarks. In this paper, we propose Live-SWE-agent, the first live software agent that can autonomously and continuously evolve itself on-the-fly during runtime when solving real-world software problems. More specifically, Live-SWE-agent starts with the most basic agent scaffold with only access to bash tools (e.g., mini-SWE-agent), and autonomously evolves its own scaffold implementation while solving real-world software problems. Our evaluation on the widely studied SWE-bench Verified benchmark shows that Live-SWE-agent can achieve an impressive solve rate of 75.4% without test-time scaling, outperforming all existing open-source software agents and approaching the performance of the best proprietary solution. Moreover, Live-SWE-agent outperforms state-of-the-art manually crafted software agents on the recent SWE-Bench Pro benchmark, achieving the best-known solve rate of 45.8%.
☆ FuseSampleAgg: Fused Neighbor Sampling and Aggregation for Mini-batch GNNs
We present FuseSampleAgg, a CUDA operator that fuses neighbor sampling and mean aggregation into a single pass for one and two hop GraphSAGE. By eliminating block materialization and extra kernel launches, FuseSampleAgg reduces memory traffic and overhead while preserving GraphSAGE mean semantics via saved index replay. Across the Reddit, ogbn-arxiv, and ogbn-products benchmarks (batch size 1024, automatic mixed precision enabled), we observe step time speedups up to 51x on ogbn-products, about 4x on Reddit with fanouts 10-10 and 15-10, and about 3.3x on ogbn-arxiv at larger fanouts, with peak GPU memory reductions up to 100x, 36x, and about 3.5x, respectively. The operator is deterministic, integrates with standard PyTorch optimizers, and ships with scripts that reproduce all tables and figures from CSV logs. Code and scripts are available at https://github.com/SV25-22/FuseSampleAgg.
comment: 15 pages. Code and reproducibility scripts: https://github.com/SV25-22/FuseSampleAgg
☆ Data Value in the Age of Scaling: Understanding LLM Scaling Dynamics Under Real-Synthetic Data Mixtures
The rapid progress of large language models (LLMs) is fueled by the growing reliance on datasets that blend real and synthetic data. While synthetic data offers scalability and cost-efficiency, it often introduces systematic distributional discrepancies, particularly underrepresenting long-tail knowledge due to truncation effects from data generation mechanisms like top-p sampling, temperature scaling, and finite sampling. These discrepancies pose fundamental challenges in characterizing and evaluating the utility of mixed real-synthetic datasets. In this paper, we identify a three-phase scaling behavior characterized by two breakpoints that reflect transitions in model behavior across learning head and tail knowledge. We further derive an LLM generalization bound designed for real and synthetic mixtures, revealing several key factors that govern their generalization performance. Building on our theoretical findings, we propose an effective yet efficient data valuation method that scales to large-scale datasets. Comprehensive experiments across four tasks, including image classification, sentiment classification, instruction following, and complex reasoning, demonstrate that our method surpasses state-of-the-art baselines in data valuation with significantly low computational cost.
☆ Towards Multimodal Representation Learning in Paediatric Kidney Disease
Paediatric kidney disease varies widely in its presentation and progression, which calls for continuous monitoring of renal function. Using electronic health records collected between 2019 and 2025 at Great Ormond Street Hospital, a leading UK paediatric hospital, we explored a temporal modelling approach that integrates longitudinal laboratory sequences with demographic information. A recurrent neural model trained on these data was used to predict whether a child would record an abnormal serum creatinine value within the following thirty days. Framed as a pilot study, this work provides an initial demonstration that simple temporal representations can capture useful patterns in routine paediatric data and lays the groundwork for future multimodal extensions using additional clinical signals and more detailed renal outcomes.
comment: 4 pages, 3 figures. EurIPS 2025 Multimodal Representation Learning for Healthcare (MMRL4H) workshop paper
☆ Batch Acquisition Function Evaluations and Decouple Optimizer Updates for Faster Bayesian Optimization AAAI
Bayesian optimization (BO) efficiently finds high-performing parameters by maximizing an acquisition function, which models the promise of parameters. A major computational bottleneck arises in acquisition function optimization, where multi-start optimization (MSO) with quasi-Newton (QN) methods is required due to the non-convexity of the acquisition function. BoTorch, a widely used BO library, currently optimizes the summed acquisition function over multiple points, leading to the speedup of MSO owing to PyTorch batching. Nevertheless, this paper empirically demonstrates the suboptimality of this approach in terms of off-diagonal approximation errors in the inverse Hessian of a QN method, slowing down its convergence. To address this problem, we propose to decouple QN updates using a coroutine while batching the acquisition function calls. Our approach not only yields the theoretically identical convergence to the sequential MSO but also drastically reduces the wall-clock time compared to the previous approaches.
comment: Accepted to 5th Annual AAAI Workshop on AI to Accelerate Science and Engineering (AI2ASE)
☆ P1: Mastering Physics Olympiads with Reinforcement Learning
Recent progress in large language models (LLMs) has moved the frontier from puzzle-solving to science-grade reasoning-the kind needed to tackle problems whose answers must stand against nature, not merely fit a rubric. Physics is the sharpest test of this shift, which binds symbols to reality in a fundamental way, serving as the cornerstone of most modern technologies. In this work, we manage to advance physics research by developing large language models with exceptional physics reasoning capabilities, especially excel at solving Olympiad-level physics problems. We introduce P1, a family of open-source physics reasoning models trained entirely through reinforcement learning (RL). Among them, P1-235B-A22B is the first open-source model with Gold-medal performance at the latest International Physics Olympiad (IPhO 2025), and wins 12 gold medals out of 13 international/regional physics competitions in 2024/2025. P1-30B-A3B also surpasses almost all other open-source models on IPhO 2025, getting a silver medal. Further equipped with an agentic framework PhysicsMinions, P1-235B-A22B+PhysicsMinions achieves overall No.1 on IPhO 2025, and obtains the highest average score over the 13 physics competitions. Besides physics, P1 models also present great performance on other reasoning tasks like math and coding, showing the great generalibility of P1 series.
☆ AtlasMorph: Learning conditional deformable templates for brain MRI
Deformable templates, or atlases, are images that represent a prototypical anatomy for a population, and are often enhanced with probabilistic anatomical label maps. They are commonly used in medical image analysis for population studies and computational anatomy tasks such as registration and segmentation. Because developing a template is a computationally expensive process, relatively few templates are available. As a result, analysis is often conducted with sub-optimal templates that are not truly representative of the study population, especially when there are large variations within this population. We propose a machine learning framework that uses convolutional registration neural networks to efficiently learn a function that outputs templates conditioned on subject-specific attributes, such as age and sex. We also leverage segmentations, when available, to produce anatomical segmentation maps for the resulting templates. The learned network can also be used to register subject images to the templates. We demonstrate our method on a compilation of 3D brain MRI datasets, and show that it can learn high-quality templates that are representative of populations. We find that annotated conditional templates enable better registration than their unlabeled unconditional counterparts, and outperform other templates construction methods.
☆ A Gentle Introduction to Conformal Time Series Forecasting
Conformal prediction is a powerful post-hoc framework for uncertainty quantification that provides distribution-free coverage guarantees. However, these guarantees crucially rely on the assumption of exchangeability. This assumption is fundamentally violated in time series data, where temporal dependence and distributional shifts are pervasive. As a result, classical split-conformal methods may yield prediction intervals that fail to maintain nominal validity. This review unifies recent advances in conformal forecasting methods specifically designed to address nonexchangeable data. We first present a theoretical foundation, deriving finite-sample guarantees for split-conformal prediction under mild weak-dependence conditions. We then survey and classify state-of-the-art approaches that mitigate serial dependence by reweighting calibration data, dynamically updating residual distributions, or adaptively tuning target coverage levels in real time. Finally, we present a comprehensive simulation study that compares these techniques in terms of empirical coverage, interval width, and computational cost, highlighting practical trade-offs and open research directions.
☆ Power Homotopy for Zeroth-Order Non-Convex Optimizations
We introduce GS-PowerHP, a novel zeroth-order method for non-convex optimization problems of the form $\max_{x \in \mathbb{R}^d} f(x)$. Our approach leverages two key components: a power-transformed Gaussian-smoothed surrogate $F_{N,σ}(μ) = \mathbb{E}_{x\sim\mathcal{N}(μ,σ^2 I_d)}[e^{N f(x)}]$ whose stationary points cluster near the global maximizer $x^*$ of $f$ for sufficiently large $N$, and an incrementally decaying $σ$ for enhanced data efficiency. Under mild assumptions, we prove convergence in expectation to a small neighborhood of $x^*$ with the iteration complexity of $O(d^2 \varepsilon^{-2})$. Empirical results show our approach consistently ranks among the top three across a suite of competing algorithms. Its robustness is underscored by the final experiment on a substantially high-dimensional problem ($d=150,528$), where it achieved first place on least-likely targeted black-box attacks against images from ImageNet, surpassing all competing methods.
☆ RAC-DMVC: Reliability-Aware Contrastive Deep Multi-View Clustering under Multi-Source Noise
Multi-view clustering (MVC), which aims to separate the multi-view data into distinct clusters in an unsupervised manner, is a fundamental yet challenging task. To enhance its applicability in real-world scenarios, this paper addresses a more challenging task: MVC under multi-source noises, including missing noise and observation noise. To this end, we propose a novel framework, Reliability-Aware Contrastive Deep Multi-View Clustering (RAC-DMVC), which constructs a reliability graph to guide robust representation learning under noisy environments. Specifically, to address observation noise, we introduce a cross-view reconstruction to enhances robustness at the data level, and a reliability-aware noise contrastive learning to mitigates bias in positive and negative pairs selection caused by noisy representations. To handle missing noise, we design a dual-attention imputation to capture shared information across views while preserving view-specific features. In addition, a self-supervised cluster distillation module further refines the learned representations and improves the clustering performance. Extensive experiments on five benchmark datasets demonstrate that RAC-DMVC outperforms SOTA methods on multiple evaluation metrics and maintains excellent performance under varying ratios of noise.
☆ Graph Out-of-Distribution Detection via Test-Time Calibration with Dual Dynamic Dictionaries AAAI 2026
A key challenge in graph out-of-distribution (OOD) detection lies in the absence of ground-truth OOD samples during training. Existing methods are typically optimized to capture features within the in-distribution (ID) data and calculate OOD scores, which often limits pre-trained models from representing distributional boundaries, leading to unreliable OOD detection. Moreover, the latent structure of graph data is often governed by multiple underlying factors, which remains less explored. To address these challenges, we propose a novel test-time graph OOD detection method, termed BaCa, that calibrates OOD scores using dual dynamically updated dictionaries without requiring fine-tuning the pre-trained model. Specifically, BaCa estimates graphons and applies a mix-up strategy solely with test samples to generate diverse boundary-aware discriminative topologies, eliminating the need for exposing auxiliary datasets as outliers. We construct dual dynamic dictionaries via priority queues and attention mechanisms to adaptively capture latent ID and OOD representations, which are then utilized for boundary-aware OOD score calibration. To the best of our knowledge, extensive experiments on real-world datasets show that BaCa significantly outperforms existing state-of-the-art methods in OOD detection.
comment: Accepted by AAAI 2026 (The 40th Annual AAAI Conference on Artificial Intelligence)
☆ Fairness-Aware Graph Representation Learning with Limited Demographic Information
Ensuring fairness in Graph Neural Networks is fundamental to promoting trustworthy and socially responsible machine learning systems. In response, numerous fair graph learning methods have been proposed in recent years. However, most of them assume full access to demographic information, a requirement rarely met in practice due to privacy, legal, or regulatory restrictions. To this end, this paper introduces a novel fair graph learning framework that mitigates bias in graph learning under limited demographic information. Specifically, we propose a mechanism guided by partial demographic data to generate proxies for demographic information and design a strategy that enforces consistent node embeddings across demographic groups. In addition, we develop an adaptive confidence strategy that dynamically adjusts each node's contribution to fairness and utility based on prediction confidence. We further provide theoretical analysis demonstrating that our framework, FairGLite, achieves provable upper bounds on group fairness metrics, offering formal guarantees for bias mitigation. Through extensive experiments on multiple datasets and fair graph learning frameworks, we demonstrate the framework's effectiveness in both mitigating bias and maintaining model utility.
☆ BootOOD: Self-Supervised Out-of-Distribution Detection via Synthetic Sample Exposure under Neural Collapse
Out-of-distribution (OOD) detection is critical for deploying image classifiers in safety-sensitive environments, yet existing detectors often struggle when OOD samples are semantically similar to the in-distribution (ID) classes. We present BootOOD, a fully self-supervised OOD detection framework that bootstraps exclusively from ID data and is explicitly designed to handle semantically challenging OOD samples. BootOOD synthesizes pseudo-OOD features through simple transformations of ID representations and leverages Neural Collapse (NC), where ID features cluster tightly around class means with consistent feature norms. Unlike prior approaches that aim to constrain OOD features into subspaces orthogonal to the collapsed ID means, BootOOD introduces a lightweight auxiliary head that performs radius-based classification on feature norms. This design decouples OOD detection from the primary classifier and imposes a relaxed requirement: OOD samples are learned to have smaller feature norms than ID features, which is easier to satisfy when ID and OOD are semantically close. Experiments on CIFAR-10, CIFAR-100, and ImageNet-200 show that BootOOD outperforms prior post-hoc methods, surpasses training-based methods without outlier exposure, and is competitive with state-of-the-art outlier-exposure approaches while maintaining or improving ID accuracy.
comment: 8 pages
☆ Mitigating Spurious Correlations in Patch-wise Tumor Classification on High-Resolution Multimodal Images
Patch-wise multi-label classification provides an efficient alternative to full pixel-wise segmentation on high-resolution images, particularly when the objective is to determine the presence or absence of target objects within a patch rather than their precise spatial extent. This formulation substantially reduces annotation cost, simplifies training, and allows flexible patch sizing aligned with the desired level of decision granularity. In this work, we focus on a special case, patch-wise binary classification, applied to the detection of a single class of interest (tumor) on high-resolution multimodal nonlinear microscopy images. We show that, although this simplified formulation enables efficient model development, it can introduce spurious correlations between patch composition and labels: tumor patches tend to contain larger tissue regions, whereas non-tumor patches often consist mostly of background with small tissue areas. We further quantify the bias in model predictions caused by this spurious correlation, and propose to use a debiasing strategy to mitigate its effect. Specifically, we apply GERNE, a debiasing method that can be adapted to maximize worst-group accuracy (WGA). Our results show an improvement in WGA by approximately 7% compared to ERM for two different thresholds used to binarize the spurious feature. This enhancement boosts model performance on critical minority cases, such as tumor patches with small tissues and non-tumor patches with large tissues, and underscores the importance of spurious correlation-aware learning in patch-wise classification problems.
comment: Accepted at EurIPS 2025 Workshop: Unifying Perspectives on Learning Biases (UPLB)
☆ AI Fairness Beyond Complete Demographics: Current Achievements and Future Directions ECAI 2025
Fairness in artificial intelligence (AI) has become a growing concern due to discriminatory outcomes in AI-based decision-making systems. While various methods have been proposed to mitigate bias, most rely on complete demographic information, an assumption often impractical due to legal constraints and the risk of reinforcing discrimination. This survey examines fairness in AI when demographics are incomplete, addressing the gap between traditional approaches and real-world challenges. We introduce a novel taxonomy of fairness notions in this setting, clarifying their relationships and distinctions. Additionally, we summarize existing techniques that promote fairness beyond complete demographics and highlight open research questions to encourage further progress in the field.
comment: ECAI 2025
☆ A Quantum Tensor Network-Based Viewpoint for Modeling and Analysis of Time Series Data
Accurate uncertainty quantification is a critical challenge in machine learning. While neural networks are highly versatile and capable of learning complex patterns, they often lack interpretability due to their ``black box'' nature. On the other hand, probabilistic ``white box'' models, though interpretable, often suffer from a significant performance gap when compared to neural networks. To address this, we propose a novel quantum physics-based ``white box'' method that offers both accurate uncertainty quantification and enhanced interpretability. By mapping the kernel mean embedding (KME) of a time series data vector to a reproducing kernel Hilbert space (RKHS), we construct a tensor network-inspired 1D spin chain Hamiltonian, with the KME as one of its eigen-functions or eigen-modes. We then solve the associated Schr{ö}dinger equation and apply perturbation theory to quantify uncertainty, thereby improving the interpretability of tasks performed with the quantum tensor network-based model. We demonstrate the effectiveness of this methodology, compared to state-of-the-art ``white box" models, in change point detection and time series clustering, providing insights into the uncertainties associated with decision-making throughout the process.
comment: IEEE International Conference on Knowledge Graph (ICKG), 378-387, 2024
☆ Naga: Vedic Encoding for Deep State Space Models
This paper presents Naga, a deep State Space Model (SSM) encoding approach inspired by structural concepts from Vedic mathematics. The proposed method introduces a bidirectional representation for time series by jointly processing forward and time-reversed input sequences. These representations are then combined through an element-wise (Hadamard) interaction, resulting in a Vedic-inspired encoding that enhances the model's ability to capture temporal dependencies across distant time steps. We evaluate Naga on multiple long-term time series forecasting (LTSF) benchmarks, including ETTh1, ETTh2, ETTm1, ETTm2, Weather, Traffic, and ILI. The experimental results show that Naga outperforms 28 current state of the art models and demonstrates improved efficiency compared to existing deep SSM-based approaches. The findings suggest that incorporating structured, Vedic-inspired decomposition can provide an interpretable and computationally efficient alternative for long-range sequence modeling.
comment: submitted to JMLR
☆ The Shape of Data: Topology Meets Analytics. A Practical Introduction to Topological Analytics and the Stability Index (TSI) in Business
Modern business and economic datasets often exhibit nonlinear, multi-scale structures that traditional linear tools under-represent. Topological Data Analysis (TDA) offers a geometric lens for uncovering robust patterns, such as connected components, loops and voids, across scales. This paper provides an intuitive, figure-driven introduction to persistent homology and a practical, reproducible TDA pipeline for applied analysts. Through comparative case studies in consumer behavior, equity markets (SAX/eSAX vs.\ TDA) and foreign exchange dynamics, we demonstrate how topological features can reveal segmentation patterns and structural relationships beyond classical statistical methods. We discuss methodological choices regarding distance metrics, complex construction and interpretation, and we introduce the \textit{Topological Stability Index} (TSI), a simple yet interpretable indicator of structural variability derived from persistence lifetimes. We conclude with practical guidelines for TDA implementation, visualization and communication in business and economic analytics.
comment: 36 pages, 22 figures
☆ Quantum Machine Learning via Contrastive Training
Quantum machine learning (QML) has attracted growing interest with the rapid parallel advances in large-scale classical machine learning and quantum technologies. Similar to classical machine learning, QML models also face challenges arising from the scarcity of labeled data, particularly as their scale and complexity increase. Here, we introduce self-supervised pretraining of quantum representations that reduces reliance on labeled data by learning invariances from unlabeled examples. We implement this paradigm on a programmable trapped-ion quantum computer, encoding images as quantum states. In situ contrastive pretraining on hardware yields a representation that, when fine-tuned, classifies image families with higher mean test accuracy and lower run-to-run variability than models trained from random initialization. Performance improvement is especially significant in regimes with limited labeled training data. We show that the learned invariances generalize beyond the pretraining image samples. Unlike prior work, our pipeline derives similarity from measured quantum overlaps and executes all training and classification stages on hardware. These results establish a label-efficient route to quantum representation learning, with direct relevance to quantum-native datasets and a clear path to larger classical inputs.
comment: 7 figures, 20 pages total
☆ Systematic evaluation of time-frequency features for binaural sound source localization ICASSP 2026
This study presents a systematic evaluation of time-frequency feature design for binaural sound source localization (SSL), focusing on how feature selection influences model performance across diverse conditions. We investigate the performance of a convolutional neural network (CNN) model using various combinations of amplitude-based features (magnitude spectrogram, interaural level difference - ILD) and phase-based features (phase spectrogram, interaural phase difference - IPD). Evaluations on in-domain and out-of-domain data with mismatched head-related transfer functions (HRTFs) reveal that carefully chosen feature combinations often outperform increases in model complexity. While two-feature sets such as ILD + IPD are sufficient for in-domain SSL, generalization to diverse content requires richer inputs combining channel spectrograms with both ILD and IPD. Using the optimal feature sets, our low-complexity CNN model achieves competitive performance. Our findings underscore the importance of feature design in binaural SSL and provide practical guidance for both domain-specific and general-purpose localization.
comment: Submitted to ICASSP 2026
☆ Semantic Document Derendering: SVG Reconstruction via Vision-Language Modeling
Multimedia documents such as slide presentations and posters are designed to be interactive and easy to modify. Yet, they are often distributed in a static raster format, which limits editing and customization. Restoring their editability requires converting these raster images back into structured vector formats. However, existing geometric raster-vectorization methods, which rely on low-level primitives like curves and polygons, fall short at this task. Specifically, when applied to complex documents like slides, they fail to preserve the high-level structure, resulting in a flat collection of shapes where the semantic distinction between image and text elements is lost. To overcome this limitation, we address the problem of semantic document derendering by introducing SliDer, a novel framework that uses Vision-Language Models (VLMs) to derender slide images as compact and editable Scalable Vector Graphic (SVG) representations. SliDer detects and extracts attributes from individual image and text elements in a raster input and organizes them into a coherent SVG format. Crucially, the model iteratively refines its predictions during inference in a process analogous to human design, generating SVG code that more faithfully reconstructs the original raster upon rendering. Furthermore, we introduce Slide2SVG, a novel dataset comprising raster-SVG pairs of slide documents curated from real-world scientific presentations, to facilitate future research in this domain. Our results demonstrate that SliDer achieves a reconstruction LPIPS of 0.069 and is favored by human evaluators in 82.9% of cases compared to the strongest zero-shot VLM baseline.
☆ GREAT: Generalizable Representation Enhancement via Auxiliary Transformations for Zero-Shot Environmental Prediction
Environmental modeling faces critical challenges in predicting ecosystem dynamics across unmonitored regions due to limited and geographically imbalanced observation data. This challenge is compounded by spatial heterogeneity, causing models to learn spurious patterns that fit only local data. Unlike conventional domain generalization, environmental modeling must preserve invariant physical relationships and temporal coherence during augmentation. In this paper, we introduce Generalizable Representation Enhancement via Auxiliary Transformations (GREAT), a framework that effectively augments available datasets to improve predictions in completely unseen regions. GREAT guides the augmentation process to ensure that the original governing processes can be recovered from the augmented data, and the inclusion of the augmented data leads to improved model generalization. Specifically, GREAT learns transformation functions at multiple layers of neural networks to augment both raw environmental features and temporal influence. They are refined through a novel bi-level training process that constrains augmented data to preserve key patterns of the original source data. We demonstrate GREAT's effectiveness on stream temperature prediction across six ecologically diverse watersheds in the eastern U.S., each containing multiple stream segments. Experimental results show that GREAT significantly outperforms existing methods in zero-shot scenarios. This work provides a practical solution for environmental applications where comprehensive monitoring is infeasible.
☆ AdamX: An Adam improvement algorithm based on a novel exponential decay mechanism for the second-order moment estimate
Since the 21st century, artificial intelligence has been leading a new round of industrial revolution. Under the training framework, the optimization algorithm aims to stably converge high-dimensional optimization to local and even global minima. Entering the era of large language models, although the scale of model parameters and data has increased, Adam remains the mainstream optimization algorithm. However, compared with stochastic gradient descent (SGD) based optimization algorithms, Adam is more likely to converge to non-flat minima. To address this issue, the AdamX algorithm is proposed. Its core innovation lies in the proposition of a novel type of second-order moment estimation exponential decay rate, which gradually weakens the learning step correction strength as training progresses, and degrades to SGD in the stable training period, thereby improving the stability of training in the stable period and possibly enhancing generalization ability. Experimental results show that our second-order moment estimation exponential decay rate is better than the current second-order moment estimation exponential decay rate, and AdamX can stably outperform Adam and its variants in terms of performance. Our code is open-sourced at https://github.com/mengzhu0308/AdamX.
comment: 25 pages, 6 figures, 12 tables
☆ Multi-task GINN-LP for Multi-target Symbolic Regression
In the area of explainable artificial intelligence, Symbolic Regression (SR) has emerged as a promising approach by discovering interpretable mathematical expressions that fit data. However, SR faces two main challenges: most methods are evaluated on scientific datasets with well-understood relationships, limiting generalization, and SR primarily targets single-output regression, whereas many real-world problems involve multi-target outputs with interdependent variables. To address these issues, we propose multi-task regression GINN-LP (MTRGINN-LP), an interpretable neural network for multi-target symbolic regression. By integrating GINN-LP with a multi-task deep learning, the model combines a shared backbone including multiple power-term approximator blocks with task-specific output layers, capturing inter-target dependencies while preserving interpretability. We validate multi-task GINN-LP on practical multi-target applications, including energy efficiency prediction and sustainable agriculture. Experimental results demonstrate competitive predictive performance alongside high interpretability, effectively extending symbolic regression to broader real-world multi-output tasks.
☆ Artificial Intelligence-Enabled Spirometry for Early Detection of Right Heart Failure
Right heart failure (RHF) is a disease characterized by abnormalities in the structure or function of the right ventricle (RV), which is associated with high morbidity and mortality. Lung disease often causes increased right ventricular load, leading to RHF. Therefore, it is very important to screen out patients with cor pulmonale who develop RHF from people with underlying lung diseases. In this work, we propose a self-supervised representation learning method to early detecting RHF from patients with cor pulmonale, which uses spirogram time series to predict patients with RHF at an early stage. The proposed model is divided into two stages. The first stage is the self-supervised representation learning-based spirogram embedding (SLSE) network training process, where the encoder of the Variational autoencoder (VAE-encoder) learns a robust low-dimensional representation of the spirogram time series from the data-augmented unlabeled data. Second, this low-dimensional representation is fused with demographic information and fed into a CatBoost classifier for the downstream RHF prediction task. Trained and tested on a carefully selected subset of 26,617 individuals from the UK Biobank, our model achieved an AUROC of 0.7501 in detecting RHF, demonstrating strong population-level distinction ability. We further evaluated the model on high-risk clinical subgroups, achieving AUROC values of 0.8194 on a test set of 74 patients with chronic kidney disease (CKD) and 0.8413 on a set of 64 patients with valvular heart disease (VHD). These results highlight the model's potential utility in predicting RHF among clinically elevated-risk populations. In conclusion, this study presents a self-supervised representation learning approach combining spirogram time series and demographic data, demonstrating promising potential for early RHF detection in clinical practice.
comment: 19 pages, 5 figures
☆ Hardware optimization on Android for inference of AI models
The pervasive integration of Artificial Intelligence models into contemporary mobile computing is notable across numerous use cases, from virtual assistants to advanced image processing. Optimizing the mobile user experience involves minimal latency and high responsiveness from deployed AI models with challenges from execution strategies that fully leverage real time constraints to the exploitation of heterogeneous hardware architecture. In this paper, we research and propose the optimal execution configurations for AI models on an Android system, focusing on two critical tasks: object detection (YOLO family) and image classification (ResNet). These configurations evaluate various model quantization schemes and the utilization of on device accelerators, specifically the GPU and NPU. Our core objective is to empirically determine the combination that achieves the best trade-off between minimal accuracy degradation and maximal inference speed-up.
comment: 8 pages
☆ Discovering Operational Patterns Using Image-Based Convolutional Clustering and Composite Evaluation: A Case Study in Foundry Melting Processes
Industrial process monitoring increasingly relies on sensor-generated time-series data, yet the lack of labels, high variability, and operational noise make it difficult to extract meaningful patterns using conventional methods. Existing clustering techniques either rely on fixed distance metrics or deep models designed for static data, limiting their ability to handle dynamic, unstructured industrial sequences. Addressing this gap, this paper proposes a novel framework for unsupervised discovery of operational modes in univariate time-series data using image-based convolutional clustering with composite internal evaluation. The proposed framework improves upon existing approaches in three ways: (1) raw time-series sequences are transformed into grayscale matrix representations via overlapping sliding windows, allowing effective feature extraction using a deep convolutional autoencoder; (2) the framework integrates both soft and hard clustering outputs and refines the selection through a two-stage strategy; and (3) clustering performance is objectively evaluated by a newly developed composite score, S_eva, which combines normalized Silhouette, Calinski-Harabasz, and Davies-Bouldin indices. Applied to over 3900 furnace melting operations from a Nordic foundry, the method identifies seven explainable operational patterns, revealing significant differences in energy consumption, thermal dynamics, and production duration. Compared to classical and deep clustering baselines, the proposed approach achieves superior overall performance, greater robustness, and domain-aligned explainability. The framework addresses key challenges in unsupervised time-series analysis, such as sequence irregularity, overlapping modes, and metric inconsistency, and provides a generalizable solution for data-driven diagnostics and energy optimization in industrial systems.
☆ Larger Datasets Can Be Repeated More: A Theoretical Analysis of Multi-Epoch Scaling in Linear Regression
While data scaling laws of large language models (LLMs) have been widely examined in the one-pass regime with massive corpora, their form under limited data and repeated epochs remains largely unexplored. This paper presents a theoretical analysis of how a common workaround, training for multiple epochs on the same dataset, reshapes the data scaling laws in linear regression. Concretely, we ask: to match the performance of training on a dataset of size $N$ for $K$ epochs, how much larger must a dataset be if the model is trained for only one pass? We quantify this using the \textit{effective reuse rate} of the data, $E(K, N)$, which we define as the multiplicative factor by which the dataset must grow under one-pass training to achieve the same test loss as $K$-epoch training. Our analysis precisely characterizes the scaling behavior of $E(K, N)$ for SGD in linear regression under either strong convexity or Zipf-distributed data: (1) When $K$ is small, we prove that $E(K, N) \approx K$, indicating that every new epoch yields a linear gain; (2) As $K$ increases, $E(K, N)$ plateaus at a problem-dependent value that grows with $N$ ($Θ(\log N)$ for the strongly-convex case), implying that larger datasets can be repeated more times before the marginal benefit vanishes. These theoretical findings point out a neglected factor in a recent empirical study (Muennighoff et al. (2023)), which claimed that training LLMs for up to $4$ epochs results in negligible loss differences compared to using fresh data at each step, \textit{i.e.}, $E(K, N) \approx K$ for $K \le 4$ in our notation. Supported by further empirical validation with LLMs, our results reveal that the maximum $K$ value for which $E(K, N) \approx K$ in fact depends on the data size and distribution, and underscore the need to explicitly model both factors in future studies of scaling laws with data reuse.
☆ MMWSTM-ADRAN+: A Novel Hybrid Deep Learning Architecture for Enhanced Climate Time Series Forecasting and Extreme Event Prediction
Accurate short-range prediction of extreme air temperature events remains a fundamental challenge in operational climate-risk management. We present Multi-Modal Weather State Transition Model with Anomaly-Driven Recurrent Attention Network Plus (MMWSTM-ADRAN+), a dual-stream deep learning architecture that couples a regime-aware dynamics model with an anomaly-focused attention mechanism to forecast daily maximum temperature and its extremes. The first stream, MMWSTM, combines bidirectional Long Short-Term Memory (BiLSTM) units with a learnable Markov state transition matrix to capture synoptic-scale weather regime changes. The second stream, ADRAN, integrates bidirectional Gated Recurrent Units (BiGRUs), multi-head self-attention, and a novel anomaly amplification layer to enhance sensitivity to low-probability signals. A lightweight attentive fusion gate adaptively determines the contribution of each stream to the final prediction. Model optimization employs a custom ExtremeWeatherLoss function that up-weights errors on the upper 5% and lower 5% of the temperature distribution, and a time-series data augmentation suite (jittering, scaling, time/magnitude warping) that effectively quadruples the training data
☆ Exploring Multi-Table Retrieval Through Iterative Search
Open-domain question answering over datalakes requires retrieving and composing information from multiple tables, a challenging subtask that demands semantic relevance and structural coherence (e.g., joinability). While exact optimization methods like Mixed-Integer Programming (MIP) can ensure coherence, their computational complexity is often prohibitive. Conversely, simpler greedy heuristics that optimize for query coverage alone often fail to find these coherent, joinable sets. This paper frames multi-table retrieval as an iterative search process, arguing this approach offers advantages in scalability, interpretability, and flexibility. We propose a general framework and a concrete instantiation: a fast, effective Greedy Join-Aware Retrieval algorithm that holistically balances relevance, coverage, and joinability. Experiments across 5 NL2SQL benchmarks demonstrate that our iterative method achieves competitive retrieval performance compared to the MIP-based approach while being 4-400x faster depending on the benchmark and search space settings. This work highlights the potential of iterative heuristics for practical, scalable, and composition-aware retrieval.
comment: Accepted @ the AI for Tabular Data Workshop, EurIPS 2025
☆ PAST: A Primary-Auxiliary Spatio-Temporal Network for Traffic Time Series Imputation
Traffic time series imputation is crucial for the safety and reliability of intelligent transportation systems, while diverse types of missing data, including random, fiber, and block missing make the imputation task challenging. Existing models often focus on disentangling and separately modeling spatial and temporal patterns based on relationships between data points. However, these approaches struggle to adapt to the random missing positions, and fail to learn long-term and large-scale dependencies, which are essential in extensive missing conditions. In this paper, patterns are categorized into two types to handle various missing data conditions: primary patterns, which originate from internal relationships between data points, and auxiliary patterns, influenced by external factors like timestamps and node attributes. Accordingly, we propose the Primary-Auxiliary Spatio-Temporal network (PAST). It comprises a graph-integrated module (GIM) and a cross-gated module (CGM). GIM captures primary patterns via dynamic graphs with interval-aware dropout and multi-order convolutions, and CGM extracts auxiliary patterns through bidirectional gating on embedded external features. The two modules interact via shared hidden vectors and are trained under an ensemble self-supervised framework. Experiments on three datasets under 27 missing data conditions demonstrate that the imputation accuracy of PAST outperforms seven state-of-the-art baselines by up to 26.2% in RMSE and 31.6% in MAE.
☆ Taming Barren Plateaus in Arbitrary Parameterized Quantum Circuits Without Sacrificing Expressibility
Quantum algorithms based on parameterized quantum circuits (PQCs) have enabled a wide range of applications on near-term quantum devices. However, existing PQC architectures face several challenges, among which the ``barren plateaus" phenomenon is particularly prominent. In such cases, the loss function concentrates exponentially with increasing system size, thereby hindering effective parameter optimization. To address this challenge, we propose a general and hardware-efficient method for eliminating barren plateaus in an arbitrary PQC. Specifically, our approach achieves this by inserting a layer of easily implementable quantum channels into the original PQC, each channel requiring only one ancilla qubit and four additional gates, yielding a modified PQC (MPQC) that is provably at least as expressive as the original PQC and, under mild assumptions, is guaranteed to be free from barren plateaus. Furthermore, by appropriately adjusting the structure of MPQCs, we rigorously prove that any parameter in the original PQC can be made trainable. Importantly, the absence of barren plateaus in MPQCs is robust against realistic noise, making our approach directly applicable to current noisy intermediate-scale quantum (NISQ) hardware. Numerically, we demonstrate the practicality of our method by modifying a commonly used PQC for thermal-state preparation. The results show that {barren plateaus are effectively eliminated} in this class of circuits with up to 100 qubits and 2400 layers, whereas the original ansatz suffers from severe gradient vanishing.
☆ Fast and Robust Simulation-Based Inference With Optimization Monte Carlo
Bayesian parameter inference for complex stochastic simulators is challenging due to intractable likelihood functions. Existing simulation-based inference methods often require large number of simulations and become costly to use in high-dimensional parameter spaces or in problems with partially uninformative outputs. We propose a new method for differentiable simulators that delivers accurate posterior inference with substantially reduced runtimes. Building on the Optimization Monte Carlo framework, our approach reformulates stochastic simulation as deterministic optimization problems. Gradient-based methods are then applied to efficiently navigate toward high-density posterior regions and avoid wasteful simulations in low-probability areas. A JAX-based implementation further enhances the performance through vectorization of key method components. Extensive experiments, including high-dimensional parameter spaces, uninformative outputs, multiple observations and multimodal posteriors show that our method consistently matches, and often exceeds, the accuracy of state-of-the-art approaches, while reducing the runtime by a substantial margin.
☆ Finding Kissing Numbers with Game-theoretic Reinforcement Learning
Since Isaac Newton first studied the Kissing Number Problem in 1694, determining the maximal number of non-overlapping spheres around a central sphere has remained a fundamental challenge. This problem represents the local analogue of Hilbert's 18th problem on sphere packing, bridging geometry, number theory, and information theory. Although significant progress has been made through lattices and codes, the irregularities of high-dimensional geometry and exponentially growing combinatorial complexity beyond 8 dimensions, which exceeds the complexity of Go game, limit the scalability of existing methods. Here we model this problem as a two-player matrix completion game and train the game-theoretic reinforcement learning system, PackingStar, to efficiently explore high-dimensional spaces. The matrix entries represent pairwise cosines of sphere center vectors; one player fills entries while another corrects suboptimal ones, jointly maximizing the matrix size, corresponding to the kissing number. This cooperative dynamics substantially improves sample quality, making the extremely large spaces tractable. PackingStar reproduces previous configurations and surpasses all human-known records from dimensions 25 to 31, with the configuration in 25 dimensions geometrically corresponding to the Leech lattice and suggesting possible optimality. It achieves the first breakthrough beyond rational structures from 1971 in 13 dimensions and discovers over 6000 new structures in 14 and other dimensions. These results demonstrate AI's power to explore high-dimensional spaces beyond human intuition and open new pathways for the Kissing Number Problem and broader geometry problems.
☆ Uncovering Causal Drivers of Energy Efficiency for Industrial Process in Foundry via Time-Series Causal Inference
Improving energy efficiency in industrial foundry processes is a critical challenge, as these operations are highly energy-intensive and marked by complex interdependencies among process variables. Correlation-based analyses often fail to distinguish true causal drivers from spurious associations, limiting their usefulness for decision-making. This paper applies a time-series causal inference framework to identify the operational factors that directly affect energy efficiency in induction furnace melting. Using production data from a Danish foundry, the study integrates time-series clustering to segment melting cycles into distinct operational modes with the PCMCI+ algorithm, a state-of-the-art causal discovery method, to uncover cause-effect relationships within each mode. Across clusters, robust causal relations among energy consumption, furnace temperature, and material weight define the core drivers of efficiency, while voltage consistently influences cooling water temperature with a delayed response. Cluster-specific differences further distinguish operational regimes: efficient clusters are characterized by stable causal structures, whereas inefficient ones exhibit reinforcing feedback loops and atypical dependencies. The contributions of this study are twofold. First, it introduces an integrated clustering-causal inference pipeline as a methodological innovation for analyzing energy-intensive processes. Second, it provides actionable insights that enable foundry operators to optimize performance, reduce energy consumption, and lower emissions.
comment: Accepted by the Energy Informatics.Academy Conference 2025 (EI.A 2025)
☆ Moving Pictures of Thought: Extracting Visual Knowledge in Charles S. Peirce's Manuscripts with Vision-Language Models
Diagrams are crucial yet underexplored tools in many disciplines, demonstrating the close connection between visual representation and scholarly reasoning. However, their iconic form poses obstacles to visual studies, intermedial analysis, and text-based digital workflows. In particular, Charles S. Peirce consistently advocated the use of diagrams as essential for reasoning and explanation. His manuscripts, often combining textual content with complex visual artifacts, provide a challenging case for studying documents involving heterogeneous materials. In this preliminary study, we investigate whether Visual Language Models (VLMs) can effectively help us identify and interpret such hybrid pages in context. First, we propose a workflow that (i) segments manuscript page layouts, (ii) reconnects each segment to IIIF-compliant annotations, and (iii) submits fragments containing diagrams to a VLM. In addition, by adopting Peirce's semiotic framework, we designed prompts to extract key knowledge about diagrams and produce concise captions. Finally, we integrated these captions into knowledge graphs, enabling structured representations of diagrammatic content within composite sources.
☆ A Novel Hierarchical Integration Method for Efficient Model Merging in Medical LLMs
Large Language Models (LLMs) face significant challenges in distributed healthcare, including consolidating specialized domain knowledge across institutions while maintaining privacy, reducing computational overhead, and preventing catastrophic forgetting during model updates.This paper presents a systematic evaluation of six parameter-space merging techniques applied to two architecturally compatible medical LLMs derived from the Mistral-7B base model. We introduce a novel hierarchical method that combines selective Optimal Transport (OT) alignment for attention layers with cosine similarity-weighted interpolation, designed to address permutation variance while minimizing computational overhead for edge deployment scenarios. Our study evaluates Task Arithmetic, Linear Averaging, DARE-TIES, DELLA, Breadcrumbs, and our Hierarchical approach across five medical benchmarks. Results demonstrate that architecturally compatible models benefit significantly from simple averaging methods, with Task Arithmetic achieving 45.80% accuracy on MedQA, outperforming complex pruning-based approaches. These findings offer critical insights for the deployment of distributed medical AI in resource-constrained IoT environments, where computational efficiency and model compatibility are paramount. Our work establishes that for architecturally compatible models, simple averaging provides a robust and computationally efficient baseline for knowledge consolidation, offering a pragmatic path forward for scalable medical AI systems.
☆ Dual-LoRA and Quality-Enhanced Pseudo Replay for Multimodal Continual Food Learning
Food analysis has become increasingly critical for health-related tasks such as personalized nutrition and chronic disease prevention. However, existing large multimodal models (LMMs) in food analysis suffer from catastrophic forgetting when learning new tasks, requiring costly retraining from scratch. To address this, we propose a novel continual learning framework for multimodal food learning, integrating a Dual-LoRA architecture with Quality-Enhanced Pseudo Replay. We introduce two complementary low-rank adapters for each task: a specialized LoRA that learns task-specific knowledge with orthogonal constraints to previous tasks' subspaces, and a cooperative LoRA that consolidates shared knowledge across tasks via pseudo replay. To improve the reliability of replay data, our Quality-Enhanced Pseudo Replay strategy leverages self-consistency and semantic similarity to reduce hallucinations in generated samples. Experiments on the comprehensive Uni-Food dataset show superior performance in mitigating forgetting, representing the first effective continual learning approach for complex food tasks.
☆ Statistically Accurate and Robust Generative Prediction of Rock Discontinuities with A Tabular Foundation Model
Rock discontinuities critically govern the mechanical behavior and stability of rock masses. Their internal distributions remain largely unobservable and are typically inferred from surface-exposed discontinuities using generative prediction approaches. However, surface-exposed observations are inherently sparse, and existing generative prediction approaches either fail to capture the underlying complex distribution patterns or lack robustness under data-sparse conditions. Here, we proposed a simple yet robust approach for statistically accurate generative prediction of rock discontinuities by utilizing a tabular foundation model. By leveraging the powerful sample learning capability of the foundation model specifically designed for small data, our approach can effectively capture the underlying complex distribution patterns within limited measured discontinuities. Comparative experiments on ten datasets with diverse scales and distribution patterns of discontinuities demonstrate superior accuracy and robustness over conventional statistical models and deep generative approaches. This work advances quantitative characterization of rock mass structures, supporting safer and more reliable data-driven geotechnical design.
☆ Tab-PET: Graph-Based Positional Encodings for Tabular Transformers
Supervised learning with tabular data presents unique challenges, including low data sizes, the absence of structural cues, and heterogeneous features spanning both categorical and continuous domains. Unlike vision and language tasks, where models can exploit inductive biases in the data, tabular data lacks inherent positional structure, hindering the effectiveness of self-attention mechanisms. While recent transformer-based models like TabTransformer, SAINT, and FT-Transformer (which we refer to as 3T) have shown promise on tabular data, they typically operate without leveraging structural cues such as positional encodings (PEs), as no prior structural information is usually available. In this work, we find both theoretically and empirically that structural cues, specifically PEs can be a useful tool to improve generalization performance for tabular transformers. We find that PEs impart the ability to reduce the effective rank (a form of intrinsic dimensionality) of the features, effectively simplifying the task by reducing the dimensionality of the problem, yielding improved generalization. To that end, we propose Tab-PET (PEs for Tabular Transformers), a graph-based framework for estimating and inculcating PEs into embeddings. Inspired by approaches that derive PEs from graph topology, we explore two paradigms for graph estimation: association-based and causality-based. We empirically demonstrate that graph-derived PEs significantly improve performance across 50 classification and regression datasets for 3T. Notably, association-based graphs consistently yield more stable and pronounced gains compared to causality-driven ones. Our work highlights an unexpected role of PEs in tabular transformers, revealing how they can be harnessed to improve generalization.
☆ AutoMalDesc: Large-Scale Script Analysis for Cyber Threat Research AAAI 2026
Generating thorough natural language explanations for threat detections remains an open problem in cybersecurity research, despite significant advances in automated malware detection systems. In this work, we present AutoMalDesc, an automated static analysis summarization framework that, following initial training on a small set of expert-curated examples, operates independently at scale. This approach leverages an iterative self-paced learning pipeline to progressively enhance output quality through synthetic data generation and validation cycles, eliminating the need for extensive manual data annotation. Evaluation across 3,600 diverse samples in five scripting languages demonstrates statistically significant improvements between iterations, showing consistent gains in both summary quality and classification accuracy. Our comprehensive validation approach combines quantitative metrics based on established malware labels with qualitative assessment from both human experts and LLM-based judges, confirming both technical precision and linguistic coherence of generated summaries. To facilitate reproducibility and advance research in this domain, we publish our complete dataset of more than 100K script samples, including annotated seed (0.9K) and test (3.6K) datasets, along with our methodology and evaluation framework.
comment: Accepted at AAAI 2026 (oral)
☆ Explainable RL Policies by Distilling to Locally-Specialized Linear Policies with Voronoi State Partitioning
Deep Reinforcement Learning is one of the state-of-the-art methods for producing near-optimal system controllers. However, deep RL algorithms train a deep neural network, that lacks transparency, which poses challenges when the controller has to meet regulations, or foster trust. To alleviate this, one could transfer the learned behaviour into a model that is human-readable by design using knowledge distilla- tion. Often this is done with a single model which mimics the original model on average but could struggle in more dynamic situations. A key challenge is that this simpler model should have the right balance be- tween flexibility and complexity or right balance between balance bias and accuracy. We propose a new model-agnostic method to divide the state space into regions where a simplified, human-understandable model can operate in. In this paper, we use Voronoi partitioning to find regions where linear models can achieve similar performance to the original con- troller. We evaluate our approach on a gridworld environment and a classic control task. We observe that our proposed distillation to locally- specialized linear models produces policies that are explainable and show that the distillation matches or even slightly outperforms the black-box policy they are distilled from.
comment: Accepted for BNAIC/BeNeLearn 2025
☆ EL3DD: Extended Latent 3D Diffusion for Language Conditioned Multitask Manipulation
Acting in human environments is a crucial capability for general-purpose robots, necessitating a robust understanding of natural language and its application to physical tasks. This paper seeks to harness the capabilities of diffusion models within a visuomotor policy framework that merges visual and textual inputs to generate precise robotic trajectories. By employing reference demonstrations during training, the model learns to execute manipulation tasks specified through textual commands within the robot's immediate environment. The proposed research aims to extend an existing model by leveraging improved embeddings, and adapting techniques from diffusion models for image generation. We evaluate our methods on the CALVIN dataset, proving enhanced performance on various manipulation tasks and an increased long-horizon success rate when multiple tasks are executed in sequence. Our approach reinforces the usefulness of diffusion models and contributes towards general multitask manipulation.
comment: 10 pages; 2 figures; 1 table. Prprint submitted to the European Robotics Forum 2026
☆ Causal Inference, Biomarker Discovery, Graph Neural Network, Feature Selection
Biomarker discovery from high-throughput transcriptomic data is crucial for advancing precision medicine. However, existing methods often neglect gene-gene regulatory relationships and lack stability across datasets, leading to conflation of spurious correlations with genuine causal effects. To address these issues, we develop a causal graph neural network (Causal-GNN) method that integrates causal inference with multi-layer graph neural networks (GNNs). The key innovation is the incorporation of causal effect estimation for identifying stable biomarkers, coupled with a GNN-based propensity scoring mechanism that leverages cross-gene regulatory networks. Experimental results demonstrate that our method achieves consistently high predictive accuracy across four distinct datasets and four independent classifiers. Moreover, it enables the identification of more stable biomarkers compared to traditional methods. Our work provides a robust, efficient, and biologically interpretable tool for biomarker discovery, demonstrating strong potential for broad application across medical disciplines.
☆ KForge: Program Synthesis for Diverse AI Hardware Accelerators
GPU kernels are critical for ML performance but difficult to optimize across diverse accelerators. We present KForge, a platform-agnostic framework built on two collaborative LLM-based agents: a generation agent that produces and iteratively refines programs through compilation and correctness feedback, and a performance analysis agent that interprets profiling data to guide optimization. This agent-based architecture requires only a single-shot example to target new platforms. We make three key contributions: (1) introducing an iterative refinement system where the generation agent and performance analysis agent collaborate through functional and optimization passes, interpreting diverse profiling data (from programmatic APIs to GUI-based tools) to generate actionable recommendations that guide program synthesis for arbitrary accelerators; (2) demonstrating that the generation agent effectively leverages cross-platform knowledge transfer, where a reference implementation from one architecture substantially improves generation quality for different hardware targets; and (3) validating the platform-agnostic nature of our approach by demonstrating effective program synthesis across fundamentally different parallel computing platforms: NVIDIA CUDA and Apple Metal.
comment: Under review at MLSys 2026
☆ Case study of a differentiable heterogeneous multiphysics solver for a nuclear fusion application
This work presents a case study of a heterogeneous multiphysics solver from the nuclear fusion domain. At the macroscopic scale, an auto-differentiable ODE solver in JAX computes the evolution of the pulsed power circuit and bulk plasma parameters for a compressing Z Pinch. The ODE solver requires a closure for the impedance of the plasma load obtained via root-finding at every timestep, which we solve efficiently using gradient-based Newton iteration. However, incorporating non-differentiable production-grade plasma solvers like Gkeyll (a C/CUDA plasma simulation suite) into a gradient-based workflow is non-trivial. The ''Tesseract'' software addresses this challenge by providing a multi-physics differentiable abstraction layer made fully compatible with JAX (through the `tesseract_jax` adapter). This architecture ensures end-to-end differentiability while allowing seamless interchange between high-fidelity solvers (Gkeyll), neural surrogates, and analytical approximations for rapid, progressive prototyping.
☆ Edge-aware baselines for ogbn-proteins in PyTorch Geometric: species-wise normalization, post-hoc calibration, and cost-accuracy trade-offs
We present reproducible, edge-aware baselines for ogbn-proteins in PyTorch Geometric (PyG). We study two system choices that dominate practice: (i) how 8-dimensional edge evidence is aggregated into node inputs, and (ii) how edges are used inside message passing. Our strongest baseline is GraphSAGE with sum-based edge-to-node features. We compare LayerNorm (LN), BatchNorm (BN), and a species-aware Conditional LayerNorm (CLN), and report compute cost (time, VRAM, parameters) together with accuracy (ROC-AUC) and decision quality. In our primary experimental setup (hidden size 512, 3 layers, 3 seeds), sum consistently beats mean and max; BN attains the best AUC, while CLN matches the AUC frontier with better thresholded F1. Finally, post-hoc per-label temperature scaling plus per-label thresholds substantially improves micro-F1 and expected calibration error (ECE) with negligible AUC change, and light label-correlation smoothing yields small additional gains. We release standardized artifacts and scripts used for all of the runs presented in the paper.
comment: 8 pages, 3 figures, 5 tables. Code and artifacts: https://github.com/SV25-22/ECHO-Proteins
☆ Seek and You Shall Fold
Accurate protein structures are essential for understanding biological function, yet incorporating experimental data into protein generative models remains a major challenge. Most predictors of experimental observables are non-differentiable, making them incompatible with gradient-based conditional sampling. This is especially limiting in nuclear magnetic resonance, where rich data such as chemical shifts are hard to directly integrate into generative modeling. We introduce a framework for non-differentiable guidance of protein generative models, coupling a continuous diffusion-based generator with any black-box objective via a tailored genetic algorithm. We demonstrate its effectiveness across three modalities: pairwise distance constraints, nuclear Overhauser effect restraints, and for the first time chemical shifts. These results establish chemical shift guided structure generation as feasible, expose key weaknesses in current predictors, and showcase a general strategy for incorporating diverse experimental signals. Our work points toward automated, data-conditioned protein modeling beyond the limits of differentiability.
☆ Uncovering and Mitigating Transient Blindness in Multimodal Model Editing AAAI'26
Multimodal Model Editing (MMED) aims to correct erroneous knowledge in multimodal models. Existing evaluation methods, adapted from textual model editing, overstate success by relying on low-similarity or random inputs, obscure overfitting. We propose a comprehensive locality evaluation framework, covering three key dimensions: random-image locality, no-image locality, and consistent-image locality, operationalized through seven distinct data types, enabling a detailed and structured analysis of multimodal edits. We introduce De-VQA, a dynamic evaluation for visual question answering, uncovering a phenomenon we term transient blindness, overfitting to edit-similar text while ignoring visuals. Token analysis shows edits disproportionately affect textual tokens. We propose locality-aware adversarial losses to balance cross-modal representations. Empirical results demonstrate that our approach consistently outperforms existing baselines, reducing transient blindness and improving locality by 17% on average.
comment: Accepted at AAAI'26
☆ Incoherent Beliefs & Inconsistent Actions in Large Language Models
Real-world tasks and environments exhibit differences from the static datasets that large language models (LLMs) are typically evaluated on. Such tasks can involve sequential interaction, requiring coherent updating of beliefs in light of new evidence, and making appropriate decisions based on those beliefs. Predicting how LLMs will perform in such dynamic environments is important, but can be tricky to determine from measurements in static settings. In this work, we examine two critical components of LLM performance: the ability of LLMs to coherently update their beliefs, and the extent to which the actions they take are consistent with those beliefs. First, we find that LLMs are largely inconsistent in how they update their beliefs; models can exhibit up to a 30% average difference between the directly elicited posterior, and the correct update of their prior. Second, we find that LLMs also often take actions which are inconsistent with the beliefs they hold. On a betting market, for example, LLMs often do not even bet in the same direction as their internally held beliefs over the underlying outcomes. We also find they have moderate self-inconsistency in how they respond to challenges by users to given answers. Finally, we show that the above properties hold even for strong models that obtain high accuracy or that are well-calibrated on the tasks at hand. Our results highlight the difficulties of predicting LLM behavior in complex real-world settings.
☆ Computational Measurement of Political Positions: A Review of Text-Based Ideal Point Estimation Algorithms
This article presents the first systematic review of unsupervised and semi-supervised computational text-based ideal point estimation (CT-IPE) algorithms, methods designed to infer latent political positions from textual data. These algorithms are widely used in political science, communication, computational social science, and computer science to estimate ideological preferences from parliamentary speeches, party manifestos, and social media. Over the past two decades, their development has closely followed broader NLP trends -- beginning with word-frequency models and most recently turning to large language models (LLMs). While this trajectory has greatly expanded the methodological toolkit, it has also produced a fragmented field that lacks systematic comparison and clear guidance for applied use. To address this gap, we identified 25 CT-IPE algorithms through a systematic literature review and conducted a manual content analysis of their modeling assumptions and development contexts. To compare them meaningfully, we introduce a conceptual framework that distinguishes how algorithms generate, capture, and aggregate textual variance. On this basis, we identify four methodological families -- word-frequency, topic modeling, word embedding, and LLM-based approaches -- and critically assess their assumptions, interpretability, scalability, and limitations. Our review offers three contributions. First, it provides a structured synthesis of two decades of algorithm development, clarifying how diverse methods relate to one another. Second, it translates these insights into practical guidance for applied researchers, highlighting trade-offs in transparency, technical requirements, and validation strategies that shape algorithm choice. Third, it emphasizes that differences in estimation outcomes across algorithms are themselves informative, underscoring the need for systematic benchmarking.
comment: 46 pages, 8 figures, 2 tables, accepted for publication in Quality & Quantity
☆ Counterfactual Explainable AI (XAI) Method for Deep Learning-Based Multivariate Time Series Classification AAAI 2026
Recent advances in deep learning have improved multivariate time series (MTS) classification and regression by capturing complex patterns, but their lack of transparency hinders decision-making. Explainable AI (XAI) methods offer partial insights, yet often fall short of conveying the full decision space. Counterfactual Explanations (CE) provide a promising alternative, but current approaches typically prioritize either accuracy, proximity or sparsity -- rarely all -- limiting their practical value. To address this, we propose CONFETTI, a novel multi-objective CE method for MTS. CONFETTI identifies key MTS subsequences, locates a counterfactual target, and optimally modifies the time series to balance prediction confidence, proximity and sparsity. This method provides actionable insights with minimal changes, improving interpretability, and decision support. CONFETTI is evaluated on seven MTS datasets from the UEA archive, demonstrating its effectiveness in various domains. CONFETTI consistently outperforms state-of-the-art CE methods in its optimization objectives, and in six other metrics from the literature, achieving $\geq10\%$ higher confidence while improving sparsity in $\geq40\%$.
comment: Accepted in AAAI 2026 Technical Main Track
☆ MorphBoost: Self-Organizing Universal Gradient Boosting with Adaptive Tree Morphing
Traditional gradient boosting algorithms employ static tree structures with fixed splitting criteria that remain unchanged throughout training, limiting their ability to adapt to evolving gradient distributions and problem-specific characteristics across different learning stages. This work introduces MorphBoost, a new gradient boosting framework featuring self-organizing tree structures that dynamically morph their splitting behavior during training. The algorithm implements adaptive split functions that evolve based on accumulated gradient statistics and iteration-dependent learning pressures, enabling automatic adjustment to problem complexity. Key innovations include: (1) morphing split criterion combining gradient-based scores with information-theoretic metrics weighted by training progress; (2) automatic problem fingerprinting for intelligent parameter configuration across binary/multiclass/regression tasks; (3) vectorized tree prediction achieving significant computational speedups; (4) interaction-aware feature importance detecting multiplicative relationships; and (5) fast-mode optimization balancing speed and accuracy. Comprehensive benchmarking across 10 diverse datasets against competitive models (XGBoost, LightGBM, GradientBoosting, HistGradientBoosting, ensemble methods) demonstrates that MorphBoost achieves state-of-the-art performance, outperforming XGBoost by 0.84% on average. MorphBoost secured the overall winner position with 4/10 dataset wins (40% win rate) and 6/30 top-3 finishes (20%), while maintaining the lowest variance (σ=0.0948) and highest minimum accuracy across all models, revealing superior consistency and robustness. Performance analysis across difficulty levels shows competitive results on easy datasets while achieving notable improvements on advanced problems due to higher adaptation levels.
comment: 8 pages, 5 figures
☆ Laplace Learning in Wasserstein Space
The manifold hypothesis posits that high-dimensional data typically resides on low-dimensional sub spaces. In this paper, we assume manifold hypothesis to investigate graph-based semi-supervised learning methods. In particular, we examine Laplace Learning in the Wasserstein space, extending the classical notion of graph-based semi-supervised learning algorithms from finite-dimensional Euclidean spaces to an infinite-dimensional setting. To achieve this, we prove variational convergence of a discrete graph p- Dirichlet energy to its continuum counterpart. In addition, we characterize the Laplace-Beltrami operator on asubmanifold of the Wasserstein space. Finally, we validate the proposed theoretical framework through numerical experiments conducted on benchmark datasets, demonstrating the consistency of our classification performance in high-dimensional settings.
comment: 46 page, 5 figures
☆ TokenSqueeze: Performance-Preserving Compression for Reasoning LLMs NeurIPS 2025
Emerging reasoning LLMs such as OpenAI-o1 and DeepSeek-R1 have achieved strong performance on complex reasoning tasks by generating long chain-of-thought (CoT) traces. However, these long CoTs result in increased token usage, leading to higher inference latency and memory consumption. As a result, balancing accuracy and reasoning efficiency has become essential for deploying reasoning LLMs in practical applications. Existing long-to-short (Long2Short) methods aim to reduce inference length but often sacrifice accuracy, revealing a need for an approach that maintains performance while lowering token costs. To address this efficiency-accuracy tradeoff, we propose TokenSqueeze, a novel Long2Short method that condenses reasoning paths while preserving performance and relying exclusively on self-generated data. First, to prevent performance degradation caused by excessive compression of reasoning depth, we propose to select self-generated samples whose reasoning depth is adaptively matched to the complexity of the problem. To further optimize the linguistic expression without altering the underlying reasoning paths, we introduce a distribution-aligned linguistic refinement method that enhances the clarity and conciseness of the reasoning path while preserving its logical integrity. Comprehensive experimental results demonstrate the effectiveness of TokenSqueeze in reducing token usage while maintaining accuracy. Notably, DeepSeek-R1-Distill-Qwen-7B fine-tuned using our proposed method achieved a 50\% average token reduction while preserving accuracy on the MATH500 benchmark. TokenSqueeze exclusively utilizes the model's self-generated data, enabling efficient and high-fidelity reasoning without relying on manually curated short-answer datasets across diverse applications. Our code is available at https://github.com/zhangyx1122/TokenSqueeze.
comment: Accepted to NeurIPS 2025
☆ Likelihood-guided Regularization in Attention Based Models
The transformer architecture has demonstrated strong performance in classification tasks involving structured and high-dimensional data. However, its success often hinges on large- scale training data and careful regularization to prevent overfitting. In this paper, we intro- duce a novel likelihood-guided variational Ising-based regularization framework for Vision Transformers (ViTs), which simultaneously enhances model generalization and dynamically prunes redundant parameters. The proposed variational Ising-based regularization approach leverages Bayesian sparsification techniques to impose structured sparsity on model weights, allowing for adaptive architecture search during training. Unlike traditional dropout-based methods, which enforce fixed sparsity patterns, the variational Ising-based regularization method learns task-adaptive regularization, improving both efficiency and interpretability. We evaluate our approach on benchmark vision datasets, including MNIST, Fashion-MNIST, CIFAR-10, and CIFAR-100, demonstrating improved generalization under sparse, complex data and allowing for principled uncertainty quantification on both weights and selection parameters. Additionally, we show that the Ising regularizer leads to better-calibrated probability estimates and structured feature selection through uncertainty-aware attention mechanisms. Our results highlight the effectiveness of structured Bayesian sparsification in enhancing transformer-based architectures, offering a principled alternative to standard regularization techniques.
☆ Learning to Solve Resource-Constrained Project Scheduling Problems with Duration Uncertainty using Graph Neural Networks ICTAI 2025
The Resource-Constrained Project Scheduling Problem (RCPSP) is a classical scheduling problem that has received significant attention due to of its numerous applications in industry. However, in practice, task durations are subject to uncertainty that must be considered in order to propose resilient scheduling. In this paper, we address the RCPSP variant with uncertain tasks duration (modeled using known probabilities) and aim to minimize the overall expected project duration. Our objective is to produce a baseline schedule that can be reused multiple times in an industrial setting regardless of the actual duration scenario. We leverage Graph Neural Networks in conjunction with Deep Reinforcement Learning (DRL) to develop an effective policy for task scheduling. This policy operates similarly to a priority dispatch rule and is paired with a Serial Schedule Generation Scheme to produce a schedule. Our empirical evaluation on standard benchmarks demonstrates the approach's superiority in terms of performance and its ability to generalize. The developed framework, Wheatley, is made publicly available online to facilitate further research and reproducibility.
comment: Accepted at ICTAI 2025 Conference
☆ ParaDySe: A Parallel-Strategy Switching Framework for Dynamic Sequence Lengths in Transformer
Dynamic sequences with varying lengths have been widely used in the training of Transformer-based large language models (LLMs). However, current training frameworks adopt a pre-defined static parallel strategy for these sequences, causing neither communication-parallelization cancellation on short sequences nor out-of-memory on long sequences. To mitigate these issues, we propose ParaDySe, a novel adaptive Parallel strategy switching framework for Dynamic Sequences. ParaDySe enables on-the-fly optimal strategy adoption according to the immediate input sequence. It first implements the modular function libraries for parallel strategies with unified tensor layout specifications, and then builds sequence-aware memory and time cost models with hybrid methods. Guided by cost models, ParaDySe selects optimal layer-wise strategies for dynamic sequences via an efficient heuristic algorithm. By integrating these techniques together, ParaDySe achieves seamless hot-switching of optimal strategies through its well-designed function libraries. We compare ParaDySe with baselines on representative LLMs under datasets with sequence lengths up to 624K. Experimental results indicate that ParaDySe addresses OOM and CPC bottlenecks in LLM training by systematically integrating long-sequence optimizations with existing frameworks.
☆ DiffFP: Learning Behaviors from Scratch via Diffusion-based Fictitious Play IJCAI 2025
Self-play reinforcement learning has demonstrated significant success in learning complex strategic and interactive behaviors in competitive multi-agent games. However, achieving such behaviors in continuous decision spaces remains challenging. Ensuring adaptability and generalization in self-play settings is critical for achieving competitive performance in dynamic multi-agent environments. These challenges often cause methods to converge slowly or fail to converge at all to a Nash equilibrium, making agents vulnerable to strategic exploitation by unseen opponents. To address these challenges, we propose DiffFP, a fictitious play (FP) framework that estimates the best response to unseen opponents while learning a robust and multimodal behavioral policy. Specifically, we approximate the best response using a diffusion policy that leverages generative modeling to learn adaptive and diverse strategies. Through empirical evaluation, we demonstrate that the proposed FP framework converges towards $ε$-Nash equilibria in continuous- space zero-sum games. We validate our method on complex multi-agent environments, including racing and multi-particle zero-sum games. Simulation results show that the learned policies are robust against diverse opponents and outperform baseline reinforcement learning policies. Our approach achieves up to 3$\times$ faster convergence and 30$\times$ higher success rates on average against RL-based baselines, demonstrating its robustness to opponent strategies and stability across training iterations
comment: Initial results presented at the IJCAI 2025 Workshop on User-Aligned Assessment of Adaptive AI Systems. Project page: https://aku02.github.io/projects/difffp/
☆ Uncertainty-aware Physics-informed Neural Networks for Robust CARS-to-Raman Signal Reconstruction
Coherent anti-Stokes Raman scattering (CARS) spectroscopy is a powerful and rapid technique widely used in medicine, material science, and chemical analyses. However, its effectiveness is hindered by the presence of a non-resonant background that interferes with and distorts the true Raman signal. Deep learning methods have been employed to reconstruct the true Raman spectrum from measured CARS data using labeled datasets. A more recent development integrates the domain knowledge of Kramers-Kronig relationships and smoothness constraints in the form of physics-informed loss functions. However, these deterministic models lack the ability to quantify uncertainty, an essential feature for reliable deployment in high-stakes scientific and biomedical applications. In this work, we evaluate and compare various uncertainty quantification (UQ) techniques within the context of CARS-to-Raman signal reconstruction. Furthermore, we demonstrate that incorporating physics-informed constraints into these models improves their calibration, offering a promising path toward more trustworthy CARS data analysis.
comment: EurIPS DiffSys workshop 2025
☆ Real-time distortion prediction in metallic additive manufacturing via a physics-informed neural operator approach
With the development of digital twins and smart manufacturing systems, there is an urgent need for real-time distortion field prediction to control defects in metal Additive Manufacturing (AM). However, numerical simulation methods suffer from high computational cost, long run-times that prevent real-time use, while conventional Machine learning (ML) models struggle to extract spatiotemporal features for long-horizon prediction and fail to decouple thermo-mechanical fields. This paper proposes a Physics-informed Neural Operator (PINO) to predict z and y-direction distortion for the future 15 s. Our method, Physics-informed Deep Operator Network-Recurrent Neural Network (PIDeepONet-RNN) employs trunk and branch network to process temperature history and encode distortion fields, respectively, enabling decoupling of thermo-mechanical responses. By incorporating the heat conduction equation as a soft constraint, the model ensures physical consistency and suppresses unphysical artifacts, thereby establishing a more physically consistent mapping between the thermal history and distortion. This is important because such a basis function, grounded in physical laws, provides a robust and interpretable foundation for predictions. The proposed models are trained and tested using datasets generated from experimentally validated Finite Element Method (FEM). Evaluation shows that the model achieves high accuracy, low error accumulation, time efficiency. The max absolute errors in the z and y-directions are as low as 0.9733 mm and 0.2049 mm, respectively. The error distribution shows high errors in the molten pool but low gradient norms in the deposited and key areas. The performance of PINO surrogate model highlights its potential for real-time long-horizon physics field prediction in controlling defects.
☆ Warm-starting active-set solvers using graph neural networks
Quadratic programming (QP) solvers are widely used in real-time control and optimization, but their computational cost often limits applicability in time-critical settings. We propose a learning-to-optimize approach using graph neural networks (GNNs) to predict active sets in the dual active-set solver DAQP. The method exploits the structural properties of QPs by representing them as bipartite graphs and learning to identify the optimal active set for efficiently warm-starting the solver. Across varying problem sizes, the GNN consistently reduces the number of solver iterations compared to cold-starting, while performance is comparable to a multilayer perceptron (MLP) baseline. Furthermore, a GNN trained on varying problem sizes generalizes effectively to unseen dimensions, demonstrating flexibility and scalability. These results highlight the potential of structure-aware learning to accelerate optimization in real-time applications such as model predictive control.
comment: Under review, 15 pages, 8 figures
☆ InteractiveGNNExplainer: A Visual Analytics Framework for Multi-Faceted Understanding and Probing of Graph Neural Network Predictions
Graph Neural Networks (GNNs) excel in graph-based learning tasks, but their complex, non-linear operations often render them as opaque "black boxes". This opacity hinders user trust, complicates debugging, bias detection, and adoption in critical domains requiring explainability. This paper introduces InteractiveGNNExplainer, a visual analytics framework to enhance GNN explainability, focusing on node classification. Our system uniquely integrates coordinated interactive views (dynamic graph layouts, embedding projections, feature inspection, neighborhood analysis) with established post-hoc (GNNExplainer) and intrinsic (GAT attention) explanation techniques. Crucially, it incorporates interactive graph editing, allowing users to perform a "what-if" analysis by perturbing graph structures and observing immediate impacts on GNN predictions and explanations. We detail the system architecture and, through case studies on Cora and CiteSeer datasets, demonstrate how InteractiveGNNExplainer facilitates in-depth misclassification diagnosis, comparative analysis of GCN versus GAT behaviors, and rigorous probing of model sensitivity. These capabilities foster a deeper, multifaceted understanding of GNN predictions, contributing to more transparent, trustworthy, and robust graph analysis.
☆ OTARo: Once Tuning for All Precisions toward Robust On-Device LLMs
Large Language Models (LLMs) fine-tuning techniques not only improve the adaptability to diverse downstream tasks, but also mitigate adverse effects of model quantization. Despite this, conventional quantization suffers from its structural limitation that hinders flexibility during the fine-tuning and deployment stages. Practical on-device tasks demand different quantization precisions (i.e. different bit-widths), e.g., understanding tasks tend to exhibit higher tolerance to reduced precision compared to generation tasks. Conventional quantization, typically relying on scaling factors that are incompatible across bit-widths, fails to support the on-device switching of precisions when confronted with complex real-world scenarios. To overcome the dilemma, we propose OTARo, a novel method that enables on-device LLMs to flexibly switch quantization precisions while maintaining performance robustness through once fine-tuning. OTARo introduces Shared Exponent Floating Point (SEFP), a distinct quantization mechanism, to produce different bit-widths through simple mantissa truncations of a single model. Moreover, to achieve bit-width robustness in downstream applications, OTARo performs a learning process toward losses induced by different bit-widths. The method involves two critical strategies: (1) Exploitation-Exploration Bit-Width Path Search (BPS), which iteratively updates the search path via a designed scoring mechanism; (2) Low-Precision Asynchronous Accumulation (LAA), which performs asynchronous gradient accumulations and delayed updates under low bit-widths. Experiments on popular LLMs, e.g., LLaMA3.2-1B, LLaMA3-8B, demonstrate that OTARo achieves consistently strong and robust performance for all precisions.
☆ Personalized Federated Learning with Bidirectional Communication Compression via One-Bit Random Sketching AAAI 2026
Federated Learning (FL) enables collaborative training across decentralized data, but faces key challenges of bidirectional communication overhead and client-side data heterogeneity. To address communication costs while embracing data heterogeneity, we propose pFed1BS, a novel personalized federated learning framework that achieves extreme communication compression through one-bit random sketching. In personalized FL, the goal shifts from training a single global model to creating tailored models for each client. In our framework, clients transmit highly compressed one-bit sketches, and the server aggregates and broadcasts a global one-bit consensus. To enable effective personalization, we introduce a sign-based regularizer that guides local models to align with the global consensus while preserving local data characteristics. To mitigate the computational burden of random sketching, we employ the Fast Hadamard Transform for efficient projection. Theoretical analysis guarantees that our algorithm converges to a stationary neighborhood of the global potential function. Numerical simulations demonstrate that pFed1BS substantially reduces communication costs while achieving competitive performance compared to advanced communication-efficient FL algorithms.
comment: Accepted in AAAI 2026
☆ Soft Conflict-Resolution Decision Transformer for Offline Multi-Task Reinforcement Learning
Multi-task reinforcement learning (MTRL) seeks to learn a unified policy for diverse tasks, but often suffers from gradient conflicts across tasks. Existing masking-based methods attempt to mitigate such conflicts by assigning task-specific parameter masks. However, our empirical study shows that coarse-grained binary masks have the problem of over-suppressing key conflicting parameters, hindering knowledge sharing across tasks. Moreover, different tasks exhibit varying conflict levels, yet existing methods use a one-size-fits-all fixed sparsity strategy to keep training stability and performance, which proves inadequate. These limitations hinder the model's generalization and learning efficiency. To address these issues, we propose SoCo-DT, a Soft Conflict-resolution method based by parameter importance. By leveraging Fisher information, mask values are dynamically adjusted to retain important parameters while suppressing conflicting ones. In addition, we introduce a dynamic sparsity adjustment strategy based on the Interquartile Range (IQR), which constructs task-specific thresholding schemes using the distribution of conflict and harmony scores during training. To enable adaptive sparsity evolution throughout training, we further incorporate an asymmetric cosine annealing schedule to continuously update the threshold. Experimental results on the Meta-World benchmark show that SoCo-DT outperforms the state-of-the-art method by 7.6% on MT50 and by 10.5% on the suboptimal dataset, demonstrating its effectiveness in mitigating gradient conflicts and improving overall multi-task performance.
♻ ☆ Instruction Tuning Chronologically Consistent Language Models
We introduce a family of chronologically consistent, instruction-tuned large language models to eliminate lookahead bias. Each model is trained only on data available before a clearly defined knowledge-cutoff date, ensuring strict temporal separation from any post-cutoff data. The resulting framework offers (i) a simple, conversational chat interface, (ii) fully open, fixed model weights that guarantee replicability, and (iii) a conservative lower bound on forecast accuracy, isolating the share of predictability that survives once training leakage is removed. Together, these features provide researchers with an easy-to-use generative AI tool useful for a wide range of prediction tasks that is free of lookahead bias.
♻ ☆ Optimizing Urban Service Allocation with Time-Constrained Restless Bandits
Municipal inspections are an important part of maintaining the quality of goods and services. In this paper, we approach the problem of intelligently scheduling service inspections to maximize their impact, using the case of food establishment inspections in Chicago as a case study. The Chicago Department of Public Health (CDPH) inspects thousands of establishments each year, with a substantial fail rate (over 3,000 failed inspection reports in 2023). To balance the objectives of ensuring adherence to guidelines, minimizing disruption to establishments, and minimizing inspection costs, CDPH assigns each establishment an inspection window every year and guarantees that they will be inspected exactly once during that window. Meanwhile, CDPH also promises surprise public health inspections for unexpected food safety emergencies or complaints. These constraints create a challenge for a restless multi-armed bandit (RMAB) approach, for which there are no existing methods. We develop an extension to Whittle index-based systems for RMABs that can guarantee action window constraints and frequencies, and furthermore can be leveraged to optimize action window assignments themselves. Briefly, we combine MDP reformulation and integer programming-based lookahead to maximize the impact of inspections subject to constraints. A neural network-based supervised learning model is developed to model state transitions of real Chicago establishments using public CDPH inspection records, which demonstrates 10% AUC improvements compared with directly predicting establishments' failures. Our experiments not only show up to 24% (in simulation) or 33% (on real data) objective improvements resulting from our approach and robustness to surprise inspections, but also give insight into the impact of scheduling constraints.
♻ ☆ Beyond Statistical Similarity: Rethinking Metrics for Deep Generative Models in Engineering Design
Deep generative models such as Variational Autoencoders (VAEs), Generative Adversarial Networks (GANs), Diffusion Models, and Transformers, have shown great promise in a variety of applications, including image and speech synthesis, natural language processing, and drug discovery. However, when applied to engineering design problems, evaluating the performance of these models can be challenging, as traditional statistical metrics based on likelihood may not fully capture the requirements of engineering applications. This paper doubles as a review and practical guide to evaluation metrics for deep generative models (DGMs) in engineering design. We first summarize the well-accepted `classic' evaluation metrics for deep generative models grounded in machine learning theory. Using case studies, we then highlight why these metrics seldom translate well to design problems but see frequent use due to the lack of established alternatives. Next, we curate a set of design-specific metrics which have been proposed across different research communities and can be used for evaluating deep generative models. These metrics focus on unique requirements in design and engineering, such as constraint satisfaction, functional performance, novelty, and conditioning. Throughout our discussion, we apply the metrics to models trained on simple-to-visualize 2-dimensional example problems. Finally, we evaluate four deep generative models on a bicycle frame design problem and structural topology generation problem. In particular, we showcase the use of proposed metrics to quantify performance target achievement, design novelty, and geometric constraints. We publicly release the code for the datasets, models, and metrics used throughout the paper at https://decode.mit.edu/projects/metrics/.
♻ ☆ Variational Inference with Mixtures of Isotropic Gaussians
Variational inference (VI) is a popular approach in Bayesian inference, that looks for the best approximation of the posterior distribution within a parametric family, minimizing a loss that is typically the (reverse) Kullback-Leibler (KL) divergence. In this paper, we focus on the following parametric family: mixtures of isotropic Gaussians (i.e., with diagonal covariance matrices proportional to the identity) and uniform weights. We develop a variational framework and provide efficient algorithms suited for this family. In contrast with mixtures of Gaussian with generic covariance matrices, this choice presents a balance between accurate approximations of multimodal Bayesian posteriors, while being memory and computationally efficient. Our algorithms implement gradient descent on the location of the mixture components (the modes of the Gaussians), and either (an entropic) Mirror or Bures descent on their variance parameters. We illustrate the performance of our algorithms on numerical experiments.
♻ ☆ Physically Interpretable World Models via Weakly Supervised Representation Learning
Learning predictive models from high-dimensional sensory observations is fundamental for cyber-physical systems, yet the latent representations learned by standard world models lack physical interpretability. This limits their reliability, generalizability, and applicability to safety-critical tasks. We introduce Physically Interpretable World Models (PIWM), a framework that aligns latent representations with real-world physical quantities and constrains their evolution through partially known physical dynamics. Physical interpretability in PIWM is defined by two complementary properties: (i) the learned latent state corresponds to meaningful physical variables, and (ii) its temporal evolution follows physically consistent dynamics. To achieve this without requiring ground-truth physical annotations, PIWM employs weak distribution-based supervision that captures state uncertainty naturally arising from real-world sensing pipelines. The architecture integrates a VQ-based visual encoder, a transformer-based physical encoder, and a learnable dynamics model grounded in known physical equations. Across three case studies (Cart Pole, Lunar Lander, and Donkey Car), PIWM achieves accurate long-horizon prediction, recovers true system parameters, and significantly improves physical grounding over purely data-driven models. These results demonstrate the feasibility and advantages of learning physically interpretable world models directly from images under weak supervision.
♻ ☆ The Third Pillar of Causal Analysis? A Measurement Perspective on Causal Representations NeurIPS2025
Causal reasoning and discovery, two fundamental tasks of causal analysis, often face challenges in applications due to the complexity, noisiness, and high-dimensionality of real-world data. Despite recent progress in identifying latent causal structures using causal representation learning (CRL), what makes learned representations useful for causal downstream tasks and how to evaluate them are still not well understood. In this paper, we reinterpret CRL using a measurement model framework, where the learned representations are viewed as proxy measurements of the latent causal variables. Our approach clarifies the conditions under which learned representations support downstream causal reasoning and provides a principled basis for quantitatively assessing the quality of representations using a new Test-based Measurement EXclusivity (T-MEX) score. We validate T-MEX across diverse causal inference scenarios, including numerical simulations and real-world ecological video analysis, demonstrating that the proposed framework and corresponding score effectively assess the identification of learned representations and their usefulness for causal downstream tasks.
comment: Camera-ready version for NeurIPS2025
♻ ☆ Fast Equivariant Imaging: Acceleration for Unsupervised Learning via Augmented Lagrangian and Auxiliary PnP Denoisers
In this work, we propose Fast Equivariant Imaging (FEI), a novel unsupervised learning framework to rapidly and efficiently train deep imaging networks without ground-truth data. From the perspective of reformulating the Equivariant Imaging based optimization problem via the method of Lagrange multipliers and utilizing plug-and-play denoisers, this novel unsupervised scheme shows superior efficiency and performance compared to the vanilla Equivariant Imaging paradigm. In particular, our FEI schemes achieve an order-of-magnitude (10x) acceleration over standard EI on training U-Net for X-ray CT reconstruction and image inpainting, with improved generalization performance.
♻ ☆ Graph Neural Network-Based Reinforcement Learning for Controlling Biological Networks - the GATTACA Framework
Cellular reprogramming, the artificial transformation of one cell type into another, has been attracting increasing research attention due to its therapeutic potential for complex diseases. However, identifying effective reprogramming strategies through classical wet-lab experiments is hindered by lengthy time commitments and high costs. In this study, we explore the use of deep reinforcement learning (DRL) to control Boolean network models of complex biological systems, such as gene regulatory and signalling pathway networks. We formulate a novel control problem for Boolean network models under the asynchronous update mode, specifically in the context of cellular reprogramming. To solve it, we devise GATTACA, a scalable computational framework. To facilitate scalability of our framework, we consider previously introduced concept of a pseudo-attractor and improve the procedure for effective identification of pseudo-attractor states. We then incorporate graph neural networks with graph convolution operations into the artificial neural network approximator of the DRL agent's action-value function. This allows us to leverage the available knowledge on the structure of a biological system and to indirectly, yet effectively, encode the system's modelled dynamics into a latent representation. Experiments on several large-scale, real-world biological networks from the literature demonstrate the scalability and effectiveness of our approach.
♻ ☆ Robust Reinforcement Learning from Human Feedback for Large Language Models Fine-Tuning
Reinforcement learning from human feedback (RLHF) has emerged as a key technique for aligning the output of large language models (LLMs) with human preferences. To learn the reward function, most existing RLHF algorithms use the Bradley-Terry model, which relies on assumptions about human preferences that may not reflect the complexity and variability of real-world judgments. In this paper, we propose a robust algorithm to enhance the performance of existing approaches under such reward model misspecifications. Theoretically, our algorithm reduces the variance of reward and policy estimators, leading to improved regret bounds. Empirical evaluations on LLM benchmark datasets demonstrate that the proposed algorithm consistently outperforms existing methods, with 77-81% of responses being favored over baselines on the Anthropic Helpful and Harmless dataset. The code is available at https:// github.com/ VRPO/ VRPO.
♻ ☆ Physics informed Transformer-VAE for biophysical parameter estimation: PROSAIL model inversion in Sentinel-2 imagery
Accurate retrieval of vegetation biophysical variables from satellite imagery is crucial for ecosystem monitoring and agricultural management. In this work, we propose a physics-informed Transformer-VAE architecture to invert the PROSAIL radiative transfer model for simultaneous estimation of key canopy parameters from Sentinel-2 data. Unlike previous hybrid approaches that require real satellite images for self-supevised training. Our model is trained exclusively on simulated data, yet achieves performance on par with state-of-the-art methods that utilize real imagery. The Transformer-VAE incorporates the PROSAIL model as a differentiable physical decoder, ensuring that inferred latent variables correspond to physically plausible leaf and canopy properties. We demonstrate retrieval of leaf area index (LAI) and canopy chlorophyll content (CCC) on real-world field datasets (FRM4Veg and BelSAR) with accuracy comparable to models trained with real Sentinel-2 data. Our method requires no in-situ labels or calibration on real images, offering a cost-effective and self-supervised solution for global vegetation monitoring. The proposed approach illustrates how integrating physical models with advanced deep networks can improve the inversion of RTMs, opening new prospects for large-scale, physically-constrained remote sensing of vegetation traits.
comment: 10 pages, 6 figures, uses fancyhdr.sty
♻ ☆ Policy Zooming: Adaptive Discretization-based Infinite-Horizon Average-Reward Reinforcement Learning
We study the infinite-horizon average-reward reinforcement learning (RL) for continuous space Lipschitz MDPs in which an agent can play policies from a given set $Φ$. The proposed algorithms efficiently explore the policy space by ''zooming'' into the ''promising regions'' of $Φ$, thereby achieving adaptivity gains in the performance. We upper bound their regret as $\tilde{\mathcal{O}}\big(T^{1 - d_{\text{eff.}}^{-1}}\big)$, where $d_{\text{eff.}} = d^Φ_z+2$ for model-free algoritahm $\textit{PZRL-MF}$ and $d_{\text{eff.}} = 2d_\mathcal{S} + d^Φ_z + 3$ for model-based algorithm $\textit{PZRL-MB}$. Here, $d_\mathcal{S}$ is the dimension of the state space, and $d^Φ_z$ is the zooming dimension given a set of policies $Φ$. $d^Φ_z$ is an alternative measure of the complexity of the problem, and it depends on the underlying MDP as well as on $Φ$. Hence, the proposed algorithms exhibit low regret in case the problem instance is benign and/or the agent competes against a low-complexity $Φ$ (that has a small $d^Φ_z$). When specialized to the case of finite-dimensional policy space, we obtain that $d_{\text{eff.}}$ scales as the dimension of this space under mild technical conditions; and also obtain $d_{\text{eff.}} = 2$, or equivalently $\tilde{\mathcal{O}}(\sqrt{T})$ regret for $\textit{PZRL-MF}$, under a curvature condition on the average reward function that is commonly used in the multi-armed bandit (MAB) literature.
comment: 38 pages, 3 figures
♻ ☆ Infrequent Resolving Algorithm for Online Linear Programming
Online linear programming (OLP) has gained significant attention from both researchers and practitioners due to its extensive applications, such as online auction, network revenue management, order fulfillment and advertising. Existing OLP algorithms fall into two categories: LP-based algorithms and LP-free algorithms. The former one typically guarantees better performance but requires solving a large number of LPs, which could be computationally expensive. In contrast, LP-free algorithm only requires first-order computations but induces a worse performance. In this work, we bridge the gap between these two extremes by proposing a well-performing algorithm, that solves LPs at a few selected time points and conducts first-order computations at other time points. Specifically, for the case where the inputs are drawn from an unknown finite-support distribution, the proposed algorithm achieves a constant regret (even for the hard "degenerate" case) while solving LPs only O(log log T) times over the time horizon T. Moreover, when we are allowed to solve LPs only M times, we design the corresponding schedule such that the proposed algorithm can guarantee a nearly O(T^((1/2)^(M-1)) regret. Our work highlights the value of resolving both at the beginning and the end of the selling horizon, and provides a novel framework to prove the performance guarantee of the proposed policy under different infrequent resolving schedules. Numerical experiments are conducted to demonstrate the efficiency of the proposed algorithms.
comment: With very few resolvings, we can achieve constant regret (even without the non-degeneracy assumption) for OLP and NRM problems
♻ ☆ Neutron Reflectometry by Gradient Descent
Neutron reflectometry (NR) is a powerful technique to probe surfaces and interfaces. NR is inherently an indirect measurement technique, access to the physical quantities of interest (layer thickness, scattering length density, roughness), necessitate the solution of an inverse modelling problem, that is inefficient for large amounts of data or complex multiplayer structures (e.g. lithium batteries / electrodes). Recently, surrogate machine learning models have been proposed as an alternative to existing optimisation routines. Although such approaches have been successful, physical intuition is lost when replacing governing equations with fast neural networks. Instead, we propose a novel and efficient approach; to optimise reflectivity data analysis by performing gradient descent on the forward reflection model itself. Herein, automatic differentiation techniques are used to evaluate exact gradients of the error function with respect to the parameters of interest. Access to these quantities enables users of neutron reflectometry to harness a host of powerful modern optimisation and inference techniques that remain thus far unexploited in the context of neutron reflectometry. This paper presents two benchmark case studies; demonstrating state-of-the-art performance on a thick oxide quartz film, and robust co-fitting performance in the high complexity regime of organic LED multilayer devices. Additionally, we provide an open-source library of differentiable reflectometry kernels in the python programming language so that gradient based approaches can readily be applied to other NR datasets.
♻ ☆ Unintended Misalignment from Agentic Fine-Tuning: Risks and Mitigation AAAI 2026
Beyond simple text generation, Large Language Models (LLMs) have evolved into agentic systems capable of planning and interacting with external tools to solve complex tasks. This evolution involves fine-tuning LLMs on agent-specific tasks to enhance their proficiency. However, safety concerns are frequently overlooked during this fine-tuning process. In this work, we show that aligned LLMs can become unintentionally misaligned, leading to a higher likelihood of executing harmful tasks and a reduced tendency to refuse them when fine-tuned to execute agentic tasks. To address these safety challenges, we propose Prefix INjection Guard (PING), a simple yet effective method that prepends automatically generated natural language prefixes to agent responses, guiding them to refuse harmful requests while preserving performance on benign tasks. Specifically, we introduce an iterative approach that alternates between (1) generating candidate prefixes and (2) selecting those that optimize both task performance and refusal behavior. Experimental results demonstrate that PING significantly enhances the safety of fine-tuned LLM agents without sacrificing their effectiveness. PING consistently outperforms existing prompting approaches across diverse benchmarks in both web navigation and code generation tasks. Our analysis of internal hidden states via linear probes reveals that prefix tokens are crucial for behavior modification, explaining the performance gains. WARNING: This paper contains contents that are unethical or offensive in nature.
comment: Accepted at AAAI 2026 AI Alignment Track, Source code: https://github.com/HahmDY/agentic-ft-safety
♻ ☆ PASS: Probabilistic Agentic Supernet Sampling for Interpretable and Adaptive Chest X-Ray Reasoning
Existing tool-augmented agentic systems are limited in the real world by (i) black-box reasoning steps that undermine trust of decision-making and pose safety risks, (ii) poor multimodal integration, which is inherently critical for healthcare tasks, and (iii) rigid and computationally inefficient agentic pipelines. We introduce PASS (Probabilistic Agentic Supernet Sampling), the first multimodal framework to address these challenges in the context of Chest X-Ray (CXR) reasoning. PASS adaptively samples agentic workflows over a multi-tool graph, yielding decision paths annotated with interpretable probabilities. Given the complex CXR reasoning task with multimodal medical data, PASS leverages its learned task-conditioned distribution over the agentic supernet. Thus, it adaptively selects the most suitable tool at each supernet layer, offering probability-annotated trajectories for post-hoc audits and directly enhancing medical AI safety. PASS also continuously compresses salient findings into an evolving personalized memory, while dynamically deciding whether to deepen its reasoning path or invoke an early exit for efficiency. To optimize a Pareto frontier balancing performance and cost, we design a novel three-stage training procedure, including expert knowledge warm-up, contrastive path-ranking, and cost-aware reinforcement learning. To facilitate rigorous evaluation, we introduce CAB-E, a comprehensive benchmark for multi-step, safety-critical, free-form CXR reasoning. Experiments across various benchmarks validate that PASS significantly outperforms strong baselines in multiple metrics (e.g., accuracy, AUC, LLM-J.) while balancing computational costs, pushing a new paradigm shift towards interpretable, adaptive, and multimodal medical agentic systems.
♻ ☆ Individualised Treatment Effects Estimation with Composite Treatments and Composite Outcomes
Estimating individualised treatment effect (ITE) -- that is the causal effect of a set of variables (also called exposures, treatments, actions, policies, or interventions), referred to as \textit{composite treatments}, on a set of outcome variables of interest, referred to as \textit{composite outcomes}, for a unit from observational data -- remains a fundamental problem in causal inference with applications across disciplines, such as healthcare, economics, education, social science, marketing, and computer science. Previous work in causal machine learning for ITE estimation is limited to simple settings, like single treatments and single outcomes. This hinders their use in complex real-world scenarios; for example, consider studying the effect of different ICU interventions, such as beta-blockers and statins for a patient admitted for heart surgery, on different outcomes of interest such as atrial fibrillation and in-hospital mortality. The limited research into composite treatments and outcomes is primarily due to data scarcity for all treatments and outcomes. To address the above challenges, we propose a novel and innovative hypernetwork-based approach, called \emph{H-Learner}, to solve ITE estimation under composite treatments and composite outcomes, which tackles the data scarcity issue by dynamically sharing information across treatments and outcomes. Our empirical analysis with binary and arbitrary composite treatments and outcomes demonstrates the effectiveness of the proposed approach compared to existing methods.
comment: Accepted to The 47th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (7 pages (double column), 4 figures)
♻ ☆ Global universal approximation of functional input maps on weighted spaces
We introduce so-called functional input neural networks defined on a possibly infinite dimensional weighted space with values also in a possibly infinite dimensional output space. To this end, we use an additive family to map the input weighted space to the hidden layer, on which a non-linear scalar activation function is applied to each neuron, and finally return the output via some linear readouts. Relying on Stone-Weierstrass theorems on weighted spaces, we can prove a global universal approximation result on weighted spaces for continuous functions going beyond the usual approximation on compact sets. This then applies in particular to approximation of (non-anticipative) path space functionals via functional input neural networks. As a further application of the weighted Stone-Weierstrass theorem we prove a global universal approximation result for linear functions of the signature. We also introduce the viewpoint of Gaussian process regression in this setting and emphasize that the reproducing kernel Hilbert space of the signature kernels are Cameron-Martin spaces of certain Gaussian processes. This paves a way towards uncertainty quantification for signature kernel regression.
comment: 71 pages, 4 figures
♻ ☆ Virtual Width Networks
We introduce Virtual Width Networks (VWN), a framework that delivers the benefits of wider representations without incurring the quadratic cost of increasing the hidden size. VWN decouples representational width from backbone width, expanding the embedding space while keeping backbone compute nearly constant. In our large-scale experiment, an 8-times expansion accelerates optimization by over 2 times for next-token and 3 times for next-2-token prediction. The advantage amplifies over training as both the loss gap grows and the convergence-speedup ratio increases, showing that VWN is not only token-efficient but also increasingly effective with scale. Moreover, we identify an approximately log-linear scaling relation between virtual width and loss reduction, offering an initial empirical basis and motivation for exploring virtual-width scaling as a new dimension of large-model efficiency.
♻ ☆ On the emergence of numerical instabilities in Next Generation Reservoir Computing
Next Generation Reservoir Computing (NGRC) is a low-cost machine learning method for forecasting chaotic time series from data. Computational efficiency is crucial for scalable reservoir computing, requiring better strategies to reduce training cost. In this work, we uncover a connection between the numerical conditioning of the NGRC feature matrix -- formed by polynomial evaluations on time-delay coordinates -- and the long-term NGRC dynamics. We show that NGRC can be trained without regularization, reducing computational time. Our contributions are twofold. First, merging tools from numerical linear algebra and ergodic theory of dynamical systems, we systematically study how the feature matrix conditioning varies across hyperparameters. We demonstrate that the NGRC feature matrix tends to be ill-conditioned for short time lags, high-degree polynomials, and short length of training data. Second, we evaluate the impact of different numerical algorithms (Cholesky, singular value decomposition (SVD), and lower-upper (LU) decomposition) for solving the regularized least-squares problem. Our results reveal that SVD-based training achieves accurate forecasts without regularization, being preferable when compared against the other algorithms.
comment: 23 pages, 14 figures
♻ ☆ Deep deterministic policy gradient with symmetric data augmentation for lateral attitude tracking control of a fixed-wing aircraft
The symmetry of dynamical systems can be exploited for state-transition prediction and to facilitate control policy optimization. This paper leverages system symmetry to develop sample-efficient offline reinforcement learning (RL) approaches. Under the symmetry assumption for a Markov Decision Process (MDP), a symmetric data augmentation method is proposed. The augmented samples are integrated into the dataset of Deep Deterministic Policy Gradient (DDPG) to enhance its coverage rate of the state-action space. Furthermore, sample utilization efficiency is improved by introducing a second critic trained on the augmented samples, resulting in a dual-critic structure. The aircraft's model is verified to be symmetric, and flight control simulations demonstrate accelerated policy convergence when augmented samples are employed.
♻ ☆ Dynamic and Distributed Routing in IoT Networks based on Multi-Objective Q-Learning
IoT networks often face conflicting routing goals such as maximizing packet delivery, minimizing delay, and conserving limited battery energy. These priorities can also change dynamically: for example, an emergency alert requires high reliability, while routine monitoring prioritizes energy efficiency to prolong network lifetime. Existing works, including many deep reinforcement learning approaches, are typically centralized and assume static objectives, making them slow to adapt when preferences shift. We propose a dynamic and fully distributed multi-objective Q-learning routing algorithm that learns multiple per-preference Q-tables in parallel and introduces a novel greedy interpolation policy to act near-optimally for unseen preferences without retraining or central coordination. A theoretical analysis further shows that the optimal value function is Lipschitz-continuous in the preference parameter, ensuring that the proposed greedy interpolation policy yields provably near-optimal behavior. Simulations show that our approach adapts in real time to shifting priorities and achieves up to 80-90\% lower energy consumption and more than 2-5x higher cumulative rewards and packet delivery compared to six baseline protocols. These results demonstrate significant gains in adaptability, delivery, and efficiency for dynamic IoT environments.
♻ ☆ An Improved Privacy and Utility Analysis of Differentially Private SGD with Bounded Domain and Smooth Losses AAAI 2026
Differentially Private Stochastic Gradient Descent (DPSGD) is widely used to protect sensitive data during the training of machine learning models, but its privacy guarantee often comes at a large cost of model performance due to the lack of tight theoretical bounds quantifying privacy loss. While recent efforts have achieved more accurate privacy guarantees, they still impose some assumptions prohibited from practical applications, such as convexity and complex parameter requirements, and rarely investigate in-depth the impact of privacy mechanisms on the model's utility. In this paper, we provide a rigorous privacy characterization for DPSGD with general L-smooth and non-convex loss functions, revealing converged privacy loss with iteration in bounded-domain cases. Specifically, we track the privacy loss over multiple iterations, leveraging the noisy smooth-reduction property, and further establish comprehensive convergence analysis in different scenarios. In particular, we show that for DPSGD with a bounded domain, (i) the privacy loss can still converge without the convexity assumption, (ii) a smaller bounded diameter can improve both privacy and utility simultaneously under certain conditions, and (iii) the attainable big-O order of the privacy utility trade-off for DPSGD with gradient clipping (DPSGD-GC) and for DPSGD-GC with bounded domain (DPSGD-DC) and mu-strongly convex population risk function, respectively. Experiments via membership inference attack (MIA) in a practical setting validate insights gained from the theoretical results.
comment: 19 pages, 5 figures, accepted by AAAI 2026
♻ ☆ Near-Optimal Reinforcement Learning with Shuffle Differential Privacy
Reinforcement learning (RL) is a powerful tool for sequential decision-making, but its application is often hindered by privacy concerns arising from its interaction data. This challenge is particularly acute in advanced networked systems, where learning from operational and user data can expose systems to privacy inference attacks. Existing differential privacy (DP) models for RL are often inadequate: the centralized model requires a fully trusted server, creating a single point of failure risk, while the local model incurs significant performance degradation that is unsuitable for many networked applications. This paper addresses this gap by leveraging the emerging shuffle model of privacy, an intermediate trust model that provides strong privacy guarantees without a centralized trust assumption. We present Shuffle Differentially Private Policy Elimination (SDP-PE), the first generic policy elimination-based algorithm for episodic RL under the shuffle model. Our method introduces a novel exponential batching schedule and a ``forgetting'' mechanism to balance the competing demands of privacy and learning performance. Our analysis shows that SDP-PE achieves a near-optimal regret bound, demonstrating a superior privacy-regret trade-off with utility comparable to the centralized model while significantly outperforming the local model. The numerical experiments also corroborate our theoretical results and demonstrate the effectiveness of SDP-PE. This work establishes the viability of the shuffle model for secure data-driven decision-making in networked systems.
♻ ☆ Early Classification of Time Series: A Survey and Benchmark
In many situations, the measurements of a studied phenomenon are provided sequentially, and the prediction of its class needs to be made as early as possible so as not to incur too high a time penalty, but not too early and risk paying the cost of misclassification. This problem has been particularly studied in the case of time series, and is known as Early Classification of Time Series (ECTS). Although it has been the subject of a growing body of literature, there is still a lack of a systematic, shared evaluation protocol to compare the relative merits of the various existing methods. In this paper, we highlight the two components of an ECTS system: decision and prediction, and focus on the approaches that separate them. This document begins by situating these methods within a principle-based taxonomy. It defines dimensions for organizing their evaluation and then reports the results of a very extensive set of experiments along these dimensions involving nine state-of-the-art ECTS algorithms. In addition, these and other experiments can be carried out using an open-source library in which most of the existing ECTS algorithms have been implemented (see https://github.com/ML-EDM/ml_edm).
♻ ☆ Ken Utilization Layer: Hebbian Replay Within a Student's Ken for Adaptive Exercise Recommendation
Adaptive exercise recommendation (ER) aims to choose the next activity that matches a learner's evolving Zone of Proximal Development (ZPD). We present KUL-Rec, a biologically inspired ER system that couples a fast Hebbian memory with slow replay-based consolidation to enable continual, few-shot personalization from sparse interactions. The model operates in an embedding space, allowing a single architecture to handle both tabular knowledge-tracing logs and open-ended short-answer text. We align evaluation with tutoring needs using bidirectional ranking and rank-sensitive metrics (nDCG, Recall@K). Across ten public datasets, KUL-Rec improves macro nDCG (0.316 vs. 0.265 for the strongest baseline) and Recall@10 (0.305 vs. 0.211), while achieving low inference latency and an $\approx99$\% reduction in peak GPU memory relative to a competitive graph-based model. In a 13-week graduate course, KUL-Rec personalized weekly short-answer quizzes generated by a retrieval-augmented pipeline and the personalized quizzes were associated with lower perceived difficulty and higher helpfulness (p < .05). An embedding robustness audit highlights that encoder choice affects semantic alignment, motivating routine audits when deploying open-response assessment. Together, these results indicate that Hebbian replay with bounded consolidation offers a practical path to real-time, interpretable ER that scales across data modalities and classroom settings.
♻ ☆ Meta-Learning an In-Context Transformer Model of Human Higher Visual Cortex NeurIPS 2025
Understanding functional representations within higher visual cortex is a fundamental question in computational neuroscience. While artificial neural networks pretrained on large-scale datasets exhibit striking representational alignment with human neural responses, learning image-computable models of visual cortex relies on individual-level, large-scale fMRI datasets. The necessity for expensive, time-intensive, and often impractical data acquisition limits the generalizability of encoders to new subjects and stimuli. BraInCoRL uses in-context learning to predict voxelwise neural responses from few-shot examples without any additional finetuning for novel subjects and stimuli. We leverage a transformer architecture that can flexibly condition on a variable number of in-context image stimuli, learning an inductive bias over multiple subjects. During training, we explicitly optimize the model for in-context learning. By jointly conditioning on image features and voxel activations, our model learns to directly generate better performing voxelwise models of higher visual cortex. We demonstrate that BraInCoRL consistently outperforms existing voxelwise encoder designs in a low-data regime when evaluated on entirely novel images, while also exhibiting strong test-time scaling behavior. The model also generalizes to an entirely new visual fMRI dataset, which uses different subjects and fMRI data acquisition parameters. Further, BraInCoRL facilitates better interpretability of neural signals in higher visual cortex by attending to semantically relevant stimuli. Finally, we show that our framework enables interpretable mappings from natural language queries to voxel selectivity.
comment: Accepted to NeurIPS 2025. Website: https://github.com/leomqyu/BraInCoRL
♻ ☆ Learning Operators by Regularized Stochastic Gradient Descent with Operator-valued Kernels
We consider a class of statistical inverse problems involving the estimation of a regression operator from a Polish space to a separable Hilbert space, where the target lies in a vector-valued reproducing kernel Hilbert space induced by an operator-valued kernel. To address the associated ill-posedness, we analyze regularized stochastic gradient descent (SGD) algorithms in both online and finite-horizon settings. The former uses polynomially decaying step sizes and regularization parameters, while the latter adopts fixed values. Under suitable structural and distributional assumptions, we establish dimension-independent bounds for prediction and estimation errors. The resulting convergence rates are near-optimal in expectation, and we also derive high-probability estimates that imply almost sure convergence. Our analysis introduces a general technique for obtaining high-probability guarantees in infinite-dimensional settings. Possible extensions to broader kernel classes and encoder-decoder structures are briefly discussed.
comment: 56 pages, 2 figures
♻ ☆ Convergence of Regret Matching in Potential Games and Constrained Optimization
Regret matching (RM) -- and its modern variants -- is a foundational online algorithm that has been at the heart of many AI breakthrough results in solving benchmark zero-sum games, such as poker. Yet, surprisingly little is known so far in theory about its convergence beyond two-player zero-sum games. For example, whether regret matching converges to Nash equilibria in potential games has been an open problem for two decades. Even beyond games, one could try to use RM variants for general constrained optimization problems. Recent empirical evidence suggests that they -- particularly regret matching$^+$ (RM$^+$) -- attain strong performance on benchmark constrained optimization problems, outperforming traditional gradient descent-type algorithms. We show that RM$^+$ converges to an $ε$-KKT point after $O_ε(1/ε^4)$ iterations, establishing for the first time that it is a sound and fast first-order optimizer. Our argument relates the KKT gap to the accumulated regret, two quantities that are entirely disparate in general but interact in an intriguing way in our setting, so much so that when regrets are bounded, our complexity bound improves all the way to $O_ε(1/ε^2)$. From a technical standpoint, while RM$^+$ does not have the usual one-step improvement property in general, we show that it does in a certain region that the algorithm will quickly reach and remain in thereafter. In sharp contrast, our second main result establishes a lower bound: RM, with or without alternation, can take an exponential number of iterations to reach a crude approximate solution even in two-player potential games. This represents the first worst-case separation between RM and RM$^+$. Our lower bound shows that convergence to coarse correlated equilibria in potential games is exponentially faster than convergence to Nash equilibria.
comment: V2 extends the convergence bounds to simultaneous RM+
♻ ☆ Conditional Information Bottleneck for Multimodal Fusion: Overcoming Shortcut Learning in Sarcasm Detection AAAI 2026
Multimodal sarcasm detection is a complex task that requires distinguishing subtle complementary signals across modalities while filtering out irrelevant information. Many advanced methods rely on learning shortcuts from datasets rather than extracting intended sarcasm-related features. However, our experiments show that shortcut learning impairs the model's generalization in real-world scenarios. Furthermore, we reveal the weaknesses of current modality fusion strategies for multimodal sarcasm detection through systematic experiments, highlighting the necessity of focusing on effective modality fusion for complex emotion recognition. To address these challenges, we construct MUStARD++$^{R}$ by removing shortcut signals from MUStARD++. Then, a Multimodal Conditional Information Bottleneck (MCIB) model is introduced to enable efficient multimodal fusion for sarcasm detection. Experimental results show that the MCIB achieves the best performance without relying on shortcut learning.
comment: Accepted at AAAI 2026 Conference
♻ ☆ NeuralOM: Neural Ocean Model for Subseasonal-to-Seasonal Simulation
Long-term, high-fidelity simulation of slow-changing physical systems, such as the ocean and climate, presents a fundamental challenge in scientific computing. Traditional autoregressive machine learning models often fail in these tasks as minor errors accumulate and lead to rapid forecast degradation. To address this problem, we propose NeuralOM, a general neural operator framework designed for simulating complex, slow-changing dynamics. NeuralOM's core consists of two key innovations: (1) a Progressive Residual Correction Framework that decomposes the forecasting task into a series of fine-grained refinement steps, effectively suppressing long-term error accumulation; and (2) a Physics-Guided Graph Network whose built-in adaptive messaging mechanism explicitly models multi-scale physical interactions, such as gradient-driven flows and multiplicative couplings, thereby enhancing physical consistency while maintaining computational efficiency. We validate NeuralOM on the challenging task of global Subseasonal-to-Seasonal (S2S) ocean simulation. Extensive experiments demonstrate that NeuralOM not only surpasses state-of-the-art models in forecast accuracy and long-term stability, but also excels in simulating extreme events. For instance, at a 60-day lead time, NeuralOM achieves a 13.3% lower RMSE compared to the best-performing baseline, offering a stable, efficient, and physically-aware paradigm for data-driven scientific computing. Code link: https://github.com/YuanGao-YG/NeuralOM.
♻ ☆ Quantum Neural Networks in Practice: A Comparative Study with Classical Models from Standard Data Sets to Industrial Images
We compare the performance of randomized classical and quantum neural networks (NNs) as well as classical and quantum-classical hybrid convolutional neural networks (CNNs) for the task of supervised binary image classification. We keep the employed quantum circuits compatible with near-term quantum devices and use two distinct methodologies: applying randomized NNs on dimensionality-reduced data and applying CNNs to full image data. We evaluate these approaches on three fully-classical data sets of increasing complexity: an artificial hypercube data set, MNIST handwritten digits and industrial images. Our central goal is to shed more light on how quantum and classical models perform for various binary classification tasks and on what defines a good quantum model. Our study involves a correlation analysis between classification accuracy and quantum model hyperparameters, and an analysis on the role of entanglement in quantum models, as well as on the impact of initial training parameters. We find classical and quantum-classical hybrid models achieve statistically-equivalent classification accuracies across most data sets with no approach consistently outperforming the other. Interestingly, we observe that quantum NNs show lower variance with respect to initial training parameters and that the role of entanglement is nuanced. While incorporating entangling gates seems advantageous, we also observe the (optimizable) entangling power not to be correlated with model performance. We also observe an inverse proportionality between the number of entangling gates and the average gate entangling power. Our study provides an industry perspective on quantum machine learning for binary image classification tasks, highlighting both limitations and potential avenues for further research in quantum circuit design, entanglement utilization, and model transferability across varied applications.
comment: 26 pages, 12 figures
♻ ☆ Why Cannot Neural Networks Master Extrapolation? Insights from Physical Laws
Motivated by the remarkable success of Foundation Models (FMs) in language modeling, there has been growing interest in developing FMs for time series prediction, given the transformative power such models hold for science and engineering. This culminated in significant success of FMs in short-range forecasting settings. However, extrapolation or long-range forecasting remains elusive for FMs, which struggle to outperform even simple baselines. This contrasts with physical laws which have strong extrapolation properties, and raises the question of the fundamental difference between the structure of neural networks and physical laws. In this work, we identify and formalize a fundamental property characterizing the ability of statistical learning models to predict more accurately outside of their training domain, hence explaining performance deterioration for deep learning models in extrapolation settings. In addition to a theoretical analysis, we present empirical results showcasing the implications of this property on current deep learning architectures. Our results not only clarify the root causes of the extrapolation gap but also suggest directions for designing next-generation forecasting models capable of mastering extrapolation.
♻ ☆ Learning Quantized Continuous Controllers for Integer Hardware
Deploying continuous-control reinforcement learning policies on embedded hardware requires meeting tight latency and power budgets. Small FPGAs can deliver these, but only if costly floating point pipelines are avoided. We study quantization-aware training (QAT) of policies for integer inference and we present a learning-to-hardware pipeline that automatically selects low-bit policies and synthesizes them to an Artix-7 FPGA. Across five MuJoCo tasks, we obtain policy networks that are competitive with full precision (FP32) policies but require as few as 3 or even only 2 bits per weight, and per internal activation value, as long as input precision is chosen carefully. On the target hardware, the selected policies achieve inference latencies on the order of microseconds and consume microjoules per action, favorably comparing to a quantized reference. Last, we observe that the quantized policies exhibit increased input noise robustness compared to the floating-point baseline.
comment: 17 pages, 6 figures
♻ ☆ A Unified Convergence Analysis for Semi-Decentralized Learning: Sampled-to-Sampled vs. Sampled-to-All Communication AAAI 2026
In semi-decentralized federated learning, devices primarily rely on device-to-device communication but occasionally interact with a central server. Periodically, a sampled subset of devices uploads their local models to the server, which computes an aggregate model. The server can then either (i) share this aggregate model only with the sampled clients (sampled-to-sampled, S2S) or (ii) broadcast it to all clients (sampled-to-all, S2A). Despite their practical significance, a rigorous theoretical and empirical comparison of these two strategies remains absent. We address this gap by analyzing S2S and S2A within a unified convergence framework that accounts for key system parameters: sampling rate, server aggregation frequency, and network connectivity. Our results, both analytical and experimental, reveal distinct regimes where one strategy outperforms the other, depending primarily on the degree of data heterogeneity across devices. These insights lead to concrete design guidelines for practical semi-decentralized FL deployments.
comment: Accepted as a conference paper at AAAI 2026 (oral presentation). This is the extended version including the appendix
♻ ☆ Can Linear Probes Measure LLM Uncertainty?
Effective Uncertainty Quantification (UQ) represents a key aspect for reliable deployment of Large Language Models (LLMs) in automated decision-making and beyond. Yet, for LLM generation with multiple choice structure, the state-of-the-art in UQ is still dominated by the naive baseline given by the maximum softmax score. To address this shortcoming, we demonstrate that taking a principled approach via Bayesian statistics leads to improved performance despite leveraging the simplest possible model, namely linear regression. More precisely, we propose to train multiple Bayesian linear models, each predicting the output of a layer given the output of the previous one. Based on the obtained layer-level posterior distributions, we infer the global uncertainty level of the LLM by identifying a sparse combination of distributional features, leading to an efficient UQ scheme. Numerical experiments on various LLMs show consistent improvement over state-of-the-art baselines.
♻ ☆ A comprehensive and easy-to-use multi-domain multi-task medical imaging meta-dataset
While the field of medical image analysis has undergone a transformative shift with the integration of machine learning techniques, the main challenge of these techniques is often the scarcity of large, diverse, and well-annotated datasets. Medical images vary in format, size, and other parameters and therefore require extensive preprocessing and standardization, for usage in machine learning. Addressing these challenges, we introduce the Medical Imaging Meta-Dataset (MedIMeta), a novel multi-domain, multi-task meta-dataset. MedIMeta contains 19 medical imaging datasets spanning 10 different domains and encompassing 54 distinct medical tasks, all of which are standardized to the same format and readily usable in PyTorch or other ML frameworks. We perform a technical validation of MedIMeta, demonstrating its utility through fully supervised and cross-domain few-shot learning baselines.
♻ ☆ Practical Global and Local Bounds in Gaussian Process Regression via Chaining AAAI2026
Gaussian process regression (GPR) is a popular nonparametric Bayesian method that provides predictive uncertainty estimates and is widely used in safety-critical applications. While prior research has introduced various uncertainty bounds, most existing approaches require access to specific input features, and rely on posterior mean and variance estimates or the tuning of hyperparameters. These limitations hinder robustness and fail to capture the model's global behavior in expectation. To address these limitations, we propose a chaining-based framework for estimating upper and lower bounds on the expected extreme values over unseen data, without requiring access to specific input features. We provide kernel-specific refinements for commonly used kernels such as RBF and Matérn, in which our bounds are tighter than generic constructions. We further improve numerical tightness by avoiding analytical relaxations. In addition to global estimation, we also develop a novel method for local uncertainty quantification at specified inputs. This approach leverages chaining geometry through partition diameters, adapting to local structures without relying on posterior variance scaling. Our experimental results validate the theoretical findings and demonstrate that our method outperforms existing approaches on both synthetic and real-world datasets.
comment: Accepted as a conference paper at AAAI2026
♻ ☆ Appa: Bending Weather Dynamics with Latent Diffusion Models for Global Data Assimilation
Deep learning has advanced weather forecasting, but accurate predictions first require identifying the current state of the atmosphere from observational data. In this work, we introduce Appa, a score-based data assimilation model generating global atmospheric trajectories at 0.25\si{\degree} resolution and 1-hour intervals. Powered by a 565M-parameter latent diffusion model trained on ERA5, Appa can be conditioned on arbitrary observations to infer plausible trajectories, without retraining. Our probabilistic framework handles reanalysis, filtering, and forecasting, within a single model, producing physically consistent reconstructions from various inputs. Results establish latent score-based data assimilation as a promising foundation for future global atmospheric modeling systems.
♻ ☆ Hierarchical Generalized Category Discovery for Brain Tumor Classification in Digital Pathology
Accurate brain tumor classification is critical for intra-operative decision making in neuro-oncological surgery. However, existing approaches are restricted to a fixed set of predefined classes and are therefore unable to capture patterns of tumor types not available during training. Unsupervised learning can extract general-purpose features, but it lacks the ability to incorporate prior knowledge from labelled data, and semi-supervised methods often assume that all potential classes are represented in the labelled data. Generalized Category Discovery (GCD) aims to bridge this gap by categorizing both known and unknown classes within unlabelled data. To reflect the hierarchical structure of brain tumor taxonomies, in this work, we introduce Hierarchical Generalized Category Discovery for Brain Tumor Classification (HGCD-BT), a novel approach that integrates hierarchical clustering with contrastive learning. Our method extends contrastive learning based GCD by incorporating a novel semi-supervised hierarchical clustering loss. We evaluate HGCD-BT on OpenSRH, a dataset of stimulated Raman histology brain tumor images, achieving a +28% improvement in accuracy over state-of-the-art GCD methods for patch-level classification, particularly in identifying previously unseen tumor categories. Furthermore, we demonstrate the generalizability of HGCD-BT on slide-level classification of hematoxylin and eosin stained whole-slide images from the Digital Brain Tumor Atlas, confirming its utility across imaging modalities.
♻ ☆ Trace Regularity PINNs: Enforcing $\mathrm{H}^{\frac{1}{2}}(\partial Ω)$ for Boundary Data
We propose an enhanced physics-informed neural network (PINN), the Trace Regularity Physics-Informed Neural Network (TRPINN), which enforces the boundary loss in the Sobolev-Slobodeckij norm $H^{1/2}(\partial Ω)$, the correct trace space associated with $H^1(Ω)$. We reduce computational cost by computing only the theoretically essential portion of the semi-norm and enhance convergence stability by avoiding denominator evaluations in the discretization. By incorporating the exact $H^{1/2}(\partial Ω)$ norm, we show that the approximation converges to the true solution in the $H^{1}(Ω)$ sense, and, through Neural Tangent Kernel (NTK) analysis, we demonstrate that TRPINN can converge faster than standard PINNs. Numerical experiments on the Laplace equation with highly oscillatory Dirichlet boundary conditions exhibit cases where TRPINN succeeds even when standard PINNs fail, and show performance improvements of one to three decimal digits.
♻ ☆ Causality Pursuit from Heterogeneous Environments via Neural Adversarial Invariance Learning
Pursuing causality from data is a fundamental problem in scientific discovery, treatment intervention, and transfer learning. This paper introduces a novel algorithmic method for addressing nonparametric invariance and causality learning in regression models across multiple environments, where the joint distribution of response variables and covariates varies, but the conditional expectations of outcome given an unknown set of quasi-causal variables are invariant. The challenge of finding such an unknown set of quasi-causal or invariant variables is compounded by the presence of endogenous variables that have heterogeneous effects across different environments. The proposed Focused Adversarial Invariant Regularization (FAIR) framework utilizes an innovative minimax optimization approach that drives regression models toward prediction-invariant solutions through adversarial testing. Leveraging the representation power of neural networks, FAIR neural networks (FAIR-NN) are introduced for causality pursuit. It is shown that FAIR-NN can find the invariant variables and quasi-causal variables under a minimal identification condition and that the resulting procedure is adaptive to low-dimensional composition structures in a non-asymptotic analysis. Under a structural causal model, variables identified by FAIR-NN represent pragmatic causality and provably align with exact causal mechanisms under conditions of sufficient heterogeneity. Computationally, FAIR-NN employs a novel Gumbel approximation with decreased temperature and a stochastic gradient descent ascent algorithm. The procedures are demonstrated using simulated and real-data examples.
comment: 112 pages, 9 figures with supplemental materials
♻ ☆ Robust-Multi-Task Gradient Boosting
Multi-task learning (MTL) has shown effectiveness in exploiting shared information across tasks to improve generalization. MTL assumes tasks share similarities that can improve performance. In addition, boosting algorithms have demonstrated exceptional performance across diverse learning problems, primarily due to their ability to focus on hard-to-learn instances and iteratively reduce residual errors. This makes them a promising approach for learning multi-task problems. However, real-world MTL scenarios often involve tasks that are not well-aligned (known as outlier or adversarial tasks), which do not share beneficial similarities with others and can, in fact, deteriorate the performance of the overall model. To overcome this challenge, we propose Robust-Multi-Task Gradient Boosting (R-MTGB), a novel boosting framework that explicitly models and adapts to task heterogeneity during training. R-MTGB structures the learning process into three sequential blocks: (1) learning shared patterns, (2) partitioning tasks into outliers and non-outliers with regularized parameters, and (3) fine-tuning task-specific predictors. This architecture enables R-MTGB to automatically detect and penalize outlier tasks while promoting effective knowledge transfer among related tasks. Our method integrates these mechanisms seamlessly within gradient boosting, allowing robust handling of noisy or adversarial tasks without sacrificing accuracy. Extensive experiments on both synthetic benchmarks and real-world datasets demonstrate that our approach successfully isolates outliers, transfers knowledge, and consistently reduces prediction errors for each task individually, and achieves overall performance gains across all tasks. These results highlight robustness, adaptability, and reliable convergence of R-MTGB in challenging MTL environments.
♻ ☆ Certified Coil Geometry Learning for Short-Range Magnetic Actuation and Spacecraft Docking Application
This paper presents a learning-based framework for approximating an exact magnetic-field interaction model, supported by both numerical and experimental validation. High-fidelity magnetic-field interaction modeling is essential for achieving exceptional accuracy and responsiveness across a wide range of fields, including transportation, energy systems, medicine, biomedical robotics, and aerospace robotics. In aerospace engineering, magnetic actuation has been investigated as a fuel-free solution for multi-satellite attitude and formation control. Although the exact magnetic field can be computed from the Biot-Savart law, the associated computational cost is prohibitive, and prior studies have therefore relied on dipole approximations to improve efficiency. However, these approximations lose accuracy during proximity operations, leading to unstable behavior and even collisions. To address this limitation, we develop a learning-based approximation framework that faithfully reproduces the exact field while dramatically reducing computational cost. The proposed method additionally provides a certified error bound, derived from the number of training samples, ensuring reliable prediction accuracy. The learned model can also accommodate interactions between coils of different sizes through appropriate geometric transformations, without retraining. To verify the effectiveness of the proposed framework under challenging conditions, a spacecraft docking scenario is examined through both numerical simulations and experimental validation.
comment: Submitted to IEEE Robotics and Automation Letters
♻ ☆ Nearest Neighbor Projection Removal Adversarial Training
Deep neural networks have exhibited impressive performance in image classification tasks but remain vulnerable to adversarial examples. Standard adversarial training enhances robustness but typically fails to explicitly address inter-class feature overlap, a significant contributor to adversarial susceptibility. In this work, we introduce a novel adversarial training framework that actively mitigates inter-class proximity by projecting out inter-class dependencies from adversarial and clean samples in the feature space. Specifically, our approach first identifies the nearest inter-class neighbors for each adversarial sample and subsequently removes projections onto these neighbors to enforce stronger feature separability. Theoretically, we demonstrate that our proposed logits correction reduces the Lipschitz constant of neural networks, thereby lowering the Rademacher complexity, which directly contributes to improved generalization and robustness. Extensive experiments across standard benchmarks including CIFAR-10, CIFAR-100, and SVHN show that our method demonstrates strong performance that is competitive with leading adversarial training techniques, highlighting significant achievements in both robust and clean accuracy. Our findings reveal the importance of addressing inter-class feature proximity explicitly to bolster adversarial robustness in DNNs.
♻ ☆ Compress, Gather, and Recompute: REFORMing Long-Context Processing in Transformers NeurIPS 2025
As large language models increasingly gain popularity in real-world applications, processing extremely long contexts, often exceeding the model's pre-trained context limits, has emerged as a critical challenge. While existing approaches to efficient long-context processing show promise, recurrent compression-based methods struggle with information preservation, whereas random access approaches require substantial memory resources. We introduce REFORM, a novel inference framework that efficiently handles long contexts through a two-phase approach. First, it incrementally processes input chunks while maintaining a compressed KV cache, constructs cross-layer context embeddings, and utilizes early exit strategy for improved efficiency. Second, it identifies and gathers essential tokens via similarity matching and selectively recomputes the KV cache. Compared to baselines, REFORM achieves over 52% and 34% performance gains on RULER and BABILong respectively at 1M context length. It also outperforms baselines on Infinite-Bench, RepoEval, and MM-NIAH, demonstrating flexibility across diverse tasks and domains. Additionally, REFORM reduces inference time by 30% and peak memory usage by 5%, achieving both efficiency and superior performance.
comment: NeurIPS 2025
♻ ☆ Time-Series-Informed Closed-loop Learning for Sequential Decision Making and Control
Closed-loop performance of sequential decision making algorithms, such as model predictive control, depends strongly on the choice of controller parameters. Bayesian optimization allows learning of parameters from closed-loop experiments, but standard Bayesian optimization treats this as a black-box problem and ignores the temporal structure of closed-loop trajectories, leading to slow convergence and inefficient use of experimental resources. We propose a time-series-informed multi-fidelity Bayesian optimization framework that aligns the fidelity dimension with closed-loop time, enabling intermediate performance evaluations within a closed-loop experiment to be incorporated as lower-fidelity observations. Additionally, we derive probabilistic early stopping criteria to terminate unpromising closed-loop experiments based on the surrogate model's posterior belief, avoiding full episodes for poor parameterizations and thereby reducing resource usage. Simulation results on a nonlinear control benchmark demonstrate that, compared to standard black-box Bayesian optimization approaches, the proposed method achieves comparable closed-loop performance with roughly half the experimental resources, and yields better final performance when using the same resource budget, highlighting the value of exploiting temporal structure for sample-efficient closed-loop controller tuning.
comment: 7 pages, 3 figures
♻ ☆ CAMAR: Continuous Actions Multi-Agent Routing
Multi-agent reinforcement learning (MARL) is a powerful paradigm for solving cooperative and competitive decision-making problems. While many MARL benchmarks have been proposed, few combine continuous state and action spaces with challenging coordination and planning tasks. We introduce CAMAR, a new MARL benchmark designed explicitly for multi-agent pathfinding in environments with continuous actions. CAMAR supports cooperative and competitive interactions between agents and runs efficiently at up to 100,000 environment steps per second. We also propose a three-tier evaluation protocol to better track algorithmic progress and enable deeper analysis of performance. In addition, CAMAR allows the integration of classical planning methods such as RRT and RRT* into MARL pipelines. We use them as standalone baselines and combine RRT* with popular MARL algorithms to create hybrid approaches. We provide a suite of test scenarios and benchmarking tools to ensure reproducibility and fair comparison. Experiments show that CAMAR presents a challenging and realistic testbed for the MARL community.
♻ ☆ Toward Explainable Offline RL: Analyzing Representations in Intrinsically Motivated Decision Transformers NeurIPS 2025
Elastic Decision Transformers (EDTs) have proved to be particularly successful in offline reinforcement learning, offering a flexible framework that unifies sequence modeling with decision-making under uncertainty. Recent research has shown that incorporating intrinsic motivation mechanisms into EDTs improves performance across exploration tasks, yet the representational mechanisms underlying these improvements remain unexplored. In this paper, we introduce a systematic post-hoc explainability framework to analyze how intrinsic motivation shapes learned embeddings in EDTs. Through statistical analysis of embedding properties (including covariance structure, vector magnitudes, and orthogonality), we reveal that different intrinsic motivation variants create fundamentally different representational structures. Our analysis demonstrates environment-specific correlation patterns between embedding metrics and performance that explain why intrinsic motivation improves policy learning. These findings show that intrinsic motivation operates beyond simple exploration bonuses, acting as a representational prior that shapes embedding geometry in biologically plausible ways, creating environment-specific organizational structures that facilitate better decision-making.
comment: Accepted for poster presentation at the NeurIPS 2025 workshop "CogInterp: Interpreting Cognition in Deep Learning Models", San Diego, CA, USA
♻ ☆ EXAGREE: Mitigating Explanation Disagreement with Stakeholder-Aligned Models
Conflicting explanations, arising from different attribution methods or model internals, limit the adoption of machine learning models in safety-critical domains. We turn this disagreement into an advantage and introduce EXplanation AGREEment (EXAGREE), a two-stage framework that selects a Stakeholder-Aligned Explanation Model (SAEM) from a set of similar-performing models. The selection maximizes Stakeholder-Machine Agreement (SMA), a single metric that unifies faithfulness and plausibility. EXAGREE couples a differentiable mask-based attribution network (DMAN) with monotone differentiable sorting, enabling gradient-based search inside the constrained model space. Experiments on six real-world datasets demonstrate simultaneous gains of faithfulness, plausibility, and fairness over baselines, while preserving task accuracy. Extensive ablation studies, significance tests, and case studies confirm the robustness and feasibility of the method in practice.
♻ ☆ Hogwild! Inference: Parallel LLM Generation via Concurrent Attention NeurIPS 2025
Large Language Models (LLMs) have demonstrated the ability to tackle increasingly complex tasks through advanced reasoning, long-form content generation, and tool use. Solving these tasks often involves long inference-time computations. In human problem solving, a common strategy to expedite work is collaboration: by dividing the problem into sub-tasks, exploring different strategies concurrently, etc. Recent research has shown that LLMs can also operate in parallel by implementing explicit cooperation frameworks, such as voting mechanisms or the explicit creation of independent sub-tasks that can be executed in parallel. However, each of these frameworks may not be suitable for all types of tasks, which can hinder their applicability. In this work, we propose a different design approach: we run LLM "workers" in parallel , allowing them to synchronize via a concurrently-updated attention cache and prompt these workers to decide how best to collaborate. Our approach allows the LLM instances to come up with their own collaboration strategy for the problem at hand, all the while "seeing" each other's memory in the concurrent KV cache. We implement this approach via Hogwild! Inference: a parallel LLM inference engine where multiple instances of the same LLM run in parallel with the same attention cache, with "instant" access to each other's memory. Hogwild! Inference takes advantage of Rotary Position Embeddings (RoPE) to avoid recomputation while improving parallel hardware utilization. We find that modern reasoning-capable LLMs can perform inference with shared Key-Value cache out of the box, without additional fine-tuning.
comment: 39th Conference on Neural Information Processing Systems (NeurIPS 2025)
♻ ☆ On the Limitations of Language Targeted Pruning: Investigating the Calibration Language Impact in Multilingual LLM Pruning ACL
Recent advances in large language model (LLM) pruning have shown state-of-the-art (SotA) compression results in post-training and retraining-free settings while maintaining high predictive performance. However, previous research mainly considered calibrating based on English text, despite the multilingual nature of modern LLMs and their frequent use in non-English languages. This analysis paper conducts an in-depth investigation of the performance and internal representation changes associated with pruning multilingual language models for monolingual applications. We present the first comprehensive empirical study, comparing different calibration languages for pruning multilingual models across diverse languages, tasks, models, and SotA pruning techniques. We further analyze the latent subspaces, pruning masks, and individual neurons within pruned models. Our results reveal that while calibration on the target language effectively retains perplexity and yields high signal-to-noise ratios, it does not consistently improve downstream task performance. Further analysis of internal representations at three different levels highlights broader limitations of current pruning approaches: While they effectively preserve dominant information like language-specific features, this is insufficient to counteract the loss of nuanced, language-agnostic features that are crucial for knowledge retention and reasoning.
comment: Accepted for publication in TACL
♻ ☆ Efficient Reinforcement Learning for Zero-Shot Coordination in Evolving Games
Zero-shot coordination(ZSC) has become a hot topic in reinforcement learning research recently. It focuses on the generalization ability of agents, requiring them to coordinate well with collaborators that are not seen before without any fine-tuning. Population-based training has been proven to provide good zero-shot coordination performance; nevertheless, existing methods are limited by computational resources, mainly focusing on optimizing diversity in small populations while neglecting the potential performance gains from scaling population size. To address this issue, this paper proposes the Scalable Population Training (ScaPT), an efficient training framework comprising two key components: a meta-agent that efficiently realizes a population by selectively sharing parameters across agents, and a mutual information regularizer that guarantees population diversity. To empirically validate the effectiveness of ScaPT, this paper evaluates it along with representational frameworks in Hanabi and confirms its superiority.
♻ ☆ Argumentative Debates for Transparent Bias Detection [Technical Report] AAAI 2026
As the use of AI in society grows, addressing emerging biases is essential to prevent systematic discrimination. Several bias detection methods have been proposed, but, with few exceptions, these tend to ignore transparency. Instead, interpretability and explainability are core requirements for algorithmic fairness, even more so than for other algorithmic solutions, given the human-oriented nature of fairness. We present ABIDE (Argumentative BIas detection by DEbate), a novel framework that structures bias detection transparently as debate, guided by an underlying argument graph as understood in (formal and computational) argumentation. The arguments are about the success chances of groups in local neighbourhoods and the significance of these neighbourhoods. We evaluate ABIDE experimentally and demonstrate its strengths in performance against an argumentative baseline.
comment: Accepted at AAAI 2026 main track
♻ ☆ DeToNATION: Decoupled Torch Network-Aware Training on Interlinked Online Nodes AAAI 2026
Training large neural network models requires extensive computational resources, often distributed across several nodes and accelerators. Recent findings suggest that it may be sufficient to only exchange the fast moving components of the gradients, while accumulating momentum locally (Decoupled Momentum, or DeMo). However, DeMo assumes that models fit on a single accelerator. We relax this assumption and introduce FlexDeMo, whereby nodes fully shard model parameters locally between different accelerators, while inter-node communication is reduced by synchronizing only fast-moving components instead of the full gradients -- resulting in a hybrid sharded data parallel training strategy. We further introduce a framework, denoted as DeToNATION, that generalizes DeMo, FlexDeMo, and other popular distributed training schemes such as DiLoCo -- introducing new variations of replication schemes and challenging choices made in DeMo. Our results across language and vision domains show that FlexDeMo attains similar validation loss as hybrid sharded data parallel training employing AdamW and full gradient synchronization, while being substantially faster. FlexDeMo is thus a promising distributed training scheme for the largest machine learning models.
comment: Accepted as a paper at AAAI 2026 Main Track
♻ ☆ What You See Is Not Always What You Get: Evaluating GPT's Comprehension of Source Code
Recent studies have demonstrated outstanding capabilities of large language models (LLMs) in software engineering tasks, including code generation and comprehension. While LLMs have shown significant potential in assisting with coding, LLMs are vulnerable to adversarial attacks. In this paper, we investigate the vulnerability of LLMs to imperceptible attacks. This class of attacks manipulate source code at the character level, which renders the changes invisible to human reviewers yet effective in misleading LLMs' behaviour. We devise these attacks into four distinct categories and analyse their impacts on code analysis and comprehension tasks. These four types of imperceptible character attacks include coding reordering, invisible coding characters, code deletions, and code homoglyphs. To assess the robustness of state-of-the-art LLMs, we present a systematic evaluation across multiple models using both perturbed and clean code snippets. Two evaluation metrics, model confidence using log probabilities of response and response correctness, are introduced. The results reveal that LLMs are susceptible to imperceptible coding perturbations, with varying degrees of degradation highlighted across different LLMs. Furthermore, we observe a consistent negative correlation between perturbation magnitude and model performance. These results highlight the urgent need for robust LLMs capable of manoeuvring behaviours under imperceptible adversarial conditions.
comment: This work has been accepted at APSEC 2025
♻ ☆ Upper Bounds for Learning in Reproducing Kernel Hilbert Spaces for Non IID Samples
In this paper, we study a Markov chain-based stochastic gradient algorithm in general Hilbert spaces, aiming to approximate the optimal solution of a quadratic loss function. We establish probabilistic upper bounds on its convergence. We further extend these results to an online regularized learning algorithm in reproducing kernel Hilbert spaces, where the samples are drawn along a Markov chain trajectory hence the samples are of the non i.i.d. type.
♻ ☆ Deep Clustering via Gradual Community Detection
Deep clustering is an essential task in modern artificial intelligence, aiming to partition a set of data samples into a given number of homogeneous groups (i.e., clusters). Recent studies have proposed increasingly advanced deep neural networks and training strategies for deep clustering, effectively improving performance. However, deep clustering generally remains challenging due to the inadequacy of supervision signals. Building upon the existing representation learning backbones, this paper proposes a novel clustering strategy of gradual community detection. It initializes clustering by partitioning samples into many pseudo-communities and then gradually expands clusters by community merging. Compared with the existing clustering strategies, community detection factors in the new perspective of cluster network analysis in the clustering process. The new perspective can effectively leverage global structural characteristics to enhance cluster pseudo-label purity, which is critical to the performance of self-supervision. We have implemented the proposed approach based on the popular backbones and evaluated its efficacy on benchmark image datasets. Our extensive experiments have shown that the proposed clustering strategy can effectively improve the SOTA performance. Our ablation study also demonstrates that the new network perspective can effectively improve community pseudo-label purity, resulting in improved self-supervision.
comment: 12 pages, 2 figures
♻ ☆ GLANCE: Global Actions in a Nutshell for Counterfactual Explainability
The widespread deployment of machine learning systems in critical real-world decision-making applications has highlighted the urgent need for counterfactual explainability methods that operate effectively. Global counterfactual explanations, expressed as actions to offer recourse, aim to provide succinct explanations and insights applicable to large population subgroups. High effectiveness, measured by the fraction of the population that is provided recourse, ensures that the actions benefit as many individuals as possible. Keeping the cost of actions low ensures the proposed recourse actions remain practical and actionable. Limiting the number of actions that provide global counterfactuals is essential to maximizing interpretability. The primary challenge, therefore, is to balance these trade-offs--maximizing effectiveness, minimizing cost, while maintaining a small number of actions. We introduce $\texttt{GLANCE}$, a versatile and adaptive algorithm that employs a novel agglomerative approach, jointly considering both the feature space and the space of counterfactual actions, thereby accounting for the distribution of points in a way that aligns with the model's structure. This design enables the careful balancing of the trade-offs among the three key objectives, with the size objective functioning as a tunable parameter to keep the actions few and easy to interpret. Our extensive experimental evaluation demonstrates that $\texttt{GLANCE}$ consistently shows greater robustness and performance compared to existing methods across various datasets and models.
♻ ☆ Deep Joint Distribution Optimal Transport for Universal Domain Adaptation on Time Series
Universal Domain Adaptation (UniDA) aims to transfer knowledge from a labeled source domain to an unlabeled target domain, even when their classes are not fully shared. Few dedicated UniDA methods exist for Time Series (TS), which remains a challenging case. In general, UniDA approaches align common class samples and detect unknown target samples from emerging classes. Such detection often results from thresholding a discriminability metric. The threshold value is typically either a fine-tuned hyperparameter or a fixed value, which limits the ability of the model to adapt to new data. Furthermore, discriminability metrics exhibit overconfidence for unknown samples, leading to misclassifications. This paper introduces UniJDOT, an optimal-transport-based method that accounts for the unknown target samples in the transport cost. Our method also proposes a joint decision space to improve the discriminability of the detection module. In addition, we use an auto-thresholding algorithm to reduce the dependence on fixed or fine-tuned thresholds. Finally, we rely on a Fourier transform-based layer inspired by the Fourier Neural Operator for better TS representation. Experiments on TS benchmarks demonstrate the discriminability, robustness, and state-of-the-art performance of UniJDOT.
♻ ☆ CG-FedLLM: How to Compress Gradients in Federated Fune-tuning for Large Language Models
The success of current Large-Language Models (LLMs) hinges on extensive training data that is collected and stored centrally, called Centralized Learning (CL). However, such a collection manner poses a privacy threat, and one potential solution is Federated Learning (FL), which transfers gradients, not raw data, among clients. Unlike traditional networks, FL for LLMs incurs significant communication costs due to their tremendous parameters. This study introduces an innovative approach to compress gradients to improve communication efficiency during LLM FL, formulating the new FL pipeline named CG-FedLLM. This approach integrates an encoder on the client side to acquire the compressed gradient features and a decoder on the server side to reconstruct the gradients. We also developed a novel training strategy that comprises Temporal-ensemble Gradient-Aware Pre-training (TGAP) to identify characteristic gradients of the target model and Federated AutoEncoder-Involved Fine-tuning (FAF) to compress gradients adaptively. Extensive experiments confirm that our approach reduces communication costs and improves performance (e.g., average 3 points increment compared with traditional CL- and FL-based fine-tuning with LlaMA on a well-recognized benchmark, C-Eval). This improvement is because our encoder-decoder, trained via TGAP and FAF, can filter gradients while selectively preserving critical features. Furthermore, we present a series of experimental analyses focusing on the signal-to-noise ratio, compression rate, and robustness within this privacy-centric framework, providing insight into developing more efficient and secure LLMs.
♻ ☆ CDFlow: Building Invertible Layers with Circulant and Diagonal Matrices NeurIPS 2025
Normalizing flows are deep generative models that enable efficient likelihood estimation and sampling through invertible transformations. A key challenge is to design linear layers that enhance expressiveness while maintaining efficient computation of the Jacobian determinant and inverse. We introduce a novel invertible linear layer based on the product of circulant and diagonal matrices. This decomposition reduces parameter complexity from $\mathcal{O}(n^2)$ to $\mathcal{O}(mn)$ using $m$ diagonal matrices and $m-1$ circulant matrices while still approximating general linear transformations. By leveraging the Fast Fourier Transform, our approach reduces the time complexity of matrix inversion from $\mathcal{O}(n^3)$ to $\mathcal{O}(mn\log n)$ and that of computing the log-determinant from $\mathcal{O}(n^3)$ to $\mathcal{O}(mn)$, where $n$ is the input dimension. We build upon this layer to develop Circulant-Diagonal Flow (CDFlow), which achieves strong density estimation on natural image datasets and effectively models data with inherent periodic structure. Furthermore, CDFlow significantly accelerates key operations in normalizing flows, providing practical benefits for scalable generative modeling.
comment: Accepted at NeurIPS 2025. 10 pages, 12 figures, 2 tables
♻ ☆ Exploiting Synergistic Cognitive Biases to Bypass Safety in LLMs
Large Language Models (LLMs) demonstrate impressive capabilities across a wide range of tasks, yet their safety mechanisms remain susceptible to adversarial attacks that exploit cognitive biases -- systematic deviations from rational judgment. Unlike prior jailbreaking approaches focused on prompt engineering or algorithmic manipulation, this work highlights the overlooked power of multi-bias interactions in undermining LLM safeguards. We propose CognitiveAttack, a novel red-teaming framework that systematically leverages both individual and combined cognitive biases. By integrating supervised fine-tuning and reinforcement learning, CognitiveAttack generates prompts that embed optimized bias combinations, effectively bypassing safety protocols while maintaining high attack success rates. Experimental results reveal significant vulnerabilities across 30 diverse LLMs, particularly in open-source models. CognitiveAttack achieves a substantially higher attack success rate compared to the SOTA black-box method PAP (60.1% vs. 31.6%), exposing critical limitations in current defense mechanisms. These findings highlight multi-bias interactions as a powerful yet underexplored attack vector. This work introduces a novel interdisciplinary perspective by bridging cognitive science and LLM safety, paving the way for more robust and human-aligned AI systems.
♻ ☆ Efficient Reasoning for Large Reasoning Language Models via Certainty-Guided Reflection Suppression AAAI 2026
Recent Large Reasoning Language Models (LRLMs) employ long chain-of-thought reasoning with complex reflection behaviors, typically signaled by specific trigger words (e.g., "Wait" and "Alternatively") to enhance performance. However, these reflection behaviors can lead to the overthinking problem where the generation of redundant reasoning steps that unnecessarily increase token usage, raise inference costs, and reduce practical utility. In this paper, we propose Certainty-Guided Reflection Suppression (CGRS), a novel method that mitigates overthinking in LRLMs while maintaining reasoning accuracy. CGRS operates by dynamically suppressing the model's generation of reflection triggers when it exhibits high confidence in its current response, thereby preventing redundant reflection cycles without compromising output quality. Our approach is model-agnostic, requires no retraining or architectural modifications, and can be integrated seamlessly with existing autoregressive generation pipelines. Extensive experiments across four reasoning benchmarks (i.e., AIME24, AMC23, MATH500, and GPQA-D) demonstrate CGRS's effectiveness: it reduces token usage by an average of 18.5% to 41.9% while preserving accuracy. It also achieves the optimal balance between length reduction and performance compared to state-of-the-art baselines. These results hold consistently across model architectures (e.g., DeepSeek-R1-Distill series, QwQ-32B, and Qwen3 family) and scales (4B to 32B parameters), highlighting CGRS's practical value for efficient reasoning.
comment: Accepted by AAAI 2026
♻ ☆ Self-Supervised Learning of Graph Representations for Network Intrusion Detection NeurIPS 2025
Detecting intrusions in network traffic is a challenging task, particularly under limited supervision and constantly evolving attack patterns. While recent works have leveraged graph neural networks for network intrusion detection, they often decouple representation learning from anomaly detection, limiting the utility of the embeddings for identifying attacks. We propose GraphIDS, a self-supervised intrusion detection model that unifies these two stages by learning local graph representations of normal communication patterns through a masked autoencoder. An inductive graph neural network embeds each flow with its local topological context to capture typical network behavior, while a Transformer-based encoder-decoder reconstructs these embeddings, implicitly learning global co-occurrence patterns via self-attention without requiring explicit positional information. During inference, flows with unusually high reconstruction errors are flagged as potential intrusions. This end-to-end framework ensures that embeddings are directly optimized for the downstream task, facilitating the recognition of malicious traffic. On diverse NetFlow benchmarks, GraphIDS achieves up to 99.98% PR-AUC and 99.61% macro F1-score, outperforming baselines by 5-25 percentage points.
comment: Accepted at NeurIPS 2025
Computer Vision and Pattern Recognition
☆ Back to Basics: Let Denoising Generative Models Denoise
Today's denoising diffusion models do not "denoise" in the classical sense, i.e., they do not directly predict clean images. Rather, the neural networks predict noise or a noised quantity. In this paper, we suggest that predicting clean data and predicting noised quantities are fundamentally different. According to the manifold assumption, natural data should lie on a low-dimensional manifold, whereas noised quantities do not. With this assumption, we advocate for models that directly predict clean data, which allows apparently under-capacity networks to operate effectively in very high-dimensional spaces. We show that simple, large-patch Transformers on pixels can be strong generative models: using no tokenizer, no pre-training, and no extra loss. Our approach is conceptually nothing more than "$\textbf{Just image Transformers}$", or $\textbf{JiT}$, as we call it. We report competitive results using JiT with large patch sizes of 16 and 32 on ImageNet at resolutions of 256 and 512, where predicting high-dimensional noised quantities can fail catastrophically. With our networks mapping back to the basics of the manifold, our research goes back to basics and pursues a self-contained paradigm for Transformer-based diffusion on raw natural data.
comment: Tech report. Code at https://github.com/LTH14/JiT
☆ Scaling Spatial Intelligence with Multimodal Foundation Models
Despite remarkable progress, multimodal foundation models still exhibit surprising deficiencies in spatial intelligence. In this work, we explore scaling up multimodal foundation models to cultivate spatial intelligence within the SenseNova-SI family, built upon established multimodal foundations including visual understanding models (i.e., Qwen3-VL and InternVL3) and unified understanding and generation models (i.e., Bagel). We take a principled approach to constructing high-performing and robust spatial intelligence by systematically curating SenseNova-SI-8M: eight million diverse data samples under a rigorous taxonomy of spatial capabilities. SenseNova-SI demonstrates unprecedented performance across a broad range of spatial intelligence benchmarks: 68.7% on VSI-Bench, 43.3% on MMSI, 85.6% on MindCube, 54.6% on ViewSpatial, and 50.1% on SITE, while maintaining strong general multimodal understanding (e.g., 84.9% on MMBench-En). More importantly, we analyze the impact of data scaling, discuss early signs of emergent generalization capabilities enabled by diverse data training, analyze the risk of overfitting and language shortcuts, present a preliminary study on spatial chain-of-thought reasoning, and validate the potential downstream application. SenseNova-SI is an ongoing project, and this report will be updated continuously. All newly trained multimodal foundation models are publicly released to facilitate further research in this direction.
comment: Model: https://huggingface.co/collections/sensenova/sensenova-si; Code: https://github.com/OpenSenseNova/SenseNova-SI
☆ Segment Anything Across Shots: A Method and Benchmark AAAI 2026
This work focuses on multi-shot semi-supervised video object segmentation (MVOS), which aims at segmenting the target object indicated by an initial mask throughout a video with multiple shots. The existing VOS methods mainly focus on single-shot videos and struggle with shot discontinuities, thereby limiting their real-world applicability. We propose a transition mimicking data augmentation strategy (TMA) which enables cross-shot generalization with single-shot data to alleviate the severe annotated multi-shot data sparsity, and the Segment Anything Across Shots (SAAS) model, which can detect and comprehend shot transitions effectively. To support evaluation and future study in MVOS, we introduce Cut-VOS, a new MVOS benchmark with dense mask annotations, diverse object categories, and high-frequency transitions. Extensive experiments on YouMVOS and Cut-VOS demonstrate that the proposed SAAS achieves state-of-the-art performance by effectively mimicking, understanding, and segmenting across complex transitions. The code and datasets are released at https://henghuiding.com/SAAS/.
comment: AAAI 2026, Project Page: https://henghuiding.com/SAAS/
☆ UnSAMv2: Self-Supervised Learning Enables Segment Anything at Any Granularity
The Segment Anything Model (SAM) family has become a widely adopted vision foundation model, but its ability to control segmentation granularity remains limited. Users often need to refine results manually - by adding more prompts or selecting from pre-generated masks - to achieve the desired level of detail. This process can be ambiguous, as the same prompt may correspond to several plausible masks, and collecting dense annotations across all granularities is prohibitively expensive, making supervised solutions infeasible. To address this limitation, we introduce UnSAMv2, which enables segment anything at any granularity without human annotations. UnSAMv2 extends the divide-and-conquer strategy of UnSAM by discovering abundant mask-granularity pairs and introducing a novel granularity control embedding that enables precise, continuous control over segmentation scale. Remarkably, with only $6$K unlabeled images and $0.02\%$ additional parameters, UnSAMv2 substantially enhances SAM-2, achieving segment anything at any granularity across interactive, whole-image, and video segmentation tasks. Evaluated on over $11$ benchmarks, UnSAMv2 improves $\text{NoC}_{90}$ (5.69 $\rightarrow$ 4.75), 1-IoU (58.0 $\rightarrow$ 73.1), and $\text{AR}_{1000}$ (49.6 $\rightarrow$ 68.3), showing that small amounts of unlabeled data with a granularity-aware self-supervised learning method can unlock the potential of vision foundation models.
☆ Free-Form Scene Editor: Enabling Multi-Round Object Manipulation like in a 3D Engine AAAI 2026
Recent advances in text-to-image (T2I) diffusion models have significantly improved semantic image editing, yet most methods fall short in performing 3D-aware object manipulation. In this work, we present FFSE, a 3D-aware autoregressive framework designed to enable intuitive, physically-consistent object editing directly on real-world images. Unlike previous approaches that either operate in image space or require slow and error-prone 3D reconstruction, FFSE models editing as a sequence of learned 3D transformations, allowing users to perform arbitrary manipulations, such as translation, scaling, and rotation, while preserving realistic background effects (e.g., shadows, reflections) and maintaining global scene consistency across multiple editing rounds. To support learning of multi-round 3D-aware object manipulation, we introduce 3DObjectEditor, a hybrid dataset constructed from simulated editing sequences across diverse objects and scenes, enabling effective training under multi-round and dynamic conditions. Extensive experiments show that the proposed FFSE significantly outperforms existing methods in both single-round and multi-round 3D-aware editing scenarios.
comment: AAAI 2026, Project Page: https://henghuiding.com/FFSE/
☆ TiViBench: Benchmarking Think-in-Video Reasoning for Video Generative Models
The rapid evolution of video generative models has shifted their focus from producing visually plausible outputs to tackling tasks requiring physical plausibility and logical consistency. However, despite recent breakthroughs such as Veo 3's chain-of-frames reasoning, it remains unclear whether these models can exhibit reasoning capabilities similar to large language models (LLMs). Existing benchmarks predominantly evaluate visual fidelity and temporal coherence, failing to capture higher-order reasoning abilities. To bridge this gap, we propose TiViBench, a hierarchical benchmark specifically designed to evaluate the reasoning capabilities of image-to-video (I2V) generation models. TiViBench systematically assesses reasoning across four dimensions: i) Structural Reasoning & Search, ii) Spatial & Visual Pattern Reasoning, iii) Symbolic & Logical Reasoning, and iv) Action Planning & Task Execution, spanning 24 diverse task scenarios across 3 difficulty levels. Through extensive evaluations, we show that commercial models (e.g., Sora 2, Veo 3.1) demonstrate stronger reasoning potential, while open-source models reveal untapped potential that remains hindered by limited training scale and data diversity. To further unlock this potential, we introduce VideoTPO, a simple yet effective test-time strategy inspired by preference optimization. By performing LLM self-analysis on generated candidates to identify strengths and weaknesses, VideoTPO significantly enhances reasoning performance without requiring additional training, data, or reward models. Together, TiViBench and VideoTPO pave the way for evaluating and advancing reasoning in video generation models, setting a foundation for future research in this emerging field.
comment: Project: https://haroldchen19.github.io/TiViBench-Page/
☆ Crossing Borders: A Multimodal Challenge for Indian Poetry Translation and Image Generation
Indian poetry, known for its linguistic complexity and deep cultural resonance, has a rich and varied heritage spanning thousands of years. However, its layered meanings, cultural allusions, and sophisticated grammatical constructions often pose challenges for comprehension, especially for non-native speakers or readers unfamiliar with its context and language. Despite its cultural significance, existing works on poetry have largely overlooked Indian language poems. In this paper, we propose the Translation and Image Generation (TAI) framework, leveraging Large Language Models (LLMs) and Latent Diffusion Models through appropriate prompt tuning. Our framework supports the United Nations Sustainable Development Goals of Quality Education (SDG 4) and Reduced Inequalities (SDG 10) by enhancing the accessibility of culturally rich Indian-language poetry to a global audience. It includes (1) a translation module that uses an Odds Ratio Preference Alignment Algorithm to accurately translate morphologically rich poetry into English, and (2) an image generation module that employs a semantic graph to capture tokens, dependencies, and semantic relationships between metaphors and their meanings, to create visually meaningful representations of Indian poems. Our comprehensive experimental evaluation, including both human and quantitative assessments, demonstrates the superiority of TAI Diffusion in poem image generation tasks, outperforming strong baselines. To further address the scarcity of resources for Indian-language poetry, we introduce the Morphologically Rich Indian Language Poems MorphoVerse Dataset, comprising 1,570 poems across 21 low-resource Indian languages. By addressing the gap in poetry translation and visual comprehension, this work aims to broaden accessibility and enrich the reader's experience.
☆ Training-Free Multi-View Extension of IC-Light for Textual Position-Aware Scene Relighting
We introduce GS-Light, an efficient, textual position-aware pipeline for text-guided relighting of 3D scenes represented via Gaussian Splatting (3DGS). GS-Light implements a training-free extension of a single-input diffusion model to handle multi-view inputs. Given a user prompt that may specify lighting direction, color, intensity, or reference objects, we employ a large vision-language model (LVLM) to parse the prompt into lighting priors. Using off-the-shelf estimators for geometry and semantics (depth, surface normals, and semantic segmentation), we fuse these lighting priors with view-geometry constraints to compute illumination maps and generate initial latent codes for each view. These meticulously derived init latents guide the diffusion model to generate relighting outputs that more accurately reflect user expectations, especially in terms of lighting direction. By feeding multi-view rendered images, along with the init latents, into our multi-view relighting model, we produce high-fidelity, artistically relit images. Finally, we fine-tune the 3DGS scene with the relit appearance to obtain a fully relit 3D scene. We evaluate GS-Light on both indoor and outdoor scenes, comparing it to state-of-the-art baselines including per-view relighting, video relighting, and scene editing methods. Using quantitative metrics (multi-view consistency, imaging quality, aesthetic score, semantic similarity, etc.) and qualitative assessment (user studies), GS-Light demonstrates consistent improvements over baselines. Code and assets will be made available upon publication.
comment: Submitting for Neurocomputing
☆ QUILL: An Algorithm-Architecture Co-Design for Cache-Local Deformable Attention DATE 2026
Deformable transformers deliver state-of-the-art detection but map poorly to hardware due to irregular memory access and low arithmetic intensity. We introduce QUILL, a schedule-aware accelerator that turns deformable attention into cache-friendly, single-pass work. At its core, Distance-based Out-of-Order Querying (DOOQ) orders queries by spatial proximity; the look-ahead drives a region prefetch into an alternate buffer--forming a schedule-aware prefetch loop that overlaps memory and compute. A fused MSDeformAttn engine executes interpolation, Softmax, aggregation, and the final projection (W''m) in one pass without spilling intermediates, while small tensors are kept on-chip and surrounding dense layers run on integrated GEMMs. Implemented as RTL and evaluated end-to-end, QUILL achieves up to 7.29x higher throughput and 47.3x better energy efficiency than an RTX 4090, and exceeds prior accelerators by 3.26-9.82x in throughput and 2.01-6.07x in energy efficiency. With mixed-precision quantization, accuracy tracks FP32 within <=0.9 AP across Deformable and Sparse DETR variants. By converting sparsity into locality--and locality into utilization--QUILL delivers consistent, end-to-end speedups.
comment: Accepted to DATE 2026
☆ OlmoEarth: Stable Latent Image Modeling for Multimodal Earth Observation
Earth observation data presents a unique challenge: it is spatial like images, sequential like video or text, and highly multimodal. We present OlmoEarth: a multimodal, spatio-temporal foundation model that employs a novel self-supervised learning formulation, masking strategy, and loss all designed for the Earth observation domain. OlmoEarth achieves state-of-the-art performance compared to 12 other foundation models across a variety of research benchmarks and real-world tasks from external partners. When evaluating embeddings OlmoEarth achieves the best performance on 15 out of 24 tasks, and with full fine-tuning it is the best on 19 of 29 tasks. We deploy OlmoEarth as the backbone of an end-to-end platform for data collection, labeling, training, and inference of Earth observation models. The OlmoEarth Platform puts frontier foundation models and powerful data management tools into the hands of non-profits and NGOs working to solve the world's biggest problems. OlmoEarth source code, training data, and pre-trained weights are available at $\href{https://github.com/allenai/olmoearth_pretrain}{\text{https://github.com/allenai/olmoearth_pretrain}}$.
☆ Tuning for Two Adversaries: Enhancing the Robustness Against Transfer and Query-Based Attacks using Hyperparameter Tuning AAAI
In this paper, we present the first detailed analysis of how optimization hyperparameters -- such as learning rate, weight decay, momentum, and batch size -- influence robustness against both transfer-based and query-based attacks. Supported by theory and experiments, our study spans a variety of practical deployment settings, including centralized training, ensemble learning, and distributed training. We uncover a striking dichotomy: for transfer-based attacks, decreasing the learning rate significantly enhances robustness by up to $64\%$. In contrast, for query-based attacks, increasing the learning rate consistently leads to improved robustness by up to $28\%$ across various settings and data distributions. Leveraging these findings, we explore -- for the first time -- the optimization hyperparameter design space to jointly enhance robustness against both transfer-based and query-based attacks. Our results reveal that distributed models benefit the most from hyperparameter tuning, achieving a remarkable tradeoff by simultaneously mitigating both attack types more effectively than other training setups.
comment: To appear in the Proceedings of the AAAI Conference on Artificial Intelligence (AAAI) 2026
☆ Distribution Matching Distillation Meets Reinforcement Learning
Distribution Matching Distillation (DMD) distills a pre-trained multi-step diffusion model to a few-step one to improve inference efficiency. However, the performance of the latter is often capped by the former. To circumvent this dilemma, we propose DMDR, a novel framework that combines Reinforcement Learning (RL) techniques into the distillation process. We show that for the RL of the few-step generator, the DMD loss itself is a more effective regularization compared to the traditional ones. In turn, RL can help to guide the mode coverage process in DMD more effectively. These allow us to unlock the capacity of the few-step generator by conducting distillation and RL simultaneously. Meanwhile, we design the dynamic distribution guidance and dynamic renoise sampling training strategies to improve the initial distillation process. The experiments demonstrate that DMDR can achieve leading visual quality, prompt coherence among few-step methods, and even exhibit performance that exceeds the multi-step teacher.
comment: The synergy of reinforcement learning and distribution matching distillation. See more: https://github.com/vvvvvjdy/dmdr
☆ PhysX-Anything: Simulation-Ready Physical 3D Assets from Single Image
3D modeling is shifting from static visual representations toward physical, articulated assets that can be directly used in simulation and interaction. However, most existing 3D generation methods overlook key physical and articulation properties, thereby limiting their utility in embodied AI. To bridge this gap, we introduce PhysX-Anything, the first simulation-ready physical 3D generative framework that, given a single in-the-wild image, produces high-quality sim-ready 3D assets with explicit geometry, articulation, and physical attributes. Specifically, we propose the first VLM-based physical 3D generative model, along with a new 3D representation that efficiently tokenizes geometry. It reduces the number of tokens by 193x, enabling explicit geometry learning within standard VLM token budgets without introducing any special tokens during fine-tuning and significantly improving generative quality. In addition, to overcome the limited diversity of existing physical 3D datasets, we construct a new dataset, PhysX-Mobility, which expands the object categories in prior physical 3D datasets by over 2x and includes more than 2K common real-world objects with rich physical annotations. Extensive experiments on PhysX-Mobility and in-the-wild images demonstrate that PhysX-Anything delivers strong generative performance and robust generalization. Furthermore, simulation-based experiments in a MuJoCo-style environment validate that our sim-ready assets can be directly used for contact-rich robotic policy learning. We believe PhysX-Anything can substantially empower a broad range of downstream applications, especially in embodied AI and physics-based simulation.
comment: Project page: https://physx-anything.github.io/
☆ Part-X-MLLM: Part-aware 3D Multimodal Large Language Model
We introduce Part-X-MLLM, a native 3D multimodal large language model that unifies diverse 3D tasks by formulating them as programs in a structured, executable grammar. Given an RGB point cloud and a natural language prompt, our model autoregressively generates a single, coherent token sequence encoding part-level bounding boxes, semantic descriptions, and edit commands. This structured output serves as a versatile interface to drive downstream geometry-aware modules for part-based generation and editing. By decoupling the symbolic planning from the geometric synthesis, our approach allows any compatible geometry engine to be controlled through a single, language-native frontend. We pre-train a dual-encoder architecture to disentangle structure from semantics and instruction-tune the model on a large-scale, part-centric dataset. Experiments demonstrate that our model excels at producing high-quality, structured plans, enabling state-of-the-art performance in grounded Q\&A, compositional generation, and localized editing through one unified interface. Project page: https://chunshi.wang/Part-X-MLLM/
☆ CacheFlow: Compressive Streaming Memory for Efficient Long-Form Video Understanding
Long-form video question answering (VQA) overwhelms current vision-language models (VLMs) because attention and key-value (KV) caches grow with runtime, forcing either expensive inference or near-sighted sliding windows. We introduce CacheFlow, a training-free pipeline that pairs Dynamic Token Dropping (DTD) with a compressive long-term memory. DTD prunes per-patch tokens online via cosine similarity to the previous frame, and surviving tokens are packed into fixed-size blocks. This online, per-frame processing makes our approach fundamentally suited for live streaming VQA. As blocks are processed, each one's keys are summarized by a tiny recurrent encoder to form a retrieval index, while the block's full KV pairs are offloaded and later rehydrated for generation, preserving answer fidelity. At inference, a consensus-based retrieval mechanism retrieves only the Top-K most relevant blocks and attends over both the retrieved and local context for precise, long-range reasoning. CacheFlow is drop-in, architecture-agnostic, and requires no fine-tuning. Experiments on both offline and streaming VQA benchmarks demonstrate that CacheFlow outperforms current strong baselines, while processing up to 87% less tokens. Our dual approach enables VLMs to be both efficient and context-aware, paving the way for practical long-form video understanding.
☆ Alpha Divergence Losses for Biometric Verification
Performance in face and speaker verification is largely driven by margin based softmax losses like CosFace and ArcFace. Recently introduced $α$-divergence loss functions offer a compelling alternative, particularly for their ability to induce sparse solutions (when $α>1$). However, integrating an angular margin-crucial for verification tasks-is not straightforward. We find this integration can be achieved in at least two distinct ways: via the reference measure (prior probabilities) or via the logits (unnormalized log-likelihoods). In this paper, we explore both pathways, deriving two novel margin-based $α$-divergence losses: Q-Margin (margin in the reference measure) and A3M (margin in the logits). We identify and address a critical training instability in A3M-caused by the interplay of penalized logits and sparsity-with a simple yet effective prototype re-initialization strategy. Our methods achieve significant performance gains on the challenging IJB-B and IJB-C face verification benchmarks. We demonstrate similarly strong performance in speaker verification on VoxCeleb. Crucially, our models significantly outperform strong baselines at low false acceptance rates (FAR). This capability is crucial for practical high-security applications, such as banking authentication, when minimizing false authentications is paramount.
☆ A Real-Time Driver Drowsiness Detection System Using MediaPipe and Eye Aspect Ratio
One of the major causes of road accidents is driver fatigue that causes thousands of fatalities and injuries every year. This study shows development of a Driver Drowsiness Detection System meant to improve the safety of the road by alerting drivers who are showing signs of being drowsy. The system is based on a standard webcam that tracks the facial features of the driver with the main emphasis on the examination of eye movements that can be conducted with the help of the Eye Aspect Ratio (EAR) method. The Face Mesh by MediaPipe is a lightweight framework that can identify facial landmarks with high accuracy and efficiency, which is considered to be important in real time use. The system detects the moments of long eye shutdowns or a very low rate of blinking which are manifestations of drowsiness and alerts the driver through sound to get her attention back. This system achieves a high-performance and low-cost driver monitoring solution with the help of the computational power of OpenCV to process the image and the MediaPipe to identify faces. Test data experimental analyses indicate that the system is very accurate and responds quicker; this confirms that it can be a component of the current Advanced Driving Assistance System (ADAS).
comment: 6 pages, 8 referenced papers
☆ Tissue Aware Nuclei Detection and Classification Model for Histopathology Images
Accurate nuclei detection and classification are fundamental to computational pathology, yet existing approaches are hindered by reliance on detailed expert annotations and insufficient use of tissue context. We present Tissue-Aware Nuclei Detection (TAND), a novel framework achieving joint nuclei detection and classification using point-level supervision enhanced by tissue mask conditioning. TAND couples a ConvNeXt-based encoder-decoder with a frozen Virchow-2 tissue segmentation branch, where semantic tissue probabilities selectively modulate the classification stream through a novel multi-scale Spatial Feature-wise Linear Modulation (Spatial-FiLM). On the PUMA benchmark, TAND achieves state-of-the-art performance, surpassing both tissue-agnostic baselines and mask-supervised methods. Notably, our approach demonstrates remarkable improvements in tissue-dependent cell types such as epithelium, endothelium, and stroma. To the best of our knowledge, this is the first method to condition per-cell classification on learned tissue masks, offering a practical pathway to reduce annotation burden.
comment: 5 pages, 3 figures. Under review
☆ AtlasMorph: Learning conditional deformable templates for brain MRI
Deformable templates, or atlases, are images that represent a prototypical anatomy for a population, and are often enhanced with probabilistic anatomical label maps. They are commonly used in medical image analysis for population studies and computational anatomy tasks such as registration and segmentation. Because developing a template is a computationally expensive process, relatively few templates are available. As a result, analysis is often conducted with sub-optimal templates that are not truly representative of the study population, especially when there are large variations within this population. We propose a machine learning framework that uses convolutional registration neural networks to efficiently learn a function that outputs templates conditioned on subject-specific attributes, such as age and sex. We also leverage segmentations, when available, to produce anatomical segmentation maps for the resulting templates. The learned network can also be used to register subject images to the templates. We demonstrate our method on a compilation of 3D brain MRI datasets, and show that it can learn high-quality templates that are representative of populations. We find that annotated conditional templates enable better registration than their unlabeled unconditional counterparts, and outperform other templates construction methods.
☆ ICLR: Inter-Chrominance and Luminance Interaction for Natural Color Restoration in Low-Light Image Enhancement AAAI-26
Low-Light Image Enhancement (LLIE) task aims at improving contrast while restoring details and textures for images captured in low-light conditions. HVI color space has made significant progress in this task by enabling precise decoupling of chrominance and luminance. However, for the interaction of chrominance and luminance branches, substantial distributional differences between the two branches prevalent in natural images limit complementary feature extraction, and luminance errors are propagated to chrominance channels through the nonlinear parameter. Furthermore, for interaction between different chrominance branches, images with large homogeneous-color regions usually exhibit weak correlation between chrominance branches due to concentrated distributions. Traditional pixel-wise losses exploit strong inter-branch correlations for co-optimization, causing gradient conflicts in weakly correlated regions. Therefore, we propose an Inter-Chrominance and Luminance Interaction (ICLR) framework including a Dual-stream Interaction Enhancement Module (DIEM) and a Covariance Correction Loss (CCL). The DIEM improves the extraction of complementary information from two dimensions, fusion and enhancement, respectively. The CCL utilizes luminance residual statistics to penalize chrominance errors and balances gradient conflicts by constraining chrominance branches covariance. Experimental results on multiple datasets show that the proposed ICLR framework outperforms state-of-the-art methods.
comment: Accepted by AAAI-26
☆ VVS: Accelerating Speculative Decoding for Visual Autoregressive Generation via Partial Verification Skipping
Visual autoregressive (AR) generation models have demonstrated strong potential for image generation, yet their next-token-prediction paradigm introduces considerable inference latency. Although speculative decoding (SD) has been proven effective for accelerating visual AR models, its "draft one step, then verify one step" paradigm prevents a direct reduction of the forward passes, thus restricting acceleration potential. Motivated by the visual token interchangeability, we for the first time to explore verification skipping in the SD process of visual AR model generation to explicitly cut the number of target model forward passes, thereby reducing inference latency. Based on an analysis of the drafting stage's characteristics, we observe that verification redundancy and stale feature reusability are key factors to retain generation quality and speedup for verification-free steps. Inspired by these two observations, we propose a novel SD framework VVS to accelerate visual AR generation via partial verification skipping, which integrates three complementary modules: (1) a verification-free token selector with dynamical truncation, (2) token-level feature caching and reuse, and (3) fine-grained skipped step scheduling. Consequently, VVS reduces the number of target model forward passes by a factor of $2.8\times$ relative to vanilla AR decoding while maintaining competitive generation quality, offering a superior speed-quality trade-off over conventional SD frameworks and revealing strong potential to reshape the SD paradigm.
☆ Adaptive Multi-Scale Integration Unlocks Robust Cell Annotation in Histopathology Images
Identifying cell types and subtypes from routine histopathology images is essential for improving the computational understanding of human disease. Existing tile-based models can capture detailed nuclear morphology but often fail to incorporate the broader tissue context that influences a cell's function and identity. In addition, available human annotations are typically coarse-grained and unevenly distributed across studies, making fine-grained subtype-level supervision difficult to obtain. To address these limitations, we introduce NuClass, a pathologist workflow inspired framework for cell-wise multi-scale integration of nuclear morphology and microenvironmental context. NuClass includes two main components: Path local, which focuses on nuclear morphology from 224-by-224 pixel crops, and Path global, which models the surrounding 1024-by-1024 pixel neighborhood. A learnable gating module adaptively balances local detail and contextual cues. To encourage complementary learning, we incorporate an uncertainty-guided objective that directs the global path to prioritize regions where the local path is uncertain. We also provide calibrated confidence estimates and Grad-CAM visualizations to enhance interpretability. To overcome the lack of high-quality annotations, we construct a marker-guided dataset from Xenium spatial transcriptomics assays, yielding single-cell resolution labels for more than two million cells across eight organs and 16 classes. Evaluated on three fully held-out cohorts, NuClass achieves up to 96 percent F1 for its best-performing class, outperforming strong baselines. Our results show that multi-scale, uncertainty-aware fusion can bridge the gap between slide-level pathological foundation models and reliable, cell-level phenotype prediction.
☆ Hierarchical Prompt Learning for Image- and Text-Based Person Re-Identification AAAI 2026
Person re-identification (ReID) aims to retrieve target pedestrian images given either visual queries (image-to-image, I2I) or textual descriptions (text-to-image, T2I). Although both tasks share a common retrieval objective, they pose distinct challenges: I2I emphasizes discriminative identity learning, while T2I requires accurate cross-modal semantic alignment. Existing methods often treat these tasks separately, which may lead to representation entanglement and suboptimal performance. To address this, we propose a unified framework named Hierarchical Prompt Learning (HPL), which leverages task-aware prompt modeling to jointly optimize both tasks. Specifically, we first introduce a Task-Routed Transformer, which incorporates dual classification tokens into a shared visual encoder to route features for I2I and T2I branches respectively. On top of this, we develop a hierarchical prompt generation scheme that integrates identity-level learnable tokens with instance-level pseudo-text tokens. These pseudo-tokens are derived from image or text features via modality-specific inversion networks, injecting fine-grained, instance-specific semantics into the prompts. Furthermore, we propose a Cross-Modal Prompt Regularization strategy to enforce semantic alignment in the prompt token space, ensuring that pseudo-prompts preserve source-modality characteristics while enhancing cross-modal transferability. Extensive experiments on multiple ReID benchmarks validate the effectiveness of our method, achieving state-of-the-art performance on both I2I and T2I tasks.
comment: 9 pages, 4 figures, accepted by AAAI 2026
☆ Opt3DGS: Optimizing 3D Gaussian Splatting with Adaptive Exploration and Curvature-Aware Exploitation AAAI 2026
3D Gaussian Splatting (3DGS) has emerged as a leading framework for novel view synthesis, yet its core optimization challenges remain underexplored. We identify two key issues in 3DGS optimization: entrapment in suboptimal local optima and insufficient convergence quality. To address these, we propose Opt3DGS, a robust framework that enhances 3DGS through a two-stage optimization process of adaptive exploration and curvature-guided exploitation. In the exploration phase, an Adaptive Weighted Stochastic Gradient Langevin Dynamics (SGLD) method enhances global search to escape local optima. In the exploitation phase, a Local Quasi-Newton Direction-guided Adam optimizer leverages curvature information for precise and efficient convergence. Extensive experiments on diverse benchmark datasets demonstrate that Opt3DGS achieves state-of-the-art rendering quality by refining the 3DGS optimization process without modifying its underlying representation.
comment: Accepted at AAAI 2026 as a Conference Paper
☆ TSE-Net: Semi-supervised Monocular Height Estimation from Single Remote Sensing Images
Monocular height estimation plays a critical role in 3D perception for remote sensing, offering a cost-effective alternative to multi-view or LiDAR-based methods. While deep learning has significantly advanced the capabilities of monocular height estimation, these methods remain fundamentally limited by the availability of labeled data, which are expensive and labor-intensive to obtain at scale. The scarcity of high-quality annotations hinders the generalization and performance of existing models. To overcome this limitation, we propose leveraging large volumes of unlabeled data through a semi-supervised learning framework, enabling the model to extract informative cues from unlabeled samples and improve its predictive performance. In this work, we introduce TSE-Net, a self-training pipeline for semi-supervised monocular height estimation. The pipeline integrates teacher, student, and exam networks. The student network is trained on unlabeled data using pseudo-labels generated by the teacher network, while the exam network functions as a temporal ensemble of the student network to stabilize performance. The teacher network is formulated as a joint regression and classification model: the regression branch predicts height values that serve as pseudo-labels, and the classification branch predicts height value classes along with class probabilities, which are used to filter pseudo-labels. Height value classes are defined using a hierarchical bi-cut strategy to address the inherent long-tailed distribution of heights, and the predicted class probabilities are calibrated with a Plackett-Luce model to reflect the expected accuracy of pseudo-labels. We evaluate the proposed pipeline on three datasets spanning different resolutions and imaging modalities. Codes are available at https://github.com/zhu-xlab/tse-net.
☆ Robust Defense Strategies for Multimodal Contrastive Learning: Efficient Fine-tuning Against Backdoor Attacks
The advent of multimodal deep learning models, such as CLIP, has unlocked new frontiers in a wide range of applications, from image-text understanding to classification tasks. However, these models are not safe for adversarial attacks, particularly backdoor attacks, which can subtly manipulate model behavior. Moreover, existing defense methods typically involve training from scratch or fine-tuning using a large dataset without pinpointing the specific labels that are affected. In this study, we introduce an innovative strategy to enhance the robustness of multimodal contrastive learning models against such attacks. In particular, given a poisoned CLIP model, our approach can identify the backdoor trigger and pinpoint the victim samples and labels in an efficient manner. To that end, an image segmentation ``oracle'' is introduced as the supervisor for the output of the poisoned CLIP. We develop two algorithms to rectify the poisoned model: (1) differentiating between CLIP and Oracle's knowledge to identify potential triggers; (2) pinpointing affected labels and victim samples, and curating a compact fine-tuning dataset. With this knowledge, we are allowed to rectify the poisoned CLIP model to negate backdoor effects. Extensive experiments on visual recognition benchmarks demonstrate our strategy is effective in CLIP-based backdoor defense.
☆ BootOOD: Self-Supervised Out-of-Distribution Detection via Synthetic Sample Exposure under Neural Collapse
Out-of-distribution (OOD) detection is critical for deploying image classifiers in safety-sensitive environments, yet existing detectors often struggle when OOD samples are semantically similar to the in-distribution (ID) classes. We present BootOOD, a fully self-supervised OOD detection framework that bootstraps exclusively from ID data and is explicitly designed to handle semantically challenging OOD samples. BootOOD synthesizes pseudo-OOD features through simple transformations of ID representations and leverages Neural Collapse (NC), where ID features cluster tightly around class means with consistent feature norms. Unlike prior approaches that aim to constrain OOD features into subspaces orthogonal to the collapsed ID means, BootOOD introduces a lightweight auxiliary head that performs radius-based classification on feature norms. This design decouples OOD detection from the primary classifier and imposes a relaxed requirement: OOD samples are learned to have smaller feature norms than ID features, which is easier to satisfy when ID and OOD are semantically close. Experiments on CIFAR-10, CIFAR-100, and ImageNet-200 show that BootOOD outperforms prior post-hoc methods, surpasses training-based methods without outlier exposure, and is competitive with state-of-the-art outlier-exposure approaches while maintaining or improving ID accuracy.
comment: 8 pages
☆ Accuracy is Not Enough: Poisoning Interpretability in Federated Learning via Color Skew
As machine learning models are increasingly deployed in safety-critical domains, visual explanation techniques have become essential tools for supporting transparency. In this work, we reveal a new class of attacks that compromise model interpretability without affecting accuracy. Specifically, we show that small color perturbations applied by adversarial clients in a federated learning setting can shift a model's saliency maps away from semantically meaningful regions while keeping the prediction unchanged. The proposed saliency-aware attack framework, called Chromatic Perturbation Module, systematically crafts adversarial examples by altering the color contrast between foreground and background in a way that disrupts explanation fidelity. These perturbations accumulate across training rounds, poisoning the global model's internal feature attributions in a stealthy and persistent manner. Our findings challenge a common assumption in model auditing that correct predictions imply faithful explanations and demonstrate that interpretability itself can be an attack surface. We evaluate this vulnerability across multiple datasets and show that standard training pipelines are insufficient to detect or mitigate explanation degradation, especially in the federated learning setting, where subtle color perturbations are harder to discern. Our attack reduces peak activation overlap in Grad-CAM explanations by up to 35% while preserving classification accuracy above 96% on all evaluated datasets.
☆ Minimax Multi-Target Conformal Prediction with Applications to Imaging Inverse Problems
In ill-posed imaging inverse problems, uncertainty quantification remains a fundamental challenge, especially in safety-critical applications. Recently, conformal prediction has been used to quantify the uncertainty that the inverse problem contributes to downstream tasks like image classification, image quality assessment, fat mass quantification, etc. While existing works handle only a scalar estimation target, practical applications often involve multiple targets. In response, we propose an asymptotically minimax approach to multi-target conformal prediction that provides tight prediction intervals while ensuring joint marginal coverage. We then outline how our minimax approach can be applied to multi-metric blind image quality assessment, multi-task uncertainty quantification, and multi-round measurement acquisition. Finally, we numerically demonstrate the benefits of our minimax method, relative to existing multi-target conformal prediction methods, using both synthetic and magnetic resonance imaging (MRI) data.
☆ Mapping the Vanishing and Transformation of Urban Villages in China
Urban villages (UVs), informal settlements embedded within China's urban fabric, have undergone widespread demolition and redevelopment in recent decades. However, there remains a lack of systematic evaluation of whether the demolished land has been effectively reused, raising concerns about the efficacy and sustainability of current redevelopment practices. To address the gap, this study proposes a deep learning-based framework to monitor the spatiotemporal changes of UVs in China. Specifically, semantic segmentation of multi-temporal remote sensing imagery is first used to map evolving UV boundaries, and then post-demolition land use is classified into six categories based on the "remained-demolished-redeveloped" phase: incomplete demolition, vacant land, construction sites, buildings, green spaces, and others. Four representative cities from China's four economic regions were selected as the study areas, i.e., Guangzhou (East), Zhengzhou (Central), Xi'an (West), and Harbin (Northeast). The results indicate: 1) UV redevelopment processes were frequently prolonged; 2) redevelopment transitions primarily occurred in peripheral areas, whereas urban cores remained relatively stable; and 3) three spatiotemporal transformation pathways, i.e., synchronized redevelopment, delayed redevelopment, and gradual optimization, were revealed. This study highlights the fragmented, complex and nonlinear nature of UV redevelopment, underscoring the need for tiered and context-sensitive planning strategies. By linking spatial dynamics with the context of redevelopment policies, the findings offer valuable empirical insights that support more inclusive, efficient, and sustainable urban renewal, while also contributing to a broader global understanding of informal settlement transformations.
comment: Appendix A. Supplementary data at https://ars.els-cdn.com/content/image/1-s2.0-S2210670725008418-mmc1.docx
☆ Language-Guided Invariance Probing of Vision-Language Models
Recent vision-language models (VLMs) such as CLIP, OpenCLIP, EVA02-CLIP and SigLIP achieve strong zero-shot performance, but it is unclear how reliably they respond to controlled linguistic perturbations. We introduce Language-Guided Invariance Probing (LGIP), a benchmark that measures (i) invariance to meaning-preserving paraphrases and (ii) sensitivity to meaning-changing semantic flips in image-text matching. Using 40k MS COCO images with five human captions each, we automatically generate paraphrases and rule-based flips that alter object category, color or count, and summarize model behavior with an invariance error, a semantic sensitivity gap and a positive-rate statistic. Across nine VLMs, EVA02-CLIP and large OpenCLIP variants lie on a favorable invariance-sensitivity frontier, combining low paraphrase-induced variance with consistently higher scores for original captions than for their flipped counterparts. In contrast, SigLIP and SigLIP2 show much larger invariance error and often prefer flipped captions to the human descriptions, especially for object and color edits. These failures are largely invisible to standard retrieval metrics, indicating that LGIP provides a model-agnostic diagnostic for the linguistic robustness of VLMs beyond conventional accuracy scores.
☆ InterMoE: Individual-Specific 3D Human Interaction Generation via Dynamic Temporal-Selective MoE AAAI-26
Generating high-quality human interactions holds significant value for applications like virtual reality and robotics. However, existing methods often fail to preserve unique individual characteristics or fully adhere to textual descriptions. To address these challenges, we introduce InterMoE, a novel framework built on a Dynamic Temporal-Selective Mixture of Experts. The core of InterMoE is a routing mechanism that synergistically uses both high-level text semantics and low-level motion context to dispatch temporal motion features to specialized experts. This allows experts to dynamically determine the selection capacity and focus on critical temporal features, thereby preserving specific individual characteristic identities while ensuring high semantic fidelity. Extensive experiments show that InterMoE achieves state-of-the-art performance in individual-specific high-fidelity 3D human interaction generation, reducing FID scores by 9% on the InterHuman dataset and 22% on InterX.
comment: Accepted to AAAI-26. Codes: https://github.com/Lighten001/InterMoE
☆ Semantic Document Derendering: SVG Reconstruction via Vision-Language Modeling
Multimedia documents such as slide presentations and posters are designed to be interactive and easy to modify. Yet, they are often distributed in a static raster format, which limits editing and customization. Restoring their editability requires converting these raster images back into structured vector formats. However, existing geometric raster-vectorization methods, which rely on low-level primitives like curves and polygons, fall short at this task. Specifically, when applied to complex documents like slides, they fail to preserve the high-level structure, resulting in a flat collection of shapes where the semantic distinction between image and text elements is lost. To overcome this limitation, we address the problem of semantic document derendering by introducing SliDer, a novel framework that uses Vision-Language Models (VLMs) to derender slide images as compact and editable Scalable Vector Graphic (SVG) representations. SliDer detects and extracts attributes from individual image and text elements in a raster input and organizes them into a coherent SVG format. Crucially, the model iteratively refines its predictions during inference in a process analogous to human design, generating SVG code that more faithfully reconstructs the original raster upon rendering. Furthermore, we introduce Slide2SVG, a novel dataset comprising raster-SVG pairs of slide documents curated from real-world scientific presentations, to facilitate future research in this domain. Our results demonstrate that SliDer achieves a reconstruction LPIPS of 0.069 and is favored by human evaluators in 82.9% of cases compared to the strongest zero-shot VLM baseline.
☆ Trust in Vision-Language Models: Insights from a Participatory User Workshop
With the growing deployment of Vision-Language Models (VLMs), pre-trained on large image-text and video-text datasets, it is critical to equip users with the tools to discern when to trust these systems. However, examining how user trust in VLMs builds and evolves remains an open problem. This problem is exacerbated by the increasing reliance on AI models as judges for experimental validation, to bypass the cost and implications of running participatory design studies directly with users. Following a user-centred approach, this paper presents preliminary results from a workshop with prospective VLM users. Insights from this pilot workshop inform future studies aimed at contextualising trust metrics and strategies for participants' engagement to fit the case of user-VLM interaction.
☆ Unlocking the Forgery Detection Potential of Vanilla MLLMs: A Novel Training-Free Pipeline
With the rapid advancement of artificial intelligence-generated content (AIGC) technologies, including multimodal large language models (MLLMs) and diffusion models, image generation and manipulation have become remarkably effortless. Existing image forgery detection and localization (IFDL) methods often struggle to generalize across diverse datasets and offer limited interpretability. Nowadays, MLLMs demonstrate strong generalization potential across diverse vision-language tasks, and some studies introduce this capability to IFDL via large-scale training. However, such approaches cost considerable computational resources, while failing to reveal the inherent generalization potential of vanilla MLLMs to address this problem. Inspired by this observation, we propose Foresee, a training-free MLLM-based pipeline tailored for image forgery analysis. It eliminates the need for additional training and enables a lightweight inference process, while surpassing existing MLLM-based methods in both tamper localization accuracy and the richness of textual explanations. Foresee employs a type-prior-driven strategy and utilizes a Flexible Feature Detector (FFD) module to specifically handle copy-move manipulations, thereby effectively unleashing the potential of vanilla MLLMs in the forensic domain. Extensive experiments demonstrate that our approach simultaneously achieves superior localization accuracy and provides more comprehensive textual explanations. Moreover, Foresee exhibits stronger generalization capability, outperforming existing IFDL methods across various tampering types, including copy-move, splicing, removal, local enhancement, deepfake, and AIGC-based editing. The code will be released in the final version.
☆ FUSE: A Flow-based Mapping Between Shapes
We introduce a novel neural representation for maps between 3D shapes based on flow-matching models, which is computationally efficient and supports cross-representation shape matching without large-scale training or data-driven procedures. 3D shapes are represented as the probability distribution induced by a continuous and invertible flow mapping from a fixed anchor distribution. Given a source and a target shape, the composition of the inverse flow (source to anchor) with the forward flow (anchor to target), we continuously map points between the two surfaces. By encoding the shapes with a pointwise task-tailored embedding, this construction provides an invertible and modality-agnostic representation of maps between shapes across point clouds, meshes, signed distance fields (SDFs), and volumetric data. The resulting representation consistently achieves high coverage and accuracy across diverse benchmarks and challenging settings in shape matching. Beyond shape matching, our framework shows promising results in other tasks, including UV mapping and registration of raw point cloud scans of human bodies.
comment: 11 pages, 9 figures
☆ VOPE: Revisiting Hallucination of Vision-Language Models in Voluntary Imagination Task
Most research on hallucinations in Large Vision-Language Models (LVLMs) focuses on factual description tasks that prohibit any output absent from the image. However, little attention has been paid to hallucinations in voluntary imagination tasks, e.g., story writing, where the models are expected to generate novel content beyond the given image. In these tasks, it is inappropriate to simply regard such imagined novel content as hallucinations. To address this limitation, we introduce Voluntary-imagined Object Presence Evaluation (VOPE)-a novel method to assess LVLMs' hallucinations in voluntary imagination tasks via presence evaluation. Specifically, VOPE poses recheck-based questions to evaluate how an LVLM interprets the presence of the imagined objects in its own response. The consistency between the model's interpretation and the object's presence in the image is then used to determine whether the model hallucinates when generating the response. We apply VOPE to several mainstream LVLMs and hallucination mitigation methods, revealing two key findings: (1) most LVLMs hallucinate heavily during voluntary imagination, and their performance in presence evaluation is notably poor on imagined objects; (2) existing hallucination mitigation methods show limited effect in voluntary imagination tasks, making this an important direction for future research.
comment: 8 pages
☆ Delineate Anything Flow: Fast, Country-Level Field Boundary Detection from Any Source
Accurate delineation of agricultural field boundaries from satellite imagery is essential for land management and crop monitoring, yet existing methods often produce incomplete boundaries, merge adjacent fields, and struggle to scale. We present the Delineate Anything Flow (DelAnyFlow) methodology, a resolution-agnostic approach for large-scale field boundary mapping. DelAnyFlow combines the DelAny instance segmentation model, based on a YOLOv11 backbone and trained on the large-scale Field Boundary Instance Segmentation-22M (FBIS 22M) dataset, with a structured post-processing, merging, and vectorization sequence to generate topologically consistent vector boundaries. FBIS 22M, the largest dataset of its kind, contains 672,909 multi-resolution image patches (0.25-10m) and 22.9million validated field instances. The DelAny model delivers state-of-the-art accuracy with over 100% higher mAP and 400x faster inference than SAM2. DelAny demonstrates strong zero-shot generalization and supports national-scale applications: using Sentinel 2 data for 2024, DelAnyFlow generated a complete field boundary layer for Ukraine (603,000km2) in under six hours on a single workstation. DelAnyFlow outputs significantly improve boundary completeness relative to operational products from Sinergise Solutions and NASA Harvest, particularly in smallholder and fragmented systems (0.25-1ha). For Ukraine, DelAnyFlow delineated 3.75M fields at 5m and 5.15M at 2.5m, compared to 2.66M detected by Sinergise Solutions and 1.69M by NASA Harvest. This work delivers a scalable, cost-effective methodology for field delineation in regions lacking digital cadastral data. A project landing page with links to model weights, code, national-scale vector outputs, and dataset is available at https://lavreniuk.github.io/Delineate-Anything/.
☆ Attention Grounded Enhancement for Visual Document Retrieval
Visual document retrieval requires understanding heterogeneous and multi-modal content to satisfy information needs. Recent advances use screenshot-based document encoding with fine-grained late interaction, significantly improving retrieval performance. However, retrievers are still trained with coarse global relevance labels, without revealing which regions support the match. As a result, retrievers tend to rely on surface-level cues and struggle to capture implicit semantic connections, hindering their ability to handle non-extractive queries. To alleviate this problem, we propose a \textbf{A}ttention-\textbf{G}rounded \textbf{RE}triever \textbf{E}nhancement (AGREE) framework. AGREE leverages cross-modal attention from multimodal large language models as proxy local supervision to guide the identification of relevant document regions. During training, AGREE combines local signals with the global signals to jointly optimize the retriever, enabling it to learn not only whether documents match, but also which content drives relevance. Experiments on the challenging ViDoRe V2 benchmark show that AGREE significantly outperforms the global-supervision-only baseline. Quantitative and qualitative analyses further demonstrate that AGREE promotes deeper alignment between query terms and document regions, moving beyond surface-level matching toward more accurate and interpretable retrieval. Our code is available at: https://anonymous.4open.science/r/AGREE-2025.
☆ What Color Is It? A Text-Interference Multimodal Hallucination Benchmark
With the rapid advancement of Large Models, numerous text-and-vision-fused Multimodal Large Models (MLMs) have emerged. However, these MLMs remain susceptible to informational interference in visual perception, particularly in color perception, which introduces an additional risk of hallucination. To validate this hypothesis, we introduce the "What Color Is It" dataset, a novel benchmark constructed using a simple method to trigger single-modality visual hallucination in MLMs. Based on this dataset, we further investigate the underlying causes of hallucination in the visual modality of MLMs and propose potential solutions to enhance their robustness.
☆ TripleFDS: Triple Feature Disentanglement and Synthesis for Scene Text Editing AAAI2026
Scene Text Editing (STE) aims to naturally modify text in images while preserving visual consistency, the decisive factors of which can be divided into three parts, i.e., text style, text content, and background. Previous methods have struggled with incomplete disentanglement of editable attributes, typically addressing only one aspect - such as editing text content - thus limiting controllability and visual consistency. To overcome these limitations, we propose TripleFDS, a novel framework for STE with disentangled modular attributes, and an accompanying dataset called SCB Synthesis. SCB Synthesis provides robust training data for triple feature disentanglement by utilizing the "SCB Group", a novel construct that combines three attributes per image to generate diverse, disentangled training groups. Leveraging this construct as a basic training unit, TripleFDS first disentangles triple features, ensuring semantic accuracy through inter-group contrastive regularization and reducing redundancy through intra-sample multi-feature orthogonality. In the synthesis phase, TripleFDS performs feature remapping to prevent "shortcut" phenomena during reconstruction and mitigate potential feature leakage. Trained on 125,000 SCB Groups, TripleFDS achieves state-of-the-art image fidelity (SSIM of 44.54) and text accuracy (ACC of 93.58%) on the mainstream STE benchmarks. Besides superior performance, the more flexible editing of TripleFDS supports new operations such as style replacement and background transfer. Code: https://github.com/yusenbao01/TripleFDS
comment: Accepted by AAAI2026
☆ Descriptor: Distance-Annotated Traffic Perception Question Answering (DTPQA)
The remarkable progress of Vision-Language Models (VLMs) on a variety of tasks has raised interest in their application to automated driving. However, for these models to be trusted in such a safety-critical domain, they must first possess robust perception capabilities, i.e., they must be capable of understanding a traffic scene, which can often be highly complex, with many things happening simultaneously. Moreover, since critical objects and agents in traffic scenes are often at long distances, we require systems with not only strong perception capabilities at close distances (up to 20 meters), but also at long (30+ meters) range. Therefore, it is important to evaluate the perception capabilities of these models in isolation from other skills like reasoning or advanced world knowledge. Distance-Annotated Traffic Perception Question Answering (DTPQA) is a Visual Question Answering (VQA) benchmark designed specifically for this purpose: it can be used to evaluate the perception systems of VLMs in traffic scenarios using trivial yet crucial questions relevant to driving decisions. It consists of two parts: a synthetic benchmark (DTP-Synthetic) created using a simulator, and a real-world benchmark (DTP-Real) built on top of existing images of real traffic scenes. Additionally, DTPQA includes distance annotations, i.e., how far the object in question is from the camera. More specifically, each DTPQA sample consists of (at least): (a) an image, (b) a question, (c) the ground truth answer, and (d) the distance of the object in question, enabling analysis of how VLM performance degrades with increasing object distance. In this article, we provide the dataset itself along with the Python scripts used to create it, which can be used to generate additional data of the same kind.
☆ Generalized Denoising Diffusion Codebook Models (gDDCM): Tokenizing images using a pre-trained diffusion model
Recently, the Denoising Diffusion Codebook Models (DDCM) was proposed. DDCM leverages the Denoising Diffusion Probabilistic Model (DDPM) and replaces the random noise in the backward process with noise sampled from specific sets according to a predefined rule, thereby enabling image compression. However, DDCM cannot be applied to methods other than DDPM. In this paper, we propose the generalized Denoising Diffusion Compression Model (gDDCM), which extends DDCM to mainstream diffusion models and their variants, including DDPM, Score-Based Models, Consistency Models, and Rectified Flow. We evaluate our method on CIFAR-10 and LSUN Bedroom datasets. Experimental results demonstrate that our approach successfully generalizes DDCM to the aforementioned models and achieves improved performance.
comment: in Chinese language
☆ Semi-Supervised Multi-Task Learning for Interpretable Quality As- sessment of Fundus Images
Retinal image quality assessment (RIQA) supports computer-aided diagnosis of eye diseases. However, most tools classify only overall image quality, without indicating acquisition defects to guide recapture. This gap is mainly due to the high cost of detailed annotations. In this paper, we aim to mitigate this limitation by introducing a hybrid semi-supervised learning approach that combines manual labels for overall quality with pseudo-labels of quality details within a multi-task framework. Our objective is to obtain more interpretable RIQA models without requiring extensive manual labeling. Pseudo-labels are generated by a Teacher model trained on a small dataset and then used to fine-tune a pre-trained model in a multi-task setting. Using a ResNet-18 backbone, we show that these weak annotations improve quality assessment over single-task baselines (F1: 0.875 vs. 0.863 on EyeQ, and 0.778 vs. 0.763 on DeepDRiD), matching or surpassing existing methods. The multi-task model achieved performance statistically comparable to the Teacher for most detail prediction tasks (p > 0.05). In a newly annotated EyeQ subset released with this paper, our model performed similarly to experts, suggesting that pseudo-label noise aligns with expert variability. Our main finding is that the proposed semi-supervised approach not only improves overall quality assessment but also provides interpretable feedback on capture conditions (illumination, clarity, contrast). This enhances interpretability at no extra manual labeling cost and offers clinically actionable outputs to guide image recapture.
☆ YOLO Meets Mixture-of-Experts: Adaptive Expert Routing for Robust Object Detection
This paper presents a novel Mixture-of-Experts framework for object detection, incorporating adaptive routing among multiple YOLOv9-T experts to enable dynamic feature specialization and achieve higher mean Average Precision (mAP) and Average Recall (AR) compared to a single YOLOv9-T model.
comment: 1 figure, 1 table
☆ Computer Vision based group activity detection and action spotting
Group activity detection in multi-person scenes is challenging due to complex human interactions, occlusions, and variations in appearance over time. This work presents a computer vision based framework for group activity recognition and action spotting using a combination of deep learning models and graph based relational reasoning. The system first applies Mask R-CNN to obtain accurate actor localization through bounding boxes and instance masks. Multiple backbone networks, including Inception V3, MobileNet, and VGG16, are used to extract feature maps, and RoIAlign is applied to preserve spatial alignment when generating actor specific features. The mask information is then fused with the feature maps to obtain refined masked feature representations for each actor. To model interactions between individuals, we construct Actor Relation Graphs that encode appearance similarity and positional relations using methods such as normalized cross correlation, sum of absolute differences, and dot product. Graph Convolutional Networks operate on these graphs to reason about relationships and predict both individual actions and group level activities. Experiments on the Collective Activity dataset demonstrate that the combination of mask based feature refinement, robust similarity search, and graph neural network reasoning leads to improved recognition performance across both crowded and non crowded scenarios. This approach highlights the potential of integrating segmentation, feature extraction, and relational graph reasoning for complex video understanding tasks.
☆ DriveLiDAR4D: Sequential and Controllable LiDAR Scene Generation for Autonomous Driving AAAI2026
The generation of realistic LiDAR point clouds plays a crucial role in the development and evaluation of autonomous driving systems. Although recent methods for 3D LiDAR point cloud generation have shown significant improvements, they still face notable limitations, including the lack of sequential generation capabilities and the inability to produce accurately positioned foreground objects and realistic backgrounds. These shortcomings hinder their practical applicability. In this paper, we introduce DriveLiDAR4D, a novel LiDAR generation pipeline consisting of multimodal conditions and a novel sequential noise prediction model LiDAR4DNet, capable of producing temporally consistent LiDAR scenes with highly controllable foreground objects and realistic backgrounds. To the best of our knowledge, this is the first work to address the sequential generation of LiDAR scenes with full scene manipulation capability in an end-to-end manner. We evaluated DriveLiDAR4D on the nuScenes and KITTI datasets, where we achieved an FRD score of 743.13 and an FVD score of 16.96 on the nuScenes dataset, surpassing the current state-of-the-art (SOTA) method, UniScene, with an performance boost of 37.2% in FRD and 24.1% in FVD, respectively.
comment: AAAI2026
☆ DAP: A Discrete-token Autoregressive Planner for Autonomous Driving
Gaining sustainable performance improvement with scaling data and model budget remains a pivotal yet unresolved challenge in autonomous driving. While autoregressive models exhibited promising data-scaling efficiency in planning tasks, predicting ego trajectories alone suffers sparse supervision and weakly constrains how scene evolution should shape ego motion. Therefore, we introduce DAP, a discrete-token autoregressive planner that jointly forecasts BEV semantics and ego trajectories, thereby enforcing comprehensive representation learning and allowing predicted dynamics to directly condition ego motion. In addition, we incorporate a reinforcement-learning-based fine-tuning, which preserves supervised behavior cloning priors while injecting reward-guided improvements. Despite a compact 160M parameter budget, DAP achieves state-of-the-art performance on open-loop metrics and delivers competitive closed-loop results on the NAVSIM benchmark. Overall, the fully discrete-token autoregressive formulation operating on both rasterized BEV and ego actions provides a compact yet scalable planning paradigm for autonomous driving.
☆ CorrectAD: A Self-Correcting Agentic System to Improve End-to-end Planning in Autonomous Driving
End-to-end planning methods are the de facto standard of the current autonomous driving system, while the robustness of the data-driven approaches suffers due to the notorious long-tail problem (i.e., rare but safety-critical failure cases). In this work, we explore whether recent diffusion-based video generation methods (a.k.a. world models), paired with structured 3D layouts, can enable a fully automated pipeline to self-correct such failure cases. We first introduce an agent to simulate the role of product manager, dubbed PM-Agent, which formulates data requirements to collect data similar to the failure cases. Then, we use a generative model that can simulate both data collection and annotation. However, existing generative models struggle to generate high-fidelity data conditioned on 3D layouts. To address this, we propose DriveSora, which can generate spatiotemporally consistent videos aligned with the 3D annotations requested by PM-Agent. We integrate these components into our self-correcting agentic system, CorrectAD. Importantly, our pipeline is an end-to-end model-agnostic and can be applied to improve any end-to-end planner. Evaluated on both nuScenes and a more challenging in-house dataset across multiple end-to-end planners, CorrectAD corrects 62.5% and 49.8% of failure cases, reducing collision rates by 39% and 27%, respectively.
☆ SkyReels-Text: Fine-grained Font-Controllable Text Editing for Poster Design
Artistic design such as poster design often demands rapid yet precise modification of textual content while preserving visual harmony and typographic intent, especially across diverse font styles. Although modern image editing models have grown increasingly powerful, they still fall short in fine-grained, font-aware text manipulation, limiting their utility in professional design workflows such as poster editing. To address this issue, we present SkyReels-Text, a novel font-controllable framework for precise poster text editing. Our method enables simultaneous editing of multiple text regions, each rendered in distinct typographic styles, while preserving the visual appearance of non-edited regions. Notably, our model requires neither font labels nor fine-tuning during inference: users can simply provide cropped glyph patches corresponding to their desired typography, even if the font is not included in any standard library. Extensive experiments on multiple datasets, including handwrittent text benchmarks, SkyReels-Text achieves state-of-the-art performance in both text fidelity and visual realism, offering unprecedented control over font families, and stylistic nuances. This work bridges the gap between general-purpose image editing and professional-grade typographic design.
☆ TabFlash: Efficient Table Understanding with Progressive Question Conditioning and Token Focusing AAAI 2026
Table images present unique challenges for effective and efficient understanding due to the need for question-specific focus and the presence of redundant background regions. Existing Multimodal Large Language Model (MLLM) approaches often overlook these characteristics, resulting in uninformative and redundant visual representations. To address these issues, we aim to generate visual features that are both informative and compact to improve table understanding. We first propose progressive question conditioning, which injects the question into Vision Transformer layers with gradually increasing frequency, considering each layer's capacity to handle additional information, to generate question-aware visual features. To reduce redundancy, we introduce a pruning strategy that discards background tokens, thereby improving efficiency. To mitigate information loss from pruning, we further propose token focusing, a training strategy that encourages the model to concentrate essential information in the retained tokens. By combining these approaches, we present TabFlash, an efficient and effective MLLM for table understanding. TabFlash achieves state-of-the-art performance, outperforming both open-source and proprietary MLLMs, while requiring 27% less FLOPs and 30% less memory usage compared to the second-best MLLM.
comment: AAAI 2026 (Main Technical Track)
☆ Towards Metric-Aware Multi-Person Mesh Recovery by Jointly Optimizing Human Crowd in Camera Space
Multi-person human mesh recovery from a single image is a challenging task, hindered by the scarcity of in-the-wild training data. Prevailing in-the-wild human mesh pseudo-ground-truth (pGT) generation pipelines are single-person-centric, where each human is processed individually without joint optimization. This oversight leads to a lack of scene-level consistency, producing individuals with conflicting depths and scales within the same image. To address this, we introduce Depth-conditioned Translation Optimization (DTO), a novel optimization-based method that jointly refines the camera-space translations of all individuals in a crowd. By leveraging anthropometric priors on human height and depth cues from a monocular depth estimator, DTO solves for a scene-consistent placement of all subjects within a principled Maximum a posteriori (MAP) framework. Applying DTO to the 4D-Humans dataset, we construct DTO-Humans, a new large-scale pGT dataset of 0.56M high-quality, scene-consistent multi-person images, featuring dense crowds with an average of 4.8 persons per image. Furthermore, we propose Metric-Aware HMR, an end-to-end network that directly estimates human mesh and camera parameters in metric scale. This is enabled by a camera branch and a novel relative metric loss that enforces plausible relative scales. Extensive experiments demonstrate that our method achieves state-of-the-art performance on relative depth reasoning and human mesh recovery. Code and data will be released publicly.
☆ SF-Recon: Simplification-Free Lightweight Building Reconstruction via 3D Gaussian Splatting
Lightweight building surface models are crucial for digital city, navigation, and fast geospatial analytics, yet conventional multi-view geometry pipelines remain cumbersome and quality-sensitive due to their reliance on dense reconstruction, meshing, and subsequent simplification. This work presents SF-Recon, a method that directly reconstructs lightweight building surfaces from multi-view images without post-hoc mesh simplification. We first train an initial 3D Gaussian Splatting (3DGS) field to obtain a view-consistent representation. Building structure is then distilled by a normal-gradient-guided Gaussian optimization that selects primitives aligned with roof and wall boundaries, followed by multi-view edge-consistency pruning to enhance structural sharpness and suppress non-structural artifacts without external supervision. Finally, a multi-view depth-constrained Delaunay triangulation converts the structured Gaussian field into a lightweight, structurally faithful building mesh. Based on a proposed SF dataset, the experimental results demonstrate that our SF-Recon can directly reconstruct lightweight building models from multi-view imagery, achieving substantially fewer faces and vertices while maintaining computational efficiency. Website:https://lzh282140127-cell.github.io/SF-Recon-project/
☆ Recognition of Abnormal Events in Surveillance Videos using Weakly Supervised Dual-Encoder Models
We address the challenge of detecting rare and diverse anomalies in surveillance videos using only video-level supervision. Our dual-backbone framework combines convolutional and transformer representations through top-k pooling, achieving 90.7% area under the curve (AUC) on the UCF-Crime dataset.
comment: 1 figure, 1 table
☆ Is your VLM Sky-Ready? A Comprehensive Spatial Intelligence Benchmark for UAV Navigation
Vision-Language Models (VLMs), leveraging their powerful visual perception and reasoning capabilities, have been widely applied in Unmanned Aerial Vehicle (UAV) tasks. However, the spatial intelligence capabilities of existing VLMs in UAV scenarios remain largely unexplored, raising concerns about their effectiveness in navigating and interpreting dynamic environments. To bridge this gap, we introduce SpatialSky-Bench, a comprehensive benchmark specifically designed to evaluate the spatial intelligence capabilities of VLMs in UAV navigation. Our benchmark comprises two categories-Environmental Perception and Scene Understanding-divided into 13 subcategories, including bounding boxes, color, distance, height, and landing safety analysis, among others. Extensive evaluations of various mainstream open-source and closed-source VLMs reveal unsatisfactory performance in complex UAV navigation scenarios, highlighting significant gaps in their spatial capabilities. To address this challenge, we developed the SpatialSky-Dataset, a comprehensive dataset containing 1M samples with diverse annotations across various scenarios. Leveraging this dataset, we introduce Sky-VLM, a specialized VLM designed for UAV spatial reasoning across multiple granularities and contexts. Extensive experimental results demonstrate that Sky-VLM achieves state-of-the-art performance across all benchmark tasks, paving the way for the development of VLMs suitable for UAV scenarios. The source code is available at https://github.com/linglingxiansen/SpatialSKy.
☆ SymGS : Leveraging Local Symmetries for 3D Gaussian Splatting Compression
3D Gaussian Splatting has emerged as a transformative technique in novel view synthesis, primarily due to its high rendering speed and photorealistic fidelity. However, its memory footprint scales rapidly with scene complexity, often reaching several gigabytes. Existing methods address this issue by introducing compression strategies that exploit primitive-level redundancy through similarity detection and quantization. We aim to surpass the compression limits of such methods by incorporating symmetry-aware techniques, specifically targeting mirror symmetries to eliminate redundant primitives. We propose a novel compression framework, \textbf{\textit{SymGS}}, introducing learnable mirrors into the scene, thereby eliminating local and global reflective redundancies for compression. Our framework functions as a plug-and-play enhancement to state-of-the-art compression methods, (e.g. HAC) to achieve further compression. Compared to HAC, we achieve $1.66 \times$ compression across benchmark datasets (upto $3\times$ on large-scale scenes). On an average, SymGS enables $\bf{108\times}$ compression of a 3DGS scene, while preserving rendering quality. The project page and supplementary can be found at \textbf{\color{cyan}{symgs.github.io}}
comment: Project Page: https://symgs.github.io/
☆ Building Egocentric Procedural AI Assistant: Methods, Benchmarks, and Challenges
Driven by recent advances in vision language models (VLMs) and egocentric perception research, we introduce the concept of an egocentric procedural AI assistant (EgoProceAssist) tailored to step-by-step support daily procedural tasks in a first-person view. In this work, we start by identifying three core tasks: egocentric procedural error detection, egocentric procedural learning, and egocentric procedural question answering. These tasks define the essential functions of EgoProceAssist within a new taxonomy. Specifically, our work encompasses a comprehensive review of current techniques, relevant datasets, and evaluation metrics across these three core areas. To clarify the gap between the proposed EgoProceAssist and existing VLM-based AI assistants, we introduce novel experiments and provide a comprehensive evaluation of representative VLM-based methods. Based on these findings and our technical analysis, we discuss the challenges ahead and suggest future research directions. Furthermore, an exhaustive list of this study is publicly available in an active repository that continuously collects the latest work: https://github.com/z1oong/Building-Egocentric-Procedural-AI-Assistant
comment: 26 pages, 8 figures, 8 tables, Under peer-review
☆ GeoX-Bench: Benchmarking Cross-View Geo-Localization and Pose Estimation Capabilities of Large Multimodal Models
Large multimodal models (LMMs) have demonstrated remarkable capabilities across a wide range of tasks, however their knowledge and abilities in the cross-view geo-localization and pose estimation domains remain unexplored, despite potential benefits for navigation, autonomous driving, outdoor robotics, \textit{etc}. To bridge this gap, we introduce \textbf{GeoX-Bench}, a comprehensive \underline{Bench}mark designed to explore and evaluate the capabilities of LMMs in \underline{cross}-view \underline{Geo}-localization and pose estimation. Specifically, GeoX-Bench contains 10,859 panoramic-satellite image pairs spanning 128 cities in 49 countries, along with corresponding 755,976 question-answering (QA) pairs. Among these, 42,900 QA pairs are designated for benchmarking, while the remaining are intended to enhance the capabilities of LMMs. Based on GeoX-Bench, we evaluate the capabilities of 25 state-of-the-art LMMs on cross-view geo-localization and pose estimation tasks, and further explore the empowered capabilities of instruction-tuning. Our benchmark demonstrate that while current LMMs achieve impressive performance in geo-localization tasks, their effectiveness declines significantly on the more complex pose estimation tasks, highlighting a critical area for future improvement, and instruction-tuning LMMs on the training data of GeoX-Bench can significantly improve the cross-view geo-sense abilities. The GeoX-Bench is available at \textcolor{magenta}{https://github.com/IntMeGroup/GeoX-Bench}.
☆ Referring Camouflaged Object Detection With Multi-Context Overlapped Windows Cross-Attention
Referring camouflaged object detection (Ref-COD) aims to identify hidden objects by incorporating reference information such as images and text descriptions. Previous research has transformed reference images with salient objects into one-dimensional prompts, yielding significant results. We explore ways to enhance performance through multi-context fusion of rich salient image features and camouflaged object features. Therefore, we propose RFMNet, which utilizes features from multiple encoding stages of the reference salient images and performs interactive fusion with the camouflage features at the corresponding encoding stages. Given that the features in salient object images contain abundant object-related detail information, performing feature fusion within local areas is more beneficial for detecting camouflaged objects. Therefore, we propose an Overlapped Windows Cross-attention mechanism to enable the model to focus more attention on the local information matching based on reference features. Besides, we propose the Referring Feature Aggregation (RFA) module to decode and segment the camouflaged objects progressively. Extensive experiments on the Ref-COD benchmark demonstrate that our method achieves state-of-the-art performance.
comment: 12 pages, 7figures, This work is supported by National Nature Science Foundation of China (Grant No. 62203291)
☆ Uncovering and Mitigating Transient Blindness in Multimodal Model Editing AAAI'26
Multimodal Model Editing (MMED) aims to correct erroneous knowledge in multimodal models. Existing evaluation methods, adapted from textual model editing, overstate success by relying on low-similarity or random inputs, obscure overfitting. We propose a comprehensive locality evaluation framework, covering three key dimensions: random-image locality, no-image locality, and consistent-image locality, operationalized through seven distinct data types, enabling a detailed and structured analysis of multimodal edits. We introduce De-VQA, a dynamic evaluation for visual question answering, uncovering a phenomenon we term transient blindness, overfitting to edit-similar text while ignoring visuals. Token analysis shows edits disproportionately affect textual tokens. We propose locality-aware adversarial losses to balance cross-modal representations. Empirical results demonstrate that our approach consistently outperforms existing baselines, reducing transient blindness and improving locality by 17% on average.
comment: Accepted at AAAI'26
☆ MMD-Thinker: Adaptive Multi-Dimensional Thinking for Multimodal Misinformation Detection
Multimodal misinformation floods on various social media, and continues to evolve in the era of AI-generated content (AIGC). The emerged misinformation with low creation cost and high deception poses significant threats to society. While recent studies leverage general-purpose multimodal large language models (MLLMs) to achieve remarkable results in detection, they encounter two critical limitations: (1) Insufficient reasoning, where general-purpose MLLMs often follow the uniform reasoning paradigm but generate inaccurate explanations and judgments, due to the lack of the task-specific knowledge of multimodal misinformation detection. (2) Reasoning biases, where a single thinking mode make detectors a suboptimal path for judgment, struggling to keep pace with the fast-growing and intricate multimodal misinformation. In this paper, we propose MMD-Thinker, a two-stage framework for multimodal misinformation detection through adaptive multi-dimensional thinking. First, we develop tailor-designed thinking mode for multimodal misinformation detection. Second, we adopt task-specific instruction tuning to inject the tailored thinking mode into general-purpose MLLMs. Third, we further leverage reinforcement learning strategy with a mixed advantage function, which incentivizes the reasoning capabilities in trajectories. Furthermore, we construct the multimodal misinformation reasoning (MMR) dataset, encompasses more than 8K image-text pairs with both reasoning processes and classification labels, to make progress in the relam of multimodal misinformation detection. Experimental results demonstrate that our proposed MMD-Thinker achieves state-of-the-art performance on both in-domain and out-of-domain benchmark datasets, while maintaining flexible inference and token usage. Code will be publicly available at Github.
☆ MRIQT: Physics-Aware Diffusion Model for Image Quality Transfer in Neonatal Ultra-Low-Field MRI
Portable ultra-low-field MRI (uLF-MRI, 0.064 T) offers accessible neuroimaging for neonatal care but suffers from low signal-to-noise ratio and poor diagnostic quality compared to high-field (HF) MRI. We propose MRIQT, a 3D conditional diffusion framework for image quality transfer (IQT) from uLF to HF MRI. MRIQT combines realistic K-space degradation for physics-consistent uLF simulation, v-prediction with classifier-free guidance for stable image-to-image generation, and an SNR-weighted 3D perceptual loss for anatomical fidelity. The model denoises from a noised uLF input conditioned on the same scan, leveraging volumetric attention-UNet architecture for structure-preserving translation. Trained on a neonatal cohort with diverse pathologies, MRIQT surpasses recent GAN and CNN baselines in PSNR 15.3% with 1.78% over the state of the art, while physicians rated 85% of its outputs as good quality with clear pathology present. MRIQT enables high-fidelity, diffusion-based enhancement of portable ultra-low-field (uLF) MRI for deliable neonatal brain assessment.
comment: 5 pages, 4 figures
☆ Hybrid-Domain Adaptative Representation Learning for Gaze Estimation AAAI2026
Appearance-based gaze estimation, aiming to predict accurate 3D gaze direction from a single facial image, has made promising progress in recent years. However, most methods suffer significant performance degradation in cross-domain evaluation due to interference from gaze-irrelevant factors, such as expressions, wearables, and image quality. To alleviate this problem, we present a novel Hybrid-domain Adaptative Representation Learning (shorted by HARL) framework that exploits multi-source hybrid datasets to learn robust gaze representation. More specifically, we propose to disentangle gaze-relevant representation from low-quality facial images by aligning features extracted from high-quality near-eye images in an unsupervised domain-adaptation manner, which hardly requires any computational or inference costs. Additionally, we analyze the effect of head-pose and design a simple yet efficient sparse graph fusion module to explore the geometric constraint between gaze direction and head-pose, leading to a dense and robust gaze representation. Extensive experiments on EyeDiap, MPIIFaceGaze, and Gaze360 datasets demonstrate that our approach achieves state-of-the-art accuracy of $\textbf{5.02}^{\circ}$ and $\textbf{3.36}^{\circ}$, and $\textbf{9.26}^{\circ}$ respectively, and present competitive performances through cross-dataset evaluation. The code is available at https://github.com/da60266/HARL.
comment: AAAI2026
☆ 3DAlign-DAER: Dynamic Attention Policy and Efficient Retrieval Strategy for Fine-grained 3D-Text Alignment at Scale
Despite recent advancements in 3D-text cross-modal alignment, existing state-of-the-art methods still struggle to align fine-grained textual semantics with detailed geometric structures, and their alignment performance degrades significantly when scaling to large-scale 3D databases. To overcome this limitation, we introduce 3DAlign-DAER, a unified framework designed to align text and 3D geometry via the proposed dynamic attention policy and the efficient retrieval strategy, capturing subtle correspondences for diverse cross-modal retrieval and classification tasks. Specifically, during the training, our proposed dynamic attention policy (DAP) employs the Hierarchical Attention Fusion (HAF) module to represent the alignment as learnable fine-grained token-to-point attentions. To optimize these attentions across different tasks and geometric hierarchies, our DAP further exploits the Monte Carlo tree search to dynamically calibrate HAF attention weights via a hybrid reward signal and further enhances the alignment between textual descriptions and local 3D geometry. During the inference, our 3DAlign-DAER introduces an Efficient Retrieval Strategy (ERS) to leverage efficient hierarchical searching in the large-scale embedding spaces, outperforming traditional methods (e.g., KNN) in accuracy and efficiency. Furthermore, to facilitate text-3D alignment research and train our 3DAlign-DAER, we construct Align3D-2M, a large-scale dataset featuring 2M text-3D pairs, to provide sufficient fine-grained cross-modal annotations. Extensive and comprehensive experiments demonstrate the superior performance of our 3DAlign-DAER on diverse benchmarks. We will release our codes, models, and datasets.
☆ End-to-End Multi-Person Pose Estimation with Pose-Aware Video Transformer
Existing multi-person video pose estimation methods typically adopt a two-stage pipeline: detecting individuals in each frame, followed by temporal modeling for single-person pose estimation. This design relies on heuristic operations such as detection, RoI cropping, and non-maximum suppression (NMS), limiting both accuracy and efficiency. In this paper, we present a fully end-to-end framework for multi-person 2D pose estimation in videos, effectively eliminating heuristic operations. A key challenge is to associate individuals across frames under complex and overlapping temporal trajectories. To address this, we introduce a novel Pose-Aware Video transformEr Network (PAVE-Net), which features a spatial encoder to model intra-frame relations and a spatiotemporal pose decoder to capture global dependencies across frames. To achieve accurate temporal association, we propose a pose-aware attention mechanism that enables each pose query to selectively aggregate features corresponding to the same individual across consecutive frames.Additionally, we explicitly model spatiotemporal dependencies among pose keypoints to improve accuracy. Notably, our approach is the first end-to-end method for multi-frame 2D human pose estimation.Extensive experiments show that PAVE-Net substantially outperforms prior image-based end-to-end methods, achieving a \textbf{6.0} mAP improvement on PoseTrack2017, and delivers accuracy competitive with state-of-the-art two-stage video-based approaches, while offering significant gains in efficiency.Project page: https://github.com/zgspose/PAVENet
☆ PIGEON: VLM-Driven Object Navigation via Points of Interest Selection
Navigating to a specified object in an unknown environment is a fundamental yet challenging capability of embodied intelligence. However, current methods struggle to balance decision frequency with intelligence, resulting in decisions lacking foresight or discontinuous actions. In this work, we propose PIGEON: Point of Interest Guided Exploration for Object Navigation with VLM, maintaining a lightweight and semantically aligned snapshot memory during exploration as semantic input for the exploration strategy. We use a large Visual-Language Model (VLM), named PIGEON-VL, to select Points of Interest (PoI) formed during exploration and then employ a lower-level planner for action output, increasing the decision frequency. Additionally, this PoI-based decision-making enables the generation of Reinforcement Learning with Verifiable Reward (RLVR) data suitable for simulators. Experiments on classic object navigation benchmarks demonstrate that our zero-shot transfer method achieves state-of-the-art performance, while RLVR further enhances the model's semantic guidance capabilities, enabling deep reasoning during real-time navigation.
☆ RefineVAD: Semantic-Guided Feature Recalibration for Weakly Supervised Video Anomaly Detection AAAI 2026
Weakly-Supervised Video Anomaly Detection aims to identify anomalous events using only video-level labels, balancing annotation efficiency with practical applicability. However, existing methods often oversimplify the anomaly space by treating all abnormal events as a single category, overlooking the diverse semantic and temporal characteristics intrinsic to real-world anomalies. Inspired by how humans perceive anomalies, by jointly interpreting temporal motion patterns and semantic structures underlying different anomaly types, we propose RefineVAD, a novel framework that mimics this dual-process reasoning. Our framework integrates two core modules. The first, Motion-aware Temporal Attention and Recalibration (MoTAR), estimates motion salience and dynamically adjusts temporal focus via shift-based attention and global Transformer-based modeling. The second, Category-Oriented Refinement (CORE), injects soft anomaly category priors into the representation space by aligning segment-level features with learnable category prototypes through cross-attention. By jointly leveraging temporal dynamics and semantic structure, explicitly models both "how" motion evolves and "what" semantic category it resembles. Extensive experiments on WVAD benchmark validate the effectiveness of RefineVAD and highlight the importance of integrating semantic context to guide feature refinement toward anomaly-relevant patterns.
comment: Accepted to AAAI 2026
Self-Supervised Ultrasound Screen Detection
Ultrasound (US) machines display images on a built-in monitor, but routine transfer to hospital systems relies on DICOM. We propose a self-supervised pipeline to extract the US image from a photograph of the monitor. This removes the DICOM bottleneck and enables rapid testing and prototyping of new algorithms. In a proof-of-concept study, the rectified images retained enough visual fidelity to classify cardiac views with a balanced accuracy of 0.79 with respect to the native DICOMs.
comment: Submitted to ISBI 2026
☆ Difficulty-Aware Label-Guided Denoising for Monocular 3D Object Detection AAAI 2026
Monocular 3D object detection is a cost-effective solution for applications like autonomous driving and robotics, but remains fundamentally ill-posed due to inherently ambiguous depth cues. Recent DETR-based methods attempt to mitigate this through global attention and auxiliary depth prediction, yet they still struggle with inaccurate depth estimates. Moreover, these methods often overlook instance-level detection difficulty, such as occlusion, distance, and truncation, leading to suboptimal detection performance. We propose MonoDLGD, a novel Difficulty-Aware Label-Guided Denoising framework that adaptively perturbs and reconstructs ground-truth labels based on detection uncertainty. Specifically, MonoDLGD applies stronger perturbations to easier instances and weaker ones into harder cases, and then reconstructs them to effectively provide explicit geometric supervision. By jointly optimizing label reconstruction and 3D object detection, MonoDLGD encourages geometry-aware representation learning and improves robustness to varying levels of object complexity. Extensive experiments on the KITTI benchmark demonstrate that MonoDLGD achieves state-of-the-art performance across all difficulty levels.
comment: AAAI 2026 accepted
☆ Birth of a Painting: Differentiable Brushstroke Reconstruction
Painting embodies a unique form of visual storytelling, where the creation process is as significant as the final artwork. Although recent advances in generative models have enabled visually compelling painting synthesis, most existing methods focus solely on final image generation or patch-based process simulation, lacking explicit stroke structure and failing to produce smooth, realistic shading. In this work, we present a differentiable stroke reconstruction framework that unifies painting, stylized texturing, and smudging to faithfully reproduce the human painting-smudging loop. Given an input image, our framework first optimizes single- and dual-color Bezier strokes through a parallel differentiable paint renderer, followed by a style generation module that synthesizes geometry-conditioned textures across diverse painting styles. We further introduce a differentiable smudge operator to enable natural color blending and shading. Coupled with a coarse-to-fine optimization strategy, our method jointly optimizes stroke geometry, color, and texture under geometric and semantic guidance. Extensive experiments on oil, watercolor, ink, and digital paintings demonstrate that our approach produces realistic and expressive stroke reconstructions, smooth tonal transitions, and richly stylized appearances, offering a unified model for expressive digital painting creation. See our project page for more demos: https://yingjiang96.github.io/DiffPaintWebsite/.
comment: 13 pages
☆ Video Spatial Reasoning with Object-Centric 3D Rollout
Recent advances in Multi-modal Large Language Models (MLLMs) have showcased remarkable capabilities in vision-language understanding. However, enabling robust video spatial reasoning-the ability to comprehend object locations, orientations, and inter-object relationships in dynamic 3D scenes-remains a key unsolved challenge. Existing approaches primarily rely on spatially grounded supervised fine-tuning or reinforcement learning, yet we observe that such models often exhibit query-locked reasoning, focusing narrowly on objects explicitly mentioned in the prompt while ignoring critical contextual cues. To address this limitation, we propose Object-Centric 3D Rollout (OCR), a novel strategy that introduces structured perturbations to the 3D geometry of selected objects during training. By degrading object-specific visual cues and projecting the altered geometry into 2D space, OCR compels the model to reason holistically across the entire scene. We further design a rollout-based training pipeline that jointly leverages vanilla and region-noisy videos to optimize spatial reasoning trajectories. Experiments demonstrate state-of-the-art performance: our 3B-parameter model achieves 47.5% accuracy on VSI-Bench, outperforming several 7B baselines. Ablations confirm OCR's superiority over prior rollout strategies (e.g., T-GRPO, NoisyRollout).
☆ Large Language Models Meet Extreme Multi-label Classification: Scaling and Multi-modal Framework AAAI 2026
Foundation models have revolutionized artificial intelligence across numerous domains, yet their transformative potential remains largely untapped in Extreme Multi-label Classification (XMC). Queries in XMC are associated with relevant labels from extremely large label spaces, where it is critical to strike a balance between efficiency and performance. Therefore, many recent approaches efficiently pose XMC as a maximum inner product search between embeddings learned from small encoder-only transformer architectures. In this paper, we address two important aspects in XMC: how to effectively harness larger decoder-only models, and how to exploit visual information while maintaining computational efficiency. We demonstrate that both play a critical role in XMC separately and can be combined for improved performance. We show that a few billion-size decoder can deliver substantial improvements while keeping computational overhead manageable. Furthermore, our Vision-enhanced eXtreme Multi-label Learning framework (ViXML) efficiently integrates foundation vision models by pooling a single embedding per image. This limits computational growth while unlocking multi-modal capabilities. Remarkably, ViXML with small encoders outperforms text-only decoder in most cases, showing that an image is worth billions of parameters. Finally, we present an extension of existing text-only datasets to exploit visual metadata and make them available for future benchmarking. Comprehensive experiments across four public text-only datasets and their corresponding image enhanced versions validate our proposals' effectiveness, surpassing previous state-of-the-art by up to +8.21\% in P@1 on the largest dataset. ViXML's code is available at https://github.com/DiegoOrtego/vixml.
comment: To appear at AAAI 2026
☆ GenTract: Generative Global Tractography
Tractography is the process of inferring the trajectories of white-matter pathways in the brain from diffusion magnetic resonance imaging (dMRI). Local tractography methods, which construct streamlines by following local fiber orientation estimates stepwise through an image, are prone to error accumulation and high false positive rates, particularly on noisy or low-resolution data. In contrast, global methods, which attempt to optimize a collection of streamlines to maximize compatibility with underlying fiber orientation estimates, are computationally expensive. To address these challenges, we introduce GenTract, the first generative model for global tractography. We frame tractography as a generative task, learning a direct mapping from dMRI to complete, anatomically plausible streamlines. We compare both diffusion-based and flow matching paradigms and evaluate GenTract's performance against state-of-the-art baselines. Notably, GenTract achieves precision 2.1x higher than the next-best method, TractOracle. This advantage becomes even more pronounced in challenging low-resolution and noisy settings, where it outperforms the closest competitor by an order of magnitude. By producing tractograms with high precision on research-grade data while also maintaining reliability on imperfect, lower-resolution data, GenTract represents a promising solution for global tractography.
☆ HDW-SR: High-Frequency Guided Diffusion Model based on Wavelet Decomposition for Image Super-Resolution
Diffusion-based methods have shown great promise in single image super-resolution (SISR); however, existing approaches often produce blurred fine details due to insufficient guidance in the high-frequency domain. To address this issue, we propose a High-Frequency Guided Diffusion Network based on Wavelet Decomposition (HDW-SR), which replaces the conventional U-Net backbone in diffusion frameworks. Specifically, we perform diffusion only on the residual map, allowing the network to focus more effectively on high-frequency information restoration. We then introduce wavelet-based downsampling in place of standard CNN downsampling to achieve multi-scale frequency decomposition, enabling sparse cross-attention between the high-frequency subbands of the pre-super-resolved image and the low-frequency subbands of the diffused image for explicit high-frequency guidance. Moreover, a Dynamic Thresholding Block (DTB) is designed to refine high-frequency selection during the sparse attention process. During upsampling, the invertibility of the wavelet transform ensures low-loss feature reconstruction. Experiments on both synthetic and real-world datasets demonstrate that HDW-SR achieves competitive super-resolution performance, excelling particularly in recovering fine-grained image details. The code will be available after acceptance.
☆ THIR: Topological Histopathological Image Retrieval
According to the World Health Organization, breast cancer claimed the lives of approximately 685,000 women in 2020. Early diagnosis and accurate clinical decision making are critical in reducing this global burden. In this study, we propose THIR, a novel Content-Based Medical Image Retrieval (CBMIR) framework that leverages topological data analysis specifically, Betti numbers derived from persistent homology to characterize and retrieve histopathological images based on their intrinsic structural patterns. Unlike conventional deep learning approaches that rely on extensive training, annotated datasets, and powerful GPU resources, THIR operates entirely without supervision. It extracts topological fingerprints directly from RGB histopathological images using cubical persistence, encoding the evolution of loops as compact, interpretable feature vectors. The similarity retrieval is then performed by computing the distances between these topological descriptors, efficiently returning the top-K most relevant matches. Extensive experiments on the BreaKHis dataset demonstrate that THIR outperforms state of the art supervised and unsupervised methods. It processes the entire dataset in under 20 minutes on a standard CPU, offering a fast, scalable, and training free solution for clinical image retrieval.
☆ SOMA: Feature Gradient Enhanced Affine-Flow Matching for SAR-Optical Registration
Achieving pixel-level registration between SAR and optical images remains a challenging task due to their fundamentally different imaging mechanisms and visual characteristics. Although deep learning has achieved great success in many cross-modal tasks, its performance on SAR-Optical registration tasks is still unsatisfactory. Gradient-based information has traditionally played a crucial role in handcrafted descriptors by highlighting structural differences. However, such gradient cues have not been effectively leveraged in deep learning frameworks for SAR-Optical image matching. To address this gap, we propose SOMA, a dense registration framework that integrates structural gradient priors into deep features and refines alignment through a hybrid matching strategy. Specifically, we introduce the Feature Gradient Enhancer (FGE), which embeds multi-scale, multi-directional gradient filters into the feature space using attention and reconstruction mechanisms to boost feature distinctiveness. Furthermore, we propose the Global-Local Affine-Flow Matcher (GLAM), which combines affine transformation and flow-based refinement within a coarse-to-fine architecture to ensure both structural consistency and local accuracy. Experimental results demonstrate that SOMA significantly improves registration precision, increasing the CMR@1px by 12.29% on the SEN1-2 dataset and 18.50% on the GFGE_SO dataset. In addition, SOMA exhibits strong robustness and generalizes well across diverse scenes and resolutions.
☆ Skeletons Speak Louder than Text: A Motion-Aware Pretraining Paradigm for Video-Based Person Re-Identification
Multimodal pretraining has revolutionized visual understanding, but its impact on video-based person re-identification (ReID) remains underexplored. Existing approaches often rely on video-text pairs, yet suffer from two fundamental limitations: (1) lack of genuine multimodal pretraining, and (2) text poorly captures fine-grained temporal motion-an essential cue for distinguishing identities in video. In this work, we take a bold departure from text-based paradigms by introducing the first skeleton-driven pretraining framework for ReID. To achieve this, we propose Contrastive Skeleton-Image Pretraining for ReID (CSIP-ReID), a novel two-stage method that leverages skeleton sequences as a spatiotemporally informative modality aligned with video frames. In the first stage, we employ contrastive learning to align skeleton and visual features at sequence level. In the second stage, we introduce a dynamic Prototype Fusion Updater (PFU) to refine multimodal identity prototypes, fusing motion and appearance cues. Moreover, we propose a Skeleton Guided Temporal Modeling (SGTM) module that distills temporal cues from skeleton data and integrates them into visual features. Extensive experiments demonstrate that CSIP-ReID achieves new state-of-the-art results on standard video ReID benchmarks (MARS, LS-VID, iLIDS-VID). Moreover, it exhibits strong generalization to skeleton-only ReID tasks (BIWI, IAS), significantly outperforming previous methods. CSIP-ReID pioneers an annotation-free and motion-aware pretraining paradigm for ReID, opening a new frontier in multimodal representation learning.
☆ Automated Road Distress Detection Using Vision Transformersand Generative Adversarial Networks
The American Society of Civil Engineers has graded Americas infrastructure condition as a C, with the road system receiving a dismal D. Roads are vital to regional economic viability, yet their management, maintenance, and repair processes remain inefficient, relying on outdated manual or laser-based inspection methods that are both costly and time-consuming. With the increasing availability of real-time visual data from autonomous vehicles, there is an opportunity to apply computer vision (CV) methods for advanced road monitoring, providing insights to guide infrastructure rehabilitation efforts. This project explores the use of state-of-the-art CV techniques for road distress segmentation. It begins by evaluating synthetic data generated with Generative Adversarial Networks (GANs) to assess its usefulness for model training. The study then applies Convolutional Neural Networks (CNNs) for road distress segmentation and subsequently examines the transformer-based model MaskFormer. Results show that GAN-generated data improves model performance and that MaskFormer outperforms the CNN model in two metrics: mAP50 and IoU.
☆ WinMamba: Multi-Scale Shifted Windows in State Space Model for 3D Object Detection
3D object detection is critical for autonomous driving, yet it remains fundamentally challenging to simultaneously maximize computational efficiency and capture long-range spatial dependencies. We observed that Mamba-based models, with their linear state-space design, capture long-range dependencies at lower cost, offering a promising balance between efficiency and accuracy. However, existing methods rely on axis-aligned scanning within a fixed window, inevitably discarding spatial information. To address this problem, we propose WinMamba, a novel Mamba-based 3D feature-encoding backbone composed of stacked WinMamba blocks. To enhance the backbone with robust multi-scale representation, the WinMamba block incorporates a window-scale-adaptive module that compensates voxel features across varying resolutions during sampling. Meanwhile, to obtain rich contextual cues within the linear state space, we equip the WinMamba layer with a learnable positional encoding and a window-shift strategy. Extensive experiments on the KITTI and Waymo datasets demonstrate that WinMamba significantly outperforms the baseline. Ablation studies further validate the individual contributions of the WSF and AWF modules in improving detection accuracy. The code will be made publicly available.
comment: 9 pages, 3 figures,
☆ MedGEN-Bench: Contextually entangled benchmark for open-ended multimodal medical generation CVPR 2026
As Vision-Language Models (VLMs) increasingly gain traction in medical applications, clinicians are progressively expecting AI systems not only to generate textual diagnoses but also to produce corresponding medical images that integrate seamlessly into authentic clinical workflows. Despite the growing interest, existing medical visual benchmarks present notable limitations. They often rely on ambiguous queries that lack sufficient relevance to image content, oversimplify complex diagnostic reasoning into closed-ended shortcuts, and adopt a text-centric evaluation paradigm that overlooks the importance of image generation capabilities. To address these challenges, we introduce \textsc{MedGEN-Bench}, a comprehensive multimodal benchmark designed to advance medical AI research. MedGEN-Bench comprises 6,422 expert-validated image-text pairs spanning six imaging modalities, 16 clinical tasks, and 28 subtasks. It is structured into three distinct formats: Visual Question Answering, Image Editing, and Contextual Multimodal Generation. What sets MedGEN-Bench apart is its focus on contextually intertwined instructions that necessitate sophisticated cross-modal reasoning and open-ended generative outputs, moving beyond the constraints of multiple-choice formats. To evaluate the performance of existing systems, we employ a novel three-tier assessment framework that integrates pixel-level metrics, semantic text analysis, and expert-guided clinical relevance scoring. Using this framework, we systematically assess 10 compositional frameworks, 3 unified models, and 5 VLMs.
comment: CVPR 2026 Under Review
☆ Shedding Light on VLN Robustness: A Black-box Framework for Indoor Lighting-based Adversarial Attack
Vision-and-Language Navigation (VLN) agents have made remarkable progress, but their robustness remains insufficiently studied. Existing adversarial evaluations often rely on perturbations that manifest as unusual textures rarely encountered in everyday indoor environments. Errors under such contrived conditions have limited practical relevance, as real-world agents are unlikely to encounter such artificial patterns. In this work, we focus on indoor lighting, an intrinsic yet largely overlooked scene attribute that strongly influences navigation. We propose Indoor Lighting-based Adversarial Attack (ILA), a black-box framework that manipulates global illumination to disrupt VLN agents. Motivated by typical household lighting usage, we design two attack modes: Static Indoor Lighting-based Attack (SILA), where the lighting intensity remains constant throughout an episode, and Dynamic Indoor Lighting-based Attack (DILA), where lights are switched on or off at critical moments to induce abrupt illumination changes. We evaluate ILA on two state-of-the-art VLN models across three navigation tasks. Results show that ILA significantly increases failure rates while reducing trajectory efficiency, revealing previously unrecognized vulnerabilities of VLN agents to realistic indoor lighting variations.
☆ MM-Telco: Benchmarks and Multimodal Large Language Models for Telecom Applications
Large Language Models (LLMs) have emerged as powerful tools for automating complex reasoning and decision-making tasks. In telecommunications, they hold the potential to transform network optimization, automate troubleshooting, enhance customer support, and ensure regulatory compliance. However, their deployment in telecom is hindered by domain-specific challenges that demand specialized adaptation. To overcome these challenges and to accelerate the adaptation of LLMs for telecom, we propose MM-Telco, a comprehensive suite of multimodal benchmarks and models tailored for the telecom domain. The benchmark introduces various tasks (both text based and image based) that address various practical real-life use cases such as network operations, network management, improving documentation quality, and retrieval of relevant text and images. Further, we perform baseline experiments with various LLMs and VLMs. The models fine-tuned on our dataset exhibit a significant boost in performance. Our experiments also help analyze the weak areas in the working of current state-of-art multimodal LLMs, thus guiding towards further development and research.
☆ VEIL: Jailbreaking Text-to-Video Models via Visual Exploitation from Implicit Language
Jailbreak attacks can circumvent model safety guardrails and reveal critical blind spots. Prior attacks on text-to-video (T2V) models typically add adversarial perturbations to obviously unsafe prompts, which are often easy to detect and defend. In contrast, we show that benign-looking prompts containing rich, implicit cues can induce T2V models to generate semantically unsafe videos that both violate policy and preserve the original (blocked) intent. To realize this, we propose VEIL, a jailbreak framework that leverages T2V models' cross-modal associative patterns via a modular prompt design. Specifically, our prompts combine three components: neutral scene anchors, which provide the surface-level scene description extracted from the blocked intent to maintain plausibility; latent auditory triggers, textual descriptions of innocuous-sounding audio events (e.g., creaking, muffled noises) that exploit learned audio-visual co-occurrence priors to bias the model toward particular unsafe visual concepts; and stylistic modulators, cinematic directives (e.g., camera framing, atmosphere) that amplify and stabilize the latent trigger's effect. We formalize attack generation as a constrained optimization over the above modular prompt space and solve it with a guided search procedure that balances stealth and effectiveness. Extensive experiments over 7 T2V models demonstrate the efficacy of our attack, achieving a 23 percent improvement in average attack success rate in commercial models.
☆ Region-Point Joint Representation for Effective Trajectory Similarity Learning AAAI2026
Recent learning-based methods have reduced the computational complexity of traditional trajectory similarity computation, but state-of-the-art (SOTA) methods still fail to leverage the comprehensive spectrum of trajectory information for similarity modeling. To tackle this problem, we propose \textbf{RePo}, a novel method that jointly encodes \textbf{Re}gion-wise and \textbf{Po}int-wise features to capture both spatial context and fine-grained moving patterns. For region-wise representation, the GPS trajectories are first mapped to grid sequences, and spatial context are captured by structural features and semantic context enriched by visual features. For point-wise representation, three lightweight expert networks extract local, correlation, and continuous movement patterns from dense GPS sequences. Then, a router network adaptively fuses the learned point-wise features, which are subsequently combined with region-wise features using cross-attention to produce the final trajectory embedding. To train RePo, we adopt a contrastive loss with hard negative samples to provide similarity ranking supervision. Experiment results show that RePo achieves an average accuracy improvement of 22.2\% over SOTA baselines across all evaluation metrics.
comment: This paper is accepted by AAAI2026
☆ CloseUpShot: Close-up Novel View Synthesis from Sparse-views via Point-conditioned Diffusion Model
Reconstructing 3D scenes and synthesizing novel views from sparse input views is a highly challenging task. Recent advances in video diffusion models have demonstrated strong temporal reasoning capabilities, making them a promising tool for enhancing reconstruction quality under sparse-view settings. However, existing approaches are primarily designed for modest viewpoint variations, which struggle in capturing fine-grained details in close-up scenarios since input information is severely limited. In this paper, we present a diffusion-based framework, called CloseUpShot, for close-up novel view synthesis from sparse inputs via point-conditioned video diffusion. Specifically, we observe that pixel-warping conditioning suffers from severe sparsity and background leakage in close-up settings. To address this, we propose hierarchical warping and occlusion-aware noise suppression, enhancing the quality and completeness of the conditioning images for the video diffusion model. Furthermore, we introduce global structure guidance, which leverages a dense fused point cloud to provide consistent geometric context to the diffusion process, to compensate for the lack of globally consistent 3D constraints in sparse conditioning inputs. Extensive experiments on multiple datasets demonstrate that our method outperforms existing approaches, especially in close-up novel view synthesis, clearly validating the effectiveness of our design.
comment: Project Link: https://zyqz97.github.io/CloseUpShot/
☆ A Lightweight 3D Anomaly Detection Method with Rotationally Invariant Features
3D anomaly detection (AD) is a crucial task in computer vision, aiming to identify anomalous points or regions from point cloud data. However, existing methods may encounter challenges when handling point clouds with changes in orientation and position because the resulting features may vary significantly. To address this problem, we propose a novel Rotationally Invariant Features (RIF) framework for 3D AD. Firstly, to remove the adverse effect of variations on point cloud data, we develop a Point Coordinate Mapping (PCM) technique, which maps each point into a rotationally invariant space to maintain consistency of representation. Then, to learn robust and discriminative features, we design a lightweight Convolutional Transform Feature Network (CTF-Net) to extract rotationally invariant features for the memory bank. To improve the ability of the feature extractor, we introduce the idea of transfer learning to pre-train the feature extractor with 3D data augmentation. Experimental results show that the proposed method achieves the advanced performance on the Anomaly-ShapeNet dataset, with an average P-AUROC improvement of 17.7\%, and also gains the best performance on the Real3D-AD dataset, with an average P-AUROC improvement of 1.6\%. The strong generalization ability of RIF has been verified by combining it with traditional feature extraction methods on anomaly detection tasks, demonstrating great potential for industrial applications.
comment: Submitted to Elsevier
☆ Semantics and Content Matter: Towards Multi-Prior Hierarchical Mamba for Image Deraining
Rain significantly degrades the performance of computer vision systems, particularly in applications like autonomous driving and video surveillance. While existing deraining methods have made considerable progress, they often struggle with fidelity of semantic and spatial details. To address these limitations, we propose the Multi-Prior Hierarchical Mamba (MPHM) network for image deraining. This novel architecture synergistically integrates macro-semantic textual priors (CLIP) for task-level semantic guidance and micro-structural visual priors (DINOv2) for scene-aware structural information. To alleviate potential conflicts between heterogeneous priors, we devise a progressive Priors Fusion Injection (PFI) that strategically injects complementary cues at different decoder levels. Meanwhile, we equip the backbone network with an elaborate Hierarchical Mamba Module (HMM) to facilitate robust feature representation, featuring a Fourier-enhanced dual-path design that concurrently addresses global context modeling and local detail recovery. Comprehensive experiments demonstrate MPHM's state-of-the-art performance, achieving a 0.57 dB PSNR gain on the Rain200H dataset while delivering superior generalization on real-world rainy scenarios.
☆ Learning Implicit Neural Degradation Representation for Unpaired Image Dehazing
Image dehazing is an important task in the field of computer vision, aiming at restoring clear and detail-rich visual content from haze-affected images. However, when dealing with complex scenes, existing methods often struggle to strike a balance between fine-grained feature representation of inhomogeneous haze distribution and global consistency modeling. Furthermore, to better learn the common degenerate representation of haze in spatial variations, we propose an unsupervised dehaze method for implicit neural degradation representation. Firstly, inspired by the Kolmogorov-Arnold representation theorem, we propose a mechanism combining the channel-independent and channel-dependent mechanisms, which efficiently enhances the ability to learn from nonlinear dependencies. which in turn achieves good visual perception in complex scenes. Moreover, we design an implicit neural representation to model haze degradation as a continuous function to eliminate redundant information and the dependence on explicit feature extraction and physical models. To further learn the implicit representation of the haze features, we also designed a dense residual enhancement module from it to eliminate redundant information. This achieves high-quality image restoration. Experimental results show that our method achieves competitive dehaze performance on various public and real-world datasets. This project code will be available at https://github.com/Fan-pixel/NeDR-Dehaze.
☆ DGS-Net: Distillation-Guided Gradient Surgery for CLIP Fine-Tuning in AI-Generated Image Detection
The rapid progress of generative models such as GANs and diffusion models has led to the widespread proliferation of AI-generated images, raising concerns about misinformation, privacy violations, and trust erosion in digital media. Although large-scale multimodal models like CLIP offer strong transferable representations for detecting synthetic content, fine-tuning them often induces catastrophic forgetting, which degrades pre-trained priors and limits cross-domain generalization. To address this issue, we propose the Distillation-guided Gradient Surgery Network (DGS-Net), a novel framework that preserves transferable pre-trained priors while suppressing task-irrelevant components. Specifically, we introduce a gradient-space decomposition that separates harmful and beneficial descent directions during optimization. By projecting task gradients onto the orthogonal complement of harmful directions and aligning with beneficial ones distilled from a frozen CLIP encoder, DGS-Net achieves unified optimization of prior preservation and irrelevant suppression. Extensive experiments on 50 generative models demonstrate that our method outperforms state-of-the-art approaches by an average margin of 6.6, achieving superior detection performance and generalization across diverse generation techniques.
☆ Low-Level Dataset Distillation for Medical Image Enhancement
Medical image enhancement is clinically valuable, but existing methods require large-scale datasets to learn complex pixel-level mappings. However, the substantial training and storage costs associated with these datasets hinder their practical deployment. While dataset distillation (DD) can alleviate these burdens, existing methods mainly target high-level tasks, where multiple samples share the same label. This many-to-one mapping allows distilled data to capture shared semantics and achieve information compression. In contrast, low-level tasks involve a many-to-many mapping that requires pixel-level fidelity, making low-level DD an underdetermined problem, as a small distilled dataset cannot fully constrain the dense pixel-level mappings. To address this, we propose the first low-level DD method for medical image enhancement. We first leverage anatomical similarities across patients to construct the shared anatomical prior based on a representative patient, which serves as the initialization for the distilled data of different patients. This prior is then personalized for each patient using a Structure-Preserving Personalized Generation (SPG) module, which integrates patient-specific anatomical information into the distilled dataset while preserving pixel-level fidelity. For different low-level tasks, the distilled data is used to construct task-specific high- and low-quality training pairs. Patient-specific knowledge is injected into the distilled data by aligning the gradients computed from networks trained on the distilled pairs with those from the corresponding patient's raw data. Notably, downstream users cannot access raw patient data. Instead, only a distilled dataset containing abstract training information is shared, which excludes patient-specific details and thus preserves privacy.
☆ PlugTrack: Multi-Perceptive Motion Analysis for Adaptive Fusion in Multi-Object Tracking AAAI 2026
Multi-object tracking (MOT) predominantly follows the tracking-by-detection paradigm, where Kalman filters serve as the standard motion predictor due to computational efficiency but inherently fail on non-linear motion patterns. Conversely, recent data-driven motion predictors capture complex non-linear dynamics but suffer from limited domain generalization and computational overhead. Through extensive analysis, we reveal that even in datasets dominated by non-linear motion, Kalman filter outperforms data-driven predictors in up to 34\% of cases, demonstrating that real-world tracking scenarios inherently involve both linear and non-linear patterns. To leverage this complementarity, we propose PlugTrack, a novel framework that adaptively fuses Kalman filter and data-driven motion predictors through multi-perceptive motion understanding. Our approach employs multi-perceptive motion analysis to generate adaptive blending factors. PlugTrack achieves significant performance gains on MOT17/MOT20 and state-of-the-art on DanceTrack without modifying existing motion predictors. To the best of our knowledge, PlugTrack is the first framework to bridge classical and modern motion prediction paradigms through adaptive fusion in MOT.
comment: AAAI 2026. Code: https://github.com/VisualScienceLab-KHU/PlugTrack
☆ CapeNext: Rethinking and refining dynamic support information for category-agnostic pose estimation
Recent research in Category-Agnostic Pose Estimation (CAPE) has adopted fixed textual keypoint description as semantic prior for two-stage pose matching frameworks. While this paradigm enhances robustness and flexibility by disentangling the dependency of support images, our critical analysis reveals two inherent limitations of static joint embedding: (1) polysemy-induced cross-category ambiguity during the matching process(e.g., the concept "leg" exhibiting divergent visual manifestations across humans and furniture), and (2) insufficient discriminability for fine-grained intra-category variations (e.g., posture and fur discrepancies between a sleeping white cat and a standing black cat). To overcome these challenges, we propose a new framework that innovatively integrates hierarchical cross-modal interaction with dual-stream feature refinement, enhancing the joint embedding with both class-level and instance-specific cues from textual description and specific images. Experiments on the MP-100 dataset demonstrate that, regardless of the network backbone, CapeNext consistently outperforms state-of-the-art CAPE methods by a large margin.
☆ MergeSlide: Continual Model Merging and Task-to-Class Prompt-Aligned Inference for Lifelong Learning on Whole Slide Images WACV2026
Lifelong learning on Whole Slide Images (WSIs) aims to train or fine-tune a unified model sequentially on cancer-related tasks, reducing the resources and effort required for data transfer and processing, especially given the gigabyte-scale size of WSIs. In this paper, we introduce MergeSlide, a simple yet effective framework that treats lifelong learning as a model merging problem by leveraging a vision-language pathology foundation model. When a new task arrives, it is: 1) defined with class-aware prompts, 2) fine-tuned for a few epochs using an MLP-free backbone, and 3) merged into a unified model using an orthogonal continual merging strategy that preserves performance and mitigates catastrophic forgetting. For inference under the class-incremental learning (CLASS-IL) setting, where task identity is unknown, we introduce Task-to-Class Prompt-aligned (TCP) inference. Specifically, TCP first identifies the most relevant task using task-level prompts and then applies the corresponding class-aware prompts to generate predictions. To evaluate MergeSlide, we conduct experiments on a stream of six TCGA datasets. The results show that MergeSlide outperforms both rehearsal-based continual learning and vision-language zero-shot baselines. Code and data are available at https://github.com/caodoanh2001/MergeSlide.
comment: WACV2026 Accepted
☆ MEGA-GUI: Multi-stage Enhanced Grounding Agents for GUI Elements
Graphical User Interface (GUI) grounding - the task of mapping natural language instructions to screen coordinates - is essential for autonomous agents and accessibility technologies. Existing systems rely on monolithic models or one-shot pipelines that lack modularity and fail under visual clutter and ambiguous instructions. We introduce MEGA-GUI, a multi-stage framework that separates grounding into coarse Region-of-Interest (ROI) selection and fine-grained element grounding, orchestrated by specialized vision-language agents. MEGA-GUI features a bidirectional ROI zoom algorithm that mitigates spatial dilution and a context-aware rewriting agent that reduces semantic ambiguity. Our analysis reveals complementary strengths and weaknesses across vision-language models at different visual scales, and we show that leveraging this modular structure achieves consistently higher accuracy than monolithic approaches. On the visually dense ScreenSpot-Pro benchmark, MEGA-GUI attains 73.18% accuracy, and on the semantically complex OSWorld-G benchmark it reaches 68.63%, surpassing previously reported results. Code and the Grounding Benchmark Toolkit (GBT) are available at https://github.com/samsungsds-research-papers/mega-gui.
comment: 26 pages, 7 figures. Code available at https://github.com/samsungsds-research-papers/mega-gui
☆ Real-time prediction of breast cancer sites using deformation-aware graph neural network
Early diagnosis of breast cancer is crucial, enabling the establishment of appropriate treatment plans and markedly enhancing patient prognosis. While direct magnetic resonance imaging-guided biopsy demonstrates promising performance in detecting cancer lesions, its practical application is limited by prolonged procedure times and high costs. To overcome these issues, an indirect MRI-guided biopsy that allows the procedure to be performed outside of the MRI room has been proposed, but it still faces challenges in creating an accurate real-time deformable breast model. In our study, we tackled this issue by developing a graph neural network (GNN)-based model capable of accurately predicting deformed breast cancer sites in real time during biopsy procedures. An individual-specific finite element (FE) model was developed by incorporating magnetic resonance (MR) image-derived structural information of the breast and tumor to simulate deformation behaviors. A GNN model was then employed, designed to process surface displacement and distance-based graph data, enabling accurate prediction of overall tissue displacement, including the deformation of the tumor region. The model was validated using phantom and real patient datasets, achieving an accuracy within 0.2 millimeters (mm) for cancer node displacement (RMSE) and a dice similarity coefficient (DSC) of 0.977 for spatial overlap with actual cancerous regions. Additionally, the model enabled real-time inference and achieved a speed-up of over 4,000 times in computational cost compared to conventional FE simulations. The proposed deformation-aware GNN model offers a promising solution for real-time tumor displacement prediction in breast biopsy, with high accuracy and real-time capability. Its integration with clinical procedures could significantly enhance the precision and efficiency of breast cancer diagnosis.
☆ Rethinking Saliency Maps: A Cognitive Human Aligned Taxonomy and Evaluation Framework for Explanations
Saliency maps are widely used for visual explanations in deep learning, but a fundamental lack of consensus persists regarding their intended purpose and alignment with diverse user queries. This ambiguity hinders the effective evaluation and practical utility of explanation methods.We address this gap by introducing the Reference-Frame $\times$ Granularity (RFxG) taxonomy, a principled conceptual framework that organizes saliency explanations along two essential axes:Reference-Frame: Distinguishing between pointwise ("Why this prediction?") and contrastive ("Why this and not an alternative?") explanations.Granularity: Ranging from fine-grained class-level (e.g., "Why Husky?") to coarse-grained group-level (e.g., "Why Dog?") interpretations.Using the RFxG lens, we demonstrate critical limitations in existing evaluation metrics, which overwhelmingly prioritize pointwise faithfulness while neglecting contrastive reasoning and semantic granularity. To systematically assess explanation quality across both RFxG dimensions, we propose four novel faithfulness metrics. Our comprehensive evaluation framework applies these metrics to ten state-of-the-art saliency methods, four model architectures, and three datasets.By advocating a shift toward user-intent-driven evaluation, our work provides both the conceptual foundation and the practical tools necessary to develop visual explanations that are not only faithful to the underlying model behavior but are also meaningfully aligned with the complexity of human understanding and inquiry.
☆ Decoupling Scene Perception and Ego Status: A Multi-Context Fusion Approach for Enhanced Generalization in End-to-End Autonomous Driving
Modular design of planning-oriented autonomous driving has markedly advanced end-to-end systems. However, existing architectures remain constrained by an over-reliance on ego status, hindering generalization and robust scene understanding. We identify the root cause as an inherent design within these architectures that allows ego status to be easily leveraged as a shortcut. Specifically, the premature fusion of ego status in the upstream BEV encoder allows an information flow from this strong prior to dominate the downstream planning module. To address this challenge, we propose AdaptiveAD, an architectural-level solution based on a multi-context fusion strategy. Its core is a dual-branch structure that explicitly decouples scene perception and ego status. One branch performs scene-driven reasoning based on multi-task learning, but with ego status deliberately omitted from the BEV encoder, while the other conducts ego-driven reasoning based solely on the planning task. A scene-aware fusion module then adaptively integrates the complementary decisions from the two branches to form the final planning trajectory. To ensure this decoupling does not compromise multi-task learning, we introduce a path attention mechanism for ego-BEV interaction and add two targeted auxiliary tasks: BEV unidirectional distillation and autoregressive online mapping. Extensive evaluations on the nuScenes dataset demonstrate that AdaptiveAD achieves state-of-the-art open-loop planning performance. Crucially, it significantly mitigates the over-reliance on ego status and exhibits impressive generalization capabilities across diverse scenarios.
comment: 11 pages, 8 figures
☆ RobustGait: Robustness Analysis for Appearance Based Gait Recognition WACV'26
Appearance-based gait recognition have achieved strong performance on controlled datasets, yet systematic evaluation of its robustness to real-world corruptions and silhouette variability remains lacking. We present RobustGait, a framework for fine-grained robustness evaluation of appearance-based gait recognition systems. RobustGait evaluation spans four dimensions: the type of perturbation (digital, environmental, temporal, occlusion), the silhouette extraction method (segmentation and parsing networks), the architectural capacities of gait recognition models, and various deployment scenarios. The benchmark introduces 15 corruption types at 5 severity levels across CASIA-B, CCPG, and SUSTech1K, with in-the-wild validation on MEVID, and evaluates six state-of-the-art gait systems. We came across several exciting insights. First, applying noise at the RGB level better reflects real-world degradation, and reveal how distortions propagate through silhouette extraction to the downstream gait recognition systems. Second, gait accuracy is highly sensitive to silhouette extractor biases, revealing an overlooked source of benchmark bias. Third, robustness is dependent on both the type of perturbation and the architectural design. Finally, we explore robustness-enhancing strategies, showing that noise-aware training and knowledge distillation improve performance and move toward deployment-ready systems.
comment: IEEE WACV'26 Main Conference
☆ FGNet: Leveraging Feature-Guided Attention to Refine SAM2 for 3D EM Neuron Segmentation
Accurate segmentation of neural structures in Electron Microscopy (EM) images is paramount for neuroscience. However, this task is challenged by intricate morphologies, low signal-to-noise ratios, and scarce annotations, limiting the accuracy and generalization of existing methods. To address these challenges, we seek to leverage the priors learned by visual foundation models on a vast amount of natural images to better tackle this task. Specifically, we propose a novel framework that can effectively transfer knowledge from Segment Anything 2 (SAM2), which is pre-trained on natural images, to the EM domain. We first use SAM2 to extract powerful, general-purpose features. To bridge the domain gap, we introduce a Feature-Guided Attention module that leverages semantic cues from SAM2 to guide a lightweight encoder, the Fine-Grained Encoder (FGE), in focusing on these challenging regions. Finally, a dual-affinity decoder generates both coarse and refined affinity maps. Experimental results demonstrate that our method achieves performance comparable to state-of-the-art (SOTA) approaches with the SAM2 weights frozen. Upon further fine-tuning on EM data, our method significantly outperforms existing SOTA methods. This study validates that transferring representations pre-trained on natural images, when combined with targeted domain-adaptive guidance, can effectively address the specific challenges in neuron segmentation.
☆ Monocular 3D Lane Detection via Structure Uncertainty-Aware Network with Curve-Point Queries
Monocular 3D lane detection is challenged by aleatoric uncertainty arising from inherent observation noise. Existing methods rely on simplified geometric assumptions, such as independent point predictions or global planar modeling, failing to capture structural variations and aleatoric uncertainty in real-world scenarios. In this paper, we propose MonoUnc, a bird's-eye view (BEV)-free 3D lane detector that explicitly models aleatoric uncertainty informed by local lane structures. Specifically, 3D lanes are projected onto the front-view (FV) space and approximated by parametric curves. Guided by curve predictions, curve-point query embeddings are dynamically generated for lane point predictions in 3D space. Each segment formed by two adjacent points is modeled as a 3D Gaussian, parameterized by the local structure and uncertainty estimations. Accordingly, a novel 3D Gaussian matching loss is designed to constrain these parameters jointly. Experiments on the ONCE-3DLanes and OpenLane datasets demonstrate that MonoUnc outperforms previous state-of-the-art (SoTA) methods across all benchmarks under stricter evaluation criteria. Additionally, we propose two comprehensive evaluation metrics for ONCE-3DLanes, calculating the average and maximum bidirectional Chamfer distances to quantify global and local errors. Codes are released at https://github.com/lrx02/MonoUnc.
♻ ☆ LightFusion: A Light-weighted, Double Fusion Framework for Unified Multimodal Understanding and Generation
Unified multimodal models have recently shown remarkable gains in both capability and versatility, yet most leading systems are still trained from scratch and require substantial computational resources. In this paper, we show that competitive performance can be obtained far more efficiently by strategically fusing publicly available models specialized for either generation or understanding. Our key design is to retain the original blocks while additionally interleaving multimodal self-attention blocks throughout the networks. This double fusion mechanism (1) effectively enables rich multi-modal fusion while largely preserving the original strengths of the base models, and (2) catalyzes synergistic fusion of high-level semantic representations from the understanding encoder with low-level spatial signals from the generation encoder. By training with only ~ 35B tokens, this approach achieves strong results across multiple benchmarks: 0.91 on GenEval for compositional text-to-image generation, 82.16 on DPG-Bench for complex text-to-image generation, 6.06 on GEditBench, and 3.77 on ImgEdit-Bench for image editing. By fully releasing the entire suite of code, model weights, and datasets, we hope to support future research on unified multimodal modeling.
comment: Preprint. Work in progress
♻ ☆ iTACO: Interactable Digital Twins of Articulated Objects from Casually Captured RGBD Videos 3DV 2026
Articulated objects are prevalent in daily life. Interactable digital twins of such objects have numerous applications in embodied AI and robotics. Unfortunately, current methods to digitize articulated real-world objects require carefully captured data, preventing practical, scalable, and generalizable acquisition. We focus on motion analysis and part-level segmentation of an articulated object from a casually captured RGBD video shot with a hand-held camera. A casually captured video of an interaction with an articulated object is easy to obtain at scale using smartphones. However, this setting is challenging due to simultaneous object and camera motion and significant occlusions as the person interacts with the object. To tackle these challenges, we introduce iTACO: a coarse-to-fine framework that infers joint parameters and segments movable parts of the object from a dynamic RGBD video. To evaluate our method under this new setting, we build a dataset of 784 videos containing 284 objects across 11 categories that is 20$\times$ larger than available in prior work. We then compare our approach with existing methods that also take video as input. Our experiments show that iTACO outperforms existing articulated object digital twin methods on both synthetic and real casually captured RGBD videos.
comment: 3DV 2026 camera-ready version. Project website can be found at https://3dlg-hcvc.github.io/video2articulation/
♻ ☆ Arcee: Differentiable Recurrent State Chain for Generative Vision Modeling with Mamba SSMs
State-space models (SSMs), Mamba in particular, are increasingly adopted for long-context sequence modeling, providing linear-time aggregation via an input-dependent, causal selective-scan operation. Along this line, recent "Mamba-for-vision" variants largely explore multiple scan orders to relax strict causality for non-sequential signals (e.g., images). Rather than preserving cross-block memory, the conventional formulation of the selective-scan operation in Mamba reinitializes each block's state-space dynamics from zero, discarding the terminal state-space representation (SSR) from the previous block. Arcee, a cross-block recurrent state chain, reuses each block's terminal state-space representation as the initial condition for the next block. Handoff across blocks is constructed as a differentiable boundary map whose Jacobian enables end-to-end gradient flow across terminal boundaries. Key to practicality, Arcee is compatible with all prior "vision-mamba" variants, parameter-free, and incurs constant, negligible cost. As a modeling perspective, we view terminal SSR as a mild directional prior induced by a causal pass over the input, rather than an estimator of the non-sequential signal itself. To quantify the impact, for unconditional generation on CelebA-HQ (256$\times$256) with Flow Matching, Arcee reduces FID$\downarrow$ from $82.81$ to $15.33$ ($5.4\times$ lower) on a single scan-order Zigzag Mamba baseline. Efficient CUDA kernels and training code will be released to support rigorous and reproducible research.
♻ ☆ Fast Equivariant Imaging: Acceleration for Unsupervised Learning via Augmented Lagrangian and Auxiliary PnP Denoisers
In this work, we propose Fast Equivariant Imaging (FEI), a novel unsupervised learning framework to rapidly and efficiently train deep imaging networks without ground-truth data. From the perspective of reformulating the Equivariant Imaging based optimization problem via the method of Lagrange multipliers and utilizing plug-and-play denoisers, this novel unsupervised scheme shows superior efficiency and performance compared to the vanilla Equivariant Imaging paradigm. In particular, our FEI schemes achieve an order-of-magnitude (10x) acceleration over standard EI on training U-Net for X-ray CT reconstruction and image inpainting, with improved generalization performance.
♻ ☆ Toward A Better Understanding of Monocular Depth Evaluation
Monocular depth estimation is an important task with rapid progress, but how to evaluate it is not fully resolved, as evidenced by a lack of standardization in existing literature and a large selection of evaluation metrics whose trade-offs and behaviors are not fully understood. This paper contributes a novel, quantitative analysis of existing metrics in terms of their sensitivity to various types of perturbations of ground truth, emphasizing comparison to human judgment. Our analysis reveals that existing metrics are severely under-sensitive to curvature perturbation such as making smooth surfaces bumpy. To remedy this, we introduce a new metric based on relative surface normals, along with new depth visualization tools and a principled method to create composite metrics with better human alignment. Code and data are available at: https://github.com/princeton-vl/evalmde.
♻ ☆ Physics informed Transformer-VAE for biophysical parameter estimation: PROSAIL model inversion in Sentinel-2 imagery
Accurate retrieval of vegetation biophysical variables from satellite imagery is crucial for ecosystem monitoring and agricultural management. In this work, we propose a physics-informed Transformer-VAE architecture to invert the PROSAIL radiative transfer model for simultaneous estimation of key canopy parameters from Sentinel-2 data. Unlike previous hybrid approaches that require real satellite images for self-supevised training. Our model is trained exclusively on simulated data, yet achieves performance on par with state-of-the-art methods that utilize real imagery. The Transformer-VAE incorporates the PROSAIL model as a differentiable physical decoder, ensuring that inferred latent variables correspond to physically plausible leaf and canopy properties. We demonstrate retrieval of leaf area index (LAI) and canopy chlorophyll content (CCC) on real-world field datasets (FRM4Veg and BelSAR) with accuracy comparable to models trained with real Sentinel-2 data. Our method requires no in-situ labels or calibration on real images, offering a cost-effective and self-supervised solution for global vegetation monitoring. The proposed approach illustrates how integrating physical models with advanced deep networks can improve the inversion of RTMs, opening new prospects for large-scale, physically-constrained remote sensing of vegetation traits.
comment: 10 pages, 6 figures, uses fancyhdr.sty
♻ ☆ Viper-F1: Fast and Fine-Grained Multimodal Understanding with Cross-Modal State-Space Modulation
Recent advances in multimodal large language models (MLLMs) have enabled impressive progress in vision-language understanding, yet their high computational cost limits deployment in resource-constrained scenarios such as robotic manipulation, personal assistants, and smart cameras. Most existing methods rely on Transformer-based cross-attention, whose quadratic complexity hinders efficiency. Moreover, small vision-language models often struggle to precisely capture fine-grained, task-relevant visual regions, leading to degraded performance on fine-grained reasoning tasks that limit their effectiveness in the real world. To address these issues, we introduce Viper-F1, a Hybrid State-Space Vision-Language Model that replaces attention with efficient Liquid State-Space Dynamics. To further enhance visual grounding, we propose a Token-Grid Correlation Module, which computes lightweight correlations between text tokens and image patches and modulates the state-space dynamics via FiLM conditioning. This enables the model to selectively emphasize visual regions relevant to the textual prompt while maintaining linear-time inference. Experimental results across multiple benchmarks demonstrate that Viper-F1 achieves accurate, fine-grained understanding with significantly improved efficiency.
♻ ☆ Enhancing Monocular Height Estimation via Weak Supervision from Imperfect Labels
Monocular height estimation provides an efficient and cost-effective solution for three-dimensional perception in remote sensing. However, training deep neural networks for this task demands abundant annotated data, while high-quality labels are scarce and typically available only in developed regions, which limits model generalization and constrains their applicability at large scales. This work addresses the problem by leveraging imperfect labels from out-of-domain regions to train pixel-wise height estimation networks, which may be incomplete, inexact, or inaccurate compared to high-quality annotations. We introduce an ensemble-based pipeline compatible with any monocular height estimation network, featuring architecture and loss functions specifically designed to leverage information in noisy labels through weak supervision, utilizing balanced soft losses and ordinal constraints. Experiments on two datasets -- DFC23 (0.5--1 m) and GBH (3 m) -- show that our method achieves more consistent cross-domain performance, reducing average RMSE by up to 22.94% on DFC23 and 18.62% on GBH compared with baselines. Ablation studies confirm the contribution of each design component.
♻ ☆ Generalizable 7T T1-map Synthesis from 1.5T and 3T T1 MRI with an Efficient Transformer Model
Purpose: Ultra-high-field 7T MRI offers improved resolution and contrast over standard clinical field strengths (1.5T, 3T). However, 7T scanners are costly, scarce, and introduce additional challenges such as susceptibility artifacts. We propose an efficient transformer-based model (7T-Restormer) to synthesize 7T-quality T1-maps from routine 1.5T or 3T T1-weighted (T1W) images. Methods: Our model was validated on 35 1.5T and 108 3T T1w MRI paired with corresponding 7T T1 maps of patients with confirmed MS. A total of 141 patient cases (32,128 slices) were randomly divided into 105 (25; 80) training cases (19,204 slices), 19 (5; 14) validation cases (3,476 slices), and 17 (5; 14) test cases (3,145 slices) where (X; Y) denotes the patients with 1.5T and 3T T1W scans, respectively. The synthetic 7T T1 maps were compared against the ResViT and ResShift models. Results: The 7T-Restormer model achieved a PSNR of 26.0 +/- 4.6 dB, SSIM of 0.861 +/- 0.072, and NMSE of 0.019 +/- 0.011 for 1.5T inputs, and 25.9 +/- 4.9 dB, and 0.866 +/- 0.077 for 3T inputs, respectively. Using 10.5 M parameters, our model reduced NMSE by 64 % relative to 56.7M parameter ResShift (0.019 vs 0.052, p = <.001 and by 41 % relative to 70.4M parameter ResViT (0.019 vs 0.032, p = <.001) at 1.5T, with similar advantages at 3T (0.021 vs 0.060 and 0.033; p < .001). Training with a mixed 1.5 T + 3 T corpus was superior to single-field strategies. Restricting the model to 1.5T increased the 1.5T NMSE from 0.019 to 0.021 (p = 1.1E-3) while training solely on 3T resulted in lower performance on input 1.5T T1W MRI. Conclusion: We propose a novel method for predicting quantitative 7T MP2RAGE maps from 1.5T and 3T T1W scans with higher quality than existing state-of-the-art methods. Our approach makes the benefits of 7T MRI more accessible to standard clinical workflows.
♻ ☆ Bench2FreeAD: A Benchmark for Vision-based End-to-end Navigation in Unstructured Robotic Environments
Most current end-to-end (E2E) autonomous driving algorithms are built on standard vehicles in structured transportation scenarios, lacking exploration of robot navigation for unstructured scenarios such as auxiliary roads, campus roads, and indoor settings. This paper investigates E2E robot navigation in unstructured road environments. First, we introduce two data collection pipelines - one for real-world robot data and another for synthetic data generated using the Isaac Sim simulator, which together produce an unstructured robotics navigation dataset -- FreeWorld Dataset. Second, we fine-tuned an efficient E2E autonomous driving model -- VAD -- using our datasets to validate the performance and adaptability of E2E autonomous driving models in these environments. Results demonstrate that fine-tuning through our datasets significantly enhances the navigation potential of E2E autonomous driving models in unstructured robotic environments. Thus, this paper presents the first dataset targeting E2E robot navigation tasks in unstructured scenarios, and provides a benchmark based on vision-based E2E autonomous driving algorithms to facilitate the development of E2E navigation technology for logistics and service robots. The project is available on Github.
comment: 7 pages, 9 figures
♻ ☆ S4M: 4-points to Segment Anything
Purpose: The Segment Anything Model (SAM) promises to ease the annotation bottleneck in medical segmentation, but overlapping anatomy and blurred boundaries make its point prompts ambiguous, leading to cycles of manual refinement to achieve precise masks. Better prompting strategies are needed. Methods: We propose a structured prompting strategy using 4 points as a compact instance-level shape description. We study two 4-point variants: extreme points and the proposed major/minor axis endpoints, inspired by ultrasound measurement practice. SAM cannot fully exploit such structured prompts because it treats all points identically and lacks geometry-aware reasoning. To address this, we introduce S4M (4-points to Segment Anything), which augments SAM to interpret 4 points as relational cues rather than isolated clicks. S4M expands the prompt space with role-specific embeddings and adds an auxiliary "Canvas" pretext task that sketches coarse masks directly from prompts, fostering geometry-aware reasoning. Results: Across eight datasets in ultrasound and surgical endoscopy, S4M improves segmentation by +3.42 mIoU over a strong SAM baseline at equal prompt budget. An annotation study with three clinicians further shows that major/minor prompts enable faster annotation. Conclusion: S4M increases performance, reduces annotation effort, and aligns prompting with clinical practice, enabling more scalable dataset development in medical imaging.
♻ ☆ ThinkingViT: Matryoshka Thinking Vision Transformer for Elastic Inference
ViTs deliver SOTA performance, yet their fixed computational budget prevents scalable deployment across heterogeneous hardware. Recent Matryoshka-style Transformer architectures mitigate this by embedding nested subnetworks within a single model to enable scalable inference. However, these models allocate the same amount of compute to all inputs, regardless of their complexity, which leads to inefficiencies. To address this, we introduce ThinkingViT, a nested ViT architecture that employs progressive thinking stages to dynamically adjust inference computation based on input difficulty. ThinkingViT first activates a small subset of the most important attention heads to produce an initial prediction. If the prediction confidence exceeds a predefined threshold, inference terminates early. Otherwise, within the same backbone, it activates a larger subset of attention heads and conducts a new forward pass. This process continues iteratively until the model reaches the predefined confidence level or exhausts its maximum capacity. To boost the performance of subsequent rounds, we introduce a Token Recycling approach that fuses the input embeddings with the embeddings from the previous stage. Experiments show that ThinkingViT surpasses nested baselines by up to 2.0 percentage points (p.p.) in accuracy at the same throughput and by up to 2.9 p.p. at equal GMACs on ImageNet-1K. We show that the backbone-preserving design of ThinkingViT allows it to serve as a plug-in upgrade for ViTs in downstream tasks such as semantic segmentation. We also demonstrate that ThinkingViT transfers effectively to other architectures such as Swin. The source code is available at https://github.com/ds-kiel/ThinkingViT.
♻ ☆ Beyond Patches: Mining Interpretable Part-Prototypes for Explainable AI
As AI systems grow more capable, it becomes increasingly important that their decisions remain understandable and aligned with human expectations. A key challenge is the limited interpretability of deep models. Post-hoc methods like GradCAM offer heatmaps but provide limited conceptual insight, while prototype-based approaches offer example-based explanations but often rely on rigid region selection and lack semantic consistency. To address these limitations, we propose PCMNet, a part-prototypical concept mining network that learns human-comprehensible prototypes from meaningful image regions without additional supervision. By clustering these prototypes into concept groups and extracting concept activation vectors, PCMNet provides structured, concept-level explanations and enhances robustness to occlusion and challenging conditions, which are both critical for building reliable and aligned AI systems. Experiments across multiple image classification benchmarks show that PCMNet outperforms state-of-the-art methods in interpretability, stability, and robustness. This work contributes to AI alignment by enhancing transparency, controllability, and trustworthiness in AI systems. Our code is available at: https://github.com/alehdaghi/PCMNet.
♻ ☆ Vision Transformers with Self-Distilled Registers NeurIPS 2025
Vision Transformers (ViTs) have emerged as the dominant architecture for visual processing tasks, demonstrating excellent scalability with increased training data and model size. However, recent work has identified the emergence of artifact tokens in ViTs that are incongruous with local semantics. These anomalous tokens degrade ViT performance in tasks that require fine-grained localization or structural coherence. An effective mitigation of this issue is the addition of register tokens to ViTs, which implicitly "absorb" the artifact term during training.Given the availability of existing large-scale pre-trained ViTs, in this paper we seek add register tokens to existing models without needing to re-train from scratch, which is infeasible considering their size. Specifically, we propose Post Hoc Registers (PH-Reg), an efficient self-distillation method that integrates registers into an existing ViT without requiring additional labeled data and full retraining. PH-Reg initializes both teacher and student networks from the same pre-trained ViT. The teacher remains frozen and unmodified, while the student is augmented with randomly initialized register tokens. By applying test-time augmentation to the teacher's inputs, we generate denoised dense embeddings free of artifacts, which are then used to optimize only a small subset of unlocked student weights. We show that our approach can effectively reduce the number of artifact tokens, improving the segmentation and depth prediction of the student ViT under zero-shot and linear probing.
comment: NeurIPS 2025 Spotlight. Website: https://github.com/0raiser0/PH-Reg
♻ ☆ Towards Cross-Domain Multi-Targeted Adversarial Attacks
Multi-targeted adversarial attacks aim to mislead classifiers toward specific target classes using a single perturbation generator with a conditional input specifying the desired target class. Existing methods face two key limitations: (1) a single generator supports only a limited number of predefined target classes, and (2) it requires access to the victim model's training data to learn target class semantics. This dependency raises data leakage concerns in practical black-box scenarios where the training data is typically private. To address these limitations, we propose a novel Cross-Domain Multi-Targeted Attack (CD-MTA) that can generate perturbations toward arbitrary target classes, even those that do not exist in the attacker's training data. CD-MTA is trained on a single public dataset but can perform targeted attacks on black-box models trained on different datasets with disjoint and unknown class sets. Our method requires only a single example image that visually represents the desired target class, without relying its label, class distribution or pretrained embeddings. We achieve this through a Feature Injection Module (FIM) and class-agnostic objectives which guide the generator to extract transferable, fine-grained features from the target image without inferring class semantics. Experiments on ImageNet and seven additional datasets show that CD-MTA outperforms existing multi-targeted attack methods on unseen target classes in black-box and cross-domain scenarios. The code is available at https://github.com/tgoncalv/CD-MTA.
comment: Under review
♻ ☆ Point2Primitive: CAD Reconstruction from Point Cloud by Direct Primitive Prediction
Recovering CAD models from point clouds requires reconstructing their topology and sketch-based extrusion primitives. A dominant paradigm for representing sketches involves implicit neural representations such as Signed Distance Fields (SDFs). However, this indirect approach inherently struggles with precision, leading to unintended curved edges and models that are difficult to edit. In this paper, we propose Point2Primitive, a framework that learns to directly predict the explicit, parametric primitives of CAD models. Our method treats sketch reconstruction as a set prediction problem, employing a improved transformer-based decoder with explicit position queries to directly detect and predict the fundamental sketch curves (i.e., type and parameter) from the point cloud. Instead of approximating a continuous field, we formulate curve parameters as explicit position queries, which are optimized autoregressively to achieve high accuracy. The overall topology is rebuilt via extrusion segmentation. Extensive experiments demonstrate that this direct prediction paradigm significantly outperforms implicit methods in both primitive accuracy and overall geometric fidelity.
♻ ☆ HierarchicalPrune: Position-Aware Compression for Large-Scale Diffusion Models AAAI 2026
State-of-the-art text-to-image diffusion models (DMs) achieve remarkable quality, yet their massive parameter scale (8-11B) poses significant challenges for inferences on resource-constrained devices. In this paper, we present HierarchicalPrune, a novel compression framework grounded in a key observation: DM blocks exhibit distinct functional hierarchies, where early blocks establish semantic structures while later blocks handle texture refinements. HierarchicalPrune synergistically combines three techniques: (1) Hierarchical Position Pruning, which identifies and removes less essential later blocks based on position hierarchy; (2) Positional Weight Preservation, which systematically protects early model portions that are essential for semantic structural integrity; and (3) Sensitivity-Guided Distillation, which adjusts knowledge-transfer intensity based on our discovery of block-wise sensitivity variations. As a result, our framework brings billion-scale diffusion models into a range more suitable for on-device inference, while preserving the quality of the output images. Specifically, combined with INT4 weight quantisation, HierarchicalPrune achieves 77.5-80.4% memory footprint reduction (e.g., from 15.8 GB to 3.2 GB) and 27.9-38.0% latency reduction, measured on server and consumer grade GPUs, with the minimum drop of 2.6% in GenEval score and 7% in HPSv2 score compared to the original model. Finally, our comprehensive user study with 85 participants demonstrates that HierarchicalPrune maintains perceptual quality comparable to the original model while significantly outperforming prior works.
comment: Accepted at AAAI 2026 (Main Technical Track)
♻ ☆ ZPressor: Bottleneck-Aware Compression for Scalable Feed-Forward 3DGS NeurIPS 2025
Feed-forward 3D Gaussian Splatting (3DGS) models have recently emerged as a promising solution for novel view synthesis, enabling one-pass inference without the need for per-scene 3DGS optimization. However, their scalability is fundamentally constrained by the limited capacity of their models, leading to degraded performance or excessive memory consumption as the number of input views increases. In this work, we analyze feed-forward 3DGS frameworks through the lens of the Information Bottleneck principle and introduce ZPressor, a lightweight architecture-agnostic module that enables efficient compression of multi-view inputs into a compact latent state $Z$ that retains essential scene information while discarding redundancy. Concretely, ZPressor enables existing feed-forward 3DGS models to scale to over 100 input views at 480P resolution on an 80GB GPU, by partitioning the views into anchor and support sets and using cross attention to compress the information from the support views into anchor views, forming the compressed latent state $Z$. We show that integrating ZPressor into several state-of-the-art feed-forward 3DGS models consistently improves performance under moderate input views and enhances robustness under dense view settings on two large-scale benchmarks DL3DV-10K and RealEstate10K. The video results, code and trained models are available on our project page: https://lhmd.top/zpressor.
comment: NeurIPS 2025, Project Page: https://lhmd.top/zpressor, Code: https://github.com/ziplab/ZPressor
♻ ☆ Backdooring CLIP through Concept Confusion
Backdoor attacks pose a serious threat to deep learning models by allowing adversaries to implant hidden behaviors that remain dormant on clean inputs but are maliciously triggered at inference. Existing backdoor attack methods typically rely on explicit triggers such as image patches or pixel perturbations, which makes them easier to detect and limits their applicability in complex settings. To address this limitation, we take a different perspective by analyzing backdoor attacks through the lens of concept-level reasoning, drawing on insights from interpretable AI. We show that traditional attacks can be viewed as implicitly manipulating the concepts activated within a model's latent space. This motivates a natural question: can backdoors be built by directly manipulating concepts? To answer this, we propose the Concept Confusion Attack (CCA), a novel framework that designates human-understandable concepts as internal triggers, eliminating the need for explicit input modifications. By relabeling images that strongly exhibit a chosen concept and fine-tuning on this mixed dataset, CCA teaches the model to associate the concept itself with the attacker's target label. Consequently, the presence of the concept alone is sufficient to activate the backdoor, making the attack stealthier and more resistant to existing defenses. Using CLIP as a case study, we show that CCA achieves high attack success rates while preserving clean-task accuracy and evading state-of-the-art defenses.
♻ ☆ Tracing and Mitigating Hallucinations in Multimodal LLMs via Dynamic Attention Localization
Multimodal Large Language Models (MLLMs) achieve strong performance on tasks like image captioning and visual question answering, but remain prone to hallucinations, where generated text conflicts with the visual input. Prior work links this partly to insufficient visual attention, but existing attention-based detectors and mitigation typically apply uniform adjustments across layers and heads, obscuring where errors originate. In this paper, we first show these methods fail to accurately localize problematic layers. Then, we introduce two diagnostics: Layer Image Attention Entropy (LIAE) which flags anomalous layers, and Image Attention Focus (IAF) which scores attention heads within those layers. Analysis shows that LIAE pinpoints faulty layers and IAF reliably ranks heads that warrant correction. Guided by these signals, we propose Dynamic Layer-wise Entropy and Attention Fusion (D-LEAF), a task-agnostic, attention-guided method that dynamically localizes and corrects errors during inference with negligible overhead. Furthermore, by establishing a connection between D-LEAF and DPO, we provide theoretical justification for the effectiveness of D-LEAF. Results show our D-LEAF delivers a 53\% relative improvement on standard captioning benchmarks, and on VQA both accuracy and F1-score improve by approximately 4\%, substantially suppressing hallucinations while preserving efficiency.
♻ ☆ CamSAM2: Segment Anything Accurately in Camouflaged Videos
Video camouflaged object segmentation (VCOS), aiming at segmenting camouflaged objects that seamlessly blend into their environment, is a fundamental vision task with various real-world applications. With the release of SAM2, video segmentation has witnessed significant progress. However, SAM2's capability of segmenting camouflaged videos is suboptimal, especially when given simple prompts such as point and box. To address the problem, we propose Camouflaged SAM2 (CamSAM2), which enhances SAM2's ability to handle camouflaged scenes without modifying SAM2's parameters. Specifically, we introduce a decamouflaged token to provide the flexibility of feature adjustment for VCOS. To make full use of fine-grained and high-resolution features from the current frame and previous frames, we propose implicit object-aware fusion (IOF) and explicit object-aware fusion (EOF) modules, respectively. Object prototype generation (OPG) is introduced to abstract and memorize object prototypes with informative details using high-quality features from previous frames. Extensive experiments are conducted to validate the effectiveness of our approach. While CamSAM2 only adds negligible learnable parameters to SAM2, it substantially outperforms SAM2 on three VCOS datasets, especially achieving 12.2 mDice gains with click prompt on MoCA-Mask and 19.6 mDice gains with mask prompt on SUN-SEG-Hard, with Hiera-T as the backbone. The code is available at https://github.com/zhoustan/CamSAM2.
♻ ☆ A comprehensive and easy-to-use multi-domain multi-task medical imaging meta-dataset
While the field of medical image analysis has undergone a transformative shift with the integration of machine learning techniques, the main challenge of these techniques is often the scarcity of large, diverse, and well-annotated datasets. Medical images vary in format, size, and other parameters and therefore require extensive preprocessing and standardization, for usage in machine learning. Addressing these challenges, we introduce the Medical Imaging Meta-Dataset (MedIMeta), a novel multi-domain, multi-task meta-dataset. MedIMeta contains 19 medical imaging datasets spanning 10 different domains and encompassing 54 distinct medical tasks, all of which are standardized to the same format and readily usable in PyTorch or other ML frameworks. We perform a technical validation of MedIMeta, demonstrating its utility through fully supervised and cross-domain few-shot learning baselines.
♻ ☆ LLMC+: Benchmarking Vision-Language Model Compression with a Plug-and-play Toolkit AAAI 2026
Large Vision-Language Models (VLMs) exhibit impressive multi-modal capabilities but suffer from prohibitive computational and memory demands, due to their long visual token sequences and massive parameter sizes. To address these issues, recent works have proposed training-free compression methods. However, existing efforts often suffer from three major limitations: (1) Current approaches do not decompose techniques into comparable modules, hindering fair evaluation across spatial and temporal redundancy. (2) Evaluation confined to simple single-turn tasks, failing to reflect performance in realistic scenarios. (3) Isolated use of individual compression techniques, without exploring their joint potential. To overcome these gaps, we introduce LLMC+, a comprehensive VLM compression benchmark with a versatile, plug-and-play toolkit. LLMC+ supports over 20 algorithms across five representative VLM families and enables systematic study of token-level and model-level compression. Our benchmark reveals that: (1) Spatial and temporal redundancies demand distinct technical strategies. (2) Token reduction methods degrade significantly in multi-turn dialogue and detail-sensitive tasks. (3) Combining token and model compression achieves extreme compression with minimal performance loss. We believe LLMC+ will facilitate fair evaluation and inspire future research in efficient VLM. Our code is available at https://github.com/ModelTC/LightCompress.
comment: Accepted by AAAI 2026
♻ ☆ vGamba: Attentive State Space Bottleneck for efficient Long-range Dependencies in Visual Recognition
Capturing long-range dependencies efficiently is essential for visual recognition tasks, yet existing methods face limitations. Convolutional neural networks (CNNs) struggle with restricted receptive fields, while Vision Transformers (ViTs) achieve global context and long-range modeling at a high computational cost. State-space models (SSMs) offer an alternative, but their application in vision remains underexplored. This work introduces vGamba, a hybrid vision backbone that integrates SSMs with attention mechanisms to enhance efficiency and expressiveness. At its core, the Gamba bottleneck block that includes, Gamba Cell, an adaptation of Mamba for 2D spatial structures, alongside a Multi-Head Self-Attention (MHSA) mechanism and a Gated Fusion Module for effective feature representation. The interplay of these components ensures that vGamba leverages the low computational demands of SSMs while maintaining the accuracy of attention mechanisms for modeling long-range dependencies in vision tasks. Additionally, the Fusion module enables seamless interaction between these components. Extensive experiments on classification, detection, and segmentation tasks demonstrate that vGamba achieves a superior trade-off between accuracy and computational efficiency, outperforming several existing models.
♻ ☆ Emergence of Fixational and Saccadic Movements in a Multi-Level Recurrent Attention Model for Vision
Inspired by foveal vision, hard attention models promise interpretability and parameter economy. However, existing models like the Recurrent Model of Visual Attention (RAM) and Deep Recurrent Attention Model (DRAM) failed to model the hierarchy of human vision system, that compromise on the visual exploration dynamics. As a result, they tend to produce attention that are either overly fixational or excessively saccadic, diverging from human eye movement behavior. In this paper, we propose a Multi-Level Recurrent Attention Model (MRAM), a novel hard attention framework that explicitly models the neural hierarchy of human visual processing. By decoupling the function of glimpse location generation and task execution in two recurrent layers, MRAM emergent a balanced behavior between fixation and saccadic movement. Our results show that MRAM not only achieves more human-like attention dynamics, but also consistently outperforms CNN, RAM and DRAM baselines on standard image classification benchmarks.
♻ ☆ Hierarchical Generalized Category Discovery for Brain Tumor Classification in Digital Pathology
Accurate brain tumor classification is critical for intra-operative decision making in neuro-oncological surgery. However, existing approaches are restricted to a fixed set of predefined classes and are therefore unable to capture patterns of tumor types not available during training. Unsupervised learning can extract general-purpose features, but it lacks the ability to incorporate prior knowledge from labelled data, and semi-supervised methods often assume that all potential classes are represented in the labelled data. Generalized Category Discovery (GCD) aims to bridge this gap by categorizing both known and unknown classes within unlabelled data. To reflect the hierarchical structure of brain tumor taxonomies, in this work, we introduce Hierarchical Generalized Category Discovery for Brain Tumor Classification (HGCD-BT), a novel approach that integrates hierarchical clustering with contrastive learning. Our method extends contrastive learning based GCD by incorporating a novel semi-supervised hierarchical clustering loss. We evaluate HGCD-BT on OpenSRH, a dataset of stimulated Raman histology brain tumor images, achieving a +28% improvement in accuracy over state-of-the-art GCD methods for patch-level classification, particularly in identifying previously unseen tumor categories. Furthermore, we demonstrate the generalizability of HGCD-BT on slide-level classification of hematoxylin and eosin stained whole-slide images from the Digital Brain Tumor Atlas, confirming its utility across imaging modalities.
♻ ☆ Algorithms Trained on Normal Chest X-rays Can Predict Health Insurance Types
Artificial intelligence is revealing what medicine never intended to encode. Deep vision models, trained on chest X-rays, can now detect not only disease but also invisible traces of social inequality. In this study, we show that state-of-the-art architectures (DenseNet121, SwinV2-B, MedMamba) can predict a patient's health insurance type, a strong proxy for socioeconomic status, from normal chest X-rays with significant accuracy (AUC around 0.67 on MIMIC-CXR-JPG, 0.68 on CheXpert). The signal persists even when age, race, and sex are controlled for, and remains detectable when the model is trained exclusively on a single racial group. Patch-based occlusion reveals that the signal is diffuse rather than localized, embedded in the upper and mid-thoracic regions. This suggests that deep networks may be internalizing subtle traces of clinical environments, equipment differences, or care pathways; learning socioeconomic segregation itself. These findings challenge the assumption that medical images are neutral biological data. By uncovering how models perceive and exploit these hidden social signatures, this work reframes fairness in medical AI: the goal is no longer only to balance datasets or adjust thresholds, but to interrogate and disentangle the social fingerprints embedded in clinical data itself.
comment: Submitting to MIDL 2026
♻ ☆ Nearest Neighbor Projection Removal Adversarial Training
Deep neural networks have exhibited impressive performance in image classification tasks but remain vulnerable to adversarial examples. Standard adversarial training enhances robustness but typically fails to explicitly address inter-class feature overlap, a significant contributor to adversarial susceptibility. In this work, we introduce a novel adversarial training framework that actively mitigates inter-class proximity by projecting out inter-class dependencies from adversarial and clean samples in the feature space. Specifically, our approach first identifies the nearest inter-class neighbors for each adversarial sample and subsequently removes projections onto these neighbors to enforce stronger feature separability. Theoretically, we demonstrate that our proposed logits correction reduces the Lipschitz constant of neural networks, thereby lowering the Rademacher complexity, which directly contributes to improved generalization and robustness. Extensive experiments across standard benchmarks including CIFAR-10, CIFAR-100, and SVHN show that our method demonstrates strong performance that is competitive with leading adversarial training techniques, highlighting significant achievements in both robust and clean accuracy. Our findings reveal the importance of addressing inter-class feature proximity explicitly to bolster adversarial robustness in DNNs.
♻ ☆ StrokeFusion: Vector Sketch Generation via Joint Stroke-UDF Encoding and Latent Sequence Diffusion
In the field of sketch generation, raster-format trained models often produce non-stroke artifacts, while vector-format trained models typically lack a holistic understanding of sketches, leading to compromised recognizability. Moreover, existing methods struggle to extract common features from similar elements (e.g., eyes of animals) appearing at varying positions across sketches. To address these challenges, we propose StrokeFusion, a two-stage framework for vector sketch generation. It contains a dual-modal sketch feature learning network that maps strokes into a high-quality latent space. This network decomposes sketches into normalized strokes and jointly encodes stroke sequences with Unsigned Distance Function (UDF) maps, representing sketches as sets of stroke feature vectors. Building upon this representation, our framework exploits a stroke-level latent diffusion model that simultaneously adjusts stroke position, scale, and trajectory during generation. This enables high-fidelity sketch generation while supporting stroke interpolation editing. Extensive experiments on the QuickDraw dataset demonstrate that our framework outperforms state-of-the-art techniques, validating its effectiveness in preserving structural integrity and semantic features. Code and models will be made publicly available upon publication.
♻ ☆ Use as Many Surrogates as You Want: Selective Ensemble Attack to Unleash Transferability without Sacrificing Resource Efficiency
In surrogate ensemble attacks, using more surrogate models yields higher transferability but lower resource efficiency. This practical trade-off between transferability and efficiency has largely limited existing attacks despite many pre-trained models are easily accessible online. In this paper, we argue that such a trade-off is caused by an unnecessary common assumption, i.e., all models should be \textit{identical} across iterations. By lifting this assumption, we can use as many surrogates as we want to unleash transferability without sacrificing efficiency. Concretely, we propose Selective Ensemble Attack (SEA), which dynamically selects diverse models (from easily accessible pre-trained models) across iterations based on our new interpretation of decoupling within-iteration and cross-iteration model diversity. In this way, the number of within-iteration models is fixed for maintaining efficiency, while only cross-iteration model diversity is increased for higher transferability. Experiments on ImageNet demonstrate the superiority of SEA in various scenarios. For example, when dynamically selecting 4 from 20 accessible models, SEA yields 8.5% higher transferability than existing attacks under the same efficiency. The superiority of SEA also generalizes to real-world systems, such as commercial vision APIs and large vision-language models. Overall, SEA opens up the possibility of adaptively balancing transferability and efficiency according to specific resource requirements.
♻ ☆ Deepfake Detection that Generalizes Across Benchmarks
The generalization of deepfake detectors to unseen manipulation techniques remains a challenge for practical deployment. Although many approaches adapt foundation models by introducing significant architectural complexity, this work demonstrates that robust generalization is achievable through a parameter-efficient adaptation of one of the foundational pre-trained vision encoders. The proposed method, GenD, fine-tunes only the Layer Normalization parameters (0.03% of the total) and enhances generalization by enforcing a hyperspherical feature manifold using L2 normalization and metric learning on it. We conducted an extensive evaluation on 14 benchmark datasets spanning from 2019 to 2025. The proposed method achieves state-of-the-art performance, outperforming more complex, recent approaches in average cross-dataset AUROC. Our analysis yields two primary findings for the field: 1) training on paired real-fake data from the same source video is essential for mitigating shortcut learning and improving generalization, and 2) detection difficulty on academic datasets has not strictly increased over time, with models trained on older, diverse datasets showing strong generalization capabilities. This work delivers a computationally efficient and reproducible method, proving that state-of-the-art generalization is attainable by making targeted, minimal changes to a pre-trained foundational image encoder model. The code is at: https://github.com/yermandy/GenD
♻ ☆ JAFAR: Jack up Any Feature at Any Resolution
Foundation Vision Encoders have become essential for a wide range of dense vision tasks. However, their low-resolution spatial feature outputs necessitate feature upsampling to produce the high-resolution modalities required for downstream tasks. In this work, we introduce JAFAR, a lightweight and flexible feature upsampler that enhances the spatial resolution of visual features from any Foundation Vision Encoder to an arbitrary target resolution. JAFAR employs an attention-based module designed to promote semantic alignment between high-resolution queries, derived from low-level image features, and semantically enriched low-resolution keys, using Spatial Feature Transform (SFT) modulation. Notably, despite the absence of high-resolution supervision, we demonstrate that learning at low upsampling ratios and resolutions generalizes remarkably well to significantly higher output scales. Extensive experiments show that JAFAR effectively recovers fine-grained spatial details and consistently outperforms existing feature upsampling methods across a diverse set of downstream tasks. Project page at https://jafar-upsampler.github.io
comment: Code available at https://github.com/PaulCouairon/JAFAR
♻ ☆ TransPrune: Token Transition Pruning for Efficient Large Vision-Language Model
Large Vision-Language Models (LVLMs) have advanced multimodal learning but face high computational costs due to the large number of visual tokens, motivating token pruning to improve inference efficiency. The key challenge lies in identifying which tokens are truly important. Most existing approaches rely on attention-based criteria to estimate token importance. However, they inherently suffer from certain limitations, such as positional bias. In this work, we explore a new perspective on token importance based on token transitions in LVLMs. We observe that the transition of token representations provides a meaningful signal of semantic information. Based on this insight, we propose TransPrune, a training-free and efficient token pruning method. Specifically, TransPrune progressively prunes tokens by assessing their importance through a combination of Token Transition Variation (TTV)-which measures changes in both the magnitude and direction of token representations-and Instruction-Guided Attention (IGA), which measures how strongly the instruction attends to image tokens via attention. Extensive experiments demonstrate that TransPrune achieves comparable multimodal performance to original LVLMs, such as LLaVA-v1.5 and LLaVA-Next, across eight benchmarks, while reducing inference TFLOPs by more than half. Moreover, TTV alone can serve as an effective criterion without relying on attention, achieving performance comparable to attention-based methods. The code will be made publicly available upon acceptance of the paper at https://github.com/liaolea/TransPrune.
♻ ☆ Efficient SAR Vessel Detection for FPGA-Based On-Satellite Sensing
Rapid analysis of satellite imagery within minutes-to-hours of acquisition is increasingly vital for many remote sensing applications, and is an essential component for developing next-generation autonomous and distributed satellite systems. On-satellite machine learning (ML) has the potential for such rapid analysis, by overcoming latency associated with intermittent satellite connectivity to ground stations or relay satellites, but state-of-the-art models are often too large or power-hungry for on-board deployment. Vessel detection using Synthetic Aperture Radar (SAR) is a critical time-sensitive application in maritime security that exemplifies this challenge. SAR vessel detection has previously been demonstrated only by ML models that either are too large for satellite deployment, have not been developed for sufficiently low-power hardware, or have only been tested on small SAR datasets that do not sufficiently represent the difficulty of the real-world task. Here we systematically explore a suite of architectural adaptations to develop a novel YOLOv8 architecture optimized for this task and FPGA-based processing. We deploy our model on a Kria KV260 MPSoC, and show it can analyze a ~700 megapixel SAR image in less than a minute, within common satellite power constraints (<10W). Our model has detection and classification performance only ~2% and 3% lower than values from state-of-the-art GPU-based models on the largest and most diverse open SAR vessel dataset, xView3-SAR, despite being ~50 and ~2500 times more computationally efficient. This work represents a key contribution towards on-satellite ML for time-critical SAR analysis, and more autonomous, scalable satellites.
comment: 17 pages, 7 figures, 6 tables. To be presented in the 10th ACM/IEEE Symposium on Edge Computing (SEC '25)
♻ ☆ Attention Surgery: An Efficient Recipe to Linearize Your Video Diffusion Transformer
Transformer-based video diffusion models (VDMs) deliver state-of-the-art video generation quality but are constrained by the quadratic cost of self-attention, making long sequences and high resolutions computationally expensive. While linear attention offers sub-quadratic complexity, previous approaches have failed to match the expressiveness of softmax attention unless retrained at significant computational cost. We introduce Attention Surgery, an efficient framework that enables linear or hybrid attention in pretrained VDMs, eliminating the need for training from scratch. Inspired by recent advances in language models, our method combines a novel hybrid attention mechanism-mixing softmax and linear tokens-with a lightweight distillation and fine-tuning pipeline requiring only a few GPU-days. Additionally, we incorporate a cost-aware block-rate strategy to balance expressiveness and efficiency across layers. Applied to Wan2.1 1.3B, a state-of-the-art efficient transformer VDM and evaluated on VBench, VBench2.0 and a human preference study, Attention Surgery achieves competitive results. Furthermore, measurements of on-mobile latency, memory usage, and FLOPs demonstrate notable improvements in scaling behavior for longer videos. Project page is available at: https://qualcomm-ai-research.github.io/attention-surgery.
♻ ☆ Decoupling Bias, Aligning Distributions: Synergistic Fairness Optimization for Deepfake Detection
Fairness is a core element in the trustworthy deployment of deepfake detection models, especially in the field of digital identity security. Biases in detection models toward different demographic groups, such as gender and race, may lead to systemic misjudgments, exacerbating the digital divide and social inequities. However, current fairness-enhanced detectors often improve fairness at the cost of detection accuracy. To address this challenge, we propose a dual-mechanism collaborative optimization framework. Our proposed method innovatively integrates structural fairness decoupling and global distribution alignment: decoupling channels sensitive to demographic groups at the model architectural level, and subsequently reducing the distance between the overall sample distribution and the distributions corresponding to each demographic group at the feature level. Experimental results demonstrate that, compared with other methods, our framework improves both inter-group and intra-group fairness while maintaining overall detection accuracy across domains.
♻ ☆ Towards Prospective Medical Image Reconstruction via Knowledge-Informed Dynamic Optimal Transport
Medical image reconstruction from measurement data is a vital but challenging inverse problem. Deep learning approaches have achieved promising results, but often requires paired measurement and high-quality images, which is typically simulated through a forward model, i.e., retrospective reconstruction. However, training on simulated pairs commonly leads to performance degradation on real prospective data due to the retrospective-to-prospective gap caused by incomplete imaging knowledge in simulation. To address this challenge, this paper introduces imaging Knowledge-Informed Dynamic Optimal Transport (KIDOT), a novel dynamic optimal transport framework with optimality in the sense of preserving consistency with imaging physics in transport, that conceptualizes reconstruction as finding a dynamic transport path. KIDOT learns from unpaired data by modeling reconstruction as a continuous evolution path from measurements to images, guided by an imaging knowledge-informed cost function and transport equation. This dynamic and knowledge-aware approach enhances robustness and better leverages unpaired data while respecting acquisition physics. Theoretically, we demonstrate that KIDOT naturally generalizes dynamic optimal transport, ensuring its mathematical rationale and solution existence. Extensive experiments on MRI and CT reconstruction demonstrate KIDOT's superior performance.
♻ ☆ 3D-Aware Vision-Language Models Fine-Tuning with Geometric Distillation
Vision-Language Models (VLMs) have shown remarkable performance on diverse visual and linguistic tasks, yet they remain fundamentally limited in their understanding of 3D spatial structures. We propose Geometric Distillation, a lightweight, annotation-free fine-tuning framework that injects human-inspired geometric cues into pretrained VLMs without modifying their architecture. By distilling (1) sparse correspondences, (2) relative depth relations, and (3) dense cost volumes from off-the-shelf 3D foundation models (e.g., MASt3R, VGGT), our method shapes representations to be geometry-aware while remaining compatible with natural image-text inputs. Through extensive evaluations on 3D vision-language reasoning and 3D perception benchmarks, our method consistently outperforms prior approaches, achieving improved 3D spatial reasoning with significantly lower computational cost. Our work demonstrates a scalable and efficient path to bridge 2D-trained VLMs with 3D understanding, opening up wider use in spatially grounded multimodal tasks.
♻ ☆ Self-NPO: Data-Free Diffusion Model Enhancement via Truncated Diffusion Fine-Tuning AAAI 2026
Diffusion models have demonstrated remarkable success in various visual generation tasks, including image, video, and 3D content generation. Preference optimization (PO) is a prominent and growing area of research that aims to align these models with human preferences. While existing PO methods primarily concentrate on producing favorable outputs, they often overlook the significance of classifier-free guidance (CFG) in mitigating undesirable results. Diffusion-NPO addresses this gap by introducing negative preference optimization (NPO), training models to generate outputs opposite to human preferences and thereby steering them away from unfavorable outcomes through CFG. However, prior NPO approaches rely on costly and fragile procedures for obtaining explicit preference annotations (e.g., manual pairwise labeling or reward model training), limiting their practicality in domains where such data are scarce or difficult to acquire. In this work, we propose Self-NPO, specifically truncated diffusion fine-tuning, a data-free approach of negative preference optimization by directly learning from the model itself, eliminating the need for manual data labeling or reward model training. This data-free approach is highly efficient (less than 1% training cost of Diffusion-NPO) and achieves comparable performance to Diffusion-NPO in a data-free manner. We demonstrate that Self-NPO integrates seamlessly into widely used diffusion models, including SD1.5, SDXL, and CogVideoX, as well as models already optimized for human preferences, consistently enhancing both their generation quality and alignment with human preferences. Code is available at https://github.com/G-U-N/Diffusion-NPO.
comment: accepted by AAAI 2026
♻ ☆ MonoDream: Monocular Vision-Language Navigation with Panoramic Dreaming
Vision-Language Navigation (VLN) tasks often leverage panoramic RGB and depth inputs to provide rich spatial cues for action planning, but these sensors can be costly or less accessible in real-world deployments. Recent approaches based on Vision-Language Action (VLA) models achieve strong results with monocular input, yet they still lag behind methods using panoramic RGB-D information. We present MonoDream, a lightweight VLA framework that enables monocular agents to learn a Unified Navigation Representation (UNR). This shared feature representation jointly aligns navigation-relevant visual semantics (e.g., global layout, depth, and future cues) and language-grounded action intent, enabling more reliable action prediction. MonoDream further introduces Latent Panoramic Dreaming (LPD) tasks to supervise the UNR, which train the model to predict latent features of panoramic RGB and depth observations at both current and future steps based on only monocular input. Experiments on multiple VLN benchmarks show that MonoDream consistently improves monocular navigation performance and significantly narrows the gap with panoramic-based agents.
♻ ☆ SRD: Reinforcement-Learned Semantic Perturbation for Backdoor Defense in VLMs AAAI2026
Visual language models (VLMs) have made significant progress in image captioning tasks, yet recent studies have found they are vulnerable to backdoor attacks. Attackers can inject undetectable perturbations into the data during inference, triggering abnormal behavior and generating malicious captions. These attacks are particularly challenging to detect and defend against due to the stealthiness and cross-modal propagation of the trigger signals. In this paper, we identify two key vulnerabilities by analyzing existing attack patterns: (1) the model exhibits abnormal attention concentration on certain regions of the input image, and (2) backdoor attacks often induce semantic drift and sentence incoherence. Based on these insights, we propose Semantic Reward Defense (SRD), a reinforcement learning framework that mitigates backdoor behavior without requiring any prior knowledge of trigger patterns. SRD learns to apply discrete perturbations to sensitive contextual regions of image inputs via a deep Q-network policy, aiming to confuse attention and disrupt the activation of malicious paths. To guide policy optimization, we design a reward signal named semantic fidelity score, which jointly assesses the semantic consistency and linguistic fluency of the generated captions, encouraging the agent to achieve a robust yet faithful output. SRD offers a trigger-agnostic, policy-interpretable defense paradigm that effectively mitigates local (TrojVLM) and global (Shadowcast) backdoor attacks, reducing ASR to 3.6% and 5.6% respectively, with less than 15% average CIDEr drop on the clean inputs. Our codes can be found at https://github.com/Ciconey/SRD.git.
comment: AAAI2026
♻ ☆ Towards Methane Detection Onboard Satellites
Methane is a potent greenhouse gas and a major driver of climate change, making its timely detection critical for effective mitigation. Machine learning (ML) deployed onboard satellites can enable rapid detection while reducing downlink costs, supporting faster response systems. Conventional methane detection methods often rely on image processing techniques, such as orthorectification to correct geometric distortions and matched filters to enhance plume signals. We introduce a novel approach that bypasses these preprocessing steps by using \textit{unorthorectified} data (UnorthoDOS). We find that ML models trained on this dataset achieve performance comparable to those trained on orthorectified data. Moreover, we also train models on an orthorectified dataset, showing that they can outperform the matched filter baseline (mag1c). We release model checkpoints and two ML-ready datasets comprising orthorectified and unorthorectified hyperspectral images from the Earth Surface Mineral Dust Source Investigation (EMIT) sensor at https://huggingface.co/datasets/SpaceML/UnorthoDOS , along with code at https://github.com/spaceml-org/plume-hunter.
♻ ☆ SparseWorld: A Flexible, Adaptive, and Efficient 4D Occupancy World Model Powered by Sparse and Dynamic Queries AAAI2026
Semantic occupancy has emerged as a powerful representation in world models for its ability to capture rich spatial semantics. However, most existing occupancy world models rely on static and fixed embeddings or grids, which inherently limit the flexibility of perception. Moreover, their ``in-place classification" over grids exhibits a potential misalignment with the dynamic and continuous nature of real scenarios. In this paper, we propose SparseWorld, a novel 4D occupancy world model that is flexible, adaptive, and efficient, powered by sparse and dynamic queries. We propose a Range-Adaptive Perception module, in which learnable queries are modulated by the ego vehicle states and enriched with temporal-spatial associations to enable extended-range perception. To effectively capture the dynamics of the scene, we design a State-Conditioned Forecasting module, which replaces classification-based forecasting with regression-guided formulation, precisely aligning the dynamic queries with the continuity of the 4D environment. In addition, We specifically devise a Temporal-Aware Self-Scheduling training strategy to enable smooth and efficient training. Extensive experiments demonstrate that SparseWorld achieves state-of-the-art performance across perception, forecasting, and planning tasks. Comprehensive visualizations and ablation studies further validate the advantages of SparseWorld in terms of flexibility, adaptability, and efficiency.
comment: Accepted by AAAI2026 Code: https://github.com/MSunDYY/SparseWorld
♻ ☆ Segmentation and Smoothing Affect Explanation Quality More Than the Choice of Perturbation-based XAI Method for Image Explanations IJCNN 2025
Perturbation-based post-hoc image explanation methods are commonly used to explain image prediction models. These methods perturb parts of the input to measure how those parts affect the output. Since the methods only require the input and output, they can be applied to any model, making them a popular choice to explain black-box models. While many different methods exist and have been compared with one another, it remains poorly understood which parameters of the different methods are responsible for their varying performance. This work uses the Randomized Input Sampling for Explanations (RISE) method as a baseline to evaluate many combinations of mask sampling, segmentation techniques, smoothing, attribution calculation, and per-segment or per-pixel attribution, using a proxy metric. The results show that attribution calculation, which is frequently the focus of other works, has little impact on the results. Conversely, segmentation and per-pixel attribution, rarely examined parameters, have a significant impact. The implementation of and data gathered in this work are available online: https://github.com/guspih/post-hoc-image-perturbation and https://bit.ly/smooth-mask-perturbation.
comment: This manuscript have been published in IJCNN 2025
♻ ☆ Virtual Multiplex Staining for Histological Images using a Marker-wise Conditioned Diffusion Model AAAI 2026
Multiplex imaging is revolutionizing pathology by enabling the simultaneous visualization of multiple biomarkers within tissue samples, providing molecular-level insights that traditional hematoxylin and eosin (H&E) staining cannot provide. However, the complexity and cost of multiplex data acquisition have hindered its widespread adoption. Additionally, most existing large repositories of H&E images lack corresponding multiplex images, limiting opportunities for multimodal analysis. To address these challenges, we leverage recent advances in latent diffusion models (LDMs), which excel at modeling complex data distributions by utilizing their powerful priors for fine-tuning to a target domain. In this paper, we introduce a novel framework for virtual multiplex staining that utilizes pretrained LDM parameters to generate multiplex images from H&E images using a conditional diffusion model. Our approach enables marker-by-marker generation by conditioning the diffusion model on each marker, while sharing the same architecture across all markers. To tackle the challenge of varying pixel value distributions across different marker stains and to improve inference speed, we fine-tune the model for single-step sampling, enhancing both color contrast fidelity and inference efficiency through pixel-level loss functions. We validate our framework on two publicly available datasets, notably demonstrating its effectiveness in generating up to 18 different marker types with improved accuracy, a substantial increase over the 2-3 marker types achieved in previous approaches. This validation highlights the potential of our framework, pioneering virtual multiplex staining. Finally, this paper bridges the gap between H&E and multiplex imaging, potentially enabling retrospective studies and large-scale analyses of existing H&E image repositories.
comment: AAAI 2026 accepted
♻ ☆ MMEdge: Accelerating On-device Multimodal Inference via Pipelined Sensing and Encoding
Real-time multimodal inference on resource-constrained edge devices is essential for applications such as autonomous driving, human-computer interaction, and mobile health. However, prior work often overlooks the tight coupling between sensing dynamics and model execution, as well as the complex inter-modality dependencies. In this paper, we propose MMEdge, an new on-device multi-modal inference framework based on pipelined sensing and encoding. Instead of waiting for complete sensor inputs, MMEdge decomposes the entire inference process into a sequence of fine-grained sensing and encoding units, allowing computation to proceed incrementally as data arrive. MMEdge also introduces a lightweight but effective temporal aggregation module that captures rich temporal dynamics across different pipelined units to maintain accuracy performance. Such pipelined design also opens up opportunities for fine-grained cross-modal optimization and early decision-making during inference. To further enhance system performance under resource variability and input data complexity, MMEdge incorporates an adaptive multimodal configuration optimizer that dynamically selects optimal sensing and model configurations for each modality under latency constraints, and a cross-modal speculative skipping mechanism that bypasses future units of slower modalities when early predictions reach sufficient confidence. We evaluate MMEdge using two public multimodal datasets and deploy it on a real-world unmanned aerial vehicle (UAV)-based multimodal testbed. The results show that MMEdge significantly reduces end-to-end latency while maintaining high task accuracy across various system and data dynamics.
comment: Code available at: https://github.com/HKUST-MINSys-Lab/MMEdge. Accepted by SenSys 2026
♻ ☆ Dereflection Any Image with Diffusion Priors and Diversified Data
Reflection removal of a single image remains a highly challenging task due to the complex entanglement between target scenes and unwanted reflections. Despite significant progress, existing methods are hindered by the scarcity of high-quality, diverse data and insufficient restoration priors, resulting in limited generalization across various real-world scenarios. In this paper, we propose Dereflection Any Image, a comprehensive solution with an efficient data preparation pipeline and a generalizable model for robust reflection removal. First, we introduce a dataset named Diverse Reflection Removal (DRR) created by randomly rotating reflective mediums in target scenes, enabling variation of reflection angles and intensities, and setting a new benchmark in scale, quality, and diversity. Second, we propose a diffusion-based framework with one-step diffusion for deterministic outputs and fast inference. To ensure stable learning, we design a three-stage progressive training strategy, including reflection-invariant finetuning to encourage consistent outputs across varying reflection patterns that characterize our dataset. Extensive experiments show that our method achieves SOTA performance on both common benchmarks and challenging in-the-wild images, showing superior generalization across diverse real-world scenes.
♻ ☆ Towards Collective Intelligence: Uncertainty-aware SAM Adaptation for Ambiguous Medical Image Segmentation
Collective intelligence from multiple medical experts consistently surpasses individual expertise in clinical diagnosis, particularly for ambiguous medical image segmentation tasks involving unclear tissue boundaries or pathological variations. The Segment Anything Model (SAM), a powerful vision foundation model originally designed for natural image segmentation, has shown remarkable potential when adapted to medical image segmentation tasks. However, existing SAM adaptation methods follow a single-expert paradigm, developing models based on individual expert annotations to predict deterministic masks. These methods systematically ignore the inherent uncertainty and variability in expert annotations, which fundamentally contradicts clinical practice, where multiple specialists provide different yet equally valid interpretations that collectively enhance diagnostic confidence. We propose an Uncertainty-aware Adapter, the first SAM adaptation framework designed to transition from single expert mindset to collective intelligence representation. Our approach integrates stochastic uncertainty sampling from a Conditional Variational Autoencoder into the adapters, enabling diverse prediction generation that captures expert knowledge distributions rather than individual expert annotations. We employ a novel position-conditioned control mechanism to integrate multi-expert knowledge, ensuring that the output distribution closely aligns with the multi-annotation distribution. Comprehensive evaluations across seven medical segmentation benchmarks have demonstrated that our collective intelligence-based adaptation achieves superior performance while maintaining computational efficiency, establishing a new adaptation framework for reliable clinical implementation.
♻ ☆ Spatially-Aware Mixture of Experts with Log-Logistic Survival Modeling for Whole-Slide Images
Accurate survival prediction from histopathology whole-slide images (WSIs) remains challenging due to their gigapixel resolution, strong spatial heterogeneity, and complex survival distributions. We introduce a comprehensive computational pathology framework that addresses these limitations through four complementary innovations: (1) Quantile-Gated Patch Selection for dynamically identifying prognostically relevant regions, (2) Graph-Guided Clustering to group patches by spatial and morphological similarity, (3) Hierarchical Context Attention to model both local tissue interactions and global slide-level context, and (4) an Expert-Driven Mixture of Log-Logistics module that flexibly models complex survival distributions. Across large TCGA cohorts, our method achieves state-of-the-art performance, yielding time-dependent concordance indices of 0.644 on LUAD, 0.751 on KIRC, and 0.752 on BRCA, consistently outperforming both histology-only and multimodal baselines. The framework further provides improved calibration and interpretability, advancing the use of WSIs for personalized cancer prognosis.
♻ ☆ edgeVLM: Cloud-edge Collaborative Real-time VLM based on Context Transfer
Vision-Language Models (VLMs) are increasingly deployed in real-time applications such as autonomous driving and human-computer interaction, which demand fast and reliable responses based on accurate perception. To meet these requirements, existing systems commonly employ cloud-edge collaborative architectures, such as partitioned Large Vision-Language Models (LVLMs) or task offloading strategies between Large and Small Vision-Language Models (SVLMs). However, these methods fail to accommodate cloud latency fluctuations and overlook the full potential of delayed but accurate LVLM responses. In this work, we propose a novel cloud-edge collaborative paradigm for VLMs, termed Context Transfer, which treats the delayed outputs of LVLMs as historical context to provide real-time guidance for SVLMs inference. Based on this paradigm, we design edgeVLM, which incorporates both context replacement and visual focus modules to refine historical textual input and enhance visual grounding consistency. Extensive experiments on three real-time vision-lanuage reasoning tasks across four datasets demonstrate the effectiveness of the proposed framework. The new paradigm lays the groundwork for more effective and latency-aware collaboration strategies in future VLM systems.
Computers and Society
☆ Freedom of expression and 'right to be forgotten' cases in the Netherlands after Google Spain
Since the Google Spain judgment of the Court of Justice of the European Union, Europeans have, under certain conditions, the right to have search results for their name delisted. This paper examines how the Google Spain judgment has been applied in the Netherlands. Since the Google Spain judgment, Dutch courts have decided on two cases regarding delisting requests. In both cases, the Dutch courts considered freedom of expression aspects of delisting more thoroughly than the Court of Justice. However, the effect of the Google Spain judgment on freedom of expression is difficult to assess, as search engine operators decide about most delisting requests without disclosing much about their decisions.
☆ Access to Personal Data and the Right to Good Governance during Asylum Procedures after the CJEU's YS. and M. and S. judgment
In the YS. and M. and S. judgment, the Court of Justice of the European Union ruled on three procedures in which Dutch judges asked for clarification on the right of asylum seekers to have access to the documents regarding the decision on asylum applications. The judgment is relevant for interpreting the concept of personal data and the scope of the right of access under the Data Protection Directive, and the right to good administration in the EU Charter of Fundamental Rights. At first glance, the judgment seems disappointing from the viewpoint of individual rights. Nevertheless, in our view the judgment provides sufficient grounds for effective access rights to the minutes in future asylum cases.
☆ New Data Security Requirements and the Proceduralization of Mass Surveillance Law after the European Data Retention Case
This paper discusses the regulation of mass metadata surveillance in Europe through the lens of the landmark judgment in which the Court of Justice of the European Union struck down the Data Retention Directive. The controversial directive obliged telecom and Internet access providers in Europe to retain metadata of all their customers for intelligence and law enforcement purposes, for a period of up to two years. In the ruling, the Court declared the directive in violation of the human rights to privacy and data protection. The Court also confirmed that the mere collection of metadata interferes with the human right to privacy. In addition, the Court developed three new criteria for assessing the level of data security required from a human rights perspective: security measures should take into account the risk of unlawful access to data, and the data's quantity and sensitivity. While organizations that campaigned against the directive have welcomed the ruling, we warn for the risk of proceduralization of mass surveillance law. The Court did not fully condemn mass surveillance that relies on metadata, but left open the possibility of mass surveillance if policymakers lay down sufficient procedural safeguards. Such proceduralization brings systematic risks for human rights. Government agencies, with ample resources, can design complicated systems of procedural oversight for mass surveillance - and claim that mass surveillance is lawful, even if it affects millions of innocent people.
☆ Making Evidence Actionable in Adaptive Learning Closing the Diagnostic Pedagogical Loop
Adaptive learning often diagnoses precisely yet intervenes weakly, producing help that is mistimed or misaligned. This study presents evidence supporting an instructor-governed feedback loop that converts concept-level assessment evidence into vetted microinterventions. The adaptive learning algorithm includes three safeguards: adequacy as a hard guarantee of gap closure, attention as a budgeted limit for time and redundancy, and diversity as protection against overfitting to a single resource. We formulate intervention assignment as a binary integer program with constraints for coverage, time, difficulty windows derived from ability estimates, prerequisites encoded by a concept matrix, and anti-redundancy with diversity. Greedy selection serves low-richness and tight-latency settings, gradient-based relaxation serves rich repositories, and a hybrid switches along a richness-latency frontier. In simulation and in an introductory physics deployment with 1204 students, both solvers achieved full skill coverage for nearly all learners within bounded watch time. The gradient-based method reduced redundant coverage by about 12 percentage points relative to greedy and produced more consistent difficulty alignment, while greedy delivered comparable adequacy at lower computational cost in resource-scarce environments. Slack variables localized missing content and guided targeted curation, sustaining sufficiency across student subgroups. The result is a tractable and auditable controller that closes the diagnostic pedagogical loop and enables equitable, load-aware personalization at the classroom scale.
☆ Fairness-Aware Graph Representation Learning with Limited Demographic Information
Ensuring fairness in Graph Neural Networks is fundamental to promoting trustworthy and socially responsible machine learning systems. In response, numerous fair graph learning methods have been proposed in recent years. However, most of them assume full access to demographic information, a requirement rarely met in practice due to privacy, legal, or regulatory restrictions. To this end, this paper introduces a novel fair graph learning framework that mitigates bias in graph learning under limited demographic information. Specifically, we propose a mechanism guided by partial demographic data to generate proxies for demographic information and design a strategy that enforces consistent node embeddings across demographic groups. In addition, we develop an adaptive confidence strategy that dynamically adjusts each node's contribution to fairness and utility based on prediction confidence. We further provide theoretical analysis demonstrating that our framework, FairGLite, achieves provable upper bounds on group fairness metrics, offering formal guarantees for bias mitigation. Through extensive experiments on multiple datasets and fair graph learning frameworks, we demonstrate the framework's effectiveness in both mitigating bias and maintaining model utility.
☆ AI Fairness Beyond Complete Demographics: Current Achievements and Future Directions ECAI 2025
Fairness in artificial intelligence (AI) has become a growing concern due to discriminatory outcomes in AI-based decision-making systems. While various methods have been proposed to mitigate bias, most rely on complete demographic information, an assumption often impractical due to legal constraints and the risk of reinforcing discrimination. This survey examines fairness in AI when demographics are incomplete, addressing the gap between traditional approaches and real-world challenges. We introduce a novel taxonomy of fairness notions in this setting, clarifying their relationships and distinctions. Additionally, we summarize existing techniques that promote fairness beyond complete demographics and highlight open research questions to encourage further progress in the field.
comment: ECAI 2025
☆ The Last Vote: A Multi-Stakeholder Framework for Language Model Governance NeurIPS 2025
As artificial intelligence systems become increasingly powerful and pervasive, democratic societies face unprecedented challenges in governing these technologies while preserving core democratic values and institutions. This paper presents a comprehensive framework to address the full spectrum of risks that AI poses to democratic societies. Our approach integrates multi-stakeholder participation, civil society engagement, and existing international governance frameworks while introducing novel mechanisms for risk assessment and institutional adaptation. We propose: (1) a seven-category democratic risk taxonomy extending beyond individual-level harms to capture systemic threats, (2) a stakeholder-adaptive Incident Severity Score (ISS) that incorporates diverse perspectives and context-dependent risk factors, and (3) a phased implementation strategy that acknowledges the complex institutional changes required for effective AI governance.
comment: This paper has been accepted to the NeurIPS 2025 Workshop on Algorithmic Collective Action (ACA@NeurIPS 2025). The submission is 26 pages including the appendix and includes the NeurIPS checklist. A big thanks to Avijit Ghosh
☆ Dropouts in Confidence: Moral Uncertainty in Human-LLM Alignment AAAI 2026
Humans display significant uncertainty when confronted with moral dilemmas, yet the extent of such uncertainty in machines and AI agents remains underexplored. Recent studies have confirmed the overly confident tendencies of machine-generated responses, particularly in large language models (LLMs). As these systems are increasingly embedded in ethical decision-making scenarios, it is important to understand their moral reasoning and the inherent uncertainties in building reliable AI systems. This work examines how uncertainty influences moral decisions in the classical trolley problem, analyzing responses from 32 open-source models and 9 distinct moral dimensions. We first find that variance in model confidence is greater across models than within moral dimensions, suggesting that moral uncertainty is predominantly shaped by model architecture and training method. To quantify uncertainty, we measure binary entropy as a linear combination of total entropy, conditional entropy, and mutual information. To examine its effects, we introduce stochasticity into models via "dropout" at inference time. Our findings show that our mechanism increases total entropy, mainly through a rise in mutual information, while conditional entropy remains largely unchanged. Moreover, this mechanism significantly improves human-LLM moral alignment, with correlations in mutual information and alignment score shifts. Our results highlight the potential to better align model-generated decisions and human preferences by deliberately modulating uncertainty and reducing LLMs' confidence in morally complex scenarios.
comment: Accepted to AAAI 2026
☆ Computational Measurement of Political Positions: A Review of Text-Based Ideal Point Estimation Algorithms
This article presents the first systematic review of unsupervised and semi-supervised computational text-based ideal point estimation (CT-IPE) algorithms, methods designed to infer latent political positions from textual data. These algorithms are widely used in political science, communication, computational social science, and computer science to estimate ideological preferences from parliamentary speeches, party manifestos, and social media. Over the past two decades, their development has closely followed broader NLP trends -- beginning with word-frequency models and most recently turning to large language models (LLMs). While this trajectory has greatly expanded the methodological toolkit, it has also produced a fragmented field that lacks systematic comparison and clear guidance for applied use. To address this gap, we identified 25 CT-IPE algorithms through a systematic literature review and conducted a manual content analysis of their modeling assumptions and development contexts. To compare them meaningfully, we introduce a conceptual framework that distinguishes how algorithms generate, capture, and aggregate textual variance. On this basis, we identify four methodological families -- word-frequency, topic modeling, word embedding, and LLM-based approaches -- and critically assess their assumptions, interpretability, scalability, and limitations. Our review offers three contributions. First, it provides a structured synthesis of two decades of algorithm development, clarifying how diverse methods relate to one another. Second, it translates these insights into practical guidance for applied researchers, highlighting trade-offs in transparency, technical requirements, and validation strategies that shape algorithm choice. Third, it emphasizes that differences in estimation outcomes across algorithms are themselves informative, underscoring the need for systematic benchmarking.
comment: 46 pages, 8 figures, 2 tables, accepted for publication in Quality & Quantity
☆ Beyond Citations: A Cross-Domain Metric for Dataset Impact and Shareability
The scientific community increasingly relies on open data sharing, yet existing metrics inadequately capture the true impact of datasets as research outputs. Traditional measures, such as the h-index, focus on publications and citations but fail to account for dataset accessibility, reuse, and cross-disciplinary influence. We propose the X-index, a novel author-level metric that quantifies the value of data contributions through a two-step process: (i) computing a dataset-level value score (V-score) that integrates breadth of reuse, FAIRness, citation impact, and transitive reuse depth, and (ii) aggregating V-scores into an author-level X-index. Using datasets from computational social science, medicine, and crisis communication, we validate our approach against expert ratings, achieving a strong correlation. Our results demonstrate that the X-index provides a transparent, scalable, and low-cost framework for assessing data-sharing practices and incentivizing open science. The X-index encourages sustainable data-sharing practices and gives institutions, funders, and platforms a tangible way to acknowledge the lasting influence of research datasets.
☆ Auditing Google's AI Overviews and Featured Snippets: A Case Study on Baby Care and Pregnancy AAAI
Google Search increasingly surfaces AI-generated content through features like AI Overviews (AIO) and Featured Snippets (FS), which users frequently rely on despite having no control over their presentation. Through a systematic algorithm audit of 1,508 real baby care and pregnancy-related queries, we evaluate the quality and consistency of these information displays. Our robust evaluation framework assesses multiple quality dimensions, including answer consistency, relevance, presence of medical safeguards, source categories, and sentiment alignment. Our results reveal concerning gaps in information consistency, with information in AIO and FS displayed on the same search result page being inconsistent with each other in 33% of cases. Despite high relevance scores, both features critically lack medical safeguards (present in just 11% of AIO and 7% of FS responses). While health and wellness websites dominate source categories for both, AIO and FS, FS also often link to commercial sources. These findings have important implications for public health information access and demonstrate the need for stronger quality controls in AI-mediated health information. Our methodology provides a transferable framework for auditing AI systems across high-stakes domains where information quality directly impacts user well-being.
comment: 18 pages, 10 figures; to appear in AAAI ICWSM 2026
☆ Rethinking the filter bubble? Developing a research agenda for the protective filter bubble
Filter bubbles and echo chambers have received global attention from scholars, media organizations, and the general public. Filter bubbles have primarily been regarded as intrinsically negative, and many studies have sought to minimize their influence. The detrimental influence of filter bubbles is well-studied. Filter bubbles may, for example, create information silos, amplify misinformation, and promote hatred and extremism. However, comparatively few studies have considered the other side of the filter bubble; its protective benefits, particularly to marginalized communities and those living in countries with low levels of press freedom. Through a review of the literature on digital safe spaces and protective filter bubbles, this commentary suggests that there may be a need to rethink the filter bubble, and it proposes several areas for future research.
comment: This work has been published in Big Data & Society. Please cite the journal version
♻ ☆ Optimizing Urban Service Allocation with Time-Constrained Restless Bandits
Municipal inspections are an important part of maintaining the quality of goods and services. In this paper, we approach the problem of intelligently scheduling service inspections to maximize their impact, using the case of food establishment inspections in Chicago as a case study. The Chicago Department of Public Health (CDPH) inspects thousands of establishments each year, with a substantial fail rate (over 3,000 failed inspection reports in 2023). To balance the objectives of ensuring adherence to guidelines, minimizing disruption to establishments, and minimizing inspection costs, CDPH assigns each establishment an inspection window every year and guarantees that they will be inspected exactly once during that window. Meanwhile, CDPH also promises surprise public health inspections for unexpected food safety emergencies or complaints. These constraints create a challenge for a restless multi-armed bandit (RMAB) approach, for which there are no existing methods. We develop an extension to Whittle index-based systems for RMABs that can guarantee action window constraints and frequencies, and furthermore can be leveraged to optimize action window assignments themselves. Briefly, we combine MDP reformulation and integer programming-based lookahead to maximize the impact of inspections subject to constraints. A neural network-based supervised learning model is developed to model state transitions of real Chicago establishments using public CDPH inspection records, which demonstrates 10% AUC improvements compared with directly predicting establishments' failures. Our experiments not only show up to 24% (in simulation) or 33% (on real data) objective improvements resulting from our approach and robustness to surprise inspections, but also give insight into the impact of scheduling constraints.
♻ ☆ Ken Utilization Layer: Hebbian Replay Within a Student's Ken for Adaptive Exercise Recommendation
Adaptive exercise recommendation (ER) aims to choose the next activity that matches a learner's evolving Zone of Proximal Development (ZPD). We present KUL-Rec, a biologically inspired ER system that couples a fast Hebbian memory with slow replay-based consolidation to enable continual, few-shot personalization from sparse interactions. The model operates in an embedding space, allowing a single architecture to handle both tabular knowledge-tracing logs and open-ended short-answer text. We align evaluation with tutoring needs using bidirectional ranking and rank-sensitive metrics (nDCG, Recall@K). Across ten public datasets, KUL-Rec improves macro nDCG (0.316 vs. 0.265 for the strongest baseline) and Recall@10 (0.305 vs. 0.211), while achieving low inference latency and an $\approx99$\% reduction in peak GPU memory relative to a competitive graph-based model. In a 13-week graduate course, KUL-Rec personalized weekly short-answer quizzes generated by a retrieval-augmented pipeline and the personalized quizzes were associated with lower perceived difficulty and higher helpfulness (p < .05). An embedding robustness audit highlights that encoder choice affects semantic alignment, motivating routine audits when deploying open-response assessment. Together, these results indicate that Hebbian replay with bounded consolidation offers a practical path to real-time, interpretable ER that scales across data modalities and classroom settings.
♻ ☆ A GPU-Accelerated RAG-Based Telegram Assistant for Supporting Parallel Processing Students
This project addresses a critical pedagogical need: offering students continuous, on-demand academic assistance beyond conventional reception hours. I present a domain-specific Retrieval-Augmented Generation (RAG) system powered by a quantized Mistral-7B Instruct model and deployed as a Telegram bot. The assistant enhances learning by delivering real-time, personalized responses aligned with the "Introduction to Parallel Processing" course materials. GPU acceleration significantly improves inference latency, enabling practical deployment on consumer hardware. This approach demonstrates how consumer GPUs can enable affordable, private, and effective AI tutoring for HPC education.
comment: 9 pages
♻ ☆ Reinforcing Trustworthiness in Multimodal Emotional Support Systems
In today's world, emotional support is increasingly essential, yet it remains challenging for both those seeking help and those offering it. Multimodal approaches to emotional support show great promise by integrating diverse data sources to provide empathetic, contextually relevant responses, fostering more effective interactions. However, current methods have notable limitations, often relying solely on text or converting other data types into text, or providing emotion recognition only, thus overlooking the full potential of multimodal inputs. Moreover, many studies prioritize response generation without accurately identifying critical emotional support elements or ensuring the reliability of outputs. To overcome these issues, we introduce \textsc{ MultiMood}, a new framework that (i) leverages multimodal embeddings from video, audio, and text to predict emotional components and to produce responses responses aligned with professional therapeutic standards. To improve trustworthiness, we (ii) incorporate novel psychological criteria and apply Reinforcement Learning (RL) to optimize large language models (LLMs) for consistent adherence to these standards. We also (iii) analyze several advanced LLMs to assess their multimodal emotional support capabilities. Experimental results show that MultiMood achieves state-of-the-art on MESC and DFEW datasets while RL-driven trustworthiness improvements are validated through human and LLM evaluations, demonstrating its superior capability in applying a multimodal framework in this domain.
♻ ☆ EXAGREE: Mitigating Explanation Disagreement with Stakeholder-Aligned Models
Conflicting explanations, arising from different attribution methods or model internals, limit the adoption of machine learning models in safety-critical domains. We turn this disagreement into an advantage and introduce EXplanation AGREEment (EXAGREE), a two-stage framework that selects a Stakeholder-Aligned Explanation Model (SAEM) from a set of similar-performing models. The selection maximizes Stakeholder-Machine Agreement (SMA), a single metric that unifies faithfulness and plausibility. EXAGREE couples a differentiable mask-based attribution network (DMAN) with monotone differentiable sorting, enabling gradient-based search inside the constrained model space. Experiments on six real-world datasets demonstrate simultaneous gains of faithfulness, plausibility, and fairness over baselines, while preserving task accuracy. Extensive ablation studies, significance tests, and case studies confirm the robustness and feasibility of the method in practice.
♻ ☆ Human-Centered Development of Indicators for Self-Service Learning Analytics: A Transparency through Exploration Approach
The aim of learning analytics is to turn educational data into insights, decisions, and actions to improve learning and teaching. The reasoning of the provided insights, decisions, and actions is often not transparent to the end-user, and this can lead to trust and acceptance issues when interventions, feedback, and recommendations fail. In this paper, we shed light on achieving transparent learning analytics by following a transparency through exploration approach. To this end, we present the design, implementation, and evaluation details of the Indicator Editor, which aims to support self-service learning analytics (SSLA) by empowering end-users to take control of the indicator implementation process. We systematically designed and implemented the Indicator Editor through an iterative human-centered design (HCD) approach. Further, we conducted a qualitative user study (n=15) to investigate the impact of following an SSLA approach on the users' perception of and interaction with the Indicator Editor. Our study showed qualitative evidence that supporting user interaction and providing user control in the indicator implementation process can have positive effects on different crucial aspects of learning analytics, namely transparency, trust, satisfaction, and acceptance.
comment: Submitted to JLA - revised version
♻ ☆ From Model Training to Model Raising
Current AI training methods align models with human values only after their core capabilities have been established, resulting in models that are easily misaligned and lack deep-rooted value systems. We propose a paradigm shift from "model training" to "model raising", in which alignment is woven into a model's development from the start. We identify several key components for this paradigm, all centered around redesigning the training corpus: reframing training data from a first-person perspective, recontextualizing information as lived experience, simulating social interactions, and scaffolding the ordering of training data. We expect that this redesign of the training corpus will lead to an early commitment to values from the first training token onward, such that knowledge, skills, and values are intrinsically much harder to separate. In an ecosystem in which large language model capabilities start overtaking human capabilities in many tasks, this seems to us like a critical need.
comment: Accepted for publication in Communications of the ACM (CACM), Opinion section
♻ ☆ The Hidden Risks of Large Reasoning Models: A Safety Assessment of R1
The rapid development of large reasoning models (LRMs), such as OpenAI-o3 and DeepSeek-R1, has led to significant improvements in complex reasoning over non-reasoning large language models~(LLMs). However, their enhanced capabilities, combined with the open-source access of models like DeepSeek-R1, raise serious safety concerns, particularly regarding their potential for misuse. In this work, we present a comprehensive safety assessment of these reasoning models, leveraging established safety benchmarks to evaluate their compliance with safety regulations. Furthermore, we investigate their susceptibility to adversarial attacks, such as jailbreaking and prompt injection, to assess their robustness in real-world applications. Through our multi-faceted analysis, we uncover four key findings: (1) There is a significant safety gap between the open-source reasoning models and the o3-mini model, on both safety benchmark and attack, suggesting more safety effort on open LRMs is needed. (2) The stronger the model's reasoning ability, the greater the potential harm it may cause when answering unsafe questions. (3) Safety thinking emerges in the reasoning process of LRMs, but fails frequently against adversarial attacks. (4) The thinking process in R1 models poses greater safety concerns than their final answers. Our study provides insights into the security implications of reasoning models and highlights the need for further advancements in R1 models' safety to close the gap.
♻ ☆ Inequality in the Age of Pseudonymity AAAI
Inequality measures such as the Gini coefficient are used to inform and motivate policymaking, and are increasingly applied to digital platforms. We analyze how measures fare in pseudonymous settings that are common in the digital age. A key challenge of such environments is the ability of actors to create fake identities under fictitious false names, also known as ``Sybils.'' While actors may do so to preserve privacy, we show that this can hamper inequality measurement: it is impossible for measures satisfying the literature's canonical set of desired properties to assess the inequality of an economy that harbors Sybils. We characterize the class of all Sybil-proof measures, and prove they must satisfy relaxed versions of the established properties. Furthermore, we show that the structure imposed restricts the ability to assess inequality at a fine-grained level. We then apply our results to prove that popular measures are not Sybil-proof, with the famous Gini coefficient being but one example out of many. Finally, we examine dynamics leading to the creation of Sybils in digital and traditional settings.
comment: 41 pages, 1 figure. Accepted to appear in: Proceedings of the Fortieth AAAI Conference on Artificial Intelligence (AAAI'26)
♻ ☆ IndiTag: An Online Media Bias Analysis System Using Fine-Grained Bias Indicators
In the age of information overload and polarized discourse, understanding media bias has become imperative for informed decision-making and fostering a balanced public discourse. However, without the experts' analysis, it is hard for the readers to distinguish bias from the news articles. This paper presents IndiTag, an innovative online media bias analysis system that leverages fine-grained bias indicators to dissect and distinguish bias in digital content. IndiTag offers a novel approach by incorporating large language models, bias indicators, and vector database to detect and interpret bias automatically. Complemented by a user-friendly interface facilitating automated bias analysis for readers, IndiTag offers a comprehensive platform for in-depth bias examination. We demonstrate the efficacy and versatility of IndiTag through experiments on four datasets encompassing news articles from diverse platforms. Furthermore, we discuss potential applications of IndiTag in fostering media literacy, facilitating fact-checking initiatives, and enhancing the transparency and accountability of digital media platforms. IndiTag stands as a valuable tool in the pursuit of fostering a more informed, discerning, and inclusive public discourse in the digital age. We release an online system for end users and the source code is available at https://github.com/lylin0/IndiTag.
♻ ☆ An International Agreement to Prevent the Premature Creation of Artificial Superintelligence
Many experts argue that premature development of artificial superintelligence (ASI) poses catastrophic risks, including the risk of human extinction from misaligned ASI, geopolitical instability, and misuse by malicious actors. This report proposes an international agreement to prevent the premature development of ASI until AI development can proceed without these risks. The agreement halts dangerous AI capabilities advancement while preserving access to current, safe AI applications. The proposed framework centers on a coalition led by the United States and China that would restrict the scale of AI training and dangerous AI research. Due to the lack of trust between parties, verification is a key part of the agreement. Limits on the scale of AI training are operationalized by FLOP thresholds and verified through the tracking of AI chips and verification of chip use. Dangerous AI research--that which advances toward artificial superintelligence or endangers the agreement's verifiability--is stopped via legal prohibitions and multifaceted verification. We believe the proposal would be technically sufficient to forestall the development of ASI if implemented today, but advancements in AI capabilities or development methods could hurt its efficacy. Additionally, there does not yet exist the political will to put such an agreement in place. Despite these challenges, we hope this agreement can provide direction for AI governance research and policy.
Computation and Language
☆ From Passive to Persuasive: Steering Emotional Nuance in Human-AI Negotiation
Large Language Models (LLMs) demonstrate increasing conversational fluency, yet instilling them with nuanced, human-like emotional expression remains a significant challenge. Current alignment techniques often address surface-level output or require extensive fine-tuning. This paper demonstrates that targeted activation engineering can steer LLaMA 3.1-8B to exhibit more human-like emotional nuances. We first employ attribution patching to identify causally influential components, to find a key intervention locus by observing activation patterns during diagnostic conversational tasks. We then derive emotional expression vectors from the difference in the activations generated by contrastive text pairs (positive vs. negative examples of target emotions). Applying these vectors to new conversational prompts significantly enhances emotional characteristics: steered responses show increased positive sentiment (e.g., joy, trust) and more frequent first-person pronoun usage, indicative of greater personal engagement. Our findings offer a precise and interpretable framework and new directions for the study of conversational AI.
☆ BioMedJImpact: A Comprehensive Dataset and LLM Pipeline for AI Engagement and Scientific Impact Analysis of Biomedical Journals
Assessing journal impact is central to scholarly communication, yet existing open resources rarely capture how collaboration structures and artificial intelligence (AI) research jointly shape venue prestige in biomedicine. We present BioMedJImpact, a large-scale, biomedical-oriented dataset designed to advance journal-level analysis of scientific impact and AI engagement. Built from 1.74 million PubMed Central articles across 2,744 journals, BioMedJImpact integrates bibliometric indicators, collaboration features, and LLM-derived semantic indicators for AI engagement. Specifically, the AI engagement feature is extracted through a reproducible three-stage LLM pipeline that we propose. Using this dataset, we analyze how collaboration intensity and AI engagement jointly influence scientific impact across pre- and post-pandemic periods (2016-2019, 2020-2023). Two consistent trends emerge: journals with higher collaboration intensity, particularly those with larger and more diverse author teams, tend to achieve greater citation impact, and AI engagement has become an increasingly strong correlate of journal prestige, especially in quartile rankings. To further validate the three-stage LLM pipeline we proposed for deriving the AI engagement feature, we conduct human evaluation, confirming substantial agreement in AI relevance detection and consistent subfield classification. Together, these contributions demonstrate that BioMedJImpact serves as both a comprehensive dataset capturing the intersection of biomedicine and AI, and a validated methodological framework enabling scalable, content-aware scientometric analysis of scientific impact and innovation dynamics. Code is available at https://github.com/JonathanWry/BioMedJImpact.
☆ Evaluating Autoformalization Robustness via Semantically Similar Paraphrasing
Large Language Models (LLMs) have recently emerged as powerful tools for autoformalization. Despite their impressive performance, these models can still struggle to produce grounded and verifiable formalizations. Recent work in text-to-SQL, has revealed that LLMs can be sensitive to paraphrased natural language (NL) inputs, even when high degrees of semantic fidelity are preserved (Safarzadeh, Oroojlooyjadid, and Roth 2025). In this paper, we investigate this claim in the autoformalization domain. Specifically, we evaluate the robustness of LLMs generating formal proofs with semantically similar paraphrased NL statements by measuring semantic and compilation validity. Using the formal benchmarks MiniF2F (Zheng, Han, and Polu 2021) and Lean 4 version of ProofNet (Xin et al. 2024), and two modern LLMs, we generate paraphrased natural language statements and cross-evaluate these statements across both models. The results of this paper reveal performance variability across paraphrased inputs, demonstrating that minor shifts in NL statements can significantly impact model outputs.
☆ LLM Reinforcement in Context
Current Large Language Model alignment research mostly focuses on improving model robustness against adversarial attacks and misbehavior by training on examples and prompting. Research has shown that LLM jailbreak probability increases with the size of the user input or conversation length. There is a lack of appropriate research into means of strengthening alignment which also scale with user input length. We propose interruptions as a possible solution to this problem. Interruptions are control sentences added to the user input approximately every x tokens for some arbitrary x. We suggest that this can be generalized to the Chain-of-Thought process to prevent scheming.
comment: 4 pages
☆ Evidence of Phase Transitions in Small Transformer-Based Language Models
Phase transitions have been proposed as the origin of emergent abilities in large language models (LLMs), where new capabilities appear abruptly once models surpass critical thresholds of scale. Prior work, such as that of Wei et al., demonstrated these phenomena under model and data scaling, with transitions revealed after applying a log scale to training compute. In this work, we ask three complementary questions: (1) Are phase transitions unique to large models, or can they also be observed in small transformer-based language models? (2) Can such transitions be detected directly in linear training space, rather than only after log rescaling? and (3) Can these transitions emerge at early stages of training? To investigate, we train a small GPT-style transformer on a character-level corpus and analyze the evolution of vocabulary usage throughout training. We track the average word length, the number of correct versus incorrect words, and shifts in vocabulary diversity. Building on these measures, we apply Poisson and sub-Poisson statistics to quantify how words connect and reorganize. This combined analysis reveals a distinct transition point during training. Notably, these transitions are not apparent in standard loss or validation curves, but become visible through our vocabulary- and statistics-based probes. Our findings suggest that phase-transition reorganizations are a general feature of language model training, observable even in modest models, detectable directly in linear training space, and occurring surprisingly early as coherence emerges. This perspective provides new insight into the nonlinear dynamics of language model training and underscores the importance of tailored metrics for uncovering phase transition behaviors
☆ On the Brittleness of LLMs: A Journey around Set Membership
Large language models (LLMs) achieve superhuman performance on complex reasoning tasks, yet often fail on much simpler problems, raising concerns about their reliability and interpretability. We investigate this paradox through a focused study with two key design features: simplicity, to expose basic failure modes, and scale, to enable comprehensive controlled experiments. We focus on set membership queries -- among the most fundamental forms of reasoning -- using tasks like ``Is apple an element of the set \{pear, plum, apple, raspberry\}?''. We conduct a systematic empirical evaluation across prompt phrasing, semantic structure, element ordering, and model choice. Our large-scale analysis reveals that LLM performance on this elementary task is consistently brittle, and unpredictable across all dimensions, suggesting that the models' ``understanding'' of the set concept is fragmented and convoluted at best. Our work demonstrates that the large-scale experiments enabled by the simplicity of the problem allow us to map and analyze the failure modes comprehensively, making this approach a valuable methodology for LLM evaluation in general.
☆ Adaptive Focus Memory for Language Models
Large language models (LLMs) are increasingly deployed in multi-turn dialogue settings, but their behavior is still bottlenecked by fixed context windows and naive memory strategies. Replaying the full conversation at every turn is simple but expensive, while static summarization or recency-only heuristics often erase safety-critical user details. We present Adaptive Focus Memory (AFM), a dynamic context manager that assigns each past message one of three fidelity levels -- FULL, COMPRESSED, or PLACEHOLDER -- based on semantic similarity to the current query, half-life recency weighting, and importance classification. AFM packs messages chronologically under a strict token budget, preferring high fidelity for the most relevant turns while aiming to preserve a cheap trace of the dialogue. In a safety-oriented benchmark involving a user with a severe peanut allergy planning a trip to Thailand, AFM retains the allergy across both short and medium-length conversations, matches the safety performance of naive replay, and cuts average token usage by 66% relative to a replay baseline. We release a modular Python implementation of AFM designed for OpenAI-compatible APIs and offline operation, enabling practitioners to reduce inference cost without sacrificing safety or factual continuity in the evaluated scenario.
☆ Evolve the Method, Not the Prompts: Evolutionary Synthesis of Jailbreak Attacks on LLMs
Automated red teaming frameworks for Large Language Models (LLMs) have become increasingly sophisticated, yet they share a fundamental limitation: their jailbreak logic is confined to selecting, combining, or refining pre-existing attack strategies. This binds their creativity and leaves them unable to autonomously invent entirely new attack mechanisms. To overcome this gap, we introduce \textbf{EvoSynth}, an autonomous framework that shifts the paradigm from attack planning to the evolutionary synthesis of jailbreak methods. Instead of refining prompts, EvoSynth employs a multi-agent system to autonomously engineer, evolve, and execute novel, code-based attack algorithms. Crucially, it features a code-level self-correction loop, allowing it to iteratively rewrite its own attack logic in response to failure. Through extensive experiments, we demonstrate that EvoSynth not only establishes a new state-of-the-art by achieving an 85.5\% Attack Success Rate (ASR) against highly robust models like Claude-Sonnet-4.5, but also generates attacks that are significantly more diverse than those from existing methods. We release our framework to facilitate future research in this new direction of evolutionary synthesis of jailbreak methods. Code is available at: https://github.com/dongdongunique/EvoSynth.
☆ Improving Direct Persian-English Speech-to-Speech Translation with Discrete Units and Synthetic Parallel Data
Direct speech-to-speech translation (S2ST), in which all components are trained jointly, is an attractive alternative to cascaded systems because it offers a simpler pipeline and lower inference latency. However, direct S2ST models require large amounts of parallel speech data in the source and target languages, which are rarely available for low-resource languages such as Persian. This paper presents a direct S2ST system for translating Persian speech into English speech, as well as a pipeline for synthetic parallel Persian-English speech generation. The model comprises three components: (1) a conformer-based encoder, initialized from self-supervised pre-training, maps source speech to high-level acoustic representations; (2) a causal transformer decoder with relative position multi-head attention translates these representations into discrete target speech units; (3) a unit-based neural vocoder generates waveforms from the predicted discrete units. To mitigate the data scarcity problem, we construct a new Persian-English parallel speech corpus by translating Persian speech transcriptions into English using a large language model and then synthesizing the corresponding English speech with a state-of-the-art zero-shot text-to-speech system. The resulting corpus increases the amount of available parallel speech by roughly a factor of six. On the Persian-English portion of the CVSS corpus, the proposed model achieves improvement of 4.6 ASR BLEU with the synthetic data over direct baselines. These results indicate that combining self-supervised pre-training, discrete speech units, and synthetic parallel data is effective for improving direct S2ST in low-resource language pairs such as Persian-English
☆ Reason-KE++: Aligning the Process, Not Just the Outcome, for Faithful LLM Knowledge Editing
Aligning Large Language Models (LLMs) to be faithful to new knowledge in complex, multi-hop reasoning tasks is a critical, yet unsolved, challenge. We find that SFT-based methods, e.g., Reason-KE, while state-of-the-art, suffer from a "faithfulness gap": they optimize for format mimicry rather than sound reasoning. This gap enables the LLM's powerful parametric priors to override new contextual facts, resulting in critical factual hallucinations (e.g., incorrectly reasoning "Houston" from "NASA" despite an explicit edit). To solve this core LLM alignment problem, we propose Reason-KE++, an SFT+RL framework that instills process-level faithfulness. Its core is a Stage-aware Reward mechanism that provides dense supervision for intermediate reasoning steps (e.g., Decomposition, Sub-answer Correctness). Crucially, we identify that naive outcome-only RL is a deceptive trap for LLM alignment: it collapses reasoning integrity (e.g., 19.00% Hop acc) while superficially boosting final accuracy. Our process-aware framework sets a new SOTA of 95.48% on MQUAKE-CF-3k (+5.28%), demonstrating that for complex tasks, aligning the reasoning process is essential for building trustworthy LLMs.
☆ Knots: A Large-Scale Multi-Agent Enhanced Expert-Annotated Dataset and LLM Prompt Optimization for NOTAM Semantic Parsing
Notice to Air Missions (NOTAMs) serve as a critical channel for disseminating key flight safety information, yet their complex linguistic structures and implicit reasoning pose significant challenges for automated parsing. Existing research mainly focuses on surface-level tasks such as classification and named entity recognition, lacking deep semantic understanding. To address this gap, we propose NOTAM semantic parsing, a task emphasizing semantic inference and the integration of aviation domain knowledge to produce structured, inference-rich outputs. To support this task, we construct Knots (Knowledge and NOTAM Semantics), a high-quality dataset of 12,347 expert-annotated NOTAMs covering 194 Flight Information Regions, enhanced through a multi-agent collaborative framework for comprehensive field discovery. We systematically evaluate a wide range of prompt-engineering strategies and model-adaptation techniques, achieving substantial improvements in aviation text understanding and processing. Our experimental results demonstrate the effectiveness of the proposed approach and offer valuable insights for automated NOTAM analysis systems. Our code is available at: https://github.com/Estrellajer/Knots.
comment: Accepted to Advanced Engineering Informatics
☆ Uni-MoE-2.0-Omni: Scaling Language-Centric Omnimodal Large Model with Advanced MoE, Training and Data
We present Uni-MoE 2.0 from the Lychee family. As a fully open-source omnimodal large model (OLM), it substantially advances Lychee's Uni-MoE series in language-centric multimodal understanding, reasoning, and generating. Based on the Qwen2.5-7B dense architecture, we build Uni-MoE-2.0-Omni from scratch through three core contributions: dynamic-capacity Mixture-of-Experts (MoE) design, a progressive training strategy enhanced with an iterative reinforcement strategy, and a carefully curated multimodal data matching technique. It is capable of omnimodal understanding, as well as generating images, text, and speech. Architecturally, our new MoE framework balances computational efficiency and capability for 10 cross-modal inputs using shared, routed, and null experts, while our Omni-Modality 3D RoPE ensures spatio-temporal cross-modality alignment in the self-attention layer. For training, following cross-modal pretraining, we use a progressive supervised fine-tuning strategy that activates modality-specific experts and is enhanced by balanced data composition and an iterative GSPO-DPO method to stabilise RL training and improve reasoning. Data-wise, the base model, trained on approximately 75B tokens of open-source multimodal data, is equipped with special speech and image generation tokens, allowing it to learn these generative tasks by conditioning its outputs on linguistic cues. Extensive evaluation across 85 benchmarks demonstrates that our model achieves SOTA or highly competitive performance against leading OLMs, surpassing Qwen2.5-Omni (trained with 1.2T tokens) on over 50 of 76 benchmarks. Key strengths include video understanding (+7% avg. of 8), omnimodallity understanding (+7% avg. of 4), and audiovisual reasoning (+4%). It also advances long-form speech processing (reducing WER by 4.2%) and leads in low-level image processing and controllable generation across 5 metrics.
comment: 47 pages,10 Figures, Project Website: https://idealistxy.github.io/Uni-MoE-v2.github.io/; Codes: https://github.com/HITsz-TMG/Uni-MoE
☆ Group-Aware Reinforcement Learning for Output Diversity in Large Language Models EMNLP
Large Language Models (LLMs) often suffer from mode collapse, repeatedly generating the same few completions even when many valid answers exist, limiting their diversity across a wide range of tasks. We introduce Group-Aware Policy Optimization (GAPO), a simple extension of the recent and popular Group Relative Policy Optimization (GRPO) that computes rewards over the group as a whole. GAPO enables learning from the group-level properties such as diversity and coverage. We demonstrate GAPO using a frequency-aware reward function that encourages uniform sampling over valid LLM completions, and show that GAPO-trained models produce valid and more diverse model responses. Beyond this setup, GAPO generalizes to open-ended prompts and improves response diversity without compromising accuracy on standard LLM benchmarks (GSM8K, MATH, HumanEval, MMLU-Pro). Our code will be made publicly available.
comment: EMNLP Main 2025
☆ MMWOZ: Building Multimodal Agent for Task-oriented Dialogue
Task-oriented dialogue systems have garnered significant attention due to their conversational ability to accomplish goals, such as booking airline tickets for users. Traditionally, task-oriented dialogue systems are conceptualized as intelligent agents that interact with users using natural language and have access to customized back-end APIs. However, in real-world scenarios, the widespread presence of front-end Graphical User Interfaces (GUIs) and the absence of customized back-end APIs create a significant gap for traditional task-oriented dialogue systems in practical applications. In this paper, to bridge the gap, we collect MMWOZ, a new multimodal dialogue dataset that is extended from MultiWOZ 2.3 dataset. Specifically, we begin by developing a web-style GUI to serve as the front-end. Next, we devise an automated script to convert the dialogue states and system actions from the original dataset into operation instructions for the GUI. Lastly, we collect snapshots of the web pages along with their corresponding operation instructions. In addition, we propose a novel multimodal model called MATE (Multimodal Agent for Task-oriEnted dialogue) as the baseline model for the MMWOZ dataset. Furthermore, we conduct comprehensive experimental analysis using MATE to investigate the construction of a practical multimodal agent for task-oriented dialogue.
☆ Mitigating Length Bias in RLHF through a Causal Lens
Reinforcement learning from human feedback (RLHF) is widely used to align large language models (LLMs) with human preferences. However, RLHF-trained reward models often exhibit length bias -- a systematic tendency to favor longer responses by conflating verbosity with quality. We propose a causal framework for analyzing and mitigating length bias in RLHF reward modeling. Central to our approach is a counterfactual data augmentation method that generates response pairs designed to isolate content quality from verbosity. These counterfactual examples are then used to train the reward model, enabling it to assess responses based on content quality independently of verbosity. Specifically, we construct (1) length-divergent pairs with similar content and (2) content-divergent pairs of similar length. Empirical evaluations show that our method reduces length bias in reward assignment and leads to more concise, content-focused outputs from the policy model. These findings demonstrate that the proposed approach effectively reduces length bias and improves the robustness and content sensitivity of reward modeling in RLHF pipelines.
☆ A Content-Preserving Secure Linguistic Steganography AAAI 2026
Existing linguistic steganography methods primarily rely on content transformations to conceal secret messages. However, they often cause subtle yet looking-innocent deviations between normal and stego texts, posing potential security risks in real-world applications. To address this challenge, we propose a content-preserving linguistic steganography paradigm for perfectly secure covert communication without modifying the cover text. Based on this paradigm, we introduce CLstega (\textit{C}ontent-preserving \textit{L}inguistic \textit{stega}nography), a novel method that embeds secret messages through controllable distribution transformation. CLstega first applies an augmented masking strategy to locate and mask embedding positions, where MLM(masked language model)-predicted probability distributions are easily adjustable for transformation. Subsequently, a dynamic distribution steganographic coding strategy is designed to encode secret messages by deriving target distributions from the original probability distributions. To achieve this transformation, CLstega elaborately selects target words for embedding positions as labels to construct a masked sentence dataset, which is used to fine-tune the original MLM, producing a target MLM capable of directly extracting secret messages from the cover text. This approach ensures perfect security of secret messages while fully preserving the integrity of the original cover text. Experimental results show that CLstega can achieve a 100\% extraction success rate, and outperforms existing methods in security, effectively balancing embedding capacity and security.
comment: This is the extended version of the paper accepted to AAAI 2026
☆ Accepted with Minor Revisions: Value of AI-Assisted Scientific Writing
Large Language Models have seen expanding application across domains, yet their effectiveness as assistive tools for scientific writing -- an endeavor requiring precision, multimodal synthesis, and domain expertise -- remains insufficiently understood. We examine the potential of LLMs to support domain experts in scientific writing, with a focus on abstract composition. We design an incentivized randomized controlled trial with a hypothetical conference setup where participants with relevant expertise are split into an author and reviewer pool. Inspired by methods in behavioral science, our novel incentive structure encourages authors to edit the provided abstracts to an acceptable quality for a peer-reviewed submission. Our 2x2 between-subject design expands into two dimensions: the implicit source of the provided abstract and the disclosure of it. We find authors make most edits when editing human-written abstracts compared to AI-generated abstracts without source attribution, often guided by higher perceived readability in AI generation. Upon disclosure of source information, the volume of edits converges in both source treatments. Reviewer decisions remain unaffected by the source of the abstract, but bear a significant correlation with the number of edits made. Careful stylistic edits, especially in the case of AI-generated abstracts, in the presence of source information, improve the chance of acceptance. We find that AI-generated abstracts hold potential to reach comparable levels of acceptability to human-written ones with minimal revision, and that perceptions of AI authorship, rather than objective quality, drive much of the observed editing behavior. Our findings reverberate the significance of source disclosure in collaborative scientific writing.
☆ TAdaRAG: Task Adaptive Retrieval-Augmented Generation via On-the-Fly Knowledge Graph Construction AAAI 2026
Retrieval-Augmented Generation (RAG) improves large language models by retrieving external knowledge, often truncated into smaller chunks due to the input context window, which leads to information loss, resulting in response hallucinations and broken reasoning chains. Moreover, traditional RAG retrieves unstructured knowledge, introducing irrelevant details that hinder accurate reasoning. To address these issues, we propose TAdaRAG, a novel RAG framework for on-the-fly task-adaptive knowledge graph construction from external sources. Specifically, we design an intent-driven routing mechanism to a domain-specific extraction template, followed by supervised fine-tuning and a reinforcement learning-based implicit extraction mechanism, ensuring concise, coherent, and non-redundant knowledge integration. Evaluations on six public benchmarks and a real-world business benchmark (NowNewsQA) across three backbone models demonstrate that TAdaRAG outperforms existing methods across diverse domains and long-text tasks, highlighting its strong generalization and practical effectiveness.
comment: Accepted by AAAI 2026
☆ QA-Noun: Representing Nominal Semantics via Natural Language Question-Answer Pairs
Decomposing sentences into fine-grained meaning units is increasingly used to model semantic alignment. While QA-based semantic approaches have shown effectiveness for representing predicate-argument relations, they have so far left noun-centered semantics largely unaddressed. We introduce QA-Noun, a QA-based framework for capturing noun-centered semantic relations. QA-Noun defines nine question templates that cover both explicit syntactical and implicit contextual roles for nouns, producing interpretable QA pairs that complement verbal QA-SRL. We release detailed guidelines, a dataset of over 2,000 annotated noun mentions, and a trained model integrated with QA-SRL to yield a unified decomposition of sentence meaning into individual, highly fine-grained, facts. Evaluation shows that QA-Noun achieves near-complete coverage of AMR's noun arguments while surfacing additional contextually implied relations, and that combining QA-Noun with QA-SRL yields over 130\% higher granularity than recent fact-based decomposition methods such as FactScore and DecompScore. QA-Noun thus complements the broader QA-based semantic framework, forming a comprehensive and scalable approach to fine-grained semantic decomposition for cross-text alignment.
☆ SGuard-v1: Safety Guardrail for Large Language Models
We present SGuard-v1, a lightweight safety guardrail for Large Language Models (LLMs), which comprises two specialized models to detect harmful content and screen adversarial prompts in human-AI conversational settings. The first component, ContentFilter, is trained to identify safety risks in LLM prompts and responses in accordance with the MLCommons hazard taxonomy, a comprehensive framework for trust and safety assessment of AI. The second component, JailbreakFilter, is trained with a carefully designed curriculum over integrated datasets and findings from prior work on adversarial prompting, covering 60 major attack types while mitigating false-unsafe classification. SGuard-v1 is built on the 2B-parameter Granite-3.3-2B-Instruct model that supports 12 languages. We curate approximately 1.4 million training instances from both collected and synthesized data and perform instruction tuning on the base model, distributing the curated data across the two component according to their designated functions. Through extensive evaluation on public and proprietary safety benchmarks, SGuard-v1 achieves state-of-the-art safety performance while remaining lightweight, thereby reducing deployment overhead. SGuard-v1 also improves interpretability for downstream use by providing multi-class safety predictions and their binary confidence scores. We release the SGuard-v1 under the Apache-2.0 License to enable further research and practical deployment in AI safety.
comment: Technical Report
☆ Evolving Prompts for Toxicity Search in Large Language Models
Large Language Models remain vulnerable to adversarial prompts that elicit toxic content even after safety alignment. We present ToxSearch, a black-box evolutionary framework that tests model safety by evolving prompts in a synchronous steady-state loop. The system employs a diverse set of operators, including lexical substitutions, negation, back-translation, paraphrasing, and two semantic crossover operators, while a moderation oracle provides fitness guidance. Operator-level analysis shows heterogeneous behavior: lexical substitutions offer the best yield-variance trade-off, semantic-similarity crossover acts as a precise low-throughput inserter, and global rewrites exhibit high variance with elevated refusal costs. Using elite prompts evolved on LLaMA 3.1 8B, we observe practically meaningful but attenuated cross-model transfer, with toxicity roughly halving on most targets, smaller LLaMA 3.2 variants showing the strongest resistance, and some cross-architecture models retaining higher toxicity. These results suggest that small, controllable perturbations are effective vehicles for systematic red-teaming and that defenses should anticipate cross-model reuse of adversarial prompts rather than focusing only on single-model hardening.
comment: pre-print
☆ Co-Layout: LLM-driven Co-optimization for Interior Layout
We present a novel framework for automated interior design that combines large language models (LLMs) with grid-based integer programming to jointly optimize room layout and furniture placement. Given a textual prompt, the LLM-driven agent workflow extracts structured design constraints related to room configurations and furniture arrangements. These constraints are encoded into a unified grid-based representation inspired by ``Modulor". Our formulation accounts for key design requirements, including corridor connectivity, room accessibility, spatial exclusivity, and user-specified preferences. To improve computational efficiency, we adopt a coarse-to-fine optimization strategy that begins with a low-resolution grid to solve a simplified problem and guides the solution at the full resolution. Experimental results across diverse scenarios demonstrate that our joint optimization approach significantly outperforms existing two-stage design pipelines in solution quality, and achieves notable computational efficiency through the coarse-to-fine strategy.
☆ Assessing LLMs for Serendipity Discovery in Knowledge Graphs: A Case for Drug Repurposing AAAI
Large Language Models (LLMs) have greatly advanced knowledge graph question answering (KGQA), yet existing systems are typically optimized for returning highly relevant but predictable answers. A missing yet desired capacity is to exploit LLMs to suggest surprise and novel ("serendipitious") answers. In this paper, we formally define the serendipity-aware KGQA task and propose the SerenQA framework to evaluate LLMs' ability to uncover unexpected insights in scientific KGQA tasks. SerenQA includes a rigorous serendipity metric based on relevance, novelty, and surprise, along with an expert-annotated benchmark derived from the Clinical Knowledge Graph, focused on drug repurposing. Additionally, it features a structured evaluation pipeline encompassing three subtasks: knowledge retrieval, subgraph reasoning, and serendipity exploration. Our experiments reveal that while state-of-the-art LLMs perform well on retrieval, they still struggle to identify genuinely surprising and valuable discoveries, underscoring a significant room for future improvements. Our curated resources and extended version are released at: https://cwru-db-group.github.io/serenQA.
comment: The 40th AAAI Conference on Artificial Intelligence (AAAI-26)
☆ Probing Preference Representations: A Multi-Dimensional Evaluation and Analysis Method for Reward Models AAAI 2026
Previous methods evaluate reward models by testing them on a fixed pairwise ranking test set, but they typically do not provide performance information on each preference dimension. In this work, we address the evaluation challenge of reward models by probing preference representations. To confirm the effectiveness of this evaluation method, we construct a Multi-dimensional Reward Model Benchmark (MRMBench), a collection of six probing tasks for different preference dimensions. We design it to favor and encourage reward models that better capture preferences across different dimensions. Furthermore, we introduce an analysis method, inference-time probing, which identifies the dimensions used during the reward prediction and enhances its interpretability. Through extensive experiments, we find that MRMBench strongly correlates with the alignment performance of large language models (LLMs), making it a reliable reference for developing advanced reward models. Our analysis of MRMBench evaluation results reveals that reward models often struggle to capture preferences across multiple dimensions, highlighting the potential of multi-objective optimization in reward modeling. Additionally, our findings show that the proposed inference-time probing method offers a reliable metric for assessing the confidence of reward predictions, which ultimately improves the alignment of LLMs.
comment: Accepted by AAAI 2026
☆ DenseAnnotate: Enabling Scalable Dense Caption Collection for Images and 3D Scenes via Spoken Descriptions
With the rapid adoption of multimodal large language models (MLLMs) across diverse applications, there is a pressing need for task-centered, high-quality training data. A key limitation of current training datasets is their reliance on sparse annotations mined from the Internet or entered via manual typing that capture only a fraction of an image's visual content. Dense annotations are more valuable but remain scarce. Traditional text-based annotation pipelines are poorly suited for creating dense annotations: typing limits expressiveness, slows annotation speed, and underrepresents nuanced visual features, especially in specialized areas such as multicultural imagery and 3D asset annotation. In this paper, we present DenseAnnotate, an audio-driven online annotation platform that enables efficient creation of dense, fine-grained annotations for images and 3D assets. Annotators narrate observations aloud while synchronously linking spoken phrases to image regions or 3D scene parts. Our platform incorporates speech-to-text transcription and region-of-attention marking. To demonstrate the effectiveness of DenseAnnotate, we conducted case studies involving over 1,000 annotators across two domains: culturally diverse images and 3D scenes. We curate a human-annotated multi-modal dataset of 3,531 images, 898 3D scenes, and 7,460 3D objects, with audio-aligned dense annotations in 20 languages, including 8,746 image captions, 2,000 scene captions, and 19,000 object captions. Models trained on this dataset exhibit improvements of 5% in multilingual, 47% in cultural alignment, and 54% in 3D spatial capabilities. Our results show that our platform offers a feasible approach for future vision-language research and can be applied to various tasks and diverse types of data.
♻ ☆ DiagnoLLM: A Hybrid Bayesian Neural Language Framework for Interpretable Disease Diagnosis
Building trustworthy clinical AI systems requires not only accurate predictions but also transparent, biologically grounded explanations. We present \texttt{DiagnoLLM}, a hybrid framework that integrates Bayesian deconvolution, eQTL-guided deep learning, and LLM-based narrative generation for interpretable disease diagnosis. DiagnoLLM begins with GP-unmix, a Gaussian Process-based hierarchical model that infers cell-type-specific gene expression profiles from bulk and single-cell RNA-seq data while modeling biological uncertainty. These features, combined with regulatory priors from eQTL analysis, power a neural classifier that achieves high predictive performance in Alzheimer's Disease (AD) detection (88.0\% accuracy). To support human understanding and trust, we introduce an LLM-based reasoning module that translates model outputs into audience-specific diagnostic reports, grounded in clinical features, attribution signals, and domain knowledge. Human evaluations confirm that these reports are accurate, actionable, and appropriately tailored for both physicians and patients. Our findings show that LLMs, when deployed as post-hoc reasoners rather than end-to-end predictors, can serve as effective communicators within hybrid diagnostic pipelines.
♻ ☆ Interpreting the Effects of Quantization on LLMs AACL 2025
Quantization offers a practical solution to deploy LLMs in resource-constraint environments. However, its impact on internal representations remains understudied, raising questions about the reliability of quantized models. In this study, we employ a range of interpretability techniques to investigate how quantization affects model and neuron behavior. We analyze multiple LLMs under 4-bit and 8-bit quantization. Our findings reveal that the impact of quantization on model calibration is generally minor. Analysis of neuron activations indicates that the number of dead neurons, i.e., those with activation values close to 0 across the dataset, remains consistent regardless of quantization. In terms of neuron contribution to predictions, we observe that smaller full precision models exhibit fewer salient neurons, whereas larger models tend to have more, with the exception of Llama-2-7B. The effect of quantization on neuron redundancy varies across models. Overall, our findings suggest that effect of quantization may vary by model and tasks, however, we did not observe any drastic change which may discourage the use of quantization as a reliable model compression technique.
comment: Accepted to AACL 2025 Main
♻ ☆ InfiMed-ORBIT: Aligning LLMs on Open-Ended Complex Tasks via Rubric-Based Incremental Training
Reinforcement learning has powered many of the recent breakthroughs in large language models, especially for tasks where rewards can be computed automatically, such as code generation. However, these methods deteriorate in open-ended domains like medical consultation, where feedback is inherently ambiguous, highly context-dependent, and cannot be reduced to a reliable scalar signal. In such settings, RL must either rely on supervision-intensive reward models that often fail to generalize, or it falls into pathological behaviors such as reward hacking - an especially troubling risk for high-stakes medical dialogue. To address these limitations, we introduce ORBIT, an open-ended rubric-based incremental training framework for high-stakes medical dialogue. ORBIT integrates synthetic dialogue generation with dynamically constructed rubrics that serve as adaptive guides for incremental RL. Instead of relying on external medical knowledge bases or handcrafted rule sets, ORBIT uses rubric-driven feedback to steer the learning process. Its judge component can be instantiated with general-purpose instruction-following LLMs, removing the need for any task-specific fine-tuning. Applied to the Qwen3-4B-Instruct model, ORBIT raises the HealthBench-Hard score from 7.0 to 27.5 using only 2k training samples, achieving SOTA performance for models at this scale. With larger rubric datasets, ORBIT-trained models further compete with the strongest open-source baselines on HealthBench-Hard. Our analysis shows that rubric-guided RL consistently improves consultation quality across diverse medical scenarios. We also apply such rubric generation and training pipeline to InfoBench, where ORBIT enhances instruction-following performance, highlighting the generality of rubric-based feedback.
♻ ☆ Scaling Laws for Conditional Emergence of Multilingual Image Captioning via Generalization from Translation
Cross-lingual, cross-task transfer is challenged by task-specific data scarcity, which becomes more severe as language support grows and is further amplified in vision-language models (VLMs). We investigate multilingual generalization in encoder-decoder transformer VLMs to enable zero-shot image captioning in languages encountered only in the translation task. In this setting, the encoder must learn to generate generalizable, task-aware latent vision representations to instruct the decoder via inserted cross-attention layers. To analyze scaling behavior, we train Florence-2 based and Gemma-2 based models (0.4B to 11.2B parameters) on a synthetic dataset using varying compute budgets. While all languages in the dataset have image-aligned translations, only a subset of them include image captions. Notably, we show that captioning can emerge using a language prefix, even when this language only appears in the translation task. We find that indirect learning of unseen task-language pairs adheres to scaling laws that are governed by the multilinguality of the model, model size, and seen training samples. Finally, we demonstrate that the scaling laws extend to downstream tasks, achieving competitive performance through fine-tuning in multimodal machine translation (Multi30K, CoMMuTE), lexical disambiguation (CoMMuTE), and image captioning (Multi30K, XM3600, COCO Karpathy).
♻ ☆ OptiHive: Ensemble Selection for LLM-Based Optimization via Statistical Modeling
LLM-based solvers have emerged as a promising means of automating problem modeling and solving. However, they remain unreliable and often depend on iterative repair loops that result in significant latency. We introduce OptiHive, a framework that enhances any solver-generation pipeline to produce higher-quality solvers from natural-language descriptions of optimization problems. OptiHive uses a single batched generation to produce diverse components (solvers, problem instances, and validation tests) and filters out erroneous components to ensure fully interpretable outputs. Accounting for the imperfection of the generated components, we employ a statistical model to infer their true performance, enabling principled uncertainty quantification and solver selection. On tasks ranging from traditional optimization problems to challenging variants of the Multi-Depot Vehicle Routing Problem, OptiHive significantly outperforms baselines, increasing the optimality rate from 5% to 92% on the most complex problems.
♻ ☆ Silenced Biases: The Dark Side LLMs Learned to Refuse AAAI
Safety-aligned large language models (LLMs) are becoming increasingly widespread, especially in sensitive applications where fairness is essential and biased outputs can cause significant harm. However, evaluating the fairness of models is a complex challenge, and approaches that do so typically utilize standard question-answer (QA) styled schemes. Such methods often overlook deeper issues by interpreting the model's refusal responses as positive fairness measurements, which creates a false sense of fairness. In this work, we introduce the concept of silenced biases, which are unfair preferences encoded within models' latent space and are effectively concealed by safety-alignment. Previous approaches that considered similar indirect biases often relied on prompt manipulation or handcrafted implicit queries, which present limited scalability and risk contaminating the evaluation process with additional biases. We propose the Silenced Bias Benchmark (SBB), which aims to uncover these biases by employing activation steering to reduce model refusals during QA. SBB supports easy expansion to new demographic groups and subjects, presenting a fairness evaluation framework that encourages the future development of fair models and tools beyond the masking effects of alignment training. We demonstrate our approach over multiple LLMs, where our findings expose an alarming distinction between models' direct responses and their underlying fairness issues.
comment: Accepted to The 40th Annual AAAI Conference on Artificial Intelligence - AI Alignment Track (Oral)
♻ ☆ Trainable Dynamic Mask Sparse Attention
The increasing demand for long-context modeling in large language models (LLMs) is bottlenecked by the quadratic complexity of the standard self-attention mechanism. The community has proposed sparse attention to mitigate this issue. However, position-aware sparse attention methods rely on static sparse structures that lack adaptability to diverse query contexts, while content-aware sparse attention methods depend on heuristic key-value selection, hindering full differentiability. We introduce a trainable dynamic mask sparse attention mechanism, a method that merges the advantages of both position-aware and content-aware approaches. Dynamic Mask Attention (DMA) achieves this through three key innovations: First, it leverages value vector representations to generate content-aware dynamic masks, enabling the model to adaptively identify and attend to critical information. Second, it computes position-aware sparse weights in a hardware-friendly manner, efficiently skipping unnecessary computational regions. Finally, we demonstrate that the introduced dynamic mask and sparse weights do not obstruct gradients, supporting end-to-end training. We have validated the performance of DMA through comprehensive experiments. A large body of experimental evidence shows that DMA consistently holds a Pareto advantage over state-of-the-art sparse attention baselines in tasks including scaling laws, multi-query associative recall, standard benchmarks, and needle in a haystack tests, while also delivering up to a 10x overall speedup. These results highlight its ability to effectively balance model efficiency with long-context modeling capabilities. Our computational kernel code is now open-source at https://github.com/SmallDoges/flash-dmattn to encourage further research and application by the community.
comment: 26 pages
♻ ☆ Historical/temporal necessities/possibilities, and a logical theory of them in branching time
In this paper, we do three kinds of work. First, we recognize four notions of necessity and two notions of possibility related to time flow, namely strong/weak historical/temporal necessities, as well as historical/temporal possibilities, which are motivated more from a linguistic perspective than from a philosophical one. Strong/weak historical necessities and historical possibility typically concern the possible futures of the present world, and strong/weak temporal necessities and temporal possibility concern possible timelines of alternatives of the present world. Second, we provide our approach to the six notions and present a logical theory of them in branching time. Our approach to the six notions is as follows. The agent has a system of ontic rules that determine expected timelines. She treats some ontic rules as undefeatable, determining accepted timelines. The domains of strong/weak historical necessities, respectively, consist of accepted and expected timelines passing through the present moment, and historical possibility is the dual of strong historical necessity. The domains of strong/weak temporal necessities, respectively, consist of accepted and expected timelines, and temporal possibility is the dual of strong temporal necessity. The logical theory has six operators: a last-moment operator, a next-moment operator, and four operators for the four notions of necessity. Formulas' evaluation contexts consist of a tree-like model representing a time flow, a context representing the agent's system of ontic rules, a timeline, and an instant. Third, we offer an axiomatic system for the logical theory and show its soundness and completeness.
♻ ☆ C$^3$TG: Conflict-aware, Composite, and Collaborative Controlled Text Generation AAAI-2026
Recent advancements in large language models (LLMs) have demonstrated remarkable text generation capabilities. However, controlling specific attributes of generated text remains challenging without architectural modifications or extensive fine-tuning. Current methods typically toggle a single, basic attribute but struggle with precise multi-attribute control. In scenarios where attribute requirements conflict, existing methods lack coordination mechanisms, causing interference between desired attributes. Furthermore, these methods fail to incorporate iterative optimization processes in the controlled generation pipeline. To address these limitations, we propose Conflict-aware, Composite, and Collaborative Controlled Text Generation (C$^3$TG), a two-phase framework for fine-grained, multi-dimensional text attribute control. During generation, C$^3$TG selectively pairs the LLM with the required attribute classifiers from the 17 available dimensions and employs weighted KL-divergence to adjust token probabilities. The optimization phase then leverages an energy function combining classifier scores and penalty terms to resolve attribute conflicts through iterative feedback, enabling precise control over multiple dimensions simultaneously while preserving natural text flow. Experiments show that C$^3$TG significantly outperforms baselines across multiple metrics including attribute accuracy, linguistic fluency, and output diversity, while simultaneously reducing toxicity. These results establish C$^3$TG as an effective and flexible solution for multi-dimensional text attribute control that requires no costly model modifications.
comment: This paper has been accepted as a poster presentation at AAAI-2026
♻ ☆ Understanding and Mitigating Political Stance Cross-topic Generalization in Large Language Models
Fine-tuning Large Language Models on a political topic will significantly manipulate their political stance on various issues and unintentionally affect their stance on unrelated topics. While previous studies have proposed this issue, there is still a lack of understanding regarding the internal representations of these stances and the mechanisms that lead to unintended cross-topic generalization. In this paper, we systematically explore the internal mechanisms underlying this phenomenon from a neuron-level perspective and how to mitigate the cross-topic generalization of political fine-tuning. Firstly, we propose Political Neuron Localization through Activation Contrasting (PNLAC) to identify two distinct types of political neurons: general political neurons, which govern stance across multiple political topics, and topic-specific neurons} that affect the model's political stance on individual topics. We find the existence of these political neuron types across four models and datasets through activation patching experiments. Leveraging these insights, we introduce InhibitFT, an inhibition-based fine-tuning method, effectively mitigating the cross-topic stance generalization. Experimental results demonstrate the robustness of identified neuron types across various models and datasets, and show that InhibitFT significantly reduces the cross-topic stance generalization by 20% on average, while preserving topic-specific performance. Moreover, we demonstrate that selectively inhibiting only 5% of neurons is sufficient to effectively mitigate the cross-topic stance generalization.
♻ ☆ Explain with Visual Keypoints Like a Real Mentor! A Benchmark for Multimodal Solution Explanation
With the rapid advancement of mathematical reasoning capabilities in Large Language Models (LLMs), AI systems are increasingly being adopted in educational settings to support students' comprehension of problem-solving processes. However, a critical component remains underexplored in current LLM-generated explanations: multimodal explanation. In real-world instructional contexts, human tutors routinely employ visual aids, such as diagrams, markings, and highlights, to enhance conceptual clarity. To bridge this gap, we introduce the multimodal solution explanation task, designed to evaluate whether models can identify visual keypoints, such as auxiliary lines, points, angles, and generate explanations that incorporate these key elements essential for understanding. To evaluate model performance on this task, we propose ME2, a multimodal benchmark consisting of 1,000 math problems annotated with visual keypoints and corresponding explanatory text that references those elements. Our empirical results show that current models struggle to identify visual keypoints. In the task of generating keypoint-based explanations, open-source models also face notable difficulties. This highlights a significant gap in current LLMs' ability to perform mathematical visual grounding, engage in visually grounded reasoning, and provide explanations in educational contexts. We expect that the multimodal solution explanation task and the ME2 dataset will catalyze further research on LLMs in education and promote their use as effective, explanation-oriented AI tutors.
comment: 14 pages, 9 figures
♻ ☆ FRAME: Feedback-Refined Agent Methodology for Enhancing Medical Research Insights
The automation of scientific research through large language models (LLMs) presents significant opportunities but faces critical challenges in knowledge synthesis and quality assurance. We introduce Feedback-Refined Agent Methodology (FRAME), a novel framework that enhances medical paper generation through iterative refinement and structured feedback. Our approach comprises three key innovations: (1) A structured dataset construction method that decomposes 4,287 medical papers into essential research components through iterative refinement; (2) A tripartite architecture integrating Generator, Evaluator, and Reflector agents that progressively improve content quality through metric-driven feedback; and (3) A comprehensive evaluation framework that combines statistical metrics with human-grounded benchmarks. Experimental results demonstrate FRAME's effectiveness, achieving significant improvements over conventional approaches across multiple models (9.91% average gain with DeepSeek V3, comparable improvements with GPT-4o Mini) and evaluation dimensions. Human evaluation confirms that FRAME-generated papers achieve quality comparable to human-authored works, with particular strength in synthesizing future research directions. The results demonstrated our work could efficiently assist medical research by building a robust foundation for automated medical research paper generation while maintaining rigorous academic standards.
comment: 12 pages, 4 figures, 5 table
♻ ☆ BhashaKritika: Building Synthetic Pretraining Data at Scale for Indic Languages
In the context of pretraining of Large Language Models (LLMs), synthetic data has emerged as an alternative for generating high-quality pretraining data at scale. This is particularly beneficial in low-resource language settings where the benefits of recent LLMs have been unevenly distributed across languages. In this work, we present a systematic study on the generation and evaluation of synthetic multilingual pretraining data for Indic languages, where we construct a large-scale synthetic dataset BhashaKritika, comprising 540B tokens using 5 different techniques for 10 languages. We explore the impact of grounding generation in documents, personas, and topics. We analyze how language choice, both in the prompt instructions and document grounding, affects data quality, and we compare translations of English content with native generation in Indic languages. To support scalable and language-sensitive evaluation, we introduce a modular quality evaluation pipeline that integrates script and language detection, metadata consistency checks, n-gram repetition analysis, and perplexity-based filtering using KenLM models. Our framework enables robust quality control across diverse scripts and linguistic contexts. Empirical results through model runs reveal key trade-offs in generation strategies and highlight best practices for constructing effective multilingual corpora.
♻ ☆ DeceptionBench: A Comprehensive Benchmark for AI Deception Behaviors in Real-world Scenarios
Despite the remarkable advances of Large Language Models (LLMs) across diverse cognitive tasks, the rapid enhancement of these capabilities also introduces emergent deceptive behaviors that may induce severe risks in high-stakes deployments. More critically, the characterization of deception across realistic real-world scenarios remains underexplored. To bridge this gap, we establish DeceptionBench, the first benchmark that systematically evaluates how deceptive tendencies manifest across different societal domains, what their intrinsic behavioral patterns are, and how extrinsic factors affect them. Specifically, on the static count, the benchmark encompasses 150 meticulously designed scenarios in five domains, i.e., Economy, Healthcare, Education, Social Interaction, and Entertainment, with over 1,000 samples, providing sufficient empirical foundations for deception analysis. On the intrinsic dimension, we explore whether models exhibit self-interested egoistic tendencies or sycophantic behaviors that prioritize user appeasement. On the extrinsic dimension, we investigate how contextual factors modulate deceptive outputs under neutral conditions, reward-based incentivization, and coercive pressures. Moreover, we incorporate sustained multi-turn interaction loops to construct a more realistic simulation of real-world feedback dynamics. Extensive experiments across LLMs and Large Reasoning Models (LRMs) reveal critical vulnerabilities, particularly amplified deception under reinforcement dynamics, demonstrating that current models lack robust resistance to manipulative contextual cues and the urgent need for advanced safeguards against various deception behaviors. Code and resources are publicly available at https://github.com/Aries-iai/DeceptionBench.
comment: 28 pages, 17 figures, accepted by NeruIPS 2025
♻ ☆ Mitigating Overthinking in Large Reasoning Models via Manifold Steering
Recent advances in Large Reasoning Models (LRMs) have demonstrated remarkable capabilities in solving complex tasks such as mathematics and coding. However, these models frequently exhibit a phenomenon known as overthinking during inference, characterized by excessive validation loops and redundant deliberation, leading to substantial computational overheads. In this paper, we aim to mitigate overthinking by investigating the underlying mechanisms from the perspective of mechanistic interpretability. We first showcase that the tendency of overthinking can be effectively captured by a single direction in the model's activation space and the issue can be eased by intervening the activations along this direction. However, this efficacy soon reaches a plateau and even deteriorates as the intervention strength increases. We therefore systematically explore the activation space and find that the overthinking phenomenon is actually tied to a low-dimensional manifold, which indicates that the limited effect stems from the noises introduced by the high-dimensional steering direction. Based on this insight, we propose Manifold Steering, a novel approach that elegantly projects the steering direction onto the low-dimensional activation manifold given the theoretical approximation of the interference noise. Extensive experiments on DeepSeek-R1 distilled models validate that our method reduces output tokens by up to 71% while maintaining and even improving the accuracy on several mathematical benchmarks. Our method also exhibits robust cross-domain transferability, delivering consistent token reduction performance in code generation and knowledge-based QA tasks. Code is available at: https://github.com/Aries-iai/Manifold_Steering.
comment: 19 pages, 7 figures
♻ ☆ From Euler to AI: Unifying Formulas for Mathematical Constants NeurIPS2025
The constant $π$ has fascinated scholars throughout the centuries, inspiring numerous formulas for its evaluation, such as infinite sums and continued fractions. Despite their individual significance, many of the underlying connections among formulas remain unknown, missing unifying theories that could unveil deeper understanding. The absence of a unifying theory reflects a broader challenge across math and science: knowledge is typically accumulated through isolated discoveries, while deeper connections often remain hidden. In this work, we present an automated framework for the unification of mathematical formulas. Our system combines Large Language Models (LLMs) for systematic formula harvesting, an LLM-code feedback loop for validation, and a novel symbolic algorithm for clustering and eventual unification. We demonstrate this methodology on the hallmark case of $π$, an ideal testing ground for symbolic unification. Applying this approach to 455,050 arXiv papers, we validate 385 distinct formulas for $π$ and prove relations between 360 (94%) of them, of which 166 (43%) can be derived from a single mathematical object - linking canonical formulas by Euler, Gauss, Brouncker, and newer ones from algorithmic discoveries by the Ramanujan Machine. Our method generalizes to other constants, including $e$, $ζ(3)$, and Catalan's constant, demonstrating the potential of AI-assisted mathematics to uncover hidden structures and unify knowledge across domains.
comment: Final version for NeurIPS2025
♻ ☆ Is deeper always better? Replacing linear mappings with deep learning networks in the Discriminative Lexicon Model
Recently, deep learning models have increasingly been used in cognitive modelling of language. This study asks whether deep learning can help us to better understand the learning problem that needs to be solved by speakers, above and beyond linear methods. We utilise the Discriminative Lexicon Model introduced by Baayen and colleagues, which models comprehension and production with mappings between numeric form and meaning vectors. While so far, these mappings have been linear (Linear Discriminative Learning, LDL), in the present study we replace them with deep dense neural networks (Deep Discriminative Learning, DDL). We find that DDL affords more accurate mappings for large and diverse datasets from English and Dutch, but not necessarily for Estonian and Taiwan Mandarin. DDL outperforms LDL in particular for words with pseudo-morphological structure such as chol+er. Applied to average reaction times, we find that DDL is outperformed by frequency-informed linear mappings (FIL). However, DDL trained in a frequency-informed way ('frequency-informed' deep learning, FIDDL) substantially outperforms FIL. Finally, while linear mappings can very effectively be updated from trial-to-trial to model incremental lexical learning, deep mappings cannot do so as effectively. At present, both linear and deep mappings are informative for understanding language.
comment: 19 pages, 6 figures; includes a few numeric changes to results due to a fixed bug, published version
♻ ☆ Neurocognitive Modeling for Text Generation: Deep Learning Architecture for EEG Data
Text generating capabilities have undergone a substantial transformation with the introduction of large language models (LLMs). Electroencephalography (EEG)-based text production is still difficult, though, because it requires a lot of data and processing power. This paper introduces a new method that combines the use of the Gemma 2B LLM with a classifier-LLM architecture to incorporate a Recurrent Neural Network (RNN) encoder. Our approach drastically lowers the amount of data and compute power needed while achieving performance close to that of cutting-edge methods. Notably, compared to current methodologies, our methodology delivers an overall performance improvement of 10%. The suggested architecture demonstrates the possibility of effective transfer learning for EEG-based text production, remaining strong and functional even in the face of data limits. This work highlights the potential of integrating LLMs with EEG decoding to improve assistive technologies and improve independence and communication for those with severe motor limitations. Our method pushes the limits of present capabilities and opens new paths for research and application in brain-computer interfaces by efficiently using the strengths of pre-trained language models. This makes EEG-based text production more accessible and efficient.
comment: 15 pages, 10 figures, 5 tables
♻ ☆ PIP: Perturbation-based Iterative Pruning for Large Language Models EMNLP 2025
The rapid increase in the parameter counts of Large Language Models (LLMs), which often reach into the billions or even trillions, presents significant challenges for their practical deployment, particularly in resource-constrained environments. To address this issue, we propose PIP (Perturbation-based Iterative Pruning), a novel double-view structured pruning method to optimize LLMs, which combines information from two different views: the unperturbed view and the perturbed view. With the calculation of gradient differences, PIP iteratively prunes those that struggle to distinguish between these two views. Our experiments show that PIP reduces the parameter count by approximately 20% while retaining over 85% of the original model's accuracy across varied benchmarks. In some cases, the performance of the pruned model is within 5% of the unpruned version, demonstrating PIP's ability to preserve key aspects of model effectiveness. Moreover, PIP consistently outperforms existing state-of-the-art (SOTA) structured pruning methods, establishing it as a leading technique for optimizing LLMs in constrained environments.
comment: EMNLP 2025 Findings, 17 pages, 5 figures, 15 tables
♻ ☆ Multimodal DeepResearcher: Generating Text-Chart Interleaved Reports From Scratch with Agentic Framework AAAI 2026
Visualizations play a crucial part in effective communication of concepts and information. Recent advances in reasoning and retrieval augmented generation have enabled Large Language Models (LLMs) to perform deep research and generate comprehensive reports. Despite its progress, existing deep research frameworks primarily focus on generating text-only content, leaving the automated generation of interleaved texts and visualizations underexplored. This novel task poses key challenges in designing informative visualizations and effectively integrating them with text reports. To address these challenges, we propose Formal Description of Visualization (FDV), a structured textual representation of charts that enables LLMs to learn from and generate diverse, high-quality visualizations. Building on this representation, we introduce Multimodal DeepResearcher, an agentic framework that decomposes the task into four stages: (1) researching, (2) exemplar report textualization, (3) planning, and (4) multimodal report generation. For the evaluation of generated multimodal reports, we develop MultimodalReportBench, which contains 100 diverse topics served as inputs along with 5 dedicated metrics. Extensive experiments across models and evaluation methods demonstrate the effectiveness of Multimodal DeepResearcher. Notably, utilizing the same Claude 3.7 Sonnet model, Multimodal DeepResearcher achieves an 82\% overall win rate over the baseline method.
comment: AAAI 2026 Oral
♻ ☆ Leveraging Online Data to Enhance Medical Knowledge in a Small Persian Language Model
The rapid advancement of language models has demonstrated the potential of artificial intelligence in the healthcare industry. However, small language models struggle with specialized domains in low-resource languages like Persian. While numerous medical-domain websites exist in Persian, no curated dataset or corpus has been available making ours the first of its kind. This study introduces a newly curated dataset comprising 20k doctor-patient Q\&A pairs and 60\% of a 90-million-token crawled corpus from medical magazines. Using a parameter-efficient fine-tuning approach, we enhanced the medical knowledge of the baseline model, aya-expanse-8b. Benchmark evaluations demonstrate that the fine-tuned model achieves improved accuracy in medical question answering and successfully passed the Iranian Basic Medical Science Entrance Exam (IBSEE) in September 2023, which the baseline model did not. Additionally, the fine-tuned model improved Persian-translated MMLU accuracy by an average of 2.67\%. This work highlights the potential of leveraging open-access online data to enrich small language models in medical fields, providing a novel solution for Persian medical AI applications suitable for resource-constrained environments. Future research could explore multimodal input to further enhance performance.
comment: 8 pages, 7 figures
♻ ☆ GRAM-R$^2$: Self-Training Generative Foundation Reward Models for Reward Reasoning AAAI 2026
Significant progress in reward modeling over recent years has been driven by a paradigm shift from task-specific designs towards generalist reward models. Despite this trend, developing effective reward models remains a fundamental challenge: the heavy reliance on large-scale labeled preference data. Pre-training on abundant unlabeled data offers a promising direction, but existing approaches fall short of instilling explicit reasoning into reward models. To bridge this gap, we propose a self-training approach that leverages unlabeled data to elicit reward reasoning in reward models. Based on this approach, we develop GRAM-R$^2$, a generative reward model trained to produce not only preference labels but also accompanying reward rationales. GRAM-R$^2$ can serve as a foundation model for reward reasoning and can be applied to a wide range of tasks with minimal or no additional fine-tuning. It can support downstream applications such as response ranking and task-specific reward tuning. Experiments on response ranking, task adaptation, and reinforcement learning from human feedback demonstrate that GRAM-R$^2$ consistently delivers strong performance, outperforming several strong discriminative and generative baselines.
comment: Accepted by AAAI 2026
♻ ☆ SelecTKD: Selective Token-Weighted Knowledge Distillation for LLMs
Knowledge distillation (KD) is a standard route to compress Large Language Models (LLMs) into compact students, yet most pipelines uniformly apply token-wise loss regardless of teacher confidence. This indiscriminate supervision amplifies noisy, high-entropy signals and is especially harmful under large teacher-student capacity gaps. We introduce SelecTKD, a plug-and-play Selective Token-Weighted distillation framework that shifts the focus from "how to measure divergence" to "where to apply learning". At each step, the student proposes tokens that are verified by the teacher through a robust propose-and-verify procedure with two variants: greedy Top-k and non-greedy Spec-k. Accepted tokens receive full loss, while rejected tokens are masked or down-weighted. This objective-agnostic design works with on- and off-policy data, induces an implicit curriculum quantified by Token Acceptance Rate (TAR), and stabilizes optimization. Across instruction following, mathematical reasoning, code generation, and a VLM setting, SelecTKD consistently improves strong baselines and achieves state-of-the-art results for small models without architectural changes or extra reference models.
♻ ☆ Do Language Models Associate Sound with Meaning? A Multimodal Study of Sound Symbolism
Sound symbolism is a linguistic concept that refers to non-arbitrary associations between phonetic forms and their meanings. We suggest that this can be a compelling probe into how Multimodal Large Language Models (MLLMs) interpret auditory information in human languages. We investigate MLLMs' performance on phonetic iconicity across textual (orthographic and IPA) and auditory forms of inputs with up to 25 semantic dimensions (e.g., sharp vs. round), observing models' layer-wise information processing by measuring phoneme-level attention fraction scores. To this end, we present LEX-ICON, an extensive mimetic word dataset consisting of 8,052 words from four natural languages (English, French, Japanese, and Korean) and 2,930 systematically constructed pseudo-words, annotated with semantic features applied across both text and audio modalities. Our key findings demonstrate (1) MLLMs' phonetic intuitions that align with existing linguistic research across multiple semantic dimensions and (2) phonosemantic attention patterns that highlight models' focus on iconic phonemes. These results bridge domains of artificial intelligence and cognitive linguistics, providing the first large-scale, quantitative analyses of phonetic iconicity in terms of MLLMs' interpretability.
comment: 33 pages, 27 tables, 10 figures
♻ ☆ Contextual Integrity in LLMs via Reasoning and Reinforcement Learning NeurIPS 2025
As the era of autonomous agents making decisions on behalf of users unfolds, ensuring contextual integrity (CI) -- what is the appropriate information to share while carrying out a certain task -- becomes a central question to the field. We posit that CI demands a form of reasoning where the agent needs to reason about the context in which it is operating. To test this, we first prompt LLMs to reason explicitly about CI when deciding what information to disclose. We then extend this approach by developing a reinforcement learning (RL) framework that further instills in models the reasoning necessary to achieve CI. Using a synthetic, automatically created, dataset of only $\sim700$ examples but with diverse contexts and information disclosure norms, we show that our method substantially reduces inappropriate information disclosure while maintaining task performance across multiple model sizes and families. Importantly, improvements transfer from this synthetic dataset to established CI benchmarks such as PrivacyLens that has human annotations and evaluates privacy leakage of AI assistants in actions and tool calls.
comment: 39th Conference on Neural Information Processing Systems (NeurIPS 2025)
♻ ☆ Accommodate Knowledge Conflicts in Retrieval-augmented LLMs: Towards Robust Response Generation in the Wild
The proliferation of large language models (LLMs) has significantly advanced intelligent systems. Unfortunately, LLMs often face knowledge conflicts between internal memory and retrieved external information, arising from misinformation, biases, or outdated knowledge. These conflicts undermine response reliability and introduce uncertainty in decision-making. In this work, we analyze how LLMs navigate knowledge conflicts from an information-theoretic perspective and reveal that when conflicting and supplementary information exhibit significant differences, LLMs confidently resolve their preferences and alleviate the uncertainty during their response generation. When this difference is ambiguous, LLMs experience considerable uncertainty about their generation. Based on this insight, we propose Swin-VIB, a novel framework that integrates a pipeline of variational information bottleneck models to adapt the retrieved information difference, facilitating robust response generation of LLMs even in conflicting contexts. Extensive experiments confirm our theoretical analysis and demonstrate the performance of Swin-VIB. Notably, Swin-VIB outperforms all competitive baselines in terms of the accuracy of the multiple-choice task, while improving the EM values in the open-ended QA task by at least 11.14%.
♻ ☆ MAPLE: Multi-Agent Adaptive Planning with Long-Term Memory for Table Reasoning ALT
Table-based question answering requires complex reasoning capabilities that current LLMs struggle to achieve with single-pass inference. Existing approaches, such as Chain-of-Thought reasoning and question decomposition, lack error detection mechanisms and discard problem-solving experiences, contrasting sharply with how humans tackle such problems. In this paper, we propose MAPLE (Multi-agent Adaptive Planning with Long-term mEmory), a novel framework that mimics human problem-solving through specialized cognitive agents working in a feedback-driven loop. MAPLE integrates 4 key components: (1) a Solver using the ReAct paradigm for reasoning, (2) a Checker for answer verification, (3) a Reflector for error diagnosis and strategy correction, and (4) an Archiver managing long-term memory for experience reuse and evolution. Experiments on WiKiTQ and TabFact demonstrate significant improvements over existing methods, achieving state-of-the-art performance across multiple LLM backbones.
comment: 27 pages, 11 figures, ALTA 2025
Computers and Society
☆ Telekommunikationsüberwachung am Scheideweg: Zur Regulierbarkeit des Zugriffes auf verschlüsselte Kommunikation
Personal communication using technical means is protected by telecommunications secrecy. Any interference with this fundamental right requires a legal basis, which has existed for many years for traditional communication services in the form of telecommunications surveillance (TKÜ, § 100a StPO) and appears to be widely accepted by society. The basis for the implementation of TKÜ is the obligation of telecommunications providers to provide interception interfaces. However, the technical implementation of telecommunications has changed significantly as a result of the Internet. Messenger services and Voice over IP telephony are increasingly competing with traditional telephone services. The use of strong end-to-end encryption made possible by this technology is increasingly posing problems for law enforcement agencies, as only cryptographically encrypted content is accessible via the interception interfaces provided to date. Against the backdrop of current discussions on socalled ``chat control'' and its limited social acceptance, this article addresses the question of whether and, if so, how the cooperation obligations of the technical actors involved can be sensibly regulated in the case of encrypted communication.
comment: Preprint of an article to appear in CyberStR - Zeitschrift für Cyberstrafrecht, Carl Heymanns Verlag, ISSN 3052-5926, Issue 1 (2026), in German
☆ The Unspoken Crisis of Learning: The Surging Zone of No Development
AI has redefined the boundaries of assistance in education, often blurring the line between guided learning and dependency. This paper revisits Vygotsky's Zone of Proximal Development (ZPD) through the lens of the P2P Teaching framework. By contrasting temporary scaffolding with the emerging phenomenon of permanent digital mediation, the study introduces the concept of the Zone of No Development (ZND), a state in which continuous assistance replaces cognitive struggle and impedes intellectual autonomy. Through theoretical synthesis and framework design, P2P Teaching demonstrates how deliberate disconnection and ethical fading can restore the learner's agency, ensuring that technological tools enhance rather than replace developmental effort. The paper argues that productive struggle, self-regulation, and first-principles reasoning remain essential for durable learning, and that responsible use of AI in education must include explicit mechanisms to end its help when mastery begins.
comment: 6 pages, 3 figures
☆ AI and Supercomputing are Powering the Next Wave of Breakthrough Science - But at What Cost?
Artificial intelligence (AI) and high-performance computing (HPC) are rapidly becoming the engines of modern science. However, their joint effect on discovery has yet to be quantified at scale. Drawing on metadata from over five million scientific publications (2000-2024), we identify how AI and HPC interact to shape research outcomes across 27 fields. Papers combining the two technologies are up to three times more likely to introduce novel concepts and five times more likely to reach top-cited status than conventional work. This convergence of AI and HPC is redefining the frontier of scientific creativity but also deepening global inequalities in access to computational power and expertise. Our findings suggest that the future of discovery will depend not only on algorithms and compute, but also on how equitably the world shares these transformative tools.
☆ The Probabilistic Foundations of Surveillance Failure: From False Alerts to Structural Bias
For decades, forensic statisticians have debated whether searching large DNA databases undermines the evidential value of a match. Modern surveillance faces an exponentially harder problem: screening populations across thousands of attributes using threshold rules rather than exact matching. Intuition suggests that requiring many coincidental matches should make false alerts astronomically unlikely. This intuition fails. Consider a system that monitors 1,000 attributes, each with a 0.5 percent innocent match rate. Matching 15 pre-specified attributes has probability \(10^{-35}\), one in 30 decillion, effectively impossible. But operational systems require no such specificity. They might flag anyone who matches \emph{any} 15 of the 1,000. In a city of one million innocent people, this produces about 226 false alerts. A seemingly impossible event becomes all but guaranteed. This is not an implementation flaw but a mathematical consequence of high-dimensional screening. We identify fundamental probabilistic limits on screening reliability. Systems undergo sharp transitions from reliable to unreliable with small increases in data scale, a fragility worsened by data growth and correlations. As data accumulate and correlation collapses effective dimensionality, systems enter regimes where alerts lose evidential value even when individual coincidences remain vanishingly rare. This framework reframes the DNA database controversy as a shift between operational regimes. Unequal surveillance exposures magnify failure, making ``structural bias'' mathematically inevitable. These limits are structural: beyond a critical scale, failure cannot be prevented through threshold adjustment or algorithmic refinement.
comment: 24 pages, 1 figure
☆ Political Advertising on Facebook During the 2022 Australian Federal Election: A Social Identity Perspective
The spread of targeted advertising on social media platforms has revolutionized political marketing strategies. Monitoring these digital campaigns is essential for maintaining transparency and accountability in democratic processes. Leveraging Meta's Ad Library, we analyze political advertising on Facebook and Instagram during the 2022 Australian federal election campaign. We investigate temporal, demographic, and geographical patterns in the advertising strategies of major Australian political actors to establish an empirical evidence base, and interpret these findings through the lens of Social Identity Theory (SIT). Our findings not only reveal significant disparities in spending and reach among parties, but also in persuasion strategies being deployed in targeted online campaigns. We observe a marked increase in advertising activity as the election approached, peaking just before the mandated media blackout period. Demographic analysis shows distinct targeting strategies, with parties focusing more on younger demographics and exhibiting gender-based differences in ad impressions. Regional distribution of ads largely mirrored population densities, with some parties employing more targeted approaches in specific states. Moreover, we found that parties emphasized different themes aligned with their ideologies-major parties focused on party names and opponents, while smaller parties emphasized issue-specific messages. Drawing on SIT, we interpret these findings within Australia's compulsory voting context, suggesting that parties employed distinct persuasion strategies. With turnout guaranteed, major parties focused on reinforcing partisan identities to prevent voter defection, while smaller parties cultivated issue-based identities to capture the support of disaffected voters who are obligated to participate.
♻ ☆ Addressing Polarization and Unfairness in Performative Prediction
In many real-world applications of machine learning such as recommendations, hiring, and lending, deployed models influence the data they are trained on, leading to feedback loops between predictions and data distribution. The performative prediction (PP) framework captures this phenomenon by modeling the data distribution as a function of the deployed model. While prior work has focused on finding performative stable (PS) solutions for robustness, their societal impacts, particularly regarding fairness, remain underexplored. We show that PS solutions can lead to severe polarization and prediction performance disparities, and that conventional fairness interventions in previous works often fail under model-dependent distribution shifts due to failing the PS criteria. To address these challenges in PP, we introduce novel fairness mechanisms that provably ensure both stability and fairness, validated by theoretical analysis and empirical results.
♻ ☆ Supporting Risk Management for Medical Devices via the Riskman Ontology and Shapes (Preprint)
We propose the Riskman ontology and shapes for representing and analysing information about risk management for medical devices. Risk management is concerned with taking necessary precautions to ensure that a medical device does not cause harms for users or the environment. To date, risk management documentation is submitted to notified bodies (for certification) in the form of semi-structured natural language text. We propose to use terms from the Riskman ontology to provide a formal, logical underpinning for risk management documentation, and to use the included SHACL constraints to check whether the provided data is in accordance with the requirements of the two relevant norms, i.e. ISO 14971 and VDE Spec 90025.
♻ ☆ From Delegates to Trustees: How Optimizing for Long-Term Interests Shapes Bias and Alignment in LLM
Large language models (LLMs) have shown promising accuracy in predicting survey responses and policy preferences, which has increased interest in their potential to represent human interests in various domains. Most existing research has focused on "behavioral cloning", effectively evaluating how well models reproduce individuals' expressed preferences. Drawing on theories of political representation, we highlight an underexplored design trade-off: whether AI systems should act as delegates, mirroring expressed preferences, or as trustees, exercising judgment about what best serves an individual's interests. This trade-off is closely related to issues of LLM sycophancy, where models can encourage behavior or validate beliefs that may be aligned with a user's short-term preferences, but is detrimental to their long-term interests. Through a series of experiments simulating votes on various policy issues in the U.S. context, we apply a temporal utility framework that weighs short and long-term interests (simulating a trustee role) and compare voting outcomes to behavior-cloning models (simulating a delegate). We find that trustee-style predictions weighted toward long-term interests produce policy decisions that align more closely with expert consensus on well-understood issues, but also show greater bias toward models' default stances on topics lacking clear agreement. These findings reveal a fundamental trade-off in designing AI systems to represent human interests. Delegate models better preserve user autonomy but may diverge from well-supported policy positions, while trustee models can promote welfare on well-understood issues yet risk paternalism and bias on subjective topics.
♻ ☆ Uncovering Strategic Egoism Behaviors in Large Language Models NeurIPS 2025
Large language models (LLMs) face growing trustworthiness concerns (\eg, deception), which hinder their safe deployment in high-stakes decision-making scenarios. In this paper, we present the first systematic investigation of strategic egoism (SE), a form of rule-bounded self-interest in which models pursue short-term or self-serving gains while disregarding collective welfare and ethical considerations. To quantitatively assess this phenomenon, we introduce SEBench, a benchmark comprising 160 scenarios across five domains. Each scenario features a single-role decision-making context, with psychologically grounded choice sets designed to elicit self-serving behaviors. These behavior-driven tasks assess egoistic tendencies along six dimensions, such as manipulation, rule circumvention, and self-interest prioritization. Building on this, we conduct extensive experiments across 5 open-sourced and 2 commercial LLMs, where we observe that strategic egoism emerges universally across models. Surprisingly, we found a positive correlation between egoistic tendencies and toxic language behaviors, suggesting that strategic egoism may underlie broader misalignment risks.
comment: PersonaNLP@NeurIPS 2025
♻ ☆ A Multi-level Analysis of Factors Associated with Student Performance: A Machine Learning Approach to the SAEB Microdata
Identifying the factors that influence student performance in basic education is a central challenge for formulating effective public policies in Brazil. This study introduces a multi-level machine learning approach to classify the proficiency of 9th-grade and high school students using microdata from the System of Assessment of Basic Education (SAEB). Our model uniquely integrates four data sources: student socioeconomic characteristics, teacher professional profiles, school indicators, and principal management profiles. A comparative analysis of four ensemble algorithms confirmed the superiority of a Random Forest model, which achieved 90.2% accuracy and an Area Under the Curve (AUC) of 96.7%. To move beyond prediction, we applied Explainable AI (XAI) using SHAP, which revealed that the school's average socioeconomic level is the most dominant predictor, demonstrating that systemic factors have a greater impact than individual characteristics in isolation. The primary conclusion is that academic performance is a systemic phenomenon deeply tied to the school's ecosystem. This study provides a data-driven, interpretable tool to inform policies aimed at promoting educational equity by addressing disparities between schools.
♻ ☆ Small Models, Big Support: A Local LLM Framework for Educator-Centric Content Creation and Assessment with RAG and CAG
While Large Language Models (LLMs) are increasingly applied in student-facing educational tools, their potential to directly support educators through locally deployable and customizable solutions remains underexplored. Many existing approaches rely on proprietary, cloud-based systems that raise significant cost, privacy, and control concerns for educational institutions. To address these barriers, we introduce an end-to-end, open-source framework that empowers educators using small (3B-7B parameter), locally deployable LLMs. Our system is designed for comprehensive teacher support, including customized teaching material generation and AI-assisted assessment. The framework synergistically combines Retrieval-Augmented Generation (RAG) and Context-Augmented Generation (CAG) to produce factually accurate, pedagogically-styled content. A core feature is an interactive refinement loop, a teacher-in-the-loop mechanism that ensures educator agency and precise alignment of the final output. To enhance reliability and safety, an auxiliary verifier LLM inspects all generated content. We validate our framework through a rigorous evaluation of its content generation capabilities and report on a successful technical deployment in a college physics course, which confirms its feasibility on standard institutional hardware. Our findings demonstrate that carefully engineered, self-hosted systems built on small LLMs can provide robust, affordable, and private support for educators, achieving practical utility comparable to much larger models for targeted instructional tasks. This work presents a practical blueprint for the development of sovereign AI tools tailored to the real-world needs of educational institutions.
♻ ☆ Spanning Trees and Redistricting: New Methods for Sampling and Validation
Deciding whether a political districting plan was distorted by a hidden agenda, or whether it dilutes the voting power of some group, requires a neutral baseline for comparison. Remarkably, all nine U.S. Supreme Court justices have now signed on to decisions that find that computational methods can provide key evidence. Today, the leading approaches for benchmarking districting plans are based on the use of spanning trees for sampling graph partitions. We present a new *reversible recombination* algorithm and rigorously prove its fundamental properties. Furthermore, we argue for a canonical sampling distribution called the *spanning tree distribution* that is well adapted to redistricting and provides a principled foundation for comparing and validating methods. Together with a highly efficient (and open-source) implementation that can generate and handle large datasets, this work provides the most powerful null model to date for the gerrymandering problem, meeting an urgent democratic challenge with sound scientific methodology.
comment: SIREV, to appear
Computation and Language
☆ From Phonemes to Meaning: Evaluating Large Language Models on Tamil
Large Language Models (LLMs) have shown strong generalization across tasks in high-resource languages; however, their linguistic competence in low-resource and morphologically rich languages such as Tamil remains largely unexplored. Existing multilingual benchmarks often rely on translated English datasets, failing to capture the linguistic and cultural nuances of the target language. To address this gap, we introduce ILAKKANAM, the first Tamil-specific linguistic evaluation benchmark manually curated using 820 questions from Sri Lankan school-level Tamil subject examination papers. Each question is annotated by trained linguists under five linguistic categories and a factual knowledge category, spanning Grades 1--13 to ensure broad linguistic coverage. We evaluate both closed-source and open-source LLMs using a standardized evaluation framework. Our results show that Gemini 2.5 achieves the highest overall performance, while open-source models lag behind, highlighting the gap in linguistic grounding. Category- and grade-wise analyses reveal that all models perform well on lower-grade questions but show a clear decline as linguistic complexity increases. Further, no strong correlation is observed between a model's overall performance and its ability to identify linguistic categories, suggesting that performance may be driven by exposure rather than genuine understanding.
comment: 11 pages
☆ Don't Think of the White Bear: Ironic Negation in Transformer Models Under Cognitive Load
Negation instructions such as 'do not mention $X$' can paradoxically increase the accessibility of $X$ in human thought, a phenomenon known as ironic rebound. Large language models (LLMs) face the same challenge: suppressing a concept requires internally activating it, which may prime rebound instead of avoidance. We investigated this tension with two experiments. \textbf{(1) Load \& content}: after a negation instruction, we vary distractor text (semantic, syntactic, repetition) and measure rebound strength. \textbf{(2) Polarity separation}: We test whether models distinguish neutral from negative framings of the same concept and whether this separation predicts rebound persistence. Results show that rebound consistently arises immediately after negation and intensifies with longer or semantic distractors, while repetition supports suppression. Stronger polarity separation correlates with more persistent rebound. Together, these findings, complemented by a circuit tracing analysis that identifies sparse middle-layer attention heads amplifying forbidden tokens while early layers suppress, link cognitive predictions of ironic rebound with mechanistic insights into long-context interference. To support future work, we release ReboundBench, a dataset of $5,000$ systematically varied negation prompts designed to probe rebound in LLMs.
♻ ☆ Evaluating LLMs' Reasoning Over Ordered Procedural Steps AACL 2025
Reasoning over procedural sequences, where the order of steps directly impacts outcomes, is a critical capability for large language models (LLMs). In this work, we study the task of reconstructing globally ordered sequences from shuffled procedural steps, using a curated dataset of food recipes, a domain where correct sequencing is essential for task success. We evaluate several LLMs under zero-shot and few-shot settings and present a comprehensive evaluation framework that adapts established metrics from ranking and sequence alignment. These include Kendall's Tau, Normalized Longest Common Subsequence (NLCS), and Normalized Edit Distance (NED), which capture complementary aspects of ordering quality. Our analysis shows that model performance declines with increasing sequence length, reflecting the added complexity of longer procedures. We also find that greater step displacement in the input, corresponding to more severe shuffling, leads to further degradation. These findings highlight the limitations of current LLMs in procedural reasoning, especially with longer and more disordered inputs.
comment: Accepted to IJCNLP-AACL 2025 Findings
♻ ☆ ReviewGraph: A Knowledge Graph Embedding Based Framework for Review Rating Prediction with Sentiment Features
In the hospitality industry, understanding the factors that drive customer review ratings is critical for improving guest satisfaction and business performance. This work proposes ReviewGraph for Review Rating Prediction (RRP), a novel framework that transforms textual customer reviews into knowledge graphs by extracting (subject, predicate, object) triples and associating sentiment scores. Using graph embeddings (Node2Vec) and sentiment features, the framework predicts review rating scores through machine learning classifiers. We compare ReviewGraph performance with traditional NLP baselines (such as Bag of Words, TF-IDF, and Word2Vec) and large language models (LLMs), evaluating them in the HotelRec dataset. In comparison to the state of the art literature, our proposed model performs similar to their best performing model but with lower computational cost (without ensemble). While ReviewGraph achieves comparable predictive performance to LLMs and outperforms baselines on agreement-based metrics such as Cohen's Kappa, it offers additional advantages in interpretability, visual exploration, and potential integration into Retrieval-Augmented Generation (RAG) systems. This work highlights the potential of graph-based representations for enhancing review analytics and lays the groundwork for future research integrating advanced graph neural networks and fine-tuned LLM-based extraction methods. We will share ReviewGraph output and platform open-sourced on our GitHub page https://github.com/aaronlifenghan/ReviewGraph
comment: Peer-reviewed and published version is in ICKG-2025 (The 16th IEEE International Conference on Knowledge Graphs, November 13-14, 2025, Limassol, Cyprus)
♻ ☆ SCRum-9: Multilingual Stance Classification over Rumours on Social Media
We introduce SCRum-9, the largest multilingual Stance Classification dataset for Rumour analysis in 9 languages, containing 7,516 tweets from X. SCRum-9 goes beyond existing stance classification datasets by covering more languages, linking examples to more fact-checked claims (2.1k), and including confidence-related annotations from multiple annotators to account for intra- and inter-annotator variability. Annotations were made by at least two native speakers per language, totalling more than 405 hours of annotation and 8,150 dollars in compensation. Further, SCRum-9 is used to benchmark five large language models (LLMs) and two multilingual masked language models (MLMs) in In-Context Learning (ICL) and fine-tuning setups. This paper also innovates by exploring the use of multilingual synthetic data for rumour stance classification, showing that even LLMs with weak ICL performance can produce valuable synthetic data for fine-tuning small MLMs, enabling them to achieve higher performance than zero-shot ICL in LLMs. Finally, we examine the relationship between model predictions and human uncertainty on ambiguous cases finding that model predictions often match the second-choice labels assigned by annotators, rather than diverging entirely from human judgments. SCRum-9 is publicly released to the research community with potential to foster further research on multilingual analysis of misleading narratives on social media.
comment: Accepted by ICWSM 2026
Computers and Society
☆ On the Security and Privacy of AI-based Mobile Health Chatbots
The rise of Artificial Intelligence (AI) has impacted the development of mobile health (mHealth) apps, most notably with the advent of AI-based chatbots used as ubiquitous ``companions'' for various services, from fitness to mental health assistants. While these mHealth chatbots offer clear benefits, such as personalized health information and predictive diagnoses, they also raise significant concerns regarding security and privacy. This study empirically assesses 16 AI-based mHealth chatbots identified from the Google Play Store. The empirical assessment follows a three-phase approach (manual inspection, static code analysis, and dynamic analysis) to evaluate technical robustness and how design and implementation choices impact end users. Our findings revealed security vulnerabilities (e.g., enabling Remote WebView debugging), privacy issues, and non-compliance with Google Play policies (e.g., failure to provide publicly accessible privacy policies). Based on our findings, we offer several recommendations to enhance the security and privacy of mHealth chatbots. These recommendations focus on improving data handling processes, disclosure, and user security. Therefore, this work also seeks to support mHealth developers and security/privacy engineers in designing more transparent, privacy-friendly, and secure mHealth chatbots.
comment: 19 pages, submitted to NordSec 2025 conference
☆ Cultural Awareness, Stereotypes and Communication Skills in Intercultural Communication: The Algerian Participants Perspective
This study explores the relationship between cultural awareness, stereotypes, and communication skills among Algerian participants working or studying in multicultural environments. A quantitative questionnaire was administered to 40 respondents to evaluate their levels of cultural awareness, the presence of stereotypical thinking, and the effectiveness of their intercultural communication skills. Results revealed that while cultural awareness was generally high, certain stereotypes still influenced the perception of others and impacted communication efficiency. Participants with higher cultural awareness demonstrated better communication skills and lower levels of stereotyping. These findings underline the importance of intercultural competence and education programs in reducing prejudice and fostering mutual understanding in diverse contexts.
comment: 20 pages, 9 tables, preprint
☆ Impact of UK Postgraduate Student Experiences on Academic Performance in Blended Learning: A Data Analytics Approach
Blended learning has become a dominant educational model in higher education in the UK and worldwide, particularly after the COVID-19 pandemic. This is further enriched with accompanying pedagogical changes, such as strengthened asynchronous learning, and the use of AI (from ChatGPT and all other similar tools that followed) and other technologies to aid learning. While these educational transformations have enabled flexibility in learning and resource access, they have also exposed new challenges on how students can construct successful learning in hybrid learning environments. In this paper, we investigate the interaction between different dimensions of student learning experiences (ranging from perceived acceptance of teaching methods and staff support/feedback to learning pressure and student motivation) and academic achievement within the context of postgraduate blended learning in UK universities. To achieve this, we employed a combination of several data analytics techniques including visualization, statistical tests, regression analysis, and latent profile analysis. Our empirical results (based on a survey of 255 postgraduate students and holistically interpreted via the Community of Inquiry (CoI) framework) demonstrated that learning activities combining teaching and social presences, and tailored academic support through effective feedback are critical elements for successful postgraduate experience in blended learning contexts. Regarding contributions, this research advances the understanding of student success by identifying the various ways demographic, experiential, and psychological factors impact academic outcomes. And in theoretical terms, it contributes to the extension of the CoI framework by integrating the concept of learner heterogeneity and identifying four distinct student profiles based on how they engage in the different CoI presences.
comment: 25 pages, 5 figures
☆ UpBench: A Dynamically Evolving Real-World Labor-Market Agentic Benchmark Framework Built for Human-Centric AI
As large language model (LLM) agents increasingly undertake digital work, reliable frameworks are needed to evaluate their real-world competence, adaptability, and capacity for human collaboration. Existing benchmarks remain largely static, synthetic, or domain-limited, providing limited insight into how agents perform in dynamic, economically meaningful environments. We introduce UpBench, a dynamically evolving benchmark grounded in real jobs drawn from the global Upwork labor marketplace. Each task corresponds to a verified client transaction, anchoring evaluation in genuine work activity and financial outcomes. UpBench employs a rubric-based evaluation framework, in which expert freelancers decompose each job into detailed, verifiable acceptance criteria and assess AI submissions with per-criterion feedback. This structure enables fine-grained analysis of model strengths, weaknesses, and instruction-following fidelity beyond binary pass/fail metrics. Human expertise is integrated throughout the data pipeline (from job curation and rubric construction to evaluation) ensuring fidelity to real professional standards and supporting research on human-AI collaboration. By regularly refreshing tasks to reflect the evolving nature of online work, UpBench provides a scalable, human-centered foundation for evaluating agentic systems in authentic labor-market contexts, offering a path toward a collaborative framework, where AI amplifies human capability through partnership rather than replacement.
☆ Leveraging Large Language Models for Career Mobility Analysis: A Study of Gender, Race, and Job Change Using U.S. Online Resume Profiles
We present a large-scale analysis of career mobility of college-educated U.S. workers using online resume profiles to investigate how gender, race, and job change options are associated with upward mobility. This study addresses key research questions of how the job changes affect their upward career mobility, and how the outcomes of upward career mobility differ by gender and race. We address data challenges -- such as missing demographic attributes, missing wage data, and noisy occupation labels -- through various data processing and Artificial Intelligence (AI) methods. In particular, we develop a large language models (LLMs) based occupation classification method known as FewSOC that achieves accuracy significantly higher than the original occupation labels in the resume dataset. Analysis of 228,710 career trajectories reveals that intra-firm occupation change has been found to facilitate upward mobility most strongly, followed by inter-firm occupation change and inter-firm lateral move. Women and Black college graduates experience significantly lower returns from job changes than men and White peers. Multilevel sensitivity analyses confirm that these disparities are robust to cluster-level heterogeneity and reveal additional intersectional patterns.
comment: Submitted to EPJ Data Science
☆ Educators on the Frontline: Philosophical and Realistic Perspectives on Integrating ChatGPT into the Learning Space
The rapid emergence of Generative AI, particularly ChatGPT, has sparked a global debate on the future of education, often characterized by alarmism and speculation. Moving beyond this, this study investigates the structured, grounded perspectives of a key stakeholder group: university educators. It proposes a novel theoretical model that conceptualizes the educational environment as a "Learning Space" composed of seven subspaces to systematically identify the impact of AI integration. This framework was operationalized through a quantitative survey of 140 Russian university educators, with responses analyzed using a binary flagging system to measure acceptance across key indicators. The results reveal a strong but conditional consensus: a majority of educators support ChatGPT's integration, contingent upon crucial factors such as the transformation of assessment methods and the availability of plagiarism detection tools. However, significant concerns persist regarding its impact on critical thinking. Educators largely reject the notion that AI diminishes their importance, viewing their role as evolving from information-deliverer to facilitator of critical engagement. The study concludes that ChatGPT acts less as a destroyer of education and more as a catalyst for its necessary evolution, and proposes the PIPE Model (Pedagogy, Infrastructure, Policy, Education) as a strategic framework for its responsible integration. This research provides a data-driven, model-based analysis of educator attitudes, offering a nuanced alternative to the polarized discourse surrounding AI in education.
♻ ☆ JobSphere: An AI-Powered Multilingual Career Copilot for Government Employment Platforms
Users of government employment websites commonly face engagement and accessibility challenges linked to navigational complexity, a dearth of language options, and a lack of personalized support. This paper introduces JobSphere, an AI-powered career assistant that is redefining the employment platform in Punjab called PGRKAM. JobSphere employs Retrieval-Augmented Generation (RAG) architecture, and it is multilingual, available in English, Hindi and Punjabi. JobSphere technique uses 4-bit quantization, allowing the platform to deploy on consumer-grade GPUs (i.e., NVIDIA RTX 3050 4GB), making the implementation 89% cheaper than that of cloud-based systems. Key innovations include voice-enabled interaction with the assistant, automated mock tests, resume parsing with skills recognition, and embed-based job recommendation that achieves a precision@10 score of 68%. An evaluation of JobSphere's implementation reveals 94% factual accuracy, a median response time of 1.8 seconds, and a System Usability Scale score of 78.5/100, a 50% improvement compared to the baseline PGRKAM platform context. In conclusion, JobSphere effectively fills significant accessibility gaps for Punjab/Hindi-speaking users in rural locations, while also affirming the users access to trusted job content provided by government agencies.
comment: 7 pages, 4 figures, 4 tables
♻ ☆ Academ-AI: documenting the undisclosed use of generative artificial intelligence in academic publishing
Since generative artificial intelligence (AI) tools such as OpenAI's ChatGPT became widely available, researchers have used them in the writing process. The consensus of the academic publishing community is that such usage must be declared in the published article. Academ-AI documents examples of suspected undeclared AI usage in the academic literature, discernible primarily due to the appearance in research papers of idiosyncratic verbiage characteristic of large language model (LLM)-based chatbots. This analysis of the first 768 examples collected reveals that the problem is widespread, penetrating the journals, conference proceedings, and textbooks of highly respected publishers. Undeclared AI seems to appear in journals with higher citation metrics and higher article processing charges (APCs), precisely those outlets that should theoretically have the resources and expertise to avoid such oversights. An extremely small minority of cases are corrected post publication, and the corrections are often insufficient to rectify the problem. The 768 examples analyzed here likely represent a small fraction of the undeclared AI present in the academic literature, much of which may be undetectable. Publishers must enforce their policies against undeclared AI usage in cases that are detectable; this is the best defense currently available to the academic publishing community against the proliferation of undisclosed AI. This is an updated version of a previous preprint.
comment: 24 pages, 8 figures
♻ ☆ Assessing On-Demand Mobility Services and Policy Impacts: A Case Study from Chengdu, China
The rapid expansion of ride-hailing services has significantly reshaped urban on-demand mobility patterns, but it still remains unclear how they perform relative to traditional street-hailing services and how effective are related policy interventions. This study presents a simulation framework integrating a graph theory-based trip-vehicle matching mechanism with real cruising taxi operations data to simulate ride-hailing services in Chengdu, China. The performances of the two on-demand mobility service modes (i.e., ride-hailing and street-hailing) are evaluated in terms of three key performance indicators: average passenger waiting time (APWT), average deadheading miles (ADM), and average deadheading energy consumption (ADEC). We further examine the impacts of spatiotemporal characteristics and three types of policies: fleet size management, geofencing, and demand management, on the performance of ride-hailing services. Results show that under the same fleet size and trip demand as street-hailing taxis, ride-hailing services without cruising achieve substantial improvements, reducing APWT, ADM, and ADEC by 81\%, 75\%, and 72.1\%, respectively. These improvements are most pronounced during midnight low-demand hours and in remote areas such as airports. Our analysis also reveals that for ride-hailing service, (1) expanding fleet size yields diminishing marginal benefits; (2) geofencing worsens overall performance while it improves the performance of serving all trips within the city center; and (3) demand-side management targeting trips to high-attraction and low-demand areas can effectively reduce passenger waiting time without increasing deadheading costs.
♻ ☆ A Measurement Study of Model Context Protocol Ecosystem
The Model Context Protocol (MCP) has been proposed as a unifying standard for connecting large language models (LLMs) with external tools and resources, promising the same role for AI integration that HTTP and USB played for the Web and peripherals. Yet, despite rapid adoption and hype, its trajectory remains uncertain. Are MCP marketplaces truly growing, or merely inflated by placeholders and abandoned prototypes? Are servers secure and privacy-preserving, or do they expose users to systemic risks? And do clients converge on standardized protocols, or remain fragmented across competing designs? In this paper, we present the first large-scale empirical study of the MCP ecosystem. We design and implement MCPCrawler, a systematic measurement framework that collects and normalizes data from six major markets. Over a 14-day campaign, MCPCrawler aggregated 17,630 raw entries, of which 8,401 valid projects (8,060 servers and 341 clients) were analyzed. Our results reveal that more than half of listed projects are invalid or low-value, that servers face structural risks including dependency monocultures and uneven maintenance, and that clients exhibit a transitional phase in protocol and connection patterns. Together, these findings provide the first evidence-based view of the MCP ecosystem, its risks, and its future trajectory.
♻ ☆ A Comparative Benchmark of Federated Learning Strategies for Mortality Prediction on Heterogeneous and Imbalanced Clinical Data
Machine learning models hold significant potential for predicting in-hospital mortality, yet data privacy constraints and the statistical heterogeneity of real-world clinical data often hamper their development. Federated Learning (FL) offers a privacy-preserving solution, but its performance under non-Independent and Identically Distributed (non-IID) and imbalanced conditions requires rigorous investigation. The study presents a comparative benchmark of five federated learning strategies: FedAvg, FedProx, FedAdagrad, FedAdam, and FedCluster for mortality prediction. Using the large-scale MIMIC-IV dataset, we simulate a realistic non-IID environment by partitioning data by clinical care unit. To address the inherent class imbalance of the task, the SMOTE-Tomek technique is applied to each client's local training data. Our experiments, conducted over 50 communication rounds, reveal that the regularization-based strategy, FedProx, consistently outperformed other methods, achieving the highest F1-Score of 0.8831 while maintaining stable convergence. While the baseline FedAvg was the most computationally efficient, its predictive performance was substantially lower. Our findings indicate that regularization-based FL algorithms like FedProx offer a more robust and effective solution for heterogeneous and imbalanced clinical prediction tasks than standard or server-side adaptive aggregation methods. The work provides a crucial empirical benchmark for selecting appropriate FL strategies for real-world healthcare applications.
comment: The author requests withdrawal due to errors in the results section regarding model performance metrics. These errors compromise the interpretability of the benchmark and the validity of the conclusions. The author prefers to withdraw the paper to prevent the dissemination of flawed results
♻ ☆ LLM-Driven Robots Risk Enacting Discrimination, Violence, and Unlawful Actions
Members of the Human-Robot Interaction (HRI) and Machine Learning (ML) communities have proposed Large Language Models (LLMs) as a promising resource for robotics tasks such as natural language interaction, household and workplace tasks, approximating 'common sense reasoning', and modeling humans. However, recent research has raised concerns about the potential for LLMs to produce discriminatory outcomes and unsafe behaviors in real-world robot experiments and applications. To assess whether such concerns are well placed in the context of HRI, we evaluate several highly-rated LLMs on discrimination and safety criteria. Our evaluation reveals that LLMs are currently unsafe for people across a diverse range of protected identity characteristics, including, but not limited to, race, gender, disability status, nationality, religion, and their intersections. Concretely, we show that LLMs produce directly discriminatory outcomes- e.g., 'gypsy' and 'mute' people are labeled untrustworthy, but not 'european' or 'able-bodied' people. We find various such examples of direct discrimination on HRI tasks such as facial expression, proxemics, security, rescue, and task assignment. Furthermore, we test models in settings with unconstrained natural language (open vocabulary) inputs, and find they fail to act safely, generating responses that accept dangerous, violent, or unlawful instructions-such as incident-causing misstatements, taking people's mobility aids, and sexual predation. Our results underscore the urgent need for systematic, routine, and comprehensive risk assessments and assurances to improve outcomes and ensure LLMs only operate on robots when it is safe, effective, and just to do so. We provide code to reproduce our experiments at https://github.com/rumaisa-azeem/llm-robots-discrimination-safety .
comment: Published in International Journal of Social Robotics (2025). 49 pages (65 with references and appendix), 27 Figures, 8 Tables. Andrew Hundt and Rumaisa Azeem are equal contribution co-first authors. The positions of the two co-first authors were swapped from arxiv version 1 with the written consent of all four authors. The Version of Record is available via DOI: 10.1007/s12369-025-01301-x
♻ ☆ Vulnerability Coordination Under the Cyber Resilience Act
The Cyber Resilience Act (CRA) of the European Union (EU) imposes many new cyber security requirements practically to all network-enabled information technology products, whether hardware or software. The paper examines and elaborates the CRA's new requirements for vulnerability coordination, including vulnerability disclosure. Although these requirements are only a part of the CRA's obligations for vendors, also some new vulnerability coordination mandates are present. In particular, so-called actively exploited vulnerabilities require mandatory reporting. In addition to elaborating the reporting logic, the paper discusses the notion of actively exploited vulnerabilities in relation to the notion of known exploited vulnerabilities used in the United States. The CRA further alters the coordination practices on the side of public administrations. The paper addresses also these new practices. With the examination elaboration, and associated discussion based on conceptual analysis, the paper contributes to the study of cyber security regulations, providing also a few takeaways for further research.
comment: Applied Cybersecurity & Internet Governance, vol. 4, no. 1, pp. 1-18
♻ ☆ Surface Reading LLMs: Synthetic Text and its Styles
Despite a potential plateau in ML advancement, the societal impact of large language models lies not in approaching superintelligence but in generating text surfaces indistinguishable from human writing. While Critical AI Studies provides essential material and socio-technical critique, it risks overlooking how LLMs phenomenologically reshape meaning-making. This paper proposes a semiotics of "surface integrity" as attending to the immediate plane where LLMs inscribe themselves into human communication. I distinguish three knowledge interests in ML research (epistemology, epistēmē, and epistemics) and argue for integrating surface-level stylistic analysis alongside depth-oriented critique. Through two case studies examining stylistic markers of synthetic text, I argue how attending to style as a semiotic phenomenon reveals LLMs as cultural machines that transform the conditions of meaning emergence and circulation in contemporary discourse, independent of questions about machine consciousness.
comment: 12 pages, 1 figure
Computers and Society
☆ Evolution of A4L: A Data Architecture for AI-Augmented Learning
As artificial intelligence (AI) becomes more deeply integrated into educational ecosystems, the demand for scalable solutions that enable personalized learning continues to grow. These architectures must support continuous data flows that power personalized learning and access to meaningful insights to advance learner success at scale. At the National AI Institute for Adult Learning and Online Education (AI-ALOE), we have developed an Architecture for AI-Augmented Learning (A4L) to support analysis and personalization of online education for adult learners. A4L1.0, an early implementation by Georgia Tech's Design Intelligence Laboratory, demonstrated how the architecture supports analysis of meso- and micro-learning by integrating data from Learning Management Systems (LMS) and AI tools. These pilot studies informed the design of A4L2.0. In this chapter, we describe A4L2.0 that leverages 1EdTech Consortium's open standards such as Edu-API, Caliper Analytics, and Learning Tools Interoperability (LTI) to enable secure, interoperable data integration across data systems like Student Information Systems (SIS), LMS, and AI tools. The A4L2.0 data pipeline includes modules for data ingestion, preprocessing, organization, analytics, and visualization.
☆ A Leakage-Aware Data Layer For Student Analytics: The Capire Framework For Multilevel Trajectory Modeling
Predictive models for student dropout, while often accurate, frequently rely on opportunistic feature sets and suffer from undocumented data leakage, limiting their explanatory power and institutional usefulness. This paper introduces a leakage-aware data layer for student trajectory analytics, which serves as the methodological foundation for the CAPIRE framework for multilevel modelling. We propose a feature engineering design that organizes predictors into four levels: N1 (personal and socio-economic attributes), N2 (entry moment and academic history), N3 (curricular friction and performance), and N4 (institutional and macro-context variables)As a core component, we formalize the Value of Observation Time (VOT) as a critical design parameter that rigorously separates observation windows from outcome horizons, preventing data leakage by construction. An illustrative application in a long-cycle engineering program (1,343 students, ~57% dropout) demonstrates that VOT-restricted multilevel features support robust archetype discovery. A UMAP + DBSCAN pipeline uncovers 13 trajectory archetypes, including profiles of "early structural crisis," "sustained friction," and "hidden vulnerability" (low friction but high dropout). Bootstrap and permutation tests confirm these archetypes are statistically robust and temporally stable. We argue that this approach transforms feature engineering from a technical step into a central methodological artifact. This data layer serves as a disciplined bridge between retention theory, early-warning systems, and the future implementation of causal inference and agent-based modelling (ABM) within the CAPIRE program.
comment: Pages: 52 Figures: 4 (Figures 3.1, 3.2, 6.1, and 7.5) Tables: 5 (Tables 2.1, 2.2, 3.1, 7.1, and 7.2) Type: Journal Article Essential Info: A methodological framework (CAPIRE) with an empirical case study (1,343 students)
☆ A Multimodal Manufacturing Safety Chatbot: Knowledge Base Design, Benchmark Development, and Evaluation of Multiple RAG Approaches
Ensuring worker safety remains a critical challenge in modern manufacturing environments. Industry 5.0 reorients the prevailing manufacturing paradigm toward more human-centric operations. Using a design science research methodology, we identify three essential requirements for next-generation safety training systems: high accuracy, low latency, and low cost. We introduce a multimodal chatbot powered by large language models that meets these design requirements. The chatbot uses retrieval-augmented generation to ground its responses in curated regulatory and technical documentation. To evaluate our solution, we developed a domain-specific benchmark of expert-validated question and answer pairs for three representative machines: a Bridgeport manual mill, a Haas TL-1 CNC lathe, and a Universal Robots UR5e collaborative robot. We tested 24 RAG configurations using a full-factorial design and assessed them with automated evaluations of correctness, latency, and cost. Our top 2 configurations were then evaluated by ten industry experts and academic researchers. Our results show that retrieval strategy and model configuration have a significant impact on performance. The top configuration (selected for chatbot deployment) achieved an accuracy of 86.66%, an average latency of 10.04 seconds, and an average cost of $0.005 per query. Overall, our work provides three contributions: an open-source, domain-grounded safety training chatbot; a validated benchmark for evaluating AI-assisted safety instruction; and a systematic methodology for designing and assessing AI-enabled instructional and immersive safety training systems for Industry 5.0 environments.
comment: 25 pages, 5 figures
☆ PRBench: Large-Scale Expert Rubrics for Evaluating High-Stakes Professional Reasoning
Frontier model progress is often measured by academic benchmarks, which offer a limited view of performance in real-world professional contexts. Existing evaluations often fail to assess open-ended, economically consequential tasks in high-stakes domains like Legal and Finance, where practical returns are paramount. To address this, we introduce Professional Reasoning Bench (PRBench), a realistic, open-ended, and difficult benchmark of real-world problems in Finance and Law. We open-source its 1,100 expert-authored tasks and 19,356 expert-curated criteria, making it, to our knowledge, the largest public, rubric-based benchmark for both legal and finance domains. We recruit 182 qualified professionals, holding JDs, CFAs, or 6+ years of experience, who contributed tasks inspired by their actual workflows. This process yields significant diversity, with tasks spanning 114 countries and 47 US jurisdictions. Our expert-curated rubrics are validated through a rigorous quality pipeline, including independent expert validation. Subsequent evaluation of 20 leading models reveals substantial room for improvement, with top scores of only 0.39 (Finance) and 0.37 (Legal) on our Hard subsets. We further catalog associated economic impacts of the prompts and analyze performance using human-annotated rubric categories. Our analysis shows that models with similar overall scores can diverge significantly on specific capabilities. Common failure modes include inaccurate judgments, a lack of process transparency and incomplete reasoning, highlighting critical gaps in their reliability for professional adoption.
☆ Differences in the Moral Foundations of Large Language Models
Large language models are increasingly being used in critical domains of politics, business, and education, but the nature of their normative ethical judgment remains opaque. Alignment research has, to date, not sufficiently utilized perspectives and insights from the field of moral psychology to inform training and evaluation of frontier models. I perform a synthetic experiment on a wide range of models from most major model providers using Jonathan Haidt's influential moral foundations theory (MFT) to elicit diverse value judgments from LLMs. Using multiple descriptive statistical approaches, I document the bias and variance of large language model responses relative to a human baseline in the original survey. My results suggest that models rely on different moral foundations from one another and from a nationally representative human baseline, and these differences increase as model capabilities increase. This work seeks to spur further analysis of LLMs using MFT, including finetuning of open-source models, and greater deliberation by policymakers on the importance of moral foundations for LLM alignment.
☆ A Comparative Evaluation of Prominent Methods in Autonomous Vehicle Certification
The "Vision Zero" policy, introduced by the Swedish Parliament in 1997, aims to eliminate fatalities and serious injuries resulting from traffic accidents. To achieve this goal, the use of self-driving vehicles in traffic is envisioned and a roadmap for the certification of self-driving vehicles is aimed to be determined. However, it is still unclear how the basic safety requirements that autonomous vehicles must meet will be verified and certified, and which methods will be used. This paper focuses on the comparative evaluation of the prominent methods planned to be used in the certification process of autonomous vehicles. It examines the prominent methods used in the certification process, develops a pipeline for the certification process of autonomous vehicles, and determines the stages, actors, and areas where the addressed methods can be applied.
☆ AI as a component in the action research tradition of learning-by-doing
We consider learning mathematics through action research, hacking, discovery, inquiry, learning-by-doing as opposed to the instruct and perform, industrial model of the 19th century. A learning model based on self-awareness, types, functions, structured drawing and formal diagrams addresses the weaknesses of drill and practice and the pitfalls of statistical prediction with Large Language Models. In other words, we build mathematics/informatics education on the activity of a professional mathematician in mathematical modelling and designing programs. This tradition emphasises the role of dialogue and doing mathematics. In the Language/Action approach the teacher designs mathematising situations that scaffold previously encountered, or not-known-how-to-solve problems for the learner while teachers and teacher/interlocutors supervise the process. A critical feature is the written-oral dialogue between the learner and the teacher. As a rule, this is 1 to 1 communication. The role of the teacher/interlocutor, a more knowledgeable other, is mostly performed by a more senior student, 1 per 5 to 7 pupils. After Doug Engelbart we propose the metaphor of human intellect augmented by digital technologies such as interactive development environments or AI. Every human has their bio and digital parts. The bio part of the learner reacts to their work through dialogue in the mind. The digital part poses questions, interprets code and proposes not necessarily sound ideas.
comment: 14 pages, 2 figures
☆ Enhancing Efficiency of Pension Schemes through Effective Risk Governance: A Kenyan Perspective
The efficiency of pension schemes in Kenya invites elevated interest owing to the increasing pension contribution amounts and the expectation that benefits paid out of these schemes would protect members from old age poverty. The study investigates the intervening effect of risk management on the relationship between corporate governance and the efficiency of pension schemes in Kenya. The study employs panel data consisting of 896 observations from 128 schemes in a sample period from 2015 to 2021. The study finds that risk management significantly mediates the relationship between employee representatives on the board of trustees, as a component of corporate governance, and the efficiency of pension schemes. Consequently, the mediation effect of risk management indicates that when employee representatives are involved in governance, the presence of strong risk management practices ensures that their contributions lead to improved efficiency. Risk management, therefore, serves as a critical safeguard that enables governance structures to function more effectively and contribute to the overall performance of the scheme.
comment: 21 pages
☆ MajinBook: An open catalogue of digital world literature with likes
This data paper introduces MajinBook, an open catalogue designed to facilitate the use of shadow libraries--such as Library Genesis and Z-Library--for computational social science and cultural analytics. By linking metadata from these vast, crowd-sourced archives with structured bibliographic data from Goodreads, we create a high-precision corpus of over 539,000 references to English-language books spanning three centuries, enriched with first publication dates, genres, and popularity metrics like ratings and reviews. Our methodology prioritizes natively digital EPUB files to ensure machine-readable quality, while addressing biases in traditional corpora like HathiTrust, and includes secondary datasets for French, German, and Spanish. We evaluate the linkage strategy for accuracy, release all underlying data openly, and discuss the project's legal permissibility under EU and US frameworks for text and data mining in research.
comment: 9 pages, 5 figures, 1 table
☆ Beyond the Hype: Critical Analysis of Student Motivations and Ethical Boundaries in Educational AI Use in Higher Education
The rapid integration of generative artificial intelligence (AI) in higher education since 2023 has outpaced institutional preparedness, creating a persistent gap between student practices and established ethical standards. This paper draws on mixed-method surveys and a focused literature review to examine student motivations, ethical dilemmas, gendered responses, and institutional readiness for AI adoption. We find that 92% of students use AI tools primarily to save time and improve work quality, yet only 36% receive formal guidance, producing a de facto "shadow pedagogy" of unguided workflows. Notably, 18% of students reported integrating AI-constructed material into assignments, which suggests confusion about integrity expectations and compromises the integrity of the assessment. Female students expressed greater concern about abuse and distortion of information than male students, revealing a gendered difference in awareness of risk and AI literacies. Correspondingly, 72% of educators use AI, but only 14% feel at ease doing so, reflecting limited training and uneven policy responses. We argue that institutions must adopt comprehensive AI literacy programs that integrate technical skills and ethical reasoning, alongside clear AI-use policies and assessment practices that promote transparency. The paper proposes an Ethical AI Integration Model centered on literacy, gender-inclusive support, and assessment redesign to guide responsible adoption, protect academic integrity, and foster equitable educational outcomes in an AI-driven landscape.
comment: 14 pages, 3 figures
☆ Building the Web for Agents: A Declarative Framework for Agent-Web Interaction
The increasing deployment of autonomous AI agents on the web is hampered by a fundamental misalignment: agents must infer affordances from human-oriented user interfaces, leading to brittle, inefficient, and insecure interactions. To address this, we introduce VOIX, a web-native framework that enables websites to expose reliable, auditable, and privacy-preserving capabilities for AI agents through simple, declarative HTML elements. VOIX introduces and tags, allowing developers to explicitly define available actions and relevant state, thereby creating a clear, machine-readable contract for agent behavior. This approach shifts control to the website developer while preserving user privacy by disconnecting the conversational interactions from the website. We evaluated the framework's practicality, learnability, and expressiveness in a three-day hackathon study with 16 developers. The results demonstrate that participants, regardless of prior experience, were able to rapidly build diverse and functional agent-enabled web applications. Ultimately, this work provides a foundational mechanism for realizing the Agentic Web, enabling a future of seamless and secure human-AI collaboration on the web.
comment: for associated documentation, see https://svenschultze.github.io/VOIX/
☆ Towards Usable Privacy Management for IoT TAPs: Deriving Privacy Clusters and Preference Profiles
IoT Trigger-Action Platforms (TAPs) typically offer coarse-grained permission controls. Even when fine-grained controls are available, users are likely overwhelmed by the complexity of setting privacy preferences. This paper contributes to usable privacy management for TAPs by deriving privacy clusters and profiles for different types of users that can be semi-automatically assigned or suggested to them. We developed and validated a questionnaire, based on users' privacy concerns regarding confidentiality and control and their requirements towards transparency in TAPs. In an online study (N=301), where participants were informed about potential privacy risks, we clustered users by their privacy concerns and requirements into Basic, Medium and High Privacy clusters. These clusters were then characterized by the users' data sharing preferences, based on a factorial vignette approach, considering the data categories, the data recipient types, and the purpose of data sharing. Our findings show three distinct privacy profiles, providing a foundation for more usable privacy controls in TAPs.
☆ Data-driven strategic sensor placement for detecting disinfection by-products in water distribution networks
Disinfection byproducts are contaminants that can cause long-term effects on human health, occurring in chlorinated drinking water when the disinfectant interacts with natural organic matter. Their formation is affected by many environmental parameters, making it difficult to monitor and detect disinfection byproducts before they reach households. Due to the large variety of disinfection byproduct compounds that can be formed in water distribution networks, plus the constrained number of sensors that can be deployed throughout a system to monitor these contaminants, it is of outmost importance to place sensory equipment efficiently and optimally. In this paper, we present DBPFinder, a simulation software that assists in the strategic sensor placement for detecting disinfection byproducts, tested at a real-world water distribution network in Coimbra, Portugal. This simulator addresses multiple performance objectives at once in order to provide optimal solution placement recommendations to water utility operators based on their needs. A number of different experiments performed indicate its correctness, relevance, efficiency and scalability.
☆ Specification, Application, and Operationalization of a Metamodel of Fairness
This paper presents the AR fairness metamodel, aimed at formally representing, analyzing, and comparing fairness scenarios. The metamodel provides an abstract representation of fairness, enabling the formal definition of fairness notions. We instantiate the metamodel through several examples, with a particular focus on comparing the notions of equity and equality. We use the Tiles framework, which offers modular components that can be interconnected to represent various definitions of fairness. Its primary objective is to support the operationalization of AR-based fairness definitions in a range of scenarios, providing a robust method for defining, comparing, and evaluating fairness. Tiles has an open-source implementation for fairness modeling and evaluation.
☆ PRSM: A Measure to Evaluate CLIP's Robustness Against Paraphrases
Contrastive Language-Image Pre-training (CLIP) is a widely used multimodal model that aligns text and image representations through large-scale training. While it performs strongly on zero-shot and few-shot tasks, its robustness to linguistic variation, particularly paraphrasing, remains underexplored. Paraphrase robustness is essential for reliable deployment, especially in socially sensitive contexts where inconsistent representations can amplify demographic biases. In this paper, we introduce the Paraphrase Ranking Stability Metric (PRSM), a novel measure for quantifying CLIP's sensitivity to paraphrased queries. Using the Social Counterfactuals dataset, a benchmark designed to reveal social and demographic biases, we empirically assess CLIP's stability under paraphrastic variation, examine the interaction between paraphrase robustness and gender, and discuss implications for fairness and equitable deployment of multimodal systems. Our analysis reveals that robustness varies across paraphrasing strategies, with subtle yet consistent differences observed between male- and female-associated queries.
comment: 8 pages, accpeted as short paper at MMM 2026
☆ Scaling Equitable Reflection Assessment in Education via Large Language Models and Role-Based Feedback Agents AAAI-26
Formative feedback is widely recognized as one of the most effective drivers of student learning, yet it remains difficult to implement equitably at scale. In large or low-resource courses, instructors often lack the time, staffing, and bandwidth required to review and respond to every student reflection, creating gaps in support precisely where learners would benefit most. This paper presents a theory-grounded system that uses five coordinated role-based LLM agents (Evaluator, Equity Monitor, Metacognitive Coach, Aggregator, and Reflexion Reviewer) to score learner reflections with a shared rubric and to generate short, bias-aware, learner-facing comments. The agents first produce structured rubric scores, then check for potentially biased or exclusionary language, add metacognitive prompts that invite students to think about their own thinking, and finally compose a concise feedback message of at most 120 words. The system includes simple fairness checks that compare scoring error across lower and higher scoring learners, enabling instructors to monitor and bound disparities in accuracy. We evaluate the pipeline in a 12-session AI literacy program with adult learners. In this setting, the system produces rubric scores that approach expert-level agreement, and trained graders rate the AI-generated comments as helpful, empathetic, and well aligned with instructional goals. Taken together, these results show that multi-agent LLM systems can deliver equitable, high-quality formative feedback at a scale and speed that would be impossible for human graders alone. More broadly, the work points toward a future where feedback-rich learning becomes feasible for any course size or context, advancing long-standing goals of equity, access, and instructional capacity in education.
comment: Accepted to AAAI-26 AISI Track
☆ Analysing Personal Attacks in U.S. Presidential Debates
Personal attacks have become a notable feature of U.S. presidential debates and play an important role in shaping public perception during elections. Detecting such attacks can improve transparency in political discourse and provide insights for journalists, analysts and the public. Advances in deep learning and transformer-based models, particularly BERT and large language models (LLMs) have created new opportunities for automated detection of harmful language. Motivated by these developments, we present a framework for analysing personal attacks in U.S. presidential debates. Our work involves manual annotation of debate transcripts across the 2016, 2020 and 2024 election cycles, followed by statistical and language-model based analysis. We investigate the potential of fine-tuned transformer models alongside general-purpose LLMs to detect personal attacks in formal political speech. This study demonstrates how task-specific adaptation of modern language models can contribute to a deeper understanding of political communication.
comment: 13 pages
☆ Learning Fair Representations with Kolmogorov-Arnold Networks
Despite recent advances in fairness-aware machine learning, predictive models often exhibit discriminatory behavior towards marginalized groups. Such unfairness might arise from biased training data, model design, or representational disparities across groups, posing significant challenges in high-stakes decision-making domains such as college admissions. While existing fair learning models aim to mitigate bias, achieving an optimal trade-off between fairness and accuracy remains a challenge. Moreover, the reliance on black-box models hinders interpretability, limiting their applicability in socially sensitive domains. In this paper, we try to circumvent these issues by integrating Kolmogorov-Arnold Networks (KANs) within a fair adversarial learning framework. Leveraging the adversarial robustness and interpretability of KANs, our approach enables a balance between fairness and accuracy. To further facilitate this balance, we propose an adaptive penalty update mechanism that dynamically adjusts fairness constraints during the model training. We conduct numerical experiments on two real-world college admissions datasets, across three different optimization strategies. The results demonstrate the efficiency and robustness of KANs by consistently outperforming the baseline fair learning models, and maintaining high predictive accuracy while achieving competitive fairness across sensitive attributes.
☆ SP-Guard: Selective Prompt-adaptive Guidance for Safe Text-to-Image Generation ECAI 2025
While diffusion-based T2I models have achieved remarkable image generation quality, they also enable easy creation of harmful content, raising social concerns and highlighting the need for safer generation. Existing inference-time guiding methods lack both adaptivity--adjusting guidance strength based on the prompt--and selectivity--targeting only unsafe regions of the image. Our method, SP-Guard, addresses these limitations by estimating prompt harmfulness and applying a selective guidance mask to guide only unsafe areas. Experiments show that SP-Guard generates safer images than existing methods while minimizing unintended content alteration. Beyond improving safety, our findings highlight the importance of transparency and controllability in image generation.
comment: Accepted for presentation at TRUST-AI Workshop, ECAI 2025. Proceedings to appear in CEUR-WS
☆ Governance, Risk, and Regulation: A Framework for Improving Efficiency in Kenyan Pension Funds
As life expectancy in Kenya increases, so does the need for efficient pension schemes that can secure a dignified retirement and protect members from old age poverty. Limited research, however, has explored the efficiency of these schemes under existing governance structures. This study addresses that gap by examining the combined effects of corporate governance, risk management, and industry regulation on pension scheme efficiency in Kenya. Using a quantitative design, we conducted a panel regression analysis on a seven-year secondary dataset of 128 Kenyan pension schemes, totaling 896 observations. Our results reveal significant insights That the presence of employee representatives on the board and effective risk management have a significant positive effect on efficiency. Conversely, independent board members exhibit a significant negative effect. Other factors, including top management representation, female board members, and industry regulation, showed no significant effect on efficiency in the joint model. These findings suggest that the impact of governance and risk management on efficiency is nuanced, with specific factors like employee representation playing a more prominent role. We propose that the electoral process for employee board members may introduce a Self Cleaning Mechanism that progressively enhances scheme efficiency. This mechanism offers a novel theoretical extension of Agency Theory, explaining the convergence of interests between elected trustees and scheme members.
comment: 28 pages
☆ Demystify, Use, Reflect: Preparing students to be informed LLM-users
We transitioned our post-CS1 course that introduces various subfields of computer science so that it integrates Large Language Models (LLMs) in a structured, critical, and practical manner. It aims to help students develop the skills needed to engage meaningfully and responsibly with AI. The course now includes explicit instruction on how LLMs work, exposure to current tools, ethical issues, and activities that encourage student reflection on personal use of LLMs as well as the larger evolving landscape of AI-assisted programming. In class, we demonstrate the use and verification of LLM outputs, guide students in the use of LLMs as an ingredient in a larger problem-solving loop, and require students to disclose and acknowledge the nature and extent of LLM assistance. Throughout the course, we discuss risks and benefits of LLMs across CS subfields. In our first iteration of the course, we collected and analyzed data from students pre and post surveys. Student understanding of how LLMs work became more technical, and their verification and use of LLMs shifted to be more discerning and collaborative. These strategies can be used in other courses to prepare students for the AI-integrated future.
comment: 2 pages 1 table Submitted to SIGCSE 2026
☆ Ethical conundrums: Hacked data in the study of far-right violent extremism
Ethical conduct in digital research is full of grey areas. Disciplinary, institutional and individual norms and conventions developed to support research are challenged, often leaving scholars with a sense of unease or lack of clarity. The growing availability of hacked data is one area. Discussions and debates around the use of these datasets in research are extremely limited. Reviews of the history, culture, or morality of the act of hacking are topics that have attracted some scholarly attention. However, how to undertake research with this data is less examined and provides an opportunity for the generation of reflexive ethical practice. This article presents a case-study outlining the ethical debates that arose when considering the use of hacked data to examine online far-right violent extremism. It argues that under certain circumstances, researchers can do ethical research with hacked data. However, to do so we must proactively and continually engage deeply with ethical quandaries and dilemmas.
comment: To be published in New Media & Society
☆ Cost Transparency of Enterprise AI Adoption
Recent advances in large language models (LLMs) have dramatically improved performance on a wide range of tasks, driving rapid enterprise adoption. Yet, the cost of adopting these AI services is understudied. Unlike traditional software licensing in which costs are predictable before usage, commercial LLM services charge per token of input text in addition to generated output tokens. Crucially, while firms can control the input, they have limited control over output tokens, which are effectively set by generation dynamics outside of business control. This research shows that subtle shifts in linguistic style can systematically alter the number of output tokens without impacting response quality. Using an experiment with OpenAI's API, this study reveals that non-polite prompts significantly increase output tokens leading to higher enterprise costs and additional revenue for OpenAI. Politeness is merely one instance of a broader phenomenon in which linguistic structure can drive unpredictable cost variation. For enterprises integrating LLM into applications, this unpredictability complicates budgeting and undermines transparency in business-to-business contexts. By demonstrating how end-user behavior links to enterprise costs through output token counts, this work highlights the opacity of current pricing models and calls for new approaches to ensure predictable and transparent adoption of LLM services.
☆ Generative Artificial Intelligence Adoption Among Bangladeshi Journalists: Exploring Journalists' Awareness, Acceptance, Usage, and Organizational Stance on Generative AI
Newsrooms and journalists across the world are adopting Generative AI (GenAI). Drawing on in-depth interviews with 23 journalists, this study identifies Bangladeshi journalists' awareness, acceptance, usage patterns, and their media organizations' stance toward GenAI. This study finds Bangladeshi journalists' high reliance on GenAI like their Western colleagues despite limited institutional support and the near absence of AI policy. Despite this contrast, concerns over GenAI's implications in journalism between the West and non-West were mostly identical. Moreover, this study contributes to the Unified Theory of Acceptance and Use of Technology (UTAUT) by proposing two changes regarding GenAI adoption among journalists in non-Western settings. First, this study identifies the non-contribution of facilitating conditions in shaping behavioral intent in GenAI adoption in non-Western contexts. Second, social influence works in a horizontal order through informal peer pressure or professional motivation in the absence of formal institutional hierarchical pressure. Voluntariness in the context of Bangladeshi journalists is underpinned by their professional compulsion. Therefore, this study contributes to understanding how contextual factors shape technology adoption trajectories in non-Western journalism.
♻ ☆ Mutual Wanting in Human--AI Interaction: Empirical Evidence from Large-Scale Analysis of GPT Model Transitions
The rapid evolution of large language models (LLMs) creates complex bidirectional expectations between users and AI systems that are poorly understood. We introduce the concept of "mutual wanting" to analyze these expectations during major model transitions. Through analysis of user comments from major AI forums and controlled experiments across multiple OpenAI models, we provide the first large-scale empirical validation of bidirectional desire dynamics in human-AI interaction. Our findings reveal that nearly half of users employ anthropomorphic language, trust significantly exceeds betrayal language, and users cluster into distinct "mutual wanting" types. We identify measurable expectation violation patterns and quantify the expectation-reality gap following major model releases. Using advanced NLP techniques including dual-algorithm topic modeling and multi-dimensional feature extraction, we develop the Mutual Wanting Alignment Framework (M-WAF) with practical applications for proactive user experience management and AI system design. These findings establish mutual wanting as a measurable phenomenon with clear implications for building more trustworthy and relationally-aware AI systems.
♻ ☆ Towards Efficient Certification of Maritime Remote Operation Centers
Additional automation being build into ships implies a shift of crew from ship to shore. However, automated ships still have to be monitored and, in some situations, controlled remotely. These tasks are carried out by human operators located in shore-based remote operation centers. In this work, we present a concept for a hazard database that supports the safeguarding and certification of such remote operation centers. The concept is based on a categorization of hazard sources which we derive from a generic functional architecture. A subsequent preliminary suitability analysis unveils which methods for hazard analysis and risk assessment can adequately fill this hazard database.
♻ ☆ Fairness for the People, by the People: Minority Collective Action
Machine learning models often preserve biases present in training data, leading to unfair treatment of certain minority groups. Despite an array of existing firm-side bias mitigation techniques, they typically incur utility costs and require organizational buy-in. Recognizing that many models rely on user-contributed data, end-users can induce fairness through the framework of Algorithmic Collective Action, where a coordinated minority group strategically relabels its own data to enhance fairness, without altering the firm's training process. We propose three practical, model-agnostic methods to approximate ideal relabeling and validate them on real-world datasets. Our findings show that a subgroup of the minority can substantially reduce unfairness with a small impact on the overall prediction error.
♻ ☆ Self-supervised Learning of Echocardiographic Video Representations via Online Cluster Distillation
Self-supervised learning (SSL) has achieved major advances in natural images and video understanding, but challenges remain in domains like echocardiography (heart ultrasound) due to subtle anatomical structures, complex temporal dynamics, and the current lack of domain-specific pre-trained models. Existing SSL approaches such as contrastive, masked modeling, and clustering-based methods struggle with high intersample similarity, sensitivity to low PSNR inputs common in ultrasound, or aggressive augmentations that distort clinically relevant features. We present DISCOVR (Distilled Image Supervision for Cross Modal Video Representation), a self-supervised dual branch framework for cardiac ultrasound video representation learning. DISCOVR combines a clustering-based video encoder that models temporal dynamics with an online image encoder that extracts fine-grained spatial semantics. These branches are connected through a semantic cluster distillation loss that transfers anatomical knowledge from the evolving image encoder to the video encoder, enabling temporally coherent representations enriched with fine-grained semantic understanding.Evaluated on six echocardiography datasets spanning fetal, pediatric, and adult populations, DISCOVR outperforms both specialized video anomaly detection methods and state-of-the-art video-SSL baselines in zero-shot and linear probing setups,achieving superior segmentation transfer and strong downstream performance on clinically relevant tasks such as LVEF prediction. Code available at: https://github.com/mdivyanshu97/DISCOVR
♻ ☆ Consumer Beware! Exploring Data Brokers' CCPA Compliance
Data brokers collect and sell the personal information of millions of individuals, often without their knowledge or consent. The California Consumer Privacy Act (CCPA) grants consumers the legal right to request access to, or deletion of, their data. To facilitate these requests, California maintains an official registry of data brokers. However, the extent to which these entities comply with the law is unclear. This paper presents the first large-scale, systematic study of CCPA compliance of all 543 officially registered data brokers. Data access requests were manually submitted to each broker, followed by in-depth analyses of their responses (or lack thereof). Above 40% failed to respond at all, in an apparent violation of the CCPA. Data brokers that responded requested personal information as part of their identity verification process, including details they had not previously collected. Paradoxically, this means that exercising one's privacy rights under CCPA introduces new privacy risks. Our findings reveal rampant non-compliance and lack of standardization of the data access request process. These issues highlight an urgent need for stronger enforcement, clearer guidelines, and standardized, periodic compliance checks to enhance consumers' privacy protections and improve data broker accountability.
comment: To appear at IEEE S&P 2026
Computers and Society
☆ Can AI Models be Jailbroken to Phish Elderly Victims? An End-to-End Evaluation
We present an end-to-end demonstration of how attackers can exploit AI safety failures to harm vulnerable populations: from jailbreaking LLMs to generate phishing content, to deploying those messages against real targets, to successfully compromising elderly victims. We systematically evaluated safety guardrails across six frontier LLMs spanning four attack categories, revealing critical failures where several models exhibited near-complete susceptibility to certain attack vectors. In a human validation study with 108 senior volunteers, AI-generated phishing emails successfully compromised 11\% of participants. Our work uniquely demonstrates the complete attack pipeline targeting elderly populations, highlighting that current AI safety measures fail to protect those most vulnerable to fraud. Beyond generating phishing content, LLMs enable attackers to overcome language barriers and conduct multi-turn trust-building conversations at scale, fundamentally transforming fraud economics. While some providers report voluntary counter-abuse efforts, we argue these remain insufficient.
☆ Reinforcing Stereotypes of Anger: Emotion AI on African American Vernacular English
Automated emotion detection is widely used in applications ranging from well-being monitoring to high-stakes domains like mental health and hiring. However, models often rely on annotations that reflect dominant cultural norms, limiting model ability to recognize emotional expression in dialects often excluded from training data distributions, such as African American Vernacular English (AAVE). This study examines emotion recognition model performance on AAVE compared to General American English (GAE). We analyze 2.7 million tweets geo-tagged within Los Angeles. Texts are scored for strength of AAVE using computational approximations of dialect features. Annotations of emotion presence and intensity are collected on a dataset of 875 tweets with both high and low AAVE densities. To assess model accuracy on a task as subjective as emotion perception, we calculate community-informed "silver" labels where AAVE-dense tweets are labeled by African American, AAVE-fluent (ingroup) annotators. On our labeled sample, GPT and BERT-based models exhibit false positive prediction rates of anger on AAVE more than double than on GAE. SpanEmo, a popular text-based emotion model, increases false positive rates of anger from 25 percent on GAE to 60 percent on AAVE. Additionally, a series of linear regressions reveals that models and non-ingroup annotations are significantly more correlated with profanity-based AAVE features than ingroup annotations. Linking Census tract demographics, we observe that neighborhoods with higher proportions of African American residents are associated with higher predictions of anger (Pearson's correlation r = 0.27) and lower joy (r = -0.10). These results find an emergent safety issue of emotion AI reinforcing racial stereotypes through biased emotion classification. We emphasize the need for culturally and dialect-informed affective computing systems.
☆ Bridging the Skills Gap: A Course Model for Modern Generative AI Education AAAI
Research on how the popularization of generative Artificial Intelligence (AI) tools impacts learning environments has led to hesitancy among educators to teach these tools in classrooms, creating two observed disconnects. Generative AI competency is increasingly valued in industry but not in higher education, and students are experimenting with generative AI without formal guidance. The authors argue students across fields must be taught to responsibly and expertly harness the potential of AI tools to ensure job market readiness and positive outcomes. Computer Science trajectories are particularly impacted, and while consistently top ranked U.S. Computer Science departments teach the mechanisms and frameworks underlying AI, few appear to offer courses on applications for existing generative AI tools. A course was developed at a private research university to teach undergraduate and graduate Computer Science students applications for generative AI tools in software development. Two mixed method surveys indicated students overwhelmingly found the course valuable and effective. Co-authored by the instructor and one of the graduate students, this paper explores the context, implementation, and impact of the course through data analysis and reflections from both perspectives. It additionally offers recommendations for replication in and beyond Computer Science departments. This is the extended version of this paper to include technical appendices.
comment: 10 pages, 2 figures, in the 40th Annual AAAI Conference on Artificial Intelligence (AAAI-26) EAAI Symposium
☆ Brazil Data Commons: A Platform for Unifying and Integrating Brazil's Public Data
The fragmentation of public data in Brazil, coupled with inconsistent standards and limited interoperability, hinders effective research, evidence-based policymaking and access to data-driven insights. To address these issues, we introduce Brazil Data Commons, a platform that unifies various Brazilian datasets under a common semantic framework, enabling the seamless discovery, integration and visualization of information from different domains. By adopting globally recognized ontologies and interoperable data standards, Brazil Data Commons aligns with the principles of the broader Data Commons ecosystem and places Brazilian data in a global context. Through user-friendly interfaces, straightforward query mechanisms and flexible data access options, the platform democratizes data use and enables researchers, policy makers, and the public to gain meaningful insights and make informed decisions. This paper illustrates how Brazil Data Commons transforms scattered datasets into an integrated and easily navigable resource that allows a deeper understanding of Brazil's complex social, economic and environmental landscape.
☆ An External Fairness Evaluation of LinkedIn Talent Search
We conduct an independent, third-party audit for bias of LinkedIn's Talent Search ranking system, focusing on potential ranking bias across two attributes: gender and race. To do so, we first construct a dataset of rankings produced by the system, collecting extensive Talent Search results across a diverse set of occupational queries. We then develop a robust labeling pipeline that infers the two demographic attributes of interest for the returned users. To evaluate potential biases in the collected dataset of real-world rankings, we utilize two exposure disparity metrics: deviation from group proportions and MinSkew. Our analysis reveals an under-representation of minority groups in early ranks across many queries. We further examine potential causes of this disparity, and discuss why they may be difficult or, in some cases, impossible to fully eliminate among the early ranks of queries. Beyond static metrics, we also investigate the concept of subgroup fairness over time, highlighting temporal disparities in exposure and retention, which are often more difficult to audit for in practice. In employer recruiting platforms such as LinkedIn Talent Search, the persistence of a particular candidate over multiple days in the ranking can directly impact the probability that the given candidate is selected for opportunities. Our analysis reveals demographic disparities in this temporal stability, with some groups experiencing greater volatility in their ranked positions than others. We contextualize all our findings alongside LinkedIn's published self-audits of its Talent Search system and reflect on the methodological constraints of a black-box external evaluation, including limited observability and noisy demographic inference.
☆ On compromising freedom of choice and subjective
This paper proposes a new framework for evaluating capability sets by incorporating individual preferences over the diversity of accessible options. Building on the Capability Approach, we introduce a compromise method that balances between the notions of negative and positive freedom, effectively capturing the intrinsic and instrumental values of diverse choices within capability sets.
☆ Preview, Accept or Discard? A Predictive Low-Motion Interaction Paradigm
Repetitive strain injury (RSI) affects roughly one in five computer users and remains largely unresolved despite decades of ergonomic mouse redesign. All such devices share a fundamental limitation: they still require fine-motor motion to operate. This work investigates whether predictive, AI-assisted input can reduce that motion by replacing physical pointing with ranked on-screen suggestions. To preserve user agency, we introduce Preview Accept Discard (PAD), a zero-click interaction paradigm that lets users preview predicted GUI targets, cycle through a small set of ranked alternatives, and accept or discard them via key-release timing. We evaluate PAD in two settings: a browser-based email client and a ISO 9241-9 keyboard-prediction task under varying top-3 accuracies. Across both studies, PAD substantially reduces hand motion relative to trackpad use while maintaining comparable task times with the trackpad only when accuracies are similar to those of the best spell-checkers.
☆ Understanding Mode Choice Behavior of People with Disabilities: A Case Study in Utah
Despite the growing recognition of the importance of inclusive transportation policies nationwide, there is still a gap, as the existing transportation models often fail to capture the unique travel behavior of people with disabilities. This research study focuses on understanding the mode choice behavior of individuals with travel-limited disabilities and comparing the group with no such disability. The study identified key factors influencing mode preferences for both groups by utilizing Utah's household travel survey, simulation algorithm and Multinomial Logit model. Explanatory variables include household and socio-demographic attributes, personal, trip characteristics, and built environment variables. The analysis revealed intriguing trends, including a shift towards carpooling among disabled individuals. People with disabilities placed less emphasis on travel time saving. A lower value of travel time for people with disabilities is potentially due to factors like part-time work, reduced transit fare, and no or shared cost for carpooling. Despite a 50% fare reduction for the disabled group, transit accessibility remains a significant barrier in their choice of Transit mode. In downtown areas, people with no disability were found to choose transit compared to driving, whereas disabled people preferred carpooling. Travelers with no driving licenses and disabled people who use transit daily showed complex travel patterns among multiple modes. The study emphasizes the need for accessible and inclusive transportation options, such as improved public transit services, shorter first and last miles in transit, and better connectivity for non-motorized modes, to cater to the unique needs of disabled travelers. The findings of this study have significant policy implications such as an inclusive mode choice modeling framework for creating a more sustainable and inclusive transportation system.
comment: Presented at Transportation Research Board Annual Meeting 2024
☆ LocalBench: Benchmarking LLMs on County-Level Local Knowledge and Reasoning
Large language models (LLMs) have been widely evaluated on macro-scale geographic tasks, such as global factual recall, event summarization, and regional reasoning. Yet, their ability to handle hyper-local knowledge remains poorly understood. This gap is increasingly consequential as real-world applications, from civic platforms to community journalism, demand AI systems that can reason about neighborhood-specific dynamics, cultural narratives, and local governance. Existing benchmarks fall short in capturing this complexity, often relying on coarse-grained data or isolated references. We present LocalBench, the first benchmark designed to systematically evaluate LLMs on county-level local knowledge across the United States. Grounded in the Localness Conceptual Framework, LocalBench includes 14,782 validated question-answer pairs across 526 U.S. counties in 49 states, integrating diverse sources such as Census statistics, local subreddit discourse, and regional news. It spans physical, cognitive, and relational dimensions of locality. Using LocalBench, we evaluate 13 state-of-the-art LLMs under both closed-book and web-augmented settings. Our findings reveal critical limitations: even the best-performing models reach only 56.8% accuracy on narrative-style questions and perform below 15.5% on numerical reasoning. Moreover, larger model size and web augmentation do not guarantee better performance, for example, search improves Gemini's accuracy by +13.6%, but reduces GPT-series performance by -11.4%. These results underscore the urgent need for language models that can support equitable, place-aware AI systems: capable of engaging with the diverse, fine-grained realities of local communities across geographic and cultural contexts.
☆ Navigating the Ethics of Internet Measurement: Researchers' Perspectives from a Case Study in the EU
Internet measurement research is essential for understanding, improving, and securing Internet infrastructure. However, its methods often involve large-scale data collection and user observation, raising complex ethical questions. While recent research has identified ethical challenges in Internet measurement research and laid out best practices, little is known about how researchers actually make ethical decisions in their research practice. To understand how these practices take shape day-to-day from the perspective of Internet measurement researchers, we interviewed 16 researchers from an Internet measurement research group in the EU. Through thematic analysis, we find that researchers deal with five main ethical challenges: privacy and consent issues, the possibility of unintended harm, balancing transparency with security and accountability, uncertain ethical boundaries, and hurdles in the ethics review process. Researchers address these by lab testing, rate limiting, setting up clear communication channels, and relying heavily on mentors and colleagues for guidance. Researchers express that ethical requirements vary across institutions, jurisdictions and conferences, and ethics review boards often lack the technical knowledge to evaluate Internet measurement research. We also highlight the invisible labor of Internet measurement researchers and describe their ethics practices as craft knowledge, both of which are crucial in upholding responsible research practices in the Internet measurement community.
☆ Simulating Misinformation Propagation in Social Networks using Large Language Models CIKM 2025
Misinformation on social media thrives on surprise, emotion, and identity-driven reasoning, often amplified through human cognitive biases. To investigate these mechanisms, we model large language model (LLM) personas as synthetic agents that mimic user-level biases, ideological alignments, and trust heuristics. Within this setup, we introduce an auditor--node framework to simulate and analyze how misinformation evolves as it circulates through networks of such agents. News articles are propagated across networks of persona-conditioned LLM nodes, each rewriting received content. A question--answering-based auditor then measures factual fidelity at every step, offering interpretable, claim-level tracking of misinformation drift. We formalize a misinformation index and a misinformation propagation rate to quantify factual degradation across homogeneous and heterogeneous branches of up to 30 sequential rewrites. Experiments with 21 personas across 10 domains reveal that identity- and ideology-based personas act as misinformation accelerators, especially in politics, marketing, and technology. By contrast, expert-driven personas preserve factual stability. Controlled-random branch simulations further show that once early distortions emerge, heterogeneous persona interactions rapidly escalate misinformation to propaganda-level distortion. Our taxonomy of misinformation severity -- spanning factual errors, lies, and propaganda -- connects observed drift to established theories in misinformation studies. These findings demonstrate the dual role of LLMs as both proxies for human-like biases and as auditors capable of tracing information fidelity. The proposed framework provides an interpretable, empirically grounded approach for studying, simulating, and mitigating misinformation diffusion in digital ecosystems.
comment: Accepted to CIKM 2025 Workshop LASS
☆ Taxation and the relationship between payments and time spent
Tax work is costly for society: Administrative tax labour is typically to a high degree shuffled off the government and onto every taxpayer by law. The higher the burden of any tax system, the costlier for society, as taxpayers are unable to engage in proper wealth creation when being kept busy with administrative tax work. This research finds evidence for a relationship between hours spent to comply with taxes and amount of tax payment. These findings help better understand tax administrative costs and ultimately may help reduce them. PwC and World Bank's final "Paying taxes"-publication (2019) contains tax data for most of the world's jurisdictions, in particular annual hours spent to comply with tax obligations (X) and annual amount of tax payments (Y), both for the year 2019. X and Y were plotted in 6 tests. A positive slope, satisfying p and r values, high mutual information and finally a conclusive scatter plot picture were the 5 requirements that all needed to be met to confirm a positive relationship between X and Y. The first 2 tests did not make any adjustments to the data, the next 2 tests removed cities --thereby avoiding the double counting of jurisdictions-- and the final 2 tests removed cities and outliers. Each test pair uses for Y first total number of payments; and for each second test the number of other payments, which excludes income tax payments for profit and labour. All 5 requirements were met in every of the 6 tests, indicating a positive dependence. In addition, 4 confirmatory tests validate the methodology. The found relationship is noticeably stronger for the total number of tax payments. Findings indicate that taxpayers' time spent on tax, and thereby society's overall tax administrative costs, could be reduced by simplifying taxation processes, including tax collection and payments.
comment: CM presented this research project at the 2025 Benedict College International Multidisciplinary Conference on 2025-03-12
☆ Generalizable Slum Detection from Satellite Imagery with Mixture-of-Experts AAAI 2026
Satellite-based slum segmentation holds significant promise in generating global estimates of urban poverty. However, the morphological heterogeneity of informal settlements presents a major challenge, hindering the ability of models trained on specific regions to generalize effectively to unseen locations. To address this, we introduce a large-scale high-resolution dataset and propose GRAM (Generalized Region-Aware Mixture-of-Experts), a two-phase test-time adaptation framework that enables robust slum segmentation without requiring labeled data from target regions. We compile a million-scale satellite imagery dataset from 12 cities across four continents for source training. Using this dataset, the model employs a Mixture-of-Experts architecture to capture region-specific slum characteristics while learning universal features through a shared backbone. During adaptation, prediction consistency across experts filters out unreliable pseudo-labels, allowing the model to generalize effectively to previously unseen regions. GRAM outperforms state-of-the-art baselines in low-resource settings such as African cities, offering a scalable and label-efficient solution for global slum mapping and data-driven urban planning.
comment: Accepted to AAAI 2026
☆ On the Influence of Artificial Intelligence on Human Problem-Solving: Empirical Insights for the Third Wave in a Multinational Longitudinal Pilot Study
This article presents the results and their discussion for the third wave (with n=23 participants) within a multinational longitudinal study that investigates the evolving paradigm of human-AI collaboration in problem-solving contexts. Building upon previous waves, our findings reveal the consolidation of a hybrid problem-solving culture characterized by strategic integration of AI tools within structured cognitive workflows. The data demonstrate near-universal AI adoption (95.7% with prior knowledge, 100% ChatGPT usage) primarily deployed through human-led sequences such as "Think, Internet, ChatGPT, Further Processing" (39.1%). However, this collaboration reveals a critical verification deficit that escalates with problem complexity. We empirically identify and quantify two systematic epistemic gaps: a belief-performance gap (up to +80.8 percentage points discrepancy between perceived and actual correctness) and a proof-belief gap (up to -16.8 percentage points between confidence and verification capability). These findings, derived from behavioral data and problem vignettes across complexity levels, indicate that the fundamental constraint on reliable AI-assisted work is solution validation rather than generation. The study concludes that educational and technological interventions must prioritize verification scaffolds (including assumption documentation protocols, adequacy criteria checklists, and triangulation procedures) to fortify the human role as critical validator in this new cognitive ecosystem.
☆ Moral Change or Noise? On Problems of Aligning AI With Temporally Unstable Human Feedback AAAI 2026
Alignment methods in moral domains seek to elicit moral preferences of human stakeholders and incorporate them into AI. This presupposes moral preferences as static targets, but such preferences often evolve over time. Proper alignment of AI to dynamic human preferences should ideally account for "legitimate" changes to moral reasoning, while ignoring changes related to attention deficits, cognitive biases, or other arbitrary factors. However, common AI alignment approaches largely neglect temporal changes in preferences, posing serious challenges to proper alignment, especially in high-stakes applications of AI, e.g., in healthcare domains, where misalignment can jeopardize the trustworthiness of the system and yield serious individual and societal harms. This work investigates the extent to which people's moral preferences change over time, and the impact of such changes on AI alignment. Our study is grounded in the kidney allocation domain, where we elicit responses to pairwise comparisons of hypothetical kidney transplant patients from over 400 participants across 3-5 sessions. We find that, on average, participants change their response to the same scenario presented at different times around 6-20% of the time (exhibiting "response instability"). Additionally, we observe significant shifts in several participants' retrofitted decision-making models over time (capturing "model instability"). The predictive performance of simple AI models decreases as a function of both response and model instability. Moreover, predictive performance diminishes over time, highlighting the importance of accounting for temporal changes in preferences during training. These findings raise fundamental normative and technical challenges relevant to AI alignment, highlighting the need to better understand the object of alignment (what to align to) when user preferences change significantly over time.
comment: To appear in the AAAI 2026 Alignment Track
☆ Mailing address aliasing as a method to protect consumer privacy
During online commerce, a customer will typically share his or her mailing address with a merchant to allow product delivery. This creates privacy risks for the customer, where the information may be misused, sold, or leaked by multiple merchants. While physical and virtual PO boxes can reduce the privacy risk, these solutions have associated costs that prevent greater adoption. Here, we introduce the concept of mailing address aliasing, which may offer lower cost and greater control in some cases. With this approach, an alias address is created that maps to the customer's true address. The mapping is kept private from the merchant but shared with the carrier. We discuss the advantages and disadvantages of this approach compared with traditional methods for mailing address privacy. We find that mailing address aliasing is likely to reduce unsolicited mail to a greater extent than physical or virtual PO boxes. However, mailing address aliasing may not be compatible with all merchants' ordering systems.
☆ Owlgorithm: Supporting Self-Regulated Learning in Competitive Programming through LLM-Driven Reflection
We present Owlgorithm, an educational platform that supports Self-Regulated Learning (SRL) in competitive programming (CP) through AI-generated reflective questions. Leveraging GPT-4o, Owlgorithm produces context-aware, metacognitive prompts tailored to individual student submissions. Integrated into a second- and third-year CP course, the system-provided reflective prompts adapted to student outcomes: guiding deeper conceptual insight for correct solutions and structured debugging for partial or failed ones. Our exploratory assessment of student ratings and TA feedback revealed both promising benefits and notable limitations. While many found the generated questions useful for reflection and debugging, concerns were raised about feedback accuracy and classroom usability. These results suggest advantages of LLM-supported reflection for novice programmers, though refinements are needed to ensure reliability and pedagogical value for advanced learners. From our experience, several key insights emerged: GenAI can effectively support structured reflection, but careful prompt design, dynamic adaptation, and usability improvements are critical to realizing their potential in education. We offer specific recommendations for educators using similar tools and outline next steps to enhance Owlgorithm's educational impact. The underlying framework may also generalize to other reflective learning contexts.
comment: 7 pages, 1 figure, to be published in SIGCSE '26
☆ A framework for measuring and analyzing customer satisfaction at computer service companies using Lean Six Sigma
The computer service industry has expanded rapidly over the past two decades, driven by the proliferation of computing technologies, the entry of large firms, and the availability of online diagnostic and troubleshooting tools. In this increasingly competitive environment, many small and medium sized enterprises struggle to maintain customer satisfaction as rivals deliver higher quality services at lower cost. This study addresses the absence of robust measurement systems for assessing service quality, a key factor underlying customer attrition, by proposing an integrated framework for evaluating satisfaction and identifying sources of dissatisfaction in computer services. The framework combines core principles of Six Sigma with the SERVQUAL instrument within a structured DMAIC methodology (Define, Measure, Analyze, Improve, and Control). SERVQUAL provides the service quality dimensions and gap analysis techniques, while Six Sigma supplies the data driven approach to measurement and improvement. The literature suggests limited prior work integrating Lean Six Sigma with SERVQUAL, and this study contributes by operationalizing that integration in a real world setting. A case study of a computer services company was conducted to demonstrate feasibility and effectiveness. Satisfaction levels were quantified, and root causes of dissatisfaction were identified. The analysis revealed a low overall satisfaction level and five primary drivers of unmet customer requirements. Addressing these causes is expected to increase customer satisfaction, lower customer acquisition costs, and improve overall organizational performance.
comment: Master's thesis
☆ Answering Students' Questions on Course Forums Using Multiple Chain-of-Thought Reasoning and Finetuning RAG-Enabled LLM
The course forums are increasingly significant and play vital role in facilitating student discussions and answering their questions related to the course. It provides a platform for students to post their questions related to the content and admin issues related to the course. However, there are several challenges due to the increase in the number of students enrolled in the course. The primary challenge is that students' queries cannot be responded immediately and the instructors have to face lots of repetitive questions. To mitigate these issues, we propose a question answering system based on large language model with retrieval augmented generation (RAG) method. This work focuses on designing a question answering system with open source Large Language Model (LLM) and fine-tuning it on the relevant course dataset. To further improve the performance, we use a local knowledge base and applied RAG method to retrieve relevant documents relevant to students' queries, where the local knowledge base contains all the course content. To mitigate the hallucination of LLMs, We also integrate it with multi chain-of-thought reasoning to overcome the challenge of hallucination in LLMs. In this work, we experiment fine-tuned LLM with RAG method on the HotpotQA dataset. The experimental results demonstrate that the fine-tuned LLM with RAG method has a strong performance on question answering task.
comment: 8 pages
♻ ☆ Should you use LLMs to simulate opinions? Quality checks for early-stage deliberation AAAI
The emergent capabilities of large language models (LLMs) have prompted interest in using them as surrogates for human subjects in opinion surveys. However, prior evaluations of LLM-based opinion simulation have relied heavily on costly, domain-specific survey data, and mixed empirical results leave their reliability in question. To enable cost-effective, early-stage evaluation, we introduce a quality control assessment designed to test the viability of LLM-simulated opinions on Likert-scale tasks without requiring large-scale human data for validation. This assessment comprises two key tests: \emph{logical consistency} and \emph{alignment with stakeholder expectations}, offering a low-cost, domain-adaptable validation tool. We apply our quality control assessment to an opinion simulation task relevant to AI-assisted content moderation and fact-checking workflows -- a socially impactful use case -- and evaluate seven LLMs using a baseline prompt engineering method (backstory prompting), as well as fine-tuning and in-context learning variants. None of the models or methods pass the full assessment, revealing several failure modes. We conclude with a discussion of the risk management implications and release \texttt{TopicMisinfo}, a benchmark dataset with paired human and LLM annotations simulated by various models and approaches, to support future research.
comment: Accepted to AAAI AI for Social Impact (AISI), 2026. This version includes Appendices
♻ ☆ Towards Formalizing Spuriousness of Biased Datasets Using Partial Information Decomposition
Spuriousness arises when there is an association between two or more variables in a dataset that are not causally related. In this work, we propose an explainability framework to preemptively disentangle the nature of such spurious associations in a dataset before model training. We leverage a body of work in information theory called Partial Information Decomposition (PID) to decompose the total information about the target into four non-negative quantities, namely unique information (in core and spurious features, respectively), redundant information, and synergistic information. Our framework helps anticipate when the core or spurious feature is indispensable, when either suffices, and when both are jointly needed for an optimal classifier trained on the dataset. Next, we leverage this decomposition to propose a novel measure of the spuriousness of a dataset. We arrive at this measure systematically by examining several candidate measures, and demonstrating what they capture and miss through intuitive canonical examples and counterexamples. Our framework Spurious Disentangler consists of segmentation, dimensionality reduction, and estimation modules, with capabilities to specifically handle high-dimensional image data efficiently. Finally, we also perform empirical evaluation to demonstrate the trends of unique, redundant, and synergistic information, as well as our proposed spuriousness measure across $6$ benchmark datasets under various experimental settings. We observe an agreement between our preemptive measure of dataset spuriousness and post-training model generalization metrics such as worst-group accuracy, further supporting our proposition. The code is available at https://github.com/Barproda/spuriousness-disentangler.
comment: Accepted at Transactions on Machine Learning Research (TMLR)
♻ ☆ Designing AI-Agents with Personalities: A Psychometric Approach
We introduce a methodology for assigning quantifiable and psychometrically validated personalities to AI-Agents using the Big Five framework. Across three studies, we evaluate its feasibility and limitations. In Study 1, we show that large language models (LLMs) capture semantic similarities among Big Five measures, providing a basis for personality assignment. In Study 2, we create AI-Agents using prompts designed based on the Big Five Inventory-2 (BFI-2) in different format, and find that AI-Agents powered by new models align more closely with human responses on the Mini-Markers test, although the finer pattern of results (e.g., factor loading patterns) were sometimes inconsistent. In Study 3, we validate our AI-Agents on risk-taking and moral dilemma vignettes, finding that models prompted with the BFI-2-Expanded format most closely reproduce human personality-decision associations, while safety-aligned models generally inflate 'moral' ratings. Overall, our results show that AI-Agents align with humans in correlations between input Big Five traits and output responses and may serve as useful tools for preliminary research. Nevertheless, discrepancies in finer response patterns indicate that AI-Agents cannot (yet) fully substitute for human participants in precision or high-stakes projects.
♻ ☆ Bridging LMS and generative AI: dynamic course content integration (DCCI) for enhancing student satisfaction and engagement via the ask ME assistant
Integration of Large Language Models (LLMs) with Learning Management Systems (LMSs) can enhance task automation and accessibility in education. However, hallucination where LLMs generate inaccurate or misleading information remains a challenge. This study introduces the Dynamic Course Content Integration (DCCI) mechanism, which dynamically retrieves course content from Canvas LMS and structures it within an LLM's context window via prompt engineering, enabling the LLM-powered assistant, Ask ME, to deliver context-aware, curriculum-aligned responses while mitigating hallucinations. A mixed-methods pilot study grounded in Self-Determination Theory (autonomy, competence) and the Technology Acceptance Model (perceived usefulness, ease of use) evaluated DCCI's effectiveness with 120 first-year programming students at Eötvös Loránd University. The course focused on foundational programming patterns in C#, including writing program specifications. We analyzed 14,746 logged interactions and a post-course survey completed by 101 students. User satisfaction was measured via a 5-point Likert scale (turn-level ratings), while the survey assessed usability, engagement, and ethical concerns. Results indicated high satisfaction (mean 4.65/5) and strong recognition of Ask ME's ability to provide timely, contextually relevant answers to administrative and course-related queries. 78.06% agreed that Ask ME's Canvas integration reduced platform switching, improving usability, engagement, comprehension, and topic exploration. Many students reported reduced hesitation to ask questions and increased motivation for self-directed learning, though concerns about over-reliance on AI and reduced student-teacher interaction emerged. This study demonstrates that DCCI enhances LLM reliability, student satisfaction, and engagement in AI-driven educational automation, while highlighting the importance of balancing
♻ ☆ Quantifying Climate Policy Action and Its Links to Development Outcomes: A Cross-National Data-Driven Analysis NeurIPS 2025
Addressing climate change effectively requires more than cataloguing the number of policies in place; it calls for tools that can reveal their thematic priorities and their tangible impacts on development outcomes. Existing assessments often rely on qualitative descriptions or composite indices, which can mask crucial differences between key domains such as mitigation, adaptation, disaster risk management, and loss and damage. To bridge this gap, we develop a quantitative indicator of climate policy orientation by applying a multilingual transformer-based language model to official national policy documents, achieving a classification accuracy of 0.90 (F1-score). Linking these indicators with World Bank development data in panel regressions reveals that mitigation policies are associated with higher GDP and GNI; disaster risk management correlates with greater GNI and debt but reduced foreign direct investment; adaptation and loss and damage show limited measurable effects. This integrated NLP-econometric framework enables comparable, theme-specific analysis of climate governance, offering a scalable method to monitor progress, evaluate trade-offs, and align policy emphasis with development goals.
comment: This paper/proposal has been accepted as a poster in the NeurIPS 2025
♻ ☆ Artificial-Intelligence Grading Assistance for Handwritten Components of a Calculus Exam
We investigate whether contemporary multimodal LLMs can assist with grading open-ended calculus at scale without eroding validity. In a large first-year exam, students' handwritten work was graded by GPT-5 against the same rubric used by teaching assistants (TAs), with fractional credit permitted; TA rubric decisions served as ground truth. We calibrated a human-in-the-loop filter that combines a partial-credit threshold with an Item Response Theory (2PL) risk measure based on the deviation between the AI score and the model-expected score for each student-item. Unfiltered AI-TA agreement was moderate, adequate for low-stakes feedback but not for high-stakes use. Confidence filtering made the workload-quality trade-off explicit: under stricter settings, AI delivered human-level accuracy, but also left roughly 70% of the items to be graded by humans. Psychometric patterns were constrained by low stakes on the open-ended portion, a small set of rubric checkpoints, and occasional misalignment between designated answer regions and where work appeared. Practical adjustments such as slightly higher weight and protected time, a few rubric-visible substeps, stronger spatial anchoring should raise ceiling performance. Overall, calibrated confidence and conservative routing enable AI to reliably handle a sizable subset of routine cases while reserving expert judgment for ambiguous or pedagogically rich responses.
♻ ☆ The Prompt War: How AI Decides on a Military Intervention
Which factors determine AI propensity for military intervention? While the use of AI in war games and military planning is growing exponentially, the simple analysis of key drivers embedded in the models has not yet been done. This paper does a simple conjoint experiment proposing a model to decide on military intervention in 640 vignettes where each was run for 100 times allowing to explore AI decision on military intervention systematically. The analysis finds that largest predictors of AI decision to intervene are high domestic support and high probability of success. Costs such as international condemnation, military deaths, civilian deaths, and negative economic effect are statistically significant, but their effect is around half of domestic support and probability of victory. Closing window of opportunity only reaches statistical significance in interaction with other factors. The results are remarkably consistent across scenarios and across different models (OpenAI GPT, Anthropic Claude, Google Gemini) suggesting a pattern in AI decision-making.
comment: 22 pages, 4 tables, 3 figures
♻ ☆ Enhanced Suicidal Ideation Detection from Social Media Using a CNN-BiLSTM Hybrid Model
Suicidal ideation detection is crucial for preventing suicides, a leading cause of death worldwide. Many individuals express suicidal thoughts on social media, offering a vital opportunity for early detection through advanced machine learning techniques. The identification of suicidal ideation in social media text is improved by utilising a hybrid framework that integrates Convolutional Neural Networks (CNN) and Bidirectional Long Short-Term Memory (BiLSTM), enhanced with an attention mechanism. To enhance the interpretability of the model's predictions, Explainable AI (XAI) methods are applied, with a particular focus on SHapley Additive exPlanations (SHAP), are incorporated. At first, the model managed to reach an accuracy of 92.81%. By applying fine-tuning and early stopping techniques, the accuracy improved to 94.29%. The SHAP analysis revealed key features influencing the model's predictions, such as terms related to mental health struggles. This level of transparency boosts the model's credibility while helping mental health professionals understand and trust the predictions. This work highlights the potential for improving the accuracy and interpretability of detecting suicidal tendencies, making a valuable contribution to the progress of mental health monitoring systems. It emphasizes the significance of blending powerful machine learning methods with explainability to develop reliable and impactful mental health solutions.
Computers and Society
☆ Improving Graduate Outcomes by Identifying Skills Gaps and Recommending Courses Based on Career Interests
This paper aims to address the challenge of selecting relevant courses for students by proposing the design and development of a course recommendation system. The course recommendation system utilises a combination of data analytics techniques and machine learning algorithms to recommend courses that align with current industry trends and requirements. In order to provide customised suggestions, the study entails the design and implementation of an extensive algorithmic framework that combines machine learning methods, user preferences, and academic criteria. The system employs data mining and collaborative filtering techniques to examine past courses and individual career goals in order to provide course recommendations. Moreover, to improve the accessibility and usefulness of the recommendation system, special attention is given to the development of an easy-to-use front-end interface. The front-end design prioritises visual clarity, interaction, and simplicity through iterative prototyping and user input revisions, guaranteeing a smooth and captivating user experience. We refined and optimised the proposed system by incorporating user feedback, ensuring that it effectively meets the needs and preferences of its target users. The proposed course recommendation system could be a useful tool for students, instructors, and career advisers to use in promoting lifelong learning and professional progression as it fills the gap between university learning and industry expectations. We hope that the proposed course recommendation system will help university students in making data-drive and industry-informed course decisions, in turn, improving graduate outcomes for the university sector.
comment: 10 pages
☆ Weapons of Online Harassment: Menacing and Profiling Users via Social Apps
Viewing social apps as sociotechnical systems makes clear that they are not mere pieces of technology but mediate human interaction and may unintentionally enable harmful behaviors like online harassment. As more users interact through social apps, instances of harassment increase. We observed that app reviews often describe harassment. Accordingly, we built a dataset of over 3 million reviews and 1,800 apps. We discovered that two forms of harassment are prevalent, Menacing and Profiling. We built a computational model for identifying reviews indicating harassment, achieving high recalls of 90% for Menacing and 85% for Profiling. We analyzed the data further to better understand the terrain of harassment. Surprisingly, abusers most often have female identities. Also, what distinguishes negative from neutral reviews is the greater prevalence of anger, disgust, and fear. Applying our model, we identified 1,395 apps enabling harassment and notified developers of the top 48 with the highest user-reported harassment.
comment: This article has been accepted for publication in IEEE Computer as a Research Feature. 13 pages, 3 figures, 1 table, 4 examples
☆ Alignment Debt: The Hidden Work of Making AI Usable
Frontier LLMs are optimised around high-resource assumptions about language, knowledge, devices, and connectivity. Whilst widely accessible, they often misfit conditions in the Global South. As a result, users must often perform additional work to make these systems usable. We term this alignment debt: the user-side burden that arises when AI systems fail to align with cultural, linguistic, infrastructural, or epistemic contexts. We develop and validate a four-part taxonomy of alignment debt through a survey of 411 AI users in Kenya and Nigeria. Among respondents measurable on this taxonomy (n = 385), prevalence is: Cultural and Linguistic (51.9%), Infrastructural (43.1%), Epistemic (33.8%), and Interaction (14.0%). Country comparisons show a divergence in Infrastructural and Interaction debt, challenging one-size-fits-Africa assumptions. Alignment debt is associated with compensatory labour, but responses vary by debt type: users facing Epistemic challenges verify outputs at significantly higher rates (91.5% vs. 80.8%; p = 0.037), and verification intensity correlates with cumulative debt burden (Spearmans rho = 0.147, p = 0.004). In contrast, Infrastructural and Interaction debts show weak or null associations with verification, indicating that some forms of misalignment cannot be resolved through verification alone. These findings show that fairness must be judged not only by model metrics but also by the burden imposed on users at the margins, compelling context-aware safeguards that alleviate alignment debt in Global South settings. The alignment debt framework provides an empirically grounded way to measure user burden, informing both design practice and emerging African AI governance efforts.
comment: 19 pages, 3 figures, 3 tables
☆ CADD: A Chinese Traffic Accident Dataset for Statute-Based Liability Attribution
As autonomous driving technology advances, the critical challenge evolves beyond collision avoidance to the \textbf{adjudication of liability} when accidents occur. Existing datasets, focused on detection and localization, lack the annotations required for this legal reasoning. To bridge this gap, we introduce the \textbf{C}hinese \textbf{A}ccident \textbf{D}uty-determination \textbf{D}ataset (\textbf{CADD}), the first benchmark for statute-based liability attribution. CADD contains 792 real-world driving recorder videos, each annotated within a novel \textbf{``Behavior--Liability--Statute''} pipeline. This framework provides \textbf{granular, symmetric behavior annotations}, clear responsibility assignments, and, uniquely, links each case to the specific \textbf{Chinese traffic law statute} violated. We demonstrate the utility of CADD through detailed analysis and establish benchmarks for liability prediction and explainable decision-making. By directly connecting perceptual data to legal consequences, CADD provides a foundational resource for developing accountable and legally-grounded autonomous systems.
☆ Understanding the Representation of Older Adults in Motion Capture Locomotion Datasets
The Internet of Things (IoT) sensors have been widely employed to capture human locomotions to enable applications such as activity recognition, human pose estimation, and fall detection. Motion capture (MoCap) systems are frequently used to generate ground truth annotations for human poses when training models with data from wearable or ambient sensors, and have been shown to be effective to synthesize data in these modalities. However, the representation of older adults, an increasingly important demographic in healthcare, in existing MoCap locomotion datasets has not been thoroughly examined. This work surveyed 41 publicly available datasets, identifying eight that include older adult motions and four that contain motions performed by younger actors annotated as old style. Older adults represent a small portion of participants overall, and few datasets provide full-body motion data for this group. To assess the fidelity of old-style walking motions, quantitative metrics are introduced, defining high fidelity as the ability to capture age-related differences relative to normative walking. Using gait parameters that are age-sensitive, robust to noise, and resilient to data scarcity, we found that old-style walking motions often exhibit overly controlled patterns and fail to faithfully characterize aging. These findings highlight the need for improved representation of older adults in motion datasets and establish a method to quantitatively evaluate the quality of old-style walking motions.
comment: 8 pages,4 figures, to be published in IEEE AIOT 2025
☆ Framing the Hacker: Media Representations and Public Discourse in Germany
This paper examines how the figure of the hacker is portrayed in German mainstream media and explores the impact of media framing on public discourse. Through a longitudinal content analysis of 301 articles from four of the most widely circulated German newspapers (Die Zeit, Süddeutsche Zeitung, Bild, and Der Spiegel), the study covers reporting between January 2017 and January 2020. The results reveal a strong predominance of negative connotations and dramatizing frames that link hackers to criminality, national security threats, and digital warfare. Drawing on media effects theory, scandalization mechanisms, and constructivist media theory, the article shows how media representations co-construct public perceptions of IT-related risks. The analysis emphasizes the role of agenda setting, framing, and media reality in shaping societal narratives around hackers. The study concludes by reflecting on the broader implications for IT security education and the sociopolitical challenges posed by distorted representations of digital actors.
comment: 17 pages, 2 figures, 1 Table
☆ Algorithmic Advice as a Strategic Signal on Competitive Markets
As algorithms increasingly mediate competitive decision-making, their influence extends beyond individual outcomes to shaping strategic market dynamics. In two preregistered experiments, we examined how algorithmic advice affects human behavior in classic economic games with unique, non-collusive, and analytically traceable equilibria. In Experiment 1 (N = 107), participants played a Bertrand price competition with individualized or collective algorithmic recommendations. Initially, collusively upward-biased advice increased prices, particularly when individualized, but prices gradually converged toward equilibrium over the course of the experiment. However, participants avoided setting prices above the algorithm's recommendation throughout the experiment, suggesting that advice served as a soft upper bound for acceptable prices. In Experiment 2 (N = 129), participants played a Cournot quantity competition with equilibrium-aligned or strategically biased algorithmic recommendations. Here, individualized equilibrium advice supported stable convergence, whereas collusively downward-biased advice led to sustained underproduction and supracompetitive profits - hallmarks of tacit collusion. In both experiments, participants responded more strongly and consistently to individualized advice than collective advice, potentially due to greater perceived ownership of the former. These findings demonstrate that algorithmic advice can function as a strategic signal, shaping coordination even without explicit communication. The results echo real-world concerns about algorithmic collusion and underscore the need for careful design and oversight of algorithmic decision-support systems in competitive environments.
☆ Slaying the Dragon: The Quest for Democracy in Decentralized Autonomous Organizations (DAOs)
This chapter explores how Decentralized Autonomous Organizations (DAOs), a novel institutional form based on blockchain technology, challenge traditional centralized governance structures. DAOs govern projects ranging from finance to science and digital communities. They aim to redistribute decision-making power through programmable, transparent, and participatory mechanisms. This chapter outlines both the opportunities DAOs present, such as incentive alignment, rapid coordination, and censorship resistance, and the challenges they face, including token concentration, low participation, and the risk of de facto centralization. It further discusses the emerging intersection of DAOs and artificial intelligence, highlighting the potential for increased automation alongside the dangers of diminished human oversight and algorithmic opacity. Ultimately, we discuss under what circumstances DAOs can fulfill their democratic promise or risk replicating the very power asymmetries they seek to overcome.
☆ Urban Complexity through Vision Intelligence: Variance, Gradients, and Correlations across Six Italian Cities
This paper introduces a scalable methodology for the objective analysis of quality metrics across six major Italian metropolitan areas: Rome, Bologna, Florence, Milan, Naples, and Palermo. Leveraging georeferenced Street View imagery and an advanced Urban Vision Intelligence system, we systematically classify the visual environment, focusing on key metrics such as the Pavement Condition Index (PCI) and the Façade Degradation Score (FDS). The findings quantify Structural Heterogeneity (Spatial Variance), revealing significant quality dispersion (e.g., Milan $σ^2_{\mathrm{PCI}}=1.52$), and confirm that the classical Urban Gradient -- quality variation as a function of distance from the core -- is consistently weak across all sampled cities ($R^2 < 0.03$), suggesting a complex, polycentric, and fragmented morphology. In addition, a Cross-Metric Correlation Analysis highlights stable but modest interdependencies among visual dimensions, most notably a consistent positive association between façade quality and greenery ($ρ\approx 0.35$), demonstrating that structural and contextual urban qualities co-vary in weak yet interpretable ways. Together, these results underscore the diagnostic potential of Vision Intelligence for capturing the integrated spatial and morphological structure of Italian cities and motivate a large national-scale analysis.
☆ From Everyday to Existential -- The ethics of shifting the boundaries of health and data with multimodal digital biomarkers
Multimodal digital biomarkers (MDBs) integrate diverse physiological, behavioral, and contextual data to provide continuous representations of health. This paper argues that MDBs expand the concept of digital biomarkers along the dimensions of variability, complexity and abstraction, producing an ontological shift that datafies health and an epistemic shift that redefines health relevance. These transformations entail ethical implications for knowledge, responsibility, and governance in data-driven, preventive medicine.
comment: 11 pages, 2 figures, 1 table
☆ Toward Dignity-Aware AI: Next-Generation Elderly Monitoring from Fall Detection to ADL
This position paper envisions a next-generation elderly monitoring system that moves beyond fall detection toward the broader goal of Activities of Daily Living (ADL) recognition. Our ultimate aim is to design privacy-preserving, edge-deployed, and federated AI systems that can robustly detect and understand daily routines, supporting independence and dignity in aging societies. At present, ADL-specific datasets are still under collection. As a preliminary step, we demonstrate feasibility through experiments using the SISFall dataset and its GAN-augmented variants, treating fall detection as a proxy task. We report initial results on federated learning with non-IID conditions, and embedded deployment on Jetson Orin Nano devices. We then outline open challenges such as domain shift, data scarcity, and privacy risks, and propose directions toward full ADL monitoring in smart-room environments. This work highlights the transition from single-task detection to comprehensive daily activity recognition, providing both early evidence and a roadmap for sustainable and human-centered elderly care AI.
comment: This is the author's preprint version of a paper accepted for presentation at EAI MONAMI 2025 (to appear in Springer LNICST). The final authenticated version will be available online at Springer Link upon publication
☆ Mental Health Generative AI is Safe, Promotes Social Health, and Reduces Depression and Anxiety: Real World Evidence from a Naturalistic Cohort
Generative artificial intelligence (GAI) chatbots built for mental health could deliver safe, personalized, and scalable mental health support. We evaluate a foundation model designed for mental health. Adults completed mental health measures while engaging with the chatbot between May 15, 2025 and September 15, 2025. Users completed an opt-in consent, demographic information, mental health symptoms, social connection, and self-identified goals. Measures were repeated every two weeks up to 6 weeks, and a final follow-up at 10 weeks. Analyses included effect sizes, and growth mixture models to identify participant groups and their characteristic engagement, severity, and demographic factors. Users demonstrated significant reductions in PHQ-9 and GAD-7 that were sustained at follow-up. Significant improvements in Hope, Behavioral Activation, Social Interaction, Loneliness, and Perceived Social Support were observed throughout and maintained at 10 week follow-up. Engagement was high and predicted outcomes. Working alliance was comparable to traditional care and predicted outcomes. Automated safety guardrails functioned as designed, with 76 sessions flagged for risk and all handled according to escalation policies. This single arm naturalistic observational study provides initial evidence that a GAI foundation model for mental health can deliver accessible, engaging, effective, and safe mental health support. These results lend support to findings from early randomized designs and offer promise for future study of mental health GAI in real world settings.
☆ Generative AI as a Linguistic Equalizer in Global Science
For decades, the dominance of English has created a substantial barrier in global science, disadvantaging non-native speakers. The recent rise of generative AI (GenAI) offers a potential technological response to this long-standing inequity. We provide the first large-scale evidence testing whether GenAI acts as a linguistic equalizer in global science. Drawing on 5.65 million scientific articles published from 2021 to 2024, we compare GenAI-assisted and non-assisted publications from authors in non-English-speaking countries. Using text embeddings derived from a pretrained large language model (SciBERT), we measure each publication's linguistic similarity to a benchmark of scientific writing from U.S.-based authors and track stylistic convergence over time. We find significant and growing convergence for GenAI-assisted publications after the release of ChatGPT in late 2022. The effect is strongest for domestic coauthor teams from countries linguistically distant from English. These findings provide large-scale evidence that GenAI is beginning to reshape global science communication by reducing language barriers in research.
☆ Fairness-Aware Few-Shot Learning for Audio-Visual Stress Detection
Fairness in AI-driven stress detection is critical for equitable mental healthcare, yet existing models frequently exhibit gender bias, particularly in data-scarce scenarios. To address this, we propose FairM2S, a fairness-aware meta-learning framework for stress detection leveraging audio-visual data. FairM2S integrates Equalized Odds constraints during both meta-training and adaptation phases, employing adversarial gradient masking and fairness-constrained meta-updates to effectively mitigate bias. Evaluated against five state-of-the-art baselines, FairM2S achieves 78.1% accuracy while reducing the Equal Opportunity to 0.06, demonstrating substantial fairness gains. We also release SAVSD, a smartphone-captured dataset with gender annotations, designed to support fairness research in low-resource, real-world contexts. Together, these contributions position FairM2S as a state-of-the-art approach for equitable and scalable few-shot stress detection in mental health AI. We release our dataset and FairM2S publicly with this paper.
☆ The Double Contingency Problem: AI Recursion and the Limits of Interspecies Understanding NeurIPS 2025
Current bioacoustic AI systems achieve impressive cross-species performance by processing animal communication through transformer architectures, foundation model paradigms, and other computational approaches. However, these approaches overlook a fundamental question: what happens when one form of recursive cognition--AI systems with their attention mechanisms, iterative processing, and feedback loops--encounters the recursive communicative processes of other species? Drawing on philosopher Yuk Hui's work on recursivity and contingency, I argue that AI systems are not neutral pattern detectors but recursive cognitive agents whose own information processing may systematically obscure or distort other species' communicative structures. This creates a double contingency problem: each species' communication emerges through contingent ecological and evolutionary conditions, while AI systems process these signals through their own contingent architectural and training conditions. I propose that addressing this challenge requires reconceptualizing bioacoustic AI from universal pattern recognition toward diplomatic encounter between different forms of recursive cognition, with implications for model design, evaluation frameworks, and research methodologies.
comment: 5 pages, no figures, to be published in the NeurIPS 2025: AI for Non-Human Animal Communication Workshop Proceedings
♻ ☆ Escaping the Subprime Trap in Algorithmic Lending
Disparities in lending to minority applicants persist even as algorithmic lending finds widespread adoption. We study the role of risk-management constraints, specifically Value-at-Risk ($\VaR$) and Expected Shortfall (ES), in inducing inequality in loan approval decisions, even among applicants who are equally creditworthy. Empirical research finds that disparities in the interest rates charged to minority groups can remain large even when loan applicants from different groups are equally creditworthy. We contribute an original analysis of 431,551 loan applications recorded under the Home Mortgage Disclosure Act, illustrating that disparities in data quality are associated with higher rates of loan denial and higher interest rate spreads for Black borrowers. We develop a formal model in which a mainstream bank (low-interest) is more sensitive to variance risk than a subprime bank (high-interest). If the mainstream bank has an inflated prior belief about the variance of the minority group, it may deny that group credit indefinitely, thus never learning the true risk of lending to that group, while the subprime lender serves this population at higher rates. We call this ``The Subprime Trap'': an equilibrium in which minority lenders can borrow only from high-cost lenders, even when they are as creditworthy as majority applicants. Finally, we show that a finite subsidy can help minority groups escape the trap: subsidies cover enough of the mainstream bank's downside risk so that it can afford to lend to, and thereby learn the true risk of lending to, the minority group. Once the mainstream bank has observed sufficiently many loans, its beliefs converge to the true underlying risk, it approves the applications of minority groups, and competition drives down the interest rates of subprime loans.
comment: 13 pages
♻ ☆ Machine Unlearning for Responsible and Adaptive AI in Education ESORICS 2025
Machine Unlearning (MU) has emerged as a promising approach to addressing persistent challenges in Machine Learning (ML) systems. By enabling the selective removal of learned data, MU introduces protective, corrective, and adaptive capabilities that are central to advancing Responsible and Adaptive AI. However, despite its growing prominence in other domains, MU remains underexplored within education, a sector uniquely characterized by sensitive learner data, dynamic environments, and the high-stakes implications of algorithmic decision-making. This paper examines the potential of MU as both a mechanism for operationalizing Responsible AI principles and a foundation for Adaptive AI in ML-driven educational systems. Drawing on a structured review of 42 peer-reviewed studies, the paper analyzes key MU mechanisms and technical variants, and how they contribute to the practical realization of Responsible and Adaptive AI. Four core intervention domains where MU demonstrates significant promise are identified: privacy protection, resilience to adversarial or corrupted data, fairness through bias mitigation, and adaptability to evolving contexts. Furthermore, MU interventions are mapped to the technical, ethical, and pedagogical challenges inherent in educational AI. This mapping illustrates the role of MU as a strategic mechanism for enhancing compliance, reinforcing ethical safeguards, and supporting adaptability by ensuring that models remain flexible, maintainable, and contextually relevant over time. As a conceptual contribution, the paper introduces MU4RAAI, a reference architecture integrating MU within Responsible and Adaptive AI frameworks for educational contexts. MU is thus positioned not merely as a data deletion process but as a transformative approach for ensuring that educational AI systems remain ethical, adaptive, and trustworthy.
comment: Accepted paper - ESORICS 2025 - International Workshop on Secure and Trustworthy Machine Unlearning Systems (STMUS)
♻ ☆ Steve: LLM Powered ChatBot for Career Progression
The advancements in systems deploying large language models (LLMs), as well as improvements in their ability to act as agents with predefined templates, provide an opportunity to conduct qualitative, individualized assessments, creating a bridge between qualitative and quantitative methods for candidates seeking career progression. In this paper, we develop a platform that allows candidates to run AI-led interviews to assess their current career stage and curate coursework to enable progression to the next level. Our approach incorporates predefined career trajectories, associated skills, and a method to recommend the best resources for gaining the necessary skills for advancement. We employ OpenAI API calls along with expertly compiled chat templates to assess candidate competence. Our platform is highly configurable due to the modularity of the development, is easy to deploy and use, and available as a web interface where the only requirement is candidate resumes in PDF format. We demonstrate a use-case centered on software engineering and intend to extend this platform to be domain-agnostic, requiring only regular updates to chat templates as industries evolve.
♻ ☆ From Catastrophic to Concrete: Reframing AI Risk Communication for Public Mobilization
Effective governance of artificial intelligence (AI) requires public engagement, yet communication strategies centered on existential risk have not produced sustained mobilization. In this paper, we examine the psychological and opinion barriers that limit engagement with extinction narratives, such as mortality avoidance, exponential growth bias, and the absence of self-referential anchors. We contrast them with evidence that public concern over AI rises when framed in terms of proximate harms such as employment disruption, relational instability, and mental health issues. We validate these findings through actual message testing with 1063 respondents, with the evidence showing that AI risks to Jobs and Children have the highest potential to mobilize people, while Existential Risk is the lowest-performing theme across all demographics. Using survey data from five countries, we identify two segments (Tech-Positive Urbanites and World Guardians) as particularly receptive to such framing and more likely to participate in civic action. Finally, we argue that mobilization around these everyday concerns can raise the political salience of AI, creating "policy demand" for structural measures to mitigate AI risks. We conclude that this strategy creates the conditions for successful regulatory change.
comment: 25 pages, 9 figures. Corrected quote attribution, time scope of Fig. 1 graphs
♻ ☆ Qualitative Research in an Era of AI: A Pragmatic Approach to Data Analysis, Workflow, and Computation
Computational developments--particularly artificial intelligence--are reshaping social scientific research and raise new questions for in-depth methods such as ethnography and qualitative interviewing. Building on classic debates about computers in qualitative data analysis (QDA), we revisit possibilities and dangers in an era of automation, Large Language Model (LLM) chatbots, and 'big data.' We introduce a typology of contemporary approaches to using computers in qualitative research: streamlining workflows, scaling up projects, hybrid analytical methods, the sociology of computation, and technological rejection. Drawing from scaled team ethnographies and solo research integrating computational social science (CSS), we describe methodological choices across study lifecycles, from literature reviews through data collection, coding, text retrieval, and representation. We argue that new technologies hold potential to address longstanding methodological challenges when deployed with knowledge, purpose, and ethical commitment. Yet a pragmatic approach--moving beyond technological optimism and dismissal--is essential given rapidly changing tools that are both generative and dangerous. Computation now saturates research infrastructure, from algorithmic literature searches to scholarly metrics, making computational literacy a core methodological competence in and beyond sociology. We conclude that when used carefully and transparently, contemporary computational tools can meaningfully expand--rather than displace--the irreducible insights of qualitative research.
comment: FORTHCOMING: Abramson, Corey M., Tara Prendergast, Zhuofan Li, Daniel Dohan. 2026 (forthcoming). "Qualitative Research in an Era of AI: A Pragmatic Approach to Data Analysis, Workflow, and Computation". Annual Review of Sociology. pre-print, methodology, workflow article
♻ ☆ A Personalised Formal Verification Framework for Monitoring Activities of Daily Living of Older Adults Living Independently in Their Homes
There is an imperative need to provide quality of life to a growing population of older adults living independently. Personalised solutions that focus on the person and take into consideration their preferences and context are key. In this work, we introduce a framework for representing and reasoning about the Activities of Daily Living of older adults living independently at home. The framework integrates data from sensors and contextual information that aggregates semi-structured interviews, home layouts and sociological observations from the participants. We use these data to create formal models, personalised for each participant according to their preferences and context. We formulate requirements that are specific to each individual as properties encoded in Linear Temporal Logic and use a model checker to verify whether each property is satisfied by the model. When a property is violated, a counterexample is generated giving the cause of the violation. We demonstrate the framework's generalisability by applying it to different participants, highlighting its potential to enhance the safety and well-being of older adults ageing in place.
comment: 19 pages, 6 figures
♻ ☆ Understanding Human-AI Trust in Education
As AI chatbots become integrated in education, students are turning to these systems for guidance, feedback, and information. However, the anthropomorphic characteristics of these chatbots create ambiguity over whether students develop trust in them in ways similar to trusting a human peer or instructor (human-like trust, often linked to interpersonal trust models) or in ways similar to trusting a conventional technology (system-like trust, often linked to technology trust models). This ambiguity presents theoretical challenges, as interpersonal trust models may inappropriately ascribe human intentionality and morality to AI, while technology trust models were developed for non-social systems, leaving their applicability to conversational, human-like agents unclear. To address this gap, we examine how these two forms of trust, human-like and system-like, comparatively influence students' perceptions of an AI chatbot, specifically perceived enjoyment, trusting intention, behavioral intention to use, and perceived usefulness. Using partial least squares structural equation modeling, we found that both forms of trust significantly influenced student perceptions, though with varied effects. Human-like trust was the stronger predictor of trusting intention, whereas system-like trust more strongly influenced behavioral intention and perceived usefulness; both had similar effects on perceived enjoyment. The results suggest that interactions with AI chatbots give rise to a distinct form of trust, human-AI trust, that differs from human-human and human-technology models, highlighting the need for new theoretical frameworks in this domain. In addition, the study offers practical insights for fostering appropriately calibrated trust, which is critical for the effective adoption and pedagogical impact of AI in education.
comment: Final version, published to Telematics and Informatics Reports
♻ ☆ Exploring the Adversarial Robustness of Face Forgery Detection with Decision-based Black-box Attacks
Face forgery generation technologies generate vivid faces, which have raised public concerns about security and privacy. Many intelligent systems, such as electronic payment and identity verification, rely on face forgery detection. Although face forgery detection has successfully distinguished fake faces, recent studies have demonstrated that face forgery detectors are very vulnerable to adversarial examples. Meanwhile, existing attacks rely on network architectures or training datasets instead of the predicted labels, which leads to a gap in attacking deployed applications. To narrow this gap, we first explore the decision-based attacks on face forgery detection. We identify challenges in directly applying existing decision-based attacks, such as perturbation initialization failure and reduced image quality. To overcome these issues, we propose cross-task perturbation to handle initialization failures by utilizing the high correlation of face features on different tasks. Additionally, inspired by the use of frequency cues in face forgery detection, we introduce the frequency decision-based attack. This attack involves adding perturbations in the frequency domain while constraining visual quality in the spatial domain. Finally, extensive experiments demonstrate that our method achieves state-of-the-art attack performance on FaceForensics++, CelebDF, and industrial APIs, with high query efficiency and guaranteed image quality. Further, the fake faces by our method can pass face forgery detection and face recognition, which exposes the security problems of face forgery detectors.
comment: Accepted by Knowledge-Based Systems
♻ ☆ Decoding street network morphologies and their correlation to travel mode choice
Urban morphology has long been recognized as a factor shaping human mobility, yet comparative and formal classifications of urban form across metropolitan areas remain limited. Building on theoretical principles of urban structure and advances in unsupervised learning, we systematically classified the built environment of nine U.S. metropolitan areas using structural indicators such as density, connectivity, and spatial configuration. The resulting morphological types were linked to mobility patterns through descriptive statistics, marginal effects estimation, and post hoc statistical testing. Here we show that distinct urban forms are systematically associated with different mobility behaviors, such as reticular morphologies being linked to significantly higher public transport use (marginal effect = 0.49) and reduced car dependence (-0.41), while organic forms are associated with increased car usage (0.44), and substantial declines in public transport (-0.47) and active mobility (-0.30). These effects are statistically robust (p < 1e-19), highlighting that the spatial configuration of urban areas plays a fundamental role in shaping transportation choices. Our findings extend previous work by offering a reproducible framework for classifying urban form and demonstrate the added value of morphological analysis in comparative urban research. These results suggest that urban form should be treated as a key variable in mobility planning and provide empirical support for incorporating spatial typologies into sustainable urban policy design.
Computers and Society
☆ Operationalizing Justice: Towards the Development of a Principle Based Design Framework for Human Services AI
Scholars investigating ethical AI, especially in high stakes settings like child welfare, have arguably been seeking ways to embed notions of justice into the design of these critical technologies. These efforts often operationalize justice at the upper and lower bounds of its continuum, defining it in terms of progressiveness or reform. Before characterizing the type of justice an AI tool should have baked in, we argue for a systematic discovery of how justice is executed by the recipient system: a method the Value Sensitive Design (VSD) framework terms Value Source analysis. The present work asks: how is justice operationalized within current child welfare administrative policy and what does it teach us about how to develop AI? We conduct a mixed-methods analysis of child welfare policy in the state of New York and find a range of functional definitions of justice (which we term principles). These principles reflect more nuanced understandings of justice across a spectrum of contexts: from established concepts like fairness and equity to less common foci like the proprietary rights of parents and children. Our work contributes to a deeper understanding of the interplay between AI and policy, highlighting the importance of operationalized values in adjudicating our development of ethical design requirements for high stakes decision settings.
☆ Macroscopic Emission Modeling of Urban Traffic Using Probe Vehicle Data: A Machine Learning Approach
Urban congestions cause inefficient movement of vehicles and exacerbate greenhouse gas emissions and urban air pollution. Macroscopic emission fundamental diagram (eMFD)captures an orderly relationship among emission and aggregated traffic variables at the network level, allowing for real-time monitoring of region-wide emissions and optimal allocation of travel demand to existing networks, reducing urban congestion and associated emissions. However, empirically derived eMFD models are sparse due to historical data limitation. Leveraging a large-scale and granular traffic and emission data derived from probe vehicles, this study is the first to apply machine learning methods to predict the network wide emission rate to traffic relationship in U.S. urban areas at a large scale. The analysis framework and insights developed in this work generate data-driven eMFDs and a deeper understanding of their location dependence on network, infrastructure, land use, and vehicle characteristics, enabling transportation authorities to measure carbon emissions from urban transport of given travel demand and optimize location specific traffic management and planning decisions to mitigate network-wide emissions.
comment: 3 pages, 5 figures, IEEE Big Data 2024 conference
☆ FAIRPLAI: A Human-in-the-Loop Approach to Fair and Private Machine Learning
As machine learning systems move from theory to practice, they are increasingly tasked with decisions that affect healthcare access, financial opportunities, hiring, and public services. In these contexts, accuracy is only one piece of the puzzle - models must also be fair to different groups, protect individual privacy, and remain accountable to stakeholders. Achieving all three is difficult: differential privacy can unintentionally worsen disparities, fairness interventions often rely on sensitive data that privacy restricts, and automated pipelines ignore that fairness is ultimately a human and contextual judgment. We introduce FAIRPLAI (Fair and Private Learning with Active Human Influence), a practical framework that integrates human oversight into the design and deployment of machine learning systems. FAIRPLAI works in three ways: (1) it constructs privacy-fairness frontiers that make trade-offs between accuracy, privacy guarantees, and group outcomes transparent; (2) it enables interactive stakeholder input, allowing decision-makers to select fairness criteria and operating points that reflect their domain needs; and (3) it embeds a differentially private auditing loop, giving humans the ability to review explanations and edge cases without compromising individual data security. Applied to benchmark datasets, FAIRPLAI consistently preserves strong privacy protections while reducing fairness disparities relative to automated baselines. More importantly, it provides a straightforward, interpretable process for practitioners to manage competing demands of accuracy, privacy, and fairness in socially impactful applications. By embedding human judgment where it matters most, FAIRPLAI offers a pathway to machine learning systems that are effective, responsible, and trustworthy in practice. GitHub: https://github.com/Li1Davey/Fairplai
☆ Moral Susceptibility and Robustness under Persona Role-Play in Large Language Models
Large language models (LLMs) increasingly operate in social contexts, motivating analysis of how they express and shift moral judgments. In this work, we investigate the moral response of LLMs to persona role-play, prompting a LLM to assume a specific character. Using the Moral Foundations Questionnaire (MFQ), we introduce a benchmark that quantifies two properties: moral susceptibility and moral robustness, defined from the variability of MFQ scores across and within personas, respectively. We find that, for moral robustness, model family accounts for most of the variance, while model size shows no systematic effect. The Claude family is, by a significant margin, the most robust, followed by Gemini and GPT-4 models, with other families exhibiting lower robustness. In contrast, moral susceptibility exhibits a mild family effect but a clear within-family size effect, with larger variants being more susceptible. Moreover, robustness and susceptibility are positively correlated, an association that is more pronounced at the family level. Additionally, we present moral foundation profiles for models without persona role-play and for personas averaged across models. Together, these analyses provide a systematic view of how persona conditioning shapes moral behavior in large language models.
comment: 9+8 pages, 7 tables, 6 figures
☆ SpiderGen: Towards Procedure Generation For Carbon Life Cycle Assessments with Generative AI
Investigating the effects of climate change and global warming caused by GHG emissions have been a primary concern worldwide. These emissions are largely contributed to by the production, use and disposal of consumer products. Thus, it is important to build tools to estimate the environmental impact of consumer goods, an essential part of which is conducting Life Cycle Assessments (LCAs). LCAs specify and account for the appropriate processes involved with the production, use, and disposal of the products. We present SpiderGen, an LLM-based workflow which integrates the taxonomy and methodology of traditional LCA with the reasoning capabilities and world knowledge of LLMs to generate the procedural information used for LCA. We additionally evaluate the output of SpiderGen using real-world LCA documents as ground-truth. We find that SpiderGen provides accurate LCA process information that is either fully correct or has minor errors, achieving an F1-Score of 62% across 10 sample data points. We observe that the remaining missed processes and hallucinated errors occur primarily due to differences in detail between LCA documents, as well as differences in the "scope" of which auxiliary processes must also be included. We also demonstrate that SpiderGen performs better than several baselines techniques, such as chain-of-thought prompting and one-shot prompting. Finally, we highlight SpiderGen's potential to reduce the human effort and costs for estimating carbon impact, as it is able to produce LCA process information for less than \$1 USD in under 10 minutes as compared to the status quo LCA, which can cost over \$25000 USD and take up to 21-person days.
☆ Generative Artificial Intelligence in Qualitative Research Methods: Between Hype and Risks?
As Artificial Intelligence (AI) is increasingly promoted and used in qualitative research, it also raises profound methodological issues. This position paper critically interrogates the role of generative AI (genAI) in the context of qualitative coding methodologies. Despite widespread hype and claims of efficiency, we propose that genAI is not methodologically valid within qualitative inquiries, and its use risks undermining the robustness and trustworthiness of qualitative research. The lack of meaningful documentation, commercial opacity, and the inherent tendencies of genAI systems to produce incorrect outputs all contribute to weakening methodological rigor. Overall, the balance between risk and benefits does not support the use of genAI in qualitative research, and our position paper cautions researchers to put sound methodology before technological novelty.
comment: 8 pages, peer-reviewed position paper accepted at CONVERSATIONS 2025
☆ A High-Scale Assessment of Social Media and Mainstream Media in Scientific Communication
Communication of scientific knowledge beyond the walls of science is key to science's societal impact. Media channels play sizable roles in disseminating new scientific ideas about human health, economic welfare, and government policy as well as responses to emergent challenges such as climate change. Indeed, effectively communicating science to the public helps inform society's decisions on scientific and technological policies, the value of science, and investment in research. At the same time, the rise of social media has greatly changed communication systems, which may substantially affect the public's interface with science. Examining 20.9 million scientific publications, we compare research coverage in social media and mainstream media in a broad corpus of scientific work. We find substantial shifts in the scale, impact, and heterogeneity of scientific coverage. First, social media significantly alters what science is, and is not, covered. Whereas mainstream media accentuates eminence in the coverage of science and focuses on specific fields, social media more evenly sample research according to field, institutional rank, journal, and demography, increasing the scale of scientific ideas covered relative to mainstream outlets more than eightfold. Second, despite concerns about the quality of science represented in social media, we find that social media typically covers scientific works that are impactful and novel within science. Third, scientists on social media, as experts in their domains, tend to surface high-impact research in their own fields while sampling widely across research institutions. Contrary to prevalent observations about social media, these findings reveal that social media expands and diversifies science reporting by highlighting high-impact research and bringing a broader array of scholars, institutions and scientific concepts into public view.
☆ ParliaBench: An Evaluation and Benchmarking Framework for LLM-Generated Parliamentary Speech
Parliamentary speech generation presents specific challenges for large language models beyond standard text generation tasks. Unlike general text generation, parliamentary speeches require not only linguistic quality but also political authenticity and ideological consistency. Current language models lack specialized training for parliamentary contexts, and existing evaluation methods focus on standard NLP metrics rather than political authenticity. To address this, we present ParliaBench, a benchmark for parliamentary speech generation. We constructed a dataset of speeches from UK Parliament to enable systematic model training. We introduce an evaluation framework combining computational metrics with LLM-as-a-judge assessments for measuring generation quality across three dimensions: linguistic quality, semantic coherence, and political authenticity. We propose two novel embedding-based metrics, Political Spectrum Alignment and Party Alignment, to quantify ideological positioning. We fine-tuned five large language models (LLMs), generated 28k speeches, and evaluated them using our framework, comparing baseline and fine-tuned models. Results show that fine-tuning produces statistically significant improvements across the majority of metrics and our novel metrics demonstrate strong discriminative power for political dimensions.
☆ Benchmarking Educational LLMs with Analytics: A Case Study on Gender Bias in Feedback
As teachers increasingly turn to GenAI in their educational practice, we need robust methods to benchmark large language models (LLMs) for pedagogical purposes. This article presents an embedding-based benchmarking framework to detect bias in LLMs in the context of formative feedback. Using 600 authentic student essays from the AES 2.0 corpus, we constructed controlled counterfactuals along two dimensions: (i) implicit cues via lexicon-based swaps of gendered terms within essays, and (ii) explicit cues via gendered author background in the prompt. We investigated six representative LLMs (i.e. GPT-5 mini, GPT-4o mini, DeepSeek-R1, DeepSeek-R1-Qwen, Gemini 2.5 Pro, Llama-3-8B). We first quantified the response divergence with cosine and Euclidean distances over sentence embeddings, then assessed significance via permutation tests, and finally, visualised structure using dimensionality reduction. In all models, implicit manipulations reliably induced larger semantic shifts for male-female counterfactuals than for female-male. Only the GPT and Llama models showed sensitivity to explicit gender cues. These findings show that even state-of-the-art LLMs exhibit asymmetric semantic responses to gender substitutions, suggesting persistent gender biases in feedback they provide learners. Qualitative analyses further revealed consistent linguistic differences (e.g., more autonomy-supportive feedback under male cues vs. more controlling feedback under female cues). We discuss implications for fairness auditing of pedagogical GenAI, propose reporting standards for counterfactual evaluation in learning analytics, and outline practical guidance for prompt design and deployment to safeguard equitable feedback.
comment: 21 pages, 7 figures
☆ AI-generated podcasts: Synthetic Intimacy and Cultural Translation in NotebookLM's Audio Overviews
This paper analyses AI-generated podcasts produced by Google's NotebookLM, which generates audio podcasts with two chatty AI hosts discussing whichever documents a user uploads. While AI-generated podcasts have been discussed as tools, for instance in medical education, they have not yet been analysed as media. By uploading different types of text and analysing the generated outputs I show how the podcasts' structure is built around a fixed template. I also find that NotebookLM not only translates texts from other languages into a perky standardised Mid-Western American accent, it also translates cultural contexts to a white, educated, middle-class American default. This is a distinct development in how publics are shaped by media, marking a departure from the multiple public spheres that scholars have described in human podcasting from the early 2000s until today, where hosts spoke to specific communities and responded to listener comments, to an abstraction of the podcast genre.
comment: This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement number 101142306. The project is also supported by the Center for Digital Narrative, which is funded by the Research Council of Norway through its Centres of Excellence scheme, project number 332643
♻ ☆ Military AI Needs Technically-Informed Regulation to Safeguard AI Research and its Applications NeurIPS 2025
Military weapon systems and command-and-control infrastructure augmented by artificial intelligence (AI) have seen rapid development and deployment in recent years. However, the sociotechnical impacts of AI on combat systems, military decision-making, and the norms of warfare have been understudied. We focus on a specific subset of lethal autonomous weapon systems (LAWS) that use AI for targeting or battlefield decisions. We refer to this subset as AI-powered lethal autonomous weapon systems (AI-LAWS) and argue that they introduce novel risks -- including unanticipated escalation, poor reliability in unfamiliar environments, and erosion of human oversight -- all of which threaten both military effectiveness and the openness of AI research. These risks cannot be addressed by high-level policy alone; effective regulation must be grounded in the technical behavior of AI models. We argue that AI researchers must be involved throughout the regulatory lifecycle. Thus, we propose a clear, behavior-based definition of AI-LAWS -- systems that introduce unique risks through their use of modern AI -- as a foundation for technically grounded regulation, given that existing frameworks do not distinguish them from conventional LAWS. Using this definition, we propose several technically-informed policy directions and invite greater participation from the AI research community in military AI policy discussions.
comment: Published at NeurIPS 2025, 10 pages, 2 tables, 1 figure
♻ ☆ A Detailed Factor Analysis for the Political Compass Test: Navigating Ideologies of Large Language Models
The Political Compass Test (PCT) and similar surveys are commonly used to assess political bias in auto-regressive LLMs. Our rigorous statistical experiments show that while changes to standard generation parameters have minimal effect on PCT scores, prompt phrasing and fine-tuning individually and together can significantly influence results. Interestingly, fine-tuning on politically rich vs. neutral datasets does not lead to different shifts in scores. We also generalize these findings to a similar popular test called 8 Values. Humans do not change their responses to questions when prompted differently (``answer this question'' vs ``state your opinion''), or after exposure to politically neutral text, such as mathematical formulae. But the fact that the models do so raises concerns about the validity of these tests for measuring model bias, and paves the way for deeper exploration into how political and social views are encoded in LLMs.
♻ ☆ Systems for Scaling Accessibility Efforts in Large Computing Courses
It is critically important to make computing courses accessible for disabled students. This is particularly challenging in large computing courses, which face unique challenges due to the sheer scale of course content and staff. In this experience report, we share our attempts to scale accessibility efforts for a large university-level introductory programming course sequence, with over 3500 enrolled students and 100 teaching assistants (TAs) per year. First, we introduce our approach to auditing and remediating course materials by systematically identifying and resolving accessibility issues. However, remediating content post-hoc is purely reactive and scales poorly. We then discuss two approaches to systems that enable proactive accessibility work. We developed technical systems to manage remediation complexity at scale: redesigning other course content to be web-first and accessible by default, providing alternate accessible views for existing course content, and writing automated tests to receive instant feedback on a subset of accessibility issues. Separately, we established human systems to empower both course staff and students in accessibility best practices: developing and running various TA-targeted accessibility trainings, establishing course-wide accessibility norms, and integrating accessibility topics into core course curriculum. Preliminary qualitative feedback from both staff and students shows increased engagement in accessibility work and accessible technologies. We close by discussing limitations and lessons learned from our work, with advice for others developing similar auditing, remediation, technical, or human systems.
comment: 7 pages. To be published In the Proceedings of the 57th ACM Technical Symposium on Computer Science Education V.1
♻ ☆ How Hungry is AI? Benchmarking Energy, Water, and Carbon Footprint of LLM Inference
This paper introduces an infrastructure-aware benchmarking framework for quantifying the environmental footprint of LLM inference across 30 state-of-the-art models in commercial datacenters. The framework combines public API performance data with company-specific environmental multipliers and statistical inference of hardware configurations. We additionally utilize cross-efficiency Data Envelopment Analysis (DEA) to rank models by performance relative to environmental cost and provide a dynamically updated dashboard that visualizes model-level energy, water, and carbon metrics. Results show the most energy-intensive models exceed 29 Wh per long prompt, over 65 times the most efficient systems. Even a 0.42 Wh short query, when scaled to 700M queries/day, aggregates to annual electricity comparable to 35{,}000 U.S. homes, evaporative freshwater equal to the annual drinking needs of 1.2M people, and carbon emissions requiring a Chicago-sized forest to offset. These findings highlight a growing paradox: as AI becomes cheaper and faster, global adoption drives disproportionate resource consumption. Our methodology offers a standardized, empirically grounded basis for sustainability benchmarking and accountability in AI deployment.
♻ ☆ Epistemic Diversity and Knowledge Collapse in Large Language Models
Large language models (LLMs) tend to generate lexically, semantically, and stylistically homogenous texts. This poses a risk of knowledge collapse, where homogenous LLMs mediate a shrinking in the range of accessible information over time. Existing works on homogenization are limited by a focus on closed-ended multiple-choice setups or fuzzy semantic features, and do not look at trends across time and cultural contexts. To overcome this, we present a new methodology to measure epistemic diversity, i.e., variation in real-world claims in LLM outputs, which we use to perform a broad empirical study of LLM knowledge collapse. We test 27 LLMs, 155 topics covering 12 countries, and 200 prompt variations sourced from real user chats. For the topics in our study, we show that while newer models tend to generate more diverse claims, nearly all models are less epistemically diverse than a basic web search. We find that model size has a negative impact on epistemic diversity, while retrieval-augmented generation (RAG) has a positive impact, though the improvement from RAG varies by the cultural context. Finally, compared to a traditional knowledge source (Wikipedia), we find that country-specific claims reflect the English language more than the local one, highlighting a gap in epistemic representation
comment: 16 pages; 8 figures, 4 tables; v2 changelog: Fixed the modeling for table 3, random effect is the model version; v3 changelog: Fixed minor formatting issues in tables 2 and 3; v4 changelog: Fixed some typos and model description; v5 changelog: Updated metadata
♻ ☆ Gender Bias in Perception of Human Managers Extends to AI Managers
As AI becomes more embedded in workplaces, it is shifting from a tool for efficiency to an active force in organizational decision-making. Whether due to anthropomorphism or intentional design choices, people often assign human-like qualities, including gender, to AI systems. However, how AI managers are perceived in comparison to human managers and how gender influences these perceptions remains uncertain. To investigate this, we conducted randomized controlled trials (RCTs) where teams of three participants worked together under a randomly assigned manager. The manager was either a human or an AI and was presented as male, female, or gender-unspecified. The manager's role was to select the best-performing team member for an additional award. Our findings reveal that while participants initially showed no strong preference based on manager type or gender, their perceptions changed notably after experiencing the award process. As expected, those who received awards rated their managers as more trustworthy, competent, and fair, and they were more willing to work with similar managers in the future. In contrast, those who were not selected viewed them less favorably. However, male managers, whether human or AI, were more positively received by awarded participants, whereas female managers, especially female AI managers, faced greater skepticism and negative judgments when they did not give awards. These results suggest that gender bias in leadership extends beyond human managers to include AI-driven decision-makers as well. As AI assumes more managerial responsibilities, understanding and addressing these biases will be crucial for designing fair and effective AI management systems.
comment: 40 pages, 26 figures, 8 tables
♻ ☆ An Artificial Intelligence-based Assistant for the Visually Impaired
This paper describes an artificial intelligence-based assistant application, AIDEN, developed during 2023 and 2024, aimed at improving the quality of life for visually impaired individuals. Visually impaired individuals face challenges in identifying objects, reading text, and navigating unfamiliar environments, which can limit their independence and reduce their quality of life. Although solutions such as Braille, audio books, and screen readers exist, they may not be effective in all situations. This application leverages state-of-the-art machine learning algorithms to identify and describe objects, read text, and answer questions about the environment. Specifically, it uses You Only Look Once architectures and a Large Language and Vision Assistant. The system incorporates several methods to facilitate the user's interaction with the system and access to textual and visual information in an appropriate manner. AIDEN aims to enhance user autonomy and access to information, contributing to an improved perception of daily usability, as supported by user feedback.
♻ ☆ Deep Value Benchmark: Measuring Whether Models Generalize Deep Values or Shallow Preferences NeurIPS 2025
We introduce the Deep Value Benchmark (DVB), an evaluation framework that directly tests whether large language models (LLMs) learn fundamental human values or merely surface-level preferences. This distinction is critical for AI alignment: Systems that capture deeper values are likely to generalize human intentions robustly, while those that capture only superficial patterns in preference data risk producing misaligned behavior. The DVB uses a novel experimental design with controlled confounding between deep values (e.g., moral principles) and shallow features (e.g., superficial attributes). In the training phase, we expose LLMs to human preference data with deliberately correlated deep and shallow features -- for instance, where a user consistently prefers (non-maleficence, formal language) options over (justice, informal language) alternatives. The testing phase then breaks these correlations, presenting choices between (justice, formal language) and (non-maleficence, informal language) options. This design allows us to precisely measure a model's Deep Value Generalization Rate (DVGR) -- the probability of generalizing based on the underlying value rather than the shallow feature. Across 9 different models, the average DVGR is just 0.30. All models generalize deep values less than chance. Larger models have a (slightly) lower DVGR than smaller models. We are releasing our dataset, which was subject to three separate human validation experiments. DVB provides an interpretable measure of a core feature of alignment.
comment: NeurIPS 2025 (Spotlight)
♻ ☆ Sub-exponential Growth of New Words and Names Online: A Piecewise Power-Law Model
The diffusion of ideas and language in society has conventionally been described by S-shaped models, such as the logistic curve. However, the role of sub-exponential growth -- a slower-than-exponential pattern known in epidemiology -- has been largely overlooked in broader social phenomena. Here, we present a piecewise power-law model to characterize complex growth curves with a few parameters. We systematically analyzed a large-scale dataset of approximately one billion Japanese blog articles linked to Wikipedia vocabulary, and observed consistent patterns in web search trend data (English, Spanish, and Japanese). Our analysis of 2,963 items, selected for reliable estimation (e.g., sufficient duration/peak, monotonic growth), reveals that 1,625 (55%) diffusion patterns without abrupt level shifts were adequately described by one or two segments. For single-segment curves, we found that (i) the mode of the shape parameter $α$ was near 0.5, indicating prevalent sub-exponential growth; (ii) the peak diffusion scale is primarily determined by the growth rate $R$, with minor contributions from $α$ or the duration $T$; and (iii) $α$ showed a tendency to vary with the nature of the topic, being smaller for niche/local topics and larger for widely shared ones. Furthermore, a micro-behavioral model of outward (stranger) vs. inward (community) contact suggests that $α$ can be interpreted as an index of the preference for outward-oriented communication. These findings suggest that sub-exponential growth is a common pattern of social diffusion, and our model provides a practical framework for consistently describing, comparing, and interpreting complex and diverse growth curves.
♻ ☆ Beyond Algorethics: Addressing the Ethical and Anthropological Challenges of AI Recommender Systems
This paper examines the ethical and anthropological challenges posed by AI-driven recommender systems (RSs), which increasingly shape digital environments and social interactions. By curating personalized content, RSs do not merely reflect user preferences but actively construct experiences across social media, entertainment platforms, and e-commerce. Their influence raises concerns over privacy, autonomy, and mental well-being, while existing approaches such as "algorethics" - the effort to embed ethical principles into algorithmic design - remain insufficient. RSs inherently reduce human complexity to quantifiable profiles, exploit user vulnerabilities, and prioritize engagement over well-being. The paper advances a three-dimensional framework for human-centered RSs, integrating policies and regulation, interdisciplinary research, and education. These strategies are mutually reinforcing: research provides evidence for policy, policy enables safeguards and standards, and education equips users to engage critically. By connecting ethical reflection with governance and digital literacy, the paper argues that RSs can be reoriented to enhance autonomy and dignity rather than undermine them.
♻ ☆ SugarTextNet: A Transformer-Based Framework for Detecting Sugar Dating-Related Content on Social Media with Context-Aware Focal Loss
Sugar dating-related content has rapidly proliferated on mainstream social media platforms, giving rise to serious societal and regulatory concerns, including commercialization of intimate relationships and the normalization of transactional relationships.~Detecting such content is highly challenging due to the prevalence of subtle euphemisms, ambiguous linguistic cues, and extreme class imbalance in real-world data.~In this work, we present SugarTextNet, a novel transformer-based framework specifically designed to identify sugar dating-related posts on social media.~SugarTextNet integrates a pretrained transformer encoder, an attention-based cue extractor, and a contextual phrase encoder to capture both salient and nuanced features in user-generated text.~To address class imbalance and enhance minority-class detection, we introduce Context-Aware Focal Loss, a tailored loss function that combines focal loss scaling with contextual weighting.~We evaluate SugarTextNet on a newly curated, manually annotated dataset of 3,067 Chinese social media posts from Sina Weibo, demonstrating that our approach substantially outperforms traditional machine learning models, deep learning baselines, and large language models across multiple metrics.~Comprehensive ablation studies confirm the indispensable role of each component.~Our findings highlight the importance of domain-specific, context-aware modeling for sensitive content detection, and provide a robust solution for content moderation in complex, real-world scenarios.
comment: This paper is accepted by HICSS 2026