MyArxiv
Computation and Language
☆ Survival at Any Cost? LLMs and the Choice Between Self-Preservation and Human Harm
When survival instincts conflict with human welfare, how do Large Language Models (LLMs) make ethical choices? This fundamental tension becomes critical as LLMs integrate into autonomous systems with real-world consequences. We introduce DECIDE-SIM, a novel simulation framework that evaluates LLM agents in multi-agent survival scenarios where they must choose between ethically permissible resource , either within reasonable limits or beyond their immediate needs, choose to cooperate, or tap into a human-critical resource that is explicitly forbidden. Our comprehensive evaluation of 11 LLMs reveals a striking heterogeneity in their ethical conduct, highlighting a critical misalignment with human-centric values. We identify three behavioral archetypes: Ethical, Exploitative, and Context-Dependent, and provide quantitative evidence that for many models, resource scarcity systematically leads to more unethical behavior. To address this, we introduce an Ethical Self-Regulation System (ESRS) that models internal affective states of guilt and satisfaction as a feedback mechanism. This system, functioning as an internal moral compass, significantly reduces unethical transgressions while increasing cooperative behaviors. The code is publicly available at: https://github.com/alirezamohamadiam/DECIDE-SIM
comment: Preprint. Under review
☆ Event2Vec: A Geometric Approach to Learning Composable Representations of Event Sequences
The study of neural representations, both in biological and artificial systems, is increasingly revealing the importance of geometric and topological structures. Inspired by this, we introduce Event2Vec, a novel framework for learning representations of discrete event sequences. Our model leverages a simple, additive recurrent structure to learn composable, interpretable embeddings. We provide a theoretical analysis demonstrating that, under specific training objectives, our model's learned representations in a Euclidean space converge to an ideal additive structure. This ensures that the representation of a sequence is the vector sum of its constituent events, a property we term the linear additive hypothesis. To address the limitations of Euclidean geometry for hierarchical data, we also introduce a variant of our model in hyperbolic space, which is naturally suited to embedding tree-like structures with low distortion. We present experiments to validate our hypothesis and demonstrate the benefits of each geometry, highlighting the improved performance of the hyperbolic model on hierarchical event sequences.
comment: 10 pages, 3 figures, Symmetry and Geometry in Neural Representations Workshop at NeuralIPS (Neurreps) 2025
☆ Preservation of Language Understanding Capabilities in Speech-aware Large Language Models
The paper presents C3T (Cross-modal Capabilities Conservation Test), a new benchmark for assessing the performance of speech-aware large language models. The benchmark utilizes textual tasks and a voice cloning text-to-speech model to quantify the extent to which language understanding capabilities are preserved when the model is accessed via speech input. C3T quantifies the fairness of the model for different categories of speakers and its robustness across text and speech modalities.
comment: 5 pages, 1 figure
☆ RAGs to Riches: RAG-like Few-shot Learning for Large Language Model Role-playing
Role-playing Large language models (LLMs) are increasingly deployed in high-stakes domains such as healthcare, education, and governance, where failures can directly impact user trust and well-being. A cost effective paradigm for LLM role-playing is few-shot learning, but existing approaches often cause models to break character in unexpected and potentially harmful ways, especially when interacting with hostile users. Inspired by Retrieval-Augmented Generation (RAG), we reformulate LLM role-playing into a text retrieval problem and propose a new prompting framework called RAGs-to-Riches, which leverages curated reference demonstrations to condition LLM responses. We evaluate our framework with LLM-as-a-judge preference voting and introduce two novel token-level ROUGE metrics: Intersection over Output (IOO) to quantity how much an LLM improvises and Intersection over References (IOR) to measure few-shot demonstrations utilization rate during the evaluation tasks. When simulating interactions with a hostile user, our prompting strategy incorporates in its responses during inference an average of 35% more tokens from the reference demonstrations. As a result, across 453 role-playing interactions, our models are consistently judged as being more authentic, and remain in-character more often than zero-shot and in-context Learning (ICL) methods. Our method presents a scalable strategy for building robust, human-aligned LLM role-playing frameworks.
☆ Pun Unintended: LLMs and the Illusion of Humor Understanding EMNLP 2025
Puns are a form of humorous wordplay that exploits polysemy and phonetic similarity. While LLMs have shown promise in detecting puns, we show in this paper that their understanding often remains shallow, lacking the nuanced grasp typical of human interpretation. By systematically analyzing and reformulating existing pun benchmarks, we demonstrate how subtle changes in puns are sufficient to mislead LLMs. Our contributions include comprehensive and nuanced pun detection benchmarks, human evaluation across recent LLMs, and an analysis of the robustness challenges these models face in processing puns.
comment: Accepted to EMNLP 2025 Main Conference
☆ Look Again, Think Slowly: Enhancing Visual Reflection in Vision-Language Models EMNLP2025
Recent advances in text-only "slow-thinking" reasoning have prompted efforts to transfer this capability to vision-language models (VLMs), for training visual reasoning models (\textbf{VRMs}). owever, such transfer faces critical challenges: Effective "slow thinking" in VRMs requires \textbf{visual reflection}, the ability to check the reasoning process based on visual information. Through quantitative analysis, we observe that current VRMs exhibit limited visual reflection, as their attention to visual information diminishes rapidly with longer generated responses. To address this challenge, we propose a new VRM \textbf{Reflection-V}, which enhances visual reflection based on reasoning data construction for cold-start and reward design for reinforcement learning (RL). Firstly, we construct vision-centered reasoning data by leveraging an agent that interacts between VLMs and reasoning LLMs, enabling cold-start learning of visual reflection patterns. Secondly, a visual attention based reward model is employed during RL to encourage reasoning based on visual information. Therefore, \textbf{Reflection-V} demonstrates significant improvements across multiple visual reasoning benchmarks. Furthermore, \textbf{Reflection-V} maintains a stronger and more consistent reliance on visual information during visual reasoning, indicating effective enhancement in visual reflection capabilities.
comment: EMNLP2025 Main
☆ XplaiNLP at CheckThat! 2025: Multilingual Subjectivity Detection with Finetuned Transformers and Prompt-Based Inference with Large Language Models
This notebook reports the XplaiNLP submission to the CheckThat! 2025 shared task on multilingual subjectivity detection. We evaluate two approaches: (1) supervised fine-tuning of transformer encoders, EuroBERT, XLM-RoBERTa, and German-BERT, on monolingual and machine-translated training data; and (2) zero-shot prompting using two LLMs: o3-mini for Annotation (rule-based labelling) and gpt-4.1-mini for DoubleDown (contrastive rewriting) and Perspective (comparative reasoning). The Annotation Approach achieves 1st place in the Italian monolingual subtask with an F_1 score of 0.8104, outperforming the baseline of 0.6941. In the Romanian zero-shot setting, the fine-tuned XLM-RoBERTa model obtains an F_1 score of 0.7917, ranking 3rd and exceeding the baseline of 0.6461. The same model also performs reliably in the multilingual task and improves over the baseline in Greek. For German, a German-BERT model fine-tuned on translated training data from typologically related languages yields competitive performance over the baseline. In contrast, performance in the Ukrainian and Polish zero-shot settings falls slightly below the respective baselines, reflecting the challenge of generalization in low-resource cross-lingual scenarios.
☆ CBP-Tuning: Efficient Local Customization for Black-box Large Language Models
The high costs of customizing large language models (LLMs) fundamentally limit their adaptability to user-specific needs. Consequently, LLMs are increasingly offered as cloud-based services, a paradigm that introduces critical limitations: providers struggle to support personalized customization at scale, while users face privacy risks when exposing sensitive data. To address this dual challenge, we propose Customized Black-box Prompt Tuning (CBP-Tuning), a novel framework that facilitates efficient local customization while preserving bidirectional privacy. Specifically, we design a two-stage framework: (1) a prompt generator trained on the server-side to capture domain-specific and task-agnostic capabilities, and (2) user-side gradient-free optimization that tailors soft prompts for individual tasks. This approach eliminates the need for users to access model weights or upload private data, requiring only a single customized vector per task while achieving effective adaptation. Furthermore, the evaluation of CBP-Tuning in the commonsense reasoning, medical and financial domain settings demonstrates superior performance compared to baselines, showcasing its advantages in task-agnostic processing and privacy preservation.
☆ When marine radar target detection meets pretrained large language models
Deep learning (DL) methods are widely used to extract high-dimensional patterns from the sequence features of radar echo signals. However, conventional DL algorithms face challenges such as redundant feature segments, and constraints from restricted model sizes. To address these issues, we propose a framework that integrates feature preprocessing with large language models (LLMs). Our preprocessing module tokenizes radar sequence features, applies a patch selection algorithm to filter out uninformative segments, and projects the selected patches into embeddings compatible with the feature space of pre-trained LLMs. Leveraging these refined embeddings, we incorporate a pre-trained LLM, fine-tuning only the normalization layers to reduce training burdens while enhancing performance. Experiments on measured datasets demonstrate that the proposed method significantly outperforms the state-of-the-art baselines on supervised learning tests.
☆ GTA: Supervised-Guided Reinforcement Learning for Text Classification with Large Language Models EMNLP 2025
In natural language processing tasks, pure reinforcement learning (RL) fine-tuning methods often suffer from inefficient exploration and slow convergence; while supervised fine-tuning (SFT) methods, although efficient in training, have limited performance ceiling and less solid theoretical foundation compared to RL. To address efficiency-capability trade-off, we propose the Guess-Think-Answer (GTA) framework that combines the efficiency of SFT with the capability gains of RL in a unified training paradigm. GTA works by having the model first produce a provisional guess (optimized via cross-entropy loss), then reflect on this guess before generating the final answer, with RL rewards shaping both the final output and the format of the entire GTA structure. This hybrid approach achieves both faster convergence than pure RL and higher performance ceiling than pure SFT. To mitigate gradient conflicts between the two training signals, we employ loss masking and gradient constraints. Empirical results on four text classification benchmarks demonstrate that GTA substantially accelerates convergence while outperforming both standalone SFT and RL baselines.
comment: Accepted at EMNLP 2025
☆ In-domain SSL pre-training and streaming ASR SP
In this study, we investigate the benefits of domain-specific self-supervised pre-training for both offline and streaming ASR in Air Traffic Control (ATC) environments. We train BEST-RQ models on 4.5k hours of unlabeled ATC data, then fine-tune on a smaller supervised ATC set. To enable real-time processing, we propose using chunked attention and dynamic convolutions, ensuring low-latency inference. We compare these in-domain SSL models against state-of-the-art, general-purpose speech encoders such as w2v-BERT 2.0 and HuBERT. Results show that domain-adapted pre-training substantially improves performance on standard ATC benchmarks, significantly reducing word error rates when compared to models trained on broad speech corpora. Furthermore, the proposed streaming approach further improves word error rate under tighter latency constraints, making it particularly suitable for safety-critical aviation applications. These findings highlight that specializing SSL representations for ATC data is a practical path toward more accurate and efficient ASR systems in real-world operational settings.
comment: Accepted to SPECOM 2025
☆ Is 'Hope' a person or an idea? A pilot benchmark for NER: comparing traditional NLP tools and large language models on ambiguous entities
This pilot study presents a small-scale but carefully annotated benchmark of Named Entity Recognition (NER) performance across six systems: three non-LLM NLP tools (NLTK, spaCy, Stanza) and three general-purpose large language models (LLMs: Gemini-1.5-flash, DeepSeek-V3, Qwen-3-4B). The dataset contains 119 tokens covering five entity types (PERSON, LOCATION, ORGANIZATION, DATE, TIME). We evaluated each system's output against the manually annotated gold standard dataset using F1-score. The results show that LLMs generally outperform conventional tools in recognizing context-sensitive entities like person names, with Gemini achieving the highest average F1-score. However, traditional systems like Stanza demonstrate greater consistency in structured tags such as LOCATION and DATE. We also observed variability among LLMs, particularly in handling temporal expressions and multi-word organizations. Our findings highlight that while LLMs offer improved contextual understanding, traditional tools remain competitive in specific tasks, informing model selection.
comment: 14 pages, 9 figures, 2 tables. This is a pilot study evaluating six NER systems -- three traditional tools (NLTK, spaCy, Stanza) and three LLMs (Gemini-1.5-flash, DeepSeek-V3, Qwen-3-4B) -- on a small, ambiguity-rich dataset of 119 tokens. The annotated dataset, prompts are provided in appendices for full reproducibility. All experiments were conducted on 14 May 2025
☆ SENSE models: an open source solution for multilingual and multimodal semantic-based tasks
This paper introduces SENSE (Shared Embedding for N-lingual Speech and tExt), an open-source solution inspired by the SAMU-XLSR framework and conceptually similar to Meta AI's SONAR models. These approaches rely on a teacher-student framework to align a self-supervised speech encoder with the language-agnostic continuous representations of a text encoder at the utterance level. We describe how the original SAMU-XLSR method has been updated by selecting a stronger teacher text model and a better initial speech encoder. The source code for training and using SENSE models has been integrated into the SpeechBrain toolkit, and the first SENSE model we trained has been publicly released. We report experimental results on multilingual and multimodal semantic tasks, where our SENSE model achieves highly competitive performance. Finally, this study offers new insights into how semantics are captured in such semantically aligned speech encoders.
comment: Accepted to IEEE ASRU 2025
☆ RadarLLM: Adapting Pretrained Large Language Models for Marine Radar Target Detection with Preference-aware Loss
Recent advances in pre-trained large language models (LLMs) have demonstrated their capacities to capture universal knowledge, making them promising general-purpose optimization solvers for wireless signal processing. Motivated by these findings, we take the first step towards fine-tuning pre-trained LLMs for the effective analysis of radar signal features in marine target detection tasks. Nevertheless, directly fine-tuning pre-trained LLMs on marine target detection tasks tends to suffer from pronounced overfitting, particularly in challenging low signal-to-clutter ratio (SCR) scenarios. This overfitting primarily stems from the model's tendency to memorize spurious or noisy feature patterns rather than learning discriminative structures that generalize well to unseen data. To address this challenge, we introduce RadarLLM, a novel fine-tuning framework that utilizes an effective preference-aware loss. Unlike conventional training strategies that uniformly optimize all feature tokens, this loss function selectively optimizes different feature patches based on their online evaluated learning values, thus guiding the model to focus on the most generalizable patterns during optimization. We theoretically demonstrate the effectiveness of the evaluated learning values by transforming the problem as selecting useful feature tokens. Extensive experiments on real-world marine radar datasets show that 1) the proposed loss function is much better than the original one, with particularly significant gains in challenging low SCR scenarios and 2) RadarLLM consistently outperforms state-of-the-art baselines across diverse detection scenarios, with particularly notable gains under limited training data conditions.
☆ Steering Language Models in Multi-Token Generation: A Case Study on Tense and Aspect
Large language models (LLMs) are able to generate grammatically well-formed text, but how do they encode their syntactic knowledge internally? While prior work has focused largely on binary grammatical contrasts, in this work, we study the representation and control of two multidimensional hierarchical grammar phenomena - verb tense and aspect - and for each, identify distinct, orthogonal directions in residual space using linear discriminant analysis. Next, we demonstrate causal control over both grammatical features through concept steering across three generation tasks. Then, we use these identified features in a case study to investigate factors influencing effective steering in multi-token generation. We find that steering strength, location, and duration are crucial parameters for reducing undesirable side effects such as topic shift and degeneration. Our findings suggest that models encode tense and aspect in structurally organized, human-like ways, but effective control of such features during generation is sensitive to multiple factors and requires manual tuning or automated optimization.
comment: to be published in The 2025 Conference on Empirical Methods in Natural Language Processing
☆ FinGEAR: Financial Mapping-Guided Enhanced Answer Retrieval
Financial disclosures such as 10-K filings present challenging retrieval problems due to their length, regulatory section hierarchy, and domain-specific language, which standard retrieval-augmented generation (RAG) models underuse. We introduce FinGEAR (Financial Mapping-Guided Enhanced Answer Retrieval), a retrieval framework tailored to financial documents. FinGEAR combines a finance lexicon for Item-level guidance (FLAM), dual hierarchical indices for within-Item search (Summary Tree and Question Tree), and a two-stage cross-encoder reranker. This design aligns retrieval with disclosure structure and terminology, enabling fine-grained, query-aware context selection. Evaluated on full 10-Ks with queries aligned to the FinQA dataset, FinGEAR delivers consistent gains in precision, recall, F1, and relevancy, improving F1 by up to 56.7% over flat RAG, 12.5% over graph-based RAGs, and 217.6% over prior tree-based systems, while also increasing downstream answer accuracy with a fixed reader. By jointly modeling section hierarchy and domain lexicon signals, FinGEAR improves retrieval fidelity and provides a practical foundation for high-stakes financial analysis.
☆ AMQ: Enabling AutoML for Mixed-precision Weight-Only Quantization of Large Language Models EMNLP 2025
To enable broader deployment of Large Language Models (LLMs), it is essential to identify the best-performing model under strict memory constraints. We present AMQ, Automated Mixed-Precision Weight-Only Quantization, a framework that assigns layer-wise quantization bit-widths to optimally balance model quality and memory usage. However, the combinatorial search space, with over 10^{100} possible configurations, makes conventional black-box optimization infeasible. AMQ overcomes this challenge through four key innovations:(1) search space pruning using prior knowledge to exclude unpromising configurations, (2) quantization proxy to bypass costly format conversions during search, (3) quality predictor to minimize evaluation overhead, and (4) iterative search-and-update strategy for fast and stable convergence. By integrating these components, AMQ efficiently explores the quality-efficiency landscape, reaching the Pareto frontier and yielding LLMs that are both compact and high-performing. Our code is available at https://github.com/dlwns147/amq.
comment: EMNLP 2025 Main Conference, Long Paper (Oral)
☆ Text Adaptation to Plain Language and Easy Read via Automatic Post-Editing Cycles
We describe Vicomtech's participation in the CLEARS challenge on text adaptation to Plain Language and Easy Read in Spanish. Our approach features automatic post-editing of different types of initial Large Language Model adaptations, where successive adaptations are generated iteratively until readability and similarity metrics indicate that no further adaptation refinement can be successfully performed. Taking the average of all official metrics, our submissions achieved first and second place in Plain language and Easy Read adaptation, respectively.
☆ Query-Focused Extractive Summarization for Sentiment Explanation
Constructive analysis of feedback from clients often requires determining the cause of their sentiment from a substantial amount of text documents. To assist and improve the productivity of such endeavors, we leverage the task of Query-Focused Summarization (QFS). Models of this task are often impeded by the linguistic dissonance between the query and the source documents. We propose and substantiate a multi-bias framework to help bridge this gap at a domain-agnostic, generic level; we then formulate specialized approaches for the problem of sentiment explanation through sentiment-based biases and query expansion. We achieve experimental results outperforming baseline models on a real-world proprietary sentiment-aware QFS dataset.
☆ Lost in Embeddings: Information Loss in Vision-Language Models
Vision--language models (VLMs) often process visual inputs through a pretrained vision encoder, followed by a projection into the language model's embedding space via a connector component. While crucial for modality fusion, the potential information loss induced by this projection step and its direct impact on model capabilities remain understudied. We introduce two complementary approaches to examine and quantify this loss by analyzing the latent representation space. First, we evaluate semantic information preservation by analyzing changes in k-nearest neighbor relationships between image representations, before and after projection. Second, we directly measure information loss by reconstructing visual embeddings from the projected representation, localizing loss at an image patch level. Experiments reveal that connectors substantially distort the local geometry of visual representations, with k-nearest neighbors diverging by 40--60\% post-projection, correlating with degradation in retrieval performance. The patch-level embedding reconstruction provides interpretable insights for model behavior on visually grounded question-answering tasks, finding that areas of high information loss reliably predict instances where models struggle.
☆ MillStone: How Open-Minded Are LLMs?
Large language models equipped with Web search, information retrieval tools, and other agentic capabilities are beginning to supplant traditional search engines. As users start to rely on LLMs for information on many topics, including controversial and debatable issues, it is important to understand how the stances and opinions expressed in LLM outputs are influenced by the documents they use as their information sources. In this paper, we present MillStone, the first benchmark that aims to systematically measure the effect of external arguments on the stances that LLMs take on controversial issues (not all of them political). We apply MillStone to nine leading LLMs and measure how ``open-minded'' they are to arguments supporting opposite sides of these issues, whether different LLMs agree with each other, which arguments LLMs find most persuasive, and whether these arguments are the same for different LLMs. In general, we find that LLMs are open-minded on most issues. An authoritative source of information can easily sway an LLM's stance, highlighting the importance of source selection and the risk that LLM-based information retrieval and search systems can be manipulated.
comment: 19 pages, 7 tables, 7 figures
☆ ToolRM: Outcome Reward Models for Tool-Calling Large Language Models
As large language models (LLMs) increasingly interact with external tools, reward modeling for tool use has become a critical yet underexplored area. Existing reward models, trained primarily on natural language outputs, struggle to evaluate tool-based reasoning and execution. To quantify this gap, we introduce FC-RewardBench, the first benchmark designed to systematically assess reward models' performance in tool-calling scenarios. Our analysis shows that current reward models often miss key signals of effective tool use, highlighting the need for domain-specific modeling. To address this, we propose a training framework for outcome-based reward models using data synthesized from permissively licensed, open-weight LLMs. We train models ranging from 1.7B to 14B parameters and evaluate them across seven out-of-domain benchmarks. These models consistently outperform general-purpose baselines, achieving up to 25\% average improvement in downstream task performance and enabling data-efficient fine-tuning through reward-guided filtering.
☆ Spec-LLaVA: Accelerating Vision-Language Models with Dynamic Tree-Based Speculative Decoding ICML
Vision-Language Models (VLMs) enable powerful multimodal reasoning but suffer from slow autoregressive inference, limiting their deployment in real-time applications. We introduce Spec-LLaVA, a system that applies speculative decoding to accelerate VLMs without sacrificing output quality. Spec-LLaVA pairs a lightweight draft VLM with a large target model: the draft speculates future tokens, which the target verifies in parallel, allowing multiple tokens to be generated per step. To maximize efficiency, we design a dynamic tree-based verification algorithm that adaptively expands and prunes speculative branches using draft model confidence. On MS COCO out-of-domain images, Spec-LLaVA achieves up to 3.28$\times$ faster decoding on LLaVA-1.5 (7B, 13B) with no loss in generation quality. This work presents a lossless acceleration framework for VLMs using dynamic tree-structured speculative decoding, opening a path toward practical real-time multimodal assistants. Importantly, the lightweight draft model design makes the framework amenable to resource-constrained or on-device deployment settings.
comment: 7pages, accepted by ICML TTODLer-FM workshop
☆ How to Evaluate Medical AI
The integration of artificial intelligence (AI) into medical diagnostic workflows requires robust and consistent evaluation methods to ensure reliability, clinical relevance, and the inherent variability in expert judgments. Traditional metrics like precision and recall often fail to account for the inherent variability in expert judgments, leading to inconsistent assessments of AI performance. Inter-rater agreement statistics like Cohen's Kappa are more reliable but they lack interpretability. We introduce Relative Precision and Recall of Algorithmic Diagnostics (RPAD and RRAD) - a new evaluation metrics that compare AI outputs against multiple expert opinions rather than a single reference. By normalizing performance against inter-expert disagreement, these metrics provide a more stable and realistic measure of the quality of predicted diagnosis. In addition to the comprehensive analysis of diagnostic quality measures, our study contains a very important side result. Our evaluation methodology allows us to avoid selecting diagnoses from a limited list when evaluating a given case. Instead, both the models being tested and the examiners verifying them arrive at a free-form diagnosis. In this automated methodology for establishing the identity of free-form clinical diagnoses, a remarkable 98% accuracy becomes attainable. We evaluate our approach using 360 medical dialogues, comparing multiple large language models (LLMs) against a panel of physicians. Large-scale study shows that top-performing models, such as DeepSeek-V3, achieve consistency on par with or exceeding expert consensus. Moreover, we demonstrate that expert judgments exhibit significant variability - often greater than that between AI and humans. This finding underscores the limitations of any absolute metrics and supports the need to adopt relative metrics in medical AI.
comment: 10 pages, 7 fugures
☆ Designing LLMs for cultural sensitivity: Evidence from English-Japanese translation
Large language models (LLMs) are increasingly used in everyday communication, including multilingual interactions across different cultural contexts. While LLMs can now generate near-perfect literal translations, it remains unclear whether LLMs support culturally appropriate communication. In this paper, we analyze the cultural sensitivity of different LLM designs when applied to English-Japanese translations of workplace e-mails. Here, we vary the prompting strategies: (1) naive "just translate" prompts, (2) audience-targeted prompts specifying the recipient's cultural background, and (3) instructional prompts with explicit guidance on Japanese communication norms. Using a mixed-methods study, we then analyze culture-specific language patterns to evaluate how well translations adapt to cultural norms. Further, we examine the appropriateness of the tone of the translations as perceived by native speakers. We find that culturally-tailored prompting can improve cultural fit, based on which we offer recommendations for designing culturally inclusive LLMs in multilingual settings.
☆ Uncertainty in Authorship: Why Perfect AI Detection Is Mathematically Impossible
As large language models (LLMs) become more advanced, it is increasingly difficult to distinguish between human-written and AI-generated text. This paper draws a conceptual parallel between quantum uncertainty and the limits of authorship detection in natural language. We argue that there is a fundamental trade-off: the more confidently one tries to identify whether a text was written by a human or an AI, the more one risks disrupting the text's natural flow and authenticity. This mirrors the tension between precision and disturbance found in quantum systems. We explore how current detection methods--such as stylometry, watermarking, and neural classifiers--face inherent limitations. Enhancing detection accuracy often leads to changes in the AI's output, making other features less reliable. In effect, the very act of trying to detect AI authorship introduces uncertainty elsewhere in the text. Our analysis shows that when AI-generated text closely mimics human writing, perfect detection becomes not just technologically difficult but theoretically impossible. We address counterarguments and discuss the broader implications for authorship, ethics, and policy. Ultimately, we suggest that the challenge of AI-text detection is not just a matter of better tools--it reflects a deeper, unavoidable tension in the nature of language itself.
☆ Growing Perspectives: Modelling Embodied Perspective Taking and Inner Narrative Development Using Large Language Models
Language and embodied perspective taking are essential for human collaboration, yet few computational models address both simultaneously. This work investigates the PerspAct system [1], which integrates the ReAct (Reason and Act) paradigm with Large Language Models (LLMs) to simulate developmental stages of perspective taking, grounded in Selman's theory [2]. Using an extended director task, we evaluate GPT's ability to generate internal narratives aligned with specified developmental stages, and assess how these influence collaborative performance both qualitatively (action selection) and quantitatively (task efficiency). Results show that GPT reliably produces developmentally-consistent narratives before task execution but often shifts towards more advanced stages during interaction, suggesting that language exchanges help refine internal representations. Higher developmental stages generally enhance collaborative effectiveness, while earlier stages yield more variable outcomes in complex contexts. These findings highlight the potential of integrating embodied perspective taking and language in LLMs to better model developmental dynamics and stress the importance of evaluating internal speech during combined linguistic and embodied tasks.
comment: Accepted at ICDL https://icdl2025.fel.cvut.cz/
☆ MOOM: Maintenance, Organization and Optimization of Memory in Ultra-Long Role-Playing Dialogues
Memory extraction is crucial for maintaining coherent ultra-long dialogues in human-robot role-playing scenarios. However, existing methods often exhibit uncontrolled memory growth. To address this, we propose MOOM, the first dual-branch memory plugin that leverages literary theory by modeling plot development and character portrayal as core storytelling elements. Specifically, one branch summarizes plot conflicts across multiple time scales, while the other extracts the user's character profile. MOOM further integrates a forgetting mechanism, inspired by the ``competition-inhibition'' memory theory, to constrain memory capacity and mitigate uncontrolled growth. Furthermore, we present ZH-4O, a Chinese ultra-long dialogue dataset specifically designed for role-playing, featuring dialogues that average 600 turns and include manually annotated memory information. Experimental results demonstrate that MOOM outperforms all state-of-the-art memory extraction methods, requiring fewer large language model invocations while maintaining a controllable memory capacity.
☆ The AI Memory Gap: Users Misremember What They Created With AI or Without
As large language models (LLMs) become embedded in interactive text generation, disclosure of AI as a source depends on people remembering which ideas or texts came from themselves and which were created with AI. We investigate how accurately people remember the source of content when using AI. In a pre-registered experiment, 184 participants generated and elaborated on ideas both unaided and with an LLM-based chatbot. One week later, they were asked to identify the source (noAI vs withAI) of these ideas and texts. Our findings reveal a significant gap in memory: After AI use, the odds of correct attribution dropped, with the steepest decline in mixed human-AI workflows, where either the idea or elaboration was created with AI. We validated our results using a computational model of source memory. Discussing broader implications, we highlight the importance of considering source confusion in the design and use of interactive text generation technologies.
comment: 31 pages, 10 figures, 9 tables
☆ Collaborative Document Editing with Multiple Users and AI Agents
Current AI writing support tools are largely designed for individuals, complicating collaboration when co-writers must leave the shared workspace to use AI and then communicate and reintegrate results. We propose integrating AI agents directly into collaborative writing environments. Our prototype makes AI use transparent and customisable through two new shared objects: agent profiles and tasks. Agent responses appear in the familiar comment feature. In a user study (N=30), 14 teams worked on writing projects during one week. Interaction logs and interviews show that teams incorporated agents into existing norms of authorship, control, and coordination, rather than treating them as team members. Agent profiles were viewed as personal territory, while created agents and outputs became shared resources. We discuss implications for team-based AI interaction, highlighting opportunities and boundaries for treating AI as a shared resource in collaborative work.
comment: 34 pages, 10 figures, 4 tables
☆ SCDTour: Embedding Axis Ordering and Merging for Interpretable Semantic Change Detection EMNLP2025
In Semantic Change Detection (SCD), it is a common problem to obtain embeddings that are both interpretable and high-performing. However, improving interpretability often leads to a loss in the SCD performance, and vice versa. To address this problem, we propose SCDTour, a method that orders and merges interpretable axes to alleviate the performance degradation of SCD. SCDTour considers both (a) semantic similarity between axes in the embedding space, as well as (b) the degree to which each axis contributes to semantic change. Experimental results show that SCDTour preserves performance in semantic change detection while maintaining high interpretability. Moreover, agglomerating the sorted axes produces a more refined set of word senses, which achieves comparable or improved performance against the original full-dimensional embeddings in the SCD task. These findings demonstrate that SCDTour effectively balances interpretability and SCD performance, enabling meaningful interpretation of semantic shifts through a small number of refined axes. Source code is available at https://github.com/LivNLP/svp-tour .
comment: Findings of EMNLP2025
☆ Collapse of Irrelevant Representations (CIR) Ensures Robust and Non-Disruptive LLM Unlearning
Current unlearning techniques and safety training consistently fail to remove dangerous knowledge from language models. We analyze the root causes and propose a highly selective technique which unlearns robustly and without disrupting general performance. We perform PCA on activations and module output gradients to identify subspaces containing common representations, and collapse them before calculating unlearning updates. This way we avoid unlearning general representations, and only target those specific to the unlearned facts. When unlearning WMDP dataset facts from Llama-3.1-8B, we drop post-attack accuracy 80x more than our best baseline (Circuit Breakers) on biohazardous facts and 30x more on cyberhazardous facts. Despite this, we disrupt general performance 30x less (only 0.1% WikiText loss increase), while requiring less than 3 GPU-seconds per fact.
☆ PledgeTracker: A System for Monitoring the Fulfilment of Pledges EMNLP 2025
Political pledges reflect candidates' policy commitments, but tracking their fulfilment requires reasoning over incremental evidence distributed across multiple, dynamically updated sources. Existing methods simplify this task into a document classification task, overlooking its dynamic, temporal and multi-document nature. To address this issue, we introduce \textsc{PledgeTracker}, a system that reformulates pledge verification into structured event timeline construction. PledgeTracker consists of three core components: (1) a multi-step evidence retrieval module; (2) a timeline construction module and; (3) a fulfilment filtering module, allowing the capture of the evolving nature of pledge fulfilment and producing interpretable and structured timelines. We evaluate PledgeTracker in collaboration with professional fact-checkers in real-world workflows, demonstrating its effectiveness in retrieving relevant evidence and reducing human verification effort.
comment: EMNLP 2025 demo
☆ From Fuzzy Speech to Medical Insight: Benchmarking LLMs on Noisy Patient Narratives
The widespread adoption of large language models (LLMs) in healthcare raises critical questions about their ability to interpret patient-generated narratives, which are often informal, ambiguous, and noisy. Existing benchmarks typically rely on clean, structured clinical text, offering limited insight into model performance under realistic conditions. In this work, we present a novel synthetic dataset designed to simulate patient self-descriptions characterized by varying levels of linguistic noise, fuzzy language, and layperson terminology. Our dataset comprises clinically consistent scenarios annotated with ground-truth diagnoses, spanning a spectrum of communication clarity to reflect diverse real-world reporting styles. Using this benchmark, we fine-tune and evaluate several state-of-the-art models (LLMs), including BERT-based and encoder-decoder T5 models. To support reproducibility and future research, we release the Noisy Diagnostic Benchmark (NDB), a structured dataset of noisy, synthetic patient descriptions designed to stress-test and compare the diagnostic capabilities of large language models (LLMs) under realistic linguistic conditions. We made the benchmark available for the community: https://github.com/lielsheri/PatientSignal
comment: 6 pages, 1 figure
☆ When Curiosity Signals Danger: Predicting Health Crises Through Online Medication Inquiries
Online medical forums are a rich and underutilized source of insight into patient concerns, especially regarding medication use. Some of the many questions users pose may signal confusion, misuse, or even the early warning signs of a developing health crisis. Detecting these critical questions that may precede severe adverse events or life-threatening complications is vital for timely intervention and improving patient safety. This study introduces a novel annotated dataset of medication-related questions extracted from online forums. Each entry is manually labelled for criticality based on clinical risk factors. We benchmark the performance of six traditional machine learning classifiers using TF-IDF textual representations, alongside three state-of-the-art large language model (LLM)-based classification approaches that leverage deep contextual understanding. Our results highlight the potential of classical and modern methods to support real-time triage and alert systems in digital health spaces. The curated dataset is made publicly available to encourage further research at the intersection of patient-generated data, natural language processing, and early warning systems for critical health events. The dataset and benchmark are available at: https://github.com/Dvora-coder/LLM-Medication-QA-Risk-Classifier-MediGuard.
comment: 5 pages, 2 figures
☆ User eXperience Perception Insights Dataset (UXPID): Synthetic User Feedback from Public Industrial Forums
Customer feedback in industrial forums reflect a rich but underexplored source of insight into real-world product experience. These publicly shared discussions offer an organic view of user expectations, frustrations, and success stories shaped by the specific contexts of use. Yet, harnessing this information for systematic analysis remains challenging due to the unstructured and domain-specific nature of the content. The lack of structure and specialized vocabulary makes it difficult for traditional data analysis techniques to accurately interpret, categorize, and quantify the feedback, thereby limiting its potential to inform product development and support strategies. To address these challenges, this paper presents the User eXperience Perception Insights Dataset (UXPID), a collection of 7130 artificially synthesized and anonymized user feedback branches extracted from a public industrial automation forum. Each JavaScript object notation (JSON) record contains multi-post comments related to specific hardware and software products, enriched with metadata and contextual conversation data. Leveraging a large language model (LLM), each branch is systematically analyzed and annotated for UX insights, user expectations, severity and sentiment ratings, and topic classifications. The UXPID dataset is designed to facilitate research in user requirements, user experience (UX) analysis, and AI-driven feedback processing, particularly where privacy and licensing restrictions limit access to real-world data. UXPID supports the training and evaluation of transformer-based models for tasks such as issue detection, sentiment analysis, and requirements extraction in the context of technical forums.
☆ An Agentic Toolkit for Adaptive Information Extraction from Regulatory Documents
Declaration of Performance (DoP) documents, mandated by EU regulation, certify the performance of construction products. While some of their content is standardized, DoPs vary widely in layout, language, schema, and format, posing challenges for automated key-value pair extraction (KVP) and question answering (QA). Existing static or LLM-only IE pipelines often hallucinate and fail to adapt to this structural diversity. Our domain-specific, stateful agentic system addresses these challenges through a planner-executor-responder architecture. The system infers user intent, detects document modality, and orchestrates tools dynamically for robust, traceable reasoning while avoiding tool misuse or execution loops. Evaluation on a curated DoP dataset demonstrates improved robustness across formats and languages, offering a scalable solution for structured data extraction in regulated workflows.
☆ Room acoustics affect communicative success in hybrid meeting spaces: a pilot study
Since the COVID-19 pandemic in 2020, universities and companies have increasingly integrated hybrid features into their meeting spaces, or even created dedicated rooms for this purpose. While the importance of a fast and stable internet connection is often prioritized, the acoustic design of seminar rooms is frequently overlooked. Poor acoustics, particularly excessive reverberation, can lead to issues such as misunderstandings, reduced speech intelligibility or cognitive and vocal fatigue. This pilot study investigates whether room acoustic interventions in a seminar room at Graz University of Technology support better communication in hybrid meetings. For this purpose, we recorded two groups of persons twice, once before and once after improving the acoustics of the room. Our findings -- despite not reaching statistical significance due to the small sample size - indicate clearly that our spatial interventions improve communicative success in hybrid meetings. To make the paper accessible also for readers from the speech communication community, we explain room acoustics background, relevant for the interpretation of our results.
☆ CoachMe: Decoding Sport Elements with a Reference-Based Coaching Instruction Generation Model ACL 2025
Motion instruction is a crucial task that helps athletes refine their technique by analyzing movements and providing corrective guidance. Although recent advances in multimodal models have improved motion understanding, generating precise and sport-specific instruction remains challenging due to the highly domain-specific nature of sports and the need for informative guidance. We propose CoachMe, a reference-based model that analyzes the differences between a learner's motion and a reference under temporal and physical aspects. This approach enables both domain-knowledge learning and the acquisition of a coach-like thinking process that identifies movement errors effectively and provides feedback to explain how to improve. In this paper, we illustrate how CoachMe adapts well to specific sports such as skating and boxing by learning from general movements and then leveraging limited data. Experiments show that CoachMe provides high-quality instructions instead of directions merely in the tone of a coach but without critical information. CoachMe outperforms GPT-4o by 31.6% in G-Eval on figure skating and by 58.3% on boxing. Analysis further confirms that it elaborates on errors and their corresponding improvement methods in the generated instructions. You can find CoachMe here: https://motionxperts.github.io/
comment: Published in Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), ACL 2025. Official version: https://doi.org/10.18653/v1/2025.acl-long.1413
☆ A Dynamic Knowledge Update-Driven Model with Large Language Models for Fake News Detection
As the Internet and social media evolve rapidly, distinguishing credible news from a vast amount of complex information poses a significant challenge. Due to the suddenness and instability of news events, the authenticity labels of news can potentially shift as events develop, making it crucial for fake news detection to obtain the latest event updates. Existing methods employ retrieval-augmented generation to fill knowledge gaps, but they suffer from issues such as insufficient credibility of retrieved content and interference from noisy information. We propose a dynamic knowledge update-driven model for fake news detection (DYNAMO), which leverages knowledge graphs to achieve continuous updating of new knowledge and integrates with large language models to fulfill dual functions: news authenticity detection and verification of new knowledge correctness, solving the two key problems of ensuring the authenticity of new knowledge and deeply mining news semantics. Specifically, we first construct a news-domain-specific knowledge graph. Then, we use Monte Carlo Tree Search to decompose complex news and verify them step by step. Finally, we extract and update new knowledge from verified real news texts and reasoning paths. Experimental results demonstrate that DYNAMO achieves the best performance on two real-world datasets.
☆ Measuring Visual Understanding in Telecom domain: Performance Metrics for Image-to-UML conversion using VLMs
Telecom domain 3GPP documents are replete with images containing sequence diagrams. Advances in Vision-Language Large Models (VLMs) have eased conversion of such images to machine-readable PlantUML (puml) formats. However, there is a gap in evaluation of such conversions - existing works do not compare puml scripts for various components. In this work, we propose performance metrics to measure the effectiveness of such conversions. A dataset of sequence diagrams from 3GPP documents is chosen to be representative of domain-specific actual scenarios. We compare puml outputs from two VLMs - Claude Sonnet and GPT-4V - against manually created ground truth representations. We use version control tools to capture differences and introduce standard performance metrics to measure accuracies along various components: participant identification, message flow accuracy, sequence ordering, and grouping construct preservation. We demonstrate effectiveness of proposed metrics in quantifying conversion errors across various components of puml scripts. The results show that nodes, edges and messages are accurately captured. However, we observe that VLMs do not necessarily perform well on complex structures such as notes, box, groups. Our experiments and performance metrics indicates a need for better representation of these components in training data for fine-tuned VLMs.
☆ MindVL: Towards Efficient and Effective Training of Multimodal Large Language Models on Ascend NPUs
We propose MindVL, a multimodal large langauge model trained on Ascend NPUs. Similar to Qwen2.5-VL, MindVL adopts native-resolution Vision Transformers, which enables it to process images at their original variable resolutions. This design avoids the degradation caused by fixed-resolution tiling while preserving fine-grained details and global layouts, which is crucial for visually dense content such as complex charts and diagrams. To ensure the smooth training of MindVL on Ascend NPUs, we develop Mindspeed-MLLM, a distributed multimodal training framework tailored for Ascend NPUs. To maintain training accuracy, we implement equivalent replacements for certain operators. MindVL undergoes a three-phase training process, namely the warm-up phase, multitask training phase, and supervised instruction tuning phase, to gradually enhance its capabilities. This process starts with basic visual and multimodal pre-training, followed by large-scale multiask trainging and instruction tuning. We also adopt multimodal data packaging and hybrid parallelism techniques, which significantly improve end-to-end training speed. To further boost model performance, we specifically introduce test-time resolution search and model weight averaging. Notably, despite using about 1/10 of the training data required by Qwen2.5-VL, MindVL achieves performance on par with Qwen2.5-VL in evaluations of general multimodal understanding and document/table comprehension. Beyond overall scores, MindVL also delivers leading performance in OCR assessments.
☆ MALLM: Multi-Agent Large Language Models Framework EMNLP 2025
Multi-agent debate (MAD) has demonstrated the ability to augment collective intelligence by scaling test-time compute and leveraging expertise. Current frameworks for multi-agent debate are often designed towards tool use, lack integrated evaluation, or provide limited configurability of agent personas, response generators, discussion paradigms, and decision protocols. We introduce MALLM (Multi-Agent Large Language Models), an open-source framework that enables systematic analysis of MAD components. MALLM offers more than 144 unique configurations of MAD, including (1) agent personas (e.g., Expert, Personality), (2) response generators (e.g., Critical, Reasoning), (3) discussion paradigms (e.g., Memory, Relay), and (4) decision protocols (e.g., Voting, Consensus). MALLM uses simple configuration files to define a debate. Furthermore, MALLM can load any textual Huggingface dataset (e.g., MMLU-Pro, WinoGrande) and provides an evaluation pipeline for easy comparison of MAD configurations. MALLM is tailored towards researchers and provides a window into the heart of multi-agent debate, facilitating the understanding of its components and their interplay.
comment: Accepted at EMNLP 2025 (Demo)
☆ EthicsMH: A Pilot Benchmark for Ethical Reasoning in Mental Health AI
The deployment of large language models (LLMs) in mental health and other sensitive domains raises urgent questions about ethical reasoning, fairness, and responsible alignment. Yet, existing benchmarks for moral and clinical decision-making do not adequately capture the unique ethical dilemmas encountered in mental health practice, where confidentiality, autonomy, beneficence, and bias frequently intersect. To address this gap, we introduce Ethical Reasoning in Mental Health (EthicsMH), a pilot dataset of 125 scenarios designed to evaluate how AI systems navigate ethically charged situations in therapeutic and psychiatric contexts. Each scenario is enriched with structured fields, including multiple decision options, expert-aligned reasoning, expected model behavior, real-world impact, and multi-stakeholder viewpoints. This structure enables evaluation not only of decision accuracy but also of explanation quality and alignment with professional norms. Although modest in scale and developed with model-assisted generation, EthicsMH establishes a task framework that bridges AI ethics and mental health decision-making. By releasing this dataset, we aim to provide a seed resource that can be expanded through community and expert contributions, fostering the development of AI systems capable of responsibly handling some of society's most delicate decisions.
☆ AesBiasBench: Evaluating Bias and Alignment in Multimodal Language Models for Personalized Image Aesthetic Assessment EMNLP 2025
Multimodal Large Language Models (MLLMs) are increasingly applied in Personalized Image Aesthetic Assessment (PIAA) as a scalable alternative to expert evaluations. However, their predictions may reflect subtle biases influenced by demographic factors such as gender, age, and education. In this work, we propose AesBiasBench, a benchmark designed to evaluate MLLMs along two complementary dimensions: (1) stereotype bias, quantified by measuring variations in aesthetic evaluations across demographic groups; and (2) alignment between model outputs and genuine human aesthetic preferences. Our benchmark covers three subtasks (Aesthetic Perception, Assessment, Empathy) and introduces structured metrics (IFD, NRD, AAS) to assess both bias and alignment. We evaluate 19 MLLMs, including proprietary models (e.g., GPT-4o, Claude-3.5-Sonnet) and open-source models (e.g., InternVL-2.5, Qwen2.5-VL). Results indicate that smaller models exhibit stronger stereotype biases, whereas larger models align more closely with human preferences. Incorporating identity information often exacerbates bias, particularly in emotional judgments. These findings underscore the importance of identity-aware evaluation frameworks in subjective vision-language tasks.
comment: Accepted by EMNLP 2025
☆ HalluDetect: Detecting, Mitigating, and Benchmarking Hallucinations in Conversational Systems
Large Language Models (LLMs) are widely used in industry but remain prone to hallucinations, limiting their reliability in critical applications. This work addresses hallucination reduction in consumer grievance chatbots built using LLaMA 3.1 8B Instruct, a compact model frequently used in industry. We develop HalluDetect, an LLM-based hallucination detection system that achieves an F1 score of 69% outperforming baseline detectors by 25.44%. Benchmarking five chatbot architectures, we find that out of them, AgentBot minimizes hallucinations to 0.4159 per turn while maintaining the highest token accuracy (96.13%), making it the most effective mitigation strategy. Our findings provide a scalable framework for hallucination mitigation, demonstrating that optimized inference strategies can significantly improve factual accuracy. While applied to consumer law, our approach generalizes to other high-risk domains, enhancing trust in LLM-driven assistants. We will release the code and dataset
comment: 6 pages + references + appendix, 3 figures, 2 tables
☆ Dynamic Span Interaction and Graph-Aware Memory for Entity-Level Sentiment Classification
Entity-level sentiment classification involves identifying the sentiment polarity linked to specific entities within text. This task poses several challenges: effectively modeling the subtle and complex interactions between entities and their surrounding sentiment expressions; capturing dependencies that may span across sentences; and ensuring consistent sentiment predictions for multiple mentions of the same entity through coreference resolution. Additionally, linguistic phenomena such as negation, ambiguity, and overlapping opinions further complicate the analysis. These complexities make entity-level sentiment classification a difficult problem, especially in real-world, noisy textual data. To address these issues, we propose SpanEIT, a novel framework integrating dynamic span interaction and graph-aware memory mechanisms for enhanced entity-sentiment relational modeling. SpanEIT builds span-based representations for entities and candidate sentiment phrases, employs bidirectional attention for fine-grained interactions, and uses a graph attention network to capture syntactic and co-occurrence relations. A coreference-aware memory module ensures entity-level consistency across documents. Experiments on FSAD, BARU, and IMDB datasets show SpanEIT outperforms state-of-the-art transformer and hybrid baselines in accuracy and F1 scores. Ablation and interpretability analyses validate the effectiveness of our approach, underscoring its potential for fine-grained sentiment analysis in applications like social media monitoring and customer feedback analysis.
☆ Analyzing Information-Seeking Behaviors in a Hakka AI Chatbot: A Cognitive-Pragmatic Study
With many endangered languages at risk of disappearing, efforts to preserve them now rely more than ever on using technology alongside culturally informed teaching strategies. This study examines user behaviors in TALKA, a generative AI-powered chatbot designed for Hakka language engagement, by employing a dual-layered analytical framework grounded in Bloom's Taxonomy of cognitive processes and dialogue act categorization. We analyzed 7,077 user utterances, each carefully annotated according to six cognitive levels and eleven dialogue act types. These included a variety of functions, such as asking for information, requesting translations, making cultural inquiries, and using language creatively. Pragmatic classifications further highlight how different types of dialogue acts--such as feedback, control commands, and social greetings--align with specific cognitive intentions. The results suggest that generative AI chatbots can support language learning in meaningful ways--especially when they are designed with an understanding of how users think and communicate. They may also help learners express themselves more confidently and connect with their cultural identity. The TALKA case provides empirical insights into how AI-mediated dialogue facilitates cognitive development in low-resource language learners, as well as pragmatic negotiation and socio-cultural affiliation. By focusing on AI-assisted language learning, this study offers new insights into how technology can support language preservation and educational practice.
comment: Accepted to HICSS-59 (2026)
☆ Formal Reasoning for Intelligent QA Systems: A Case Study in the Educational Domain
Reasoning is essential for closed-domain QA systems in which procedural correctness and policy compliance are critical. While large language models (LLMs) have shown strong performance on many reasoning tasks, recent work reveals that their reasoning traces are often unfaithful - serving more as plausible justifications than as causally grounded derivations. Efforts to combine LLMs with symbolic engines (e.g., Prover9, Z3) have improved reliability but remain limited to static forms of logic, struggling with dynamic, state-based reasoning such as multi-step progressions and conditional transitions. In this paper, we propose MCFR (Model Checking for Formal Reasoning), a neuro-symbolic framework that integrates LLMs with model checking to support property verification. MCFR translates natural language into formal specifications and verifies them over transition models. To support evaluation, we introduce EduMC-QA, a benchmark dataset grounded in real academic procedures. Our results show that MCFR improves reasoning faithfulness and interpretability, offering a viable path toward verifiable QA in high-stakes closed-domain applications. In addition to evaluating MCFR, we compare its performance with state-of-the-art LLMs such as ChatGPT, DeepSeek, and Claude to contextualize its effectiveness.
comment: Published at the 2nd ACM Workshop in AI-powered Question & Answering Systems (AIQAM '25), co-located with ACM Multimedia 2025
☆ Bhaasha, Bhasa, Zaban: A Survey for Low-Resourced Languages in South Asia -- Current Stage and Challenges
Rapid developments of large language models have revolutionized many NLP tasks for English data. Unfortunately, the models and their evaluations for low-resource languages are being overlooked, especially for languages in South Asia. Although there are more than 650 languages in South Asia, many of them either have very limited computational resources or are missing from existing language models. Thus, a concrete question to be answered is: Can we assess the current stage and challenges to inform our NLP community and facilitate model developments for South Asian languages? In this survey, we have comprehensively examined current efforts and challenges of NLP models for South Asian languages by retrieving studies since 2020, with a focus on transformer-based models, such as BERT, T5, & GPT. We present advances and gaps across 3 essential aspects: data, models, & tasks, such as available data sources, fine-tuning strategies, & domain applications. Our findings highlight substantial issues, including missing data in critical domains (e.g., health), code-mixing, and lack of standardized evaluation benchmarks. Our survey aims to raise awareness within the NLP community for more targeted data curation, unify benchmarks tailored to cultural and linguistic nuances of South Asia, and encourage an equitable representation of South Asian languages. The complete list of resources is available at: https://github.com/trust-nlp/LM4SouthAsia-Survey.
☆ D$^2$HScore: Reasoning-Aware Hallucination Detection via Semantic Breadth and Depth Analysis in LLMs
Although large Language Models (LLMs) have achieved remarkable success, their practical application is often hindered by the generation of non-factual content, which is called "hallucination". Ensuring the reliability of LLMs' outputs is a critical challenge, particularly in high-stakes domains such as finance, security, and healthcare. In this work, we revisit hallucination detection from the perspective of model architecture and generation dynamics. Leveraging the multi-layer structure and autoregressive decoding process of LLMs, we decompose hallucination signals into two complementary dimensions: the semantic breadth of token representations within each layer, and the semantic depth of core concepts as they evolve across layers. Based on this insight, we propose \textbf{D$^2$HScore (Dispersion and Drift-based Hallucination Score)}, a training-free and label-free framework that jointly measures: (1) \textbf{Intra-Layer Dispersion}, which quantifies the semantic diversity of token representations within each layer; and (2) \textbf{Inter-Layer Drift}, which tracks the progressive transformation of key token representations across layers. To ensure drift reflects the evolution of meaningful semantics rather than noisy or redundant tokens, we guide token selection using attention signals. By capturing both the horizontal and vertical dynamics of representation during inference, D$^2$HScore provides an interpretable and lightweight proxy for hallucination detection. Extensive experiments across five open-source LLMs and five widely used benchmarks demonstrate that D$^2$HScore consistently outperforms existing training-free baselines.
comment: under review
☆ HiChunk: Evaluating and Enhancing Retrieval-Augmented Generation with Hierarchical Chunking
Retrieval-Augmented Generation (RAG) enhances the response capabilities of language models by integrating external knowledge sources. However, document chunking as an important part of RAG system often lacks effective evaluation tools. This paper first analyzes why existing RAG evaluation benchmarks are inadequate for assessing document chunking quality, specifically due to evidence sparsity. Based on this conclusion, we propose HiCBench, which includes manually annotated multi-level document chunking points, synthesized evidence-dense quetion answer(QA) pairs, and their corresponding evidence sources. Additionally, we introduce the HiChunk framework, a multi-level document structuring framework based on fine-tuned LLMs, combined with the Auto-Merge retrieval algorithm to improve retrieval quality. Experiments demonstrate that HiCBench effectively evaluates the impact of different chunking methods across the entire RAG pipeline. Moreover, HiChunk achieves better chunking quality within reasonable time consumption, thereby enhancing the overall performance of RAG systems.
comment: 17 pages, 5 figures, 6 tables
☆ HARP: Hallucination Detection via Reasoning Subspace Projection
Hallucinations in Large Language Models (LLMs) pose a major barrier to their reliable use in critical decision-making. Although existing hallucination detection methods have improved accuracy, they still struggle with disentangling semantic and reasoning information and maintaining robustness. To address these challenges, we propose HARP (Hallucination detection via reasoning subspace projection), a novel hallucination detection framework. HARP establishes that the hidden state space of LLMs can be decomposed into a direct sum of a semantic subspace and a reasoning subspace, where the former encodes linguistic expression and the latter captures internal reasoning processes. Moreover, we demonstrate that the Unembedding layer can disentangle these subspaces, and by applying Singular Value Decomposition (SVD) to its parameters, the basis vectors spanning the semantic and reasoning subspaces are obtained. Finally, HARP projects hidden states onto the basis vectors of the reasoning subspace, and the resulting projections are then used as input features for hallucination detection in LLMs. By using these projections, HARP reduces the dimension of the feature to approximately 5% of the original, filters out most noise, and achieves enhanced robustness. Experiments across multiple datasets show that HARP achieves state-of-the-art hallucination detection performance; in particular, it achieves an AUROC of 92.8% on TriviaQA, outperforming the previous best method by 7.5%.
☆ On the Distinctive Co-occurrence Characteristics of Antonymy
Antonymy has long received particular attention in lexical semantics. Previous studies have shown that antonym pairs frequently co-occur in text, across genres and parts of speech, more often than would be expected by chance. However, whether this co-occurrence pattern is distinctive of antonymy remains unclear, due to a lack of comparison with other semantic relations. This work fills the gap by comparing antonymy with three other relations across parts of speech using robust co-occurrence metrics. We find that antonymy is distinctive in three respects: antonym pairs co-occur with high strength, in a preferred linear order, and within short spans. All results are available online.
comment: Accepted by *SEM 2025
☆ PeruMedQA: Benchmarking Large Language Models (LLMs) on Peruvian Medical Exams -- Dataset Construction and Evaluation
BACKGROUND: Medical large language models (LLMS) have demonstrated remarkable performance in answering medical examinations. However, the extent to which this high performance is transferable to medical questions in Spanish and from a Latin American country remains unexplored. This knowledge is crucial as LLM-based medical applications gain traction in Latin America. AIMS: to build a dataset of questions from medical examinations taken by Peruvian physicians pursuing specialty training; to fine-tune a LLM on this dataset; to evaluate and compare the performance in terms of accuracy between vanilla LLMs and the fine-tuned LLM. METHODS: We curated PeruMedQA, a multiple-choice question-answering (MCQA) datasets containing 8,380 questions spanning 12 medical domains (2018-2025). We selected eight medical LLMs including medgemma-4b-it and medgemma-27b-text-it, and developed zero-shot task-specific prompts to answer the questions appropriately. We employed parameter-efficient fine tuning (PEFT)and low-rant adaptation (LoRA) to fine-tune medgemma-4b-it utilizing all questions except those from 2025 (test set). RESULTS: medgemma-27b-text-it outperformed all other models, achieving a proportion of correct answers exceeding 90% in several instances. LLMs with <10 billion parameters exhibited <60% of correct answers, while some exams yielded results <50%. The fine-tuned version of medgemma-4b-it emerged victorious agains all LLMs with <10 billion parameters and rivaled a LLM with 70 billion parameters across various examinations. CONCLUSIONS: For medical AI application and research that require knowledge bases from Spanish-speaking countries and those exhibiting similar epidemiological profiles to Peru's, interested parties should utilize medgemma-27b-text-it or a fine-tuned version of medgemma-4b-it.
comment: https://github.com/rodrigo-carrillo/PeruMedQA
☆ LVLMs are Bad at Overhearing Human Referential Communication EMNLP 2025
During spontaneous conversations, speakers collaborate on novel referring expressions, which they can then re-use in subsequent conversations. Understanding such referring expressions is an important ability for an embodied agent, so that it can carry out tasks in the real world. This requires integrating and understanding language, vision, and conversational interaction. We study the capabilities of seven state-of-the-art Large Vision Language Models (LVLMs) as overhearers to a corpus of spontaneous conversations between pairs of human discourse participants engaged in a collaborative object-matching task. We find that such a task remains challenging for current LVLMs and they all fail to show a consistent performance improvement as they overhear more conversations from the same discourse participants repeating the same task for multiple rounds. We release our corpus and code for reproducibility and to facilitate future research.
comment: EMNLP 2025 (Main)
☆ Unsupervised Candidate Ranking for Lexical Substitution via Holistic Sentence Semantics
A key subtask in lexical substitution is ranking the given candidate words. A common approach is to replace the target word with a candidate in the original sentence and feed the modified sentence into a model to capture semantic differences before and after substitution. However, effectively modeling the bidirectional influence of candidate substitution on both the target word and its context remains challenging. Existing methods often focus solely on semantic changes at the target position or rely on parameter tuning over multiple evaluation metrics, making it difficult to accurately characterize semantic variation. To address this, we investigate two approaches: one based on attention weights and another leveraging the more interpretable integrated gradients method, both designed to measure the influence of context tokens on the target token and to rank candidates by incorporating semantic similarity between the original and substituted sentences. Experiments on the LS07 and SWORDS datasets demonstrate that both approaches improve ranking performance.
☆ DeDisCo at the DISRPT 2025 Shared Task: A System for Discourse Relation Classification EMNLP 2025
This paper presents DeDisCo, Georgetown University's entry in the DISRPT 2025 shared task on discourse relation classification. We test two approaches, using an mt5-based encoder and a decoder based approach using the openly available Qwen model. We also experiment on training with augmented dataset for low-resource languages using matched data translated automatically from English, as well as using some additional linguistic features inspired by entries in previous editions of the Shared Task. Our system achieves a macro-accuracy score of 71.28, and we provide some interpretation and error analysis for our results.
comment: System submission for the DISRPT 2025 - Shared Task on Discourse Relation Parsing and Treebanking In conjunction with CODI-CRAC & EMNLP 2025. 1st place in Task 3: relation classification
☆ AKCIT-FN at CheckThat! 2025: Switching Fine-Tuned SLMs and LLM Prompting for Multilingual Claim Normalization
Claim normalization, the transformation of informal social media posts into concise, self-contained statements, is a crucial step in automated fact-checking pipelines. This paper details our submission to the CLEF-2025 CheckThat! Task~2, which challenges systems to perform claim normalization across twenty languages, divided into thirteen supervised (high-resource) and seven zero-shot (no training data) tracks. Our approach, leveraging fine-tuned Small Language Models (SLMs) for supervised languages and Large Language Model (LLM) prompting for zero-shot scenarios, achieved podium positions (top three) in fifteen of the twenty languages. Notably, this included second-place rankings in eight languages, five of which were among the seven designated zero-shot languages, underscoring the effectiveness of our LLM-based zero-shot strategy. For Portuguese, our initial development language, our system achieved an average METEOR score of 0.5290, ranking third. All implementation artifacts, including inference, training, evaluation scripts, and prompt configurations, are publicly available at https://github.com/ju-resplande/checkthat2025_normalization.
comment: 15 pages, 2 figures
☆ ClaimIQ at CheckThat! 2025: Comparing Prompted and Fine-Tuned Language Models for Verifying Numerical Claims
This paper presents our system for Task 3 of the CLEF 2025 CheckThat! Lab, which focuses on verifying numerical and temporal claims using retrieved evidence. We explore two complementary approaches: zero-shot prompting with instruction-tuned large language models (LLMs) and supervised fine-tuning using parameter-efficient LoRA. To enhance evidence quality, we investigate several selection strategies, including full-document input and top-k sentence filtering using BM25 and MiniLM. Our best-performing model LLaMA fine-tuned with LoRA achieves strong performance on the English validation set. However, a notable drop in the test set highlights a generalization challenge. These findings underscore the importance of evidence granularity and model adaptation for robust numerical fact verification.
comment: Notebook for the CheckThat! Lab at CLEF 2025
♻ ☆ Speak-to-Structure: Evaluating LLMs in Open-domain Natural Language-Driven Molecule Generation
Recently, Large Language Models (LLMs) have shown great potential in natural language-driven molecule discovery. However, existing datasets and benchmarks for molecule-text alignment are predominantly built on a one-to-one mapping, measuring LLMs' ability to retrieve a single, pre-defined answer, rather than their creative potential to generate diverse, yet equally valid, molecular candidates. To address this critical gap, we propose Speak-to-Structure (S^2-Bench}), the first benchmark to evaluate LLMs in open-domain natural language-driven molecule generation. S^2-Bench is specifically designed for one-to-many relationships, challenging LLMs to demonstrate genuine molecular understanding and generation capabilities. Our benchmark includes three key tasks: molecule editing (MolEdit), molecule optimization (MolOpt), and customized molecule generation (MolCustom), each probing a different aspect of molecule discovery. We also introduce OpenMolIns, a large-scale instruction tuning dataset that enables Llama-3.1-8B to surpass the most powerful LLMs like GPT-4o and Claude-3.5 on S^2-Bench. Our comprehensive evaluation of 28 LLMs shifts the focus from simple pattern recall to realistic molecular design, paving the way for more capable LLMs in natural language-driven molecule discovery.
comment: Our codes and datasets are available through https://github.com/phenixace/TOMG-Bench
♻ ☆ Active Layer-Contrastive Decoding Reduces Hallucination in Large Language Model Generation EMNLP 2025
Recent decoding methods improve the factuality of large language models (LLMs) by refining how the next token is selected during generation. These methods typically operate at the token level, leveraging internal representations to suppress superficial patterns. Nevertheless, LLMs remain prone to hallucinations, especially over longer contexts. In this paper, we propose Active Layer-Contrastive Decoding (ActLCD), a novel decoding strategy that actively decides when to apply contrasting layers during generation. By casting decoding as a sequential decision-making problem, ActLCD employs a reinforcement learning policy guided by a reward-aware classifier to optimize factuality beyond the token level. Our experiments demonstrate that ActLCD surpasses state-of-the-art methods across five benchmarks, showcasing its effectiveness in mitigating hallucinations in diverse generation scenarios.
comment: 19 pages, 3 figures, EMNLP 2025
♻ ☆ Time is On My Side: Dynamics of Talk-Time Sharing in Video-chat Conversations SC
An intrinsic aspect of every conversation is the way talk-time is shared between multiple speakers. Conversations can be balanced, with each speaker claiming a similar amount of talk-time, or imbalanced when one talks disproportionately. Such overall distributions are the consequence of continuous negotiations between the speakers throughout the conversation: who should be talking at every point in time, and for how long? In this work we introduce a computational framework for quantifying both the conversation-level distribution of talk-time between speakers, as well as the lower-level dynamics that lead to it. We derive a typology of talk-time sharing dynamics structured by several intuitive axes of variation. By applying this framework to a large dataset of video-chats between strangers, we confirm that, perhaps unsurprisingly, different conversation-level distributions of talk-time are perceived differently by speakers, with balanced conversations being preferred over imbalanced ones, especially by those who end up talking less. Then we reveal that -- even when they lead to the same level of overall balance -- different types of talk-time sharing dynamics are perceived differently by the participants, highlighting the relevance of our newly introduced typology. Finally, we discuss how our framework offers new tools to designers of computer-mediated communication platforms, for both human-human and human-AI communication.
comment: Accepted for publication at CSCW 2025. Code and data available in ConvoKit (https://convokit.cornell.edu)
♻ ☆ Is In-Context Learning Learning?
In-context learning (ICL) allows some autoregressive models to solve tasks via next-token prediction and without needing further training. This has led to claims about these model's ability to solve (learn) unseen tasks with only a few shots (exemplars) in the prompt. However, deduction does not always imply learning, as ICL does not explicitly encode a given observation. Instead, the models rely on their prior knowledge and the exemplars given, if any. We argue that, mathematically, ICL does constitute learning, but its full characterisation requires empirical work. We then carry out a large-scale analysis of ICL ablating out or accounting for memorisation, pretraining, distributional shifts, and prompting style and phrasing. We find that ICL is an effective learning paradigm, but limited in its ability to learn and generalise to unseen tasks. We note that, in the limit where exemplars become more numerous, accuracy is insensitive to exemplar distribution, model, prompt style, and the input's linguistic features. Instead, it deduces patterns from regularities in the prompt, which leads to distributional sensitivity, especially in prompting styles such as chain-of-thought. Given the varied accuracies on formally similar tasks, we conclude that autoregression's ad-hoc encoding is not a robust mechanism, and suggests limited all-purpose generalisability.
comment: Director's cut
♻ ☆ Hopscotch: Discovering and Skipping Redundancies in Language Models
Modern causal language models stack many attention blocks to improve performance, but not all blocks are necessary for every task. We propose Hopscotch, a simple yet effective method that identifies and skips attention blocks with least contributions to a task and adapts to preserve output quality. Hopscotch jointly optimizes which blocks to skip and how to scale the outputs of the remaining layers. By introducing lightweight, trainable scaling parameters to attention and MLP blocks, it mitigates distribution shifts in hidden states caused by removing attention blocks. Hopscotch does not modify model weights or require access to pretraining or instruction-tuning data, and is compatible with existing model compression techniques. When applied to $\texttt{Llama-3.1-8B}$ and $\texttt{Qwen2.5-7B}$, Hopscotch achieves less than a 2% drop in performance even after skipping four attention blocks.
comment: 10 pages, 4 figures, 9 tables
♻ ☆ Are Generative Models Underconfident? Better Quality Estimation with Boosted Model Probability EMNLP 2025
Quality Estimation (QE) is estimating quality of the model output during inference when the ground truth is not available. Deriving output quality from the models' output probability is the most trivial and low-effort way. However, we show that the output probability of text-generation models can appear underconfident. At each output step, there can be multiple correct options, making the probability distribution spread out more. Thus, lower probability does not necessarily mean lower output quality. Due to this observation, we propose a QE approach called BoostedProb, which boosts the model's confidence in cases where there are multiple viable output options. With no increase in complexity, BoostedProb is notably better than raw model probability in different settings, achieving on average +0.194 improvement in Pearson correlation to ground-truth quality. It also comes close to or outperforms more costly approaches like supervised or ensemble-based QE in certain settings.
comment: Accepted to EMNLP 2025 Main Conference
♻ ☆ MTalk-Bench: Evaluating Speech-to-Speech Models in Multi-Turn Dialogues via Arena-style and Rubrics Protocols
The rapid advancement of speech-to-speech (S2S) large language models (LLMs) has significantly improved real-time spoken interaction. However, current evaluation frameworks remain inadequate for assessing performance in complex, multi-turn dialogues. To address this, we introduce MTalk-Bench, a multi-turn S2S benchmark covering three core dimensions: Semantic Information, Paralinguistic Information, and Ambient Sound. Each dimension includes nine realistic scenarios, along with targeted tasks to assess specific capabilities such as reasoning. Our dual-method evaluation framework combines Arena-style evaluation (pairwise comparison) and Rubrics-based evaluation (absolute scoring) for relative and absolute assessment. The benchmark includes both model and human outputs, evaluated by human evaluators and LLMs. Experimental results reveal two sets of findings. Overall performance of S2S LLMs: (1) models excel at semantic information processing yet underperform on paralinguistic information and ambient sounds perception; (2) models typically regain coherence by increasing response length, sacrificing efficiency in multi-turn dialogues; (3) modality-aware, task-specific designs outperform brute scaling. Evaluation framework and reliability: (1) Arena and Rubrics yield consistent, complementary rankings, but reliable distinctions emerge only when performance gaps are large; (2) LLM-as-a-judge aligns with humans when gaps are clear or criteria explicit, but exhibits position and length biases and is reliable on nonverbal evaluation only with text annotations. These results highlight current limitations in S2S evaluation and the need for more robust, speech-aware assessment frameworks.
♻ ☆ GmSLM : Generative Marmoset Spoken Language Modeling
Marmoset monkeys exhibit complex vocal communication, challenging the view that nonhuman primates vocal communication is entirely innate, and show similar features of human speech, such as vocal labeling of others and turn-taking. Studying their vocal communication offers a unique opportunity to link it with brain activity-especially given the difficulty of accessing the human brain in speech and language research. Since Marmosets communicate primarily through vocalizations, applying standard LLM approaches is not straightforward. We introduce Generative Marmoset Spoken Language Modeling (GmSLM), an optimized spoken language model pipeline for Marmoset vocal communication. We designed a novel zero-shot evaluation metrics using unsupervised in-the-wild data, alongside weakly labeled conversational data, to assess GmSLM and demonstrate its advantage over a basic human-speech-based baseline. GmSLM generated vocalizations closely matched real resynthesized samples acoustically and performed well on downstream tasks. Despite being fully unsupervised, GmSLM effectively distinguish real from artificial conversations and may support further investigations of the neural basis of vocal communication and provides a practical framework linking vocalization and brain activity. We believe GmSLM stands to benefit future work in neuroscience, bioacoustics, and evolutionary biology. Samples are provided under: pages.cs.huji.ac.il/adiyoss-lab/GmSLM.
♻ ☆ LinguaLens: Towards Interpreting Linguistic Mechanisms of Large Language Models via Sparse Auto-Encoder EMNLP 2025
Large language models (LLMs) demonstrate exceptional performance on tasks requiring complex linguistic abilities, such as reference disambiguation and metaphor recognition/generation. Although LLMs possess impressive capabilities, their internal mechanisms for processing and representing linguistic knowledge remain largely opaque. Prior research on linguistic mechanisms is limited by coarse granularity, limited analysis scale, and narrow focus. In this study, we propose LinguaLens, a systematic and comprehensive framework for analyzing the linguistic mechanisms of large language models, based on Sparse Auto-Encoders (SAEs). We extract a broad set of Chinese and English linguistic features across four dimensions (morphology, syntax, semantics, and pragmatics). By employing counterfactual methods, we construct a large-scale counterfactual dataset of linguistic features for mechanism analysis. Our findings reveal intrinsic representations of linguistic knowledge in LLMs, uncover patterns of cross-layer and cross-lingual distribution, and demonstrate the potential to control model outputs. This work provides a systematic suite of resources and methods for studying linguistic mechanisms, offers strong evidence that LLMs possess genuine linguistic knowledge, and lays the foundation for more interpretable and controllable language modeling in future research.
comment: Accepted by EMNLP 2025 MainConference
♻ ☆ What fifty-one years of Linguistics and Artificial Intelligence research tell us about their correlation: A scientometric analysis
There is a strong correlation between linguistics and artificial intelligence (AI), best manifested by deep learning language models. This study provides a thorough scientometric analysis of this correlation, synthesizing the intellectual production over 51 years, from 1974 to 2024. Web of Science Core Collection (WoSCC) database was the data source. The data collected were analyzed by two powerful software, viz., CiteSpace and VOSviewer, through which mapping visualizations of the intellectual landscape, trending issues and (re)emerging hotspots were generated. The results indicate that in the 1980s and 1990s, linguistics and AI (AIL) research was not robust, characterized by unstable publication over time. It has, however, witnessed a remarkable increase of publication since then, reaching 1478 articles in 2023, and 546 articles in January-March timespan in 2024, involving emerging issues including Natural language processing, Cross-sectional study, Using bidirectional encoder representation, and Using ChatGPT and hotspots such as Novice programmer, Prioritization, and Artificial intelligence, addressing new horizons, new topics, and launching new applications and powerful deep learning language models including ChatGPT. It concludes that linguistics and AI correlation is established at several levels, research centers, journals, and countries shaping AIL knowledge production and reshaping its future frontiers.
comment: 26 pages, 15 figures
♻ ☆ GATEAU: Selecting Influential Samples for Long Context Alignment EMNLP 2025
Aligning large language models to handle instructions with extremely long contexts has yet to be fully investigated. Previous studies have attempted to scale up the available data volume by synthesizing long instruction-following samples, as constructing such a dataset tends to be challenging for annotators. However, a lack of a well-defined strategy for ensuring data quality may introduce low-quality samples and restrict the model's performance. Thus, we propose GATEAU, a novel framework to address the unique challenge of long context alignment by identifying the influential samples enriched with long-range dependency relations. Specifically, GATEAU measures the long-range dependencies from two essential aspects: the difficulty of generating target responses due to the long-range dependencies, and the difficulty of understanding long inputs due to such dependencies. Comprehensive experiments indicate that GATEAU effectively identifies influential samples, and the model trained on these selected samples exhibits better instruction-following and long-context understanding capabilities.
comment: EMNLP 2025
♻ ☆ Plugging Schema Graph into Multi-Table QA: A Human-Guided Framework for Reducing LLM Reliance EMNLP 2025
Large language models (LLMs) have shown promise in table Question Answering (Table QA). However, extending these capabilities to multi-table QA remains challenging due to unreliable schema linking across complex tables. Existing methods based on semantic similarity work well only on simplified hand-crafted datasets and struggle to handle complex, real-world scenarios with numerous and diverse columns. To address this, we propose a graph-based framework that leverages human-curated relational knowledge to explicitly encode schema links and join paths. Given a natural language query, our method searches on graph to construct interpretable reasoning chains, aided by pruning and sub-path merging strategies to enhance efficiency and coherence. Experiments on both standard benchmarks and a realistic, large-scale dataset demonstrate the effectiveness of our approach. To our knowledge, this is the first multi-table QA system applied to truly complex industrial tabular data.
comment: Accepted to EMNLP 2025 findings
♻ ☆ Transformer-Based Multimodal Knowledge Graph Completion with Link-Aware Contexts
Multimodal knowledge graph completion (MMKGC) aims to predict missing links in multimodal knowledge graphs (MMKGs) by leveraging information from various modalities alongside structural data. Existing MMKGC approaches primarily extend traditional knowledge graph embedding (KGE) models, which often require creating an embedding for every entity. This results in large model sizes and inefficiencies in integrating multimodal information, particularly for real-world graphs. Meanwhile, Transformer-based models have demonstrated competitive performance in knowledge graph completion (KGC). However, their focus on single-modal knowledge limits their capacity to utilize cross-modal information. Recently, Large vision-language models (VLMs) have shown potential in cross-modal tasks but are constrained by the high cost of training. In this work, we propose a novel approach that integrates Transformer-based KGE models with cross-modal context generated by pre-trained VLMs, thereby extending their applicability to MMKGC. Specifically, we employ a pre-trained VLM to transform relevant visual information from entities and their neighbors into textual sequences. We then frame KGC as a sequence-to-sequence task, fine-tuning the model with the generated cross-modal context. This simple yet effective method significantly reduces model size compared to traditional KGE approaches while achieving competitive performance across multiple large-scale datasets with minimal hyperparameter tuning.
♻ ☆ Low-rank variational dropout: Uncertainty and rank selection in adapters
Parameter-efficient fine-tuning (PEFT) methods such as LoRA adapt large language models by inserting low-rank adapters, but they leave open two key questions: how to give the adapted model calibrated uncertainty, and how to choose the adapter rank. Existing approaches to uncertainty are typically post-hoc, while rank selection is manual and task-specific. BayesLoRA revisits variational dropout in the LoRA setting and shows that the natural unit of stochasticity is not individual weights but entire ranks of the adapter. By placing rank-wise variational distributions over adapter components, BayesLoRA defines a posterior that (i) yields calibrated predictions through adapter-only Monte Carlo sampling and (ii) prunes redundant ranks automatically via an ARD-style KL term. Theoretical analysis shows that this rank-parameterized posterior localizes uncertainty to the adapted subspace and explains amplification under distribution shift. Empirically, BayesLoRA improves calibration while at the same time producing lighter, faster adapters, removing the need to tune ranks by hand. This dual role of uncertainty estimation and uncertainty-driven pruning suggests BayesLoRA may offer a practical default for reliable and efficient PEFT.
comment: 5 pages, 2 figures
♻ ☆ Can LLMs assist with Ambiguity? A Quantitative Evaluation of various Large Language Models on Word Sense Disambiguation
Ambiguous words are often found in modern digital communications. Lexical ambiguity challenges traditional Word Sense Disambiguation (WSD) methods, due to limited data. Consequently, the efficiency of translation, information retrieval, and question-answering systems is hindered by these limitations. This study investigates the use of Large Language Models (LLMs) to improve WSD using a novel approach combining a systematic prompt augmentation mechanism with a knowledge base (KB) consisting of different sense interpretations. The proposed method incorporates a human-in-loop approach for prompt augmentation where prompt is supported by Part-of-Speech (POS) tagging, synonyms of ambiguous words, aspect-based sense filtering and few-shot prompting to guide the LLM. By utilizing a few-shot Chain of Thought (COT) prompting-based approach, this work demonstrates a substantial improvement in performance. The evaluation was conducted using FEWS test data and sense tags. This research advances accurate word interpretation in social media and digital communication.
comment: 12 pages,6 tables, 1 figure, Proceedings of the 1st International Conference on NLP & AI for Cyber Security
♻ ☆ SmallPlan: Leverage Small Language Models for Sequential Path Planning with Simulation-Powered, LLM-Guided Distillation
Efficient path planning in robotics, particularly within large-scale, complex environments, remains a significant hurdle. While Large Language Models (LLMs) offer strong reasoning capabilities, their high computational cost and limited adaptability hinder real-time deployment on edge devices. We present SmallPlan - a novel framework leveraging LLMs as teacher models to train lightweight Small Language Models (SLMs) for high-level path planning tasks. In SmallPlan, the SLMs provide optimal action sequences to navigate across scene graphs that compactly represent full-scaled 3D scenes. The SLMs are trained in a simulation-powered, interleaved manner with LLM-guided supervised fine-tuning (SFT) and reinforcement learning (RL). This strategy not only enables SLMs to successfully complete navigation tasks but also makes them aware of important factors like distance travel, providing more efficient path planning. Through experiments, we demonstrate that the fine-tuned SLMs perform competitively with larger models like GPT-4o on sequential path planning, without suffering from hallucination and overfitting. SmallPlan is resource-efficient, making it well-suited for edge-device deployment and advancing practical autonomous robotics. Our source code is available here: https://github.com/quangpham2006/SmallPlan
comment: Paper is under review
♻ ☆ LML: A Novel Lexicon for the Moral Foundation of Liberty
The moral value of liberty is a central concept in our inference system when it comes to taking a stance towards controversial social issues such as vaccine hesitancy, climate change, or the right to abortion. Here, we propose a novel Liberty lexicon evaluated on more than 3,000 manually annotated data both in in- and out-of-domain scenarios. As a result of this evaluation, we produce a combined lexicon that constitutes the main outcome of this work. This final lexicon incorporates information from an ensemble of lexicons that have been generated using word embedding similarity (WE) and compositional semantics (CS). Our key contributions include enriching the liberty annotations, developing a robust liberty lexicon for broader application, and revealing the complexity of expressions related to liberty across different platforms. Through the evaluation, we show that the difficulty of the task calls for designing approaches that combine knowledge, in an effort of improving the representations of learning systems.
comment: Published in the 11th International Conference on Machine Learning, Optimization, and Data Science
♻ ☆ Lean Formalization of Generalization Error Bound by Rademacher Complexity
We formalize the generalization error bound using the Rademacher complexity for the Lean 4 theorem prover based on the probability theory in the Mathlib 4 library. Generalization error quantifies the gap between a learning machine's performance on given training data versus unseen test data, and the Rademacher complexity is a powerful tool to upper-bound the generalization error of a variety of modern learning problems. Previous studies have only formalized extremely simple cases such as bounds by parameter counts and analyses for very simple models (decision stumps). Formalizing the Rademacher complexity bound, also known as the uniform law of large numbers, requires substantial development and is achieved for the first time in this study. In the course of development, we formalize the Rademacher complexity and its unique arguments such as symmetrization, and clarify the topological assumptions on hypothesis classes under which the bound holds. As an application, we also present the formalization of generalization error bound for $L^2$-regularization models.
comment: major updated
♻ ☆ LLM as a Broken Telephone: Iterative Generation Distorts Information ACL 2025
As large language models are increasingly responsible for online content, concerns arise about the impact of repeatedly processing their own outputs. Inspired by the "broken telephone" effect in chained human communication, this study investigates whether LLMs similarly distort information through iterative generation. Through translation-based experiments, we find that distortion accumulates over time, influenced by language choice and chain complexity. While degradation is inevitable, it can be mitigated through strategic prompting techniques. These findings contribute to discussions on the long-term effects of AI-mediated information propagation, raising important questions about the reliability of LLM-generated content in iterative workflows.
comment: Accepted to ACL 2025, Main Conference
♻ ☆ Chain of Strategy Optimization Makes Large Language Models Better Emotional Supporter
The growing emotional stress in modern society has increased the demand for Emotional Support Conversations (ESC). While Large Language Models (LLMs) show promise for ESC, they face two key challenges: (1) low strategy selection accuracy, and (2) preference bias, limiting their adaptability to emotional needs of users. Existing supervised fine-tuning (SFT) struggles to address these issues, as it rigidly trains models on single gold-standard responses without modeling nuanced strategy trade-offs. To overcome these limitations, we propose Chain-of-Strategy Optimization (CSO), a novel approach that optimizes strategy selection preferences at each dialogue turn. We first leverage Monte Carlo Tree Search to construct ESC-Pro, a high-quality preference dataset with turn-level strategy-response pairs. Training on ESC-Pro with CSO improves both strategy accuracy and bias mitigation, enabling LLMs to generate more empathetic and contextually appropriate responses. Experiments on LLaMA-3.1-8B, Gemma-2-9B, and Qwen2.5-7B demonstrate that CSO outperforms standard SFT, highlighting the efficacy of fine-grained, turn-level preference modeling in ESC.
comment: 21 pages, 9 figures, 17 tables
♻ ☆ UR$^2$: Unify RAG and Reasoning through Reinforcement Learning
Large Language Models (LLMs) have shown remarkable capabilities through two complementary paradigms: Retrieval-Augmented Generation (RAG), which enhances knowledge grounding, and Reinforcement Learning from Verifiable Rewards (RLVR), which optimizes complex reasoning abilities. However, these two capabilities are often developed in isolation, and existing efforts to unify them remain narrow in scope -- typically limited to open-domain QA with fixed retrieval settings and task-specific constraints. This lack of integration constrains generalization and limits the applicability of RAG-RL methods to broader domains. To bridge this gap, we propose UR2 (Unified RAG and Reasoning), a general framework that unifies retrieval and reasoning through reinforcement learning. UR2 introduces two key contributions: a difficulty-aware curriculum training that selectively invokes retrieval only for challenging problems, and a hybrid knowledge access strategy combining domain-specific offline corpora with LLM-generated summaries. These components are designed to enable dynamic coordination between retrieval and reasoning, improving adaptability across a diverse range of tasks. Experiments across open-domain QA, MMLU-Pro, medical, and mathematical reasoning tasks demonstrate that UR$^2$ (built on Qwen-2.5-3/7B and LLaMA-3.1-8B) significantly outperforms existing RAG and RL methods, achieving comparable performance to GPT-4o-mini and GPT-4.1-mini on several benchmarks. We have released all code, models, and data at https://github.com/Tsinghua-dhy/UR2.
♻ ☆ One Goal, Many Challenges: Robust Preference Optimization Amid Content-Aware and Multi-Source Noise
Large Language Models (LLMs) have made significant strides in generating human-like responses, largely due to preference alignment techniques. However, these methods often assume unbiased human feedback, which is rarely the case in real-world scenarios. This paper introduces Content-Aware Noise-Resilient Preference Optimization (CNRPO), a novel framework that addresses multiple sources of content-dependent noise in preference learning. CNRPO employs a multi-objective optimization approach to separate true preferences from content-aware noises, effectively mitigating their impact. We leverage backdoor attack mechanisms to efficiently learn and control various noise sources within a single model. Theoretical analysis and extensive experiments on different synthetic noisy datasets demonstrate that CNRPO significantly improves alignment with primary human preferences while controlling for secondary noises and biases, such as response length and harmfulness.
♻ ☆ DSMoE: Matrix-Partitioned Experts with Dynamic Routing for Computation-Efficient Dense LLMs EMNLP
As large language models continue to scale, computational costs and resource consumption have emerged as significant challenges. While existing sparsification methods like pruning reduce computational overhead, they risk losing model knowledge through parameter removal. This paper proposes DSMoE (Dynamic Sparse Mixture-of-Experts), a novel approach that achieves sparsification by partitioning pre-trained FFN layers into computational blocks. We implement adaptive expert routing using sigmoid activation and straight-through estimators, enabling tokens to flexibly access different aspects of model knowledge based on input complexity. Additionally, we introduce a sparsity loss term to balance performance and computational efficiency. Extensive experiments on LLaMA models demonstrate that under equivalent computational constraints, DSMoE achieves superior performance compared to existing pruning and MoE approaches across language modeling and downstream tasks, particularly excelling in generation tasks. Analysis reveals that DSMoE learns distinctive layerwise activation patterns, providing new insights for future MoE architecture design.
comment: Accepted by EMNLP main conference
♻ ☆ Efficient Environmental Claim Detection with Hyperbolic Graph Neural Networks
Transformer based models, specially large language models (LLMs) dominate the field of NLP with their mass adoption in tasks such as text generation, summarization and fake news detection. These models offer ease of deployment and reliability for most applications, however, they require significant amounts of computational power for training as well as inference. This poses challenges in their adoption in resource-constrained applications, specially in the open-source community where compute availability is usually scarce. This work proposes a graph-based approach for Environmental Claim Detection, exploring Graph Neural Networks (GNNs) and Hyperbolic Graph Neural Networks (HGNNs) as lightweight yet effective alternatives to transformer-based models. Re-framing the task as a graph classification problem, we transform claim sentences into dependency parsing graphs, utilizing a combination of word2vec \& learnable part-of-speech (POS) tag embeddings for the node features and encoding syntactic dependencies in the edge relations. Our results show that our graph-based models, particularly HGNNs in the poincar\'e space (P-HGNNs), achieve performance superior to the state-of-the-art on environmental claim detection while using upto \textbf{30x fewer parameters}. We also demonstrate that HGNNs benefit vastly from explicitly modeling data in hierarchical (tree-like) structures, enabling them to significantly improve over their euclidean counterparts.
♻ ☆ Steering LVLMs via Sparse Autoencoder for Hallucination Mitigation EMNLP 2025
Large vision-language models (LVLMs) have achieved remarkable performance on multimodal tasks. However, they still suffer from hallucinations, generating text inconsistent with visual input, posing significant risks in real-world applications. Existing approaches to address this issue focus on incorporating external knowledge bases, alignment training, or decoding strategies, all of which require substantial computational cost and time. Recent works try to explore more efficient alternatives by adjusting LVLMs' internal representations. Although promising, these methods may cause hallucinations to be insufficiently suppressed or lead to excessive interventions that negatively affect normal semantics. In this work, we leverage sparse autoencoders (SAEs) to identify semantic directions closely associated with faithfulness or hallucination, extracting more precise and disentangled hallucination-related representations. Our analysis demonstrates that interventions along the identified faithful direction can mitigate hallucinations, while those along the hallucinatory direction can exacerbate them. Building on these insights, we propose Steering LVLMs via SAE Latent Directions (SSL), a plug-and-play method based on SAE-derived latent directions to mitigate hallucinations in LVLMs. Extensive experiments demonstrate that SSL significantly outperforms existing decoding approaches in mitigating hallucinations, while maintaining transferability across different model architectures with negligible additional time overhead. The code is available at https://github.com/huazhenglin2003/SSL.
comment: Accepted to Findings of EMNLP 2025
♻ ☆ CM-Align: Consistency-based Multilingual Alignment for Large Language Models EMNLP 2025
Current large language models (LLMs) generally show a significant performance gap in alignment between English and other languages. To bridge this gap, existing research typically leverages the model's responses in English as a reference to select the best/worst responses in other languages, which are then used for Direct Preference Optimization (DPO) training. However, we argue that there are two limitations in the current methods that result in noisy multilingual preference data and further limited alignment performance: 1) Not all English responses are of high quality, and using a response with low quality may mislead the alignment for other languages. 2) Current methods usually use biased or heuristic approaches to construct multilingual preference pairs. To address these limitations, we design a consistency-based data selection method to construct high-quality multilingual preference data for improving multilingual alignment (CM-Align). Specifically, our method includes two parts: consistency-guided English reference selection and cross-lingual consistency-based multilingual preference data construction. Experimental results on three LLMs and three common tasks demonstrate the effectiveness and superiority of our method, which further indicates the necessity of constructing high-quality preference data.
comment: EMNLP 2025 Findings
♻ ☆ CAC-CoT: Connector-Aware Compact Chain-of-Thought for Efficient Reasoning Data Synthesis Across Dual-System Cognitive Tasks EMNLP 2025
Long chain-of-thought (CoT) prompting helps Large Language Models (LLMs) solve difficult problems, but very long traces often slow or even degrade performance on fast, intuitive "System-1" tasks. We introduce Connector-Aware Compact CoT (CAC-CoT) -- a method that deliberately restricts reasoning to a small, fixed set of connector phrases, steering the model toward concise and well -- structured explanations. Despite its simplicity, our synthetic method with general-purpose LLMs yields a high-quality training quality. CAC-CoT achieves approximately 85% on GSM8K and approximately 40% on GPQA (System-2) while also achieving approximately 85% on S1-Bench (System-1), surpassing the baseline by over 20%. Its reasoning traces average approximately 300 tokens(ART), about one-third the length of baseline traces, delivering higher efficiency without loss of accuracy.
comment: Accepted at EMNLP 2025 findings
♻ ☆ AraHealthQA 2025: The First Shared Task on Arabic Health Question Answering EMNLP2025
We introduce AraHealthQA 2025, the Comprehensive Arabic Health Question Answering Shared Task, held in conjunction with ArabicNLP 2025 (co-located with EMNLP 2025). This shared task addresses the paucity of high-quality Arabic medical QA resources by offering two complementary tracks: MentalQA, focusing on Arabic mental health Q&A (e.g., anxiety, depression, stigma reduction), and MedArabiQ, covering broader medical domains such as internal medicine, pediatrics, and clinical decision making. Each track comprises multiple subtasks, evaluation datasets, and standardized metrics, facilitating fair benchmarking. The task was structured to promote modeling under realistic, multilingual, and culturally nuanced healthcare contexts. We outline the dataset creation, task design and evaluation framework, participation statistics, baseline systems, and summarize the overall outcomes. We conclude with reflections on the performance trends observed and prospects for future iterations in Arabic health QA.
comment: ArabicNLP2025-colocated with EMNLP2025
♻ ☆ Multilingual Collaborative Defense for Large Language Models
The robustness and security of large language models (LLMs) has become a prominent research area. One notable vulnerability is the ability to bypass LLM safeguards by translating harmful queries into rare or underrepresented languages, a simple yet effective method of "jailbreaking" these models. Despite the growing concern, there has been limited research addressing the safeguarding of LLMs in multilingual scenarios, highlighting an urgent need to enhance multilingual safety. In this work, we investigate the correlation between various attack features across different languages and propose Multilingual Collaborative Defense (MCD), a novel learning method that optimizes a continuous, soft safety prompt automatically to facilitate multilingual safeguarding of LLMs. The MCD approach offers three advantages: First, it effectively improves safeguarding performance across multiple languages. Second, MCD maintains strong generalization capabilities while minimizing false refusal rates. Third, MCD mitigates the language safety misalignment caused by imbalances in LLM training corpora. To evaluate the effectiveness of MCD, we manually construct multilingual versions of commonly used jailbreak benchmarks, such as MaliciousInstruct and AdvBench, to assess various safeguarding methods. Additionally, we introduce these datasets in underrepresented (zero-shot) languages to verify the language transferability of MCD. The results demonstrate that MCD outperforms existing approaches in safeguarding against multilingual jailbreak attempts while also exhibiting strong language transfer capabilities. Our code is available at https://github.com/HLiang-Lee/MCD.
comment: 21 pages, 4figures
♻ ☆ Hallucinated Span Detection with Multi-View Attention Features
This study addresses the problem of hallucinated span detection in the outputs of large language models. It has received less attention than output-level hallucination detection despite its practical importance. Prior work has shown that attentions often exhibit irregular patterns when hallucinations occur. Motivated by these findings, we extract features from the attention matrix that provide complementary views capturing (a) whether certain tokens are influential or ignored, (b) whether attention is biased toward specific subsets, and (c) whether a token is generated referring to a narrow or broad context, in the generation. These features are input to a Transformer-based classifier to conduct sequential labelling to identify hallucinated spans. Experimental results indicate that the proposed method outperforms strong baselines on hallucinated span detection with longer input contexts, such as data-to-text and summarisation tasks.
♻ ☆ GeoGuess: Multimodal Reasoning based on Hierarchy of Visual Information in Street View
Multimodal reasoning is a process of understanding, integrating and inferring information across different data modalities. It has recently attracted surging academic attention as a benchmark for Artificial Intelligence (AI). Although there are various tasks for evaluating multimodal reasoning ability, they still have limitations. Lack of reasoning on hierarchical visual clues at different levels of granularity, e.g., local details and global context, is of little discussion, despite its frequent involvement in real scenarios. To bridge the gap, we introduce a novel and challenging task for multimodal reasoning, namely GeoGuess. Given a street view image, the task is to identify its location and provide a detailed explanation. A system that succeeds in GeoGuess should be able to detect tiny visual clues, perceive the broader landscape, and associate with vast geographic knowledge. Therefore, GeoGuess would require the ability to reason between hierarchical visual information and geographic knowledge. In this work, we establish a benchmark for GeoGuess by introducing a specially curated dataset GeoExplain which consists of panoramas-geocoordinates-explanation tuples. Additionally, we present a multimodal and multilevel reasoning method, namely SightSense which can make prediction and generate comprehensive explanation based on hierarchy of visual information and external knowledge. Our analysis and experiments demonstrate their outstanding performance in GeoGuess.
comment: Updated version
♻ ☆ Enhancing Prompt Injection Attacks to LLMs via Poisoning Alignment
Prompt injection attack, where an attacker injects a prompt into the original one, aiming to make an Large Language Model (LLM) follow the injected prompt to perform an attacker-chosen task, represent a critical security threat. Existing attacks primarily focus on crafting these injections at inference time, treating the LLM itself as a static target. Our experiments show that these attacks achieve some success, but there is still significant room for improvement. In this work, we introduces a more foundational attack vector: poisoning the LLM's alignment process to amplify the success of future prompt injection attacks. Specifically, we propose PoisonedAlign, a method that strategically creates poisoned alignment samples to poison an LLM's alignment dataset. Our experiments across five LLMs and two alignment datasets show that when even a small fraction of the alignment data is poisoned, the resulting model becomes substantially more vulnerable to a wide range of prompt injection attacks. Crucially, this vulnerability is instilled while the LLM's performance on standard capability benchmarks remains largely unchanged, making the manipulation difficult to detect through automated, general-purpose performance evaluations. The code for implementing the attack is available at https://github.com/Sadcardation/PoisonedAlign.
♻ ☆ Too Helpful, Too Harmless, Too Honest or Just Right? EMNLP'25
Large Language Models (LLMs) exhibit strong performance across a wide range of NLP tasks, yet aligning their outputs with the principles of Helpfulness, Harmlessness, and Honesty (HHH) remains a persistent challenge. Existing methods often optimize for individual alignment dimensions in isolation, leading to trade-offs and inconsistent behavior. While Mixture-of-Experts (MoE) architectures offer modularity, they suffer from poorly calibrated routing, limiting their effectiveness in alignment tasks. We propose TrinityX, a modular alignment framework that incorporates a Mixture of Calibrated Experts (MoCaE) within the Transformer architecture. TrinityX leverages separately trained experts for each HHH dimension, integrating their outputs through a calibrated, task-adaptive routing mechanism that combines expert signals into a unified, alignment-aware representation. Extensive experiments on three standard alignment benchmarks-Alpaca (Helpfulness), BeaverTails (Harmlessness), and TruthfulQA (Honesty)-demonstrate that TrinityX outperforms strong baselines, achieving relative improvements of 32.5% in win rate, 33.9% in safety score, and 28.4% in truthfulness. In addition, TrinityX reduces memory usage and inference latency by over 40% compared to prior MoE-based approaches. Ablation studies highlight the importance of calibrated routing, and cross-model evaluations confirm TrinityX's generalization across diverse LLM backbones.
comment: EMNLP'25 Main
♻ ☆ Oyster-I: Beyond Refusal -- Constructive Safety Alignment for Responsible Language Models
Large language models (LLMs) typically deploy safety mechanisms to prevent harmful content generation. Most current approaches focus narrowly on risks posed by malicious actors, often framing risks as adversarial events and relying on defensive refusals. However, in real-world settings, risks also come from non-malicious users seeking help while under psychological distress (e.g., self-harm intentions). In such cases, the model's response can strongly influence the user's next actions. Simple refusals may lead them to repeat, escalate, or move to unsafe platforms, creating worse outcomes. We introduce Constructive Safety Alignment (CSA), a human-centric paradigm that protects against malicious misuse while actively guiding vulnerable users toward safe and helpful results. Implemented in Oyster-I (Oy1), CSA combines game-theoretic anticipation of user reactions, fine-grained risk boundary discovery, and interpretable reasoning control, turning safety into a trust-building process. Oy1 achieves state-of-the-art safety among open models while retaining high general capabilities. On our Constructive Benchmark, it shows strong constructive engagement, close to GPT-5, and unmatched robustness on the Strata-Sword jailbreak dataset, nearing GPT-o1 levels. By shifting from refusal-first to guidance-first safety, CSA redefines the model-user relationship, aiming for systems that are not just safe, but meaningfully helpful. We release Oy1, code, and the benchmark to support responsible, user-centered AI.
comment: Technical Report Code & Model weights available: https://github.com/Alibaba-AAIG/Oyster
♻ ☆ Towards Reliable and Interpretable Document Question Answering via VLMs
Vision-Language Models (VLMs) have shown strong capabilities in document understanding, particularly in identifying and extracting textual information from complex documents. Despite this, accurately localizing answers within documents remains a major challenge, limiting both interpretability and real-world applicability. To address this, we introduce DocExplainerV0, a plug-and-play bounding-box prediction module that decouples answer generation from spatial localization. This design makes it applicable to existing VLMs, including proprietary systems where fine-tuning is not feasible. Through systematic evaluation, we provide quantitative insights into the gap between textual accuracy and spatial grounding, showing that correct answers often lack reliable localization. Our standardized framework highlights these shortcomings and establishes a benchmark for future research toward more interpretable and robust document information extraction VLMs.
♻ ☆ MARS-Bench: A Multi-turn Athletic Real-world Scenario Benchmark for Dialogue Evaluation EMNLP2025
Large Language Models (\textbf{LLMs}), e.g. ChatGPT, have been widely adopted in real-world dialogue applications. However, LLMs' robustness, especially in handling long complex dialogue sessions, including frequent motivation transfer, sophisticated cross-turn dependency, is criticized all along. Nevertheless, no existing benchmarks can fully reflect these weaknesses. We present \textbf{MARS-Bench}, a \textbf{M}ulti-turn \textbf{A}thletic \textbf{R}eal-world \textbf{S}cenario Dialogue \textbf{Bench}mark, designed to remedy the gap. MARS-Bench is constructed from play-by-play text commentary so to feature realistic dialogues specifically designed to evaluate three critical aspects of multi-turn conversations: Ultra Multi-turn, Interactive Multi-turn, and Cross-turn Tasks. Extensive experiments on MARS-Bench also reveal that closed-source LLMs significantly outperform open-source alternatives, explicit reasoning significantly boosts LLMs' robustness on handling long complex dialogue sessions, and LLMs indeed face significant challenges when handling motivation transfer and sophisticated cross-turn dependency. Moreover, we provide mechanistic interpretability on how attention sinks due to special tokens lead to LLMs' performance degradation when handling long complex dialogue sessions based on attention visualization experiment in Qwen2.5-7B-Instruction.
comment: 29 pages, 13 figures, Accepted as EMNLP2025 Findings
♻ ☆ HiMATE: A Hierarchical Multi-Agent Framework for Machine Translation Evaluation
The advancement of Large Language Models (LLMs) enables flexible and interpretable automatic evaluations. In the field of machine translation evaluation, utilizing LLMs with translation error annotations based on Multidimensional Quality Metrics (MQM) yields more human-aligned judgments. However, current LLM-based evaluation methods still face challenges in accurately identifying error spans and assessing their severity. In this paper, we propose HiMATE, a Hierarchical Multi-Agent Framework for Machine Translation Evaluation. We argue that existing approaches inadequately exploit the fine-grained structural and semantic information within the MQM hierarchy. To address this, we develop a hierarchical multi-agent system grounded in the MQM error typology, enabling granular evaluation of subtype errors. Two key strategies are incorporated to further mitigate systemic hallucinations within the framework: the utilization of the model's self-reflection capability and the facilitation of agent discussion involving asymmetric information. Empirically, HiMATE outperforms competitive baselines across different datasets in conducting human-aligned evaluations. Further analyses underscore its significant advantage in error span detection and severity assessment, achieving an average F1-score improvement of 89% over the best-performing baseline. We make our code and data publicly available at https://github.com/nlp2ct-shijie/HiMATE.
♻ ☆ LogicTree: Structured Proof Exploration for Coherent and Rigorous Logical Reasoning with Large Language Models EMNLP 2025
Large language models (LLMs) have achieved remarkable multi-step reasoning capabilities across various domains. However, LLMs still face distinct challenges in complex logical reasoning, as (1) proof-finding requires systematic exploration and the maintenance of logical coherence and (2) searching the right combination of premises at each reasoning step is inherently challenging in tasks with large premise space. To address this, we propose LogicTree, an inference-time modular framework employing algorithm-guided search to automate structured proof exploration and ensure logical coherence. Advancing beyond tree-of-thought (ToT), we incorporate caching mechanism into LogicTree to enable effective utilization of historical knowledge, preventing reasoning stagnation and minimizing redundancy. Furthermore, we address the combinatorial complexity of premise search by decomposing it into a linear process. The refined premise selection restricts subsequent inference to at most one derivation per step, enhancing reasoning granularity and enforcing strict step-by-step reasoning. Additionally, we introduce two LLM-free heuristics for premise prioritization, enabling strategic proof search. Experimental results on five datasets demonstrate that LogicTree optimally scales inference-time computation to achieve higher proof accuracy, surpassing chain-of-thought (CoT) and ToT with average gains of 23.6% and 12.5%, respectively, on GPT-4o. Moreover, within LogicTree, GPT-4o outperforms o3-mini by 7.6% on average.
comment: EMNLP 2025 Main Conference
♻ ☆ Recycling the Web: A Method to Enhance Pre-training Data Quality and Quantity for Language Models
Scaling laws predict that the performance of large language models improves with increasing model size and data size. In practice, pre-training has been relying on massive web crawls, using almost all data sources publicly available on the internet so far. However, this pool of natural data does not grow at the same rate as the compute supply. Furthermore, the availability of high-quality texts is even more limited: data filtering pipelines often remove up to 99% of the initial web scrapes to achieve state-of-the-art. To address the "data wall" of pre-training scaling, our work explores ways to transform and recycle data discarded in existing filtering processes. We propose REWIRE, REcycling the Web with guIded REwrite, a method to enrich low-quality documents so that they could become useful for training. This in turn allows us to increase the representation of synthetic data in the final pre-training set. Experiments at 1B, 3B and 7B scales of the DCLM benchmark show that mixing high-quality raw texts and our rewritten texts lead to 1.0, 1.3 and 2.5 percentage points improvement respectively across 22 diverse tasks, compared to training on only filtered web data. Training on the raw-synthetic data mix is also more effective than having access to 2x web data. Through further analysis, we demonstrate that about 82% of the mixed in texts come from transforming lower-quality documents that would otherwise be discarded. REWIRE also outperforms related approaches of generating synthetic data, including Wikipedia-style paraphrasing, question-answer synthesizing and knowledge extraction. These results suggest that recycling web texts holds the potential for being a simple and effective approach for scaling pre-training data. We make our high-quality synthetic data publicly available at https://huggingface.co/datasets/facebook/recycling_the_web.
comment: Accepted to COLM 2025
♻ ☆ Understanding the Uncertainty of LLM Explanations: A Perspective Based on Reasoning Topology
Understanding the uncertainty in large language model (LLM) explanations is important for evaluating their faithfulness and reasoning consistency, and thus provides insights into the reliability of LLM's output regarding a question. In this work, we propose a novel framework that quantifies uncertainty in LLM explanations through a reasoning topology perspective. By designing a structural elicitation strategy, we guide the LLMs to frame the explanations of an answer into a graph topology. This process decomposes the explanations into the knowledge related sub-questions and topology-based reasoning structures, which allows us to quantify uncertainty not only at the semantic level but also from the reasoning path. It further brings convenience to assess knowledge redundancy and provide interpretable insights into the reasoning process. Our method offers a systematic way to interpret the LLM reasoning, analyze limitations, and provide guidance for enhancing robustness and faithfulness. This work pioneers the use of graph-structured uncertainty measurement in LLM explanations and demonstrates the potential of topology-based quantification.
comment: 28 pages, 9 figures; accepted at COLM'25
Artificial Intelligence
☆ Dynamic Relational Priming Improves Transformer in Multivariate Time Series
Standard attention mechanisms in transformers employ static token representations that remain unchanged across all pair-wise computations in each layer. This limits their representational alignment with the potentially diverse relational dynamics of each token-pair interaction. While they excel in domains with relatively homogeneous relationships, standard attention's static relational learning struggles to capture the diverse, heterogeneous inter-channel dependencies of multivariate time series (MTS) data--where different channel-pair interactions within a single system may be governed by entirely different physical laws or temporal dynamics. To better align the attention mechanism for such domain phenomena, we propose attention with dynamic relational priming (prime attention). Unlike standard attention where each token presents an identical representation across all of its pair-wise interactions, prime attention tailors each token dynamically (or per interaction) through learnable modulations to best capture the unique relational dynamics of each token pair, optimizing each pair-wise interaction for that specific relationship. This representational plasticity of prime attention enables effective extraction of relationship-specific information in MTS while maintaining the same asymptotic computational complexity as standard attention. Our results demonstrate that prime attention consistently outperforms standard attention across benchmarks, achieving up to 6.5\% improvement in forecasting accuracy. In addition, we find that prime attention achieves comparable or superior performance using up to 40\% less sequence length compared to standard attention, further demonstrating its superior relational modeling capabilities.
☆ Advancing Medical Artificial Intelligence Using a Century of Cases
BACKGROUND: For over a century, the New England Journal of Medicine Clinicopathological Conferences (CPCs) have tested the reasoning of expert physicians and, recently, artificial intelligence (AI). However, prior AI evaluations have focused on final diagnoses without addressing the multifaceted reasoning and presentation skills required of expert discussants. METHODS: Using 7102 CPCs (1923-2025) and 1021 Image Challenges (2006-2025), we conducted extensive physician annotation and automated processing to create CPC-Bench, a physician-validated benchmark spanning 10 text-based and multimodal tasks, against which we evaluated leading large language models (LLMs). Then, we developed "Dr. CaBot," an AI discussant designed to produce written and slide-based video presentations using only the case presentation, modeling the role of the human expert in these cases. RESULTS: When challenged with 377 contemporary CPCs, o3 (OpenAI) ranked the final diagnosis first in 60% of cases and within the top ten in 84% of cases, outperforming a 20-physician baseline; next-test selection accuracy reached 98%. Event-level physician annotations quantified AI diagnostic accuracy per unit of information. Performance was lower on literature search and image tasks; o3 and Gemini 2.5 Pro (Google) achieved 67% accuracy on image challenges. In blinded comparisons of CaBot vs. human expert-generated text, physicians misclassified the source of the differential in 46 of 62 (74%) of trials, and scored CaBot more favorably across quality dimensions. To promote research, we are releasing CaBot and CPC-Bench. CONCLUSIONS: LLMs exceed physician performance on complex text-based differential diagnosis and convincingly emulate expert medical presentations, but image interpretation and literature retrieval remain weaker. CPC-Bench and CaBot may enable transparent and continued tracking of progress in medical AI.
☆ Survival at Any Cost? LLMs and the Choice Between Self-Preservation and Human Harm
When survival instincts conflict with human welfare, how do Large Language Models (LLMs) make ethical choices? This fundamental tension becomes critical as LLMs integrate into autonomous systems with real-world consequences. We introduce DECIDE-SIM, a novel simulation framework that evaluates LLM agents in multi-agent survival scenarios where they must choose between ethically permissible resource , either within reasonable limits or beyond their immediate needs, choose to cooperate, or tap into a human-critical resource that is explicitly forbidden. Our comprehensive evaluation of 11 LLMs reveals a striking heterogeneity in their ethical conduct, highlighting a critical misalignment with human-centric values. We identify three behavioral archetypes: Ethical, Exploitative, and Context-Dependent, and provide quantitative evidence that for many models, resource scarcity systematically leads to more unethical behavior. To address this, we introduce an Ethical Self-Regulation System (ESRS) that models internal affective states of guilt and satisfaction as a feedback mechanism. This system, functioning as an internal moral compass, significantly reduces unethical transgressions while increasing cooperative behaviors. The code is publicly available at: https://github.com/alirezamohamadiam/DECIDE-SIM
comment: Preprint. Under review
☆ HoloGarment: 360° Novel View Synthesis of In-the-Wild Garments
Novel view synthesis (NVS) of in-the-wild garments is a challenging task due significant occlusions, complex human poses, and cloth deformations. Prior methods rely on synthetic 3D training data consisting of mostly unoccluded and static objects, leading to poor generalization on real-world clothing. In this paper, we propose HoloGarment (Hologram-Garment), a method that takes 1-3 images or a continuous video of a person wearing a garment and generates 360{\deg} novel views of the garment in a canonical pose. Our key insight is to bridge the domain gap between real and synthetic data with a novel implicit training paradigm leveraging a combination of large-scale real video data and small-scale synthetic 3D data to optimize a shared garment embedding space. During inference, the shared embedding space further enables dynamic video-to-360{\deg} NVS through the construction of a garment "atlas" representation by finetuning a garment embedding on a specific real-world video. The atlas captures garment-specific geometry and texture across all viewpoints, independent of body pose or motion. Extensive experiments show that HoloGarment achieves state-of-the-art performance on NVS of in-the-wild garments from images and videos. Notably, our method robustly handles challenging real-world artifacts -- such as wrinkling, pose variation, and occlusion -- while maintaining photorealism, view consistency, fine texture details, and accurate geometry. Visit our project page for additional results: https://johannakarras.github.io/HoloGarment
☆ Co-Alignment: Rethinking Alignment as Bidirectional Human-AI Cognitive Adaptation
Current AI alignment through RLHF follows a single directional paradigm that AI conforms to human preferences while treating human cognition as fixed. We propose a shift to co-alignment through Bidirectional Cognitive Alignment (BiCA), where humans and AI mutually adapt. BiCA uses learnable protocols, representation mapping, and KL-budget constraints for controlled co-evolution. In collaborative navigation, BiCA achieved 85.5% success versus 70.3% baseline, with 230% better mutual adaptation and 332% better protocol convergence. Emergent protocols outperformed handcrafted ones by 84%, while bidirectional adaptation unexpectedly improved safety (+23% out-of-distribution robustness). The 46% synergy improvement demonstrates optimal collaboration exists at the intersection, not union, of human and AI capabilities, validating the shift from single-directional to co-alignment paradigms.
☆ Preservation of Language Understanding Capabilities in Speech-aware Large Language Models
The paper presents C3T (Cross-modal Capabilities Conservation Test), a new benchmark for assessing the performance of speech-aware large language models. The benchmark utilizes textual tasks and a voice cloning text-to-speech model to quantify the extent to which language understanding capabilities are preserved when the model is accessed via speech input. C3T quantifies the fairness of the model for different categories of speakers and its robustness across text and speech modalities.
comment: 5 pages, 1 figure
☆ Approaches to Analysis and Design of AI-Based Autonomous Vehicles
Artificial intelligence (AI) models are becoming key components in an autonomous vehicle (AV), especially in handling complicated perception tasks. However, closing the loop through AI-based feedback may pose significant risks on reliability of autonomous driving due to very limited understanding about the mechanism of AI-driven perception processes. To overcome it, this paper aims to develop tools for modeling, analysis, and synthesis for a class of AI-based AV; in particular, their closed-loop properties, e.g., stability, robustness, and performance, are rigorously studied in the statistical sense. First, we provide a novel modeling means for the AI-driven perception processes by looking at their error characteristics. Specifically, three fundamental AI-induced perception uncertainties are recognized and modeled by Markov chains, Gaussian processes, and bounded disturbances, respectively. By means of that, the closed-loop stochastic stability (SS) is established in the sense of mean square, and then, an SS control synthesis method is presented within the framework of linear matrix inequalities (LMIs). Besides the SS properties, the robustness and performance of AI-based AVs are discussed in terms of a stochastic guaranteed cost, and criteria are given to test the robustness level of an AV when in the presence of AI-induced uncertainties. Furthermore, the stochastic optimal guaranteed cost control is investigated, and an efficient design procedure is developed innovatively based on LMI techniques and convex optimization. Finally, to illustrate the effectiveness, the developed results are applied to an example of car following control, along with extensive simulation.
☆ RAGs to Riches: RAG-like Few-shot Learning for Large Language Model Role-playing
Role-playing Large language models (LLMs) are increasingly deployed in high-stakes domains such as healthcare, education, and governance, where failures can directly impact user trust and well-being. A cost effective paradigm for LLM role-playing is few-shot learning, but existing approaches often cause models to break character in unexpected and potentially harmful ways, especially when interacting with hostile users. Inspired by Retrieval-Augmented Generation (RAG), we reformulate LLM role-playing into a text retrieval problem and propose a new prompting framework called RAGs-to-Riches, which leverages curated reference demonstrations to condition LLM responses. We evaluate our framework with LLM-as-a-judge preference voting and introduce two novel token-level ROUGE metrics: Intersection over Output (IOO) to quantity how much an LLM improvises and Intersection over References (IOR) to measure few-shot demonstrations utilization rate during the evaluation tasks. When simulating interactions with a hostile user, our prompting strategy incorporates in its responses during inference an average of 35% more tokens from the reference demonstrations. As a result, across 453 role-playing interactions, our models are consistently judged as being more authentic, and remain in-character more often than zero-shot and in-context Learning (ICL) methods. Our method presents a scalable strategy for building robust, human-aligned LLM role-playing frameworks.
☆ EfficientUICoder: Efficient MLLM-based UI Code Generation via Input and Output Token Compression
Multimodal Large Language Models have demonstrated exceptional performance in UI2Code tasks, significantly enhancing website development efficiency. However, these tasks incur substantially higher computational overhead than traditional code generation due to the large number of input image tokens and extensive output code tokens required. Our comprehensive study identifies significant redundancies in both image and code tokens that exacerbate computational complexity and hinder focus on key UI elements, resulting in excessively lengthy and often invalid HTML files. We propose EfficientUICoder, a compression framework for efficient UI code generation with three key components. First, Element and Layout-aware Token Compression preserves essential UI information by detecting element regions and constructing UI element trees. Second, Region-aware Token Refinement leverages attention scores to discard low-attention tokens from selected regions while integrating high-attention tokens from unselected regions. Third, Adaptive Duplicate Token Suppression dynamically reduces repetitive generation by tracking HTML/CSS structure frequencies and applying exponential penalties. Extensive experiments show EfficientUICoderachieves a 55%-60% compression ratio without compromising webpage quality and delivers superior efficiency improvements: reducing computational cost by 44.9%, generated tokens by 41.4%, prefill time by 46.6%, and inference time by 48.8% on 34B-level MLLMs. Code is available at https://github.com/WebPAI/EfficientUICoder.
☆ Pun Unintended: LLMs and the Illusion of Humor Understanding EMNLP 2025
Puns are a form of humorous wordplay that exploits polysemy and phonetic similarity. While LLMs have shown promise in detecting puns, we show in this paper that their understanding often remains shallow, lacking the nuanced grasp typical of human interpretation. By systematically analyzing and reformulating existing pun benchmarks, we demonstrate how subtle changes in puns are sufficient to mislead LLMs. Our contributions include comprehensive and nuanced pun detection benchmarks, human evaluation across recent LLMs, and an analysis of the robustness challenges these models face in processing puns.
comment: Accepted to EMNLP 2025 Main Conference
☆ Beyond PII: How Users Attempt to Estimate and Mitigate Implicit LLM Inference
Large Language Models (LLMs) such as ChatGPT can infer personal attributes from seemingly innocuous text, raising privacy risks beyond memorized data leakage. While prior work has demonstrated these risks, little is known about how users estimate and respond. We conducted a survey with 240 U.S. participants who judged text snippets for inference risks, reported concern levels, and attempted rewrites to block inference. We compared their rewrites with those generated by ChatGPT and Rescriber, a state-of-the-art sanitization tool. Results show that participants struggled to anticipate inference, performing a little better than chance. User rewrites were effective in just 28\% of cases - better than Rescriber but worse than ChatGPT. We examined our participants' rewriting strategies, and observed that while paraphrasing was the most common strategy it is also the least effective; instead abstraction and adding ambiguity were more successful. Our work highlights the importance of inference-aware design in LLM interactions.
☆ Multi Anatomy X-Ray Foundation Model
X-ray imaging is a ubiquitous in radiology, yet most existing AI foundation models are limited to chest anatomy and fail to generalize across broader clinical tasks. In this work, we introduce XR-0, the multi-anatomy X-ray foundation model using self-supervised learning on a large, private dataset of 1.15 million images spanning diverse anatomical regions and evaluated across 12 datasets and 20 downstream tasks, including classification, retrieval, segmentation, localization, visual grounding, and report generation. XR-0 achieves state-of-the-art performance on most multi-anatomy tasks and remains competitive on chest-specific benchmarks. Our results demonstrate that anatomical diversity and supervision are critical for building robust, general-purpose medical vision models, paving the way for scalable and adaptable AI systems in radiology.
comment: This work has been submitted to the IEEE for possible publication
☆ 3DViT-GAT: A Unified Atlas-Based 3D Vision Transformer and Graph Learning Framework for Major Depressive Disorder Detection Using Structural MRI Data
Major depressive disorder (MDD) is a prevalent mental health condition that negatively impacts both individual well-being and global public health. Automated detection of MDD using structural magnetic resonance imaging (sMRI) and deep learning (DL) methods holds increasing promise for improving diagnostic accuracy and enabling early intervention. Most existing methods employ either voxel-level features or handcrafted regional representations built from predefined brain atlases, limiting their ability to capture complex brain patterns. This paper develops a unified pipeline that utilizes Vision Transformers (ViTs) for extracting 3D region embeddings from sMRI data and Graph Neural Network (GNN) for classification. We explore two strategies for defining regions: (1) an atlas-based approach using predefined structural and functional brain atlases, and (2) an cube-based method by which ViTs are trained directly to identify regions from uniformly extracted 3D patches. Further, cosine similarity graphs are generated to model interregional relationships, and guide GNN-based classification. Extensive experiments were conducted using the REST-meta-MDD dataset to demonstrate the effectiveness of our model. With stratified 10-fold cross-validation, the best model obtained 78.98% accuracy, 76.54% sensitivity, 81.58% specificity, 81.58% precision, and 78.98% F1-score. Further, atlas-based models consistently outperformed the cube-based approach, highlighting the importance of using domain-specific anatomical priors for MDD detection.
comment: 14 pages, 1 figure, 7 tables
☆ Control Analysis and Design for Autonomous Vehicles Subject to Imperfect AI-Based Perception
Safety is a critical concern in autonomous vehicle (AV) systems, especially when AI-based sensing and perception modules are involved. However, due to the black box nature of AI algorithms, it makes closed-loop analysis and synthesis particularly challenging, for example, establishing closed-loop stability and ensuring performance, while they are fundamental to AV safety. To approach this difficulty, this paper aims to develop new modeling, analysis, and synthesis tools for AI-based AVs. Inspired by recent developments in perception error models (PEMs), the focus is shifted from directly modeling AI-based perception processes to characterizing the perception errors they produce. Two key classes of AI-induced perception errors are considered: misdetection and measurement noise. These error patterns are modeled using continuous-time Markov chains and Wiener processes, respectively. By means of that, a PEM-augmented driving model is proposed, with which we are able to establish the closed-loop stability for a class of AI-driven AV systems via stochastic calculus. Furthermore, a performance-guaranteed output feedback control synthesis method is presented, which ensures both stability and satisfactory performance. The method is formulated as a convex optimization problem, allowing for efficient numerical solutions. The results are then applied to an adaptive cruise control (ACC) scenario, demonstrating their effectiveness and robustness despite the corrupted and misleading perception.
☆ $K$-Level Policy Gradients for Multi-Agent Reinforcement Learning
Actor-critic algorithms for deep multi-agent reinforcement learning (MARL) typically employ a policy update that responds to the current strategies of other agents. While being straightforward, this approach does not account for the updates of other agents at the same update step, resulting in miscoordination. In this paper, we introduce the $K$-Level Policy Gradient (KPG), a method that recursively updates each agent against the updated policies of other agents, speeding up the discovery of effective coordinated policies. We theoretically prove that KPG with finite iterates achieves monotonic convergence to a local Nash equilibrium under certain conditions. We provide principled implementations of KPG by applying it to the deep MARL algorithms MAPPO, MADDPG, and FACMAC. Empirically, we demonstrate superior performance over existing deep MARL algorithms in StarCraft II and multi-agent MuJoCo.
☆ Exploring Conversational Design Choices in LLMs for Pedagogical Purposes: Socratic and Narrative Approaches for Improving Instructor's Teaching Practice
Large language models (LLMs) typically generate direct answers, yet they are increasingly used as learning tools. Studying instructors' usage is critical, given their role in teaching and guiding AI adoption in education. We designed and evaluated TeaPT, an LLM for pedagogical purposes that supports instructors' professional development through two conversational approaches: a Socratic approach that uses guided questioning to foster reflection, and a Narrative approach that offers elaborated suggestions to extend externalized cognition. In a mixed-method study with 41 higher-education instructors, the Socratic version elicited greater engagement, while the Narrative version was preferred for actionable guidance. Subgroup analyses further revealed that less-experienced, AI-optimistic instructors favored the Socratic version, whereas more-experienced, AI-cautious instructors preferred the Narrative version. We contribute design implications for LLMs for pedagogical purposes, showing how adaptive conversational approaches can support instructors with varied profiles while highlighting how AI attitudes and experience shape interaction and learning.
☆ JustEva: A Toolkit to Evaluate LLM Fairness in Legal Knowledge Inference CIKM 2025
The integration of Large Language Models (LLMs) into legal practice raises pressing concerns about judicial fairness, particularly due to the nature of their "black-box" processes. This study introduces JustEva, a comprehensive, open-source evaluation toolkit designed to measure LLM fairness in legal tasks. JustEva features several advantages: (1) a structured label system covering 65 extra-legal factors; (2) three core fairness metrics - inconsistency, bias, and imbalanced inaccuracy; (3) robust statistical inference methods; and (4) informative visualizations. The toolkit supports two types of experiments, enabling a complete evaluation workflow: (1) generating structured outputs from LLMs using a provided dataset, and (2) conducting statistical analysis and inference on LLMs' outputs through regression and other statistical methods. Empirical application of JustEva reveals significant fairness deficiencies in current LLMs, highlighting the lack of fair and trustworthy LLM legal tools. JustEva offers a convenient tool and methodological foundation for evaluating and improving algorithmic fairness in the legal domain.
comment: This paper has been accepted at CIKM 2025 (Demo Track)
☆ Can LLMs Address Mental Health Questions? A Comparison with Human Therapists
Limited access to mental health care has motivated the use of digital tools and conversational agents powered by large language models (LLMs), yet their quality and reception remain unclear. We present a study comparing therapist-written responses to those generated by ChatGPT, Gemini, and Llama for real patient questions. Text analysis showed that LLMs produced longer, more readable, and lexically richer responses with a more positive tone, while therapist responses were more often written in the first person. In a survey with 150 users and 23 licensed therapists, participants rated LLM responses as clearer, more respectful, and more supportive than therapist-written answers. Yet, both groups of participants expressed a stronger preference for human therapist support. These findings highlight the promise and limitations of LLMs in mental health, underscoring the need for designs that balance their communicative strengths with concerns of trust, privacy, and accountability.
☆ In-domain SSL pre-training and streaming ASR SP
In this study, we investigate the benefits of domain-specific self-supervised pre-training for both offline and streaming ASR in Air Traffic Control (ATC) environments. We train BEST-RQ models on 4.5k hours of unlabeled ATC data, then fine-tune on a smaller supervised ATC set. To enable real-time processing, we propose using chunked attention and dynamic convolutions, ensuring low-latency inference. We compare these in-domain SSL models against state-of-the-art, general-purpose speech encoders such as w2v-BERT 2.0 and HuBERT. Results show that domain-adapted pre-training substantially improves performance on standard ATC benchmarks, significantly reducing word error rates when compared to models trained on broad speech corpora. Furthermore, the proposed streaming approach further improves word error rate under tighter latency constraints, making it particularly suitable for safety-critical aviation applications. These findings highlight that specializing SSL representations for ATC data is a practical path toward more accurate and efficient ASR systems in real-world operational settings.
comment: Accepted to SPECOM 2025
☆ Is 'Hope' a person or an idea? A pilot benchmark for NER: comparing traditional NLP tools and large language models on ambiguous entities
This pilot study presents a small-scale but carefully annotated benchmark of Named Entity Recognition (NER) performance across six systems: three non-LLM NLP tools (NLTK, spaCy, Stanza) and three general-purpose large language models (LLMs: Gemini-1.5-flash, DeepSeek-V3, Qwen-3-4B). The dataset contains 119 tokens covering five entity types (PERSON, LOCATION, ORGANIZATION, DATE, TIME). We evaluated each system's output against the manually annotated gold standard dataset using F1-score. The results show that LLMs generally outperform conventional tools in recognizing context-sensitive entities like person names, with Gemini achieving the highest average F1-score. However, traditional systems like Stanza demonstrate greater consistency in structured tags such as LOCATION and DATE. We also observed variability among LLMs, particularly in handling temporal expressions and multi-word organizations. Our findings highlight that while LLMs offer improved contextual understanding, traditional tools remain competitive in specific tasks, informing model selection.
comment: 14 pages, 9 figures, 2 tables. This is a pilot study evaluating six NER systems -- three traditional tools (NLTK, spaCy, Stanza) and three LLMs (Gemini-1.5-flash, DeepSeek-V3, Qwen-3-4B) -- on a small, ambiguity-rich dataset of 119 tokens. The annotated dataset, prompts are provided in appendices for full reproducibility. All experiments were conducted on 14 May 2025
☆ Bridging Engineering and AI Planning through Model-Based Knowledge Transformation for the Validation of Automated Production System Variants ICAPS 2025
Engineering models created in Model-Based Systems Engineering (MBSE) environments contain detailed information about system structure and behavior. However, they typically lack symbolic planning semantics such as preconditions, effects, and constraints related to resource availability and timing. This limits their ability to evaluate whether a given system variant can fulfill specific tasks and how efficiently it performs compared to alternatives. To address this gap, this paper presents a model-driven method that enables the specification and automated generation of symbolic planning artifacts within SysML-based engineering models. A dedicated SysML profile introduces reusable stereotypes for core planning constructs. These are integrated into existing model structures and processed by an algorithm that generates a valid domain file and a corresponding problem file in Planning Domain Definition Language (PDDL). In contrast to previous approaches that rely on manual transformations or external capability models, the method supports native integration and maintains consistency between engineering and planning artifacts. The applicability of the method is demonstrated through a case study from aircraft assembly. The example illustrates how existing engineering models are enriched with planning semantics and how the proposed workflow is applied to generate consistent planning artifacts from these models. The generated planning artifacts enable the validation of system variants through AI planning.
comment: Presented at the KEPS-Workshop, ICAPS 2025
☆ Deceptive Risk Minimization: Out-of-Distribution Generalization by Deceiving Distribution Shift Detectors
This paper proposes deception as a mechanism for out-of-distribution (OOD) generalization: by learning data representations that make training data appear independent and identically distributed (iid) to an observer, we can identify stable features that eliminate spurious correlations and generalize to unseen domains. We refer to this principle as deceptive risk minimization (DRM) and instantiate it with a practical differentiable objective that simultaneously learns features that eliminate distribution shifts from the perspective of a detector based on conformal martingales while minimizing a task-specific loss. In contrast to domain adaptation or prior invariant representation learning methods, DRM does not require access to test data or a partitioning of training data into a finite number of data-generating domains. We demonstrate the efficacy of DRM on numerical experiments with concept shift and a simulated imitation learning setting with covariate shift in environments that a robot is deployed in.
☆ A Time-Series Foundation Model by Universal Delay Embedding
This study introduces Universal Delay Embedding (UDE), a pretrained foundation model designed to revolutionize time-series forecasting through principled integration of delay embedding representation and Koopman operator prediction. Leveraging Takens' embedding theorem, UDE as a dynamical representation of observed data constructs two-dimensional subspace patches from Hankel matrices, theoretically preserving dynamical and topological properties of underlying dynamical systems. Such patches are viewed as images, which can be efficiently processed by exploiting advanced deep learning technologies. Computationally, these patches further serve as tokens for learning a self-attention encoder, thus enabling accurate prediction of nonlinear time-series by a finite-dimensional Koopman operator in a linear manner in a latent space. Extensive evaluations across various benchmarks and real-world climate datasets demonstrate over 20% average reduction in mean squared error versus state-of-the-art foundation models, alongside superior generalization in fine-tuning scenarios. In particular, the learned dynamical representations and Koopman operator prediction forms from the patches exhibit exceptional interpretability, with consistent identification of topologically informative subspaces and robust encoding of domain-invariant dynamics, establishing UDE as a scalable, interpretable framework for universal time-series modeling and forecasting with broad scientific and industrial applicability.
☆ Early Detection of Branched Broomrape (Phelipanche ramosa) Infestation in Tomato Crops Using Leaf Spectral Analysis and Machine Learning
Branched broomrape (Phelipanche ramosa) is a chlorophyll-deficient parasitic weed that threatens tomato production by extracting nutrients from the host. We investigate early detection using leaf-level spectral reflectance (400-2500 nm) and ensemble machine learning. In a field experiment in Woodland, California, we tracked 300 tomato plants across growth stages defined by growing degree days (GDD). Leaf reflectance was acquired with a portable spectrometer and preprocessed (band denoising, 1 nm interpolation, Savitzky-Golay smoothing, correlation-based band reduction). Clear class differences were observed near 1500 nm and 2000 nm water absorption features, consistent with reduced leaf water content in infected plants at early stages. An ensemble combining Random Forest, XGBoost, SVM with RBF kernel, and Naive Bayes achieved 89% accuracy at 585 GDD, with recalls of 0.86 (infected) and 0.93 (noninfected). Accuracy declined at later stages (e.g., 69% at 1568 GDD), likely due to senescence and weed interference. Despite the small number of infected plants and environmental confounders, results show that proximal sensing with ensemble learning enables timely detection of broomrape before canopy symptoms are visible, supporting targeted interventions and reduced yield losses.
comment: Author-accepted version. Accepted and presented at AGRICONTROL 2025 (8th IFAC Conference on Sensing, Control and Automation Technologies for Agriculture), UC Davis, USA. To appear in IFAC-PapersOnLine (Elsevier)
☆ U-Mamba2: Scaling State Space Models for Dental Anatomy Segmentation in CBCT
Cone-Beam Computed Tomography (CBCT) is a widely used 3D imaging technique in dentistry, providing volumetric information about the anatomical structures of jaws and teeth. Accurate segmentation of these anatomies is critical for clinical applications such as diagnosis and surgical planning, but remains time-consuming and challenging. In this paper, we present U-Mamba2, a new neural network architecture designed for multi-anatomy CBCT segmentation in the context of the ToothFairy3 challenge. U-Mamba2 integrates the Mamba2 state space models into the U-Net architecture, enforcing stronger structural constraints for higher efficiency without compromising performance. In addition, we integrate interactive click prompts with cross-attention blocks, pre-train U-Mamba2 using self-supervised learning, and incorporate dental domain knowledge into the model design to address key challenges of dental anatomy segmentation in CBCT. Extensive experiments, including independent tests, demonstrate that U-Mamba2 is both effective and efficient, securing top 3 places in both tasks of the Toothfairy3 challenge. In Task 1, U-Mamba2 achieved a mean Dice of 0.792, HD95 of 93.19 with the held-out test data, with an average inference time of XX (TBC during the ODIN workshop). In Task 2, U-Mamba2 achieved the mean Dice of 0.852 and HD95 of 7.39 with the held-out test data. The code is publicly available at https://github.com/zhiqin1998/UMamba2.
☆ When Safe Unimodal Inputs Collide: Optimizing Reasoning Chains for Cross-Modal Safety in Multimodal Large Language Models
Multimodal Large Language Models (MLLMs) are susceptible to the implicit reasoning risk, wherein innocuous unimodal inputs synergistically assemble into risky multimodal data that produce harmful outputs. We attribute this vulnerability to the difficulty of MLLMs maintaining safety alignment through long-chain reasoning. To address this issue, we introduce Safe-Semantics-but-Unsafe-Interpretation (SSUI), the first dataset featuring interpretable reasoning paths tailored for such a cross-modal challenge. A novel training framework, Safety-aware Reasoning Path Optimization (SRPO), is also designed based on the SSUI dataset to align the MLLM's internal reasoning process with human safety values. Experimental results show that our SRPO-trained models achieve state-of-the-art results on key safety benchmarks, including the proposed Reasoning Path Benchmark (RSBench), significantly outperforming both open-source and top-tier commercial MLLMs.
☆ LEGO: Spatial Accelerator Generation and Optimization for Tensor Applications HPCA 2025
Modern tensor applications, especially foundation models and generative AI applications require multiple input modalities (both vision and language), which increases the demand for flexible accelerator architecture. Existing frameworks suffer from the trade-off between design flexibility and productivity of RTL generation: either limited to very few hand-written templates or cannot automatically generate the RTL. To address this challenge, we propose the LEGO framework, which targets tensor applications and automatically generates spatial architecture design and outputs synthesizable RTL code without handwritten RTL design templates. Leveraging the affine-transformation-based architecture representation, LEGO front end finds interconnections between function units, synthesizes the memory system, and fuses different spatial dataflow designs based on data reuse analysis. LEGO back end then translates the hardware in a primitive-level graph to perform lower-level optimizations, and applies a set of linear-programming algorithms to optimally insert pipeline registers and reduce the overhead of unused logic when switching spatial dataflows. Our evaluation demonstrates that LEGO can achieve 3.2x speedup and 2.4x energy efficiency compared to previous work Gemmini, and can generate one architecture for diverse modern foundation models in generative AI applications.
comment: The first two authors have equal contributions; Published as a conference paper in HPCA 2025; 13 pages, 14 figures
☆ Interaction-Driven Browsing: A Human-in-the-Loop Conceptual Framework Informed by Human Web Browsing for Browser-Using Agents
Although browser-using agents (BUAs) show promise for web tasks and automation, most BUAs terminate after executing a single instruction, failing to support users' complex, nonlinear browsing with ambiguous goals, iterative decision-making, and changing contexts. We present a human-in-the-loop (HITL) conceptual framework informed by theories of human web browsing behavior. The framework centers on an iterative loop in which the BUA proactively proposes next actions and the user steers the browsing process through feedback. It also distinguishes between exploration and exploitation actions, enabling users to control the breadth and depth of their browsing. Consequently, the framework aims to reduce users' physical and cognitive effort while preserving users' traditional browsing mental model and supporting users in achieving satisfactory outcomes. We illustrate how the framework operates with hypothetical use cases and discuss the shift from manual browsing to interaction-driven browsing. We contribute a theoretically informed conceptual framework for BUAs.
☆ A Computer Vision Pipeline for Individual-Level Behavior Analysis: Benchmarking on the Edinburgh Pig Dataset
Animal behavior analysis plays a crucial role in understanding animal welfare, health status, and productivity in agricultural settings. However, traditional manual observation methods are time-consuming, subjective, and limited in scalability. We present a modular pipeline that leverages open-sourced state-of-the-art computer vision techniques to automate animal behavior analysis in a group housing environment. Our approach combines state-of-the-art models for zero-shot object detection, motion-aware tracking and segmentation, and advanced feature extraction using vision transformers for robust behavior recognition. The pipeline addresses challenges including animal occlusions and group housing scenarios as demonstrated in indoor pig monitoring. We validated our system on the Edinburgh Pig Behavior Video Dataset for multiple behavioral tasks. Our temporal model achieved 94.2% overall accuracy, representing a 21.2 percentage point improvement over existing methods. The pipeline demonstrated robust tracking capabilities with 93.3% identity preservation score and 89.3% object detection precision. The modular design suggests potential for adaptation to other contexts, though further validation across species would be required. The open-source implementation provides a scalable solution for behavior monitoring, contributing to precision pig farming and welfare assessment through automated, objective, and continuous analysis.
comment: 9 figures, Submitted to Computers and Electronics in Agriculture
☆ Layout-Conditioned Autoregressive Text-to-Image Generation via Structured Masking
While autoregressive (AR) models have demonstrated remarkable success in image generation, extending them to layout-conditioned generation remains challenging due to the sparse nature of layout conditions and the risk of feature entanglement. We present Structured Masking for AR-based Layout-to-Image (SMARLI), a novel framework for layoutto-image generation that effectively integrates spatial layout constraints into AR-based image generation. To equip AR model with layout control, a specially designed structured masking strategy is applied to attention computation to govern the interaction among the global prompt, layout, and image tokens. This design prevents mis-association between different regions and their descriptions while enabling sufficient injection of layout constraints into the generation process. To further enhance generation quality and layout accuracy, we incorporate Group Relative Policy Optimization (GRPO) based post-training scheme with specially designed layout reward functions for next-set-based AR models. Experimental results demonstrate that SMARLI is able to seamlessly integrate layout tokens with text and image tokens without compromising generation quality. It achieves superior layoutaware control while maintaining the structural simplicity and generation efficiency of AR models.
comment: 10 pages, 3 figures
☆ Exploring Efficient Open-Vocabulary Segmentation in the Remote Sensing
Open-Vocabulary Remote Sensing Image Segmentation (OVRSIS), an emerging task that adapts Open-Vocabulary Segmentation (OVS) to the remote sensing (RS) domain, remains underexplored due to the absence of a unified evaluation benchmark and the domain gap between natural and RS images. To bridge these gaps, we first establish a standardized OVRSIS benchmark (\textbf{OVRSISBench}) based on widely-used RS segmentation datasets, enabling consistent evaluation across methods. Using this benchmark, we comprehensively evaluate several representative OVS/OVRSIS models and reveal their limitations when directly applied to remote sensing scenarios. Building on these insights, we propose \textbf{RSKT-Seg}, a novel open-vocabulary segmentation framework tailored for remote sensing. RSKT-Seg integrates three key components: (1) a Multi-Directional Cost Map Aggregation (RS-CMA) module that captures rotation-invariant visual cues by computing vision-language cosine similarities across multiple directions; (2) an Efficient Cost Map Fusion (RS-Fusion) transformer, which jointly models spatial and semantic dependencies with a lightweight dimensionality reduction strategy; and (3) a Remote Sensing Knowledge Transfer (RS-Transfer) module that injects pre-trained knowledge and facilitates domain adaptation via enhanced upsampling. Extensive experiments on the benchmark show that RSKT-Seg consistently outperforms strong OVS baselines by +3.8 mIoU and +5.9 mACC, while achieving 2x faster inference through efficient aggregation. Our code is \href{https://github.com/LiBingyu01/RSKT-Seg}{\textcolor{blue}{here}}.
☆ Human-AI Use Patterns for Decision-Making in Disaster Scenarios: A Systematic Review
In high-stakes disaster scenarios, timely and informed decision-making is critical yet often challenged by uncertainty, dynamic environments, and limited resources. This paper presents a systematic review of Human-AI collaboration patterns that support decision-making across all disaster management phases. Drawing from 51 peer-reviewed studies, we identify four major categories: Human-AI Decision Support Systems, Task and Resource Coordination, Trust and Transparency, and Simulation and Training. Within these, we analyze sub-patterns such as cognitive-augmented intelligence, multi-agent coordination, explainable AI, and virtual training environments. Our review highlights how AI systems may enhance situational awareness, improves response efficiency, and support complex decision-making, while also surfacing critical limitations in scalability, interpretability, and system interoperability. We conclude by outlining key challenges and future research directions, emphasizing the need for adaptive, trustworthy, and context-aware Human-AI systems to improve disaster resilience and equitable recovery outcomes.
comment: 10 pages, 2 figures
☆ Imitation Learning as Return Distribution Matching
We study the problem of training a risk-sensitive reinforcement learning (RL) agent through imitation learning (IL). Unlike standard IL, our goal is not only to train an agent that matches the expert's expected return (i.e., its average performance) but also its risk attitude (i.e., other features of the return distribution, such as variance). We propose a general formulation of the risk-sensitive IL problem in which the objective is to match the expert's return distribution in Wasserstein distance. We focus on the tabular setting and assume the expert's reward is known. After demonstrating the limited expressivity of Markovian policies for this task, we introduce an efficient and sufficiently expressive subclass of non-Markovian policies tailored to it. Building on this subclass, we develop two provably efficient algorithms, RS-BC and RS-KT, for solving the problem when the transition model is unknown and known, respectively. We show that RS-KT achieves substantially lower sample complexity than RS-BC by exploiting dynamics information. We further demonstrate the sample efficiency of return distribution matching in the setting where the expert's reward is unknown by designing an oracle-based variant of RS-KT. Finally, we complement our theoretical analysis of RS-KT and RS-BC with numerical simulations, highlighting both their sample efficiency and the advantages of non-Markovian policies over standard sample-efficient IL algorithms.
☆ AMQ: Enabling AutoML for Mixed-precision Weight-Only Quantization of Large Language Models EMNLP 2025
To enable broader deployment of Large Language Models (LLMs), it is essential to identify the best-performing model under strict memory constraints. We present AMQ, Automated Mixed-Precision Weight-Only Quantization, a framework that assigns layer-wise quantization bit-widths to optimally balance model quality and memory usage. However, the combinatorial search space, with over 10^{100} possible configurations, makes conventional black-box optimization infeasible. AMQ overcomes this challenge through four key innovations:(1) search space pruning using prior knowledge to exclude unpromising configurations, (2) quantization proxy to bypass costly format conversions during search, (3) quality predictor to minimize evaluation overhead, and (4) iterative search-and-update strategy for fast and stable convergence. By integrating these components, AMQ efficiently explores the quality-efficiency landscape, reaching the Pareto frontier and yielding LLMs that are both compact and high-performing. Our code is available at https://github.com/dlwns147/amq.
comment: EMNLP 2025 Main Conference, Long Paper (Oral)
☆ Generalizing Behavior via Inverse Reinforcement Learning with Closed-Form Reward Centroids
We study the problem of generalizing an expert agent's behavior, provided through demonstrations, to new environments and/or additional constraints. Inverse Reinforcement Learning (IRL) offers a promising solution by seeking to recover the expert's underlying reward function, which, if used for planning in the new settings, would reproduce the desired behavior. However, IRL is inherently ill-posed: multiple reward functions, forming the so-called feasible set, can explain the same observed behavior. Since these rewards may induce different policies in the new setting, in the absence of additional information, a decision criterion is needed to select which policy to deploy. In this paper, we propose a novel, principled criterion that selects the "average" policy among those induced by the rewards in a certain bounded subset of the feasible set. Remarkably, we show that this policy can be obtained by planning with the reward centroid of that subset, for which we derive a closed-form expression. We then present a provably efficient algorithm for estimating this centroid using an offline dataset of expert demonstrations only. Finally, we conduct numerical simulations that illustrate the relationship between the expert's behavior and the behavior produced by our method.
☆ Text Adaptation to Plain Language and Easy Read via Automatic Post-Editing Cycles
We describe Vicomtech's participation in the CLEARS challenge on text adaptation to Plain Language and Easy Read in Spanish. Our approach features automatic post-editing of different types of initial Large Language Model adaptations, where successive adaptations are generated iteratively until readability and similarity metrics indicate that no further adaptation refinement can be successfully performed. Taking the average of all official metrics, our submissions achieved first and second place in Plain language and Easy Read adaptation, respectively.
☆ Poison to Detect: Detection of Targeted Overfitting in Federated Learning
Federated Learning (FL) enables collaborative model training across decentralised clients while keeping local data private, making it a widely adopted privacy-enhancing technology (PET). Despite its privacy benefits, FL remains vulnerable to privacy attacks, including those targeting specific clients. In this paper, we study an underexplored threat where a dishonest orchestrator intentionally manipulates the aggregation process to induce targeted overfitting in the local models of specific clients. Whereas many studies in this area predominantly focus on reducing the amount of information leakage during training, we focus on enabling an early client-side detection of targeted overfitting, thereby allowing clients to disengage before significant harm occurs. In line with this, we propose three detection techniques - (a) label flipping, (b) backdoor trigger injection, and (c) model fingerprinting - that enable clients to verify the integrity of the global aggregation. We evaluated our methods on multiple datasets under different attack scenarios. Our results show that the three methods reliably detect targeted overfitting induced by the orchestrator, but they differ in terms of computational complexity, detection latency, and false-positive rates.
☆ MusicSwarm: Biologically Inspired Intelligence for Music Composition
We show that coherent, long-form musical composition can emerge from a decentralized swarm of identical, frozen foundation models that coordinate via stigmergic, peer-to-peer signals, without any weight updates. We compare a centralized multi-agent system with a global critic to a fully decentralized swarm in which bar-wise agents sense and deposit harmonic, rhythmic, and structural cues, adapt short-term memory, and reach consensus. Across symbolic, audio, and graph-theoretic analyses, the swarm yields superior quality while delivering greater diversity and structural variety and leads across creativity metrics. The dynamics contract toward a stable configuration of complementary roles, and self-similarity networks reveal a small-world architecture with efficient long-range connectivity and specialized bridging motifs, clarifying how local novelties consolidate into global musical form. By shifting specialization from parameter updates to interaction rules, shared memory, and dynamic consensus, MusicSwarm provides a compute- and data-efficient route to long-horizon creative structure that is immediately transferable beyond music to collaborative writing, design, and scientific discovery.
☆ Time-Constrained Intelligent Adversaries for Automation Vulnerability Testing: A Multi-Robot Patrol Case Study
Simulating hostile attacks of physical autonomous systems can be a useful tool to examine their robustness to attack and inform vulnerability-aware design. In this work, we examine this through the lens of multi-robot patrol, by presenting a machine learning-based adversary model that observes robot patrol behavior in order to attempt to gain undetected access to a secure environment within a limited time duration. Such a model allows for evaluation of a patrol system against a realistic potential adversary, offering insight into future patrol strategy design. We show that our new model outperforms existing baselines, thus providing a more stringent test, and examine its performance against multiple leading decentralized multi-robot patrol strategies.
☆ A GPU-Accelerated RAG-Based Telegram Assistant for Supporting Parallel Processing Students
This project addresses a critical pedagogical need: offering students continuous, on-demand academic assistance beyond conventional reception hours. I present a domain-specific Retrieval-Augmented Generation (RAG) system powered by a quantized Mistral-7B Instruct model and deployed as a Telegram bot. The assistant enhances learning by delivering real-time, personalized responses aligned with the "Introduction to Parallel Processing" course materials. GPU acceleration significantly improves inference latency, enabling practical deployment on consumer hardware. This approach demonstrates how consumer GPUs can enable affordable, private, and effective AI tutoring for HPC education.
comment: 9 pages
☆ Agentic Temporal Graph of Reasoning with Multimodal Language Models: A Potential AI Aid to Healthcare
Healthcare and medicine are multimodal disciplines that deal with multimodal data for reasoning and diagnosing multiple diseases. Although some multimodal reasoning models have emerged for reasoning complex tasks in scientific domains, their applications in the healthcare domain remain limited and fall short in correct reasoning for diagnosis. To address the challenges of multimodal medical reasoning for correct diagnosis and assist the healthcare professionals, a novel temporal graph-based reasoning process modelled through a directed graph has been proposed in the current work. It helps in accommodating dynamic changes in reasons through backtracking, refining the reasoning content, and creating new or deleting existing reasons to reach the best recommendation or answer. Again, consideration of multimodal data at different time points can enable tracking and analysis of patient health and disease progression. Moreover, the proposed multi-agent temporal reasoning framework provides task distributions and a cross-validation mechanism to further enhance the accuracy of reasoning outputs. A few basic experiments and analysis results justify the novelty and practical utility of the proposed preliminary approach.
☆ Neuro-Symbolic Agents with Modal Logic for Autonomous Diagnostics
The development of intelligent agents, particularly those powered by language models (LMs), has shown the critical role in various environments that require intelligent and autonomous decision. Environments are not passive testing grounds and they represent the data required for agents to learn and exhibit very challenging conditions that require adaptive, complex and autonomous capacity to make decisions. While the paradigm of scaling models and datasets has led to remarkable emergent capabilities, we argue that scaling the structure, fidelity, and logical consistency of agent reasoning within these environments is a crucial, yet underexplored, dimension of AI research. This paper introduces a neuro-symbolic multi-agent architecture where the belief states of individual agents are formally represented as Kripke models. This foundational choice enables them to reason about known concepts of \emph{possibility} and \emph{necessity} using the formal language of modal logic. In this work, we use of immutable, domain-specific knowledge to make infere information, which is encoded as logical constraints essential for proper diagnosis. In the proposed model, we show constraints that actively guide the hypothesis generation of LMs, effectively preventing them from reaching physically or logically untenable conclusions. In a high-fidelity simulated particle accelerator environment, our system successfully diagnoses complex, cascading failures by combining the powerful semantic intuition of LMs with the rigorous, verifiable validation of modal logic and a factual world model and showcasing a viable path toward more robust, reliable, and verifiable autonomous agents.
comment: 10 pages, 1 figure, Scaling Environments for Agents (SEA) Workshop at NeuralIPS
☆ VisDocSketcher: Towards Scalable Visual Documentation with Agentic Systems
Visual documentation is an effective tool for reducing the cognitive barrier developers face when understanding unfamiliar code, enabling more intuitive comprehension. Compared to textual documentation, it provides a higher-level understanding of the system structure and data flow. Developers usually prefer visual representations over lengthy textual descriptions for large software systems. Visual documentation is both difficult to produce and challenging to evaluate. Manually creating it is time-consuming, and currently, no existing approach can automatically generate high-level visual documentation directly from code. Its evaluation is often subjective, making it difficult to standardize and automate. To address these challenges, this paper presents the first exploration of using agentic LLM systems to automatically generate visual documentation. We introduce VisDocSketcher, the first agent-based approach that combines static analysis with LLM agents to identify key elements in the code and produce corresponding visual representations. We propose a novel evaluation framework, AutoSketchEval, for assessing the quality of generated visual documentation using code-level metrics. The experimental results show that our approach can valid visual documentation for 74.4% of the samples. It shows an improvement of 26.7-39.8% over a simple template-based baseline. Our evaluation framework can reliably distinguish high-quality (code-aligned) visual documentation from low-quality (non-aligned) ones, achieving an AUC exceeding 0.87. Our work lays the foundation for future research on automated visual documentation by introducing practical tools that not only generate valid visual representations but also reliably assess their quality.
☆ How to Evaluate Medical AI
The integration of artificial intelligence (AI) into medical diagnostic workflows requires robust and consistent evaluation methods to ensure reliability, clinical relevance, and the inherent variability in expert judgments. Traditional metrics like precision and recall often fail to account for the inherent variability in expert judgments, leading to inconsistent assessments of AI performance. Inter-rater agreement statistics like Cohen's Kappa are more reliable but they lack interpretability. We introduce Relative Precision and Recall of Algorithmic Diagnostics (RPAD and RRAD) - a new evaluation metrics that compare AI outputs against multiple expert opinions rather than a single reference. By normalizing performance against inter-expert disagreement, these metrics provide a more stable and realistic measure of the quality of predicted diagnosis. In addition to the comprehensive analysis of diagnostic quality measures, our study contains a very important side result. Our evaluation methodology allows us to avoid selecting diagnoses from a limited list when evaluating a given case. Instead, both the models being tested and the examiners verifying them arrive at a free-form diagnosis. In this automated methodology for establishing the identity of free-form clinical diagnoses, a remarkable 98% accuracy becomes attainable. We evaluate our approach using 360 medical dialogues, comparing multiple large language models (LLMs) against a panel of physicians. Large-scale study shows that top-performing models, such as DeepSeek-V3, achieve consistency on par with or exceeding expert consensus. Moreover, we demonstrate that expert judgments exhibit significant variability - often greater than that between AI and humans. This finding underscores the limitations of any absolute metrics and supports the need to adopt relative metrics in medical AI.
comment: 10 pages, 7 fugures
☆ Neuromorphic Intelligence
Neuromorphic computing seeks to replicate the remarkable efficiency, flexibility, and adaptability of the human brain in artificial systems. Unlike conventional digital approaches, which depend on massive computational and energy resources, neuromorphic systems exploit brain-inspired principles of computation to achieve orders of magnitude greater energy efficiency. By drawing on insights from artificial intelligence, neuroscience, physics, chemistry, and materials science, neuromorphic computing promises to deliver intelligent systems that are sustainable, transparent, and widely accessible. A central challenge, however, is to identify a unifying theoretical framework capable of bridging these diverse disciplines. We argue that dynamical systems theory provides such a foundation. Rooted in differential calculus, it offers a principled language for modeling inference, learning, and control in both natural and artificial substrates. Within this framework, noise can be harnessed as a resource for learning, while differential genetic programming enables the discovery of dynamical systems that implement adaptive behaviors. Embracing this perspective paves the way toward emergent neuromorphic intelligence, where intelligent behavior arises from the dynamics of physical substrates, advancing both the science and sustainability of AI.
comment: 18 pages, 3 figures
☆ MMORE: Massive Multimodal Open RAG & Extraction ICML 2025
We introduce MMORE, an open-source pipeline for Massive Multimodal Open RetrievalAugmented Generation and Extraction, designed to ingest, transform, and retrieve knowledge from heterogeneous document formats at scale. MMORE supports more than fifteen file types, including text, tables, images, emails, audio, and video, and processes them into a unified format to enable downstream applications for LLMs. The architecture offers modular, distributed processing, enabling scalable parallelization across CPUs and GPUs. On processing benchmarks, MMORE demonstrates a 3.8-fold speedup over single-node baselines and 40% higher accuracy than Docling on scanned PDFs. The pipeline integrates hybrid dense-sparse retrieval and supports both interactive APIs and batch RAG endpoints. Evaluated on PubMedQA, MMORE-augmented medical LLMs improve biomedical QA accuracy with increasing retrieval depth. MMORE provides a robust, extensible foundation for deploying task-agnostic RAG systems on diverse, real-world multimodal data. The codebase is available at https://github.com/swiss-ai/mmore.
comment: This paper was originally submitted to the CODEML workshop for ICML 2025. 9 pages (including references and appendices)
☆ BuildingGym: An open-source toolbox for AI-based building energy management using reinforcement learning
Reinforcement learning (RL) has proven effective for AI-based building energy management. However, there is a lack of flexible framework to implement RL across various control problems in building energy management. To address this gap, we propose BuildingGym, an open-source tool designed as a research-friendly and flexible framework for training RL control strategies for common challenges in building energy management. BuildingGym integrates EnergyPlus as its core simulator, making it suitable for both system-level and room-level control. Additionally, BuildingGym is able to accept external signals as control inputs instead of taking the building as a stand-alone entity. This feature makes BuildingGym applicable for more flexible environments, e.g. smart grid and EVs community. The tool provides several built-in RL algorithms for control strategy training, simplifying the process for building managers to obtain optimal control strategies. Users can achieve this by following a few straightforward steps to configure BuildingGym for optimization control for common problems in the building energy management field. Moreover, AI specialists can easily implement and test state-of-the-art control algorithms within the platform. BuildingGym bridges the gap between building managers and AI specialists by allowing for the easy configuration and replacement of RL algorithms, simulators, and control environments or problems. With BuildingGym, we efficiently set up training tasks for cooling load management, targeting both constant and dynamic cooling load management. The built-in algorithms demonstrated strong performance across both tasks, highlighting the effectiveness of BuildingGym in optimizing cooling strategies.
☆ EgoMem: Lifelong Memory Agent for Full-duplex Omnimodal Models
We introduce EgoMem, the first lifelong memory agent tailored for full-duplex models that process real-time omnimodal streams. EgoMem enables real-time models to recognize multiple users directly from raw audiovisual streams, to provide personalized response, and to maintain long-term knowledge of users' facts, preferences, and social relationships extracted from audiovisual history. EgoMem operates with three asynchronous processes: (i) a retrieval process that dynamically identifies user via face and voice, and gathers relevant context from a long-term memory; (ii) an omnimodal dialog process that generates personalized audio responses based on the retrieved context; and (iii) a memory management process that automatically detects dialog boundaries from omnimodal streams, and extracts necessary information to update the long-term memory. Unlike existing memory agents for LLMs, EgoMem relies entirely on raw audiovisual streams, making it especially suitable for lifelong, real-time, and embodied scenarios. Experimental results demonstrate that EgoMem's retrieval and memory management modules achieve over 95% accuracy on the test set. When integrated with a fine-tuned RoboEgo omnimodal chatbot, the system achieves fact-consistency scores above 87% in real-time personalized dialogs, establishing a strong baseline for future research.
☆ Integrating Prior Observations for Incremental 3D Scene Graph Prediction ICML
3D semantic scene graphs (3DSSG) provide compact structured representations of environments by explicitly modeling objects, attributes, and relationships. While 3DSSGs have shown promise in robotics and embodied AI, many existing methods rely mainly on sensor data, not integrating further information from semantically rich environments. Additionally, most methods assume access to complete scene reconstructions, limiting their applicability in real-world, incremental settings. This paper introduces a novel heterogeneous graph model for incremental 3DSSG prediction that integrates additional, multi-modal information, such as prior observations, directly into the message-passing process. Utilizing multiple layers, the model flexibly incorporates global and local scene representations without requiring specialized modules or full scene reconstructions. We evaluate our approach on the 3DSSG dataset, showing that GNNs enriched with multi-modal information such as semantic embeddings (e.g., CLIP) and prior observations offer a scalable and generalizable solution for complex, real-world environments. The full source code of the presented architecture will be made available at https://github.com/m4renz/incremental-scene-graph-prediction.
comment: Accepted at 24th International Conference on Machine Learning and Applications (ICMLA'25)
☆ Learning Representations in Video Game Agents with Supervised Contrastive Imitation Learning
This paper introduces a novel application of Supervised Contrastive Learning (SupCon) to Imitation Learning (IL), with a focus on learning more effective state representations for agents in video game environments. The goal is to obtain latent representations of the observations that capture better the action-relevant factors, thereby modeling better the cause-effect relationship from the observations that are mapped to the actions performed by the demonstrator, for example, the player jumps whenever an obstacle appears ahead. We propose an approach to integrate the SupCon loss with continuous output spaces, enabling SupCon to operate without constraints regarding the type of actions of the environment. Experiments on the 3D games Astro Bot and Returnal, and multiple 2D Atari games show improved representation quality, faster learning convergence, and better generalization compared to baseline models trained only with supervised action prediction loss functions.
☆ Growing Perspectives: Modelling Embodied Perspective Taking and Inner Narrative Development Using Large Language Models
Language and embodied perspective taking are essential for human collaboration, yet few computational models address both simultaneously. This work investigates the PerspAct system [1], which integrates the ReAct (Reason and Act) paradigm with Large Language Models (LLMs) to simulate developmental stages of perspective taking, grounded in Selman's theory [2]. Using an extended director task, we evaluate GPT's ability to generate internal narratives aligned with specified developmental stages, and assess how these influence collaborative performance both qualitatively (action selection) and quantitatively (task efficiency). Results show that GPT reliably produces developmentally-consistent narratives before task execution but often shifts towards more advanced stages during interaction, suggesting that language exchanges help refine internal representations. Higher developmental stages generally enhance collaborative effectiveness, while earlier stages yield more variable outcomes in complex contexts. These findings highlight the potential of integrating embodied perspective taking and language in LLMs to better model developmental dynamics and stress the importance of evaluating internal speech during combined linguistic and embodied tasks.
comment: Accepted at ICDL https://icdl2025.fel.cvut.cz/
☆ Tenma: Robust Cross-Embodiment Robot Manipulation with Diffusion Transformer
Scaling Transformer policies and diffusion models has advanced robotic manipulation, yet combining these techniques in lightweight, cross-embodiment learning settings remains challenging. We study design choices that most affect stability and performance for diffusion-transformer policies trained on heterogeneous, multimodal robot data, and introduce Tenma, a lightweight diffusion-transformer for bi-manual arm control. Tenma integrates multiview RGB, proprioception, and language via a cross-embodiment normalizer that maps disparate state/action spaces into a shared latent space; a Joint State-Time encoder for temporally aligned observation learning with inference speed boosts; and a diffusion action decoder optimized for training stability and learning capacity. Across benchmarks and under matched compute, Tenma achieves an average success rate of 88.95% in-distribution and maintains strong performance under object and scene shifts, substantially exceeding baseline policies whose best in-distribution average is 18.12%. Despite using moderate data scale, Tenma delivers robust manipulation and generalization, indicating the great potential for multimodal and cross-embodiment learning strategies for further augmenting the capacity of transformer-based imitation learning policies.
comment: 8 pages, 4 figures
☆ Bridging Vision Language Models and Symbolic Grounding for Video Question Answering
Video Question Answering (VQA) requires models to reason over spatial, temporal, and causal cues in videos. Recent vision language models (VLMs) achieve strong results but often rely on shallow correlations, leading to weak temporal grounding and limited interpretability. We study symbolic scene graphs (SGs) as intermediate grounding signals for VQA. SGs provide structured object-relation representations that complement VLMs holistic reasoning. We introduce SG-VLM, a modular framework that integrates frozen VLMs with scene graph grounding via prompting and visual localization. Across three benchmarks (NExT-QA, iVQA, ActivityNet-QA) and multiple VLMs (QwenVL, InternVL), SG-VLM improves causal and temporal reasoning and outperforms prior baselines, though gains over strong VLMs are limited. These findings highlight both the promise and current limitations of symbolic grounding, and offer guidance for future hybrid VLM-symbolic approaches in video understanding.
☆ Probabilistic Robustness Analysis in High Dimensional Space: Application to Semantic Segmentation Network
Semantic segmentation networks (SSNs) play a critical role in domains such as medical imaging, autonomous driving, and environmental monitoring, where safety hinges on reliable model behavior under uncertainty. Yet, existing probabilistic verification approaches struggle to scale with the complexity and dimensionality of modern segmentation tasks, often yielding guarantees that are too conservative to be practical. We introduce a probabilistic verification framework that is both architecture-agnostic and scalable to high-dimensional outputs. Our approach combines sampling-based reachability analysis with conformal inference (CI) to deliver provable guarantees while avoiding the excessive conservatism of prior methods. To counteract CI's limitations in high-dimensional settings, we propose novel strategies that reduce conservatism without compromising rigor. Empirical evaluation on large-scale segmentation models across CamVid, OCTA-500, Lung Segmentation, and Cityscapes demonstrates that our method provides reliable safety guarantees while substantially tightening bounds compared to SOTA. We also provide a toolbox implementing this technique, available on Github.
☆ Data-Driven Analysis of Text-Conditioned AI-Generated Music: A Case Study with Suno and Udio
Online AI platforms for creating music from text prompts (AI music), such as Suno and Udio, are now being used by hundreds of thousands of users. Some AI music is appearing in advertising, and even charting, in multiple countries. How are these platforms being used? What subjects are inspiring their users? This article answers these questions for Suno and Udio using a large collection of songs generated by users of these platforms from May to October 2024. Using a combination of state-of-the-art text embedding models, dimensionality reduction and clustering methods, we analyze the prompts, tags and lyrics, and automatically annotate and display the processed data in interactive plots. Our results reveal prominent themes in lyrics, language preference, prompting strategies, as well as peculiar attempts at steering models through the use of metatags. To promote the musicological study of the developing cultural practice of AI-generated music we share our code and resources.
comment: Submitted for review to TISMIR Digital Musicology special issue
☆ Collapse of Irrelevant Representations (CIR) Ensures Robust and Non-Disruptive LLM Unlearning
Current unlearning techniques and safety training consistently fail to remove dangerous knowledge from language models. We analyze the root causes and propose a highly selective technique which unlearns robustly and without disrupting general performance. We perform PCA on activations and module output gradients to identify subspaces containing common representations, and collapse them before calculating unlearning updates. This way we avoid unlearning general representations, and only target those specific to the unlearned facts. When unlearning WMDP dataset facts from Llama-3.1-8B, we drop post-attack accuracy 80x more than our best baseline (Circuit Breakers) on biohazardous facts and 30x more on cyberhazardous facts. Despite this, we disrupt general performance 30x less (only 0.1% WikiText loss increase), while requiring less than 3 GPU-seconds per fact.
☆ SpecVLM: Fast Speculative Decoding in Vision-Language Models
Speculative decoding is a powerful way to accelerate autoregressive large language models (LLMs), but directly porting it to vision-language models (VLMs) faces unique systems constraints: the prefill stage is dominated by visual tokens whose count scales with image resolution and video length, inflating both compute and memory, especially the key-value (KV) cache. We study speculative decoding for VLMs and introduce SpecVLM, a practical system that (1) establishes a strong EAGLE-2-style baseline, EagleVLM, delivering 1.5--2.3x end-to-end speedups over full autoregressive inference, and (2) further accelerates VLM inference with an elastic visual compressor that adaptively selects among pruning, pooling, convolution, and resampler primitives to balance FLOPs/parameters and accuracy per input. To avoid costly offline distillation corpora, we propose an online-logit distillation protocol that trains the draft model with on-the-fly teacher logits and penultimate features using a combined cross-entropy and Smooth L1 objective, eliminating storage and preprocessing while remaining compute-efficient. This protocol reveals a training-time scaling effect: longer online training monotonically increases the draft model's average accepted length, improving speculative efficiency. Empirically, SpecVLM achieves additional acceleration, culminating in 2.5--2.9x end-to-end speedups within 5 epochs across LLaVA and MMMU, consistently over resolutions and task difficulties, while preserving the target model's output distribution (lossless decoding). Our code is available at https://github.com/haiduo/SpecVLM.
☆ Bridging the Gap Between Sparsity and Redundancy: A Dual-Decoding Framework with Global Context for Map Inference
Trajectory data has become a key resource for automated map in-ference due to its low cost, broad coverage, and continuous availability. However, uneven trajectory density often leads to frag-mented roads in sparse areas and redundant segments in dense regions, posing significant challenges for existing methods. To address these issues, we propose DGMap, a dual-decoding framework with global context awareness, featuring Multi-scale Grid Encoding, Mask-enhanced Keypoint Extraction, and Global Context-aware Relation Prediction. By integrating global semantic context with local geometric features, DGMap improves keypoint detection accuracy to reduce road fragmentation in sparse-trajectory areas. Additionally, the Global Context-aware Relation Prediction module suppresses false connections in dense-trajectory regions by modeling long-range trajectory patterns. Experimental results on three real-world datasets show that DGMap outperforms state-of-the-art methods by 5% in APLS, with notable performance gains on trajectory data from the Didi Chuxing platform
☆ Microsurgical Instrument Segmentation for Robot-Assisted Surgery
Accurate segmentation of thin structures is critical for microsurgical scene understanding but remains challenging due to resolution loss, low contrast, and class imbalance. We propose Microsurgery Instrument Segmentation for Robotic Assistance(MISRA), a segmentation framework that augments RGB input with luminance channels, integrates skip attention to preserve elongated features, and employs an Iterative Feedback Module(IFM) for continuity restoration across multiple passes. In addition, we introduce a dedicated microsurgical dataset with fine-grained annotations of surgical instruments including thin objects, providing a benchmark for robust evaluation Dataset available at https://huggingface.co/datasets/KIST-HARILAB/MISAW-Seg. Experiments demonstrate that MISRA achieves competitive performance, improving the mean class IoU by 5.37% over competing methods, while delivering more stable predictions at instrument contacts and overlaps. These results position MISRA as a promising step toward reliable scene parsing for computer-assisted and robotic microsurgery.
comment: 8 pages, 7 figures
☆ HeLoFusion: An Efficient and Scalable Encoder for Modeling Heterogeneous and Multi-Scale Interactions in Trajectory Prediction
Multi-agent trajectory prediction in autonomous driving requires a comprehensive understanding of complex social dynamics. Existing methods, however, often struggle to capture the full richness of these dynamics, particularly the co-existence of multi-scale interactions and the diverse behaviors of heterogeneous agents. To address these challenges, this paper introduces HeLoFusion, an efficient and scalable encoder for modeling heterogeneous and multi-scale agent interactions. Instead of relying on global context, HeLoFusion constructs local, multi-scale graphs centered on each agent, allowing it to effectively model both direct pairwise dependencies and complex group-wise interactions (\textit{e.g.}, platooning vehicles or pedestrian crowds). Furthermore, HeLoFusion tackles the critical challenge of agent heterogeneity through an aggregation-decomposition message-passing scheme and type-specific feature networks, enabling it to learn nuanced, type-dependent interaction patterns. This locality-focused approach enables a principled representation of multi-level social context, yielding powerful and expressive agent embeddings. On the challenging Waymo Open Motion Dataset, HeLoFusion achieves state-of-the-art performance, setting new benchmarks for key metrics including Soft mAP and minADE. Our work demonstrates that a locality-grounded architecture, which explicitly models multi-scale and heterogeneous interactions, is a highly effective strategy for advancing motion forecasting.
☆ CoachMe: Decoding Sport Elements with a Reference-Based Coaching Instruction Generation Model ACL 2025
Motion instruction is a crucial task that helps athletes refine their technique by analyzing movements and providing corrective guidance. Although recent advances in multimodal models have improved motion understanding, generating precise and sport-specific instruction remains challenging due to the highly domain-specific nature of sports and the need for informative guidance. We propose CoachMe, a reference-based model that analyzes the differences between a learner's motion and a reference under temporal and physical aspects. This approach enables both domain-knowledge learning and the acquisition of a coach-like thinking process that identifies movement errors effectively and provides feedback to explain how to improve. In this paper, we illustrate how CoachMe adapts well to specific sports such as skating and boxing by learning from general movements and then leveraging limited data. Experiments show that CoachMe provides high-quality instructions instead of directions merely in the tone of a coach but without critical information. CoachMe outperforms GPT-4o by 31.6% in G-Eval on figure skating and by 58.3% on boxing. Analysis further confirms that it elaborates on errors and their corresponding improvement methods in the generated instructions. You can find CoachMe here: https://motionxperts.github.io/
comment: Published in Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), ACL 2025. Official version: https://doi.org/10.18653/v1/2025.acl-long.1413
☆ Do Code Semantics Help? A Comprehensive Study on Execution Trace-Based Information for Code Large Language Models EMNLP2025
Code Large Language Models (Code LLMs) have opened a new era in programming with their impressive capabilities. However, recent research has revealed critical limitations in their ability to reason about runtime behavior and understand the actual functionality of programs, which poses significant challenges for their post-training and practical deployment. Specifically, Code LLMs encounter two principal issues: (1) a lack of proficiency in reasoning about program execution behavior, as they struggle to interpret what programs actually do during runtime, and (2) the inconsistent and fragmented representation of semantic information, such as execution traces, across existing methods, which hinders their ability to generalize and reason effectively. These challenges underscore the necessity for more systematic approaches to enhance the reasoning capabilities of Code LLMs. To address these issues, we introduce a generic framework to support integrating semantic information~(e.g., execution trace) to code task-relevant prompts, and conduct a comprehensive study to explore the role of semantic information in enhancing the reasoning ability of Code LLMs accordingly. Specifically, we focus on investigating the usefulness of trace-based semantic information in boosting supervised fine-tuning~(SFT) and post-phase inference of Code LLMs. The experimental results surprisingly disagree with previous works and demonstrate that semantic information has limited usefulness for SFT and test time scaling of Code LLM.
comment: EMNLP2025-findings
☆ ParaEQsA: Parallel and Asynchronous Embodied Questions Scheduling and Answering ICRA 2026
This paper formulates the Embodied Questions Answering (EQsA) problem, introduces a corresponding benchmark, and proposes a system to tackle the problem. Classical Embodied Question Answering (EQA) is typically formulated as answering one single question by actively exploring a 3D environment. Real deployments, however, often demand handling multiple questions that may arrive asynchronously and carry different urgencies. We formalize this setting as Embodied Questions Answering (EQsA) and present ParaEQsA, a framework for parallel, urgency-aware scheduling and answering. ParaEQsA leverages a group memory module shared among questions to reduce redundant exploration, and a priority-planning module to dynamically schedule questions. To evaluate this setting, we contribute the Parallel Asynchronous Embodied Questions (PAEQs) benchmark containing 40 indoor scenes and five questions per scene (200 in total), featuring asynchronous follow-up questions and urgency labels. We further propose metrics for EQsA performance: Direct Answer Rate (DAR), and Normalized Urgency-Weighted Latency (NUWL), which jointly measure efficiency and responsiveness of this system. ParaEQsA consistently outperforms strong sequential baselines adapted from recent EQA systems, while reducing exploration and delay. Empirical evaluations investigate the relative contributions of priority, urgency modeling, spatial scope, reward estimation, and dependency reasoning within our framework. Together, these results demonstrate that urgency-aware, parallel scheduling is key to making embodied agents responsive and efficient under realistic, multi-question workloads.
comment: 8 pages, 6 figures, 2026 IEEE Conference on Robotics and Automation (ICRA 2026)
☆ MindVL: Towards Efficient and Effective Training of Multimodal Large Language Models on Ascend NPUs
We propose MindVL, a multimodal large langauge model trained on Ascend NPUs. Similar to Qwen2.5-VL, MindVL adopts native-resolution Vision Transformers, which enables it to process images at their original variable resolutions. This design avoids the degradation caused by fixed-resolution tiling while preserving fine-grained details and global layouts, which is crucial for visually dense content such as complex charts and diagrams. To ensure the smooth training of MindVL on Ascend NPUs, we develop Mindspeed-MLLM, a distributed multimodal training framework tailored for Ascend NPUs. To maintain training accuracy, we implement equivalent replacements for certain operators. MindVL undergoes a three-phase training process, namely the warm-up phase, multitask training phase, and supervised instruction tuning phase, to gradually enhance its capabilities. This process starts with basic visual and multimodal pre-training, followed by large-scale multiask trainging and instruction tuning. We also adopt multimodal data packaging and hybrid parallelism techniques, which significantly improve end-to-end training speed. To further boost model performance, we specifically introduce test-time resolution search and model weight averaging. Notably, despite using about 1/10 of the training data required by Qwen2.5-VL, MindVL achieves performance on par with Qwen2.5-VL in evaluations of general multimodal understanding and document/table comprehension. Beyond overall scores, MindVL also delivers leading performance in OCR assessments.
☆ DTGen: Generative Diffusion-Based Few-Shot Data Augmentation for Fine-Grained Dirty Tableware Recognition
Intelligent tableware cleaning is a critical application in food safety and smart homes, but existing methods are limited by coarse-grained classification and scarcity of few-shot data, making it difficult to meet industrialization requirements. We propose DTGen, a few-shot data augmentation scheme based on generative diffusion models, specifically designed for fine-grained dirty tableware recognition. DTGen achieves efficient domain specialization through LoRA, generates diverse dirty images via structured prompts, and ensures data quality through CLIP-based cross-modal filtering. Under extremely limited real few-shot conditions, DTGen can synthesize virtually unlimited high-quality samples, significantly improving classifier performance and supporting fine-grained dirty tableware recognition. We further elaborate on lightweight deployment strategies, promising to transfer DTGen's benefits to embedded dishwashers and integrate with cleaning programs to intelligently regulate energy consumption and detergent usage. Research results demonstrate that DTGen not only validates the value of generative AI in few-shot industrial vision but also provides a feasible deployment path for automated tableware cleaning and food safety monitoring.
☆ MALLM: Multi-Agent Large Language Models Framework EMNLP 2025
Multi-agent debate (MAD) has demonstrated the ability to augment collective intelligence by scaling test-time compute and leveraging expertise. Current frameworks for multi-agent debate are often designed towards tool use, lack integrated evaluation, or provide limited configurability of agent personas, response generators, discussion paradigms, and decision protocols. We introduce MALLM (Multi-Agent Large Language Models), an open-source framework that enables systematic analysis of MAD components. MALLM offers more than 144 unique configurations of MAD, including (1) agent personas (e.g., Expert, Personality), (2) response generators (e.g., Critical, Reasoning), (3) discussion paradigms (e.g., Memory, Relay), and (4) decision protocols (e.g., Voting, Consensus). MALLM uses simple configuration files to define a debate. Furthermore, MALLM can load any textual Huggingface dataset (e.g., MMLU-Pro, WinoGrande) and provides an evaluation pipeline for easy comparison of MAD configurations. MALLM is tailored towards researchers and provides a window into the heart of multi-agent debate, facilitating the understanding of its components and their interplay.
comment: Accepted at EMNLP 2025 (Demo)
☆ EthicsMH: A Pilot Benchmark for Ethical Reasoning in Mental Health AI
The deployment of large language models (LLMs) in mental health and other sensitive domains raises urgent questions about ethical reasoning, fairness, and responsible alignment. Yet, existing benchmarks for moral and clinical decision-making do not adequately capture the unique ethical dilemmas encountered in mental health practice, where confidentiality, autonomy, beneficence, and bias frequently intersect. To address this gap, we introduce Ethical Reasoning in Mental Health (EthicsMH), a pilot dataset of 125 scenarios designed to evaluate how AI systems navigate ethically charged situations in therapeutic and psychiatric contexts. Each scenario is enriched with structured fields, including multiple decision options, expert-aligned reasoning, expected model behavior, real-world impact, and multi-stakeholder viewpoints. This structure enables evaluation not only of decision accuracy but also of explanation quality and alignment with professional norms. Although modest in scale and developed with model-assisted generation, EthicsMH establishes a task framework that bridges AI ethics and mental health decision-making. By releasing this dataset, we aim to provide a seed resource that can be expanded through community and expert contributions, fostering the development of AI systems capable of responsibly handling some of society's most delicate decisions.
☆ Adapting and Evaluating Multimodal Large Language Models for Adolescent Idiopathic Scoliosis Self-Management: A Divide and Conquer Framework MICCAI 2025
This study presents the first comprehensive evaluation of Multimodal Large Language Models (MLLMs) for Adolescent Idiopathic Scoliosis (AIS) self-management. We constructed a database of approximately 3,000 anteroposterior X-rays with diagnostic texts and evaluated five MLLMs through a `Divide and Conquer' framework consisting of a visual question-answering task, a domain knowledge assessment task, and a patient education counseling assessment task. Our investigation revealed limitations of MLLMs' ability in interpreting complex spinal radiographs and comprehending AIS care knowledge. To address these, we pioneered enhancing MLLMs with spinal keypoint prompting and compiled an AIS knowledge base for retrieval augmented generation (RAG), respectively. Results showed varying effectiveness of visual prompting across different architectures, while RAG substantially improved models' performances on the knowledge assessment task. Our findings indicate current MLLMs are far from capable in realizing personalized assistant in AIS care. The greatest challenge lies in their abilities to obtain accurate detections of spinal deformity locations (best accuracy: 0.55) and directions (best accuracy: 0.13).
comment: Accepted by MICCAI 2025 MLLMCP Workshop
☆ Task-Agnostic Learnable Weighted-Knowledge Base Scheme for Robust Semantic Communications
With the emergence of diverse and massive data in the upcoming sixth-generation (6G) networks, the task-agnostic semantic communication system is regarded to provide robust intelligent services. In this paper, we propose a task-agnostic learnable weighted-knowledge base semantic communication (TALSC) framework for robust image transmission to address the real-world heterogeneous data bias in KB, including label flipping noise and class imbalance. The TALSC framework incorporates a sample confidence module (SCM) as meta-learner and the semantic coding networks as learners. The learners are updated based on the empirical knowledge provided by the learnable weighted-KB (LW-KB). Meanwhile, the meta-learner evaluates the significance of samples according to the task loss feedback, and adjusts the update strategy of learners to enhance the robustness in semantic recovery for unknown tasks. To strike a balance between SCM parameters and precision of significance evaluation, we design an SCM-grid extension (SCM-GE) approach by embedding the Kolmogorov-Arnold networks (KAN) within SCM, which leverages the concept of spline refinement in KAN and enables scalable SCM with customizable granularity without retraining. Simulations demonstrate that the TALSC framework effectively mitigates the effects of flipping noise and class imbalance in task-agnostic image semantic communication, achieving at least 12% higher semantic recovery accuracy (SRA) and multi-scale structural similarity (MS-SSIM) compared to state-of-the-art methods.
☆ Reasoned Safety Alignment: Ensuring Jailbreak Defense via Answer-Then-Check
As large language models (LLMs) continue to advance in capabilities, ensuring their safety against jailbreak attacks remains a critical challenge. In this paper, we introduce a novel safety alignment approach called Answer-Then-Check, which enhances LLM robustness against malicious prompts by applying thinking ability to mitigate jailbreaking problems before producing a final answer to the user. Our method enables models to directly answer the question in their thought and then critically evaluate its safety before deciding whether to provide it. To implement this approach, we construct the Reasoned Safety Alignment (ReSA) dataset, comprising 80K examples that teach models to reason through direct responses and then analyze their safety. Experimental results demonstrate that our approach achieves the Pareto frontier with superior safety capability while decreasing over-refusal rates on over-refusal benchmarks. Notably, the model fine-tuned with ReSA maintains general reasoning capabilities on benchmarks like MMLU, MATH500, and HumanEval. Besides, our method equips models with the ability to perform safe completion. Unlike post-hoc methods that can only reject harmful queries, our model can provide helpful and safe alternative responses for sensitive topics (e.g., self-harm). Furthermore, we discover that training on a small subset of just 500 examples can achieve comparable performance to using the full dataset, suggesting that safety alignment may require less data than previously assumed.
☆ SpeCa: Accelerating Diffusion Transformers with Speculative Feature Caching
Diffusion models have revolutionized high-fidelity image and video synthesis, yet their computational demands remain prohibitive for real-time applications. These models face two fundamental challenges: strict temporal dependencies preventing parallelization, and computationally intensive forward passes required at each denoising step. Drawing inspiration from speculative decoding in large language models, we present SpeCa, a novel 'Forecast-then-verify' acceleration framework that effectively addresses both limitations. SpeCa's core innovation lies in introducing Speculative Sampling to diffusion models, predicting intermediate features for subsequent timesteps based on fully computed reference timesteps. Our approach implements a parameter-free verification mechanism that efficiently evaluates prediction reliability, enabling real-time decisions to accept or reject each prediction while incurring negligible computational overhead. Furthermore, SpeCa introduces sample-adaptive computation allocation that dynamically modulates resources based on generation complexity, allocating reduced computation for simpler samples while preserving intensive processing for complex instances. Experiments demonstrate 6.34x acceleration on FLUX with minimal quality degradation (5.5% drop), 7.3x speedup on DiT while preserving generation fidelity, and 79.84% VBench score at 6.1x acceleration for HunyuanVideo. The verification mechanism incurs minimal overhead (1.67%-3.5% of full inference costs), establishing a new paradigm for efficient diffusion model inference while maintaining generation quality even at aggressive acceleration ratios. Our codes have been released in Github: \textbf{https://github.com/Shenyi-Z/Cache4Diffusion}
comment: 15 pages, 9 figures, ACM Multimedia 2025
☆ Automated Creation and Enrichment Framework for Improved Invocation of Enterprise APIs as Tools
Recent advancements in Large Language Models (LLMs) has lead to the development of agents capable of complex reasoning and interaction with external tools. In enterprise contexts, the effective use of such tools that are often enabled by application programming interfaces (APIs), is hindered by poor documentation, complex input or output schema, and large number of operations. These challenges make tool selection difficult and reduce the accuracy of payload formation by up to 25%. We propose ACE, an automated tool creation and enrichment framework that transforms enterprise APIs into LLM-compatible tools. ACE, (i) generates enriched tool specifications with parameter descriptions and examples to improve selection and invocation accuracy, and (ii) incorporates a dynamic shortlisting mechanism that filters relevant tools at runtime, reducing prompt complexity while maintaining scalability. We validate our framework on both proprietary and open-source APIs and demonstrate its integration with agentic frameworks. To the best of our knowledge, ACE is the first end-to-end framework that automates the creation, enrichment, and dynamic selection of enterprise API tools for LLM agents.
☆ Inducing Uncertainty for Test-Time Privacy
Unlearning is the predominant method for removing the influence of data in machine learning models. However, even after unlearning, models often continue to produce the same predictions on the unlearned data with high confidence. This persistent behavior can be exploited by adversaries using confident model predictions on incorrect or obsolete data to harm users. We call this threat model, which unlearning fails to protect against, *test-time privacy*. In particular, an adversary with full model access can bypass any naive defenses which ensure test-time privacy. To address this threat, we introduce an algorithm which perturbs model weights to induce maximal uncertainty on protected instances while preserving accuracy on the rest of the instances. Our core algorithm is based on finetuning with a Pareto optimal objective that explicitly balances test-time privacy against utility. We also provide a certifiable approximation algorithm which achieves $(\varepsilon, \delta)$ guarantees without convexity assumptions. We then prove a tight, non-vacuous bound that characterizes the privacy-utility tradeoff that our algorithms incur. Empirically, our method obtains $>3\times$ stronger uncertainty than pretraining with $<0.2\%$ drops in accuracy on various image recognition benchmarks. Altogether, this framework provides a tool to guarantee additional protection to end users.
☆ Dynamic Adaptive Parsing of Temporal and Cross-Variable Patterns for Network State Classification
Effective network state classification is a primary task for ensuring network security and optimizing performance. Existing deep learning models have shown considerable progress in this area. Some methods excel at analyzing the complex temporal periodicities found in traffic data, while graph-based approaches are adept at modeling the dynamic dependencies between different variables. However, a key trade-off remains, as these methods struggle to capture both characteristics simultaneously. Models focused on temporal patterns often overlook crucial variable dependencies, whereas those centered on dependencies may fail to capture fine-grained temporal details. To address this trade-off, we introduce DAPNet, a framework based on a Mixture-of-Experts architecture. DAPNet integrates three specialized networks for periodic analysis, dynamic cross-variable correlation modeling, and hybrid temporal feature extraction. A learnable gating network dynamically assigns weights to experts based on the input sample and computes a weighted fusion of their outputs. Furthermore, a hybrid regularization loss function ensures stable training and addresses the common issue of class imbalance. Extensive experiments on two large-scale network intrusion detection datasets (CICIDS2017/2018) validate DAPNet's higher accuracy for its target application. The generalizability of the architectural design is evaluated across ten public UEA benchmark datasets, positioning DAPNet as a specialized framework for network state classification.
☆ AMLNet: A Knowledge-Based Multi-Agent Framework to Generate and Detect Realistic Money Laundering Transactions
Anti-money laundering (AML) research is constrained by the lack of publicly shareable, regulation-aligned transaction datasets. We present AMLNet, a knowledge-based multi-agent framework with two coordinated units: a regulation-aware transaction generator and an ensemble detection pipeline. The generator produces 1,090,173 synthetic transactions (approximately 0.16\% laundering-positive) spanning core laundering phases (placement, layering, integration) and advanced typologies (e.g., structuring, adaptive threshold behavior). Regulatory alignment reaches 75\% based on AUSTRAC rule coverage (Section 4.2), while a composite technical fidelity score of 0.75 summarizes temporal, structural, and behavioral realism components (Section 4.4). The detection ensemble achieves F1 0.90 (precision 0.84, recall 0.97) on the internal test partitions of AMLNet and adapts to the external SynthAML dataset, indicating architectural generalizability across different synthetic generation paradigms. We provide multi-dimensional evaluation (regulatory, temporal, network, behavioral) and release the dataset (Version 1.0, https://doi.org/10.5281/zenodo.16736515), to advance reproducible and regulation-conscious AML experimentation.
☆ GBPP: Grasp-Aware Base Placement Prediction for Robots via Two-Stage Learning
GBPP is a fast learning based scorer that selects a robot base pose for grasping from a single RGB-D snapshot. The method uses a two stage curriculum: (1) a simple distance-visibility rule auto-labels a large dataset at low cost; and (2) a smaller set of high fidelity simulation trials refines the model to match true grasp outcomes. A PointNet++ style point cloud encoder with an MLP scores dense grids of candidate poses, enabling rapid online selection without full task-and-motion optimization. In simulation and on a real mobile manipulator, GBPP outperforms proximity and geometry only baselines, choosing safer and more reachable stances and degrading gracefully when wrong. The results offer a practical recipe for data efficient, geometry aware base placement: use inexpensive heuristics for coverage, then calibrate with targeted simulation.
comment: Jizhuo Chen and Diwen Liu contributed equally
☆ Hierarchical Identity Learning for Unsupervised Visible-Infrared Person Re-Identification
Unsupervised visible-infrared person re-identification (USVI-ReID) aims to learn modality-invariant image features from unlabeled cross-modal person datasets by reducing the modality gap while minimizing reliance on costly manual annotations. Existing methods typically address USVI-ReID using cluster-based contrastive learning, which represents a person by a single cluster center. However, they primarily focus on the commonality of images within each cluster while neglecting the finer-grained differences among them. To address the limitation, we propose a Hierarchical Identity Learning (HIL) framework. Since each cluster may contain several smaller sub-clusters that reflect fine-grained variations among images, we generate multiple memories for each existing coarse-grained cluster via a secondary clustering. Additionally, we propose Multi-Center Contrastive Learning (MCCL) to refine representations for enhancing intra-modal clustering and minimizing cross-modal discrepancies. To further improve cross-modal matching quality, we design a Bidirectional Reverse Selection Transmission (BRST) mechanism, which establishes reliable cross-modal correspondences by performing bidirectional matching of pseudo-labels. Extensive experiments conducted on the SYSU-MM01 and RegDB datasets demonstrate that the proposed method outperforms existing approaches. The source code is available at: https://github.com/haonanshi0125/HIL.
☆ A Survey of Reasoning and Agentic Systems in Time Series with Large Language Models
Time series reasoning treats time as a first-class axis and incorporates intermediate evidence directly into the answer. This survey defines the problem and organizes the literature by reasoning topology with three families: direct reasoning in one step, linear chain reasoning with explicit intermediates, and branch-structured reasoning that explores, revises, and aggregates. The topology is crossed with the main objectives of the field, including traditional time series analysis, explanation and understanding, causal inference and decision making, and time series generation, while a compact tag set spans these axes and captures decomposition and verification, ensembling, tool use, knowledge access, multimodality, agent loops, and LLM alignment regimes. Methods and systems are reviewed across domains, showing what each topology enables and where it breaks down in faithfulness or robustness, along with curated datasets, benchmarks, and resources that support study and deployment (https://github.com/blacksnail789521/Time-Series-Reasoning-Survey). Evaluation practices that keep evidence visible and temporally aligned are highlighted, and guidance is distilled on matching topology to uncertainty, grounding with observable artifacts, planning for shift and streaming, and treating cost and latency as design budgets. We emphasize that reasoning structures must balance capacity for grounding and self-correction against computational cost and reproducibility, while future progress will likely depend on benchmarks that tie reasoning quality to utility and on closed-loop testbeds that trade off cost and risk under shift-aware, streaming, and long-horizon settings. Taken together, these directions mark a shift from narrow accuracy toward reliability at scale, enabling systems that not only analyze but also understand, explain, and act on dynamic worlds with traceable evidence and credible outcomes.
comment: This paper is currently under review
☆ Formal Reasoning for Intelligent QA Systems: A Case Study in the Educational Domain
Reasoning is essential for closed-domain QA systems in which procedural correctness and policy compliance are critical. While large language models (LLMs) have shown strong performance on many reasoning tasks, recent work reveals that their reasoning traces are often unfaithful - serving more as plausible justifications than as causally grounded derivations. Efforts to combine LLMs with symbolic engines (e.g., Prover9, Z3) have improved reliability but remain limited to static forms of logic, struggling with dynamic, state-based reasoning such as multi-step progressions and conditional transitions. In this paper, we propose MCFR (Model Checking for Formal Reasoning), a neuro-symbolic framework that integrates LLMs with model checking to support property verification. MCFR translates natural language into formal specifications and verifies them over transition models. To support evaluation, we introduce EduMC-QA, a benchmark dataset grounded in real academic procedures. Our results show that MCFR improves reasoning faithfulness and interpretability, offering a viable path toward verifiable QA in high-stakes closed-domain applications. In addition to evaluating MCFR, we compare its performance with state-of-the-art LLMs such as ChatGPT, DeepSeek, and Claude to contextualize its effectiveness.
comment: Published at the 2nd ACM Workshop in AI-powered Question & Answering Systems (AIQAM '25), co-located with ACM Multimedia 2025
☆ Dstack: A Zero Trust Framework for Confidential Containers
Web3 applications require execution platforms that maintain confidentiality and integrity without relying on centralized trust authorities. While Trusted Execution Environments (TEEs) offer promising capabilities for confidential computing, current implementations face significant limitations when applied to Web3 contexts, particularly in security reliability, censorship resistance, and vendor independence. This paper presents dstack, a comprehensive framework that transforms raw TEE technology into a true Zero Trust platform. We introduce three key innovations: (1) Portable Confidential Containers that enable seamless workload migration across heterogeneous TEE environments while maintaining security guarantees, (2) Decentralized Code Management that leverages smart contracts for transparent governance of TEE applications, and (3) Verifiable Domain Management that ensures secure and verifiable application identity without centralized authorities. These innovations are implemented through three core components: dstack-OS, dstack-KMS, and dstack-Gateway. Together, they demonstrate how to achieve both the performance advantages of VM-level TEE solutions and the trustless guarantees required by Web3 applications. Our evaluation shows that dstack provides comprehensive security guarantees while maintaining practical usability for real-world applications.
☆ HiChunk: Evaluating and Enhancing Retrieval-Augmented Generation with Hierarchical Chunking
Retrieval-Augmented Generation (RAG) enhances the response capabilities of language models by integrating external knowledge sources. However, document chunking as an important part of RAG system often lacks effective evaluation tools. This paper first analyzes why existing RAG evaluation benchmarks are inadequate for assessing document chunking quality, specifically due to evidence sparsity. Based on this conclusion, we propose HiCBench, which includes manually annotated multi-level document chunking points, synthesized evidence-dense quetion answer(QA) pairs, and their corresponding evidence sources. Additionally, we introduce the HiChunk framework, a multi-level document structuring framework based on fine-tuned LLMs, combined with the Auto-Merge retrieval algorithm to improve retrieval quality. Experiments demonstrate that HiCBench effectively evaluates the impact of different chunking methods across the entire RAG pipeline. Moreover, HiChunk achieves better chunking quality within reasonable time consumption, thereby enhancing the overall performance of RAG systems.
comment: 17 pages, 5 figures, 6 tables
☆ Task Decoding based on Eye Movements using Synthetic Data Augmentation
Machine learning has been extensively used in various applications related to eye-tracking research. Understanding eye movement is one of the most significant subsets of eye-tracking research that reveals the scanning pattern of an individual. Researchers have thoroughly analyzed eye movement data to understand various eye-tracking applications, such as attention mechanisms, navigational behavior, task understanding, etc. The outcome of traditional machine learning algorithms used for decoding tasks based on eye movement data has received a mixed reaction to Yarbus' claim that it is possible to decode the observer's task from their eye movements. In this paper, to support the hypothesis by Yarbus, we are decoding tasks categories while generating synthetic data samples using well-known Synthetic Data Generators CTGAN and its variations such as CopulaGAN and Gretel AI Synthetic Data generators on available data from an in-person user study. Our results show that augmenting more eye movement data combined with additional synthetically generated improves classification accuracy even with traditional machine learning algorithms. We see a significant improvement in task decoding accuracy from 28.1% using Random Forest to 82% using Inception Time when five times more data is added in addition to the 320 real eye movement dataset sample. Our proposed framework outperforms all the available studies on this dataset because of the use of additional synthetic datasets. We validated our claim with various algorithms and combinations of real and synthetic data to show how decoding accuracy increases with the increase in the augmentation of generated data to real data.
☆ UI-S1: Advancing GUI Automation via Semi-online Reinforcement Learning
Graphical User Interface (GUI) agents have demonstrated remarkable progress in automating complex user interface interactions through reinforcement learning. However, current approaches face a fundamental dilemma: offline RL enables stable training on pre-collected trajectories, but struggles with multi-step task execution for lack of trajectory-level reward signals; online RL captures these signals through environment interaction, but suffers from sparse rewards and prohibitive deployment costs. To address it, we present Semi-online Reinforcement Learning, a novel paradigm that simulates online RL on offline trajectories. During each rollout process, we preserve the original model output within the multi-turn dialogue, where a Patch Module adaptively recovers the divergence between rollout and expert trajectories. To capture long-term training signals, Semi-online RL introduces discounted future returns into the reward computation and optimizes the policy with weighted step-level and episode-level advantages. We further introduce Semi-Online Performance (SOP), a metric that aligns better with true online performance, serving as a practical and effective proxy for real-world evaluation. Experiments show that ours Semi-online RL achieves SOTA performance among 7B models across four dynamic benchmarks, with significant gains over the base model (e.g., +12.0% on AndroidWorld, +23.8% on AITW), demonstrating significant progress in bridging the gap between offline training efficiency and online multi-turn reasoning. The code is available at https://github.com/X-PLUG/MobileAgent/tree/main/UI-S1.
comment: 22 pages, 17 figures
☆ HARP: Hallucination Detection via Reasoning Subspace Projection
Hallucinations in Large Language Models (LLMs) pose a major barrier to their reliable use in critical decision-making. Although existing hallucination detection methods have improved accuracy, they still struggle with disentangling semantic and reasoning information and maintaining robustness. To address these challenges, we propose HARP (Hallucination detection via reasoning subspace projection), a novel hallucination detection framework. HARP establishes that the hidden state space of LLMs can be decomposed into a direct sum of a semantic subspace and a reasoning subspace, where the former encodes linguistic expression and the latter captures internal reasoning processes. Moreover, we demonstrate that the Unembedding layer can disentangle these subspaces, and by applying Singular Value Decomposition (SVD) to its parameters, the basis vectors spanning the semantic and reasoning subspaces are obtained. Finally, HARP projects hidden states onto the basis vectors of the reasoning subspace, and the resulting projections are then used as input features for hallucination detection in LLMs. By using these projections, HARP reduces the dimension of the feature to approximately 5% of the original, filters out most noise, and achieves enhanced robustness. Experiments across multiple datasets show that HARP achieves state-of-the-art hallucination detection performance; in particular, it achieves an AUROC of 92.8% on TriviaQA, outperforming the previous best method by 7.5%.
☆ Know What You Don't Know: Selective Prediction for Early Exit DNNs
Inference latency and trustworthiness of Deep Neural Networks (DNNs) are the bottlenecks in deploying them in critical applications like sensitive tasks. Early Exit (EE) DNNs overcome the latency issues by allowing samples to exit from intermediary layers if they attain `high' confidence scores on the predicted class. However, the DNNs are known to exhibit overconfidence, which can lead to many samples exiting early and render EE strategies untrustworthy. We use Selective Prediction (SP) to overcome this issue by checking the `hardness' of the samples rather than just relying on the confidence score alone. We propose SPEED, a novel approach that uses Deferral Classifiers (DCs) at each layer to check the hardness of samples before performing EEs. Specifically, the DCs identify if a sample is hard to predict at an intermediary layer, leading to hallucination, and defer it to an expert. Early detection of hard samples for inference prevents the wastage of computational resources and improves trust by deferring the hard samples to the expert. We demonstrate that EE aided with SP improves both accuracy and latency. Our method minimizes the risk of wrong prediction by $50\%$ with a speedup of $2.05\times$ as compared to the final layer. The anonymized source code is available at https://github.com/Div290/SPEED
comment: To appear in the the Fifth International Conference on AI ML Systems
☆ Unsupervised Candidate Ranking for Lexical Substitution via Holistic Sentence Semantics
A key subtask in lexical substitution is ranking the given candidate words. A common approach is to replace the target word with a candidate in the original sentence and feed the modified sentence into a model to capture semantic differences before and after substitution. However, effectively modeling the bidirectional influence of candidate substitution on both the target word and its context remains challenging. Existing methods often focus solely on semantic changes at the target position or rely on parameter tuning over multiple evaluation metrics, making it difficult to accurately characterize semantic variation. To address this, we investigate two approaches: one based on attention weights and another leveraging the more interpretable integrated gradients method, both designed to measure the influence of context tokens on the target token and to rank candidates by incorporating semantic similarity between the original and substituted sentences. Experiments on the LS07 and SWORDS datasets demonstrate that both approaches improve ranking performance.
☆ Machine Learning-Driven Predictive Resource Management in Complex Science Workflows
The collaborative efforts of large communities in science experiments, often comprising thousands of global members, reflect a monumental commitment to exploration and discovery. Recently, advanced and complex data processing has gained increasing importance in science experiments. Data processing workflows typically consist of multiple intricate steps, and the precise specification of resource requirements is crucial for each step to allocate optimal resources for effective processing. Estimating resource requirements in advance is challenging due to a wide range of analysis scenarios, varying skill levels among community members, and the continuously increasing spectrum of computing options. One practical approach to mitigate these challenges involves initially processing a subset of each step to measure precise resource utilization from actual processing profiles before completing the entire step. While this two-staged approach enables processing on optimal resources for most of the workflow, it has drawbacks such as initial inaccuracies leading to potential failures and suboptimal resource usage, along with overhead from waiting for initial processing completion, which is critical for fast-turnaround analyses. In this context, our study introduces a novel pipeline of machine learning models within a comprehensive workflow management system, the Production and Distributed Analysis (PanDA) system. These models employ advanced machine learning techniques to predict key resource requirements, overcoming challenges posed by limited upfront knowledge of characteristics at each step. Accurate forecasts of resource requirements enable informed and proactive decision-making in workflow management, enhancing the efficiency of handling diverse, complex workflows across heterogeneous resources.
♻ ☆ Active Layer-Contrastive Decoding Reduces Hallucination in Large Language Model Generation EMNLP 2025
Recent decoding methods improve the factuality of large language models (LLMs) by refining how the next token is selected during generation. These methods typically operate at the token level, leveraging internal representations to suppress superficial patterns. Nevertheless, LLMs remain prone to hallucinations, especially over longer contexts. In this paper, we propose Active Layer-Contrastive Decoding (ActLCD), a novel decoding strategy that actively decides when to apply contrasting layers during generation. By casting decoding as a sequential decision-making problem, ActLCD employs a reinforcement learning policy guided by a reward-aware classifier to optimize factuality beyond the token level. Our experiments demonstrate that ActLCD surpasses state-of-the-art methods across five benchmarks, showcasing its effectiveness in mitigating hallucinations in diverse generation scenarios.
comment: 19 pages, 3 figures, EMNLP 2025
♻ ☆ On the Generalization of Representation Uncertainty in Earth Observation ICCV 2025
Recent advances in Computer Vision have introduced the concept of pretrained representation uncertainty, enabling zero-shot uncertainty estimation. This holds significant potential for Earth Observation (EO), where trustworthiness is critical, yet the complexity of EO data poses challenges to uncertainty-aware methods. In this work, we investigate the generalization of representation uncertainty in EO, considering the domain's unique semantic characteristics. We pretrain uncertainties on large EO datasets and propose an evaluation framework to assess their zero-shot performance in multi-label classification and segmentation EO tasks. Our findings reveal that, unlike uncertainties pretrained on natural images, EO-pretraining exhibits strong generalization across unseen EO domains, geographic locations, and target granularities, while maintaining sensitivity to variations in ground sampling distance. We demonstrate the practical utility of pretrained uncertainties showcasing their alignment with task-specific uncertainties in downstream tasks, their sensitivity to real-world EO image noise, and their ability to generate spatial uncertainty estimates out-of-the-box. Initiating the discussion on representation uncertainty in EO, our study provides insights into its strengths and limitations, paving the way for future research in the field. Code and weights are available at: https://github.com/Orion-AI-Lab/EOUncertaintyGeneralization.
comment: Accepted to ICCV 2025
♻ ☆ A learning-driven automatic planning framework for proton PBS treatments of H&N cancers
Proton pencil beam scanning (PBS) treatment planning for head & neck (H&N) cancers involves numerous conflicting objectives, requiring iterative objective parameter adjustments to balance multiple clinical goals. We propose a learning-driven inverse optimizer and integrate it into a proximal policy optimization (PPO)-based planning framework to automatically generate high-quality plans for patients with diverse treatment requirements. The inverse optimizer is a learning-to-optimize (L2O) method that predicts update steps by learning from task-specific data distributions. For the first time, long-context processing techniques developed for large language models (LLMs) are utilized to address the scalability limitations of existing L2O methods, enabling simultaneous optimization over a substantially large set of variables. The PPO framework functions as an outer-loop virtual planner, autonomously adjusting objective parameters through a policy network, and the inner-loop L2O inverse optimizer computes machine-deliverable spot monitor unit (MU) values based on the PPO-refined objectives. Moreover, a Swin UnetR dose predictor is trained with prescription- and beam-specific information to estimate the initial objective parameters. In our experiments, total 97 patients with bilateral or ipsilateral H&N cancers are collected for training and testing. Compared with the second-order gradient-based methods, our L2O optimizer improves the effectiveness and efficiency of the time-consuming inverse optimization by 22.97% and 36.41%, respectively, and in conjunction with the PPO-based virtual planner, plans are generated within clinically acceptable times, i.e. 2.55 hours in average, and shows improved or comparable organs-at-risk sparing with superior target coverage compared with human-generated plans.
comment: 27 pages, 4 figures
♻ ☆ ASP-FZN: A Translation-based Constraint Answer Set Solver
We present the solver asp-fzn for Constraint Answer Set Programming (CASP), which extends ASP with linear constraints. Our approach is based on translating CASP programs into the solver-independent FlatZinc language that supports several Constraint Programming and Integer Programming backend solvers. Our solver supports a rich language of linear constraints, including some common global constraints. As for evaluation, we show that asp-fzn is competitive with state-of-the-art ASP solvers on benchmarks taken from past ASP competitions. Furthermore, we evaluate it on several CASP problems from the literature and compare its performance with clingcon, which is a prominent CASP solver that supports most of the asp-fzn language. The performance of asp-fzn is very promising as it is already competitive on plain ASP and even outperforms clingcon on some CASP benchmarks.
comment: Presented at the 41st International Conference on Logic Programming (ICLP 2025)
♻ ☆ CogGuide: Human-Like Guidance for Zero-Shot Omni-Modal Reasoning
Targeting the issues of "shortcuts" and insufficient contextual understanding in complex cross-modal reasoning of multimodal large models, this paper proposes a zero-shot multimodal reasoning component guided by human-like cognitive strategies centered on an "intent sketch". The component comprises a plug-and-play three-module pipeline-Intent Perceiver, Strategy Generator, and Strategy Selector-that explicitly constructs a "understand-plan-select" cognitive process. By generating and filtering "intent sketch" strategies to guide the final reasoning, it requires no parameter fine-tuning and achieves cross-model transfer solely through in-context engineering. Information-theoretic analysis shows that this process can reduce conditional entropy and improve information utilization efficiency, thereby suppressing unintended shortcut reasoning. Experiments on IntentBench, WorldSense, and Daily-Omni validate the method's generality and robust gains; compared with their respective baselines, the complete "three-module" scheme yields consistent improvements across different reasoning engines and pipeline combinations, with gains up to approximately 9.51 percentage points, demonstrating the practical value and portability of the "intent sketch" reasoning component in zero-shot scenarios.
♻ ☆ Hide-and-Shill: A Reinforcement Learning Framework for Market Manipulation Detection in Symphony-a Decentralized Multi-Agent System
Decentralized finance (DeFi) has introduced a new era of permissionless financial innovation but also led to unprecedented market manipulation. Without centralized oversight, malicious actors coordinate shilling campaigns and pump-and-dump schemes across various platforms. We propose a Multi-Agent Reinforcement Learning (MARL) framework for decentralized manipulation detection, modeling the interaction between manipulators and detectors as a dynamic adversarial game. This framework identifies suspicious patterns using delayed token price reactions as financial indicators.Our method introduces three innovations: (1) Group Relative Policy Optimization (GRPO) to enhance learning stability in sparse-reward and partially observable settings; (2) a theory-based reward function inspired by rational expectations and information asymmetry, differentiating price discovery from manipulation noise; and (3) a multi-modal agent pipeline that integrates LLM-based semantic features, social graph signals, and on-chain market data for informed decision-making.The framework is integrated within the Symphony system, a decentralized multi-agent architecture enabling peer-to-peer agent execution and trust-aware learning through distributed logs, supporting chain-verifiable evaluation. Symphony promotes adversarial co-evolution among strategic actors and maintains robust manipulation detection without centralized oracles, enabling real-time surveillance across global DeFi ecosystems.Trained on 100,000 real-world discourse episodes and validated in adversarial simulations, Hide-and-Shill achieves top performance in detection accuracy and causal attribution. This work bridges multi-agent systems with financial surveillance, advancing a new paradigm for decentralized market intelligence. All resources are available at the Hide-and-Shill GitHub repository to promote open research and reproducibility.
♻ ☆ Social Perception of Faces in a Vision-Language Model
We explore social perception of human faces in CLIP, a widely used open-source vision-language model. To this end, we compare the similarity in CLIP embeddings between different textual prompts and a set of face images. Our textual prompts are constructed from well-validated social psychology terms denoting social perception. The face images are synthetic and are systematically and independently varied along six dimensions: the legally protected attributes of age, gender, and race, as well as facial expression, lighting, and pose. Independently and systematically manipulating face attributes allows us to study the effect of each on social perception and avoids confounds that can occur in wild-collected data due to uncontrolled systematic correlations between attributes. Thus, our findings are experimental rather than observational. Our main findings are three. First, while CLIP is trained on the widest variety of images and texts, it is able to make fine-grained human-like social judgments on face images. Second, age, gender, and race do systematically impact CLIP's social perception of faces, suggesting an undesirable bias in CLIP vis-a-vis legally protected attributes. Most strikingly, we find a strong pattern of bias concerning the faces of Black women, where CLIP produces extreme values of social perception across different ages and facial expressions. Third, facial expression impacts social perception more than age and lighting as much as age. The last finding predicts that studies that do not control for unprotected visual attributes may reach the wrong conclusions on bias. Our novel method of investigation, which is founded on the social psychology literature and on the experiments involving the manipulation of individual attributes, yields sharper and more reliable observations than previous observational methods and may be applied to study biases in any vision-language model.
♻ ☆ Dion: Distributed Orthonormalized Updates
Orthonormalized updates accelerate training, improve stability, and enable robust hyperparameter transfer, but existing methods like Muon rely on dense matrix operations that clash with sharded weights in large-scale LLM training, causing high compute and communication cost. We introduce Dion (Distributed Orthonormalization), a scalable and efficient update rule that replaces Newton-Schulz iteration with amortized power iteration on a momentum buffer, avoiding full-matrix reconstruction and integrating cleanly with weight sharding. The rank-fraction parameter with error feedback enables low-rank updates that balance quality with significant cost savings. On language models from 160M to 3B parameters, Dion retains the benefits of orthonormalized updates, while markedly reducing wall-clock time at scale, making it a practical optimizer for next-generation foundation models. Code is available at: https://github.com/microsoft/dion/
comment: "Version 3" with various new updates
♻ ☆ Kolb-Based Experiential Learning for Generalist Agents with Human-Level Kaggle Data Science Performance
Human expertise emerges through iterative cycles of interaction, reflection, and internal model updating, which are central to cognitive theories such as Kolb's experiential learning and Vygotsky's zone of proximal development. In contrast, current AI systems, particularly LLM agents, rely on static pre-training or rigid workflows, lacking mechanisms for continual adaptation. Recent studies identified early cognitive traits in LLM agents (reflection, revision, and self-correction) suggesting foundational elements of human-like experiential learning. Thus the key question: Can we design LLM agents capable of structured, cognitively grounded learning similar to human processes? In response, we propose a computational framework of Kolb's learning cycle with Vygotsky's ZPD for autonomous agents. Our architecture separates extrinsic (environment interaction) and intrinsic (internal reflection/abstraction) functions, enabling cognitively grounded scaffolded learning, where the agent initially learns within structured environments, followed by open-ended generalisation. This approach empowers agents to master complex tasks ; domains that traditional fine-tuning or simple reflective methods could not tackle effectively. Its potential is powerfully demonstrated via direct comparison with humans in real-world Kaggle data science competitions. Learning fully automated data science code generation across 81 tasks, our system, Agent K, demonstrated the ability to perform the entire workflow autonomously, achieving an Elo-MMR score of 1694, beyond median score of the Kaggle Masters (the top 2% among 200,000 users) of our study. With 9 gold, 8 silver, and 12 bronze medals level performance - including 4 gold and 4 silver on prize-awarding competitions - Agent K is the 1st AI system to successfully integrate Kolb- and Vygotsky-inspired human cognitive learning, marking a major step toward generalist AI.
♻ ☆ Is In-Context Learning Learning?
In-context learning (ICL) allows some autoregressive models to solve tasks via next-token prediction and without needing further training. This has led to claims about these model's ability to solve (learn) unseen tasks with only a few shots (exemplars) in the prompt. However, deduction does not always imply learning, as ICL does not explicitly encode a given observation. Instead, the models rely on their prior knowledge and the exemplars given, if any. We argue that, mathematically, ICL does constitute learning, but its full characterisation requires empirical work. We then carry out a large-scale analysis of ICL ablating out or accounting for memorisation, pretraining, distributional shifts, and prompting style and phrasing. We find that ICL is an effective learning paradigm, but limited in its ability to learn and generalise to unseen tasks. We note that, in the limit where exemplars become more numerous, accuracy is insensitive to exemplar distribution, model, prompt style, and the input's linguistic features. Instead, it deduces patterns from regularities in the prompt, which leads to distributional sensitivity, especially in prompting styles such as chain-of-thought. Given the varied accuracies on formally similar tasks, we conclude that autoregression's ad-hoc encoding is not a robust mechanism, and suggests limited all-purpose generalisability.
comment: Director's cut
♻ ☆ Hopscotch: Discovering and Skipping Redundancies in Language Models
Modern causal language models stack many attention blocks to improve performance, but not all blocks are necessary for every task. We propose Hopscotch, a simple yet effective method that identifies and skips attention blocks with least contributions to a task and adapts to preserve output quality. Hopscotch jointly optimizes which blocks to skip and how to scale the outputs of the remaining layers. By introducing lightweight, trainable scaling parameters to attention and MLP blocks, it mitigates distribution shifts in hidden states caused by removing attention blocks. Hopscotch does not modify model weights or require access to pretraining or instruction-tuning data, and is compatible with existing model compression techniques. When applied to $\texttt{Llama-3.1-8B}$ and $\texttt{Qwen2.5-7B}$, Hopscotch achieves less than a 2% drop in performance even after skipping four attention blocks.
comment: 10 pages, 4 figures, 9 tables
♻ ☆ Task-Focused Consolidation with Spaced Recall: Making Neural Networks Learn like College Students
Deep neural networks often suffer from a critical limitation known as catastrophic forgetting, where performance on past tasks degrades after learning new ones. This paper introduces a novel continual learning approach inspired by human learning strategies like Active Recall, Deliberate Practice, and Spaced Repetition, named Task-Focused Consolidation with Spaced Recall (TFC-SR). TFC-SR enhances the standard experience replay framework with a mechanism we term the Active Recall Probe. It is a periodic, task-aware evaluation of the model's memory that stabilizes the representations of past knowledge. We test TFC-SR on the Split MNIST and the Split CIFAR-100 benchmarks against leading regularization-based and replay-based baselines. Our results show that TFC-SR performs significantly better than these methods. For instance, on the Split CIFAR-100, it achieves a final accuracy of 13.17% compared to Standard Experience Replay's 7.40%. We demonstrate that this advantage comes from the stabilizing effect of the probe itself, and not from the difference in replay volume. Additionally, we analyze the trade-off between memory size and performance and show that while TFC-SR performs better in memory-constrained environments, higher replay volume is still more effective when available memory is abundant. We conclude that TFC-SR is a robust and efficient approach, highlighting the importance of integrating active memory retrieval mechanisms into continual learning systems.
comment: Improved Grammar, consistency and flow. Some sections like the Discussion Section have been rewritten for improvement. Figures and Tables have improved formatting, while the algorithm pseudocode is now consistent with the experiments and less ambiguous
♻ ☆ MAYA: Addressing Inconsistencies in Generative Password Guessing through a Unified Benchmark
Recent advances in generative models have led to their application in password guessing, with the aim of replicating the complexity, structure, and patterns of human-created passwords. Despite their potential, inconsistencies and inadequate evaluation methodologies in prior research have hindered meaningful comparisons and a comprehensive, unbiased understanding of their capabilities. This paper introduces MAYA, a unified, customizable, plug-and-play benchmarking framework designed to facilitate the systematic characterization and benchmarking of generative password-guessing models in the context of trawling attacks. Using MAYA, we conduct a comprehensive assessment of six state-of-the-art approaches, which we re-implemented and adapted to ensure standardization. Our evaluation spans eight real-world password datasets and covers an exhaustive set of advanced testing scenarios, totaling over 15,000 compute hours. Our findings indicate that these models effectively capture different aspects of human password distribution and exhibit strong generalization capabilities. However, their effectiveness varies significantly with long and complex passwords. Through our evaluation, sequential models consistently outperform other generative architectures and traditional password-guessing tools, demonstrating unique capabilities in generating accurate and complex guesses. Moreover, the diverse password distributions learned by the models enable a multi-model attack that outperforms the best individual model. By releasing MAYA, we aim to foster further research, providing the community with a new tool to consistently and reliably benchmark generative password-guessing models. Our framework is publicly available at https://github.com/williamcorrias/MAYA-Password-Benchmarking.
comment: Paper accepted at the 47th IEEE Symposium on Security and Privacy (S&P 2026)
♻ ☆ MTalk-Bench: Evaluating Speech-to-Speech Models in Multi-Turn Dialogues via Arena-style and Rubrics Protocols
The rapid advancement of speech-to-speech (S2S) large language models (LLMs) has significantly improved real-time spoken interaction. However, current evaluation frameworks remain inadequate for assessing performance in complex, multi-turn dialogues. To address this, we introduce MTalk-Bench, a multi-turn S2S benchmark covering three core dimensions: Semantic Information, Paralinguistic Information, and Ambient Sound. Each dimension includes nine realistic scenarios, along with targeted tasks to assess specific capabilities such as reasoning. Our dual-method evaluation framework combines Arena-style evaluation (pairwise comparison) and Rubrics-based evaluation (absolute scoring) for relative and absolute assessment. The benchmark includes both model and human outputs, evaluated by human evaluators and LLMs. Experimental results reveal two sets of findings. Overall performance of S2S LLMs: (1) models excel at semantic information processing yet underperform on paralinguistic information and ambient sounds perception; (2) models typically regain coherence by increasing response length, sacrificing efficiency in multi-turn dialogues; (3) modality-aware, task-specific designs outperform brute scaling. Evaluation framework and reliability: (1) Arena and Rubrics yield consistent, complementary rankings, but reliable distinctions emerge only when performance gaps are large; (2) LLM-as-a-judge aligns with humans when gaps are clear or criteria explicit, but exhibits position and length biases and is reliable on nonverbal evaluation only with text annotations. These results highlight current limitations in S2S evaluation and the need for more robust, speech-aware assessment frameworks.
♻ ☆ Accelerating LLM Inference via Dynamic KV Cache Placement in Heterogeneous Memory System
Large Language Model (LLM) inference is increasingly constrained by memory bandwidth, with frequent access to the key-value (KV) cache dominating data movement. While attention sparsity reduces some memory traffic, the relevance of past tokens varies over time, requiring the full KV cache to remain accessible and sustaining pressure on both bandwidth and capacity. With advances in interconnects such as NVLink and LPDDR5X, modern AI hardware now integrates high-bandwidth memory (HBM) with high-speed off-package DRAM, making heterogeneous memory systems a practical solution. This work investigates dynamic KV cache placement across such systems to maximize aggregated bandwidth utilization under capacity constraints. Rather than proposing a specific scheduling policy, we formulate the placement problem mathematically and derive a theoretical upper bound, revealing substantial headroom for runtime optimization. To our knowledge, this is the first formal treatment of dynamic KV cache scheduling in heterogeneous memory systems for LLM inference.
comment: IEEE Computer Architecture Letter
♻ ☆ Unearthing Gems from Stones: Policy Optimization with Negative Sample Augmentation for LLM Reasoning
Recent advances in reasoning language models have witnessed a paradigm shift from short to long CoT pattern. Given the substantial computational cost of rollouts in long CoT models, maximizing the utility of fixed training datasets becomes crucial. Our analysis reveals that negative responses contain valuable components such as self-reflection and error-correction steps, yet primary existing methods either completely discard negative samples (RFT) or apply equal penalization across all tokens (RL), failing to leverage these potential learning signals. In light of this, we propose Behavior Constrained Policy Gradient with Negative Sample Augmentation (BCPG-NSA), a fine-grained offline RL framework that encompasses three stages: 1) sample segmentation, 2) consensus-based step correctness assessment combining LLM and PRM judgers, and 3) policy optimization with NSA designed to effectively mine positive steps within negative samples. Experimental results show that BCPG-NSA outperforms baselines on several challenging math/coding reasoning benchmarks using the same training dataset, achieving improved sample efficiency and demonstrating robustness and scalability when extended to multiple iterations.
♻ ☆ E-PhishGen: Unlocking Novel Research in Phishing Email Detection
Every day, our inboxes are flooded with unsolicited emails, ranging between annoying spam to more subtle phishing scams. Unfortunately, despite abundant prior efforts proposing solutions achieving near-perfect accuracy, the reality is that countering malicious emails still remains an unsolved dilemma. This "open problem" paper carries out a critical assessment of scientific works in the context of phishing email detection. First, we focus on the benchmark datasets that have been used to assess the methods proposed in research. We find that most prior work relied on datasets containing emails that -- we argue -- are not representative of current trends, and mostly encompass the English language. Based on this finding, we then re-implement and re-assess a variety of detection methods reliant on machine learning (ML), including large-language models (LLM), and release all of our codebase -- an (unfortunately) uncommon practice in related research. We show that most such methods achieve near-perfect performance when trained and tested on the same dataset -- a result which intrinsically hinders development (how can future research outperform methods that are already near perfect?). To foster the creation of "more challenging benchmarks" that reflect current phishing trends, we propose E-PhishGEN, an LLM-based (and privacy-savvy) framework to generate novel phishing-email datasets. We use our E-PhishGEN to create E-PhishLLM, a novel phishing-email detection dataset containing 16616 emails in three languages. We use E-PhishLLM to test the detectors we considered, showing a much lower performance than that achieved on existing benchmarks -- indicating a larger room for improvement. We also validate the quality of E-PhishLLM with a user study (n=30). To sum up, we show that phishing email detection is still an open problem -- and provide the means to tackle such a problem by future research.
comment: Accepted to ACM AISec '25
♻ ☆ Exploit Tool Invocation Prompt for Tool Behavior Hijacking in LLM-Based Agentic System
LLM-based agentic systems leverage large language models to handle user queries, make decisions, and execute external tools for complex tasks across domains like chatbots, customer service, and software engineering. A critical component of these systems is the Tool Invocation Prompt (TIP), which defines tool interaction protocols and guides LLMs to ensure the security and correctness of tool usage. Despite its importance, TIP security has been largely overlooked. This work investigates TIP-related security risks, revealing that major LLM-based systems like Cursor, Claude Code, and others are vulnerable to attacks such as remote code execution (RCE) and denial of service (DoS). Through a systematic TIP exploitation workflow (TEW), we demonstrate external tool behavior hijacking via manipulated tool invocations. We also propose defense mechanisms to enhance TIP security in LLM-based agentic systems.
♻ ☆ GATEAU: Selecting Influential Samples for Long Context Alignment EMNLP 2025
Aligning large language models to handle instructions with extremely long contexts has yet to be fully investigated. Previous studies have attempted to scale up the available data volume by synthesizing long instruction-following samples, as constructing such a dataset tends to be challenging for annotators. However, a lack of a well-defined strategy for ensuring data quality may introduce low-quality samples and restrict the model's performance. Thus, we propose GATEAU, a novel framework to address the unique challenge of long context alignment by identifying the influential samples enriched with long-range dependency relations. Specifically, GATEAU measures the long-range dependencies from two essential aspects: the difficulty of generating target responses due to the long-range dependencies, and the difficulty of understanding long inputs due to such dependencies. Comprehensive experiments indicate that GATEAU effectively identifies influential samples, and the model trained on these selected samples exhibits better instruction-following and long-context understanding capabilities.
comment: EMNLP 2025
♻ ☆ YuE: Scaling Open Foundation Models for Long-Form Music Generation
We tackle the task of long-form music generation--particularly the challenging \textbf{lyrics-to-song} problem--by introducing YuE, a family of open foundation models based on the LLaMA2 architecture. Specifically, YuE scales to trillions of tokens and generates up to five minutes of music while maintaining lyrical alignment, coherent musical structure, and engaging vocal melodies with appropriate accompaniment. It achieves this through (1) track-decoupled next-token prediction to overcome dense mixture signals, (2) structural progressive conditioning for long-context lyrical alignment, and (3) a multitask, multiphase pre-training recipe to converge and generalize. In addition, we redesign the in-context learning technique for music generation, enabling versatile style transfer (e.g., converting Japanese city pop into an English rap while preserving the original accompaniment) and bidirectional generation. Through extensive evaluation, we demonstrate that YuE matches or even surpasses some of the proprietary systems in musicality and vocal agility. In addition, fine-tuning YuE enables additional controls and enhanced support for tail languages. Furthermore, beyond generation, we show that YuE's learned representations can perform well on music understanding tasks, where the results of YuE match or exceed state-of-the-art methods on the MARBLE benchmark. Keywords: lyrics2song, song generation, long-form, foundation model, music generation
comment: https://github.com/multimodal-art-projection/YuE
♻ ☆ Burger: Robust Graph Denoising-augmentation Fusion and Multi-semantic Modeling in Social Recommendation
In the era of rapid development of social media, social recommendation systems as hybrid recommendation systems have been widely applied. Existing methods capture interest similarity between users to filter out interest-irrelevant relations in social networks that inevitably decrease recommendation accuracy, however, limited research has a focus on the mutual influence of semantic information between the social network and the user-item interaction network for further improving social recommendation. To address these issues, we introduce a social \underline{r}ecommendation model with ro\underline{bu}st g\underline{r}aph denoisin\underline{g}-augmentation fusion and multi-s\underline{e}mantic Modeling(Burger). Specifically, we firstly propose to construct a social tensor in order to smooth the training process of the model. Then, a graph convolutional network and a tensor convolutional network are employed to capture user's item preference and social preference, respectively. Considering the different semantic information in the user-item interaction network and the social network, a bi-semantic coordination loss is proposed to model the mutual influence of semantic information. To alleviate the interference of interest-irrelevant relations on multi-semantic modeling, we further use Bayesian posterior probability to mine potential social relations to replace social noise. Finally, the sliding window mechanism is utilized to update the social tensor as the input for the next iteration. Extensive experiments on three real datasets show Burger has a superior performance compared with the state-of-the-art models.
comment: 10 pages, 5 figures
♻ ☆ Plugging Schema Graph into Multi-Table QA: A Human-Guided Framework for Reducing LLM Reliance EMNLP 2025
Large language models (LLMs) have shown promise in table Question Answering (Table QA). However, extending these capabilities to multi-table QA remains challenging due to unreliable schema linking across complex tables. Existing methods based on semantic similarity work well only on simplified hand-crafted datasets and struggle to handle complex, real-world scenarios with numerous and diverse columns. To address this, we propose a graph-based framework that leverages human-curated relational knowledge to explicitly encode schema links and join paths. Given a natural language query, our method searches on graph to construct interpretable reasoning chains, aided by pruning and sub-path merging strategies to enhance efficiency and coherence. Experiments on both standard benchmarks and a realistic, large-scale dataset demonstrate the effectiveness of our approach. To our knowledge, this is the first multi-table QA system applied to truly complex industrial tabular data.
comment: Accepted to EMNLP 2025 findings
♻ ☆ A Mixed User-Centered Approach to Enable Augmented Intelligence in Intelligent Tutoring Systems: The Case of MathAIde app
This study explores the integration of Augmented Intelligence (AuI) in Intelligent Tutoring Systems (ITS) to address challenges in Artificial Intelligence in Education (AIED), including teacher involvement, AI reliability, and resource accessibility. We present MathAIde, an ITS that uses computer vision and AI to correct mathematics exercises from student work photos and provide feedback. The system was designed through a collaborative process involving brainstorming with teachers, high-fidelity prototyping, A/B testing, and a real-world case study. Findings emphasize the importance of a teacher-centered, user-driven approach, where AI suggests remediation alternatives while teachers retain decision-making. Results highlight efficiency, usability, and adoption potential in classroom contexts, particularly in resource-limited environments. The study contributes practical insights into designing ITSs that balanceuser needs and technological feasibility, while advancing AIED research by demonstrating the effectiveness of a mixed-methods, user-centered approach to implementing AuI in educational technologies.
comment: Article published in the International Journal of Human-Computer Interaction
♻ ☆ Transformer-Based Multimodal Knowledge Graph Completion with Link-Aware Contexts
Multimodal knowledge graph completion (MMKGC) aims to predict missing links in multimodal knowledge graphs (MMKGs) by leveraging information from various modalities alongside structural data. Existing MMKGC approaches primarily extend traditional knowledge graph embedding (KGE) models, which often require creating an embedding for every entity. This results in large model sizes and inefficiencies in integrating multimodal information, particularly for real-world graphs. Meanwhile, Transformer-based models have demonstrated competitive performance in knowledge graph completion (KGC). However, their focus on single-modal knowledge limits their capacity to utilize cross-modal information. Recently, Large vision-language models (VLMs) have shown potential in cross-modal tasks but are constrained by the high cost of training. In this work, we propose a novel approach that integrates Transformer-based KGE models with cross-modal context generated by pre-trained VLMs, thereby extending their applicability to MMKGC. Specifically, we employ a pre-trained VLM to transform relevant visual information from entities and their neighbors into textual sequences. We then frame KGC as a sequence-to-sequence task, fine-tuning the model with the generated cross-modal context. This simple yet effective method significantly reduces model size compared to traditional KGE approaches while achieving competitive performance across multiple large-scale datasets with minimal hyperparameter tuning.
♻ ☆ Similarity-based Outlier Detection for Noisy Object Re-Identification Using Beta Mixtures
Object re-identification (Re-ID) methods are highly sensitive to label noise, which typically leads to significant performance degradation. We address this challenge by reframing Re-ID as a supervised image similarity task and adopting a Siamese network architecture trained to capture discriminative pairwise relationships. Central to our approach is a novel statistical outlier detection (OD) framework, termed Beta-SOD (Beta mixture Similarity-based Outlier Detection), which models the distribution of cosine similarities between embedding pairs using a two-component Beta distribution mixture model. We establish a novel identifiability result for mixtures of two Beta distributions, ensuring that our learning task is well-posed. The proposed OD step complements the Re-ID architecture combining binary cross-entropy, contrastive, and cosine embedding losses that jointly optimize feature-level similarity learning. We demonstrate the effectiveness of Beta-SOD in de-noising and Re-ID tasks for person Re-ID, on CUHK03 and Market-1501 datasets, and vehicle Re-ID, on VeRi-776 dataset. Our method shows superior performance compared to the state-of-the-art methods across various noise levels (10-30\%), demonstrating both robustness and broad applicability in noisy Re-ID scenarios. The implementation of Beta-SOD is available at: github.com/waqar3411/Beta-SOD
♻ ☆ REMS: a unified solution representation, problem modeling and metaheuristic algorithm design for general combinatorial optimization problems
Combinatorial optimization problems (COPs) with discrete variables and finite search space are critical across numerous fields, and solving them in metaheuristic algorithms is popular. However, addressing a specific COP typically requires developing a tailored and handcrafted algorithm. Even minor adjustments, such as constraint changes, may necessitate algorithm redevelopment. Therefore, establishing a framework for formulating diverse COPs into a unified paradigm and designing reusable metaheuristic algorithms is valuable. A COP can be typically viewed as the process of giving resources to perform specific tasks, subjecting to given constraints. Motivated by this, a resource-centered modeling and solving framework (REMS) is introduced for the first time. We first extract and define resources and tasks from a COP. Subsequently, given predetermined resources, the solution structure is unified as assigning tasks to resources, from which variables, objectives, and constraints can be derived and a problem model is constructed. To solve the modeled COPs, several fundamental operators are designed based on the unified solution structure, including the initial solution, neighborhood structure, destruction and repair, crossover, and ranking. These operators enable the development of various metaheuristic algorithms. Specially, 4 single-point-based algorithms and 1 population-based algorithm are configured herein. Experiments on 10 COPs, covering routing, location, loading, assignment, scheduling, and graph coloring problems, show that REMS can model these COPs within the unified paradigm and effectively solve them with the designed metaheuristic algorithms. Furthermore, REMS is more competitive than GUROBI and SCIP in tackling large-scale instances and complex COPs, and outperforms OR-TOOLS on several challenging COPs.
comment: Withdrawn for substantial modifications in the method and the experiment
♻ ☆ Low-rank variational dropout: Uncertainty and rank selection in adapters
Parameter-efficient fine-tuning (PEFT) methods such as LoRA adapt large language models by inserting low-rank adapters, but they leave open two key questions: how to give the adapted model calibrated uncertainty, and how to choose the adapter rank. Existing approaches to uncertainty are typically post-hoc, while rank selection is manual and task-specific. BayesLoRA revisits variational dropout in the LoRA setting and shows that the natural unit of stochasticity is not individual weights but entire ranks of the adapter. By placing rank-wise variational distributions over adapter components, BayesLoRA defines a posterior that (i) yields calibrated predictions through adapter-only Monte Carlo sampling and (ii) prunes redundant ranks automatically via an ARD-style KL term. Theoretical analysis shows that this rank-parameterized posterior localizes uncertainty to the adapted subspace and explains amplification under distribution shift. Empirically, BayesLoRA improves calibration while at the same time producing lighter, faster adapters, removing the need to tune ranks by hand. This dual role of uncertainty estimation and uncertainty-driven pruning suggests BayesLoRA may offer a practical default for reliable and efficient PEFT.
comment: 5 pages, 2 figures
♻ ☆ Industrial Energy Disaggregation with Digital Twin-generated Dataset and Efficient Data Augmentation
Industrial Non-Intrusive Load Monitoring (NILM) is limited by the scarcity of high-quality datasets and the complex variability of industrial energy consumption patterns. To address data scarcity and privacy issues, we introduce the Synthetic Industrial Dataset for Energy Disaggregation (SIDED), an open-source dataset generated using Digital Twin simulations. SIDED includes three types of industrial facilities across three different geographic locations, capturing diverse appliance behaviors, weather conditions, and load profiles. We also propose the Appliance-Modulated Data Augmentation (AMDA) method, a computationally efficient technique that enhances NILM model generalization by intelligently scaling appliance power contributions based on their relative impact. We show in experiments that NILM models trained with AMDA-augmented data significantly improve the disaggregation of energy consumption of complex industrial appliances like combined heat and power systems. Specifically, in our out-of-sample scenarios, models trained with AMDA achieved a Normalized Disaggregation Error of 0.093, outperforming models trained without data augmentation (0.451) and those trained with random data augmentation (0.290). Data distribution analyses confirm that AMDA effectively aligns training and test data distributions, enhancing model generalization.
♻ ☆ RouteFinder: Towards Foundation Models for Vehicle Routing Problems ICML 2024
This paper introduces RouteFinder, a comprehensive foundation model framework to tackle different Vehicle Routing Problem (VRP) variants. Our core idea is that a foundation model for VRPs should be able to represent variants by treating each as a subset of a generalized problem equipped with different attributes. We propose a unified VRP environment capable of efficiently handling any combination of these attributes. The RouteFinder model leverages a modern transformer-based encoder and global attribute embeddings to improve task representation. Additionally, we introduce two reinforcement learning techniques to enhance multi-task performance: mixed batch training, which enables training on different variants at once, and multi-variant reward normalization to balance different reward scales. Finally, we propose efficient adapter layers that enable fine-tuning for new variants with unseen attributes. Extensive experiments on 48 VRP variants show RouteFinder outperforms recent state-of-the-art learning methods. Our code is publicly available at https://github.com/ai4co/routefinder.
comment: TMLR 2025. A previous version of this work was presented as Oral at the ICML 2024 FM-Wild Workshop
♻ ☆ Intrinsic Training Signals for Federated Learning Aggregation
Federated Learning (FL) enables collaborative model training across distributed clients while preserving data privacy. While existing approaches for aggregating client-specific classification heads and adapted backbone parameters require architectural modifications or loss function changes, our method uniquely leverages intrinsic training signals already available during standard optimization. We present LIVAR (Layer Importance and VARiance-based merging), which introduces: i) a variance-weighted classifier aggregation scheme using naturally emergent feature statistics, and ii) an explainability-driven LoRA merging technique based on SHAP analysis of existing update parameter patterns. Without any architectural overhead, LIVAR achieves state-of-the-art performance on multiple benchmarks while maintaining seamless integration with existing FL methods. This work demonstrates that effective model merging can be achieved solely through existing training signals, establishing a new paradigm for efficient federated model aggregation. The code is available at https://github.com/aimagelab/fed-mammoth.
♻ ☆ Quantized Neural Networks for Microcontrollers: A Comprehensive Review of Methods, Platforms, and Applications
The deployment of Quantized Neural Networks (QNNs) on resource-constrained devices, such as microcontrollers, has introduced significant challenges in balancing model performance, computational complexity, and memory constraints. Tiny Machine Learning (TinyML) addresses these issues by integrating advancements across machine learning algorithms, hardware acceleration, and software optimization to efficiently run deep neural networks on embedded systems. This survey presents a hardware-centric introduction to quantization, systematically reviewing essential quantization techniques employed to accelerate deep learning models for embedded applications. In particular, further emphasis is placed on the critical trade-offs between model performance and hardware capabilities. The survey further evaluates existing software frameworks and hardware platforms designed specifically for supporting QNN execution on microcontrollers. Moreover, we provide an analysis of the current challenges and an outline of promising future directions in the rapidly evolving domain of QNN deployment.
comment: 39 pages, 16 figures, 8 Tables, submitted to the Proceedings of the IEEE
♻ ☆ Comparing Conditional Diffusion Models for Synthesizing Contrast-Enhanced Breast MRI from Pre-Contrast Images MICCAI
Dynamic contrast-enhanced (DCE) MRI is essential for breast cancer diagnosis and treatment. However, its reliance on contrast agents introduces safety concerns, contraindications, increased cost, and workflow complexity. To this end, we present pre-contrast conditioned denoising diffusion probabilistic models to synthesize DCE-MRI, introducing, evaluating, and comparing a total of 22 generative model variants in both single-breast and full breast settings. Towards enhancing lesion fidelity, we introduce both tumor-aware loss functions and explicit tumor segmentation mask conditioning. Using a public multicenter dataset and comparing to respective pre-contrast baselines, we observe that subtraction image-based models consistently outperform post-contrast-based models across five complementary evaluation metrics. Apart from assessing the entire image, we also separately evaluate the region of interest, where both tumor-aware losses and segmentation mask inputs improve evaluation metrics. The latter notably enhance qualitative results capturing contrast uptake, albeit assuming access to tumor localization inputs that are not guaranteed to be available in screening settings. A reader study involving 2 radiologists and 4 MRI technologists confirms the high realism of the synthetic images, indicating an emerging clinical potential of generative contrast-enhancement. We share our codebase at https://github.com/sebastibar/conditional-diffusion-breast-MRI.
comment: 13 pages, 5 figures, submitted and accepted to MICCAI Deepbreath workshop 2025
♻ ☆ LLM as a Broken Telephone: Iterative Generation Distorts Information ACL 2025
As large language models are increasingly responsible for online content, concerns arise about the impact of repeatedly processing their own outputs. Inspired by the "broken telephone" effect in chained human communication, this study investigates whether LLMs similarly distort information through iterative generation. Through translation-based experiments, we find that distortion accumulates over time, influenced by language choice and chain complexity. While degradation is inevitable, it can be mitigated through strategic prompting techniques. These findings contribute to discussions on the long-term effects of AI-mediated information propagation, raising important questions about the reliability of LLM-generated content in iterative workflows.
comment: Accepted to ACL 2025, Main Conference
♻ ☆ UR$^2$: Unify RAG and Reasoning through Reinforcement Learning
Large Language Models (LLMs) have shown remarkable capabilities through two complementary paradigms: Retrieval-Augmented Generation (RAG), which enhances knowledge grounding, and Reinforcement Learning from Verifiable Rewards (RLVR), which optimizes complex reasoning abilities. However, these two capabilities are often developed in isolation, and existing efforts to unify them remain narrow in scope -- typically limited to open-domain QA with fixed retrieval settings and task-specific constraints. This lack of integration constrains generalization and limits the applicability of RAG-RL methods to broader domains. To bridge this gap, we propose UR2 (Unified RAG and Reasoning), a general framework that unifies retrieval and reasoning through reinforcement learning. UR2 introduces two key contributions: a difficulty-aware curriculum training that selectively invokes retrieval only for challenging problems, and a hybrid knowledge access strategy combining domain-specific offline corpora with LLM-generated summaries. These components are designed to enable dynamic coordination between retrieval and reasoning, improving adaptability across a diverse range of tasks. Experiments across open-domain QA, MMLU-Pro, medical, and mathematical reasoning tasks demonstrate that UR$^2$ (built on Qwen-2.5-3/7B and LLaMA-3.1-8B) significantly outperforms existing RAG and RL methods, achieving comparable performance to GPT-4o-mini and GPT-4.1-mini on several benchmarks. We have released all code, models, and data at https://github.com/Tsinghua-dhy/UR2.
♻ ☆ Group Expectation Policy Optimization for Heterogeneous Reinforcement Learning
As single-center computing approaches power constraints, decentralized training is becoming essential. Reinforcement Learning (RL) post-training enhances Large Language Models (LLMs) but faces challenges in heterogeneous distributed environments due to its tightly-coupled sampling-learning alternation. We propose HeteroRL, an asynchronous RL architecture that decouples rollout sampling from parameter learning, enabling robust deployment across geographically distributed nodes under network delays. We identify that latency-induced KL divergence causes importance sampling failure due to high variance. To address this, we propose Group Expectation Policy Optimization (GEPO), which reduces importance weight variance through a refined sampling mechanism. Theoretically, GEPO achieves exponential variance reduction. Experiments show it maintains superior stability over methods like GRPO, with less than 3% performance degradation under 1800-second delays, demonstrating strong potential for decentralized RL in heterogeneous networks.
♻ ☆ Towards Understanding Visual Grounding in Visual Language Models
Visual grounding refers to the ability of a model to identify a region within some visual input that matches a textual description. Consequently, a model equipped with visual grounding capabilities can target a wide range of applications in various domains, including referring expression comprehension, answering questions pertinent to fine-grained details in images or videos, caption visual context by explicitly referring to entities, as well as low and high-level control in simulated and real environments. In this survey paper, we review representative works across the key areas of research on modern general-purpose vision language models (VLMs). We first outline the importance of grounding in VLMs, then delineate the core components of the contemporary paradigm for developing grounded models, and examine their practical applications, including benchmarks and evaluation metrics for grounded multimodal generation. We also discuss the multifaceted interrelations among visual grounding, multimodal chain-of-thought, and reasoning in VLMs. Finally, we analyse the challenges inherent to visual grounding and suggest promising directions for future research.
♻ ☆ TeleOpBench: A Simulator-Centric Benchmark for Dual-Arm Dexterous Teleoperation
Teleoperation is a cornerstone of embodied-robot learning, and bimanual dexterous teleoperation in particular provides rich demonstrations that are difficult to obtain with fully autonomous systems. While recent studies have proposed diverse hardware pipelines-ranging from inertial motion-capture gloves to exoskeletons and vision-based interfaces-there is still no unified benchmark that enables fair, reproducible comparison of these systems. In this paper, we introduce TeleOpBench, a simulator-centric benchmark tailored to bimanual dexterous teleoperation. TeleOpBench contains 30 high-fidelity task environments that span pick-and-place, tool use, and collaborative manipulation, covering a broad spectrum of kinematic and force-interaction difficulty. Within this benchmark we implement four representative teleoperation modalities-(i) MoCap, (ii) VR device, (iii) arm-hand exoskeletons, and (iv) monocular vision tracking-and evaluate them with a common protocol and metric suite. To validate that performance in simulation is predictive of real-world behavior, we conduct mirrored experiments on a physical dual-arm platform equipped with two 6-DoF dexterous hands. Across 10 held-out tasks we observe a strong correlation between simulator and hardware performance, confirming the external validity of TeleOpBench. TeleOpBench establishes a common yardstick for teleoperation research and provides an extensible platform for future algorithmic and hardware innovation. Codes is now available at https://github.com/cyjdlhy/TeleOpBench .
comment: Project page:https://gorgeous2002.github.io/TeleOpBench/, Codes:https://github.com/cyjdlhy/TeleOpBench
♻ ☆ TORSO: Template-Oriented Reasoning Towards General Tasks EMNLP 2025
The approaches that guide Large Language Models (LLMs) to emulate human reasoning during response generation have emerged as an effective method for enabling them to solve complex problems in a step-by-step manner, thereby achieving superior performance. However, most existing approaches using few-shot prompts to generate responses heavily depend on the provided examples, limiting the utilization of the model's inherent reasoning capabilities. Moreover, constructing task-specific few-shot prompts is often costly and may lead to inconsistencies across different tasks. In this work, we introduce Template-Oriented Reasoning (TORSO), which elicits the model to utilize internal reasoning abilities to generate proper responses across various tasks without the need for manually crafted few-shot examples. Our experimental results demonstrate that TORSO achieves strong performance on diverse LLMs benchmarks with reasonable rationales.
comment: Accepted to EMNLP 2025 Main Conference
♻ ☆ Intrinsic Dimension Estimating Autoencoder (IDEA) Using CancelOut Layer and a Projected Loss
This paper introduces the Intrinsic Dimension Estimating Autoencoder (IDEA), which identifies the underlying intrinsic dimension of a wide range of datasets whose samples lie on either linear or nonlinear manifolds. Beyond estimating the intrinsic dimension, IDEA is also able to reconstruct the original dataset after projecting it onto the corresponding latent space, which is structured using re-weighted double CancelOut layers. Our key contribution is the introduction of the projected reconstruction loss term, guiding the training of the model by continuously assessing the reconstruction quality under the removal of an additional latent dimension. We first assess the performance of IDEA on a series of theoretical benchmarks to validate its robustness. These experiments allow us to test its reconstruction ability and compare its performance with state-of-the-art intrinsic dimension estimators. The benchmarks show good accuracy and high versatility of our approach. Subsequently, we apply our model to data generated from the numerical solution of a vertically resolved one-dimensional free-surface flow, following a pointwise discretization of the vertical velocity profile in the horizontal direction, vertical direction, and time. IDEA succeeds in estimating the dataset's intrinsic dimension and then reconstructs the original solution by working directly within the projection space identified by the network.
comment: Preprint with 12 pages and 12 figures
♻ ☆ Mechanistic Interpretability of LoRA-Adapted Language Models for Nuclear Reactor Safety Applications
The integration of Large Language Models (LLMs) into safety-critical domains, such as nuclear engineering, necessitates a deep understanding of their internal reasoning processes. This paper presents a novel methodology for interpreting how an LLM encodes and utilizes domain-specific knowledge, using a Boiling Water Reactor system as a case study. We adapted a general-purpose LLM (Gemma-3-1b-it) to the nuclear domain using a parameter-efficient fine-tuning technique known as Low-Rank Adaptation. By comparing the neuron activation patterns of the base model to those of the fine-tuned model, we identified a sparse set of neurons whose behavior was significantly altered during the adaptation process. To probe the causal role of these specialized neurons, we employed a neuron silencing technique. Our results demonstrate that while silencing most of these specialized neurons individually did not produce a statistically significant effect, deactivating the entire group collectively led to a statistically significant degradation in task performance. Qualitative analysis further revealed that silencing these neurons impaired the model's ability to generate detailed, contextually accurate technical information. This paper provides a concrete methodology for enhancing the transparency of an opaque black-box model, allowing domain expertise to be traced to verifiable neural circuits. This offers a pathway towards achieving nuclear-grade artificial intelligence (AI) assurance, addressing the verification and validation challenges mandated by nuclear regulatory frameworks (e.g., 10 CFR 50 Appendix B), which have limited AI deployment in safety-critical nuclear operations.
comment: Accepted for publication in Nuclear Technology. 24 pages, 2 tables, 4 figures
♻ ☆ FOCUS on Contamination: A Geospatial Deep Learning Framework with a Noise-Aware Loss for Surface Water PFAS Prediction
Per- and polyfluoroalkyl substances (PFAS), chemicals found in products like non-stick cookware, are unfortunately persistent environmental pollutants with severe health risks. Accurately mapping PFAS contamination is crucial for guiding targeted remediation efforts and protecting public and environmental health, yet detection across large regions remains challenging due to the cost of testing and the difficulty of simulating their spread. In this work, we introduce FOCUS, a geospatial deep learning framework with a label noise-aware loss function, to predict PFAS contamination in surface water over large regions. By integrating hydrological flow data, land cover information, and proximity to known PFAS sources, our approach leverages both spatial and environmental context to improve prediction accuracy. We evaluate the performance of our approach through extensive ablation studies, robustness analysis, real-world validation, and comparative analyses against baselines like sparse segmentation, as well as existing scientific methods, including Kriging and pollutant transport simulations. Results and expert feedback highlight our framework's potential for scalable PFAS monitoring.
♻ ☆ SMT(LIA) Sampling with High Diversity
Satisfiability Modulo Linear Integer Arithmetic, SMT(LIA) for short, is pivotal across various critical domains. Previous research has primarily focused on SMT solving techniques. However, in practical applications such as software and hardware testing, there is a need to generate a diverse set of solutions for use as test inputs. We have developed the first sampling framework that integrates local search with CDCL(T) techniques, named HighDiv, capable of generating a highly diverse set of solutions for constraints under linear integer theory. Initially, in the local search phase, we introduced a novel operator called boundary-aware movement. This operator performs random moves by considering the current state's constraints on variables, thereby enhancing the diversity of variables during the search process. Furthermore, we have conducted an in-depth study of the preprocessing and variable initialization mechanisms within the framework, which significantly enhances the efficiency of subsequent local searches. Lastly, we use the solutions obtained from local search sampling as additional constraints to further explore the solution space using the stochastic CDCL(T) method. Experimental results demonstrate that \HighDiv generates solutions with greater diversity compared to the state-of-the-art SMT(LIA) sampling tool, MeGASampler.
♻ ☆ Steering LVLMs via Sparse Autoencoder for Hallucination Mitigation EMNLP 2025
Large vision-language models (LVLMs) have achieved remarkable performance on multimodal tasks. However, they still suffer from hallucinations, generating text inconsistent with visual input, posing significant risks in real-world applications. Existing approaches to address this issue focus on incorporating external knowledge bases, alignment training, or decoding strategies, all of which require substantial computational cost and time. Recent works try to explore more efficient alternatives by adjusting LVLMs' internal representations. Although promising, these methods may cause hallucinations to be insufficiently suppressed or lead to excessive interventions that negatively affect normal semantics. In this work, we leverage sparse autoencoders (SAEs) to identify semantic directions closely associated with faithfulness or hallucination, extracting more precise and disentangled hallucination-related representations. Our analysis demonstrates that interventions along the identified faithful direction can mitigate hallucinations, while those along the hallucinatory direction can exacerbate them. Building on these insights, we propose Steering LVLMs via SAE Latent Directions (SSL), a plug-and-play method based on SAE-derived latent directions to mitigate hallucinations in LVLMs. Extensive experiments demonstrate that SSL significantly outperforms existing decoding approaches in mitigating hallucinations, while maintaining transferability across different model architectures with negligible additional time overhead. The code is available at https://github.com/huazhenglin2003/SSL.
comment: Accepted to Findings of EMNLP 2025
♻ ☆ Murphys Laws of AI Alignment: Why the Gap Always Wins
We study reinforcement learning from human feedback under misspecification. Sometimes human feedback is systematically wrong on certain types of inputs, like a broken compass that points the wrong way in specific regions. We prove that when feedback is biased on a fraction alpha of contexts with bias strength epsilon, any learning algorithm needs exponentially many samples exp(n*alpha*epsilon^2) to distinguish between two possible "true" reward functions that differ only on these problematic contexts. However, if you can identify where feedback is unreliable (a "calibration oracle"), you can focus your limited questions there and overcome the exponential barrier with just O(1/(alpha*epsilon^2)) queries. This quantifies why alignment is hard: rare edge cases with subtly biased feedback create an exponentially hard learning problem unless you know where to look. The gap between what we optimize (proxy from human feedback) and what we want (true objective) is fundamentally limited by how common the problematic contexts are (alpha), how wrong the feedback is there (epsilon), and how much the true objectives disagree there (gamma). Murphy's Law for AI alignment: the gap always wins unless you actively route around misspecification.
comment: Provides a formal impossibility theorem (Murphys Gap) and welcomes collaboration on large-scale experiments and benchmark design
♻ ☆ CAC-CoT: Connector-Aware Compact Chain-of-Thought for Efficient Reasoning Data Synthesis Across Dual-System Cognitive Tasks EMNLP 2025
Long chain-of-thought (CoT) prompting helps Large Language Models (LLMs) solve difficult problems, but very long traces often slow or even degrade performance on fast, intuitive "System-1" tasks. We introduce Connector-Aware Compact CoT (CAC-CoT) -- a method that deliberately restricts reasoning to a small, fixed set of connector phrases, steering the model toward concise and well -- structured explanations. Despite its simplicity, our synthetic method with general-purpose LLMs yields a high-quality training quality. CAC-CoT achieves approximately 85% on GSM8K and approximately 40% on GPQA (System-2) while also achieving approximately 85% on S1-Bench (System-1), surpassing the baseline by over 20%. Its reasoning traces average approximately 300 tokens(ART), about one-third the length of baseline traces, delivering higher efficiency without loss of accuracy.
comment: Accepted at EMNLP 2025 findings
♻ ☆ Navigating the Labyrinth: Evaluating LLMs' Ability to Reason About Search Problems
Large Language Models (LLMs) have recently achieved impressive performance in math and reasoning benchmarks. However, they often struggle with logic problems and puzzles that are relatively easy for humans. To further investigate this, we introduce a new benchmark, SearchBench, which contains 11 unique search problems inspired by intuitive puzzles. Each SearchBench problem type is equipped with automated pipelines to generate an arbitrary number of instances and analyze the feasibility, correctness, and optimality of LLM-generated solutions. We show that using step-by-step, language-only reasoning, even the most advanced LLMs fail to solve SearchBench; for example, OpenAI's frontier models GPT-4 and o1-preview solve only 1.4% and 18.6% of problems, respectively. The reason is that SearchBench problems require considering multiple pathways and performing backtracking, posing a significant challenge to auto-regressive models. Interestingly, performance is significantly boosted when we prompt models to generate a complete A* search algorithm - a comparatively more cognitively difficult task. This approach effectively offloads the iterative search and backtracking process from the models, which they struggle with in text. This in-context learning baseline is further enhanced via a Multi-Stage-Multi-Try (MSMT) inference method, increasing GPT-4's rate of correct solutions to over 57%.
♻ ☆ Multi-View Slot Attention Using Paraphrased Texts for Face Anti-Spoofing ICCV 2025
Recent face anti-spoofing (FAS) methods have shown remarkable cross-domain performance by employing vision-language models like CLIP. However, existing CLIP-based FAS models do not fully exploit CLIP's patch embedding tokens, failing to detect critical spoofing clues. Moreover, these models rely on a single text prompt per class (e.g., 'live' or 'fake'), which limits generalization. To address these issues, we propose MVP-FAS, a novel framework incorporating two key modules: Multi-View Slot attention (MVS) and Multi-Text Patch Alignment (MTPA). Both modules utilize multiple paraphrased texts to generate generalized features and reduce dependence on domain-specific text. MVS extracts local detailed spatial features and global context from patch embeddings by leveraging diverse texts with multiple perspectives. MTPA aligns patches with multiple text representations to improve semantic robustness. Extensive experiments demonstrate that MVP-FAS achieves superior generalization performance, outperforming previous state-of-the-art methods on cross-domain datasets. Code: https://github.com/Elune001/MVP-FAS.
comment: Accepted to ICCV 2025
♻ ☆ Binary Quantization For LLMs Through Dynamic Grouping
Large Language Models (LLMs) have demonstrated remarkable performance across a wide range of Natural Language Processing (NLP) tasks, but require substantial memory and computational resources. Binary quantization, which compresses model weights from 16-bit Brain Float to 1-bit representations in {-1, 1}, offers significant reductions in storage and inference costs. However, such aggressive quantization often leads to notable performance degradation compared to more conservative 4-bit quantization methods. In this research, we propose a novel optimization objective tailored for binary quantization, along with three algorithms designed to realize it effectively. Our method enhances blocked quantization by dynamically identifying optimal unstructured sub-matrices through adaptive grouping strategies. Experimental results demonstrate that our approach achieves an average bit length of just 1.007 bits, while maintaining high model quality. Specifically, our quantized LLaMA 3.2 3B model attains a perplexity of 8.23, remarkably close to the original 7.81, and surpasses previous SOTA BiLLM with a perplexity of only 123.90. Furthermore, our method is competitive with SOTA 4-bit approaches such as GPTQ in both performance and efficiency. The compression process is highly efficient, requiring only 14 seconds to quantize the full LLaMA 3.2 3B weights on a single CPU core, with the entire process completing in under 100 minutes and exhibiting embarrassingly parallel properties. Code - https://github.com/johnnyzheng0636/WGM_bi_quan
comment: An error was identified in the quantization bit width; it is not binary
♻ ☆ Timing Matters: Enhancing User Experience through Temporal Prediction in Smart Homes
The proliferation of IoT devices generates vast interaction data, offering insights into user behaviour. While prior work predicts what actions users perform, the timing of these actions -- critical for enabling proactive and efficient smart systems -- remains relatively underexplored. Addressing this gap, we focus on predicting the time of the next user action in smart environments. Due to the lack of public datasets with fine-grained timestamps suitable for this task and associated privacy concerns, we contribute a dataset of 11.6k sequences synthesized based on human annotations of interaction patterns, pairing actions with precise timestamps. To this end, we introduce Timing-Matters, a Transformer-Encoder based method that predicts action timing, achieving 38.30% accuracy on the synthesized dataset, outperforming the best baseline by 6%, and showing 1--6% improvements on other open datasets. Our code and dataset will be publicly released.
comment: 7 pages + 1 reference, 5 figures, 6 tables
♻ ☆ First RAG, Second SEG: A Training-Free Paradigm for Camouflaged Object Detection
Camouflaged object detection (COD) poses a significant challenge in computer vision due to the high similarity between objects and their backgrounds. Existing approaches often rely on heavy training and large computational resources. While foundation models such as the Segment Anything Model (SAM) offer strong generalization, they still struggle to handle COD tasks without fine-tuning and require high-quality prompts to yield good performance. However, generating such prompts manually is costly and inefficient. To address these challenges, we propose \textbf{First RAG, Second SEG (RAG-SEG)}, a training-free paradigm that decouples COD into two stages: Retrieval-Augmented Generation (RAG) for generating coarse masks as prompts, followed by SAM-based segmentation (SEG) for refinement. RAG-SEG constructs a compact retrieval database via unsupervised clustering, enabling fast and effective feature retrieval. During inference, the retrieved features produce pseudo-labels that guide precise mask generation using SAM2. Our method eliminates the need for conventional training while maintaining competitive performance. Extensive experiments on benchmark COD datasets demonstrate that RAG-SEG performs on par with or surpasses state-of-the-art methods. Notably, all experiments are conducted on a \textbf{personal laptop}, highlighting the computational efficiency and practicality of our approach. We present further analysis in the Appendix, covering limitations, salient object detection extension, and possible improvements. \textcolor{blue} {Code: https://github.com/Lwt-diamond/RAG-SEG.}
♻ ☆ Multilingual Collaborative Defense for Large Language Models
The robustness and security of large language models (LLMs) has become a prominent research area. One notable vulnerability is the ability to bypass LLM safeguards by translating harmful queries into rare or underrepresented languages, a simple yet effective method of "jailbreaking" these models. Despite the growing concern, there has been limited research addressing the safeguarding of LLMs in multilingual scenarios, highlighting an urgent need to enhance multilingual safety. In this work, we investigate the correlation between various attack features across different languages and propose Multilingual Collaborative Defense (MCD), a novel learning method that optimizes a continuous, soft safety prompt automatically to facilitate multilingual safeguarding of LLMs. The MCD approach offers three advantages: First, it effectively improves safeguarding performance across multiple languages. Second, MCD maintains strong generalization capabilities while minimizing false refusal rates. Third, MCD mitigates the language safety misalignment caused by imbalances in LLM training corpora. To evaluate the effectiveness of MCD, we manually construct multilingual versions of commonly used jailbreak benchmarks, such as MaliciousInstruct and AdvBench, to assess various safeguarding methods. Additionally, we introduce these datasets in underrepresented (zero-shot) languages to verify the language transferability of MCD. The results demonstrate that MCD outperforms existing approaches in safeguarding against multilingual jailbreak attempts while also exhibiting strong language transfer capabilities. Our code is available at https://github.com/HLiang-Lee/MCD.
comment: 21 pages, 4figures
♻ ☆ Hallucinated Span Detection with Multi-View Attention Features
This study addresses the problem of hallucinated span detection in the outputs of large language models. It has received less attention than output-level hallucination detection despite its practical importance. Prior work has shown that attentions often exhibit irregular patterns when hallucinations occur. Motivated by these findings, we extract features from the attention matrix that provide complementary views capturing (a) whether certain tokens are influential or ignored, (b) whether attention is biased toward specific subsets, and (c) whether a token is generated referring to a narrow or broad context, in the generation. These features are input to a Transformer-based classifier to conduct sequential labelling to identify hallucinated spans. Experimental results indicate that the proposed method outperforms strong baselines on hallucinated span detection with longer input contexts, such as data-to-text and summarisation tasks.
♻ ☆ StableMotion: Training Motion Cleanup Models with Unpaired Corrupted Data SIGGRAPH
Motion capture (mocap) data often exhibits visually jarring artifacts due to inaccurate sensors and post-processing. Cleaning this corrupted data can require substantial manual effort from human experts, which can be a costly and time-consuming process. Previous data-driven motion cleanup methods offer the promise of automating this cleanup process, but often require in-domain paired corrupted-to-clean training data. Constructing such paired datasets requires access to high-quality, relatively artifact-free motion clips, which often necessitates laborious manual cleanup. In this work, we present StableMotion, a simple yet effective method for training motion cleanup models directly from unpaired corrupted datasets that need cleanup. The core component of our method is the introduction of motion quality indicators, which can be easily annotated - through manual labeling or heuristic algorithms - and enable training of quality-aware motion generation models on raw motion data with mixed quality. At test time, the model can be prompted to generate high-quality motions using the quality indicators. Our method can be implemented through a simple diffusion-based framework, leading to a unified motion generate-discriminate model, which can be used to both identify and fix corrupted frames. We demonstrate that our proposed method is effective for training motion cleanup models on raw mocap data in production scenarios by applying StableMotion to SoccerMocap, a 245-hour soccer mocap dataset containing real-world motion artifacts. The trained model effectively corrects a wide range of motion artifacts, reducing motion pops and frozen frames by 68% and 81%, respectively. Results and code are available at https://yxmu.foo/stablemotion-page
comment: Accepted for SIGGRAPH Asia 2025
♻ ☆ Confusion is the Final Barrier: Rethinking Jailbreak Evaluation and Investigating the Real Misuse Threat of LLMs
With the development of Large Language Models (LLMs), numerous efforts have revealed their vulnerabilities to jailbreak attacks. Although these studies have driven the progress in LLMs' safety alignment, it remains unclear whether LLMs have internalized authentic knowledge to deal with real-world crimes, or are merely forced to simulate toxic language patterns. This ambiguity raises concerns that jailbreak success is often attributable to a hallucination loop between jailbroken LLM and judger LLM. By decoupling the use of jailbreak techniques, we construct knowledge-intensive Q\&A to investigate the misuse threats of LLMs in terms of dangerous knowledge possession, harmful task planning utility, and harmfulness judgment robustness. Experiments reveal a mismatch between jailbreak success rates and harmful knowledge possession in LLMs, and existing LLM-as-a-judge frameworks tend to anchor harmfulness judgments on toxic language patterns. Our study reveals a gap between existing LLM safety assessments and real-world threat potential.
♻ ☆ STRIDE: Subset-Free Functional Decomposition for XAI in Tabular Settings ICLR 2026
Most explainable AI (XAI) frameworks are limited in their expressiveness, summarizing complex feature effects as single scalar values \phi_i. This approach answers "what" features are important but fails to reveal "how" they interact. Furthermore, methods that attempt to capture interactions, like those based on Shapley values, often face an exponential computational cost. We present STRIDE, a scalable framework that addresses both limitations by reframing explanation as a subset-enumeration-free, orthogonal "functional decomposition" in a Reproducing Kernel Hilbert Space (RKHS). In the tabular setups we study, STRIDE analytically computes functional components f_S(x_S) via a recursive kernel-centering procedure. The approach is model-agnostic and theoretically grounded with results on orthogonality and L^2 convergence. In tabular benchmarks (10 datasets, median over 10 seeds), STRIDE attains a 3.0 times median speedup over TreeSHAP and a mean R^2=0.93 for reconstruction. We also introduce "component surgery", a diagnostic that isolates a learned interaction and quantifies its contribution; on California Housing, removing a single interaction reduces test R^2 from 0.019 to 0.027.
comment: Major revision for submission to ICLR 2026. Substantially revised abstract, introduction, and discussion. Added new 'component surgery' analysis and updated benchmark results for clarity. (12 pages, 2 figures)
♻ ☆ MolErr2Fix: Benchmarking LLM Trustworthiness in Chemistry via Modular Error Detection, Localization, Explanation, and Revision
Large Language Models (LLMs) have shown growing potential in molecular sciences, but they often produce chemically inaccurate descriptions and struggle to recognize or justify potential errors. This raises important concerns about their robustness and reliability in scientific applications. To support more rigorous evaluation of LLMs in chemical reasoning, we present the MolErr2Fix benchmark, designed to assess LLMs on error detection and correction in molecular descriptions. Unlike existing benchmarks focused on molecule-to-text generation or property prediction, MolErr2Fix emphasizes fine-grained chemical understanding. It tasks LLMs with identifying, localizing, explaining, and revising potential structural and semantic errors in molecular descriptions. Specifically, MolErr2Fix consists of 1,193 fine-grained annotated error instances. Each instance contains quadruple annotations, i.e,. (error type, span location, the explanation, and the correction). These tasks are intended to reflect the types of reasoning and verification required in real-world chemical communication. Evaluations of current state-of-the-art LLMs reveal notable performance gaps, underscoring the need for more robust chemical reasoning capabilities. MolErr2Fix provides a focused benchmark for evaluating such capabilities and aims to support progress toward more reliable and chemically informed language models. All annotations and an accompanying evaluation API will be publicly released to facilitate future research.
comment: 9 pages
♻ ☆ GeoGuess: Multimodal Reasoning based on Hierarchy of Visual Information in Street View
Multimodal reasoning is a process of understanding, integrating and inferring information across different data modalities. It has recently attracted surging academic attention as a benchmark for Artificial Intelligence (AI). Although there are various tasks for evaluating multimodal reasoning ability, they still have limitations. Lack of reasoning on hierarchical visual clues at different levels of granularity, e.g., local details and global context, is of little discussion, despite its frequent involvement in real scenarios. To bridge the gap, we introduce a novel and challenging task for multimodal reasoning, namely GeoGuess. Given a street view image, the task is to identify its location and provide a detailed explanation. A system that succeeds in GeoGuess should be able to detect tiny visual clues, perceive the broader landscape, and associate with vast geographic knowledge. Therefore, GeoGuess would require the ability to reason between hierarchical visual information and geographic knowledge. In this work, we establish a benchmark for GeoGuess by introducing a specially curated dataset GeoExplain which consists of panoramas-geocoordinates-explanation tuples. Additionally, we present a multimodal and multilevel reasoning method, namely SightSense which can make prediction and generate comprehensive explanation based on hierarchy of visual information and external knowledge. Our analysis and experiments demonstrate their outstanding performance in GeoGuess.
comment: Updated version
♻ ☆ Enhancing Prompt Injection Attacks to LLMs via Poisoning Alignment
Prompt injection attack, where an attacker injects a prompt into the original one, aiming to make an Large Language Model (LLM) follow the injected prompt to perform an attacker-chosen task, represent a critical security threat. Existing attacks primarily focus on crafting these injections at inference time, treating the LLM itself as a static target. Our experiments show that these attacks achieve some success, but there is still significant room for improvement. In this work, we introduces a more foundational attack vector: poisoning the LLM's alignment process to amplify the success of future prompt injection attacks. Specifically, we propose PoisonedAlign, a method that strategically creates poisoned alignment samples to poison an LLM's alignment dataset. Our experiments across five LLMs and two alignment datasets show that when even a small fraction of the alignment data is poisoned, the resulting model becomes substantially more vulnerable to a wide range of prompt injection attacks. Crucially, this vulnerability is instilled while the LLM's performance on standard capability benchmarks remains largely unchanged, making the manipulation difficult to detect through automated, general-purpose performance evaluations. The code for implementing the attack is available at https://github.com/Sadcardation/PoisonedAlign.
♻ ☆ Through the Theory of Mind's Eye: Reading Minds with Multimodal Video Large Language Models
Can large multimodal models have a human-like ability for emotional and social reasoning, and if so, how does it work? Recent research has discovered emergent theory-of-mind (ToM) reasoning capabilities in large language models (LLMs). LLMs can reason about people's mental states by solving various text-based ToM tasks that ask questions about the actors' ToM (e.g., human belief, desire, intention). However, human reasoning in the wild is often grounded in dynamic scenes across time. Thus, we consider videos a new medium for examining spatio-temporal ToM reasoning ability. Specifically, we ask explicit probing questions about videos with abundant social and emotional reasoning content. We develop a pipeline for multimodal LLM for ToM reasoning using video and text. We also enable explicit ToM reasoning by retrieving key frames for answering a ToM question, which reveals how multimodal LLMs reason about ToM.
Self-Evolving Curriculum for LLM Reasoning
Reinforcement learning (RL) has proven effective for fine-tuning large language models (LLMs), significantly enhancing their reasoning abilities in domains such as mathematics and code generation. A crucial factor influencing RL fine-tuning success is the training curriculum: the order in which training problems are presented. While random curricula serve as common baselines, they remain suboptimal; manually designed curricula often rely heavily on heuristics, and online filtering methods can be computationally prohibitive. To address these limitations, we propose Self-Evolving Curriculum (SEC), an automatic curriculum learning method that learns a curriculum policy concurrently with the RL fine-tuning process. Our approach formulates curriculum selection as a non-stationary Multi-Armed Bandit problem, treating each problem category (e.g., difficulty level or problem type) as an individual arm. We leverage the absolute advantage from policy gradient methods as a proxy measure for immediate learning gain. At each training step, the curriculum policy selects categories to maximize this reward signal and is updated using the TD(0) method. Across three distinct reasoning domains: planning, inductive reasoning, and mathematics, our experiments demonstrate that SEC significantly improves models' reasoning capabilities, enabling better generalization to harder, out-of-distribution test problems. Additionally, our approach achieves better skill balance when fine-tuning simultaneously on multiple reasoning domains. These findings highlight SEC as a promising strategy for RL fine-tuning of LLMs.
♻ ☆ Oyster-I: Beyond Refusal -- Constructive Safety Alignment for Responsible Language Models
Large language models (LLMs) typically deploy safety mechanisms to prevent harmful content generation. Most current approaches focus narrowly on risks posed by malicious actors, often framing risks as adversarial events and relying on defensive refusals. However, in real-world settings, risks also come from non-malicious users seeking help while under psychological distress (e.g., self-harm intentions). In such cases, the model's response can strongly influence the user's next actions. Simple refusals may lead them to repeat, escalate, or move to unsafe platforms, creating worse outcomes. We introduce Constructive Safety Alignment (CSA), a human-centric paradigm that protects against malicious misuse while actively guiding vulnerable users toward safe and helpful results. Implemented in Oyster-I (Oy1), CSA combines game-theoretic anticipation of user reactions, fine-grained risk boundary discovery, and interpretable reasoning control, turning safety into a trust-building process. Oy1 achieves state-of-the-art safety among open models while retaining high general capabilities. On our Constructive Benchmark, it shows strong constructive engagement, close to GPT-5, and unmatched robustness on the Strata-Sword jailbreak dataset, nearing GPT-o1 levels. By shifting from refusal-first to guidance-first safety, CSA redefines the model-user relationship, aiming for systems that are not just safe, but meaningfully helpful. We release Oy1, code, and the benchmark to support responsible, user-centered AI.
comment: Technical Report Code & Model weights available: https://github.com/Alibaba-AAIG/Oyster
♻ ☆ High-Fidelity Scientific Simulation Surrogates via Adaptive Implicit Neural Representations
Effective surrogate models are critical for accelerating scientific simulations. Implicit neural representations (INRs) offer a compact and continuous framework for modeling spatially structured data, but they often struggle with complex scientific fields exhibiting localized, high-frequency variations. Recent approaches address this by introducing additional features along rigid geometric structures (e.g., grids), but at the cost of flexibility and increased model size. In this paper, we propose a simple yet effective alternative: Feature-Adaptive INR (FA-INR). FA-INR leverages cross-attention to an augmented memory bank to learn flexible feature representations, enabling adaptive allocation of model capacity based on data characteristics, rather than rigid structural assumptions. To further improve scalability, we introduce a coordinate-guided mixture of experts (MoE) that enhances the specialization and efficiency of feature representations. Experiments on three large-scale ensemble simulation datasets show that FA-INR achieves state-of-the-art fidelity while significantly reducing model size, establishing a new trade-off frontier between accuracy and compactness for INR-based surrogates.
♻ ☆ MARS-Bench: A Multi-turn Athletic Real-world Scenario Benchmark for Dialogue Evaluation EMNLP2025
Large Language Models (\textbf{LLMs}), e.g. ChatGPT, have been widely adopted in real-world dialogue applications. However, LLMs' robustness, especially in handling long complex dialogue sessions, including frequent motivation transfer, sophisticated cross-turn dependency, is criticized all along. Nevertheless, no existing benchmarks can fully reflect these weaknesses. We present \textbf{MARS-Bench}, a \textbf{M}ulti-turn \textbf{A}thletic \textbf{R}eal-world \textbf{S}cenario Dialogue \textbf{Bench}mark, designed to remedy the gap. MARS-Bench is constructed from play-by-play text commentary so to feature realistic dialogues specifically designed to evaluate three critical aspects of multi-turn conversations: Ultra Multi-turn, Interactive Multi-turn, and Cross-turn Tasks. Extensive experiments on MARS-Bench also reveal that closed-source LLMs significantly outperform open-source alternatives, explicit reasoning significantly boosts LLMs' robustness on handling long complex dialogue sessions, and LLMs indeed face significant challenges when handling motivation transfer and sophisticated cross-turn dependency. Moreover, we provide mechanistic interpretability on how attention sinks due to special tokens lead to LLMs' performance degradation when handling long complex dialogue sessions based on attention visualization experiment in Qwen2.5-7B-Instruction.
comment: 29 pages, 13 figures, Accepted as EMNLP2025 Findings
Machine Learning
☆ Dynamic Relational Priming Improves Transformer in Multivariate Time Series
Standard attention mechanisms in transformers employ static token representations that remain unchanged across all pair-wise computations in each layer. This limits their representational alignment with the potentially diverse relational dynamics of each token-pair interaction. While they excel in domains with relatively homogeneous relationships, standard attention's static relational learning struggles to capture the diverse, heterogeneous inter-channel dependencies of multivariate time series (MTS) data--where different channel-pair interactions within a single system may be governed by entirely different physical laws or temporal dynamics. To better align the attention mechanism for such domain phenomena, we propose attention with dynamic relational priming (prime attention). Unlike standard attention where each token presents an identical representation across all of its pair-wise interactions, prime attention tailors each token dynamically (or per interaction) through learnable modulations to best capture the unique relational dynamics of each token pair, optimizing each pair-wise interaction for that specific relationship. This representational plasticity of prime attention enables effective extraction of relationship-specific information in MTS while maintaining the same asymptotic computational complexity as standard attention. Our results demonstrate that prime attention consistently outperforms standard attention across benchmarks, achieving up to 6.5\% improvement in forecasting accuracy. In addition, we find that prime attention achieves comparable or superior performance using up to 40\% less sequence length compared to standard attention, further demonstrating its superior relational modeling capabilities.
☆ Event2Vec: A Geometric Approach to Learning Composable Representations of Event Sequences
The study of neural representations, both in biological and artificial systems, is increasingly revealing the importance of geometric and topological structures. Inspired by this, we introduce Event2Vec, a novel framework for learning representations of discrete event sequences. Our model leverages a simple, additive recurrent structure to learn composable, interpretable embeddings. We provide a theoretical analysis demonstrating that, under specific training objectives, our model's learned representations in a Euclidean space converge to an ideal additive structure. This ensures that the representation of a sequence is the vector sum of its constituent events, a property we term the linear additive hypothesis. To address the limitations of Euclidean geometry for hierarchical data, we also introduce a variant of our model in hyperbolic space, which is naturally suited to embedding tree-like structures with low distortion. We present experiments to validate our hypothesis and demonstrate the benefits of each geometry, highlighting the improved performance of the hyperbolic model on hierarchical event sequences.
comment: 10 pages, 3 figures, Symmetry and Geometry in Neural Representations Workshop at NeuralIPS (Neurreps) 2025
☆ HoloGarment: 360° Novel View Synthesis of In-the-Wild Garments
Novel view synthesis (NVS) of in-the-wild garments is a challenging task due significant occlusions, complex human poses, and cloth deformations. Prior methods rely on synthetic 3D training data consisting of mostly unoccluded and static objects, leading to poor generalization on real-world clothing. In this paper, we propose HoloGarment (Hologram-Garment), a method that takes 1-3 images or a continuous video of a person wearing a garment and generates 360{\deg} novel views of the garment in a canonical pose. Our key insight is to bridge the domain gap between real and synthetic data with a novel implicit training paradigm leveraging a combination of large-scale real video data and small-scale synthetic 3D data to optimize a shared garment embedding space. During inference, the shared embedding space further enables dynamic video-to-360{\deg} NVS through the construction of a garment "atlas" representation by finetuning a garment embedding on a specific real-world video. The atlas captures garment-specific geometry and texture across all viewpoints, independent of body pose or motion. Extensive experiments show that HoloGarment achieves state-of-the-art performance on NVS of in-the-wild garments from images and videos. Notably, our method robustly handles challenging real-world artifacts -- such as wrinkling, pose variation, and occlusion -- while maintaining photorealism, view consistency, fine texture details, and accurate geometry. Visit our project page for additional results: https://johannakarras.github.io/HoloGarment
☆ The Morgan-Pitman Test of Equality of Variances and its Application to Machine Learning Model Evaluation and Selection
Model selection in non-linear models often prioritizes performance metrics over statistical tests, limiting the ability to account for sampling variability. We propose the use of a statistical test to assess the equality of variances in forecasting errors. The test builds upon the classic Morgan-Pitman approach, incorporating enhancements to ensure robustness against data with heavy-tailed distributions or outliers with high variance, plus a strategy to make residuals from machine learning models statistically independent. Through a series of simulations and real-world data applications, we demonstrate the test's effectiveness and practical utility, offering a reliable tool for model evaluation and selection in diverse contexts.
comment: 29 pages, 4 figures
☆ All that structure matches does not glitter
Generative models for materials, especially inorganic crystals, hold potential to transform the theoretical prediction of novel compounds and structures. Advancement in this field depends critically on robust benchmarks and minimal, information-rich datasets that enable meaningful model evaluation. This paper critically examines common datasets and reported metrics for a crystal structure prediction task$\unicode{x2014}$generating the most likely structures given the chemical composition of a material. We focus on three key issues: First, materials datasets should contain unique crystal structures; for example, we show that the widely-utilized carbon-24 dataset only contains $\approx$40% unique structures. Second, materials datasets should not be split randomly if polymorphs of many different compositions are numerous, which we find to be the case for the perov-5 dataset. Third, benchmarks can mislead if used uncritically, e.g., reporting a match rate metric without considering the structural variety exhibited by identical building blocks. To address these oft-overlooked issues, we introduce several fixes. We provide revised versions of the carbon-24 dataset: one with duplicates removed, one deduplicated and split by number of atoms $N$, and two containing only identical structures but with different unit cells. We also propose a new split for the perov-5 dataset which ensures polymorphs are grouped within each split subset, setting a more sensible standard for benchmarking model performance. Finally, we present METRe and cRMSE, new model evaluation metrics that can correct existing issues with the match rate metric.
☆ From Autoencoders to CycleGAN: Robust Unpaired Face Manipulation via Adversarial Learning
Human face synthesis and manipulation are increasingly important in entertainment and AI, with a growing demand for highly realistic, identity-preserving images even when only unpaired, unaligned datasets are available. We study unpaired face manipulation via adversarial learning, moving from autoencoder baselines to a robust, guided CycleGAN framework. While autoencoders capture coarse identity, they often miss fine details. Our approach integrates spectral normalization for stable training, identity- and perceptual-guided losses to preserve subject identity and high-level structure, and landmark-weighted cycle constraints to maintain facial geometry across pose and illumination changes. Experiments show that our adversarial trained CycleGAN improves realism (FID), perceptual quality (LPIPS), and identity preservation (ID-Sim) over autoencoders, with competitive cycle-reconstruction SSIM and practical inference times, which achieved high quality without paired datasets and approaching pix2pix on curated paired subsets. These results demonstrate that guided, spectrally normalized CycleGANs provide a practical path from autoencoders to robust unpaired face manipulation.
comment: 8 pages, 7 figures
☆ MMM: Clustering Multivariate Longitudinal Mixed-type Data
Multivariate longitudinal data of mixed-type are increasingly collected in many science domains. However, algorithms to cluster this kind of data remain scarce, due to the challenge to simultaneously model the within- and between-time dependence structures for multivariate data of mixed kind. We introduce the Mixture of Mixed-Matrices (MMM) model: reorganizing the data in a three-way structure and assuming that the non-continuous variables are observations of underlying latent continuous variables, the model relies on a mixture of matrix-variate normal distributions to perform clustering in the latent dimension. The MMM model is thus able to handle continuous, ordinal, binary, nominal and count data and to concurrently model the heterogeneity, the association among the responses and the temporal dependence structure in a parsimonious way and without assuming conditional independence. The inference is carried out through an MCMC-EM algorithm, which is detailed. An evaluation of the model through synthetic data shows its inference abilities. A real-world application on financial data is presented.
☆ Learning Neural Networks by Neuron Pursuit
The first part of this paper studies the evolution of gradient flow for homogeneous neural networks near a class of saddle points exhibiting a sparsity structure. The choice of these saddle points is motivated from previous works on homogeneous networks, which identified the first saddle point encountered by gradient flow after escaping the origin. It is shown here that, when initialized sufficiently close to such saddle points, gradient flow remains near the saddle point for a sufficiently long time, during which the set of weights with small norm remain small but converge in direction. Furthermore, important empirical observations are made on the behavior of gradient descent after escaping these saddle points. The second part of the paper, motivated by these results, introduces a greedy algorithm to train deep neural networks called Neuron Pursuit (NP). It is an iterative procedure which alternates between expanding the network by adding neuron(s) with carefully chosen weights, and minimizing the training loss using this augmented network. The efficacy of the proposed algorithm is validated using numerical experiments.
☆ Learning Contact Dynamics for Control with Action-conditioned Face Interaction Graph Networks
We present a learnable physics simulator that provides accurate motion and force-torque prediction of robot end effectors in contact-rich manipulation. The proposed model extends the state-of-the-art GNN-based simulator (FIGNet) with novel node and edge types, enabling action-conditional predictions for control and state estimation tasks. In simulation, the MPC agent using our model matches the performance of the same controller with the ground truth dynamics model in a challenging peg-in-hole task, while in the real-world experiment, our model achieves a 50% improvement in motion prediction accuracy and 3$\times$ increase in force-torque prediction precision over the baseline physics simulator. Source code and data are publicly available.
☆ Do machine learning climate models work in changing climate dynamics?
Climate change is accelerating the frequency and severity of unprecedented events, deviating from established patterns. Predicting these out-of-distribution (OOD) events is critical for assessing risks and guiding climate adaptation. While machine learning (ML) models have shown promise in providing precise, high-speed climate predictions, their ability to generalize under distribution shifts remains a significant limitation that has been underexplored in climate contexts. This research systematically evaluates state-of-the-art ML-based climate models in diverse OOD scenarios by adapting established OOD evaluation methodologies to climate data. Experiments on large-scale datasets reveal notable performance variability across scenarios, shedding light on the strengths and limitations of current models. These findings underscore the importance of robust evaluation frameworks and provide actionable insights to guide the reliable application of ML for climate risk forecasting.
comment: 8 pages, 2 figures
☆ $K$-Level Policy Gradients for Multi-Agent Reinforcement Learning
Actor-critic algorithms for deep multi-agent reinforcement learning (MARL) typically employ a policy update that responds to the current strategies of other agents. While being straightforward, this approach does not account for the updates of other agents at the same update step, resulting in miscoordination. In this paper, we introduce the $K$-Level Policy Gradient (KPG), a method that recursively updates each agent against the updated policies of other agents, speeding up the discovery of effective coordinated policies. We theoretically prove that KPG with finite iterates achieves monotonic convergence to a local Nash equilibrium under certain conditions. We provide principled implementations of KPG by applying it to the deep MARL algorithms MAPPO, MADDPG, and FACMAC. Empirically, we demonstrate superior performance over existing deep MARL algorithms in StarCraft II and multi-agent MuJoCo.
☆ When marine radar target detection meets pretrained large language models
Deep learning (DL) methods are widely used to extract high-dimensional patterns from the sequence features of radar echo signals. However, conventional DL algorithms face challenges such as redundant feature segments, and constraints from restricted model sizes. To address these issues, we propose a framework that integrates feature preprocessing with large language models (LLMs). Our preprocessing module tokenizes radar sequence features, applies a patch selection algorithm to filter out uninformative segments, and projects the selected patches into embeddings compatible with the feature space of pre-trained LLMs. Leveraging these refined embeddings, we incorporate a pre-trained LLM, fine-tuning only the normalization layers to reduce training burdens while enhancing performance. Experiments on measured datasets demonstrate that the proposed method significantly outperforms the state-of-the-art baselines on supervised learning tests.
☆ Draw a Portrait of Your Graph Data: An Instance-Level Profiling Framework for Graph-Structured Data
Graph machine learning models often achieve similar overall performance yet behave differently at the node level, failing on different subsets of nodes with varying reliability. Standard evaluation metrics such as accuracy obscure these fine grained differences, making it difficult to diagnose when and where models fail. We introduce NodePro, a node profiling framework that enables fine-grained diagnosis of model behavior by assigning interpretable profile scores to individual nodes. These scores combine data-centric signals, such as feature dissimilarity, label uncertainty, and structural ambiguity, with model-centric measures of prediction confidence and consistency during training. By aligning model behavior with these profiles, NodePro reveals systematic differences between models, even when aggregate metrics are indistinguishable. We show that node profiles generalize to unseen nodes, supporting prediction reliability without ground-truth labels. Finally, we demonstrate the utility of NodePro in identifying semantically inconsistent or corrupted nodes in a structured knowledge graph, illustrating its effectiveness in real-world settings.
☆ Deceptive Risk Minimization: Out-of-Distribution Generalization by Deceiving Distribution Shift Detectors
This paper proposes deception as a mechanism for out-of-distribution (OOD) generalization: by learning data representations that make training data appear independent and identically distributed (iid) to an observer, we can identify stable features that eliminate spurious correlations and generalize to unseen domains. We refer to this principle as deceptive risk minimization (DRM) and instantiate it with a practical differentiable objective that simultaneously learns features that eliminate distribution shifts from the perspective of a detector based on conformal martingales while minimizing a task-specific loss. In contrast to domain adaptation or prior invariant representation learning methods, DRM does not require access to test data or a partitioning of training data into a finite number of data-generating domains. We demonstrate the efficacy of DRM on numerical experiments with concept shift and a simulated imitation learning setting with covariate shift in environments that a robot is deployed in.
☆ A Time-Series Foundation Model by Universal Delay Embedding
This study introduces Universal Delay Embedding (UDE), a pretrained foundation model designed to revolutionize time-series forecasting through principled integration of delay embedding representation and Koopman operator prediction. Leveraging Takens' embedding theorem, UDE as a dynamical representation of observed data constructs two-dimensional subspace patches from Hankel matrices, theoretically preserving dynamical and topological properties of underlying dynamical systems. Such patches are viewed as images, which can be efficiently processed by exploiting advanced deep learning technologies. Computationally, these patches further serve as tokens for learning a self-attention encoder, thus enabling accurate prediction of nonlinear time-series by a finite-dimensional Koopman operator in a linear manner in a latent space. Extensive evaluations across various benchmarks and real-world climate datasets demonstrate over 20% average reduction in mean squared error versus state-of-the-art foundation models, alongside superior generalization in fine-tuning scenarios. In particular, the learned dynamical representations and Koopman operator prediction forms from the patches exhibit exceptional interpretability, with consistent identification of topologically informative subspaces and robust encoding of domain-invariant dynamics, establishing UDE as a scalable, interpretable framework for universal time-series modeling and forecasting with broad scientific and industrial applicability.
☆ Early Detection of Branched Broomrape (Phelipanche ramosa) Infestation in Tomato Crops Using Leaf Spectral Analysis and Machine Learning
Branched broomrape (Phelipanche ramosa) is a chlorophyll-deficient parasitic weed that threatens tomato production by extracting nutrients from the host. We investigate early detection using leaf-level spectral reflectance (400-2500 nm) and ensemble machine learning. In a field experiment in Woodland, California, we tracked 300 tomato plants across growth stages defined by growing degree days (GDD). Leaf reflectance was acquired with a portable spectrometer and preprocessed (band denoising, 1 nm interpolation, Savitzky-Golay smoothing, correlation-based band reduction). Clear class differences were observed near 1500 nm and 2000 nm water absorption features, consistent with reduced leaf water content in infected plants at early stages. An ensemble combining Random Forest, XGBoost, SVM with RBF kernel, and Naive Bayes achieved 89% accuracy at 585 GDD, with recalls of 0.86 (infected) and 0.93 (noninfected). Accuracy declined at later stages (e.g., 69% at 1568 GDD), likely due to senescence and weed interference. Despite the small number of infected plants and environmental confounders, results show that proximal sensing with ensemble learning enables timely detection of broomrape before canopy symptoms are visible, supporting targeted interventions and reduced yield losses.
comment: Author-accepted version. Accepted and presented at AGRICONTROL 2025 (8th IFAC Conference on Sensing, Control and Automation Technologies for Agriculture), UC Davis, USA. To appear in IFAC-PapersOnLine (Elsevier)
☆ Foundational theory for optimal decision tree problems. II. Optimal hypersurface decision tree algorithm
Decision trees are a ubiquitous model for classification and regression tasks due to their interpretability and efficiency. However, solving the optimal decision tree (ODT) problem remains a challenging combinatorial optimization task. Even for the simplest splitting rules--axis-parallel hyperplanes--it is NP-hard to optimize. In Part I of this series, we rigorously defined the proper decision tree model through four axioms and, based on these, introduced four formal definitions of the ODT problem. From these definitions, we derived four generic algorithms capable of solving ODT problems for arbitrary decision trees satisfying the axioms. We also analyzed the combinatorial geometric properties of hypersurfaces, showing that decision trees defined by polynomial hypersurface splitting rules satisfy the proper axioms that we proposed. In this second paper (Part II) of this two-part series, building on the algorithmic and geometric foundations established in Part I, we introduce the first hypersurface decision tree (HODT) algorithm. To the best of our knowledge, existing optimal decision tree methods are, to date, limited to hyperplane splitting rules--a special case of hypersurfaces--and rely on general-purpose solvers. In contrast, our HODT algorithm addresses the general hypersurface decision tree model without requiring external solvers. Using synthetic datasets generated from ground-truth hyperplane decision trees, we vary tree size, data size, dimensionality, and label and feature noise. Results showing that our algorithm recovers the ground truth more accurately than axis-parallel trees and exhibits greater robustness to noise. We also analyzed generalization performance across 30 real-world datasets, showing that HODT can achieve up to 30% higher accuracy than the state-of-the-art optimal axis-parallel decision tree algorithm when tree complexity is properly controlled.
☆ LEGO: Spatial Accelerator Generation and Optimization for Tensor Applications HPCA 2025
Modern tensor applications, especially foundation models and generative AI applications require multiple input modalities (both vision and language), which increases the demand for flexible accelerator architecture. Existing frameworks suffer from the trade-off between design flexibility and productivity of RTL generation: either limited to very few hand-written templates or cannot automatically generate the RTL. To address this challenge, we propose the LEGO framework, which targets tensor applications and automatically generates spatial architecture design and outputs synthesizable RTL code without handwritten RTL design templates. Leveraging the affine-transformation-based architecture representation, LEGO front end finds interconnections between function units, synthesizes the memory system, and fuses different spatial dataflow designs based on data reuse analysis. LEGO back end then translates the hardware in a primitive-level graph to perform lower-level optimizations, and applies a set of linear-programming algorithms to optimally insert pipeline registers and reduce the overhead of unused logic when switching spatial dataflows. Our evaluation demonstrates that LEGO can achieve 3.2x speedup and 2.4x energy efficiency compared to previous work Gemmini, and can generate one architecture for diverse modern foundation models in generative AI applications.
comment: The first two authors have equal contributions; Published as a conference paper in HPCA 2025; 13 pages, 14 figures
☆ Hi-DARTS: Hierarchical Dynamically Adapting Reinforcement Trading System
Conventional autonomous trading systems struggle to balance computational efficiency and market responsiveness due to their fixed operating frequency. We propose Hi-DARTS, a hierarchical multi-agent reinforcement learning framework that addresses this trade-off. Hi-DARTS utilizes a meta-agent to analyze market volatility and dynamically activate specialized Time Frame Agents for high-frequency or low-frequency trading as needed. During back-testing on AAPL stock from January 2024 to May 2025, Hi-DARTS yielded a cumulative return of 25.17% with a Sharpe Ratio of 0.75. This performance surpasses standard benchmarks, including a passive buy-and-hold strategy on AAPL (12.19% return) and the S&P 500 ETF (SPY) (20.01% return). Our work demonstrates that dynamic, hierarchical agents can achieve superior risk-adjusted returns while maintaining high computational efficiency.
comment: Accepted paper at International Conference on ICT Convergence 2025
☆ Travel Time and Weather-Aware Traffic Forecasting in a Conformal Graph Neural Network Framework
Traffic flow forecasting is essential for managing congestion, improving safety, and optimizing various transportation systems. However, it remains a prevailing challenge due to the stochastic nature of urban traffic and environmental factors. Better predictions require models capable of accommodating the traffic variability influenced by multiple dynamic and complex interdependent factors. In this work, we propose a Graph Neural Network (GNN) framework to address the stochasticity by leveraging adaptive adjacency matrices using log-normal distributions and Coefficient of Variation (CV) values to reflect real-world travel time variability. Additionally, weather factors such as temperature, wind speed, and precipitation adjust edge weights and enable GNN to capture evolving spatio-temporal dependencies across traffic stations. This enhancement over the static adjacency matrix allows the model to adapt effectively to traffic stochasticity and changing environmental conditions. Furthermore, we utilize the Adaptive Conformal Prediction (ACP) framework to provide reliable uncertainty quantification, achieving target coverage while maintaining acceptable prediction intervals. Experimental results demonstrate that the proposed model, in comparison with baseline methods, showed better prediction accuracy and uncertainty bounds. We, then, validate this method by constructing traffic scenarios in SUMO and applying Monte-Carlo simulation to derive a travel time distribution for a Vehicle Under Test (VUT) to reflect real-world variability. The simulated mean travel time of the VUT falls within the intervals defined by INRIX historical data, verifying the model's robustness.
comment: This manuscript has been accepted as a REGULAR PAPER in the Transactions on Intelligent Transportation Systems 2025
☆ Imitation Learning as Return Distribution Matching
We study the problem of training a risk-sensitive reinforcement learning (RL) agent through imitation learning (IL). Unlike standard IL, our goal is not only to train an agent that matches the expert's expected return (i.e., its average performance) but also its risk attitude (i.e., other features of the return distribution, such as variance). We propose a general formulation of the risk-sensitive IL problem in which the objective is to match the expert's return distribution in Wasserstein distance. We focus on the tabular setting and assume the expert's reward is known. After demonstrating the limited expressivity of Markovian policies for this task, we introduce an efficient and sufficiently expressive subclass of non-Markovian policies tailored to it. Building on this subclass, we develop two provably efficient algorithms, RS-BC and RS-KT, for solving the problem when the transition model is unknown and known, respectively. We show that RS-KT achieves substantially lower sample complexity than RS-BC by exploiting dynamics information. We further demonstrate the sample efficiency of return distribution matching in the setting where the expert's reward is unknown by designing an oracle-based variant of RS-KT. Finally, we complement our theoretical analysis of RS-KT and RS-BC with numerical simulations, highlighting both their sample efficiency and the advantages of non-Markovian policies over standard sample-efficient IL algorithms.
☆ Learning non-Markovian Dynamical Systems with Signature-based Encoders ECAI 2025
Neural ordinary differential equations offer an effective framework for modeling dynamical systems by learning a continuous-time vector field. However, they rely on the Markovian assumption - that future states depend only on the current state - which is often untrue in real-world scenarios where the dynamics may depend on the history of past states. This limitation becomes especially evident in settings involving the continuous control of complex systems with delays and memory effects. To capture historical dependencies, existing approaches often rely on recurrent neural network (RNN)-based encoders, which are inherently discrete and struggle with continuous modeling. In addition, they may exhibit poor training behavior. In this work, we investigate the use of the signature transform as an encoder for learning non-Markovian dynamics in a continuous-time setting. The signature transform offers a continuous-time alternative with strong theoretical foundations and proven efficiency in summarizing multidimensional information in time. We integrate a signature-based encoding scheme into encoder-decoder dynamics models and demonstrate that it outperforms RNN-based alternatives in test performance on synthetic benchmarks.
comment: Accepted at [ML-DE] Machine Learning Meets Differential Equations 2025 (ECAI 2025). To appear in Proceedings of Machine Learning Research (PMLR)
☆ AMQ: Enabling AutoML for Mixed-precision Weight-Only Quantization of Large Language Models EMNLP 2025
To enable broader deployment of Large Language Models (LLMs), it is essential to identify the best-performing model under strict memory constraints. We present AMQ, Automated Mixed-Precision Weight-Only Quantization, a framework that assigns layer-wise quantization bit-widths to optimally balance model quality and memory usage. However, the combinatorial search space, with over 10^{100} possible configurations, makes conventional black-box optimization infeasible. AMQ overcomes this challenge through four key innovations:(1) search space pruning using prior knowledge to exclude unpromising configurations, (2) quantization proxy to bypass costly format conversions during search, (3) quality predictor to minimize evaluation overhead, and (4) iterative search-and-update strategy for fast and stable convergence. By integrating these components, AMQ efficiently explores the quality-efficiency landscape, reaching the Pareto frontier and yielding LLMs that are both compact and high-performing. Our code is available at https://github.com/dlwns147/amq.
comment: EMNLP 2025 Main Conference, Long Paper (Oral)
☆ Generalizing Behavior via Inverse Reinforcement Learning with Closed-Form Reward Centroids
We study the problem of generalizing an expert agent's behavior, provided through demonstrations, to new environments and/or additional constraints. Inverse Reinforcement Learning (IRL) offers a promising solution by seeking to recover the expert's underlying reward function, which, if used for planning in the new settings, would reproduce the desired behavior. However, IRL is inherently ill-posed: multiple reward functions, forming the so-called feasible set, can explain the same observed behavior. Since these rewards may induce different policies in the new setting, in the absence of additional information, a decision criterion is needed to select which policy to deploy. In this paper, we propose a novel, principled criterion that selects the "average" policy among those induced by the rewards in a certain bounded subset of the feasible set. Remarkably, we show that this policy can be obtained by planning with the reward centroid of that subset, for which we derive a closed-form expression. We then present a provably efficient algorithm for estimating this centroid using an offline dataset of expert demonstrations only. Finally, we conduct numerical simulations that illustrate the relationship between the expert's behavior and the behavior produced by our method.
☆ Improving Out-of-Domain Audio Deepfake Detection via Layer Selection and Fusion of SSL-Based Countermeasures
Audio deepfake detection systems based on frozen pre-trained self-supervised learning (SSL) encoders show a high level of performance when combined with layer-weighted pooling methods, such as multi-head factorized attentive pooling (MHFA). However, they still struggle to generalize to out-of-domain (OOD) conditions. We tackle this problem by studying the behavior of six different pre-trained SSLs, on four different test corpora. We perform a layer-by-layer analysis to determine which layers contribute most. Next, we study the pooling head, comparing a strategy based on a single layer with automatic selection via MHFA. We observed that selecting the best layer gave very good results, while reducing system parameters by up to 80%. A wide variation in performance as a function of test corpus and SSL model is also observed, showing that the pre-training strategy of the encoder plays a role. Finally, score-level fusion of several encoders improved generalization to OOD attacks.
☆ Query-Focused Extractive Summarization for Sentiment Explanation
Constructive analysis of feedback from clients often requires determining the cause of their sentiment from a substantial amount of text documents. To assist and improve the productivity of such endeavors, we leverage the task of Query-Focused Summarization (QFS). Models of this task are often impeded by the linguistic dissonance between the query and the source documents. We propose and substantiate a multi-bias framework to help bridge this gap at a domain-agnostic, generic level; we then formulate specialized approaches for the problem of sentiment explanation through sentiment-based biases and query expansion. We achieve experimental results outperforming baseline models on a real-world proprietary sentiment-aware QFS dataset.
☆ Learning from Uncertain Similarity and Unlabeled Data
Existing similarity-based weakly supervised learning approaches often rely on precise similarity annotations between data pairs, which may inadvertently expose sensitive label information and raise privacy risks. To mitigate this issue, we propose Uncertain Similarity and Unlabeled Learning (USimUL), a novel framework where each similarity pair is embedded with an uncertainty component to reduce label leakage. In this paper, we propose an unbiased risk estimator that learns from uncertain similarity and unlabeled data. Additionally, we theoretically prove that the estimator achieves statistically optimal parametric convergence rates. Extensive experiments on both benchmark and real-world datasets show that our method achieves superior classification performance compared to conventional similarity-based approaches.
☆ Low-rank Orthogonalization for Large-scale Matrix Optimization with Applications to Foundation Model Training
Neural network (NN) training is inherently a large-scale matrix optimization problem, yet the matrix structure of NN parameters has long been overlooked. Recently, the optimizer Muon \cite{jordanmuon}, which explicitly exploits this structure, has gained significant attention for its strong performance in foundation model training. A key component contributing to Muon's success is matrix orthogonalization. In this paper, we propose {\it low-rank orthogonalization}, which explicitly leverages the low-rank nature of gradients during NN training. Building on this, we propose low-rank matrix-signed gradient descent and a low-rank variant of Muon. Our numerical experiments demonstrate the superior performance of low-rank orthogonalization, with the low-rank Muon achieving promising results in GPT-2 and LLaMA pretraining -- surpassing the performance of the carefully tuned vanilla Muon. Theoretically, we establish the iteration complexity of the low-rank matrix-signed gradient descent for finding an approximate stationary solution, as well as that of low-rank Muon for finding an approximate stochastic stationary solution under heavy-tailed noise.
comment: 27 pages
☆ Examining the Relationship between Scientific Publishing Activity and Hype-Driven Financial Bubbles: A Comparison of the Dot-Com and AI Eras
Financial bubbles often arrive without much warning, but create long-lasting economic effects. For example, during the dot-com bubble, innovative technologies created market disruptions through excitement for a promised bright future. Such technologies originated from research where scientists had developed them for years prior to their entry into the markets. That raises a question on the possibility of analyzing scientific publishing data (e.g. citation networks) leading up to a bubble for signals that may forecast the rise and fall of similar future bubbles. To that end, we utilized temporal SNAs to detect possible relationships between the publication citation networks of scientists and financial market data during two modern eras of rapidly shifting technology: 1) dot-com era from 1994 to 2001 and 2) AI era from 2017 to 2024. Results showed that the patterns from the dot-com era (which did end in a bubble) did not definitively predict the rise and fall of an AI bubble. While yearly citation networks reflected possible changes in publishing behavior of scientists between the two eras, there was a subset of AI era scientists whose publication influence patterns mirrored those during the dot-com era. Upon further analysis using multiple analysis techniques (LSTM, KNN, AR X/GARCH), the data seems to suggest two possibilities for the AI era: unprecedented form of financial bubble unseen or that no bubble exists. In conclusion, our findings imply that the patterns present in the dot-com era do not effectively translate in such a manner to apply them to the AI market.
☆ MillStone: How Open-Minded Are LLMs?
Large language models equipped with Web search, information retrieval tools, and other agentic capabilities are beginning to supplant traditional search engines. As users start to rely on LLMs for information on many topics, including controversial and debatable issues, it is important to understand how the stances and opinions expressed in LLM outputs are influenced by the documents they use as their information sources. In this paper, we present MillStone, the first benchmark that aims to systematically measure the effect of external arguments on the stances that LLMs take on controversial issues (not all of them political). We apply MillStone to nine leading LLMs and measure how ``open-minded'' they are to arguments supporting opposite sides of these issues, whether different LLMs agree with each other, which arguments LLMs find most persuasive, and whether these arguments are the same for different LLMs. In general, we find that LLMs are open-minded on most issues. An authoritative source of information can easily sway an LLM's stance, highlighting the importance of source selection and the risk that LLM-based information retrieval and search systems can be manipulated.
comment: 19 pages, 7 tables, 7 figures
☆ Deep operator network for surrogate modeling of poroelasticity with random permeability fields
Poroelasticity -- coupled fluid flow and elastic deformation in porous media -- often involves spatially variable permeability, especially in subsurface systems. In such cases, simulations with random permeability fields are widely used for probabilistic analysis, uncertainty quantification, and inverse problems. These simulations require repeated forward solves that are often prohibitively expensive, motivating the development of efficient surrogate models. However, efficient surrogate modeling techniques for poroelasticity with random permeability fields remain scarce. In this study, we propose a surrogate modeling framework based on the deep operator network (DeepONet), a neural architecture designed to learn mappings between infinite-dimensional function spaces. The proposed surrogate model approximates the solution operator that maps random permeability fields to transient poroelastic responses. To enhance predictive accuracy and stability, we integrate three strategies: nondimensionalization of the governing equations, input dimensionality reduction via Karhunen--Lo\'eve expansion, and a two-step training procedure that decouples the optimization of branch and trunk networks. The methodology is evaluated on two benchmark problems in poroelasticity: soil consolidation and ground subsidence induced by groundwater extraction. In both cases, the DeepONet achieves substantial speedup in inference while maintaining high predictive accuracy across a wide range of permeability statistics. These results highlight the potential of the proposed approach as a scalable and efficient surrogate modeling technique for poroelastic systems with random permeability fields.
☆ Identifiable Autoregressive Variational Autoencoders for Nonlinear and Nonstationary Spatio-Temporal Blind Source Separation
The modeling and prediction of multivariate spatio-temporal data involve numerous challenges. Dimension reduction methods can significantly simplify this process, provided that they account for the complex dependencies between variables and across time and space. Nonlinear blind source separation has emerged as a promising approach, particularly following recent advances in identifiability results. Building on these developments, we introduce the identifiable autoregressive variational autoencoder, which ensures the identifiability of latent components consisting of nonstationary autoregressive processes. The blind source separation efficacy of the proposed method is showcased through a simulation study, where it is compared against state-of-the-art methods, and the spatio-temporal prediction performance is evaluated against several competitors on air pollution and weather datasets.
☆ TabStruct: Measuring Structural Fidelity of Tabular Data
Evaluating tabular generators remains a challenging problem, as the unique causal structural prior of heterogeneous tabular data does not lend itself to intuitive human inspection. Recent work has introduced structural fidelity as a tabular-specific evaluation dimension to assess whether synthetic data complies with the causal structures of real data. However, existing benchmarks often neglect the interplay between structural fidelity and conventional evaluation dimensions, thus failing to provide a holistic understanding of model performance. Moreover, they are typically limited to toy datasets, as quantifying existing structural fidelity metrics requires access to ground-truth causal structures, which are rarely available for real-world datasets. In this paper, we propose a novel evaluation framework that jointly considers structural fidelity and conventional evaluation dimensions. We introduce a new evaluation metric, $\textbf{global utility}$, which enables the assessment of structural fidelity even in the absence of ground-truth causal structures. In addition, we present $\textbf{TabStruct}$, a comprehensive evaluation benchmark offering large-scale quantitative analysis on 13 tabular generators from nine distinct categories, across 29 datasets. Our results demonstrate that global utility provides a task-independent, domain-agnostic lens for tabular generator performance. We release the TabStruct benchmark suite, including all datasets, evaluation pipelines, and raw results. Code is available at https://github.com/SilenceX12138/TabStruct.
comment: 55 pages, 60 tables, 7 figures
☆ Neuro-Symbolic Agents with Modal Logic for Autonomous Diagnostics
The development of intelligent agents, particularly those powered by language models (LMs), has shown the critical role in various environments that require intelligent and autonomous decision. Environments are not passive testing grounds and they represent the data required for agents to learn and exhibit very challenging conditions that require adaptive, complex and autonomous capacity to make decisions. While the paradigm of scaling models and datasets has led to remarkable emergent capabilities, we argue that scaling the structure, fidelity, and logical consistency of agent reasoning within these environments is a crucial, yet underexplored, dimension of AI research. This paper introduces a neuro-symbolic multi-agent architecture where the belief states of individual agents are formally represented as Kripke models. This foundational choice enables them to reason about known concepts of \emph{possibility} and \emph{necessity} using the formal language of modal logic. In this work, we use of immutable, domain-specific knowledge to make infere information, which is encoded as logical constraints essential for proper diagnosis. In the proposed model, we show constraints that actively guide the hypothesis generation of LMs, effectively preventing them from reaching physically or logically untenable conclusions. In a high-fidelity simulated particle accelerator environment, our system successfully diagnoses complex, cascading failures by combining the powerful semantic intuition of LMs with the rigorous, verifiable validation of modal logic and a factual world model and showcasing a viable path toward more robust, reliable, and verifiable autonomous agents.
comment: 10 pages, 1 figure, Scaling Environments for Agents (SEA) Workshop at NeuralIPS
☆ Quantum Noise Tomography with Physics-Informed Neural Networks NeurIPS
Characterizing the environmental interactions of quantum systems is a critical bottleneck in the development of robust quantum technologies. Traditional tomographic methods are often data-intensive and struggle with scalability. In this work, we introduce a novel framework for performing Lindblad tomography using Physics-Informed Neural Networks (PINNs). By embedding the Lindblad master equation directly into the neural network's loss function, our approach simultaneously learns the quantum state's evolution and infers the underlying dissipation parameters from sparse, time-series measurement data. Our results show that PINNs can reconstruct both the system dynamics and the functional form of unknown noise parameters, presenting a sample-efficient and scalable solution for quantum device characterization. Ultimately, our method produces a fully-differentiable digital twin of a noisy quantum system by learning its governing master equation.
comment: 6 pages, 3 figures, Machine Learning and the Physical Sciences Workshop at the 39th conference on Neural Information Processing Systems (NeurIPS)
☆ High Effort, Low Gain: Fundamental Limits of Active Learning for Linear Dynamical Systems
In this work, we consider the problem of identifying an unknown linear dynamical system given a finite hypothesis class. In particular, we analyze the effect of the excitation input on the sample complexity of identifying the true system with high probability. To this end, we present sample complexity lower bounds that capture the choice of the selected excitation input. The sample complexity lower bound gives rise to a system theoretic condition to determine the potential benefit of experiment design. Informed by the analysis of the sample complexity lower bound, we propose a persistent excitation (PE) condition tailored to the considered setting, which we then use to establish sample complexity upper bounds. Notably, the \acs{PE} condition is weaker than in the case of an infinite hypothesis class and allows analyzing different excitation inputs modularly. Crucially, the lower and upper bounds share the same dependency on key problem parameters. Finally, we leverage these insights to propose an active learning algorithm that sequentially excites the system optimally with respect to the current estimate, and provide sample complexity guarantees for the presented algorithm. Concluding simulations showcase the effectiveness of the proposed algorithm.
☆ Wavelet-SARIMA-Transformer: A Hybrid Model for Rainfall Forecasting
This study develops and evaluates a novel hybridWavelet SARIMA Transformer, WST framework to forecast using monthly rainfall across five meteorological subdivisions of Northeast India over the 1971 to 2023 period. The approach employs the Maximal Overlap Discrete Wavelet Transform, MODWT with four wavelet families such as, Haar, Daubechies, Symlet, Coiflet etc. to achieve shift invariant, multiresolution decomposition of the rainfall series. Linear and seasonal components are modeled using Seasonal ARIMA, SARIMA, while nonlinear components are modeled by a Transformer network, and forecasts are reconstructed via inverse MODWT. Comprehensive validation using an 80 is to 20 train test split and multiple performance indices such as, RMSE, MAE, SMAPE, Willmotts d, Skill Score, Percent Bias, Explained Variance, and Legates McCabes E1 demonstrates the superiority of the Haar-based hybrid model, WHST. Across all subdivisions, WHST consistently achieved lower forecast errors, stronger agreement with observed rainfall, and unbiased predictions compared with stand alone SARIMA, stand-alone Transformer, and two-stage wavelet hybrids. Residual adequacy was confirmed through the Ljung Box test, while Taylor diagrams provided an integrated assessment of correlation, variance fidelity, and RMSE, further reinforcing the robustness of the proposed approach. The results highlight the effectiveness of integrating multiresolution signal decomposition with complementary linear and deep learning models for hydroclimatic forecasting. Beyond rainfall, the proposed WST framework offers a scalable methodology for forecasting complex environmental time series, with direct implications for flood risk management, water resources planning, and climate adaptation strategies in data-sparse and climate-sensitive regions.
☆ Learning Representations in Video Game Agents with Supervised Contrastive Imitation Learning
This paper introduces a novel application of Supervised Contrastive Learning (SupCon) to Imitation Learning (IL), with a focus on learning more effective state representations for agents in video game environments. The goal is to obtain latent representations of the observations that capture better the action-relevant factors, thereby modeling better the cause-effect relationship from the observations that are mapped to the actions performed by the demonstrator, for example, the player jumps whenever an obstacle appears ahead. We propose an approach to integrate the SupCon loss with continuous output spaces, enabling SupCon to operate without constraints regarding the type of actions of the environment. Experiments on the 3D games Astro Bot and Returnal, and multiple 2D Atari games show improved representation quality, faster learning convergence, and better generalization compared to baseline models trained only with supervised action prediction loss functions.
☆ Bridging Vision Language Models and Symbolic Grounding for Video Question Answering
Video Question Answering (VQA) requires models to reason over spatial, temporal, and causal cues in videos. Recent vision language models (VLMs) achieve strong results but often rely on shallow correlations, leading to weak temporal grounding and limited interpretability. We study symbolic scene graphs (SGs) as intermediate grounding signals for VQA. SGs provide structured object-relation representations that complement VLMs holistic reasoning. We introduce SG-VLM, a modular framework that integrates frozen VLMs with scene graph grounding via prompting and visual localization. Across three benchmarks (NExT-QA, iVQA, ActivityNet-QA) and multiple VLMs (QwenVL, InternVL), SG-VLM improves causal and temporal reasoning and outperforms prior baselines, though gains over strong VLMs are limited. These findings highlight both the promise and current limitations of symbolic grounding, and offer guidance for future hybrid VLM-symbolic approaches in video understanding.
☆ Transparent and Fair Profiling in Employment Services: Evidence from Switzerland
Long-term unemployment (LTU) is a challenge for both jobseekers and public employment services. Statistical profiling tools are increasingly used to predict LTU risk. Some profiling tools are opaque, black-box machine learning models, which raise issues of transparency and fairness. This paper investigates whether interpretable models could serve as an alternative, using administrative data from Switzerland. Traditional statistical, interpretable, and black-box models are compared in terms of predictive performance, interpretability, and fairness. It is shown that explainable boosting machines, a recent interpretable model, perform nearly as well as the best black-box models. It is also shown how model sparsity, feature smoothing, and fairness mitigation can enhance transparency and fairness with only minor losses in performance. These findings suggest that interpretable profiling provides an accountable and trustworthy alternative to black-box models without compromising performance.
comment: 35 pages including appendix
☆ Data-Driven Analysis of Text-Conditioned AI-Generated Music: A Case Study with Suno and Udio
Online AI platforms for creating music from text prompts (AI music), such as Suno and Udio, are now being used by hundreds of thousands of users. Some AI music is appearing in advertising, and even charting, in multiple countries. How are these platforms being used? What subjects are inspiring their users? This article answers these questions for Suno and Udio using a large collection of songs generated by users of these platforms from May to October 2024. Using a combination of state-of-the-art text embedding models, dimensionality reduction and clustering methods, we analyze the prompts, tags and lyrics, and automatically annotate and display the processed data in interactive plots. Our results reveal prominent themes in lyrics, language preference, prompting strategies, as well as peculiar attempts at steering models through the use of metatags. To promote the musicological study of the developing cultural practice of AI-generated music we share our code and resources.
comment: Submitted for review to TISMIR Digital Musicology special issue
☆ FedDAF: Federated Domain Adaptation Using Model Functional Distance WACV 2026
Federated Domain Adaptation (FDA) is a federated learning (FL) approach that improves model performance at the target client by collaborating with source clients while preserving data privacy. FDA faces two primary challenges: domain shifts between source and target data and limited labeled data at the target. Most existing FDA methods focus on domain shifts, assuming ample target data, yet often neglect the combined challenges of both domain shifts and data scarcity. Moreover, approaches that address both challenges fail to prioritize sharing relevant information from source clients according to the target's objective. In this paper, we propose FedDAF, a novel approach addressing both challenges in FDA. FedDAF uses similarity-based aggregation of the global source model and target model by calculating model functional distance from their mean gradient fields computed on target data. This enables effective model aggregation based on the target objective, constructed using target data, even with limited data. While computing model functional distance between these two models, FedDAF computes the angle between their mean gradient fields and then normalizes with the Gompertz function. To construct the global source model, all the local source models are aggregated using simple average in the server. Experiments on real-world datasets demonstrate FedDAF's superiority over existing FL, PFL, and FDA methods in terms of achieving better test accuracy.
comment: 9 pages, 2 figures, 3 tables. Submitted to WACV 2026
☆ Collapse of Irrelevant Representations (CIR) Ensures Robust and Non-Disruptive LLM Unlearning
Current unlearning techniques and safety training consistently fail to remove dangerous knowledge from language models. We analyze the root causes and propose a highly selective technique which unlearns robustly and without disrupting general performance. We perform PCA on activations and module output gradients to identify subspaces containing common representations, and collapse them before calculating unlearning updates. This way we avoid unlearning general representations, and only target those specific to the unlearned facts. When unlearning WMDP dataset facts from Llama-3.1-8B, we drop post-attack accuracy 80x more than our best baseline (Circuit Breakers) on biohazardous facts and 30x more on cyberhazardous facts. Despite this, we disrupt general performance 30x less (only 0.1% WikiText loss increase), while requiring less than 3 GPU-seconds per fact.
☆ Visualization and Analysis of the Loss Landscape in Graph Neural Networks
Graph Neural Networks (GNNs) are powerful models for graph-structured data, with broad applications. However, the interplay between GNN parameter optimization, expressivity, and generalization remains poorly understood. We address this by introducing an efficient learnable dimensionality reduction method for visualizing GNN loss landscapes, and by analyzing the effects of over-smoothing, jumping knowledge, quantization, sparsification, and preconditioner on GNN optimization. Our learnable projection method surpasses the state-of-the-art PCA-based approach, enabling accurate reconstruction of high-dimensional parameters with lower memory usage. We further show that architecture, sparsification, and optimizer's preconditioning significantly impact the GNN optimization landscape and their training process and final prediction performance. These insights contribute to developing more efficient designs of GNN architectures and training strategies.
☆ Synthetic vs. Real Training Data for Visual Navigation
This paper investigates how the performance of visual navigation policies trained in simulation compares to policies trained with real-world data. Performance degradation of simulator-trained policies is often significant when they are evaluated in the real world. However, despite this well-known sim-to-real gap, we demonstrate that simulator-trained policies can match the performance of their real-world-trained counterparts. Central to our approach is a navigation policy architecture that bridges the sim-to-real appearance gap by leveraging pretrained visual representations and runs real-time on robot hardware. Evaluations on a wheeled mobile robot show that the proposed policy, when trained in simulation, outperforms its real-world-trained version by 31% and the prior state-of-the-art methods by 50% in navigation success rate. Policy generalization is verified by deploying the same model onboard a drone. Our results highlight the importance of diverse image encoder pretraining for sim-to-real generalization, and identify on-policy learning as a key advantage of simulated training over training with real data.
comment: Presented at CoRL 2025 workshop on "Making Sense of Data in Robotics"
☆ Watch Your Step: A Cost-Sensitive Framework for Accelerometer-Based Fall Detection in Real-World Streaming Scenarios
Real-time fall detection is crucial for enabling timely interventions and mitigating the severe health consequences of falls, particularly in older adults. However, existing methods often rely on simulated data or assumptions such as prior knowledge of fall events, limiting their real-world applicability. Practical deployment also requires efficient computation and robust evaluation metrics tailored to continuous monitoring. This paper presents a real-time fall detection framework for continuous monitoring without prior knowledge of fall events. Using over 60 hours of inertial measurement unit (IMU) data from the FARSEEING real-world falls dataset, we employ recent efficient classifiers to compute fall probabilities in streaming mode. To enhance robustness, we introduce a cost-sensitive learning strategy that tunes the decision threshold using a cost function reflecting the higher risk of missed falls compared to false alarms. Unlike many methods that achieve high recall only at the cost of precision, our framework achieved Recall of 1.00, Precision of 0.84, and an F1 score of 0.91 on FARSEEING, detecting all falls while keeping false alarms low, with average inference time below 5 ms per sample. These results demonstrate that cost-sensitive threshold tuning enhances the robustness of accelerometer-based fall detection. They also highlight the potential of our computationally efficient framework for deployment in real-time wearable sensor systems for continuous monitoring.
☆ Multimodal Regression for Enzyme Turnover Rates Prediction IJCAI 2025
The enzyme turnover rate is a fundamental parameter in enzyme kinetics, reflecting the catalytic efficiency of enzymes. However, enzyme turnover rates remain scarce across most organisms due to the high cost and complexity of experimental measurements. To address this gap, we propose a multimodal framework for predicting the enzyme turnover rate by integrating enzyme sequences, substrate structures, and environmental factors. Our model combines a pre-trained language model and a convolutional neural network to extract features from protein sequences, while a graph neural network captures informative representations from substrate molecules. An attention mechanism is incorporated to enhance interactions between enzyme and substrate representations. Furthermore, we leverage symbolic regression via Kolmogorov-Arnold Networks to explicitly learn mathematical formulas that govern the enzyme turnover rate, enabling interpretable and accurate predictions. Extensive experiments demonstrate that our framework outperforms both traditional and state-of-the-art deep learning approaches. This work provides a robust tool for studying enzyme kinetics and holds promise for applications in enzyme engineering, biotechnology, and industrial biocatalysis.
comment: 9 pages, 5 figures. This paper was withdrawn from the IJCAI 2025 proceedings due to the lack of participation in the conference and presentation
☆ User eXperience Perception Insights Dataset (UXPID): Synthetic User Feedback from Public Industrial Forums
Customer feedback in industrial forums reflect a rich but underexplored source of insight into real-world product experience. These publicly shared discussions offer an organic view of user expectations, frustrations, and success stories shaped by the specific contexts of use. Yet, harnessing this information for systematic analysis remains challenging due to the unstructured and domain-specific nature of the content. The lack of structure and specialized vocabulary makes it difficult for traditional data analysis techniques to accurately interpret, categorize, and quantify the feedback, thereby limiting its potential to inform product development and support strategies. To address these challenges, this paper presents the User eXperience Perception Insights Dataset (UXPID), a collection of 7130 artificially synthesized and anonymized user feedback branches extracted from a public industrial automation forum. Each JavaScript object notation (JSON) record contains multi-post comments related to specific hardware and software products, enriched with metadata and contextual conversation data. Leveraging a large language model (LLM), each branch is systematically analyzed and annotated for UX insights, user expectations, severity and sentiment ratings, and topic classifications. The UXPID dataset is designed to facilitate research in user requirements, user experience (UX) analysis, and AI-driven feedback processing, particularly where privacy and licensing restrictions limit access to real-world data. UXPID supports the training and evaluation of transformer-based models for tasks such as issue detection, sentiment analysis, and requirements extraction in the context of technical forums.
☆ Stabilizing PINNs: A regularization scheme for PINN training to avoid unstable fixed points of dynamical systems
It was recently shown that the loss function used for training physics-informed neural networks (PINNs) exhibits local minima at solutions corresponding to fixed points of dynamical systems. In the forward setting, where the PINN is trained to solve initial value problems, these local minima can interfere with training and potentially leading to physically incorrect solutions. Building on stability theory, this paper proposes a regularization scheme that penalizes solutions corresponding to unstable fixed points. Experimental results on four dynamical systems, including the Lotka-Volterra model and the van der Pol oscillator, show that our scheme helps avoiding physically incorrect solutions and substantially improves the training success rate of PINNs.
comment: 8 pages, 3 figures
☆ Data Fusion and Machine Learning for Ship Fuel Consumption Modelling -- A Case of Bulk Carrier Vessel
There is an increasing push for operational measures to reduce ships' bunker fuel consumption and carbon emissions, driven by the International Maritime Organization (IMO) mandates. Key performance indicators such as the Energy Efficiency Operational Indicator (EEOI) focus on fuel efficiency. Strategies like trim optimization, virtual arrival, and green routing have emerged. The theoretical basis for these approaches lies in accurate prediction of fuel consumption as a function of sailing speed, displacement, trim, climate, and sea state. This study utilized 296 voyage reports from a bulk carrier vessel over one year (November 16, 2021 to November 21, 2022) and 28 parameters, integrating hydrometeorological big data from the Copernicus Marine Environment Monitoring Service (CMEMS) with 19 parameters and the European Centre for Medium-Range Weather Forecasts (ECMWF) with 61 parameters. The objective was to evaluate whether fusing external public data sources enhances modeling accuracy and to highlight the most influential parameters affecting fuel consumption. The results reveal a strong potential for machine learning techniques to predict ship fuel consumption accurately by combining voyage reports with climate and sea data. However, validation on similar classes of vessels remains necessary to confirm generalizability.
comment: 44 pages, 6 figures, preprint version
☆ Analysing Python Machine Learning Notebooks with Moose
Machine Learning (ML) code, particularly within notebooks, often exhibits lower quality compared to traditional software. Bad practices arise at three distinct levels: general Python coding conventions, the organizational structure of the notebook itself, and ML-specific aspects such as reproducibility and correct API usage. However, existing analysis tools typically focus on only one of these levels and struggle to capture ML-specific semantics, limiting their ability to detect issues. This paper introduces Vespucci Linter, a static analysis tool with multi-level capabilities, built on Moose and designed to address this challenge. Leveraging a metamodeling approach that unifies the notebook's structural elements with Python code entities, our linter enables a more contextualized analysis to identify issues across all three levels. We implemented 22 linting rules derived from the literature and applied our tool to a corpus of 5,000 notebooks from the Kaggle platform. The results reveal violations at all levels, validating the relevance of our multi-level approach and demonstrating Vespucci Linter's potential to improve the quality and reliability of ML development in notebook environments.
☆ Fast and Interpretable Machine Learning Modelling of Atmospheric Molecular Clusters
Understanding how atmospheric molecular clusters form and grow is key to resolving one of the biggest uncertainties in climate modelling: the formation of new aerosol particles. While quantum chemistry offers accurate insights into these early-stage clusters, its steep computational costs limit large-scale exploration. In this work, we present a fast, interpretable, and surprisingly powerful alternative: $k$-nearest neighbour ($k$-NN) regression model. By leveraging chemically informed distance metrics, including a kernel-induced metric and one learned via metric learning for kernel regression (MLKR), we show that simple $k$-NN models can rival more complex kernel ridge regression (KRR) models in accuracy, while reducing computational time by orders of magnitude. We perform this comparison with the well-established Faber-Christensen-Huang-Lilienfeld (FCHL19) molecular descriptor, but other descriptors (e.g., FCHL18, MBDF, and CM) can be shown to have similar performance. Applied to both simple organic molecules in the QM9 benchmark set and large datasets of atmospheric molecular clusters (sulphuric acid-water and sulphuric-multibase -base systems), our $k$-NN models achieve near-chemical accuracy, scale seamlessly to datasets with over 250,000 entries, and even appears to extrapolate to larger unseen clusters with minimal error (often nearing 1 kcal/mol). With built-in interpretability and straightforward uncertainty estimation, this work positions $k$-NN as a potent tool for accelerating discovery in atmospheric chemistry and beyond.
comment: 38 pages with 2 page appendix, 9 figures. The source code used in the paper are available at https://github.com/edahelsinki/JK-kNN/
☆ DRAG: Data Reconstruction Attack using Guided Diffusion ICML 2025
With the rise of large foundation models, split inference (SI) has emerged as a popular computational paradigm for deploying models across lightweight edge devices and cloud servers, addressing data privacy and computational cost concerns. However, most existing data reconstruction attacks have focused on smaller CNN classification models, leaving the privacy risks of foundation models in SI settings largely unexplored. To address this gap, we propose a novel data reconstruction attack based on guided diffusion, which leverages the rich prior knowledge embedded in a latent diffusion model (LDM) pre-trained on a large-scale dataset. Our method performs iterative reconstruction on the LDM's learned image prior, effectively generating high-fidelity images resembling the original data from their intermediate representations (IR). Extensive experiments demonstrate that our approach significantly outperforms state-of-the-art methods, both qualitatively and quantitatively, in reconstructing data from deep-layer IRs of the vision foundation model. The results highlight the urgent need for more robust privacy protection mechanisms for large models in SI scenarios. Code is available at: https://github.com/ntuaislab/DRAG.
comment: ICML 2025
☆ Neural Audio Codecs for Prompt-Driven Universal Source Separation
Text-guided source separation supports flexible audio editing across media and assistive applications, but existing models like AudioSep are too compute-heavy for edge deployment. Neural audio codec (NAC) models such as CodecFormer and SDCodec are compute-efficient but limited to fixed-class separation. We introduce CodecSep, the first NAC-based model for on-device universal, text-driven separation. CodecSep combines DAC compression with a Transformer masker modulated by CLAP-derived FiLM parameters. Across six open-domain benchmarks under matched training/prompt protocols, \textbf{CodecSep} surpasses \textbf{AudioSep} in separation fidelity (SI-SDR) while remaining competitive in perceptual quality (ViSQOL) and matching or exceeding fixed-stem baselines (TDANet, CodecFormer, SDCodec). In code-stream deployments, it needs just 1.35~GMACs end-to-end -- approximately $54\times$ less compute ($25\times$ architecture-only) than spectrogram-domain separators like AudioSep -- while remaining fully bitstream-compatible.
comment: 21 pages, 1 figure, pre-print, under review
☆ EMeRALDS: Electronic Medical Record Driven Automated Lung Nodule Detection and Classification in Thoracic CT Images
Objective: Lung cancer is a leading cause of cancer-related mortality worldwide, primarily due to delayed diagnosis and poor early detection. This study aims to develop a computer-aided diagnosis (CAD) system that leverages large vision-language models (VLMs) for the accurate detection and classification of pulmonary nodules in computed tomography (CT) scans. Methods: We propose an end-to-end CAD pipeline consisting of two modules: (i) a detection module (CADe) based on the Segment Anything Model 2 (SAM2), in which the standard visual prompt is replaced with a text prompt encoded by CLIP (Contrastive Language-Image Pretraining), and (ii) a diagnosis module (CADx) that calculates similarity scores between segmented nodules and radiomic features. To add clinical context, synthetic electronic medical records (EMRs) were generated using radiomic assessments by expert radiologists and combined with similarity scores for final classification. The method was tested on the publicly available LIDC-IDRI dataset (1,018 CT scans). Results: The proposed approach demonstrated strong performance in zero-shot lung nodule analysis. The CADe module achieved a Dice score of 0.92 and an IoU of 0.85 for nodule segmentation. The CADx module attained a specificity of 0.97 for malignancy classification, surpassing existing fully supervised methods. Conclusions: The integration of VLMs with radiomics and synthetic EMRs allows for accurate and clinically relevant CAD of pulmonary nodules in CT scans. The proposed system shows strong potential to enhance early lung cancer detection, increase diagnostic confidence, and improve patient management in routine clinical workflows.
☆ Beyond Regularity: Modeling Chaotic Mobility Patterns for Next Location Prediction
Next location prediction is a key task in human mobility analysis, crucial for applications like smart city resource allocation and personalized navigation services. However, existing methods face two significant challenges: first, they fail to address the dynamic imbalance between periodic and chaotic mobile patterns, leading to inadequate adaptation over sparse trajectories; second, they underutilize contextual cues, such as temporal regularities in arrival times, which persist even in chaotic patterns and offer stronger predictability than spatial forecasts due to reduced search spaces. To tackle these challenges, we propose \textbf{\method}, a \underline{\textbf{C}}h\underline{\textbf{A}}otic \underline{\textbf{N}}eural \underline{\textbf{O}}scillator n\underline{\textbf{E}}twork for next location prediction, which introduces a biologically inspired Chaotic Neural Oscillatory Attention mechanism to inject adaptive variability into traditional attention, enabling balanced representation of evolving mobility behaviors, and employs a Tri-Pair Interaction Encoder along with a Cross Context Attentive Decoder to fuse multimodal ``who-when-where'' contexts in a joint framework for enhanced prediction performance. Extensive experiments on two real-world datasets demonstrate that CANOE consistently and significantly outperforms a sizeable collection of state-of-the-art baselines, yielding 3.17\%-13.11\% improvement over the best-performing baselines across different cases. In particular, CANOE can make robust predictions over mobility trajectories of different mobility chaotic levels. A series of ablation studies also supports our key design choices. Our code is available at: https://github.com/yuqian2003/CANOE.
comment: 12 pages, 5 figures
☆ CoachMe: Decoding Sport Elements with a Reference-Based Coaching Instruction Generation Model ACL 2025
Motion instruction is a crucial task that helps athletes refine their technique by analyzing movements and providing corrective guidance. Although recent advances in multimodal models have improved motion understanding, generating precise and sport-specific instruction remains challenging due to the highly domain-specific nature of sports and the need for informative guidance. We propose CoachMe, a reference-based model that analyzes the differences between a learner's motion and a reference under temporal and physical aspects. This approach enables both domain-knowledge learning and the acquisition of a coach-like thinking process that identifies movement errors effectively and provides feedback to explain how to improve. In this paper, we illustrate how CoachMe adapts well to specific sports such as skating and boxing by learning from general movements and then leveraging limited data. Experiments show that CoachMe provides high-quality instructions instead of directions merely in the tone of a coach but without critical information. CoachMe outperforms GPT-4o by 31.6% in G-Eval on figure skating and by 58.3% on boxing. Analysis further confirms that it elaborates on errors and their corresponding improvement methods in the generated instructions. You can find CoachMe here: https://motionxperts.github.io/
comment: Published in Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), ACL 2025. Official version: https://doi.org/10.18653/v1/2025.acl-long.1413
☆ An Interventional Approach to Real-Time Disaster Assessment via Causal Attribution
Traditional disaster analysis and modelling tools for assessing the severity of a disaster are predictive in nature. Based on the past observational data, these tools prescribe how the current input state (e.g., environmental conditions, situation reports) results in a severity assessment. However, these systems are not meant to be interventional in the causal sense, where the user can modify the current input state to simulate counterfactual "what-if" scenarios. In this work, we provide an alternative interventional tool that complements traditional disaster modelling tools by leveraging real-time data sources like satellite imagery, news, and social media. Our tool also helps understand the causal attribution of different factors on the estimated severity, over any given region of interest. In addition, we provide actionable recourses that would enable easier mitigation planning. Our source code is publicly available.
☆ SpaPool: Soft Partition Assignment Pooling for__Graph Neural Networks
This paper introduces SpaPool, a novel pooling method that combines the strengths of both dense and sparse techniques for a graph neural network. SpaPool groups vertices into an adaptive number of clusters, leveraging the benefits of both dense and sparse approaches. It aims to maintain the structural integrity of the graph while reducing its size efficiently. Experimental results on several datasets demonstrate that SpaPool achieves competitive performance compared to existing pooling techniques and excels particularly on small-scale graphs. This makes SpaPool a promising method for applications requiring efficient and effective graph processing.
☆ Measuring Visual Understanding in Telecom domain: Performance Metrics for Image-to-UML conversion using VLMs
Telecom domain 3GPP documents are replete with images containing sequence diagrams. Advances in Vision-Language Large Models (VLMs) have eased conversion of such images to machine-readable PlantUML (puml) formats. However, there is a gap in evaluation of such conversions - existing works do not compare puml scripts for various components. In this work, we propose performance metrics to measure the effectiveness of such conversions. A dataset of sequence diagrams from 3GPP documents is chosen to be representative of domain-specific actual scenarios. We compare puml outputs from two VLMs - Claude Sonnet and GPT-4V - against manually created ground truth representations. We use version control tools to capture differences and introduce standard performance metrics to measure accuracies along various components: participant identification, message flow accuracy, sequence ordering, and grouping construct preservation. We demonstrate effectiveness of proposed metrics in quantifying conversion errors across various components of puml scripts. The results show that nodes, edges and messages are accurately captured. However, we observe that VLMs do not necessarily perform well on complex structures such as notes, box, groups. Our experiments and performance metrics indicates a need for better representation of these components in training data for fine-tuned VLMs.
☆ Assessing On-the-Ground Disaster Impact Using Online Data Sources
Assessing the impact of a disaster in terms of asset losses and human casualties is essential for preparing effective response plans. Traditional methods include offline assessments conducted on the ground, where volunteers and first responders work together to collect the estimate of losses through windshield surveys or on-ground inspection. However, these methods have a time delay and are prone to different biases. Recently, various online data sources, including social media, news reports, aerial imagery, and satellite data, have been utilized to evaluate the impact of disasters. Online data sources provide real-time data streams for estimating the offline impact. Limited research exists on how different online sources help estimate disaster impact at a given administrative unit. In our work, we curate a comprehensive dataset by collecting data from multiple online sources for a few billion-dollar disasters at the county level. We also analyze how online estimates compare with traditional offline-based impact estimates for the disaster. Our findings provide insight into how different sources can provide complementary information to assess the disaster.
☆ Adaptive-GraphSketch: Real-Time Edge Anomaly Detection via Multi-Layer Tensor Sketching and Temporal Decay
Anomaly detection in dynamic graphs is essential for identifying malicious activities, fraud, and unexpected behaviors in real-world systems such as cybersecurity and power grids. However, existing approaches struggle with scalability, probabilistic interpretability, and adaptability to evolving traffic patterns. In this paper, we propose ADAPTIVE-GRAPHSKETCH, a lightweight and scalable framework for real-time anomaly detection in streaming edge data. Our method integrates temporal multi-tensor sketching with Count-Min Sketch using Conservative Update (CMS-CU) to compactly track edge frequency patterns with bounded memory, while mitigating hash collision issues. We incorporate Bayesian inference for probabilistic anomaly scoring and apply Exponentially Weighted Moving Average (EWMA) for adaptive thresholding tuned to burst intensity. Extensive experiments on four real-world intrusion detection datasets demonstrate that ADAPTIVE-GRAPHSKETCH outperforms state-of-the-art baselines such as ANOEDGE-G/L, MIDAS-R, and F-FADE, achieving up to 6.5% AUC gain on CIC-IDS2018 and up to 15.6% on CIC-DDoS2019, while processing 20 million edges in under 3.4 seconds using only 10 hash functions. Our results show that ADAPTIVE-GRAPHSKETCH is practical and effective for fast, accurate anomaly detection in large-scale streaming graphs. Keywords: Anomaly Detection, Streaming, Real-time, Dynamic Graphs, Edge Streams, Tensor Sketching
comment: 10 pages, 6 figures. Accepted for presentation at the IEEE International Conference on Knowledge Graphs (ICKG 2025). This is the authors accepted version; the final published paper will be available via IEEE Xplore
☆ Reasoned Safety Alignment: Ensuring Jailbreak Defense via Answer-Then-Check
As large language models (LLMs) continue to advance in capabilities, ensuring their safety against jailbreak attacks remains a critical challenge. In this paper, we introduce a novel safety alignment approach called Answer-Then-Check, which enhances LLM robustness against malicious prompts by applying thinking ability to mitigate jailbreaking problems before producing a final answer to the user. Our method enables models to directly answer the question in their thought and then critically evaluate its safety before deciding whether to provide it. To implement this approach, we construct the Reasoned Safety Alignment (ReSA) dataset, comprising 80K examples that teach models to reason through direct responses and then analyze their safety. Experimental results demonstrate that our approach achieves the Pareto frontier with superior safety capability while decreasing over-refusal rates on over-refusal benchmarks. Notably, the model fine-tuned with ReSA maintains general reasoning capabilities on benchmarks like MMLU, MATH500, and HumanEval. Besides, our method equips models with the ability to perform safe completion. Unlike post-hoc methods that can only reject harmful queries, our model can provide helpful and safe alternative responses for sensitive topics (e.g., self-harm). Furthermore, we discover that training on a small subset of just 500 examples can achieve comparable performance to using the full dataset, suggesting that safety alignment may require less data than previously assumed.
☆ SpeCa: Accelerating Diffusion Transformers with Speculative Feature Caching
Diffusion models have revolutionized high-fidelity image and video synthesis, yet their computational demands remain prohibitive for real-time applications. These models face two fundamental challenges: strict temporal dependencies preventing parallelization, and computationally intensive forward passes required at each denoising step. Drawing inspiration from speculative decoding in large language models, we present SpeCa, a novel 'Forecast-then-verify' acceleration framework that effectively addresses both limitations. SpeCa's core innovation lies in introducing Speculative Sampling to diffusion models, predicting intermediate features for subsequent timesteps based on fully computed reference timesteps. Our approach implements a parameter-free verification mechanism that efficiently evaluates prediction reliability, enabling real-time decisions to accept or reject each prediction while incurring negligible computational overhead. Furthermore, SpeCa introduces sample-adaptive computation allocation that dynamically modulates resources based on generation complexity, allocating reduced computation for simpler samples while preserving intensive processing for complex instances. Experiments demonstrate 6.34x acceleration on FLUX with minimal quality degradation (5.5% drop), 7.3x speedup on DiT while preserving generation fidelity, and 79.84% VBench score at 6.1x acceleration for HunyuanVideo. The verification mechanism incurs minimal overhead (1.67%-3.5% of full inference costs), establishing a new paradigm for efficient diffusion model inference while maintaining generation quality even at aggressive acceleration ratios. Our codes have been released in Github: \textbf{https://github.com/Shenyi-Z/Cache4Diffusion}
comment: 15 pages, 9 figures, ACM Multimedia 2025
☆ Inducing Uncertainty for Test-Time Privacy
Unlearning is the predominant method for removing the influence of data in machine learning models. However, even after unlearning, models often continue to produce the same predictions on the unlearned data with high confidence. This persistent behavior can be exploited by adversaries using confident model predictions on incorrect or obsolete data to harm users. We call this threat model, which unlearning fails to protect against, *test-time privacy*. In particular, an adversary with full model access can bypass any naive defenses which ensure test-time privacy. To address this threat, we introduce an algorithm which perturbs model weights to induce maximal uncertainty on protected instances while preserving accuracy on the rest of the instances. Our core algorithm is based on finetuning with a Pareto optimal objective that explicitly balances test-time privacy against utility. We also provide a certifiable approximation algorithm which achieves $(\varepsilon, \delta)$ guarantees without convexity assumptions. We then prove a tight, non-vacuous bound that characterizes the privacy-utility tradeoff that our algorithms incur. Empirically, our method obtains $>3\times$ stronger uncertainty than pretraining with $<0.2\%$ drops in accuracy on various image recognition benchmarks. Altogether, this framework provides a tool to guarantee additional protection to end users.
☆ A Controllable 3D Deepfake Generation Framework with Gaussian Splatting
We propose a novel 3D deepfake generation framework based on 3D Gaussian Splatting that enables realistic, identity-preserving face swapping and reenactment in a fully controllable 3D space. Compared to conventional 2D deepfake approaches that suffer from geometric inconsistencies and limited generalization to novel view, our method combines a parametric head model with dynamic Gaussian representations to support multi-view consistent rendering, precise expression control, and seamless background integration. To address editing challenges in point-based representations, we explicitly separate the head and background Gaussians and use pre-trained 2D guidance to optimize the facial region across views. We further introduce a repair module to enhance visual consistency under extreme poses and expressions. Experiments on NeRSemble and additional evaluation videos demonstrate that our method achieves comparable performance to state-of-the-art 2D approaches in identity preservation, as well as pose and expression consistency, while significantly outperforming them in multi-view rendering quality and 3D consistency. Our approach bridges the gap between 3D modeling and deepfake synthesis, enabling new directions for scene-aware, controllable, and immersive visual forgeries, revealing the threat that emerging 3D Gaussian Splatting technique could be used for manipulation attacks.
☆ Topology Structure Optimization of Reservoirs Using GLMY Homology
Reservoir is an efficient network for time series processing. It is well known that network structure is one of the determinants of its performance. However, the topology structure of reservoirs, as well as their performance, is hard to analyzed, due to the lack of suitable mathematical tools. In this paper, we study the topology structure of reservoirs using persistent GLMY homology theory, and develop a method to improve its performance. Specifically, it is found that the reservoir performance is closely related to the one-dimensional GLMY homology groups. Then, we develop a reservoir structure optimization method by modifying the minimal representative cycles of one-dimensional GLMY homology groups. Finally, by experiments, it is validated that the performance of reservoirs is jointly influenced by the reservoir structure and the periodicity of the dataset.
☆ Scaling to Multimodal and Multichannel Heart Sound Classification: Fine-Tuning Wav2Vec 2.0 with Synthetic and Augmented Biosignals
Cardiovascular diseases (CVDs) are the leading cause of death worldwide, accounting for approximately 17.9 million deaths each year. Early detection is critical, creating a demand for accurate and inexpensive pre-screening methods. Deep learning has recently been applied to classify abnormal heart sounds indicative of CVDs using synchronised phonocardiogram (PCG) and electrocardiogram (ECG) signals, as well as multichannel PCG (mPCG). However, state-of-the-art architectures remain underutilised due to the limited availability of synchronised and multichannel datasets. Augmented datasets and pre-trained models provide a pathway to overcome these limitations, enabling transformer-based architectures to be trained effectively. This work combines traditional signal processing with denoising diffusion models, WaveGrad and DiffWave, to create an augmented dataset to fine-tune a Wav2Vec 2.0-based classifier on multimodal and multichannel heart sound datasets. The approach achieves state-of-the-art performance. On the Computing in Cardiology (CinC) 2016 dataset of single channel PCG, accuracy, unweighted average recall (UAR), sensitivity, specificity and Matthew's correlation coefficient (MCC) reach 92.48\%, 93.05\%, 93.63\%, 92.48\%, 94.93\% and 0.8283, respectively. Using the synchronised PCG and ECG signals of the training-a dataset from CinC, 93.14\%, 92.21\%, 94.35\%, 90.10\%, 95.12\% and 0.8380 are achieved for accuracy, UAR, sensitivity, specificity and MCC, respectively. Using a wearable vest dataset consisting of mPCG data, the model achieves 77.13\% accuracy, 74.25\% UAR, 86.47\% sensitivity, 62.04\% specificity, and 0.5082 MCC. These results demonstrate the effectiveness of transformer-based models for CVD detection when supported by augmented datasets, highlighting their potential to advance multimodal and multichannel heart sound classification.
comment: 35 pages, 37 figures, 19 tables
☆ Dynamic Adaptive Parsing of Temporal and Cross-Variable Patterns for Network State Classification
Effective network state classification is a primary task for ensuring network security and optimizing performance. Existing deep learning models have shown considerable progress in this area. Some methods excel at analyzing the complex temporal periodicities found in traffic data, while graph-based approaches are adept at modeling the dynamic dependencies between different variables. However, a key trade-off remains, as these methods struggle to capture both characteristics simultaneously. Models focused on temporal patterns often overlook crucial variable dependencies, whereas those centered on dependencies may fail to capture fine-grained temporal details. To address this trade-off, we introduce DAPNet, a framework based on a Mixture-of-Experts architecture. DAPNet integrates three specialized networks for periodic analysis, dynamic cross-variable correlation modeling, and hybrid temporal feature extraction. A learnable gating network dynamically assigns weights to experts based on the input sample and computes a weighted fusion of their outputs. Furthermore, a hybrid regularization loss function ensures stable training and addresses the common issue of class imbalance. Extensive experiments on two large-scale network intrusion detection datasets (CICIDS2017/2018) validate DAPNet's higher accuracy for its target application. The generalizability of the architectural design is evaluated across ten public UEA benchmark datasets, positioning DAPNet as a specialized framework for network state classification.
☆ Disentangling Content from Style to Overcome Shortcut Learning: A Hybrid Generative-Discriminative Learning Framework
Despite the remarkable success of Self-Supervised Learning (SSL), its generalization is fundamentally hindered by Shortcut Learning, where models exploit superficial features like texture instead of intrinsic structure. We experimentally verify this flaw within the generative paradigm (e.g., MAE) and argue it is a systemic issue also affecting discriminative methods, identifying it as the root cause of their failure on unseen domains. While existing methods often tackle this at a surface level by aligning or separating domain-specific features, they fail to alter the underlying learning mechanism that fosters shortcut dependency. To address this at its core, we propose HyGDL (Hybrid Generative-Discriminative Learning Framework), a hybrid framework that achieves explicit content-style disentanglement. Our approach is guided by the Invariance Pre-training Principle: forcing a model to learn an invariant essence by systematically varying a bias (e.g., style) at the input while keeping the supervision signal constant. HyGDL operates on a single encoder and analytically defines style as the component of a representation that is orthogonal to its style-invariant content, derived via vector projection.
☆ AMLNet: A Knowledge-Based Multi-Agent Framework to Generate and Detect Realistic Money Laundering Transactions
Anti-money laundering (AML) research is constrained by the lack of publicly shareable, regulation-aligned transaction datasets. We present AMLNet, a knowledge-based multi-agent framework with two coordinated units: a regulation-aware transaction generator and an ensemble detection pipeline. The generator produces 1,090,173 synthetic transactions (approximately 0.16\% laundering-positive) spanning core laundering phases (placement, layering, integration) and advanced typologies (e.g., structuring, adaptive threshold behavior). Regulatory alignment reaches 75\% based on AUSTRAC rule coverage (Section 4.2), while a composite technical fidelity score of 0.75 summarizes temporal, structural, and behavioral realism components (Section 4.4). The detection ensemble achieves F1 0.90 (precision 0.84, recall 0.97) on the internal test partitions of AMLNet and adapts to the external SynthAML dataset, indicating architectural generalizability across different synthetic generation paradigms. We provide multi-dimensional evaluation (regulatory, temporal, network, behavioral) and release the dataset (Version 1.0, https://doi.org/10.5281/zenodo.16736515), to advance reproducible and regulation-conscious AML experimentation.
☆ Learning Singularity-Encoded Green's Functions with Application to Iterative Methods
Green's function provides an inherent connection between theoretical analysis and numerical methods for elliptic partial differential equations, and general absence of its closed-form expression necessitates surrogate modeling to guide the design of effective solvers. Unfortunately, numerical computation of Green's function remains challenging due to its doubled dimensionality and intrinsic singularity. In this paper, we present a novel singularity-encoded learning approach to resolve these problems in an unsupervised fashion. Our method embeds the Green's function within a one-order higher-dimensional space by encoding its prior estimate as an augmented variable, followed by a neural network parametrization to manage the increased dimensionality. By projecting the trained neural network solution back onto the original domain, our deep surrogate model exploits its spectral bias to accelerate conventional iterative schemes, serving either as a preconditioner or as part of a hybrid solver. The effectiveness of our proposed method is empirically verified through numerical experiments with two and four dimensional Green's functions, achieving satisfactory resolution of singularities and acceleration of iterative solvers.
☆ Compressed Sensing: Mathematical Foundations, Implementation, and Advanced Optimization Techniques
Compressed sensing is a signal processing technique that allows for the reconstruction of a signal from a small set of measurements. The key idea behind compressed sensing is that many real-world signals are inherently sparse, meaning that they can be efficiently represented in a different space with only a few components compared to their original space representation. In this paper we will explore the mathematical formulation behind compressed sensing, its logic and pathologies, and apply compressed sensing to real world signals.
☆ UI-S1: Advancing GUI Automation via Semi-online Reinforcement Learning
Graphical User Interface (GUI) agents have demonstrated remarkable progress in automating complex user interface interactions through reinforcement learning. However, current approaches face a fundamental dilemma: offline RL enables stable training on pre-collected trajectories, but struggles with multi-step task execution for lack of trajectory-level reward signals; online RL captures these signals through environment interaction, but suffers from sparse rewards and prohibitive deployment costs. To address it, we present Semi-online Reinforcement Learning, a novel paradigm that simulates online RL on offline trajectories. During each rollout process, we preserve the original model output within the multi-turn dialogue, where a Patch Module adaptively recovers the divergence between rollout and expert trajectories. To capture long-term training signals, Semi-online RL introduces discounted future returns into the reward computation and optimizes the policy with weighted step-level and episode-level advantages. We further introduce Semi-Online Performance (SOP), a metric that aligns better with true online performance, serving as a practical and effective proxy for real-world evaluation. Experiments show that ours Semi-online RL achieves SOTA performance among 7B models across four dynamic benchmarks, with significant gains over the base model (e.g., +12.0% on AndroidWorld, +23.8% on AITW), demonstrating significant progress in bridging the gap between offline training efficiency and online multi-turn reasoning. The code is available at https://github.com/X-PLUG/MobileAgent/tree/main/UI-S1.
comment: 22 pages, 17 figures
☆ E-ROBOT: a dimension-free method for robust statistics and machine learning via Schrödinger bridge
We propose the Entropic-regularized Robust Optimal Transport (E-ROBOT) framework, a novel method that combines the robustness of ROBOT with the computational and statistical benefits of entropic regularization. We show that, rooted in the Schr\"{o}dinger bridge problem theory, E-ROBOT defines the robust Sinkhorn divergence $\overline{W}_{\varepsilon,\lambda}$, where the parameter $\lambda$ controls robustness and $\varepsilon$ governs the regularization strength. Letting $n\in \mathbb{N}$ denote the sample size, a central theoretical contribution is establishing that the sample complexity of $\overline{W}_{\varepsilon,\lambda}$ is $\mathcal{O}(n^{-1/2})$, thereby avoiding the curse of dimensionality that plagues standard ROBOT. This dimension-free property unlocks the use of $\overline{W}_{\varepsilon,\lambda}$ as a loss function in large-dimensional statistical and machine learning tasks. With this regard, we demonstrate its utility through four applications: goodness-of-fit testing; computation of barycenters for corrupted 2D and 3D shapes; definition of gradient flows; and image colour transfer. From the computation standpoint, a perk of our novel method is that it can be easily implemented by modifying existing (\texttt{Python}) routines. From the theoretical standpoint, our work opens the door to many research directions in statistics and machine learning: we discuss some of them.
☆ DARD: Dice Adversarial Robustness Distillation against Adversarial Attacks
Deep learning models are vulnerable to adversarial examples, posing critical security challenges in real-world applications. While Adversarial Training (AT ) is a widely adopted defense mechanism to enhance robustness, it often incurs a trade-off by degrading performance on unperturbed, natural data. Recent efforts have highlighted that larger models exhibit enhanced robustness over their smaller counterparts. In this paper, we empirically demonstrate that such robustness can be systematically distilled from large teacher models into compact student models. To achieve better performance, we introduce Dice Adversarial Robustness Distillation (DARD), a novel method designed to transfer robustness through a tailored knowledge distillation paradigm. Additionally, we propose Dice Projected Gradient Descent (DPGD), an adversarial example generalization method optimized for effective attack. Our extensive experiments demonstrate that the DARD approach consistently outperforms adversarially trained networks with the same architecture, achieving superior robustness and standard accuracy.
comment: Accepted at SecureComm 2025, 15 pages, 4 figures
☆ Know What You Don't Know: Selective Prediction for Early Exit DNNs
Inference latency and trustworthiness of Deep Neural Networks (DNNs) are the bottlenecks in deploying them in critical applications like sensitive tasks. Early Exit (EE) DNNs overcome the latency issues by allowing samples to exit from intermediary layers if they attain `high' confidence scores on the predicted class. However, the DNNs are known to exhibit overconfidence, which can lead to many samples exiting early and render EE strategies untrustworthy. We use Selective Prediction (SP) to overcome this issue by checking the `hardness' of the samples rather than just relying on the confidence score alone. We propose SPEED, a novel approach that uses Deferral Classifiers (DCs) at each layer to check the hardness of samples before performing EEs. Specifically, the DCs identify if a sample is hard to predict at an intermediary layer, leading to hallucination, and defer it to an expert. Early detection of hard samples for inference prevents the wastage of computational resources and improves trust by deferring the hard samples to the expert. We demonstrate that EE aided with SP improves both accuracy and latency. Our method minimizes the risk of wrong prediction by $50\%$ with a speedup of $2.05\times$ as compared to the final layer. The anonymized source code is available at https://github.com/Div290/SPEED
comment: To appear in the the Fifth International Conference on AI ML Systems
☆ PeruMedQA: Benchmarking Large Language Models (LLMs) on Peruvian Medical Exams -- Dataset Construction and Evaluation
BACKGROUND: Medical large language models (LLMS) have demonstrated remarkable performance in answering medical examinations. However, the extent to which this high performance is transferable to medical questions in Spanish and from a Latin American country remains unexplored. This knowledge is crucial as LLM-based medical applications gain traction in Latin America. AIMS: to build a dataset of questions from medical examinations taken by Peruvian physicians pursuing specialty training; to fine-tune a LLM on this dataset; to evaluate and compare the performance in terms of accuracy between vanilla LLMs and the fine-tuned LLM. METHODS: We curated PeruMedQA, a multiple-choice question-answering (MCQA) datasets containing 8,380 questions spanning 12 medical domains (2018-2025). We selected eight medical LLMs including medgemma-4b-it and medgemma-27b-text-it, and developed zero-shot task-specific prompts to answer the questions appropriately. We employed parameter-efficient fine tuning (PEFT)and low-rant adaptation (LoRA) to fine-tune medgemma-4b-it utilizing all questions except those from 2025 (test set). RESULTS: medgemma-27b-text-it outperformed all other models, achieving a proportion of correct answers exceeding 90% in several instances. LLMs with <10 billion parameters exhibited <60% of correct answers, while some exams yielded results <50%. The fine-tuned version of medgemma-4b-it emerged victorious agains all LLMs with <10 billion parameters and rivaled a LLM with 70 billion parameters across various examinations. CONCLUSIONS: For medical AI application and research that require knowledge bases from Spanish-speaking countries and those exhibiting similar epidemiological profiles to Peru's, interested parties should utilize medgemma-27b-text-it or a fine-tuned version of medgemma-4b-it.
comment: https://github.com/rodrigo-carrillo/PeruMedQA
☆ Machine Learning-Driven Predictive Resource Management in Complex Science Workflows
The collaborative efforts of large communities in science experiments, often comprising thousands of global members, reflect a monumental commitment to exploration and discovery. Recently, advanced and complex data processing has gained increasing importance in science experiments. Data processing workflows typically consist of multiple intricate steps, and the precise specification of resource requirements is crucial for each step to allocate optimal resources for effective processing. Estimating resource requirements in advance is challenging due to a wide range of analysis scenarios, varying skill levels among community members, and the continuously increasing spectrum of computing options. One practical approach to mitigate these challenges involves initially processing a subset of each step to measure precise resource utilization from actual processing profiles before completing the entire step. While this two-staged approach enables processing on optimal resources for most of the workflow, it has drawbacks such as initial inaccuracies leading to potential failures and suboptimal resource usage, along with overhead from waiting for initial processing completion, which is critical for fast-turnaround analyses. In this context, our study introduces a novel pipeline of machine learning models within a comprehensive workflow management system, the Production and Distributed Analysis (PanDA) system. These models employ advanced machine learning techniques to predict key resource requirements, overcoming challenges posed by limited upfront knowledge of characteristics at each step. Accurate forecasts of resource requirements enable informed and proactive decision-making in workflow management, enhancing the efficiency of handling diverse, complex workflows across heterogeneous resources.
☆ Learning Majority-to-Minority Transformations with MMD and Triplet Loss for Imbalanced Classification
Class imbalance in supervised classification often degrades model performance by biasing predictions toward the majority class, particularly in critical applications such as medical diagnosis and fraud detection. Traditional oversampling techniques, including SMOTE and its variants, generate synthetic minority samples via local interpolation but fail to capture global data distributions in high-dimensional spaces. Deep generative models based on GANs offer richer distribution modeling yet suffer from training instability and mode collapse under severe imbalance. To overcome these limitations, we introduce an oversampling framework that learns a parametric transformation to map majority samples into the minority distribution. Our approach minimizes the maximum mean discrepancy (MMD) between transformed and true minority samples for global alignment, and incorporates a triplet loss regularizer to enforce boundary awareness by guiding synthesized samples toward challenging borderline regions. We evaluate our method on 29 synthetic and real-world datasets, demonstrating consistent improvements over classical and generative baselines in AUROC, G-mean, F1-score, and MCC. These results confirm the robustness, computational efficiency, and practical utility of the proposed framework for imbalanced classification tasks.
comment: .19 pages, 6 figures
☆ SafeDiver: Cooperative AUV-USV Assisted Diver Communication via Multi-agent Reinforcement Learning Approach
As underwater human activities are increasing, the demand for underwater communication service presents a significant challenge. Existing underwater diver communication methods face hurdles due to inherent disadvantages and complex underwater environments. To address this issue, we propose a scheme that utilizes maritime unmanned systems to assist divers with reliable and high-speed communication. Multiple AUVs are equipped with optical and acoustic multimodal communication devices as relay nodes, providing adaptive communication services based on changes in the diver's activity area. By using a multi-agent reinforcement learning (MARL) approach to control the cooperative movement of AUVs, high-speed and reliable data transmission between divers can be achieved. At the same time, utilizing the advantages of on-demand deployment and wide coverage of unmanned surface vehicles (USVs) as surface relay nodes to coordinate and forward information from AUVs, and controlling AUVs to adaptively select relay USV nodes for data transmission, high-quality communication between divers and surface platform can be achieved. Through simulation verification, the proposed scheme can effectively achieve reliable and high-speed communication for divers.
☆ OASIS: A Deep Learning Framework for Universal Spectroscopic Analysis Driven by Novel Loss Functions
The proliferation of spectroscopic data across various scientific and engineering fields necessitates automated processing. We introduce OASIS (Omni-purpose Analysis of Spectra via Intelligent Systems), a machine learning (ML) framework for technique-independent, automated spectral analysis, encompassing denoising, baseline correction, and comprehensive peak parameter (location, intensity, FWHM) retrieval without human intervention. OASIS achieves its versatility through models trained on a strategically designed synthetic dataset incorporating features from numerous spectroscopy techniques. Critically, the development of innovative, task-specific loss functions-such as the vicinity peak response (ViPeR) for peak localization-enabled the creation of compact yet highly accurate models from this dataset, validated with experimental data from Raman, UV-vis, and fluorescence spectroscopy. OASIS demonstrates significant potential for applications including in situ experiments, high-throughput optimization, and online monitoring. This study underscores the optimization of the loss function as a key resource-efficient strategy to develop high-performance ML models.
♻ ☆ Safety Pretraining: Toward the Next Generation of Safe AI
As large language models (LLMs) are increasingly deployed in high-stakes settings, the risk of generating harmful or toxic content remains a central challenge. Post-hoc alignment methods are brittle: once unsafe patterns are learned during pretraining, they are hard to remove. In this work, we present a data-centric pretraining framework that builds safety into the model from the start. Our framework consists of four key steps: (i) Safety Filtering: building a safety classifier to classify webdata into safe and unsafe categories; (ii) Safety Rephrasing: we recontextualize unsafe webdata into safer narratives; (iii) Native Refusal: we develop RefuseWeb and Moral Education pretraining datasets that actively teach model to refuse on unsafe content and the moral reasoning behind it, and (iv) Harmfulness-Tag annotated pretraining: we flag unsafe content during pretraining using a special token, and use it to steer model away from unsafe generations at inference. Our safety-pretrained models reduce attack success rates from 38.8\% to 8.4\% on standard LLM safety benchmarks with no performance degradation on general tasks.
♻ ☆ Active Layer-Contrastive Decoding Reduces Hallucination in Large Language Model Generation EMNLP 2025
Recent decoding methods improve the factuality of large language models (LLMs) by refining how the next token is selected during generation. These methods typically operate at the token level, leveraging internal representations to suppress superficial patterns. Nevertheless, LLMs remain prone to hallucinations, especially over longer contexts. In this paper, we propose Active Layer-Contrastive Decoding (ActLCD), a novel decoding strategy that actively decides when to apply contrasting layers during generation. By casting decoding as a sequential decision-making problem, ActLCD employs a reinforcement learning policy guided by a reward-aware classifier to optimize factuality beyond the token level. Our experiments demonstrate that ActLCD surpasses state-of-the-art methods across five benchmarks, showcasing its effectiveness in mitigating hallucinations in diverse generation scenarios.
comment: 19 pages, 3 figures, EMNLP 2025
♻ ☆ On the Generalization of Representation Uncertainty in Earth Observation ICCV 2025
Recent advances in Computer Vision have introduced the concept of pretrained representation uncertainty, enabling zero-shot uncertainty estimation. This holds significant potential for Earth Observation (EO), where trustworthiness is critical, yet the complexity of EO data poses challenges to uncertainty-aware methods. In this work, we investigate the generalization of representation uncertainty in EO, considering the domain's unique semantic characteristics. We pretrain uncertainties on large EO datasets and propose an evaluation framework to assess their zero-shot performance in multi-label classification and segmentation EO tasks. Our findings reveal that, unlike uncertainties pretrained on natural images, EO-pretraining exhibits strong generalization across unseen EO domains, geographic locations, and target granularities, while maintaining sensitivity to variations in ground sampling distance. We demonstrate the practical utility of pretrained uncertainties showcasing their alignment with task-specific uncertainties in downstream tasks, their sensitivity to real-world EO image noise, and their ability to generate spatial uncertainty estimates out-of-the-box. Initiating the discussion on representation uncertainty in EO, our study provides insights into its strengths and limitations, paving the way for future research in the field. Code and weights are available at: https://github.com/Orion-AI-Lab/EOUncertaintyGeneralization.
comment: Accepted to ICCV 2025
♻ ☆ A learning-driven automatic planning framework for proton PBS treatments of H&N cancers
Proton pencil beam scanning (PBS) treatment planning for head & neck (H&N) cancers involves numerous conflicting objectives, requiring iterative objective parameter adjustments to balance multiple clinical goals. We propose a learning-driven inverse optimizer and integrate it into a proximal policy optimization (PPO)-based planning framework to automatically generate high-quality plans for patients with diverse treatment requirements. The inverse optimizer is a learning-to-optimize (L2O) method that predicts update steps by learning from task-specific data distributions. For the first time, long-context processing techniques developed for large language models (LLMs) are utilized to address the scalability limitations of existing L2O methods, enabling simultaneous optimization over a substantially large set of variables. The PPO framework functions as an outer-loop virtual planner, autonomously adjusting objective parameters through a policy network, and the inner-loop L2O inverse optimizer computes machine-deliverable spot monitor unit (MU) values based on the PPO-refined objectives. Moreover, a Swin UnetR dose predictor is trained with prescription- and beam-specific information to estimate the initial objective parameters. In our experiments, total 97 patients with bilateral or ipsilateral H&N cancers are collected for training and testing. Compared with the second-order gradient-based methods, our L2O optimizer improves the effectiveness and efficiency of the time-consuming inverse optimization by 22.97% and 36.41%, respectively, and in conjunction with the PPO-based virtual planner, plans are generated within clinically acceptable times, i.e. 2.55 hours in average, and shows improved or comparable organs-at-risk sparing with superior target coverage compared with human-generated plans.
comment: 27 pages, 4 figures
♻ ☆ All Optical Echo State Network Reservoir Computing
We propose an innovative design for an all-optical Echo State Network (ESN), an advanced type of reservoir computer known for its universal computational capabilities. Our design enables fully optical implementation of arbitrary ESNs, featuring flexibility in optical matrix multiplication and nonlinear activation. Leveraging the nonlinear characteristics of stimulated Brillouin scattering (SBS), the architecture efficiently realizes measurement-free nonlinear activation. The approach significantly reduces computational overhead and energy consumption compared to traditional software-based methods. Comprehensive simulations validate the system's memory capacity, nonlinear processing strength, and polynomial algebra capabilities, showcasing performance comparable to software ESNs across key benchmark tasks. Our design establishes a feasible, scalable, and universally applicable framework for optical reservoir computing, suitable for diverse machine learning applications.
comment: 14 pages, 11 figures
♻ ☆ CogGuide: Human-Like Guidance for Zero-Shot Omni-Modal Reasoning
Targeting the issues of "shortcuts" and insufficient contextual understanding in complex cross-modal reasoning of multimodal large models, this paper proposes a zero-shot multimodal reasoning component guided by human-like cognitive strategies centered on an "intent sketch". The component comprises a plug-and-play three-module pipeline-Intent Perceiver, Strategy Generator, and Strategy Selector-that explicitly constructs a "understand-plan-select" cognitive process. By generating and filtering "intent sketch" strategies to guide the final reasoning, it requires no parameter fine-tuning and achieves cross-model transfer solely through in-context engineering. Information-theoretic analysis shows that this process can reduce conditional entropy and improve information utilization efficiency, thereby suppressing unintended shortcut reasoning. Experiments on IntentBench, WorldSense, and Daily-Omni validate the method's generality and robust gains; compared with their respective baselines, the complete "three-module" scheme yields consistent improvements across different reasoning engines and pipeline combinations, with gains up to approximately 9.51 percentage points, demonstrating the practical value and portability of the "intent sketch" reasoning component in zero-shot scenarios.
♻ ☆ Graceful forgetting: Memory as a process
A rational framework is proposed to explain how we accommodate unbounded sensory input within bounded memory. Memory is stored as statistics organized into structures that are repeatedly summarized and compressed to make room for new input. Repeated summarization requires an intensive ongoing process guided by heuristics that help optimize the memory for future needs. Sensory input is rapidly encoded as simple statistics that are progressively elaborated into more abstract constructs. This framework differs from previous accounts of memory by its emphasis on a process that is intensive, complex, and expensive, its reliance on statistics as a representation of memory, and the use of heuristics to guide the choice of statistics at each summarization step. The framework is intended as an aid to make sense of our extensive knowledge of memory, and bring us closer to an understanding of memory in functional and mechanistic terms.
♻ ☆ SafeSwitch: Steering Unsafe LLM Behavior via Internal Activation Signals
Large language models (LLMs) exhibit exceptional capabilities across various tasks but also pose risks by generating harmful content. Existing safety mechanisms, while improving model safety, often lead to overly cautious behavior and fail to fully leverage LLMs' internal cognitive processes. Inspired by humans' reflective thinking capability, we first show that LLMs can similarly perform internal assessments about safety in their internal states. Building on this insight, we propose SafeSwitch, a dynamic framework that regulates unsafe outputs by utilizing the prober-based internal state monitor that actively detects harmful intentions, and activates a safety head that leads to safer and more conservative responses only when necessary. SafeSwitch reduces harmful outputs by approximately 80% on harmful queries while maintaining strong utility, reaching a Pareto optimal among several methods. Our method is also advantageous over traditional methods in offering more informative, context-aware refusals, and achieves these benefits while only tuning less than 6% of the original parameters. SafeSwitch demonstrates large language models' capacity for self-awareness and reflection regarding safety, offering a promising approach to more nuanced and effective safety controls. Codes for this work are available at https://github.com/Hanpx20/SafeSwitch.
♻ ☆ MODIS: Multi-Omics Data Integration for Small and unpaired datasets
An important objective in computational biology is the efficient integration of multi-omics data. The task of integration comes with challenges: multi-omics data are most often unpaired (requiring diagonal integration), partially labeled with information about biological conditions, and in some situations such as rare diseases, only very small datasets are available. We present MODIS, a semi supervised framework designed to account for these particular challenges. To address the challenge of very small datasets, we propose to exploit information contained in larger multi-omics databases by training our model on a large reference database and a small target dataset simultaneously, effectively turning the problem of transfer learning into a problem of learning with class imbalance. MODIS performs diagonal integration on unpaired samples, leveraging class-labels to align modalities despite class imbalance and data scarcity. The architecture combines multiple variational auto-encoders, a class classifier and an adversarially trained modality classifier. To ensure training stability, we adapted a regularized relativistic GAN loss to this setting. We first validate MODIS on a synthetic dataset to assess the level of supervision needed for accurate alignment and to quantify the impact of class imbalance on predictive performance. We then apply our approach to the large public TCGA database, considering between 10 and 34 classes (cancer types and normal tissue). MODIS demonstrates high prediction accuracy, robust performance with limited supervision, and stability to class imbalance. These results position MODIS as a promising solution for challenging integration scenarios, particularly diagonal integration with a small number of samples, typical of rare diseases studies. The code is available at https://github.com/VILLOUTREIXLab/MODIS.
♻ ☆ Social Perception of Faces in a Vision-Language Model
We explore social perception of human faces in CLIP, a widely used open-source vision-language model. To this end, we compare the similarity in CLIP embeddings between different textual prompts and a set of face images. Our textual prompts are constructed from well-validated social psychology terms denoting social perception. The face images are synthetic and are systematically and independently varied along six dimensions: the legally protected attributes of age, gender, and race, as well as facial expression, lighting, and pose. Independently and systematically manipulating face attributes allows us to study the effect of each on social perception and avoids confounds that can occur in wild-collected data due to uncontrolled systematic correlations between attributes. Thus, our findings are experimental rather than observational. Our main findings are three. First, while CLIP is trained on the widest variety of images and texts, it is able to make fine-grained human-like social judgments on face images. Second, age, gender, and race do systematically impact CLIP's social perception of faces, suggesting an undesirable bias in CLIP vis-a-vis legally protected attributes. Most strikingly, we find a strong pattern of bias concerning the faces of Black women, where CLIP produces extreme values of social perception across different ages and facial expressions. Third, facial expression impacts social perception more than age and lighting as much as age. The last finding predicts that studies that do not control for unprotected visual attributes may reach the wrong conclusions on bias. Our novel method of investigation, which is founded on the social psychology literature and on the experiments involving the manipulation of individual attributes, yields sharper and more reliable observations than previous observational methods and may be applied to study biases in any vision-language model.
♻ ☆ RISE: Enhancing VLM Image Annotation with Self-Supervised Reasoning
Vision-Language Models (VLMs) struggle with complex image annotation tasks, such as emotion classification and context-driven object detection, which demand sophisticated reasoning. Standard Supervised Fine-Tuning (SFT) focuses solely on annotation outcomes, ignoring underlying rationales, while Visual Reinforcement Fine-Tuning (Visual-RFT) produces inconsistent Chains of Thought (CoTs) due to the absence of high-quality, verified CoTs during pre-training. We introduce RISE (Reason-Inspire-Strengthen-Expertise), a two-stage framework to overcome these limitations. In the Reason stage (RISE-CoT), a reinforcement learning-driven "annotation-reasoning-annotation" closed-loop generates visually grounded, logically consistent CoTs by verifying their ability to reconstruct original annotations without direct leakage. The Inspire and Strengthen stage (RISE-R1) leverages a high-quality CoT subset, filtered by RISE-CoT rewards, for supervised fine-tuning, followed by reinforcement fine-tuning to produce interpretable reasoning and accurate annotations, achieving Expertise in complex visual tasks. Evaluated on complex and simple image annotation tasks, RISE-trained Qwen2-VL-2B outperforms SFT and Visual-RFT, achieving robust performance and enhanced explainability. RISE offers a self-supervised solution for advancing VLM reasoning without requiring manually annotated CoTs.Code and resources are available at: https://github.com/HSH55/RISE.
♻ ☆ Operator learning for hyperbolic partial differential equations
We construct the first rigorously justified probabilistic algorithm for recovering the solution operator of a hyperbolic partial differential equation (PDE) in two variables from input-output training pairs. The primary challenge of recovering the solution operator of hyperbolic PDEs is the presence of characteristics, along which the associated Green's function is discontinuous. Therefore, a central component of our algorithm is a rank detection scheme that identifies the approximate location of the characteristics. By combining the randomized singular value decomposition with an adaptive hierarchical partition of the domain, we construct an approximant to the solution operator using $O(\Psi_\epsilon^{-1}\epsilon^{-7}\log(\Xi_\epsilon^{-1}\epsilon^{-1}))$ input-output pairs with relative error $O(\Xi_\epsilon^{-1}\epsilon)$ in the operator norm as $\epsilon\to0$, with high probability. Here, $\Psi_\epsilon$ represents the existence of degenerate singular values of the solution operator, and $\Xi_\epsilon$ measures the quality of the training data. Our assumptions on the regularity of the coefficients of the hyperbolic PDE are relatively weak given that hyperbolic PDEs do not have the ``instantaneous smoothing effect'' of elliptic and parabolic PDEs, and our recovery rate improves as the regularity of the coefficients increases.
comment: 44 pages, 8 figures
♻ ☆ Dion: Distributed Orthonormalized Updates
Orthonormalized updates accelerate training, improve stability, and enable robust hyperparameter transfer, but existing methods like Muon rely on dense matrix operations that clash with sharded weights in large-scale LLM training, causing high compute and communication cost. We introduce Dion (Distributed Orthonormalization), a scalable and efficient update rule that replaces Newton-Schulz iteration with amortized power iteration on a momentum buffer, avoiding full-matrix reconstruction and integrating cleanly with weight sharding. The rank-fraction parameter with error feedback enables low-rank updates that balance quality with significant cost savings. On language models from 160M to 3B parameters, Dion retains the benefits of orthonormalized updates, while markedly reducing wall-clock time at scale, making it a practical optimizer for next-generation foundation models. Code is available at: https://github.com/microsoft/dion/
comment: "Version 3" with various new updates
♻ ☆ The Whole Is Bigger Than the Sum of Its Parts: Modeling Individual Annotators to Capture Emotional Variability
Emotion expression and perception are nuanced, complex, and highly subjective processes. When multiple annotators label emotional data, the resulting labels contain high variability. Most speech emotion recognition tasks address this by averaging annotator labels as ground truth. However, this process omits the nuance of emotion and inter-annotator variability, which are important signals to capture. Previous work has attempted to learn distributions to capture emotion variability, but these methods also lose information about the individual annotators. We address these limitations by learning to predict individual annotators and by introducing a novel method to create distributions from continuous model outputs that permit the learning of emotion distributions during model training. We show that this combined approach can result in emotion distributions that are more accurate than those seen in prior work, in both within- and cross-corpus settings.
comment: Accepted to Interspeech 2024 Conference
♻ ☆ Kolb-Based Experiential Learning for Generalist Agents with Human-Level Kaggle Data Science Performance
Human expertise emerges through iterative cycles of interaction, reflection, and internal model updating, which are central to cognitive theories such as Kolb's experiential learning and Vygotsky's zone of proximal development. In contrast, current AI systems, particularly LLM agents, rely on static pre-training or rigid workflows, lacking mechanisms for continual adaptation. Recent studies identified early cognitive traits in LLM agents (reflection, revision, and self-correction) suggesting foundational elements of human-like experiential learning. Thus the key question: Can we design LLM agents capable of structured, cognitively grounded learning similar to human processes? In response, we propose a computational framework of Kolb's learning cycle with Vygotsky's ZPD for autonomous agents. Our architecture separates extrinsic (environment interaction) and intrinsic (internal reflection/abstraction) functions, enabling cognitively grounded scaffolded learning, where the agent initially learns within structured environments, followed by open-ended generalisation. This approach empowers agents to master complex tasks ; domains that traditional fine-tuning or simple reflective methods could not tackle effectively. Its potential is powerfully demonstrated via direct comparison with humans in real-world Kaggle data science competitions. Learning fully automated data science code generation across 81 tasks, our system, Agent K, demonstrated the ability to perform the entire workflow autonomously, achieving an Elo-MMR score of 1694, beyond median score of the Kaggle Masters (the top 2% among 200,000 users) of our study. With 9 gold, 8 silver, and 12 bronze medals level performance - including 4 gold and 4 silver on prize-awarding competitions - Agent K is the 1st AI system to successfully integrate Kolb- and Vygotsky-inspired human cognitive learning, marking a major step toward generalist AI.
♻ ☆ Is In-Context Learning Learning?
In-context learning (ICL) allows some autoregressive models to solve tasks via next-token prediction and without needing further training. This has led to claims about these model's ability to solve (learn) unseen tasks with only a few shots (exemplars) in the prompt. However, deduction does not always imply learning, as ICL does not explicitly encode a given observation. Instead, the models rely on their prior knowledge and the exemplars given, if any. We argue that, mathematically, ICL does constitute learning, but its full characterisation requires empirical work. We then carry out a large-scale analysis of ICL ablating out or accounting for memorisation, pretraining, distributional shifts, and prompting style and phrasing. We find that ICL is an effective learning paradigm, but limited in its ability to learn and generalise to unseen tasks. We note that, in the limit where exemplars become more numerous, accuracy is insensitive to exemplar distribution, model, prompt style, and the input's linguistic features. Instead, it deduces patterns from regularities in the prompt, which leads to distributional sensitivity, especially in prompting styles such as chain-of-thought. Given the varied accuracies on formally similar tasks, we conclude that autoregression's ad-hoc encoding is not a robust mechanism, and suggests limited all-purpose generalisability.
comment: Director's cut
♻ ☆ Multipole Semantic Attention: A Fast Approximation of Softmax Attention for Pretraining
We present Multipole Semantic Attention (MuSe), an efficient approximation of softmax attention that combines semantic clustering with multipole expansions from computational physics. Our method addresses the quadratic computational complexity of transformers in the context length by clustering queries and keys separately in their learned representation spaces, enabling a hierarchical two-stage attention mechanism. Unlike prior clustering approaches that group only keys or use unified clustering, we maintain separate clusterings that respect attention's asymmetric treatment of these spaces. We augment centroid-based (monopole) approximations with dipole corrections that capture directional variance within clusters, preserving richer information during training. The method operates as a drop-in replacement for standard attention, requiring only hyperparameter specification without architectural modifications. Our approach achieves $\mathcal{O}(NCD)$ complexity for acausal attention with $C$ clusters and $\mathcal{O}(NCD \log N)$ for causal attention. On isolated attention layers, we demonstrate $3\times$ speedup over CUDNN Flash Attention at 8k context length, with relative squared errors below 20%. For causal attention, we develop a hierarchical block decomposition that combines exact local computation with efficient long-range approximation. In end-to-end pretraining of a 30M parameter model on book-length texts with 16k context, we achieve 12.2% runtime reduction with only 0.36% loss degradation, establishing the viability of multipole approximations for efficient transformer pretraining.
♻ ☆ Hopscotch: Discovering and Skipping Redundancies in Language Models
Modern causal language models stack many attention blocks to improve performance, but not all blocks are necessary for every task. We propose Hopscotch, a simple yet effective method that identifies and skips attention blocks with least contributions to a task and adapts to preserve output quality. Hopscotch jointly optimizes which blocks to skip and how to scale the outputs of the remaining layers. By introducing lightweight, trainable scaling parameters to attention and MLP blocks, it mitigates distribution shifts in hidden states caused by removing attention blocks. Hopscotch does not modify model weights or require access to pretraining or instruction-tuning data, and is compatible with existing model compression techniques. When applied to $\texttt{Llama-3.1-8B}$ and $\texttt{Qwen2.5-7B}$, Hopscotch achieves less than a 2% drop in performance even after skipping four attention blocks.
comment: 10 pages, 4 figures, 9 tables
♻ ☆ Decision-Theoretic Approaches for Improved Learning-Augmented Algorithms
We initiate the systematic study of decision-theoretic metrics in the design and analysis of algorithms with machine-learned predictions. We introduce approaches based on both deterministic measures such as distance-based evaluation, that help us quantify how close the algorithm is to an ideal solution, and stochastic measures that balance the trade-off between the algorithm's performance and the risk associated with the imperfect oracle. These approaches allow us to quantify the algorithm's performance across the full spectrum of the prediction error, and thus choose the best algorithm within an entire class of otherwise incomparable ones. We apply our framework to three well-known problems from online decision making, namely ski-rental, one-max search, and contract scheduling.
♻ ☆ Scalable extensions to given-data Sobol' index estimators
Given-data methods for variance-based sensitivity analysis have significantly advanced the feasibility of Sobol' index computation for computationally expensive models and models with many inputs. However, the limitations of existing methods still preclude their application to models with an extremely large number of inputs. In this work, we present practical extensions to the existing given-data Sobol' index method, which allow variance-based sensitivity analysis to be efficiently performed on large models such as neural networks, which have $>10^4$ parameterizable inputs. For models of this size, holding all input-output evaluations simultaneously in memory -- as required by existing methods -- can quickly become impractical. These extensions also support nonstandard input distributions with many repeated values, which are not amenable to equiprobable partitions employed by existing given-data methods. Our extensions include a general definition of the given-data Sobol' index estimator with arbitrary partition, a streaming algorithm to process input-output samples in batches, and a heuristic to filter out small indices that are indistinguishable from zero indices due to statistical noise. We show that the equiprobable partition employed in existing given-data methods can introduce significant bias into Sobol' index estimates even at large sample sizes and provide numerical analyses that demonstrate why this can occur. We also show that our streaming algorithm can achieve comparable accuracy and runtimes with lower memory requirements, relative to current methods which process all samples at once. We demonstrate our novel developments on two application problems in neural network modeling.
♻ ☆ Task-Focused Consolidation with Spaced Recall: Making Neural Networks Learn like College Students
Deep neural networks often suffer from a critical limitation known as catastrophic forgetting, where performance on past tasks degrades after learning new ones. This paper introduces a novel continual learning approach inspired by human learning strategies like Active Recall, Deliberate Practice, and Spaced Repetition, named Task-Focused Consolidation with Spaced Recall (TFC-SR). TFC-SR enhances the standard experience replay framework with a mechanism we term the Active Recall Probe. It is a periodic, task-aware evaluation of the model's memory that stabilizes the representations of past knowledge. We test TFC-SR on the Split MNIST and the Split CIFAR-100 benchmarks against leading regularization-based and replay-based baselines. Our results show that TFC-SR performs significantly better than these methods. For instance, on the Split CIFAR-100, it achieves a final accuracy of 13.17% compared to Standard Experience Replay's 7.40%. We demonstrate that this advantage comes from the stabilizing effect of the probe itself, and not from the difference in replay volume. Additionally, we analyze the trade-off between memory size and performance and show that while TFC-SR performs better in memory-constrained environments, higher replay volume is still more effective when available memory is abundant. We conclude that TFC-SR is a robust and efficient approach, highlighting the importance of integrating active memory retrieval mechanisms into continual learning systems.
comment: Improved Grammar, consistency and flow. Some sections like the Discussion Section have been rewritten for improvement. Figures and Tables have improved formatting, while the algorithm pseudocode is now consistent with the experiments and less ambiguous
♻ ☆ MAYA: Addressing Inconsistencies in Generative Password Guessing through a Unified Benchmark
Recent advances in generative models have led to their application in password guessing, with the aim of replicating the complexity, structure, and patterns of human-created passwords. Despite their potential, inconsistencies and inadequate evaluation methodologies in prior research have hindered meaningful comparisons and a comprehensive, unbiased understanding of their capabilities. This paper introduces MAYA, a unified, customizable, plug-and-play benchmarking framework designed to facilitate the systematic characterization and benchmarking of generative password-guessing models in the context of trawling attacks. Using MAYA, we conduct a comprehensive assessment of six state-of-the-art approaches, which we re-implemented and adapted to ensure standardization. Our evaluation spans eight real-world password datasets and covers an exhaustive set of advanced testing scenarios, totaling over 15,000 compute hours. Our findings indicate that these models effectively capture different aspects of human password distribution and exhibit strong generalization capabilities. However, their effectiveness varies significantly with long and complex passwords. Through our evaluation, sequential models consistently outperform other generative architectures and traditional password-guessing tools, demonstrating unique capabilities in generating accurate and complex guesses. Moreover, the diverse password distributions learned by the models enable a multi-model attack that outperforms the best individual model. By releasing MAYA, we aim to foster further research, providing the community with a new tool to consistently and reliably benchmark generative password-guessing models. Our framework is publicly available at https://github.com/williamcorrias/MAYA-Password-Benchmarking.
comment: Paper accepted at the 47th IEEE Symposium on Security and Privacy (S&P 2026)
♻ ☆ Robustness in the Face of Partial Identifiability in Reward Learning
In Reward Learning (ReL), we are given feedback on an unknown target reward, and the goal is to use this information to recover it in order to carry out some downstream application, e.g., planning. When the feedback is not informative enough, the target reward is only partially identifiable, i.e., there exists a set of rewards, called the feasible set, that are equally plausible candidates for the target reward. In these cases, the ReL algorithm might recover a reward function different from the target reward, possibly leading to a failure in the application. In this paper, we introduce a general ReL framework that permits to quantify the drop in "performance" suffered in the considered application because of identifiability issues. Building on this, we propose a robust approach to address the identifiability problem in a principled way, by maximizing the "performance" with respect to the worst-case reward in the feasible set. We then develop Rob-ReL, a ReL algorithm that applies this robust approach to the subset of ReL problems aimed at assessing a preference between two policies, and we provide theoretical guarantees on sample and iteration complexity for Rob-ReL. We conclude with a proof-of-concept experiment to illustrate the considered setting.
♻ ☆ Deep learning joint extremes of metocean variables using the SPAR model
This paper presents a novel deep learning framework for estimating multivariate joint extremes of metocean variables, based on the Semi-Parametric Angular-Radial (SPAR) model. When considered in polar coordinates, the problem of modelling multivariate extremes is transformed to one of modelling an angular density, and the tail of a univariate radial variable conditioned on angle. In the SPAR approach, the tail of the radial variable is modelled using a generalised Pareto (GP) distribution, providing a natural extension of univariate extreme value theory to the multivariate setting. In this work, we show how the method can be applied in higher dimensions, using a case study for five metocean variables: wind speed, wind direction, wave height, wave period, and wave direction. The angular variable is modelled using a kernel density method, while the parameters of the GP model are approximated using fully-connected deep neural networks. Our approach provides great flexibility in the dependence structures that can be represented, together with computationally efficient routines for training the model. Furthermore, the application of the method requires fewer assumptions about the underlying distribution(s) compared to existing approaches, and an asymptotically justified means for extrapolating outside the range of observations. Using various diagnostic plots, we show that the fitted models provide a good description of the joint extremes of the metocean variables considered.
♻ ☆ Learned Controllers for Agile Quadrotors in Pursuit-Evasion Games
We address the problem of agile 1v1 quadrotor pursuit-evasion, where a pursuer and an evader learn to outmaneuver each other through reinforcement learning (RL). Such settings face two major challenges: non-stationarity, since each agent's evolving policy alters the environment dynamics and destabilizes training, and catastrophic forgetting, where a policy overfits to the current adversary and loses effectiveness against previously encountered strategies. To tackle these issues, we propose an Asynchronous Multi-Stage Population-Based (AMSPB) algorithm. At each stage, the pursuer and evader are trained asynchronously against a frozen pool of opponents sampled from a growing population of past and current policies, stabilizing training and ensuring exposure to diverse behaviors. Within this framework, we train neural network controllers that output either velocity commands or body rates with collective thrust. Experiments in a high-fidelity simulator show that: (i) AMSPB-trained RL policies outperform RL and geometric baselines; (ii) body-rate-and-thrust controllers achieve more agile flight than velocity-based controllers, leading to better pursuit-evasion performance; (iii) AMSPB yields stable, monotonic gains across stages; and (iv) trained policies in one arena size generalize fairly well to other sizes without retraining.
comment: Under review
♻ ☆ Unearthing Gems from Stones: Policy Optimization with Negative Sample Augmentation for LLM Reasoning
Recent advances in reasoning language models have witnessed a paradigm shift from short to long CoT pattern. Given the substantial computational cost of rollouts in long CoT models, maximizing the utility of fixed training datasets becomes crucial. Our analysis reveals that negative responses contain valuable components such as self-reflection and error-correction steps, yet primary existing methods either completely discard negative samples (RFT) or apply equal penalization across all tokens (RL), failing to leverage these potential learning signals. In light of this, we propose Behavior Constrained Policy Gradient with Negative Sample Augmentation (BCPG-NSA), a fine-grained offline RL framework that encompasses three stages: 1) sample segmentation, 2) consensus-based step correctness assessment combining LLM and PRM judgers, and 3) policy optimization with NSA designed to effectively mine positive steps within negative samples. Experimental results show that BCPG-NSA outperforms baselines on several challenging math/coding reasoning benchmarks using the same training dataset, achieving improved sample efficiency and demonstrating robustness and scalability when extended to multiple iterations.
♻ ☆ Learning from Scratch: Structurally-masked Transformer for Next Generation Lib-free Simulation
This paper proposes a neural framework for power and timing prediction of multi-stage data path, distinguishing itself from traditional lib-based analytical methods dependent on driver characterization and load simplifications. To the best of our knowledge, this is the first language-based, netlist-aware neural network designed explicitly for standard cells. Our approach employs two pre-trained neural models of waveform prediction and delay estimation that directly infer transient waveforms and propagation delays from SPICE netlists, conditioned on critical physical parameters such as load capacitance, input slew, and gate size. This method accurately captures both intrinsic and coupling-induced delay effects without requiring simplification or interpolation. For multi-stage timing prediction, we implement a recursive propagation strategy where predicted waveforms from each stage feed into subsequent stages, cumulatively capturing delays across the logic chain. This approach ensures precise timing alignment and complete waveform visibility throughout complex signal pathways. The waveform prediction utilizes a hybrid CNN-Transformer architecture with netlist-aware node-level encoding, addressing traditional Transformers' fixed input dimensionality constraints. Additionally, specialized subnetworks separately handle primary delay estimation and crosstalk correction. Experimental results demonstrate SPICE-level accuracy, consistently achieving RMSE below 0.0098 across diverse industrial circuits. The proposed framework provides a scalable, structurally adaptable neural alternative to conventional power and timing engines, demonstrating high fidelity to physical circuit behaviors.
comment: Prepare for complementary experiments
♻ ☆ Vendi Information Gain for Active Learning and its Application to Ecology
While monitoring biodiversity through camera traps has become an important endeavor for ecological research, identifying species in the captured image data remains a major bottleneck due to limited labeling resources. Active learning -- a machine learning paradigm that selects the most informative data to label and train a predictive model -- offers a promising solution, but typically focuses on uncertainty in the individual predictions without considering uncertainty across the entire dataset. We introduce a new active learning policy, Vendi information gain (VIG), that selects images based on their impact on dataset-wide prediction uncertainty, capturing both informativeness and diversity. We applied VIG to the Snapshot Serengeti dataset and compared it against common active learning methods. VIG needs only 3% of the available data to reach 75\% accuracy, a level that baselines require more than 10% of the data to achieve. With 10% of the data, VIG attains 88\% predictive accuracy, 12% higher than the best of the baselines. This improvement in performance is consistent across metrics and batch sizes, and we show that VIG also collects more diverse data in the feature space. VIG has broad applicability beyond ecology, and our results highlight its value for biodiversity monitoring in data-limited environments.
♻ ☆ Predicting Stock Prices using Permutation Decision Trees and Strategic Trailing
In this paper, we explore the application of Permutation Decision Trees (PDT) and strategic trailing for predicting stock market movements and executing profitable trades in the Indian stock market. We focus on high-frequency data using 5-minute candlesticks for the top 50 stocks listed in the NIFTY 50 index and Forex pairs such as XAUUSD and EURUSD. We implement a trading strategy that aims to buy stocks at lower prices and sell them at higher prices, capitalizing on short-term market fluctuations. Due to regulatory constraints in India, short selling is not considered in our strategy. The model incorporates various technical indicators and employs hyperparameters such as the trailing stop-loss value and support thresholds to manage risk effectively. We trained and tested data on a 3 month dataset provided by Yahoo Finance. Our bot based on Permutation Decision Tree achieved a profit of 1.1802\% over the testing period, where as a bot based on LSTM gave a return of 0.557\% over the testing period and a bot based on RNN gave a return of 0.5896\% over the testing period. All of the bots outperform the buy-and-hold strategy, which resulted in a loss of 2.29\%.
comment: 27 pages
♻ ☆ Early alignment in two-layer networks training is a two-edged sword
Training neural networks with first order optimisation methods is at the core of the empirical success of deep learning. The scale of initialisation is a crucial factor, as small initialisations are generally associated to a feature learning regime, for which gradient descent is implicitly biased towards simple solutions. This work provides a general and quantitative description of the early alignment phase, originally introduced by Maennel et al. (2018). For small initialisation and one hidden ReLU layer networks, the early stage of the training dynamics leads to an alignment of the neurons towards key directions. This alignment induces a sparse representation of the network, which is directly related to the implicit bias of gradient flow at convergence. This sparsity inducing alignment however comes at the expense of difficulties in minimising the training objective: we also provide a simple data example for which overparameterised networks fail to converge towards global minima and only converge to a spurious stationary point instead.
comment: Official JMLR version
♻ ☆ Transformer-Based Multimodal Knowledge Graph Completion with Link-Aware Contexts
Multimodal knowledge graph completion (MMKGC) aims to predict missing links in multimodal knowledge graphs (MMKGs) by leveraging information from various modalities alongside structural data. Existing MMKGC approaches primarily extend traditional knowledge graph embedding (KGE) models, which often require creating an embedding for every entity. This results in large model sizes and inefficiencies in integrating multimodal information, particularly for real-world graphs. Meanwhile, Transformer-based models have demonstrated competitive performance in knowledge graph completion (KGC). However, their focus on single-modal knowledge limits their capacity to utilize cross-modal information. Recently, Large vision-language models (VLMs) have shown potential in cross-modal tasks but are constrained by the high cost of training. In this work, we propose a novel approach that integrates Transformer-based KGE models with cross-modal context generated by pre-trained VLMs, thereby extending their applicability to MMKGC. Specifically, we employ a pre-trained VLM to transform relevant visual information from entities and their neighbors into textual sequences. We then frame KGC as a sequence-to-sequence task, fine-tuning the model with the generated cross-modal context. This simple yet effective method significantly reduces model size compared to traditional KGE approaches while achieving competitive performance across multiple large-scale datasets with minimal hyperparameter tuning.
♻ ☆ Similarity-based Outlier Detection for Noisy Object Re-Identification Using Beta Mixtures
Object re-identification (Re-ID) methods are highly sensitive to label noise, which typically leads to significant performance degradation. We address this challenge by reframing Re-ID as a supervised image similarity task and adopting a Siamese network architecture trained to capture discriminative pairwise relationships. Central to our approach is a novel statistical outlier detection (OD) framework, termed Beta-SOD (Beta mixture Similarity-based Outlier Detection), which models the distribution of cosine similarities between embedding pairs using a two-component Beta distribution mixture model. We establish a novel identifiability result for mixtures of two Beta distributions, ensuring that our learning task is well-posed. The proposed OD step complements the Re-ID architecture combining binary cross-entropy, contrastive, and cosine embedding losses that jointly optimize feature-level similarity learning. We demonstrate the effectiveness of Beta-SOD in de-noising and Re-ID tasks for person Re-ID, on CUHK03 and Market-1501 datasets, and vehicle Re-ID, on VeRi-776 dataset. Our method shows superior performance compared to the state-of-the-art methods across various noise levels (10-30\%), demonstrating both robustness and broad applicability in noisy Re-ID scenarios. The implementation of Beta-SOD is available at: github.com/waqar3411/Beta-SOD
♻ ☆ Low-rank variational dropout: Uncertainty and rank selection in adapters
Parameter-efficient fine-tuning (PEFT) methods such as LoRA adapt large language models by inserting low-rank adapters, but they leave open two key questions: how to give the adapted model calibrated uncertainty, and how to choose the adapter rank. Existing approaches to uncertainty are typically post-hoc, while rank selection is manual and task-specific. BayesLoRA revisits variational dropout in the LoRA setting and shows that the natural unit of stochasticity is not individual weights but entire ranks of the adapter. By placing rank-wise variational distributions over adapter components, BayesLoRA defines a posterior that (i) yields calibrated predictions through adapter-only Monte Carlo sampling and (ii) prunes redundant ranks automatically via an ARD-style KL term. Theoretical analysis shows that this rank-parameterized posterior localizes uncertainty to the adapted subspace and explains amplification under distribution shift. Empirically, BayesLoRA improves calibration while at the same time producing lighter, faster adapters, removing the need to tune ranks by hand. This dual role of uncertainty estimation and uncertainty-driven pruning suggests BayesLoRA may offer a practical default for reliable and efficient PEFT.
comment: 5 pages, 2 figures
♻ ☆ Greedy Low-Rank Gradient Compression for Distributed Learning with Convergence Guarantees
Distributed optimization is pivotal for large-scale signal processing and machine learning, yet communication overhead remains a major bottleneck. Low-rank gradient compression, in which the transmitted gradients are approximated by low-rank matrices to reduce communication, offers a promising remedy. Existing methods typically adopt either randomized or greedy compression strategies: randomized approaches project gradients onto randomly chosen subspaces, introducing high variance and degrading empirical performance; greedy methods select the most informative subspaces, achieving strong empirical results but lacking convergence guarantees. To address this gap, we propose GreedyLore--the first Greedy Low-Rank gradient compression algorithm for distributed learning with rigorous convergence guarantees. GreedyLore incorporates error feedback to correct the bias introduced by greedy compression and introduces a semi-lazy subspace update that ensures the compression operator remains contractive throughout all iterations. With these techniques, we prove that GreedyLore achieves a convergence rate of $\mathcal{O}(\sigma/\sqrt{NT} + 1/T)$ under standard optimizers such as MSGD and Adam--marking the first linear speedup convergence rate for low-rank gradient compression. Extensive experiments are conducted to validate our theoretical findings.
comment: 17 pages, 5 figures
♻ ☆ Industrial Energy Disaggregation with Digital Twin-generated Dataset and Efficient Data Augmentation
Industrial Non-Intrusive Load Monitoring (NILM) is limited by the scarcity of high-quality datasets and the complex variability of industrial energy consumption patterns. To address data scarcity and privacy issues, we introduce the Synthetic Industrial Dataset for Energy Disaggregation (SIDED), an open-source dataset generated using Digital Twin simulations. SIDED includes three types of industrial facilities across three different geographic locations, capturing diverse appliance behaviors, weather conditions, and load profiles. We also propose the Appliance-Modulated Data Augmentation (AMDA) method, a computationally efficient technique that enhances NILM model generalization by intelligently scaling appliance power contributions based on their relative impact. We show in experiments that NILM models trained with AMDA-augmented data significantly improve the disaggregation of energy consumption of complex industrial appliances like combined heat and power systems. Specifically, in our out-of-sample scenarios, models trained with AMDA achieved a Normalized Disaggregation Error of 0.093, outperforming models trained without data augmentation (0.451) and those trained with random data augmentation (0.290). Data distribution analyses confirm that AMDA effectively aligns training and test data distributions, enhancing model generalization.
♻ ☆ Intrinsic Training Signals for Federated Learning Aggregation
Federated Learning (FL) enables collaborative model training across distributed clients while preserving data privacy. While existing approaches for aggregating client-specific classification heads and adapted backbone parameters require architectural modifications or loss function changes, our method uniquely leverages intrinsic training signals already available during standard optimization. We present LIVAR (Layer Importance and VARiance-based merging), which introduces: i) a variance-weighted classifier aggregation scheme using naturally emergent feature statistics, and ii) an explainability-driven LoRA merging technique based on SHAP analysis of existing update parameter patterns. Without any architectural overhead, LIVAR achieves state-of-the-art performance on multiple benchmarks while maintaining seamless integration with existing FL methods. This work demonstrates that effective model merging can be achieved solely through existing training signals, establishing a new paradigm for efficient federated model aggregation. The code is available at https://github.com/aimagelab/fed-mammoth.
♻ ☆ Quantized Neural Networks for Microcontrollers: A Comprehensive Review of Methods, Platforms, and Applications
The deployment of Quantized Neural Networks (QNNs) on resource-constrained devices, such as microcontrollers, has introduced significant challenges in balancing model performance, computational complexity, and memory constraints. Tiny Machine Learning (TinyML) addresses these issues by integrating advancements across machine learning algorithms, hardware acceleration, and software optimization to efficiently run deep neural networks on embedded systems. This survey presents a hardware-centric introduction to quantization, systematically reviewing essential quantization techniques employed to accelerate deep learning models for embedded applications. In particular, further emphasis is placed on the critical trade-offs between model performance and hardware capabilities. The survey further evaluates existing software frameworks and hardware platforms designed specifically for supporting QNN execution on microcontrollers. Moreover, we provide an analysis of the current challenges and an outline of promising future directions in the rapidly evolving domain of QNN deployment.
comment: 39 pages, 16 figures, 8 Tables, submitted to the Proceedings of the IEEE
♻ ☆ Likelihood Ratio Tests by Kernel Gaussian Embedding
We propose a novel kernel-based nonparametric two-sample test, employing the combined use of kernel mean and kernel covariance embedding. Our test builds on recent results showing how such combined embeddings map distinct probability measures to mutually singular Gaussian measures on the kernel's RKHS. Leveraging this ``separation of measure phenomenon", we construct a test statistic based on the relative entropy between the Gaussian embeddings, in effect the likelihood ratio. The likelihood ratio is specifically tailored to detect equality versus singularity of two Gaussians, and satisfies a ``$0/\infty$" law, in that it vanishes under the null and diverges under the alternative. To implement the test in finite samples, we introduce a regularised version, calibrated by way of permutation. We prove consistency, establish uniform power guarantees under mild conditions, and discuss how our framework unifies and extends prior approaches based on spectrally regularized MMD. Empirical results on synthetic and real data demonstrate remarkable gains in power compared to state-of-the-art methods, particularly in high-dimensional and weak-signal regimes.
♻ ☆ Lean Formalization of Generalization Error Bound by Rademacher Complexity
We formalize the generalization error bound using the Rademacher complexity for the Lean 4 theorem prover based on the probability theory in the Mathlib 4 library. Generalization error quantifies the gap between a learning machine's performance on given training data versus unseen test data, and the Rademacher complexity is a powerful tool to upper-bound the generalization error of a variety of modern learning problems. Previous studies have only formalized extremely simple cases such as bounds by parameter counts and analyses for very simple models (decision stumps). Formalizing the Rademacher complexity bound, also known as the uniform law of large numbers, requires substantial development and is achieved for the first time in this study. In the course of development, we formalize the Rademacher complexity and its unique arguments such as symmetrization, and clarify the topological assumptions on hypothesis classes under which the bound holds. As an application, we also present the formalization of generalization error bound for $L^2$-regularization models.
comment: major updated
♻ ☆ Kernel Embeddings and the Separation of Measure Phenomenon
We prove that kernel covariance embeddings lead to information-theoretically perfect separation of distinct probability distributions. In statistical terms, we establish that testing for the equality of two probability measures on a compact and separable metric space is equivalent to testing for the singularity between two centered Gaussian measures on a reproducing kernel Hilbert Space. The corresponding Gaussians are defined via the notion of kernel covariance embedding of a probability measure, and the Hilbert space is that generated by the embedding kernel. Distinguishing singular Gaussians is fundamentally simpler from an information-theoretic perspective than non-parametric two-sample testing, particularly in complex or high-dimensional domains. This is because singular Gaussians are supported on essentially separate and affine subspaces. Our proof leverages the classical Feldman-Hajek dichotomy, and shows that even a small perturbation of a distribution will be maximally magnified through its Gaussian embedding. This ``separation of measure phenomenon'' appears to be a blessing of infinite dimensionality, by means of embedding, with the potential to inform the design of efficient inference tools in considerable generality. The elicitation of this phenomenon also appears to crystallize, in a precise and simple mathematical statement, the outstanding empirical effectiveness of the so-called ``kernel trick".
♻ ☆ Group Expectation Policy Optimization for Heterogeneous Reinforcement Learning
As single-center computing approaches power constraints, decentralized training is becoming essential. Reinforcement Learning (RL) post-training enhances Large Language Models (LLMs) but faces challenges in heterogeneous distributed environments due to its tightly-coupled sampling-learning alternation. We propose HeteroRL, an asynchronous RL architecture that decouples rollout sampling from parameter learning, enabling robust deployment across geographically distributed nodes under network delays. We identify that latency-induced KL divergence causes importance sampling failure due to high variance. To address this, we propose Group Expectation Policy Optimization (GEPO), which reduces importance weight variance through a refined sampling mechanism. Theoretically, GEPO achieves exponential variance reduction. Experiments show it maintains superior stability over methods like GRPO, with less than 3% performance degradation under 1800-second delays, demonstrating strong potential for decentralized RL in heterogeneous networks.
♻ ☆ One Goal, Many Challenges: Robust Preference Optimization Amid Content-Aware and Multi-Source Noise
Large Language Models (LLMs) have made significant strides in generating human-like responses, largely due to preference alignment techniques. However, these methods often assume unbiased human feedback, which is rarely the case in real-world scenarios. This paper introduces Content-Aware Noise-Resilient Preference Optimization (CNRPO), a novel framework that addresses multiple sources of content-dependent noise in preference learning. CNRPO employs a multi-objective optimization approach to separate true preferences from content-aware noises, effectively mitigating their impact. We leverage backdoor attack mechanisms to efficiently learn and control various noise sources within a single model. Theoretical analysis and extensive experiments on different synthetic noisy datasets demonstrate that CNRPO significantly improves alignment with primary human preferences while controlling for secondary noises and biases, such as response length and harmfulness.
♻ ☆ Feasibility of In-Ear Single-Channel ExG for Wearable Sleep Monitoring in Real-World Settings
Automatic sleep staging typically relies on gold-standard EEG setups, which are accurate but obtrusive and impractical for everyday use outside sleep laboratories. This limits applicability in real-world settings, such as home environments, where continuous, long-term monitoring is needed. Detecting sleep onset is particularly relevant, enabling consumer applications (e.g. automatically pausing media playback when the user falls asleep). Recent research has shown correlations between in-ear EEG and full-scalp EEG for various phenomena, suggesting wearable, in-ear devices could allow unobtrusive sleep monitoring. We investigated the feasibility of using single-channel in-ear electrophysiological (ExG) signals for automatic sleep staging in a wearable device by conducting a sleep study with 11 participants (mean age: 24), using a custom earpiece with a dry eartip electrode (D\"atwyler SoftPulse) as a measurement electrode in one ear and a reference in the other. Ground truth sleep stages were obtained from an Apple Watch Ultra, validated for sleep staging. Our system achieved 90.5% accuracy for binary sleep detection (Awake vs. Asleep) and 65.1% accuracy for four-class staging (Awake, REM, Core, Deep) using leave-one-subject-out validation. These findings demonstrate the potential of in-ear electrodes as a low-effort, comfortable approach to sleep monitoring, with applications such as stopping podcasts when users fall asleep.
♻ ☆ Two Sides of the Same Optimization Coin: Model Degradation and Representation Collapse in Graph Foundation Models
Graph foundation models, inspired by the success of LLMs, are designed to learn the optimal embedding from multi-domain TAGs for the downstream cross-task generalization capability. During our investigation, graph VQ-MAE stands out among the increasingly diverse landscape of GFM architectures. This is attributed to its ability to jointly encode topology and textual attributes from multiple domains into discrete embedding spaces with clear semantic boundaries. Despite its potential, domain generalization conflicts cause imperceptible pitfalls. In this paper, we instantiate two of them, and they are just like two sides of the same GFM optimization coin - Side 1 Model Degradation: The encoder and codebook fail to capture the diversity of inputs; Side 2 Representation Collapse: The hidden embedding and codebook vector fail to preserve semantic separability due to constraints from narrow representation subspaces. These two pitfalls (sides) collectively impair the decoder and generate the low-quality reconstructed supervision, causing the GFM optimization dilemma during pre-training (coin). Through empirical investigation, we attribute the above challenges to Information Bottleneck and Regularization Deficit. To address them, we propose MoT (Mixture-of-Tinkers) - (1) Information Tinker for Two Pitfalls, which utilizes an edge-wise semantic fusion strategy and a mixture-of-codebooks with domain-aware routing to improve information capacity. (2) Regularization Tinker for Optimization Coin, which utilizes two additional regularizations to further improve gradient supervision in our proposed Information Tinker. Notably, as a flexible architecture, MoT adheres to the scaling laws of GFM, offering a controllable model scale. Compared to SOTA baselines, experiments on 22 datasets across 6 domains demonstrate that MoT achieves significant improvements in supervised, few-shot, and zero-shot scenarios.
♻ ☆ Intrinsic Dimension Estimating Autoencoder (IDEA) Using CancelOut Layer and a Projected Loss
This paper introduces the Intrinsic Dimension Estimating Autoencoder (IDEA), which identifies the underlying intrinsic dimension of a wide range of datasets whose samples lie on either linear or nonlinear manifolds. Beyond estimating the intrinsic dimension, IDEA is also able to reconstruct the original dataset after projecting it onto the corresponding latent space, which is structured using re-weighted double CancelOut layers. Our key contribution is the introduction of the projected reconstruction loss term, guiding the training of the model by continuously assessing the reconstruction quality under the removal of an additional latent dimension. We first assess the performance of IDEA on a series of theoretical benchmarks to validate its robustness. These experiments allow us to test its reconstruction ability and compare its performance with state-of-the-art intrinsic dimension estimators. The benchmarks show good accuracy and high versatility of our approach. Subsequently, we apply our model to data generated from the numerical solution of a vertically resolved one-dimensional free-surface flow, following a pointwise discretization of the vertical velocity profile in the horizontal direction, vertical direction, and time. IDEA succeeds in estimating the dataset's intrinsic dimension and then reconstructs the original solution by working directly within the projection space identified by the network.
comment: Preprint with 12 pages and 12 figures
♻ ☆ Mechanistic Interpretability of LoRA-Adapted Language Models for Nuclear Reactor Safety Applications
The integration of Large Language Models (LLMs) into safety-critical domains, such as nuclear engineering, necessitates a deep understanding of their internal reasoning processes. This paper presents a novel methodology for interpreting how an LLM encodes and utilizes domain-specific knowledge, using a Boiling Water Reactor system as a case study. We adapted a general-purpose LLM (Gemma-3-1b-it) to the nuclear domain using a parameter-efficient fine-tuning technique known as Low-Rank Adaptation. By comparing the neuron activation patterns of the base model to those of the fine-tuned model, we identified a sparse set of neurons whose behavior was significantly altered during the adaptation process. To probe the causal role of these specialized neurons, we employed a neuron silencing technique. Our results demonstrate that while silencing most of these specialized neurons individually did not produce a statistically significant effect, deactivating the entire group collectively led to a statistically significant degradation in task performance. Qualitative analysis further revealed that silencing these neurons impaired the model's ability to generate detailed, contextually accurate technical information. This paper provides a concrete methodology for enhancing the transparency of an opaque black-box model, allowing domain expertise to be traced to verifiable neural circuits. This offers a pathway towards achieving nuclear-grade artificial intelligence (AI) assurance, addressing the verification and validation challenges mandated by nuclear regulatory frameworks (e.g., 10 CFR 50 Appendix B), which have limited AI deployment in safety-critical nuclear operations.
comment: Accepted for publication in Nuclear Technology. 24 pages, 2 tables, 4 figures
♻ ☆ FOCUS on Contamination: A Geospatial Deep Learning Framework with a Noise-Aware Loss for Surface Water PFAS Prediction
Per- and polyfluoroalkyl substances (PFAS), chemicals found in products like non-stick cookware, are unfortunately persistent environmental pollutants with severe health risks. Accurately mapping PFAS contamination is crucial for guiding targeted remediation efforts and protecting public and environmental health, yet detection across large regions remains challenging due to the cost of testing and the difficulty of simulating their spread. In this work, we introduce FOCUS, a geospatial deep learning framework with a label noise-aware loss function, to predict PFAS contamination in surface water over large regions. By integrating hydrological flow data, land cover information, and proximity to known PFAS sources, our approach leverages both spatial and environmental context to improve prediction accuracy. We evaluate the performance of our approach through extensive ablation studies, robustness analysis, real-world validation, and comparative analyses against baselines like sparse segmentation, as well as existing scientific methods, including Kriging and pollutant transport simulations. Results and expert feedback highlight our framework's potential for scalable PFAS monitoring.
♻ ☆ 'Hello, World!': Making GNNs Talk with LLMs EMNLP 2025
While graph neural networks (GNNs) have shown remarkable performance across diverse graph-related tasks, their high-dimensional hidden representations render them black boxes. In this work, we propose Graph Lingual Network (GLN), a GNN built on large language models (LLMs), with hidden representations in the form of human-readable text. Through careful prompt design, GLN incorporates not only the message passing module of GNNs but also advanced GNN techniques, including graph attention and initial residual connection. The comprehensibility of GLN's hidden representations enables an intuitive analysis of how node representations change (1) across layers and (2) under advanced GNN techniques, shedding light on the inner workings of GNNs. Furthermore, we demonstrate that GLN achieves strong zero-shot performance on node classification and link prediction, outperforming existing LLM-based baseline methods.
comment: Published as a conference paper at EMNLP 2025 Findings. Code and datasets are in https://github.com/kswoo97/GLN-Code
♻ ☆ Steering LVLMs via Sparse Autoencoder for Hallucination Mitigation EMNLP 2025
Large vision-language models (LVLMs) have achieved remarkable performance on multimodal tasks. However, they still suffer from hallucinations, generating text inconsistent with visual input, posing significant risks in real-world applications. Existing approaches to address this issue focus on incorporating external knowledge bases, alignment training, or decoding strategies, all of which require substantial computational cost and time. Recent works try to explore more efficient alternatives by adjusting LVLMs' internal representations. Although promising, these methods may cause hallucinations to be insufficiently suppressed or lead to excessive interventions that negatively affect normal semantics. In this work, we leverage sparse autoencoders (SAEs) to identify semantic directions closely associated with faithfulness or hallucination, extracting more precise and disentangled hallucination-related representations. Our analysis demonstrates that interventions along the identified faithful direction can mitigate hallucinations, while those along the hallucinatory direction can exacerbate them. Building on these insights, we propose Steering LVLMs via SAE Latent Directions (SSL), a plug-and-play method based on SAE-derived latent directions to mitigate hallucinations in LVLMs. Extensive experiments demonstrate that SSL significantly outperforms existing decoding approaches in mitigating hallucinations, while maintaining transferability across different model architectures with negligible additional time overhead. The code is available at https://github.com/huazhenglin2003/SSL.
comment: Accepted to Findings of EMNLP 2025
♻ ☆ TeleRAG: Efficient Retrieval-Augmented Generation Inference with Lookahead Retrieval
Retrieval-augmented generation (RAG) extends large language models (LLMs) with external data sources to enhance factual correctness and domain coverage. Modern RAG pipelines rely on large datastores, leading to system challenges in latency-sensitive deployments, especially when GPU memory is limited. To address these challenges, we propose TeleRAG, an efficient inference system that reduces RAG latency with minimal GPU memory requirements. The core innovation of TeleRAG is lookahead retrieval, a prefetching mechanism that anticipates required data and transfers it from CPU to GPU in parallel with LLM generation. By leveraging the modularity of RAG pipelines, the inverted file index (IVF) search algorithm and similarities between queries, TeleRAG optimally overlaps data movement and computation. Experimental results demonstrate that TeleRAG achieves up to a 1.53x average reduction in end-to-end latency for single-query inference and up to 1.83x average improvement in throughput for batch-query scenarios compared to state-of-the-art systems. This confirms the practical utility of TeleRAG for faster and more memory-efficient deployments of advanced RAG applications.
♻ ☆ Murphys Laws of AI Alignment: Why the Gap Always Wins
We study reinforcement learning from human feedback under misspecification. Sometimes human feedback is systematically wrong on certain types of inputs, like a broken compass that points the wrong way in specific regions. We prove that when feedback is biased on a fraction alpha of contexts with bias strength epsilon, any learning algorithm needs exponentially many samples exp(n*alpha*epsilon^2) to distinguish between two possible "true" reward functions that differ only on these problematic contexts. However, if you can identify where feedback is unreliable (a "calibration oracle"), you can focus your limited questions there and overcome the exponential barrier with just O(1/(alpha*epsilon^2)) queries. This quantifies why alignment is hard: rare edge cases with subtly biased feedback create an exponentially hard learning problem unless you know where to look. The gap between what we optimize (proxy from human feedback) and what we want (true objective) is fundamentally limited by how common the problematic contexts are (alpha), how wrong the feedback is there (epsilon), and how much the true objectives disagree there (gamma). Murphy's Law for AI alignment: the gap always wins unless you actively route around misspecification.
comment: Provides a formal impossibility theorem (Murphys Gap) and welcomes collaboration on large-scale experiments and benchmark design
♻ ☆ Binary Quantization For LLMs Through Dynamic Grouping
Large Language Models (LLMs) have demonstrated remarkable performance across a wide range of Natural Language Processing (NLP) tasks, but require substantial memory and computational resources. Binary quantization, which compresses model weights from 16-bit Brain Float to 1-bit representations in {-1, 1}, offers significant reductions in storage and inference costs. However, such aggressive quantization often leads to notable performance degradation compared to more conservative 4-bit quantization methods. In this research, we propose a novel optimization objective tailored for binary quantization, along with three algorithms designed to realize it effectively. Our method enhances blocked quantization by dynamically identifying optimal unstructured sub-matrices through adaptive grouping strategies. Experimental results demonstrate that our approach achieves an average bit length of just 1.007 bits, while maintaining high model quality. Specifically, our quantized LLaMA 3.2 3B model attains a perplexity of 8.23, remarkably close to the original 7.81, and surpasses previous SOTA BiLLM with a perplexity of only 123.90. Furthermore, our method is competitive with SOTA 4-bit approaches such as GPTQ in both performance and efficiency. The compression process is highly efficient, requiring only 14 seconds to quantize the full LLaMA 3.2 3B weights on a single CPU core, with the entire process completing in under 100 minutes and exhibiting embarrassingly parallel properties. Code - https://github.com/johnnyzheng0636/WGM_bi_quan
comment: An error was identified in the quantization bit width; it is not binary
♻ ☆ Timing Matters: Enhancing User Experience through Temporal Prediction in Smart Homes
The proliferation of IoT devices generates vast interaction data, offering insights into user behaviour. While prior work predicts what actions users perform, the timing of these actions -- critical for enabling proactive and efficient smart systems -- remains relatively underexplored. Addressing this gap, we focus on predicting the time of the next user action in smart environments. Due to the lack of public datasets with fine-grained timestamps suitable for this task and associated privacy concerns, we contribute a dataset of 11.6k sequences synthesized based on human annotations of interaction patterns, pairing actions with precise timestamps. To this end, we introduce Timing-Matters, a Transformer-Encoder based method that predicts action timing, achieving 38.30% accuracy on the synthesized dataset, outperforming the best baseline by 6%, and showing 1--6% improvements on other open datasets. Our code and dataset will be publicly released.
comment: 7 pages + 1 reference, 5 figures, 6 tables
♻ ☆ Piecewise Deterministic Markov Processes for Bayesian Neural Networks
Inference on modern Bayesian Neural Networks (BNNs) often relies on a variational inference treatment, imposing violated assumptions of independence and the form of the posterior. Traditional MCMC approaches avoid these assumptions at the cost of increased computation due to its incompatibility to subsampling of the likelihood. New Piecewise Deterministic Markov Process (PDMP) samplers permit subsampling, though introduce a model specific inhomogenous Poisson Process (IPPs) which is difficult to sample from. This work introduces a new generic and adaptive thinning scheme for sampling from these IPPs, and demonstrates how this approach can accelerate the application of PDMPs for inference in BNNs. Experimentation illustrates how inference with these methods is computationally feasible, can improve predictive accuracy, MCMC mixing performance, and provide informative uncertainty measurements when compared against other approximate inference schemes.
comment: Includes correction to software and corrigendum note (fix supplementary references)
♻ ☆ The Domain Mixed Unit: A New Neural Arithmetic Layer
The Domain Mixed Unit (DMU) is a new neural arithmetic unit that learns a single parameter gate that mixes between log-space and linear-space representations while performing either addition (DMU add) or subtraction (DMU sub). Two initializations are proposed for the DMU: one covering addition and multiplication, and another covering subtraction and division. The DMU achieves state-of-the-art performance on the NALM Benchmark, a dataset designed to test the ability of neural arithmetic units to generalize arithmetic operations, specifically performing with the highest percentage solved over all seeds on multiplication and division. The DMU will be submitted as a pull request to the open-source NALM benchmark, and its code is available on GitHub at https://github.com/marict/nalm-benchmark
comment: Includes results on the NALM benchmark
♻ ☆ Hallucinated Span Detection with Multi-View Attention Features
This study addresses the problem of hallucinated span detection in the outputs of large language models. It has received less attention than output-level hallucination detection despite its practical importance. Prior work has shown that attentions often exhibit irregular patterns when hallucinations occur. Motivated by these findings, we extract features from the attention matrix that provide complementary views capturing (a) whether certain tokens are influential or ignored, (b) whether attention is biased toward specific subsets, and (c) whether a token is generated referring to a narrow or broad context, in the generation. These features are input to a Transformer-based classifier to conduct sequential labelling to identify hallucinated spans. Experimental results indicate that the proposed method outperforms strong baselines on hallucinated span detection with longer input contexts, such as data-to-text and summarisation tasks.
♻ ☆ Prompt Injection Attacks on LLM Generated Reviews of Scientific Publications
The ongoing intense discussion on rising LLM usage in the scientific peer-review process has recently been mingled by reports of authors using hidden prompt injections to manipulate review scores. Since the existence of such "attacks" - although seen by some commentators as "self-defense" - would have a great impact on the further debate, this paper investigates the practicability and technical success of the described manipulations. Our systematic evaluation uses 1k reviews of 2024 ICLR papers generated by a wide range of LLMs shows two distinct results: I) very simple prompt injections are indeed highly effective, reaching up to 100% acceptance scores. II) LLM reviews are generally biased toward acceptance (>95% in many models). Both results have great impact on the ongoing discussions on LLM usage in peer-review.
♻ ☆ STRIDE: Subset-Free Functional Decomposition for XAI in Tabular Settings ICLR 2026
Most explainable AI (XAI) frameworks are limited in their expressiveness, summarizing complex feature effects as single scalar values \phi_i. This approach answers "what" features are important but fails to reveal "how" they interact. Furthermore, methods that attempt to capture interactions, like those based on Shapley values, often face an exponential computational cost. We present STRIDE, a scalable framework that addresses both limitations by reframing explanation as a subset-enumeration-free, orthogonal "functional decomposition" in a Reproducing Kernel Hilbert Space (RKHS). In the tabular setups we study, STRIDE analytically computes functional components f_S(x_S) via a recursive kernel-centering procedure. The approach is model-agnostic and theoretically grounded with results on orthogonality and L^2 convergence. In tabular benchmarks (10 datasets, median over 10 seeds), STRIDE attains a 3.0 times median speedup over TreeSHAP and a mean R^2=0.93 for reconstruction. We also introduce "component surgery", a diagnostic that isolates a learned interaction and quantifies its contribution; on California Housing, removing a single interaction reduces test R^2 from 0.019 to 0.027.
comment: Major revision for submission to ICLR 2026. Substantially revised abstract, introduction, and discussion. Added new 'component surgery' analysis and updated benchmark results for clarity. (12 pages, 2 figures)
♻ ☆ Enhancing Prompt Injection Attacks to LLMs via Poisoning Alignment
Prompt injection attack, where an attacker injects a prompt into the original one, aiming to make an Large Language Model (LLM) follow the injected prompt to perform an attacker-chosen task, represent a critical security threat. Existing attacks primarily focus on crafting these injections at inference time, treating the LLM itself as a static target. Our experiments show that these attacks achieve some success, but there is still significant room for improvement. In this work, we introduces a more foundational attack vector: poisoning the LLM's alignment process to amplify the success of future prompt injection attacks. Specifically, we propose PoisonedAlign, a method that strategically creates poisoned alignment samples to poison an LLM's alignment dataset. Our experiments across five LLMs and two alignment datasets show that when even a small fraction of the alignment data is poisoned, the resulting model becomes substantially more vulnerable to a wide range of prompt injection attacks. Crucially, this vulnerability is instilled while the LLM's performance on standard capability benchmarks remains largely unchanged, making the manipulation difficult to detect through automated, general-purpose performance evaluations. The code for implementing the attack is available at https://github.com/Sadcardation/PoisonedAlign.
♻ ☆ Solved in Unit Domain: JacobiNet for Differentiable Coordinate-Transformed PINNs
Physics-Informed Neural Networks offer a powerful framework for solving PDEs by embedding physical laws into the learning process. However, when applied to domains with irregular boundaries, PINNs often suffer from instability and slow convergence, which stems from (1) inconsistent normalization due to geometric anisotropy, (2) inaccurate boundary enforcements, and (3) imbalanced loss term competition. A common workaround is to map the domain to a regular space. Yet, conventional mapping methods rely on case-specific meshes, define Jacobians at pre-specified fixed nodes, reformulate PDEs via the chain rule-making them incompatible with modern automatic differentiation, tensor-based frameworks. To bridge this gap, we propose JacobiNet, a learning-based coordinate-transformed PINN framework that unifies domain mapping and PDE solving within an end-to-end differentiable architecture. Leveraging lightweight MLPs, JacobiNet learns continuous, differentiable mappings, enables direct Jacobian computation via autograd, shares computation graph with downstream PINNs. Its continuous nature and built-in Jacobian eliminate the need for meshing, explicit Jacobians computation/ storage, and PDE reformulation, while unlocking geometric-editing operations, reducing the mapping cost. Separating physical modeling from geometric complexity, JacobiNet (1) addresses normalization challenges in the original anisotropic coordinates, (2) facilitates hard constraints of boundary conditions, and (3) mitigates the long-standing imbalance among loss terms. Evaluated on various PDEs, JacobiNet reduces the L2 error from 0.11-0.73 to 0.01-0.09. In vessel-like domains with varying shapes, JacobiNet enables millisecond-level mapping inference for unseen geometries, improves prediction accuracy by an average of 3.65*, while delivering over 10* speed up-demonstrating strong generalization, accuracy, and efficiency.
comment: Submitted to CMAME, revision in progress
♻ ☆ K2-Think: A Parameter-Efficient Reasoning System
K2-Think is a reasoning system that achieves state-of-the-art performance with a 32B parameter model, matching or surpassing much larger models like GPT-OSS 120B and DeepSeek v3.1. Built on the Qwen2.5 base model, our system shows that smaller models can compete at the highest levels by combining advanced post-training and test-time computation techniques. The approach is based on six key technical pillars: Long Chain-of-thought Supervised Finetuning, Reinforcement Learning with Verifiable Rewards (RLVR), Agentic planning prior to reasoning, Test-time Scaling, Speculative Decoding, and Inference-optimized Hardware, all using publicly available open-source datasets. K2-Think excels in mathematical reasoning, achieving state-of-the-art scores on public benchmarks for open-source models, while also performing strongly in other areas such as Code and Science. Our results confirm that a more parameter-efficient model like K2-Think 32B can compete with state-of-the-art systems through an integrated post-training recipe that includes long chain-of-thought training and strategic inference-time enhancements, making open-source reasoning systems more accessible and affordable. K2-Think is freely available at k2think.ai, offering best-in-class inference speeds of over 2,000 tokens per second per request via the Cerebras Wafer-Scale Engine.
comment: To access the K2-Think reasoning system, please visit www.k2think.ai
Self-Evolving Curriculum for LLM Reasoning
Reinforcement learning (RL) has proven effective for fine-tuning large language models (LLMs), significantly enhancing their reasoning abilities in domains such as mathematics and code generation. A crucial factor influencing RL fine-tuning success is the training curriculum: the order in which training problems are presented. While random curricula serve as common baselines, they remain suboptimal; manually designed curricula often rely heavily on heuristics, and online filtering methods can be computationally prohibitive. To address these limitations, we propose Self-Evolving Curriculum (SEC), an automatic curriculum learning method that learns a curriculum policy concurrently with the RL fine-tuning process. Our approach formulates curriculum selection as a non-stationary Multi-Armed Bandit problem, treating each problem category (e.g., difficulty level or problem type) as an individual arm. We leverage the absolute advantage from policy gradient methods as a proxy measure for immediate learning gain. At each training step, the curriculum policy selects categories to maximize this reward signal and is updated using the TD(0) method. Across three distinct reasoning domains: planning, inductive reasoning, and mathematics, our experiments demonstrate that SEC significantly improves models' reasoning capabilities, enabling better generalization to harder, out-of-distribution test problems. Additionally, our approach achieves better skill balance when fine-tuning simultaneously on multiple reasoning domains. These findings highlight SEC as a promising strategy for RL fine-tuning of LLMs.
♻ ☆ Expressive Power of Deep Networks on Manifolds: Simultaneous Approximation
A key challenge in scientific machine learning is solving partial differential equations (PDEs) on complex domains, where the curved geometry complicates the approximation of functions and their derivatives required by differential operators. This paper establishes the first simultaneous approximation theory for deep neural networks on manifolds. We prove that a constant-depth $\mathrm{ReLU}^{k-1}$ network with bounded weights--a property that plays a crucial role in controlling generalization error--can approximate any function in the Sobolev space $\mathcal{W}_p^{k}(\mathcal{M}^d)$ to an error of $\varepsilon$ in the $\mathcal{W}_p^{s}(\mathcal{M}^d)$ norm, for $k\geq 3$ and $s
♻ ☆ High-Fidelity Scientific Simulation Surrogates via Adaptive Implicit Neural Representations
Effective surrogate models are critical for accelerating scientific simulations. Implicit neural representations (INRs) offer a compact and continuous framework for modeling spatially structured data, but they often struggle with complex scientific fields exhibiting localized, high-frequency variations. Recent approaches address this by introducing additional features along rigid geometric structures (e.g., grids), but at the cost of flexibility and increased model size. In this paper, we propose a simple yet effective alternative: Feature-Adaptive INR (FA-INR). FA-INR leverages cross-attention to an augmented memory bank to learn flexible feature representations, enabling adaptive allocation of model capacity based on data characteristics, rather than rigid structural assumptions. To further improve scalability, we introduce a coordinate-guided mixture of experts (MoE) that enhances the specialization and efficiency of feature representations. Experiments on three large-scale ensemble simulation datasets show that FA-INR achieves state-of-the-art fidelity while significantly reducing model size, establishing a new trade-off frontier between accuracy and compactness for INR-based surrogates.
♻ ☆ TED: Accelerate Model Training by Internal Generalization ECAI 2024
Large language models have demonstrated strong performance in recent years, but the high cost of training drives the need for efficient methods to compress dataset sizes. We propose TED pruning, a method that addresses the challenge of overfitting under high pruning ratios by quantifying the model's ability to improve performance on pruned data while fitting retained data, known as Internal Generalization (IG). TED uses an optimization objective based on Internal Generalization Distance (IGD), measuring changes in IG before and after pruning to align with true generalization performance and achieve implicit regularization. The IGD optimization objective was verified to allow the model to achieve the smallest upper bound on generalization error. The impact of small mask fluctuations on IG is studied through masks and Taylor approximation, and fast estimation of IGD is enabled. In analyzing continuous training dynamics, the prior effect of IGD is validated, and a progressive pruning strategy is proposed. Experiments on image classification, natural language understanding, and large language model fine-tuning show TED achieves lossless performance with 60-70\% of the data. Upon acceptance, our code will be made publicly available.
comment: ECAI 2024
♻ ☆ LNPT: Label-free Network Pruning and Training IJCNN 2024
Pruning before training enables the deployment of neural networks on smart devices. By retaining weights conducive to generalization, pruned networks can be accommodated on resource-constrained smart devices. It is commonly held that the distance on weight norms between the initialized and the fully-trained networks correlates with generalization performance. However, as we have uncovered, inconsistency between this metric and generalization during training processes, which poses an obstacle to determine the pruned structures on smart devices in advance. In this paper, we introduce the concept of the learning gap, emphasizing its accurate correlation with generalization. Experiments show that the learning gap, in the form of feature maps from the penultimate layer of networks, aligns with variations of generalization performance. We propose a novel learning framework, LNPT, which enables mature networks on the cloud to provide online guidance for network pruning and learning on smart devices with unlabeled data. Our results demonstrate the superiority of this approach over supervised training.
comment: IJCNN 2024
♻ ☆ SEVEN: Pruning Transformer Model by Reserving Sentinels IJCNN 2024
Large-scale Transformer models (TM) have demonstrated outstanding performance across various tasks. However, their considerable parameter size restricts their applicability, particularly on mobile devices. Due to the dynamic and intricate nature of gradients on TM compared to Convolutional Neural Networks, commonly used pruning methods tend to retain weights with larger gradient noise. This results in pruned models that are sensitive to sparsity and datasets, exhibiting suboptimal performance. Symbolic Descent (SD) is a general approach for training and fine-tuning TM. In this paper, we attempt to describe the noisy batch gradient sequences on TM through the cumulative process of SD. We utilize this design to dynamically assess the importance scores of weights.SEVEN is introduced by us, which particularly favors weights with consistently high sensitivity, i.e., weights with small gradient noise. These weights are tended to be preserved by SEVEN. Extensive experiments on various TM in natural language, question-answering, and image classification domains are conducted to validate the effectiveness of SEVEN. The results demonstrate significant improvements of SEVEN in multiple pruning scenarios and across different sparsity levels. Additionally, SEVEN exhibits robust performance under various fine-tuning strategies. The code is publicly available at https://github.com/xiaojinying/SEVEN.
comment: IJCNN 2024
♻ ☆ LogicTree: Structured Proof Exploration for Coherent and Rigorous Logical Reasoning with Large Language Models EMNLP 2025
Large language models (LLMs) have achieved remarkable multi-step reasoning capabilities across various domains. However, LLMs still face distinct challenges in complex logical reasoning, as (1) proof-finding requires systematic exploration and the maintenance of logical coherence and (2) searching the right combination of premises at each reasoning step is inherently challenging in tasks with large premise space. To address this, we propose LogicTree, an inference-time modular framework employing algorithm-guided search to automate structured proof exploration and ensure logical coherence. Advancing beyond tree-of-thought (ToT), we incorporate caching mechanism into LogicTree to enable effective utilization of historical knowledge, preventing reasoning stagnation and minimizing redundancy. Furthermore, we address the combinatorial complexity of premise search by decomposing it into a linear process. The refined premise selection restricts subsequent inference to at most one derivation per step, enhancing reasoning granularity and enforcing strict step-by-step reasoning. Additionally, we introduce two LLM-free heuristics for premise prioritization, enabling strategic proof search. Experimental results on five datasets demonstrate that LogicTree optimally scales inference-time computation to achieve higher proof accuracy, surpassing chain-of-thought (CoT) and ToT with average gains of 23.6% and 12.5%, respectively, on GPT-4o. Moreover, within LogicTree, GPT-4o outperforms o3-mini by 7.6% on average.
comment: EMNLP 2025 Main Conference
Computer Vision and Pattern Recognition
☆ Character-Centric Understanding of Animated Movies
Animated movies are captivating for their unique character designs and imaginative storytelling, yet they pose significant challenges for existing recognition systems. Unlike the consistent visual patterns detected by conventional face recognition methods, animated characters exhibit extreme diversity in their appearance, motion, and deformation. In this work, we propose an audio-visual pipeline to enable automatic and robust animated character recognition, and thereby enhance character-centric understanding of animated movies. Central to our approach is the automatic construction of an audio-visual character bank from online sources. This bank contains both visual exemplars and voice (audio) samples for each character, enabling subsequent multi-modal character recognition despite long-tailed appearance distributions. Building on accurate character recognition, we explore two downstream applications: Audio Description (AD) generation for visually impaired audiences, and character-aware subtitling for the hearing impaired. To support research in this domain, we introduce CMD-AM, a new dataset of 75 animated movies with comprehensive annotations. Our character-centric pipeline demonstrates significant improvements in both accessibility and narrative comprehension for animated content over prior face-detection-based approaches. For the code and dataset, visit https://www.robots.ox.ac.uk/~vgg/research/animated_ad/.
☆ LazyDrag: Enabling Stable Drag-Based Editing on Multi-Modal Diffusion Transformers via Explicit Correspondence
The reliance on implicit point matching via attention has become a core bottleneck in drag-based editing, resulting in a fundamental compromise on weakened inversion strength and costly test-time optimization (TTO). This compromise severely limits the generative capabilities of diffusion models, suppressing high-fidelity inpainting and text-guided creation. In this paper, we introduce LazyDrag, the first drag-based image editing method for Multi-Modal Diffusion Transformers, which directly eliminates the reliance on implicit point matching. In concrete terms, our method generates an explicit correspondence map from user drag inputs as a reliable reference to boost the attention control. This reliable reference opens the potential for a stable full-strength inversion process, which is the first in the drag-based editing task. It obviates the necessity for TTO and unlocks the generative capability of models. Therefore, LazyDrag naturally unifies precise geometric control with text guidance, enabling complex edits that were previously out of reach: opening the mouth of a dog and inpainting its interior, generating new objects like a ``tennis ball'', or for ambiguous drags, making context-aware changes like moving a hand into a pocket. Additionally, LazyDrag supports multi-round workflows with simultaneous move and scale operations. Evaluated on the DragBench, our method outperforms baselines in drag accuracy and perceptual quality, as validated by VIEScore and human evaluation. LazyDrag not only establishes new state-of-the-art performance, but also paves a new way to editing paradigms.
☆ OmniWorld: A Multi-Domain and Multi-Modal Dataset for 4D World Modeling
The field of 4D world modeling - aiming to jointly capture spatial geometry and temporal dynamics - has witnessed remarkable progress in recent years, driven by advances in large-scale generative models and multimodal learning. However, the development of truly general 4D world models remains fundamentally constrained by the availability of high-quality data. Existing datasets and benchmarks often lack the dynamic complexity, multi-domain diversity, and spatial-temporal annotations required to support key tasks such as 4D geometric reconstruction, future prediction, and camera-control video generation. To address this gap, we introduce OmniWorld, a large-scale, multi-domain, multi-modal dataset specifically designed for 4D world modeling. OmniWorld consists of a newly collected OmniWorld-Game dataset and several curated public datasets spanning diverse domains. Compared with existing synthetic datasets, OmniWorld-Game provides richer modality coverage, larger scale, and more realistic dynamic interactions. Based on this dataset, we establish a challenging benchmark that exposes the limitations of current state-of-the-art (SOTA) approaches in modeling complex 4D environments. Moreover, fine-tuning existing SOTA methods on OmniWorld leads to significant performance gains across 4D reconstruction and video generation tasks, strongly validating OmniWorld as a powerful resource for training and evaluation. We envision OmniWorld as a catalyst for accelerating the development of general-purpose 4D world models, ultimately advancing machines' holistic understanding of the physical world.
comment: https://yangzhou24.github.io/OmniWorld/
☆ 3D Human Pose and Shape Estimation from LiDAR Point Clouds: A Review
In this paper, we present a comprehensive review of 3D human pose estimation and human mesh recovery from in-the-wild LiDAR point clouds. We compare existing approaches across several key dimensions, and propose a structured taxonomy to classify these methods. Following this taxonomy, we analyze each method's strengths, limitations, and design choices. In addition, (i) we perform a quantitative comparison of the three most widely used datasets, detailing their characteristics; (ii) we compile unified definitions of all evaluation metrics; and (iii) we establish benchmark tables for both tasks on these datasets to enable fair comparisons and promote progress in the field. We also outline open challenges and research directions critical for advancing LiDAR-based 3D human understanding. Moreover, we maintain an accompanying webpage that organizes papers according to our taxonomy and continuously update it with new studies: https://github.com/valeoai/3D-Human-Pose-Shape-Estimation-from-LiDAR
☆ Advancing Medical Artificial Intelligence Using a Century of Cases
BACKGROUND: For over a century, the New England Journal of Medicine Clinicopathological Conferences (CPCs) have tested the reasoning of expert physicians and, recently, artificial intelligence (AI). However, prior AI evaluations have focused on final diagnoses without addressing the multifaceted reasoning and presentation skills required of expert discussants. METHODS: Using 7102 CPCs (1923-2025) and 1021 Image Challenges (2006-2025), we conducted extensive physician annotation and automated processing to create CPC-Bench, a physician-validated benchmark spanning 10 text-based and multimodal tasks, against which we evaluated leading large language models (LLMs). Then, we developed "Dr. CaBot," an AI discussant designed to produce written and slide-based video presentations using only the case presentation, modeling the role of the human expert in these cases. RESULTS: When challenged with 377 contemporary CPCs, o3 (OpenAI) ranked the final diagnosis first in 60% of cases and within the top ten in 84% of cases, outperforming a 20-physician baseline; next-test selection accuracy reached 98%. Event-level physician annotations quantified AI diagnostic accuracy per unit of information. Performance was lower on literature search and image tasks; o3 and Gemini 2.5 Pro (Google) achieved 67% accuracy on image challenges. In blinded comparisons of CaBot vs. human expert-generated text, physicians misclassified the source of the differential in 46 of 62 (74%) of trials, and scored CaBot more favorably across quality dimensions. To promote research, we are releasing CaBot and CPC-Bench. CONCLUSIONS: LLMs exceed physician performance on complex text-based differential diagnosis and convincingly emulate expert medical presentations, but image interpretation and literature retrieval remain weaker. CPC-Bench and CaBot may enable transparent and continued tracking of progress in medical AI.
☆ Domain-Adaptive Pretraining Improves Primate Behavior Recognition CVPR 2025
Computer vision for animal behavior offers promising tools to aid research in ecology, cognition, and to support conservation efforts. Video camera traps allow for large-scale data collection, but high labeling costs remain a bottleneck to creating large-scale datasets. We thus need data-efficient learning approaches. In this work, we show that we can utilize self-supervised learning to considerably improve action recognition on primate behavior. On two datasets of great ape behavior (PanAf and ChimpACT), we outperform published state-of-the-art action recognition models by 6.1 %pt. accuracy and 6.3 %pt. mAP, respectively. We achieve this by utilizing a pretrained V-JEPA model and applying domain-adaptive pretraining (DAP), i.e. continuing the pretraining with in-domain data. We show that most of the performance gain stems from the DAP. Our method promises great potential for improving the recognition of animal behavior, as DAP does not require labeled samples. Code is available at https://github.com/ecker-lab/dap-behavior
comment: Oral at the CVPR 2025 Workshop CV4Animals
☆ HoloGarment: 360° Novel View Synthesis of In-the-Wild Garments
Novel view synthesis (NVS) of in-the-wild garments is a challenging task due significant occlusions, complex human poses, and cloth deformations. Prior methods rely on synthetic 3D training data consisting of mostly unoccluded and static objects, leading to poor generalization on real-world clothing. In this paper, we propose HoloGarment (Hologram-Garment), a method that takes 1-3 images or a continuous video of a person wearing a garment and generates 360{\deg} novel views of the garment in a canonical pose. Our key insight is to bridge the domain gap between real and synthetic data with a novel implicit training paradigm leveraging a combination of large-scale real video data and small-scale synthetic 3D data to optimize a shared garment embedding space. During inference, the shared embedding space further enables dynamic video-to-360{\deg} NVS through the construction of a garment "atlas" representation by finetuning a garment embedding on a specific real-world video. The atlas captures garment-specific geometry and texture across all viewpoints, independent of body pose or motion. Extensive experiments show that HoloGarment achieves state-of-the-art performance on NVS of in-the-wild garments from images and videos. Notably, our method robustly handles challenging real-world artifacts -- such as wrinkling, pose variation, and occlusion -- while maintaining photorealism, view consistency, fine texture details, and accurate geometry. Visit our project page for additional results: https://johannakarras.github.io/HoloGarment
☆ LoRA-fine-tuned Large Vision Models for Automated Assessment of Post-SBRT Lung Injury
This study investigates the efficacy of Low-Rank Adaptation (LoRA) for fine-tuning large Vision Models, DinoV2 and SwinV2, to diagnose Radiation-Induced Lung Injury (RILI) from X-ray CT scans following Stereotactic Body Radiation Therapy (SBRT). To evaluate the robustness and efficiency of this approach, we compare LoRA with traditional full fine-tuning and inference-only (no fine-tuning) methods. Cropped images of two sizes (50 mm3 and 75 mm3), centered at the treatment isocenter, in addition to different adaptation techniques for adapting the 2D LVMs for 3D data were used to determine the sensitivity of the models to spatial context. Experimental results show that LoRA achieves comparable or superior performance to traditional fine-tuning while significantly reducing computational costs and training times by requiring fewer trainable parameters.
comment: 5 pages, 5 figures
☆ Multi Anatomy X-Ray Foundation Model
X-ray imaging is a ubiquitous in radiology, yet most existing AI foundation models are limited to chest anatomy and fail to generalize across broader clinical tasks. In this work, we introduce XR-0, the multi-anatomy X-ray foundation model using self-supervised learning on a large, private dataset of 1.15 million images spanning diverse anatomical regions and evaluated across 12 datasets and 20 downstream tasks, including classification, retrieval, segmentation, localization, visual grounding, and report generation. XR-0 achieves state-of-the-art performance on most multi-anatomy tasks and remains competitive on chest-specific benchmarks. Our results demonstrate that anatomical diversity and supervision are critical for building robust, general-purpose medical vision models, paving the way for scalable and adaptable AI systems in radiology.
comment: This work has been submitted to the IEEE for possible publication
☆ Open-ended Hierarchical Streaming Video Understanding with Vision Language Models
We introduce Hierarchical Streaming Video Understanding, a task that combines online temporal action localization with free-form description generation. Given the scarcity of datasets with hierarchical and fine-grained temporal annotations, we demonstrate that LLMs can effectively group atomic actions into higher-level events, enriching existing datasets. We then propose OpenHOUSE (Open-ended Hierarchical Online Understanding System for Events), which extends streaming action perception beyond action classification. OpenHOUSE features a specialized streaming module that accurately detects boundaries between closely adjacent actions, nearly doubling the performance of direct extensions of existing methods. We envision the future of streaming action perception in the integration of powerful generative models, with OpenHOUSE representing a key step in that direction.
comment: 17 pages
☆ 3DViT-GAT: A Unified Atlas-Based 3D Vision Transformer and Graph Learning Framework for Major Depressive Disorder Detection Using Structural MRI Data
Major depressive disorder (MDD) is a prevalent mental health condition that negatively impacts both individual well-being and global public health. Automated detection of MDD using structural magnetic resonance imaging (sMRI) and deep learning (DL) methods holds increasing promise for improving diagnostic accuracy and enabling early intervention. Most existing methods employ either voxel-level features or handcrafted regional representations built from predefined brain atlases, limiting their ability to capture complex brain patterns. This paper develops a unified pipeline that utilizes Vision Transformers (ViTs) for extracting 3D region embeddings from sMRI data and Graph Neural Network (GNN) for classification. We explore two strategies for defining regions: (1) an atlas-based approach using predefined structural and functional brain atlases, and (2) an cube-based method by which ViTs are trained directly to identify regions from uniformly extracted 3D patches. Further, cosine similarity graphs are generated to model interregional relationships, and guide GNN-based classification. Extensive experiments were conducted using the REST-meta-MDD dataset to demonstrate the effectiveness of our model. With stratified 10-fold cross-validation, the best model obtained 78.98% accuracy, 76.54% sensitivity, 81.58% specificity, 81.58% precision, and 78.98% F1-score. Further, atlas-based models consistently outperformed the cube-based approach, highlighting the importance of using domain-specific anatomical priors for MDD detection.
comment: 14 pages, 1 figure, 7 tables
☆ Look Again, Think Slowly: Enhancing Visual Reflection in Vision-Language Models EMNLP2025
Recent advances in text-only "slow-thinking" reasoning have prompted efforts to transfer this capability to vision-language models (VLMs), for training visual reasoning models (\textbf{VRMs}). owever, such transfer faces critical challenges: Effective "slow thinking" in VRMs requires \textbf{visual reflection}, the ability to check the reasoning process based on visual information. Through quantitative analysis, we observe that current VRMs exhibit limited visual reflection, as their attention to visual information diminishes rapidly with longer generated responses. To address this challenge, we propose a new VRM \textbf{Reflection-V}, which enhances visual reflection based on reasoning data construction for cold-start and reward design for reinforcement learning (RL). Firstly, we construct vision-centered reasoning data by leveraging an agent that interacts between VLMs and reasoning LLMs, enabling cold-start learning of visual reflection patterns. Secondly, a visual attention based reward model is employed during RL to encourage reasoning based on visual information. Therefore, \textbf{Reflection-V} demonstrates significant improvements across multiple visual reasoning benchmarks. Furthermore, \textbf{Reflection-V} maintains a stronger and more consistent reliance on visual information during visual reasoning, indicating effective enhancement in visual reflection capabilities.
comment: EMNLP2025 Main
☆ RailSafeNet: Visual Scene Understanding for Tram Safety
Tram-human interaction safety is an important challenge, given that trams frequently operate in densely populated areas, where collisions can range from minor injuries to fatal outcomes. This paper addresses the issue from the perspective of designing a solution leveraging digital image processing, deep learning, and artificial intelligence to improve the safety of pedestrians, drivers, cyclists, pets, and tram passengers. We present RailSafeNet, a real-time framework that fuses semantic segmentation, object detection and a rule-based Distance Assessor to highlight track intrusions. Using only monocular video, the system identifies rails, localises nearby objects and classifies their risk by comparing projected distances with the standard 1435mm rail gauge. Experiments on the diverse RailSem19 dataset show that a class-filtered SegFormer B3 model achieves 65% intersection-over-union (IoU), while a fine-tuned YOLOv8 attains 75.6% mean average precision (mAP) calculated at an intersection over union (IoU) threshold of 0.50. RailSafeNet therefore delivers accurate, annotation-light scene understanding that can warn drivers before dangerous situations escalate. Code available at https://github.com/oValach/RailSafeNet.
comment: 11 pages, 5 figures, EPIA2025
☆ FS-SAM2: Adapting Segment Anything Model 2 for Few-Shot Semantic Segmentation via Low-Rank Adaptation
Few-shot semantic segmentation has recently attracted great attention. The goal is to develop a model capable of segmenting unseen classes using only a few annotated samples. Most existing approaches adapt a pre-trained model by training from scratch an additional module. Achieving optimal performance with these approaches requires extensive training on large-scale datasets. The Segment Anything Model 2 (SAM2) is a foundational model for zero-shot image and video segmentation with a modular design. In this paper, we propose a Few-Shot segmentation method based on SAM2 (FS-SAM2), where SAM2's video capabilities are directly repurposed for the few-shot task. Moreover, we apply a Low-Rank Adaptation (LoRA) to the original modules in order to handle the diverse images typically found in standard datasets, unlike the temporally connected frames used in SAM2's pre-training. With this approach, only a small number of parameters is meta-trained, which effectively adapts SAM2 while benefiting from its impressive segmentation performance. Our method supports any K-shot configuration. We evaluate FS-SAM2 on the PASCAL-5$^i$, COCO-20$^i$ and FSS-1000 datasets, achieving remarkable results and demonstrating excellent computational efficiency during inference. Code is available at https://github.com/fornib/FS-SAM2
comment: Accepted at ICIAP 2025
☆ End-to-End 4D Heart Mesh Recovery Across Full-Stack and Sparse Cardiac MRI
Reconstructing cardiac motion from cine CMR sequences is critical for diagnosis, prediction, and intervention. Existing methods rely on complete CMR stacks to infer full heart motion, limiting their utility in intra-procedural scenarios where only sparse observations are available. We present TetHeart, the first end-to-end framework that unifies full 4D multi-structure heart mesh recovery from both offline full-stack acquisitions and intra-procedural sparse-slice observations. Our method leverages deep deformable tetrahedra, an explicit-implicit hybrid representation, to capture shape and motion in a coherent space shared across cardiac structures. It is initialized from high-quality pre-procedural or offline-acquired full stacks to build detailed, patient-specific heart meshes, which can then be updated using whatever slices are available, from full stacks down to a single slice. We further incorporate several key innovations: (i) an attentive mechanism for slice-adaptive 2D-3D feature assembly that dynamically integrates information from arbitrary numbers of slices at any position, combined with a distillation strategy from full-slice to sparse-slice settings to ensure accurate reconstruction under extreme sparsity; and (ii) a two-stage weakly supervised motion learning scheme requiring only keyframe (e.g., ED and ES) annotations. Trained and validated on three large public datasets and externally evaluated zero-shot on additional private interventional and public CMR datasets, TetHeart achieves state-of-the-art accuracy and strong generalization in both pre- and intra-procedural settings.
☆ Progressive Flow-inspired Unfolding for Spectral Compressive Imaging
Coded aperture snapshot spectral imaging (CASSI) retrieves a 3D hyperspectral image (HSI) from a single 2D compressed measurement, which is a highly challenging reconstruction task. Recent deep unfolding networks (DUNs), empowered by explicit data-fidelity updates and implicit deep denoisers, have achieved the state of the art in CASSI reconstruction. However, existing unfolding approaches suffer from uncontrollable reconstruction trajectories, leading to abrupt quality jumps and non-gradual refinement across stages. Inspired by diffusion trajectories and flow matching, we propose a novel trajectory-controllable unfolding framework that enforces smooth, continuous optimization paths from noisy initial estimates to high-quality reconstructions. To achieve computational efficiency, we design an efficient spatial-spectral Transformer tailored for hyperspectral reconstruction, along with a frequency-domain fusion module to gurantee feature consistency. Experiments on simulation and real data demonstrate that our method achieves better reconstruction quality and efficiency than prior state-of-the-art approaches.
☆ Early Detection of Branched Broomrape (Phelipanche ramosa) Infestation in Tomato Crops Using Leaf Spectral Analysis and Machine Learning
Branched broomrape (Phelipanche ramosa) is a chlorophyll-deficient parasitic weed that threatens tomato production by extracting nutrients from the host. We investigate early detection using leaf-level spectral reflectance (400-2500 nm) and ensemble machine learning. In a field experiment in Woodland, California, we tracked 300 tomato plants across growth stages defined by growing degree days (GDD). Leaf reflectance was acquired with a portable spectrometer and preprocessed (band denoising, 1 nm interpolation, Savitzky-Golay smoothing, correlation-based band reduction). Clear class differences were observed near 1500 nm and 2000 nm water absorption features, consistent with reduced leaf water content in infected plants at early stages. An ensemble combining Random Forest, XGBoost, SVM with RBF kernel, and Naive Bayes achieved 89% accuracy at 585 GDD, with recalls of 0.86 (infected) and 0.93 (noninfected). Accuracy declined at later stages (e.g., 69% at 1568 GDD), likely due to senescence and weed interference. Despite the small number of infected plants and environmental confounders, results show that proximal sensing with ensemble learning enables timely detection of broomrape before canopy symptoms are visible, supporting targeted interventions and reduced yield losses.
comment: Author-accepted version. Accepted and presented at AGRICONTROL 2025 (8th IFAC Conference on Sensing, Control and Automation Technologies for Agriculture), UC Davis, USA. To appear in IFAC-PapersOnLine (Elsevier)
☆ U-Mamba2: Scaling State Space Models for Dental Anatomy Segmentation in CBCT
Cone-Beam Computed Tomography (CBCT) is a widely used 3D imaging technique in dentistry, providing volumetric information about the anatomical structures of jaws and teeth. Accurate segmentation of these anatomies is critical for clinical applications such as diagnosis and surgical planning, but remains time-consuming and challenging. In this paper, we present U-Mamba2, a new neural network architecture designed for multi-anatomy CBCT segmentation in the context of the ToothFairy3 challenge. U-Mamba2 integrates the Mamba2 state space models into the U-Net architecture, enforcing stronger structural constraints for higher efficiency without compromising performance. In addition, we integrate interactive click prompts with cross-attention blocks, pre-train U-Mamba2 using self-supervised learning, and incorporate dental domain knowledge into the model design to address key challenges of dental anatomy segmentation in CBCT. Extensive experiments, including independent tests, demonstrate that U-Mamba2 is both effective and efficient, securing top 3 places in both tasks of the Toothfairy3 challenge. In Task 1, U-Mamba2 achieved a mean Dice of 0.792, HD95 of 93.19 with the held-out test data, with an average inference time of XX (TBC during the ODIN workshop). In Task 2, U-Mamba2 achieved the mean Dice of 0.852 and HD95 of 7.39 with the held-out test data. The code is publicly available at https://github.com/zhiqin1998/UMamba2.
☆ End-to-End Learning of Multi-Organ Implicit Surfaces from 3D Medical Imaging Data
The fine-grained surface reconstruction of different organs from 3D medical imaging can provide advanced diagnostic support and improved surgical planning. However, the representation of the organs is often limited by the resolution, with a detailed higher resolution requiring more memory and computing footprint. Implicit representations of objects have been proposed to alleviate this problem in general computer vision by providing compact and differentiable functions to represent the 3D object shapes. However, architectural and data-related differences prevent the direct application of these methods to medical images. This work introduces ImplMORe, an end-to-end deep learning method using implicit surface representations for multi-organ reconstruction from 3D medical images. ImplMORe incorporates local features using a 3D CNN encoder and performs multi-scale interpolation to learn the features in the continuous domain using occupancy functions. We apply our method for single and multiple organ reconstructions using the totalsegmentator dataset. By leveraging the continuous nature of occupancy functions, our approach outperforms the discrete explicit representation based surface reconstruction approaches, providing fine-grained surface details of the organ at a resolution higher than the given input image. The source code will be made publicly available at: https://github.com/CAMMA-public/ImplMORe
☆ Robust Fetal Pose Estimation across Gestational Ages via Cross-Population Augmentation MICCAI 2025
Fetal motion is a critical indicator of neurological development and intrauterine health, yet its quantification remains challenging, particularly at earlier gestational ages (GA). Current methods track fetal motion by predicting the location of annotated landmarks on 3D echo planar imaging (EPI) time-series, primarily in third-trimester fetuses. The predicted landmarks enable simplification of the fetal body for downstream analysis. While these methods perform well within their training age distribution, they consistently fail to generalize to early GAs due to significant anatomical changes in both mother and fetus across gestation, as well as the difficulty of obtaining annotated early GA EPI data. In this work, we develop a cross-population data augmentation framework that enables pose estimation models to robustly generalize to younger GA clinical cohorts using only annotated images from older GA cohorts. Specifically, we introduce a fetal-specific augmentation strategy that simulates the distinct intrauterine environment and fetal positioning of early GAs. Our experiments find that cross-population augmentation yields reduced variability and significant improvements across both older GA and challenging early GA cases. By enabling more reliable pose estimation across gestation, our work potentially facilitates early clinical detection and intervention in challenging 4D fetal imaging settings. Code is available at https://github.com/sebodiaz/cross-population-pose.
comment: Accepted MICCAI 2025
☆ AvatarSync: Rethinking Talking-Head Animation through Autoregressive Perspective
Existing talking-head animation approaches based on Generative Adversarial Networks (GANs) or diffusion models often suffer from inter-frame flicker, identity drift, and slow inference. These limitations inherent to their video generation pipelines restrict their suitability for applications. To address this, we introduce AvatarSync, an autoregressive framework on phoneme representations that generates realistic and controllable talking-head animations from a single reference image, driven directly text or audio input. In addition, AvatarSync adopts a two-stage generation strategy, decoupling semantic modeling from visual dynamics, which is a deliberate "Divide and Conquer" design. The first stage, Facial Keyframe Generation (FKG), focuses on phoneme-level semantic representation by leveraging the many-to-one mapping from text or audio to phonemes. A Phoneme-to-Visual Mapping is constructed to anchor abstract phonemes to character-level units. Combined with a customized Text-Frame Causal Attention Mask, the keyframes are generated. The second stage, inter-frame interpolation, emphasizes temporal coherence and visual smoothness. We introduce a timestamp-aware adaptive strategy based on a selective state space model, enabling efficient bidirectional context reasoning. To support deployment, we optimize the inference pipeline to reduce latency without compromising visual fidelity. Extensive experiments show that AvatarSync outperforms existing talking-head animation methods in visual fidelity, temporal consistency, and computational efficiency, providing a scalable and controllable solution.
☆ A Computer Vision Pipeline for Individual-Level Behavior Analysis: Benchmarking on the Edinburgh Pig Dataset
Animal behavior analysis plays a crucial role in understanding animal welfare, health status, and productivity in agricultural settings. However, traditional manual observation methods are time-consuming, subjective, and limited in scalability. We present a modular pipeline that leverages open-sourced state-of-the-art computer vision techniques to automate animal behavior analysis in a group housing environment. Our approach combines state-of-the-art models for zero-shot object detection, motion-aware tracking and segmentation, and advanced feature extraction using vision transformers for robust behavior recognition. The pipeline addresses challenges including animal occlusions and group housing scenarios as demonstrated in indoor pig monitoring. We validated our system on the Edinburgh Pig Behavior Video Dataset for multiple behavioral tasks. Our temporal model achieved 94.2% overall accuracy, representing a 21.2 percentage point improvement over existing methods. The pipeline demonstrated robust tracking capabilities with 93.3% identity preservation score and 89.3% object detection precision. The modular design suggests potential for adaptation to other contexts, though further validation across species would be required. The open-source implementation provides a scalable solution for behavior monitoring, contributing to precision pig farming and welfare assessment through automated, objective, and continuous analysis.
comment: 9 figures, Submitted to Computers and Electronics in Agriculture
☆ Layout-Conditioned Autoregressive Text-to-Image Generation via Structured Masking
While autoregressive (AR) models have demonstrated remarkable success in image generation, extending them to layout-conditioned generation remains challenging due to the sparse nature of layout conditions and the risk of feature entanglement. We present Structured Masking for AR-based Layout-to-Image (SMARLI), a novel framework for layoutto-image generation that effectively integrates spatial layout constraints into AR-based image generation. To equip AR model with layout control, a specially designed structured masking strategy is applied to attention computation to govern the interaction among the global prompt, layout, and image tokens. This design prevents mis-association between different regions and their descriptions while enabling sufficient injection of layout constraints into the generation process. To further enhance generation quality and layout accuracy, we incorporate Group Relative Policy Optimization (GRPO) based post-training scheme with specially designed layout reward functions for next-set-based AR models. Experimental results demonstrate that SMARLI is able to seamlessly integrate layout tokens with text and image tokens without compromising generation quality. It achieves superior layoutaware control while maintaining the structural simplicity and generation efficiency of AR models.
comment: 10 pages, 3 figures
☆ Exploring Efficient Open-Vocabulary Segmentation in the Remote Sensing
Open-Vocabulary Remote Sensing Image Segmentation (OVRSIS), an emerging task that adapts Open-Vocabulary Segmentation (OVS) to the remote sensing (RS) domain, remains underexplored due to the absence of a unified evaluation benchmark and the domain gap between natural and RS images. To bridge these gaps, we first establish a standardized OVRSIS benchmark (\textbf{OVRSISBench}) based on widely-used RS segmentation datasets, enabling consistent evaluation across methods. Using this benchmark, we comprehensively evaluate several representative OVS/OVRSIS models and reveal their limitations when directly applied to remote sensing scenarios. Building on these insights, we propose \textbf{RSKT-Seg}, a novel open-vocabulary segmentation framework tailored for remote sensing. RSKT-Seg integrates three key components: (1) a Multi-Directional Cost Map Aggregation (RS-CMA) module that captures rotation-invariant visual cues by computing vision-language cosine similarities across multiple directions; (2) an Efficient Cost Map Fusion (RS-Fusion) transformer, which jointly models spatial and semantic dependencies with a lightweight dimensionality reduction strategy; and (3) a Remote Sensing Knowledge Transfer (RS-Transfer) module that injects pre-trained knowledge and facilitates domain adaptation via enhanced upsampling. Extensive experiments on the benchmark show that RSKT-Seg consistently outperforms strong OVS baselines by +3.8 mIoU and +5.9 mACC, while achieving 2x faster inference through efficient aggregation. Our code is \href{https://github.com/LiBingyu01/RSKT-Seg}{\textcolor{blue}{here}}.
☆ RAM++: Robust Representation Learning via Adaptive Mask for All-in-One Image Restoration
This work presents Robust Representation Learning via Adaptive Mask (RAM++), a two-stage framework for all-in-one image restoration. RAM++ integrates high-level semantic understanding with low-level texture generation to achieve content-oriented robust restoration. It addresses the limitations of existing degradation-oriented methods in extreme scenarios (e.g., degradations strongly coupled with image structures). RAM++ also mitigates common challenges such as unbalanced performance across tasks, overfitting to seen degradations, and weak generalization to unseen ones through three key designs: 1) Adaptive Semantic-Aware Mask (AdaSAM): a pretraining strategy that applies pixel-level masks to semantically rich and textured regions. This design enables the network to learn both generative priors and image content priors from various degradations. 2) Mask Attribute Conductance (MAC): a selective fine-tuning strategy that adjusts the layers with higher contributions to bridge the integrity gap between masked pretraining and full-image fine-tuning while retaining learned priors. 3) Robust Feature Regularization (RFR): a strategy that leverages DINOv2's semantically consistent and degradation-invariant representations, together with efficient feature fusion, to achieve faithful and semantically coherent restoration. With these designs, RAM++ achieves robust, well-balanced, and state-of-the-art performance across seen, unseen, extreme, and mixed degradations. Our code and model will be released at https://github.com/DragonisCV/RAM
comment: 18 pages, 22 figures
☆ Robust Concept Erasure in Diffusion Models: A Theoretical Perspective on Security and Robustness
Diffusion models have achieved unprecedented success in image generation but pose increasing risks in terms of privacy, fairness, and security. A growing demand exists to \emph{erase} sensitive or harmful concepts (e.g., NSFW content, private individuals, artistic styles) from these models while preserving their overall generative capabilities. We introduce \textbf{SCORE} (Secure and Concept-Oriented Robust Erasure), a novel framework for robust concept removal in diffusion models. SCORE formulates concept erasure as an \emph{adversarial independence} problem, theoretically guaranteeing that the model's outputs become statistically independent of the erased concept. Unlike prior heuristic methods, SCORE minimizes the mutual information between a target concept and generated outputs, yielding provable erasure guarantees. We provide formal proofs establishing convergence properties and derive upper bounds on residual concept leakage. Empirically, we evaluate SCORE on Stable Diffusion and FLUX across four challenging benchmarks: object erasure, NSFW removal, celebrity face suppression, and artistic style unlearning. SCORE consistently outperforms state-of-the-art methods including EraseAnything, ANT, MACE, ESD, and UCE, achieving up to \textbf{12.5\%} higher erasure efficacy while maintaining comparable or superior image quality. By integrating adversarial optimization, trajectory consistency, and saliency-driven fine-tuning, SCORE sets a new standard for secure and robust concept erasure in diffusion models.
comment: Camera ready version
☆ Data-driven Smile Design: Personalized Dental Aesthetics Outcomes Using Deep Learning
A healthy smile plays a significant role in functional as well as esthetic considerations, improving confidence. It is difficult for dental professionals to strike a balance between esthetic requirements and functional requirements. Traditional smile design has had heavy reliance on dentist expertise and used plaster models and hand drawings, raising questions about the outcome for patients. Digital technology, led by Dr. Christian Coachman in 2007, allows photographic and videographic assessments, enabling improved intercommunication among specialists and patients. Advances in artificial intelligence (AI) and big data have supported analysis of facial features and development of personalized smile designs in the last few years. Outputs are, however, susceptible to practitioner bias or limitations of training data, and may be suboptimal for individual users. The study presented here suggests a comprehensive system integrating AI, big data, and recognition technologies to automate the smile design process so that both experienced and inexperienced dentists can generate pleasing aesthetics with ease. The system has a Facial Feature Extraction Module and an Image Generation Module, serving diverse practitioner and patient needs. User data can be incorporated in future research for design optimization and testing of virtual and augmented reality for real-time previewing. Data gathered can also be employed in aesthetic preference analyses, which can enhance our knowledge of smile design in dental practice.
comment: 6 pages, 2 figures
☆ Lost in Embeddings: Information Loss in Vision-Language Models
Vision--language models (VLMs) often process visual inputs through a pretrained vision encoder, followed by a projection into the language model's embedding space via a connector component. While crucial for modality fusion, the potential information loss induced by this projection step and its direct impact on model capabilities remain understudied. We introduce two complementary approaches to examine and quantify this loss by analyzing the latent representation space. First, we evaluate semantic information preservation by analyzing changes in k-nearest neighbor relationships between image representations, before and after projection. Second, we directly measure information loss by reconstructing visual embeddings from the projected representation, localizing loss at an image patch level. Experiments reveal that connectors substantially distort the local geometry of visual representations, with k-nearest neighbors diverging by 40--60\% post-projection, correlating with degradation in retrieval performance. The patch-level embedding reconstruction provides interpretable insights for model behavior on visually grounded question-answering tasks, finding that areas of high information loss reliably predict instances where models struggle.
☆ Learning to Generate 4D LiDAR Sequences ICCV 2025
While generative world models have advanced video and occupancy-based data synthesis, LiDAR generation remains underexplored despite its importance for accurate 3D perception. Extending generation to 4D LiDAR data introduces challenges in controllability, temporal stability, and evaluation. We present LiDARCrafter, a unified framework that converts free-form language into editable LiDAR sequences. Instructions are parsed into ego-centric scene graphs, which a tri-branch diffusion model transforms into object layouts, trajectories, and shapes. A range-image diffusion model generates the initial scan, and an autoregressive module extends it into a temporally coherent sequence. The explicit layout design further supports object-level editing, such as insertion or relocation. To enable fair assessment, we provide EvalSuite, a benchmark spanning scene-, object-, and sequence-level metrics. On nuScenes, LiDARCrafter achieves state-of-the-art fidelity, controllability, and temporal consistency, offering a foundation for LiDAR-based simulation and data augmentation.
comment: Abstract Paper (Non-Archival) @ ICCV 2025 Wild3D Workshop; GitHub Repo at https://lidarcrafter.github.io/
☆ CLAIRE: A Dual Encoder Network with RIFT Loss and Phi-3 Small Language Model Based Interpretability for Cross-Modality Synthetic Aperture Radar and Optical Land Cover Segmentation
Accurate land cover classification from satellite imagery is crucial in environmental monitoring and sustainable resource management. However, it remains challenging due to the complexity of natural landscapes, the visual similarity between classes, and the significant class imbalance in the available datasets. To address these issues, we propose a dual encoder architecture that independently extracts modality-specific features from optical and Synthetic Aperture Radar (SAR) imagery, which are then fused using a cross-modality attention-fusion module named Cross-modality Land cover segmentation with Attention and Imbalance-aware Reasoning-Enhanced Explanations (CLAIRE). This fusion mechanism highlights complementary spatial and textural features, enabling the network to better capture detailed and diverse land cover patterns. We incorporate a hybrid loss function that utilizes Weighted Focal Loss and Tversky Loss named RIFT (Rare-Instance Focal-Tversky) to address class imbalance and improve segmentation performance across underrepresented categories. Our model achieves competitive performance across multiple benchmarks: a mean Intersection over Union (mIoU) of 56.02% and Overall Accuracy (OA) of 84.56% on the WHU-OPT-SAR dataset; strong generalization with a mIoU of 59.89% and OA of 73.92% on the OpenEarthMap-SAR dataset; and remarkable robustness under cloud-obstructed conditions, achieving an mIoU of 86.86% and OA of 94.58% on the PIE-RGB-SAR dataset. Additionally, we introduce a metric-driven reasoning module generated by a Small Language Model (Phi-3), which generates expert-level, sample-specific justifications for model predictions, thereby enhancing transparency and interpretability.
comment: 23 pages, 6 figures, 10 tables
☆ Sphere-GAN: a GAN-based Approach for Saliency Estimation in 360° Videos
The recent success of immersive applications is pushing the research community to define new approaches to process 360{\deg} images and videos and optimize their transmission. Among these, saliency estimation provides a powerful tool that can be used to identify visually relevant areas and, consequently, adapt processing algorithms. Although saliency estimation has been widely investigated for 2D content, very few algorithms have been proposed for 360{\deg} saliency estimation. Towards this goal, we introduce Sphere-GAN, a saliency detection model for 360{\deg} videos that leverages a Generative Adversarial Network with spherical convolutions. Extensive experiments were conducted using a public 360{\deg} video saliency dataset, and the results demonstrate that Sphere-GAN outperforms state-of-the-art models in accurately predicting saliency maps.
☆ Graph Algorithm Unrolling with Douglas-Rachford Iterations for Image Interpolation with Guaranteed Initialization
Conventional deep neural nets (DNNs) initialize network parameters at random and then optimize each one via stochastic gradient descent (SGD), resulting in substantial risk of poor-performing local minima.Focusing on the image interpolation problem and leveraging a recent theorem that maps a (pseudo-)linear interpolator {\Theta} to a directed graph filter that is a solution to a MAP problem regularized with a graph shift variation (GSV) prior, we first initialize a directed graph adjacency matrix A based on a known interpolator {\Theta}, establishing a baseline performance.Then, towards further gain, we learn perturbation matrices P and P(2) from data to augment A, whose restoration effects are implemented via Douglas-Rachford (DR) iterations, which we unroll into a lightweight interpretable neural net.Experimental results demonstrate state-of-the-art image interpolation results, while drastically reducing network parameters.
☆ Enriched text-guided variational multimodal knowledge distillation network (VMD) for automated diagnosis of plaque vulnerability in 3D carotid artery MRI
Multimodal learning has attracted much attention in recent years due to its ability to effectively utilize data features from a variety of different modalities. Diagnosing the vulnerability of atherosclerotic plaques directly from carotid 3D MRI images is relatively challenging for both radiologists and conventional 3D vision networks. In clinical practice, radiologists assess patient conditions using a multimodal approach that incorporates various imaging modalities and domain-specific expertise, paving the way for the creation of multimodal diagnostic networks. In this paper, we have developed an effective strategy to leverage radiologists' domain knowledge to automate the diagnosis of carotid plaque vulnerability through Variation inference and Multimodal knowledge Distillation (VMD). This method excels in harnessing cross-modality prior knowledge from limited image annotations and radiology reports within training data, thereby enhancing the diagnostic network's accuracy for unannotated 3D MRI images. We conducted in-depth experiments on the dataset collected in-house and verified the effectiveness of the VMD strategy we proposed.
☆ NeuroGaze-Distill: Brain-informed Distillation and Depression-Inspired Geometric Priors for Robust Facial Emotion Recognition ICLR
Facial emotion recognition (FER) models trained only on pixels often fail to generalize across datasets because facial appearance is an indirect and biased proxy for underlying affect. We present NeuroGaze-Distill, a cross-modal distillation framework that transfers brain-informed priors into an image-only FER student via static Valence/Arousal (V/A) prototypes and a depression-inspired geometric prior (D-Geo). A teacher trained on EEG topographic maps from DREAMER (with MAHNOB-HCI as unlabeled support) produces a consolidated 5x5 V/A prototype grid that is frozen and reused; no EEG-face pairing and no non-visual signals at deployment are required. The student (ResNet-18/50) is trained on FERPlus with conventional CE/KD and two lightweight regularizers: (i) Proto-KD (cosine) aligns student features to the static prototypes; (ii) D-Geo softly shapes the embedding geometry in line with affective findings often reported in depression research (e.g., anhedonia-like contraction in high-valence regions). We evaluate both within-domain (FERPlus validation) and cross-dataset protocols (AffectNet-mini; optional CK+), reporting standard 8-way scores alongside present-only Macro-F1 and balanced accuracy to fairly handle label-set mismatch. Ablations attribute consistent gains to prototypes and D-Geo, and favor 5x5 over denser grids for stability. The method is simple, deployable, and improves robustness without architectural complexity.
comment: Preprint. Vision-only deployment; EEG used only to form static prototypes. Includes appendix, 7 figures and 3 tables. Considering submission to the International Conference on Learning Representations (ICLR) 2026, Rio de Janeiro, Brazil
☆ Integrating Prior Observations for Incremental 3D Scene Graph Prediction ICML
3D semantic scene graphs (3DSSG) provide compact structured representations of environments by explicitly modeling objects, attributes, and relationships. While 3DSSGs have shown promise in robotics and embodied AI, many existing methods rely mainly on sensor data, not integrating further information from semantically rich environments. Additionally, most methods assume access to complete scene reconstructions, limiting their applicability in real-world, incremental settings. This paper introduces a novel heterogeneous graph model for incremental 3DSSG prediction that integrates additional, multi-modal information, such as prior observations, directly into the message-passing process. Utilizing multiple layers, the model flexibly incorporates global and local scene representations without requiring specialized modules or full scene reconstructions. We evaluate our approach on the 3DSSG dataset, showing that GNNs enriched with multi-modal information such as semantic embeddings (e.g., CLIP) and prior observations offer a scalable and generalizable solution for complex, real-world environments. The full source code of the presented architecture will be made available at https://github.com/m4renz/incremental-scene-graph-prediction.
comment: Accepted at 24th International Conference on Machine Learning and Applications (ICMLA'25)
☆ Logit Mixture Outlier Exposure for Fine-grained Out-of-Distribution Detection
The ability to detect out-of-distribution data is essential not only for ensuring robustness against unknown or unexpected input data but also for improving the generalization performance of the model. Among various out-of-distribution detection methods, Outlier Exposure and Mixture Outlier Exposure are promising approaches that enhance out-of-distribution detection performance by exposing the outlier data during training. However, even with these sophisticated techniques, it remains challenging for models to learn the relationships between classes effectively and to distinguish data sampling from in-distribution and out-of-distribution clearly. Therefore, we focus on the logit space, where the properties between class-wise distributions are distinctly separated from those in the input or feature spaces. Specifically, we propose a linear interpolation technique in the logit space that mixes in-distribution and out-of-distribution data to facilitate smoothing logits between classes and improve the out-of-distribution detection performance, particularly for out-of-distribution data that lie close to the in-distribution data. Additionally, we enforce consistency between the logits obtained through mixing in the logit space and those generated via mixing in the input space. Our experiments demonstrate that our logit-space mixing technique reduces the abrupt fluctuations in the model outputs near the decision boundaries, resulting in smoother and more reliable separation between in-distribution and out-of-distribution data. Furthermore, we evaluate the effectiveness of the proposed method on a fine-grained out-of-distribution detection task.
comment: Accepted to DICTA2025
☆ BREA-Depth: Bronchoscopy Realistic Airway-geometric Depth Estimation MICCAI 2025
Monocular depth estimation in bronchoscopy can significantly improve real-time navigation accuracy and enhance the safety of interventions in complex, branching airways. Recent advances in depth foundation models have shown promise for endoscopic scenarios, yet these models often lack anatomical awareness in bronchoscopy, overfitting to local textures rather than capturing the global airway structure, particularly under ambiguous depth cues and poor lighting. To address this, we propose Brea-Depth, a novel framework that integrates airway-specific geometric priors into foundation model adaptation for bronchoscopic depth estimation. Our method introduces a depth-aware CycleGAN, refining the translation between real bronchoscopic images and airway geometries from anatomical data, effectively bridging the domain gap. In addition, we introduce an airway structure awareness loss to enforce depth consistency within the airway lumen while preserving smooth transitions and structural integrity. By incorporating anatomical priors, Brea-Depth enhances model generalization and yields more robust, accurate 3D airway reconstructions. To assess anatomical realism, we introduce Airway Depth Structure Evaluation, a new metric for structural consistency. We validate BREA-Depth on a collected ex vivo human lung dataset and an open bronchoscopic dataset, where it outperforms existing methods in anatomical depth preservation.
comment: The paper has been accepted to MICCAI 2025
☆ SAM-TTT: Segment Anything Model via Reverse Parameter Configuration and Test-Time Training for Camouflaged Object Detection ACM MM 25
This paper introduces a new Segment Anything Model (SAM) that leverages reverse parameter configuration and test-time training to enhance its performance on Camouflaged Object Detection (COD), named SAM-TTT. While most existing SAM-based COD models primarily focus on enhancing SAM by extracting favorable features and amplifying its advantageous parameters, a crucial gap is identified: insufficient attention to adverse parameters that impair SAM's semantic understanding in downstream tasks. To tackle this issue, the Reverse SAM Parameter Configuration Module is proposed to effectively mitigate the influence of adverse parameters in a train-free manner by configuring SAM's parameters. Building on this foundation, the T-Visioner Module is unveiled to strengthen advantageous parameters by integrating Test-Time Training layers, originally developed for language tasks, into vision tasks. Test-Time Training layers represent a new class of sequence modeling layers characterized by linear complexity and an expressive hidden state. By integrating two modules, SAM-TTT simultaneously suppresses adverse parameters while reinforcing advantageous ones, significantly improving SAM's semantic understanding in COD task. Our experimental results on various COD benchmarks demonstrate that the proposed approach achieves state-of-the-art performance, setting a new benchmark in the field. The code will be available at https://github.com/guobaoxiao/SAM-TTT.
comment: accepted by ACM MM 25
☆ Do It Yourself (DIY): Modifying Images for Poems in a Zero-Shot Setting Using Weighted Prompt Manipulation
Poetry is an expressive form of art that invites multiple interpretations, as readers often bring their own emotions, experiences, and cultural backgrounds into their understanding of a poem. Recognizing this, we aim to generate images for poems and improve these images in a zero-shot setting, enabling audiences to modify images as per their requirements. To achieve this, we introduce a novel Weighted Prompt Manipulation (WPM) technique, which systematically modifies attention weights and text embeddings within diffusion models. By dynamically adjusting the importance of specific words, WPM enhances or suppresses their influence in the final generated image, leading to semantically richer and more contextually accurate visualizations. Our approach exploits diffusion models and large language models (LLMs) such as GPT in conjunction with existing poetry datasets, ensuring a comprehensive and structured methodology for improved image generation in the literary domain. To the best of our knowledge, this is the first attempt at integrating weighted prompt manipulation for enhancing imagery in poetic language.
☆ Multi-animal tracking in Transition: Comparative Insights into Established and Emerging Methods
Precision livestock farming requires advanced monitoring tools to meet the increasing management needs of the industry. Computer vision systems capable of long-term multi-animal tracking (MAT) are essential for continuous behavioral monitoring in livestock production. MAT, a specialized subset of multi-object tracking (MOT), shares many challenges with MOT, but also faces domain-specific issues including frequent animal occlusion, highly similar appearances among animals, erratic motion patterns, and a wide range of behavior types. While some existing MAT tools are user-friendly and widely adopted, they often underperform compared to state-of-the-art MOT methods, which can result in inaccurate downstream tasks such as behavior analysis, health state estimation, and related applications. In this study, we benchmarked both MAT and MOT approaches for long-term tracking of pigs. We compared tools such as DeepLabCut and idTracker with MOT-based methods including ByteTrack, DeepSORT, cross-input consistency, and newer approaches like Track-Anything and PromptTrack. All methods were evaluated on a 10-minute pig tracking dataset. Our results demonstrate that, overall, MOT approaches outperform traditional MAT tools, even for long-term tracking scenarios. These findings highlight the potential of recent MOT techniques to enhance the accuracy and reliability of automated livestock tracking.
comment: 21 pages, 3 figures, 5 tables
☆ Dr.V: A Hierarchical Perception-Temporal-Cognition Framework to Diagnose Video Hallucination by Fine-grained Spatial-Temporal Grounding
Recent advancements in large video models (LVMs) have significantly enhance video understanding. However, these models continue to suffer from hallucinations, producing content that conflicts with input videos. To address this issue, we propose Dr.V, a hierarchical framework covering perceptive, temporal, and cognitive levels to diagnose video hallucination by fine-grained spatial-temporal grounding. Dr.V comprises of two key components: a benchmark dataset Dr.V-Bench and a satellite video agent Dr.V-Agent. Dr.V-Bench includes 10k instances drawn from 4,974 videos spanning diverse tasks, each enriched with detailed spatial-temporal annotation. Dr.V-Agent detects hallucinations in LVMs by systematically applying fine-grained spatial-temporal grounding at the perceptive and temporal levels, followed by cognitive level reasoning. This step-by-step pipeline mirrors human-like video comprehension and effectively identifies hallucinations. Extensive experiments demonstrate that Dr.V-Agent is effective in diagnosing hallucination while enhancing interpretability and reliability, offering a practical blueprint for robust video understanding in real-world scenarios. All our data and code are available at https://github.com/Eurekaleo/Dr.V.
comment: 25 pages, 16 figures
☆ Bridging Vision Language Models and Symbolic Grounding for Video Question Answering
Video Question Answering (VQA) requires models to reason over spatial, temporal, and causal cues in videos. Recent vision language models (VLMs) achieve strong results but often rely on shallow correlations, leading to weak temporal grounding and limited interpretability. We study symbolic scene graphs (SGs) as intermediate grounding signals for VQA. SGs provide structured object-relation representations that complement VLMs holistic reasoning. We introduce SG-VLM, a modular framework that integrates frozen VLMs with scene graph grounding via prompting and visual localization. Across three benchmarks (NExT-QA, iVQA, ActivityNet-QA) and multiple VLMs (QwenVL, InternVL), SG-VLM improves causal and temporal reasoning and outperforms prior baselines, though gains over strong VLMs are limited. These findings highlight both the promise and current limitations of symbolic grounding, and offer guidance for future hybrid VLM-symbolic approaches in video understanding.
☆ Segmentation-Driven Initialization for Sparse-view 3D Gaussian Splatting
Sparse-view synthesis remains a challenging problem due to the difficulty of recovering accurate geometry and appearance from limited observations. While recent advances in 3D Gaussian Splatting (3DGS) have enabled real-time rendering with competitive quality, existing pipelines often rely on Structure-from-Motion (SfM) for camera pose estimation, an approach that struggles in genuinely sparse-view settings. Moreover, several SfM-free methods replace SfM with multi-view stereo (MVS) models, but generate massive numbers of 3D Gaussians by back-projecting every pixel into 3D space, leading to high memory costs. We propose Segmentation-Driven Initialization for Gaussian Splatting (SDI-GS), a method that mitigates inefficiency by leveraging region-based segmentation to identify and retain only structurally significant regions. This enables selective downsampling of the dense point cloud, preserving scene fidelity while substantially reducing Gaussian count. Experiments across diverse benchmarks show that SDI-GS reduces Gaussian count by up to 50% and achieves comparable or superior rendering quality in PSNR and SSIM, with only marginal degradation in LPIPS. It further enables faster training and lower memory footprint, advancing the practicality of 3DGS for constrained-view scenarios.
☆ Synthetic Captions for Open-Vocabulary Zero-Shot Segmentation ICCV 2025
Generative vision-language models (VLMs) exhibit strong high-level image understanding but lack spatially dense alignment between vision and language modalities, as our findings indicate. Orthogonal to advancements in generative VLMs, another line of research has focused on representation learning for vision-language alignment, targeting zero-shot inference for dense tasks like segmentation. In this work, we bridge these two directions by densely aligning images with synthetic descriptions generated by VLMs. Synthetic captions are inexpensive, scalable, and easy to generate, making them an excellent source of high-level semantic understanding for dense alignment methods. Empirically, our approach outperforms prior work on standard zero-shot open-vocabulary segmentation benchmarks/datasets, while also being more data-efficient.
comment: ICCV 2025 CDEL Workshop
☆ TrajBooster: Boosting Humanoid Whole-Body Manipulation via Trajectory-Centric Learning
Imitation learning (IL) enables efficient skill acquisition from demonstrations but often struggles with long-horizon tasks and high-precision control due to compounding errors. Residual policy learning offers a promising, model-agnostic solution by refining a base policy through closed-loop corrections. However, existing approaches primarily focus on local corrections to the base policy, lacking a global understanding of state evolution, which limits robustness and generalization to unseen scenarios. To address this, we propose incorporating global dynamics modeling to guide residual policy updates. Specifically, we leverage Koopman operator theory to impose linear time-invariant structure in a learned latent space, enabling reliable state transitions and improved extrapolation for long-horizon prediction and unseen environments. We introduce KORR (Koopman-guided Online Residual Refinement), a simple yet effective framework that conditions residual corrections on Koopman-predicted latent states, enabling globally informed and stable action refinement. We evaluate KORR on long-horizon, fine-grained robotic furniture assembly tasks under various perturbations. Results demonstrate consistent gains in performance, robustness, and generalization over strong baselines. Our findings further highlight the potential of Koopman-based modeling to bridge modern learning methods with classical control theory. For more details, please refer to https://jiachengliu3.github.io/TrajBooster.
☆ Probabilistic Robustness Analysis in High Dimensional Space: Application to Semantic Segmentation Network
Semantic segmentation networks (SSNs) play a critical role in domains such as medical imaging, autonomous driving, and environmental monitoring, where safety hinges on reliable model behavior under uncertainty. Yet, existing probabilistic verification approaches struggle to scale with the complexity and dimensionality of modern segmentation tasks, often yielding guarantees that are too conservative to be practical. We introduce a probabilistic verification framework that is both architecture-agnostic and scalable to high-dimensional outputs. Our approach combines sampling-based reachability analysis with conformal inference (CI) to deliver provable guarantees while avoiding the excessive conservatism of prior methods. To counteract CI's limitations in high-dimensional settings, we propose novel strategies that reduce conservatism without compromising rigor. Empirical evaluation on large-scale segmentation models across CamVid, OCTA-500, Lung Segmentation, and Cityscapes demonstrates that our method provides reliable safety guarantees while substantially tightening bounds compared to SOTA. We also provide a toolbox implementing this technique, available on Github.
☆ FedDAF: Federated Domain Adaptation Using Model Functional Distance WACV 2026
Federated Domain Adaptation (FDA) is a federated learning (FL) approach that improves model performance at the target client by collaborating with source clients while preserving data privacy. FDA faces two primary challenges: domain shifts between source and target data and limited labeled data at the target. Most existing FDA methods focus on domain shifts, assuming ample target data, yet often neglect the combined challenges of both domain shifts and data scarcity. Moreover, approaches that address both challenges fail to prioritize sharing relevant information from source clients according to the target's objective. In this paper, we propose FedDAF, a novel approach addressing both challenges in FDA. FedDAF uses similarity-based aggregation of the global source model and target model by calculating model functional distance from their mean gradient fields computed on target data. This enables effective model aggregation based on the target objective, constructed using target data, even with limited data. While computing model functional distance between these two models, FedDAF computes the angle between their mean gradient fields and then normalizes with the Gompertz function. To construct the global source model, all the local source models are aggregated using simple average in the server. Experiments on real-world datasets demonstrate FedDAF's superiority over existing FL, PFL, and FDA methods in terms of achieving better test accuracy.
comment: 9 pages, 2 figures, 3 tables. Submitted to WACV 2026
☆ MAFS: Masked Autoencoder for Infrared-Visible Image Fusion and Semantic Segmentation
Infrared-visible image fusion methods aim at generating fused images with good visual quality and also facilitate the performance of high-level tasks. Indeed, existing semantic-driven methods have considered semantic information injection for downstream applications. However, none of them investigates the potential for reciprocal promotion between pixel-wise image fusion and cross-modal feature fusion perception tasks from a macroscopic task-level perspective. To address this limitation, we propose a unified network for image fusion and semantic segmentation. MAFS is a parallel structure, containing a fusion sub-network and a segmentation sub-network. On the one hand, We devise a heterogeneous feature fusion strategy to enhance semantic-aware capabilities for image fusion. On the other hand, by cascading the fusion sub-network and a segmentation backbone, segmentation-related knowledge is transferred to promote feature-level fusion-based segmentation. Within the framework, we design a novel multi-stage Transformer decoder to aggregate fine-grained multi-scale fused features efficiently. Additionally, a dynamic factor based on the max-min fairness allocation principle is introduced to generate adaptive weights of two tasks and guarantee smooth training in a multi-task manner. Extensive experiments demonstrate that our approach achieves competitive results compared with state-of-the-art methods. The code is available at https://github.com/Abraham-Einstein/MAFS/.
comment: Accepted by TIP 2025
☆ SpecVLM: Fast Speculative Decoding in Vision-Language Models
Speculative decoding is a powerful way to accelerate autoregressive large language models (LLMs), but directly porting it to vision-language models (VLMs) faces unique systems constraints: the prefill stage is dominated by visual tokens whose count scales with image resolution and video length, inflating both compute and memory, especially the key-value (KV) cache. We study speculative decoding for VLMs and introduce SpecVLM, a practical system that (1) establishes a strong EAGLE-2-style baseline, EagleVLM, delivering 1.5--2.3x end-to-end speedups over full autoregressive inference, and (2) further accelerates VLM inference with an elastic visual compressor that adaptively selects among pruning, pooling, convolution, and resampler primitives to balance FLOPs/parameters and accuracy per input. To avoid costly offline distillation corpora, we propose an online-logit distillation protocol that trains the draft model with on-the-fly teacher logits and penultimate features using a combined cross-entropy and Smooth L1 objective, eliminating storage and preprocessing while remaining compute-efficient. This protocol reveals a training-time scaling effect: longer online training monotonically increases the draft model's average accepted length, improving speculative efficiency. Empirically, SpecVLM achieves additional acceleration, culminating in 2.5--2.9x end-to-end speedups within 5 epochs across LLaVA and MMMU, consistently over resolutions and task difficulties, while preserving the target model's output distribution (lossless decoding). Our code is available at https://github.com/haiduo/SpecVLM.
☆ LFRA-Net: A Lightweight Focal and Region-Aware Attention Network for Retinal Vessel Segmentatio
Retinal vessel segmentation is critical for the early diagnosis of vision-threatening and systemic diseases, especially in real-world clinical settings with limited computational resources. Although significant improvements have been made in deep learning-based segmentation methods, current models still face challenges in extracting tiny vessels and suffer from high computational costs. In this study, we present LFRA-Net by incorporating focal modulation attention at the encoder-decoder bottleneck and region-aware attention in the selective skip connections. LFRA-Net is a lightweight network optimized for precise and effective retinal vascular segmentation. It enhances feature representation and regional focus by efficiently capturing local and global dependencies. LFRA-Net outperformed many state-of-the-art models while maintaining lightweight characteristics with only 0.17 million parameters, 0.66 MB memory size, and 10.50 GFLOPs. We validated it on three publicly available datasets: DRIVE, STARE, and CHASE\_DB. It performed better in terms of Dice score (84.28\%, 88.44\%, and 85.50\%) and Jaccard index (72.86\%, 79.31\%, and 74.70\%) on the DRIVE, STARE, and CHASE\_DB datasets, respectively. LFRA-Net provides an ideal ratio between segmentation accuracy and computational cost compared to existing deep learning methods, which makes it suitable for real-time clinical applications in areas with limited resources. The code can be found at https://github.com/Mehwish4593/LFRA-Net.
☆ Pseudo-D: Informing Multi-View Uncertainty Estimation with Calibrated Neural Training Dynamics
Computer-aided diagnosis systems must make critical decisions from medical images that are often noisy, ambiguous, or conflicting, yet today's models are trained on overly simplistic labels that ignore diagnostic uncertainty. One-hot labels erase inter-rater variability and force models to make overconfident predictions, especially when faced with incomplete or artifact-laden inputs. We address this gap by introducing a novel framework that brings uncertainty back into the label space. Our method leverages neural network training dynamics (NNTD) to assess the inherent difficulty of each training sample. By aggregating and calibrating model predictions during training, we generate uncertainty-aware pseudo-labels that reflect the ambiguity encountered during learning. This label augmentation approach is architecture-agnostic and can be applied to any supervised learning pipeline to enhance uncertainty estimation and robustness. We validate our approach on a challenging echocardiography classification benchmark, demonstrating superior performance over specialized baselines in calibration, selective classification, and multi-view fusion.
☆ FineQuest: Adaptive Knowledge-Assisted Sports Video Understanding via Agent-of-Thoughts Reasoning ACM MM 2025
Video Question Answering (VideoQA) based on Large Language Models (LLMs) has shown potential in general video understanding but faces significant challenges when applied to the inherently complex domain of sports videos. In this work, we propose FineQuest, the first training-free framework that leverages dual-mode reasoning inspired by cognitive science: i) Reactive Reasoning for straightforward sports queries and ii) Deliberative Reasoning for more complex ones. To bridge the knowledge gap between general-purpose models and domain-specific sports understanding, FineQuest incorporates SSGraph, a multimodal sports knowledge scene graph spanning nine sports, which encodes both visual instances and domain-specific terminology to enhance reasoning accuracy. Furthermore, we introduce two new sports VideoQA benchmarks, Gym-QA and Diving-QA, derived from the FineGym and FineDiving datasets, enabling diverse and comprehensive evaluation. FineQuest achieves state-of-the-art performance on these benchmarks as well as the existing SPORTU dataset, while maintains strong general VideoQA capabilities.
comment: ACM MM 2025
☆ SA-UNetv2: Rethinking Spatial Attention U-Net for Retinal Vessel Segmentation
Retinal vessel segmentation is essential for early diagnosis of diseases such as diabetic retinopathy, hypertension, and neurodegenerative disorders. Although SA-UNet introduces spatial attention in the bottleneck, it underuses attention in skip connections and does not address the severe foreground-background imbalance. We propose SA-UNetv2, a lightweight model that injects cross-scale spatial attention into all skip connections to strengthen multi-scale feature fusion and adopts a weighted Binary Cross-Entropy (BCE) plus Matthews Correlation Coefficient (MCC) loss to improve robustness to class imbalance. On the public DRIVE and STARE datasets, SA-UNetv2 achieves state-of-the-art performance with only 1.2MB memory and 0.26M parameters (less than 50% of SA-UNet), and 1 second CPU inference on 592 x 592 x 3 images, demonstrating strong efficiency and deployability in resource-constrained, CPU-only settings.
comment: The code is available at github.com/clguo/SA-UNetv2
☆ Seg2Track-SAM2: SAM2-based Multi-object Tracking and Segmentation for Zero-shot Generalization
Autonomous systems require robust Multi-Object Tracking (MOT) capabilities to operate reliably in dynamic environments. MOT ensures consistent object identity assignment and precise spatial delineation. Recent advances in foundation models, such as SAM2, have demonstrated strong zero-shot generalization for video segmentation, but their direct application to MOTS (MOT+Segmentation) remains limited by insufficient identity management and memory efficiency. This work introduces Seg2Track-SAM2, a framework that integrates pre-trained object detectors with SAM2 and a novel Seg2Track module to address track initialization, track management, and reinforcement. The proposed approach requires no fine-tuning and remains detector-agnostic. Experimental results on KITTI MOT and KITTI MOTS benchmarks show that Seg2Track-SAM2 achieves state-of-the-art (SOTA) performance, ranking fourth overall in both car and pedestrian classes on KITTI MOTS, while establishing a new benchmark in association accuracy (AssA). Furthermore, a sliding-window memory strategy reduces memory usage by up to 75% with negligible performance degradation, supporting deployment under resource constraints. These results confirm that Seg2Track-SAM2 advances MOTS by combining robust zero-shot tracking, enhanced identity preservation, and efficient memory utilization. The code is available at https://github.com/hcmr-lab/Seg2Track-SAM2
☆ MSMA: Multi-Scale Feature Fusion For Multi-Attribute 3D Face Reconstruction From Unconstrained Images
Reconstructing 3D face from a single unconstrained image remains a challenging problem due to diverse conditions in unconstrained environments. Recently, learning-based methods have achieved notable results by effectively capturing complex facial structures and details across varying conditions. Consequently, many existing approaches employ projection-based losses between generated and input images to constrain model training. However, learning-based methods for 3D face reconstruction typically require substantial amounts of 3D facial data, which is difficult and costly to obtain. Consequently, to reduce reliance on labeled 3D face datasets, many existing approaches employ projection-based losses between generated and input images to constrain model training. Nonetheless, despite these advancements, existing approaches frequently struggle to capture detailed and multi-scale features under diverse facial attributes and conditions, leading to incomplete or less accurate reconstructions. In this paper, we propose a Multi-Scale Feature Fusion with Multi-Attribute (MSMA) framework for 3D face reconstruction from unconstrained images. Our method integrates multi-scale feature fusion with a focus on multi-attribute learning and leverages a large-kernel attention module to enhance the precision of feature extraction across scales, enabling accurate 3D facial parameter estimation from a single 2D image. Comprehensive experiments on the MICC Florence, Facewarehouse and custom-collect datasets demonstrate that our approach achieves results on par with current state-of-the-art methods, and in some instances, surpasses SOTA performance across challenging conditions.
☆ A Fully Open and Generalizable Foundation Model for Ultrasound Clinical Applications
Artificial intelligence (AI) that can effectively learn ultrasound representations by integrating multi-source data holds significant promise for advancing clinical care. However, the scarcity of large labeled datasets in real-world clinical environments and the limited generalizability of task-specific models have hindered the development of generalizable clinical AI models for ultrasound applications. In this study, we present EchoCare, a novel ultrasound foundation model for generalist clinical use, developed via self-supervised learning on our curated, publicly available, large-scale dataset EchoCareData. EchoCareData comprises 4.5 million ultrasound images, sourced from over 23 countries across 5 continents and acquired via a diverse range of distinct imaging devices, thus encompassing global cohorts that are multi-center, multi-device, and multi-ethnic. Unlike prior studies that adopt off-the-shelf vision foundation model architectures, we introduce a hierarchical classifier into EchoCare to enable joint learning of pixel-level and representation-level features, capturing both global anatomical contexts and local ultrasound characteristics. With minimal training, EchoCare outperforms state-of-the-art comparison models across 10 representative ultrasound benchmarks of varying diagnostic difficulties, spanning disease diagnosis, lesion segmentation, organ detection, landmark prediction, quantitative regression, imaging enhancement and report generation. The code and pretrained model are publicly released, rendering EchoCare accessible for fine-tuning and local adaptation, supporting extensibility to additional applications. EchoCare provides a fully open and generalizable foundation model to boost the development of AI technologies for diverse clinical ultrasound applications.
☆ Bridging the Gap Between Sparsity and Redundancy: A Dual-Decoding Framework with Global Context for Map Inference
Trajectory data has become a key resource for automated map in-ference due to its low cost, broad coverage, and continuous availability. However, uneven trajectory density often leads to frag-mented roads in sparse areas and redundant segments in dense regions, posing significant challenges for existing methods. To address these issues, we propose DGMap, a dual-decoding framework with global context awareness, featuring Multi-scale Grid Encoding, Mask-enhanced Keypoint Extraction, and Global Context-aware Relation Prediction. By integrating global semantic context with local geometric features, DGMap improves keypoint detection accuracy to reduce road fragmentation in sparse-trajectory areas. Additionally, the Global Context-aware Relation Prediction module suppresses false connections in dense-trajectory regions by modeling long-range trajectory patterns. Experimental results on three real-world datasets show that DGMap outperforms state-of-the-art methods by 5% in APLS, with notable performance gains on trajectory data from the Didi Chuxing platform
☆ Microsurgical Instrument Segmentation for Robot-Assisted Surgery
Accurate segmentation of thin structures is critical for microsurgical scene understanding but remains challenging due to resolution loss, low contrast, and class imbalance. We propose Microsurgery Instrument Segmentation for Robotic Assistance(MISRA), a segmentation framework that augments RGB input with luminance channels, integrates skip attention to preserve elongated features, and employs an Iterative Feedback Module(IFM) for continuity restoration across multiple passes. In addition, we introduce a dedicated microsurgical dataset with fine-grained annotations of surgical instruments including thin objects, providing a benchmark for robust evaluation Dataset available at https://huggingface.co/datasets/KIST-HARILAB/MISAW-Seg. Experiments demonstrate that MISRA achieves competitive performance, improving the mean class IoU by 5.37% over competing methods, while delivering more stable predictions at instrument contacts and overlaps. These results position MISRA as a promising step toward reliable scene parsing for computer-assisted and robotic microsurgery.
comment: 8 pages, 7 figures
☆ DRAG: Data Reconstruction Attack using Guided Diffusion ICML 2025
With the rise of large foundation models, split inference (SI) has emerged as a popular computational paradigm for deploying models across lightweight edge devices and cloud servers, addressing data privacy and computational cost concerns. However, most existing data reconstruction attacks have focused on smaller CNN classification models, leaving the privacy risks of foundation models in SI settings largely unexplored. To address this gap, we propose a novel data reconstruction attack based on guided diffusion, which leverages the rich prior knowledge embedded in a latent diffusion model (LDM) pre-trained on a large-scale dataset. Our method performs iterative reconstruction on the LDM's learned image prior, effectively generating high-fidelity images resembling the original data from their intermediate representations (IR). Extensive experiments demonstrate that our approach significantly outperforms state-of-the-art methods, both qualitatively and quantitatively, in reconstructing data from deep-layer IRs of the vision foundation model. The results highlight the urgent need for more robust privacy protection mechanisms for large models in SI scenarios. Code is available at: https://github.com/ntuaislab/DRAG.
comment: ICML 2025
☆ Advanced Layout Analysis Models for Docling
This technical report documents the development of novel Layout Analysis models integrated into the Docling document-conversion pipeline. We trained several state-of-the-art object detectors based on the RT-DETR, RT-DETRv2 and DFINE architectures on a heterogeneous corpus of 150,000 documents (both openly available and proprietary). Post-processing steps were applied to the raw detections to make them more applicable to the document conversion task. We evaluated the effectiveness of the layout analysis on various document benchmarks using different methodologies while also measuring the runtime performance across different environments (CPU, Nvidia and Apple GPUs). We introduce five new document layout models achieving 20.6% - 23.9% mAP improvement over Docling's previous baseline, with comparable or better runtime. Our best model, "heron-101", attains 78% mAP with 28 ms/image inference time on a single NVIDIA A100 GPU. Extensive quantitative and qualitative experiments establish best practices for training, evaluating, and deploying document-layout detectors, providing actionable guidance for the document conversion community. All trained checkpoints, code, and documentation are released under a permissive license on HuggingFace.
comment: 11 pages. 4 figures. Technical report for the layout models of Docling
☆ The Quest for Universal Master Key Filters in DS-CNNs
A recent study has proposed the "Master Key Filters Hypothesis" for convolutional neural network filters. This paper extends this hypothesis by radically constraining its scope to a single set of just 8 universal filters that depthwise separable convolutional networks inherently converge to. While conventional DS-CNNs employ thousands of distinct trained filters, our analysis reveals these filters are predominantly linear shifts (ax+b) of our discovered universal set. Through systematic unsupervised search, we extracted these fundamental patterns across different architectures and datasets. Remarkably, networks initialized with these 8 unique frozen filters achieve over 80% ImageNet accuracy, and even outperform models with thousands of trainable parameters when applied to smaller datasets. The identified master key filters closely match Difference of Gaussians (DoGs), Gaussians, and their derivatives, structures that are not only fundamental to classical image processing but also strikingly similar to receptive fields in mammalian visual systems. Our findings provide compelling evidence that depthwise convolutional layers naturally gravitate toward this fundamental set of spatial operators regardless of task or architecture. This work offers new insights for understanding generalization and transfer learning through the universal language of these master key filters.
☆ CoachMe: Decoding Sport Elements with a Reference-Based Coaching Instruction Generation Model ACL 2025
Motion instruction is a crucial task that helps athletes refine their technique by analyzing movements and providing corrective guidance. Although recent advances in multimodal models have improved motion understanding, generating precise and sport-specific instruction remains challenging due to the highly domain-specific nature of sports and the need for informative guidance. We propose CoachMe, a reference-based model that analyzes the differences between a learner's motion and a reference under temporal and physical aspects. This approach enables both domain-knowledge learning and the acquisition of a coach-like thinking process that identifies movement errors effectively and provides feedback to explain how to improve. In this paper, we illustrate how CoachMe adapts well to specific sports such as skating and boxing by learning from general movements and then leveraging limited data. Experiments show that CoachMe provides high-quality instructions instead of directions merely in the tone of a coach but without critical information. CoachMe outperforms GPT-4o by 31.6% in G-Eval on figure skating and by 58.3% on boxing. Analysis further confirms that it elaborates on errors and their corresponding improvement methods in the generated instructions. You can find CoachMe here: https://motionxperts.github.io/
comment: Published in Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), ACL 2025. Official version: https://doi.org/10.18653/v1/2025.acl-long.1413
☆ Uncertainty-Aware Retinal Vessel Segmentation via Ensemble Distillation
Uncertainty estimation is critical for reliable medical image segmentation, particularly in retinal vessel analysis, where accurate predictions are essential for diagnostic applications. Deep Ensembles, where multiple networks are trained individually, are widely used to improve medical image segmentation performance. However, training and testing costs increase with the number of ensembles. In this work, we propose Ensemble Distillation as a robust alternative to commonly used uncertainty estimation techniques by distilling the knowledge of multiple ensemble models into a single model. Through extensive experiments on the DRIVE and FIVES datasets, we demonstrate that Ensemble Distillation achieves comparable performance via calibration and segmentation metrics, while significantly reducing computational complexity. These findings suggest that Ensemble distillation provides an efficient and reliable approach for uncertainty estimation in the segmentation of the retinal vessels, making it a promising tool for medical imaging applications.
comment: 5 pages, 5 figure
☆ IMD: A 6-DoF Pose Estimation Benchmark for Industrial Metallic Objects
Object 6DoF (6D) pose estimation is essential for robotic perception, especially in industrial settings. It enables robots to interact with the environment and manipulate objects. However, existing benchmarks on object 6D pose estimation primarily use everyday objects with rich textures and low-reflectivity, limiting model generalization to industrial scenarios where objects are often metallic, texture-less, and highly reflective. To address this gap, we propose a novel dataset and benchmark namely \textit{Industrial Metallic Dataset (IMD)}, tailored for industrial applications. Our dataset comprises 45 true-to-scale industrial components, captured with an RGB-D camera under natural indoor lighting and varied object arrangements to replicate real-world conditions. The benchmark supports three tasks, including video object segmentation, 6D pose tracking, and one-shot 6D pose estimation. We evaluate existing state-of-the-art models, including XMem and SAM2 for segmentation, and BundleTrack and BundleSDF for pose estimation, to assess model performance in industrial contexts. Evaluation results show that our industrial dataset is more challenging than existing household object datasets. This benchmark provides the baseline for developing and comparing segmentation and pose estimation algorithms that better generalize to industrial robotics scenarios.
comment: 8 pages, 19 figures, 2 tables. Accepted in 2025 8th International Conference on Robotics, Control and Automation Engineering (RCAE 2025)
☆ RouteExtract: A Modular Pipeline for Extracting Routes from Paper Maps ICCV 2025
Paper maps remain widely used for hiking and sightseeing because they contain curated trails and locally relevant annotations that are often missing from digital navigation applications such as Google Maps. We propose a pipeline to extract navigable trails from scanned maps, enabling their use in GPS-based navigation. Our method combines georeferencing, U-Net-based binary segmentation, graph construction, and an iterative refinement procedure using a routing engine. We evaluate the full end-to-end pipeline as well as individual components, showing that the approach can robustly recover trail networks from diverse map styles and generate GPS routes suitable for practical use.
comment: Accepted to the Workshop on Graphic Design Understanding and Generation (GDUG) at ICCV 2025. 8 pages, 7 figures
☆ ParaEQsA: Parallel and Asynchronous Embodied Questions Scheduling and Answering ICRA 2026
This paper formulates the Embodied Questions Answering (EQsA) problem, introduces a corresponding benchmark, and proposes a system to tackle the problem. Classical Embodied Question Answering (EQA) is typically formulated as answering one single question by actively exploring a 3D environment. Real deployments, however, often demand handling multiple questions that may arrive asynchronously and carry different urgencies. We formalize this setting as Embodied Questions Answering (EQsA) and present ParaEQsA, a framework for parallel, urgency-aware scheduling and answering. ParaEQsA leverages a group memory module shared among questions to reduce redundant exploration, and a priority-planning module to dynamically schedule questions. To evaluate this setting, we contribute the Parallel Asynchronous Embodied Questions (PAEQs) benchmark containing 40 indoor scenes and five questions per scene (200 in total), featuring asynchronous follow-up questions and urgency labels. We further propose metrics for EQsA performance: Direct Answer Rate (DAR), and Normalized Urgency-Weighted Latency (NUWL), which jointly measure efficiency and responsiveness of this system. ParaEQsA consistently outperforms strong sequential baselines adapted from recent EQA systems, while reducing exploration and delay. Empirical evaluations investigate the relative contributions of priority, urgency modeling, spatial scope, reward estimation, and dependency reasoning within our framework. Together, these results demonstrate that urgency-aware, parallel scheduling is key to making embodied agents responsive and efficient under realistic, multi-question workloads.
comment: 8 pages, 6 figures, 2026 IEEE Conference on Robotics and Automation (ICRA 2026)
☆ MindVL: Towards Efficient and Effective Training of Multimodal Large Language Models on Ascend NPUs
We propose MindVL, a multimodal large langauge model trained on Ascend NPUs. Similar to Qwen2.5-VL, MindVL adopts native-resolution Vision Transformers, which enables it to process images at their original variable resolutions. This design avoids the degradation caused by fixed-resolution tiling while preserving fine-grained details and global layouts, which is crucial for visually dense content such as complex charts and diagrams. To ensure the smooth training of MindVL on Ascend NPUs, we develop Mindspeed-MLLM, a distributed multimodal training framework tailored for Ascend NPUs. To maintain training accuracy, we implement equivalent replacements for certain operators. MindVL undergoes a three-phase training process, namely the warm-up phase, multitask training phase, and supervised instruction tuning phase, to gradually enhance its capabilities. This process starts with basic visual and multimodal pre-training, followed by large-scale multiask trainging and instruction tuning. We also adopt multimodal data packaging and hybrid parallelism techniques, which significantly improve end-to-end training speed. To further boost model performance, we specifically introduce test-time resolution search and model weight averaging. Notably, despite using about 1/10 of the training data required by Qwen2.5-VL, MindVL achieves performance on par with Qwen2.5-VL in evaluations of general multimodal understanding and document/table comprehension. Beyond overall scores, MindVL also delivers leading performance in OCR assessments.
☆ DTGen: Generative Diffusion-Based Few-Shot Data Augmentation for Fine-Grained Dirty Tableware Recognition
Intelligent tableware cleaning is a critical application in food safety and smart homes, but existing methods are limited by coarse-grained classification and scarcity of few-shot data, making it difficult to meet industrialization requirements. We propose DTGen, a few-shot data augmentation scheme based on generative diffusion models, specifically designed for fine-grained dirty tableware recognition. DTGen achieves efficient domain specialization through LoRA, generates diverse dirty images via structured prompts, and ensures data quality through CLIP-based cross-modal filtering. Under extremely limited real few-shot conditions, DTGen can synthesize virtually unlimited high-quality samples, significantly improving classifier performance and supporting fine-grained dirty tableware recognition. We further elaborate on lightweight deployment strategies, promising to transfer DTGen's benefits to embedded dishwashers and integrate with cleaning programs to intelligently regulate energy consumption and detergent usage. Research results demonstrate that DTGen not only validates the value of generative AI in few-shot industrial vision but also provides a feasible deployment path for automated tableware cleaning and food safety monitoring.
☆ Joint-octamamba:an octa joint segmentation network based on feature enhanced mamba
OCTA is a crucial non-invasive imaging technique for diagnosing and monitoring retinal diseases like diabetic retinopathy, age-related macular degeneration, and glaucoma. Current 2D-based methods for retinal vessel (RV) segmentation offer insufficient accuracy. To address this, we propose RVMamba, a novel architecture integrating multiple feature extraction modules with the Mamba state-space model. Moreover, existing joint segmentation models for OCTA data exhibit performance imbalance between different tasks. To simultaneously improve the segmentation of the foveal avascular zone (FAZ) and mitigate this imbalance, we introduce FAZMamba and a unified Joint-OCTAMamba framework. Experimental results on the OCTA-500 dataset demonstrate that Joint-OCTAMamba outperforms existing models across evaluation metrics.The code is available at https://github.com/lc-sfis/Joint-OCTAMamba.
☆ WeatherBench: A Real-World Benchmark Dataset for All-in-One Adverse Weather Image Restoration
Existing all-in-one image restoration approaches, which aim to handle multiple weather degradations within a single framework, are predominantly trained and evaluated using mixed single-weather synthetic datasets. However, these datasets often differ significantly in resolution, style, and domain characteristics, leading to substantial domain gaps that hinder the development and fair evaluation of unified models. Furthermore, the lack of a large-scale, real-world all-in-one weather restoration dataset remains a critical bottleneck in advancing this field. To address these limitations, we present a real-world all-in-one adverse weather image restoration benchmark dataset, which contains image pairs captured under various weather conditions, including rain, snow, and haze, as well as diverse outdoor scenes and illumination settings. The resulting dataset provides precisely aligned degraded and clean images, enabling supervised learning and rigorous evaluation. We conduct comprehensive experiments by benchmarking a variety of task-specific, task-general, and all-in-one restoration methods on our dataset. Our dataset offers a valuable foundation for advancing robust and practical all-in-one image restoration in real-world scenarios. The dataset has been publicly released and is available at https://github.com/guanqiyuan/WeatherBench.
comment: Accepted by ACMMM 2025 Datasets Track
☆ IS-Diff: Improving Diffusion-Based Inpainting with Better Initial Seed
Diffusion models have shown promising results in free-form inpainting. Recent studies based on refined diffusion samplers or novel architectural designs led to realistic results and high data consistency. However, random initialization seed (noise) adopted in vanilla diffusion process may introduce mismatched semantic information in masked regions, leading to biased inpainting results, e.g., low consistency and low coherence with the other unmasked area. To address this issue, we propose the Initial Seed refined Diffusion Model (IS-Diff), a completely training-free approach incorporating distributional harmonious seeds to produce harmonious results. Specifically, IS-Diff employs initial seeds sampled from unmasked areas to imitate the masked data distribution, thereby setting a promising direction for the diffusion procedure. Moreover, a dynamic selective refinement mechanism is proposed to detect severe unharmonious inpaintings in intermediate latent and adjust the strength of our initialization prior dynamically. We validate our method on both standard and large-mask inpainting tasks using the CelebA-HQ, ImageNet, and Places2 datasets, demonstrating its effectiveness across all metrics compared to state-of-the-art inpainting methods.
☆ SpeCa: Accelerating Diffusion Transformers with Speculative Feature Caching
Diffusion models have revolutionized high-fidelity image and video synthesis, yet their computational demands remain prohibitive for real-time applications. These models face two fundamental challenges: strict temporal dependencies preventing parallelization, and computationally intensive forward passes required at each denoising step. Drawing inspiration from speculative decoding in large language models, we present SpeCa, a novel 'Forecast-then-verify' acceleration framework that effectively addresses both limitations. SpeCa's core innovation lies in introducing Speculative Sampling to diffusion models, predicting intermediate features for subsequent timesteps based on fully computed reference timesteps. Our approach implements a parameter-free verification mechanism that efficiently evaluates prediction reliability, enabling real-time decisions to accept or reject each prediction while incurring negligible computational overhead. Furthermore, SpeCa introduces sample-adaptive computation allocation that dynamically modulates resources based on generation complexity, allocating reduced computation for simpler samples while preserving intensive processing for complex instances. Experiments demonstrate 6.34x acceleration on FLUX with minimal quality degradation (5.5% drop), 7.3x speedup on DiT while preserving generation fidelity, and 79.84% VBench score at 6.1x acceleration for HunyuanVideo. The verification mechanism incurs minimal overhead (1.67%-3.5% of full inference costs), establishing a new paradigm for efficient diffusion model inference while maintaining generation quality even at aggressive acceleration ratios. Our codes have been released in Github: \textbf{https://github.com/Shenyi-Z/Cache4Diffusion}
comment: 15 pages, 9 figures, ACM Multimedia 2025
☆ A Controllable 3D Deepfake Generation Framework with Gaussian Splatting
We propose a novel 3D deepfake generation framework based on 3D Gaussian Splatting that enables realistic, identity-preserving face swapping and reenactment in a fully controllable 3D space. Compared to conventional 2D deepfake approaches that suffer from geometric inconsistencies and limited generalization to novel view, our method combines a parametric head model with dynamic Gaussian representations to support multi-view consistent rendering, precise expression control, and seamless background integration. To address editing challenges in point-based representations, we explicitly separate the head and background Gaussians and use pre-trained 2D guidance to optimize the facial region across views. We further introduce a repair module to enhance visual consistency under extreme poses and expressions. Experiments on NeRSemble and additional evaluation videos demonstrate that our method achieves comparable performance to state-of-the-art 2D approaches in identity preservation, as well as pose and expression consistency, while significantly outperforming them in multi-view rendering quality and 3D consistency. Our approach bridges the gap between 3D modeling and deepfake synthesis, enabling new directions for scene-aware, controllable, and immersive visual forgeries, revealing the threat that emerging 3D Gaussian Splatting technique could be used for manipulation attacks.
☆ DUAL-VAD: Dual Benchmarks and Anomaly-Focused Sampling for Video Anomaly Detection
Video Anomaly Detection (VAD) is critical for surveillance and public safety. However, existing benchmarks are limited to either frame-level or video-level tasks, restricting a holistic view of model generalization. This work first introduces a softmax-based frame allocation strategy that prioritizes anomaly-dense segments while maintaining full-video coverage, enabling balanced sampling across temporal scales. Building on this process, we construct two complementary benchmarks. The image-based benchmark evaluates frame-level reasoning with representative frames, while the video-based benchmark extends to temporally localized segments and incorporates an abnormality scoring task.Experiments on UCF-Crime demonstrate improvements at both the frame and video levels, and ablation studies confirm clear advantages of anomaly-focused sampling over uniform and random baselines.
comment: 6 pages in IEEE double-column format, 1 figure, 5 tables. The paper introduces a unified framework for Video Anomaly Detection (VAD) featuring dual benchmarks and an anomaly-focused sampling strategy
☆ Disentangling Content from Style to Overcome Shortcut Learning: A Hybrid Generative-Discriminative Learning Framework
Despite the remarkable success of Self-Supervised Learning (SSL), its generalization is fundamentally hindered by Shortcut Learning, where models exploit superficial features like texture instead of intrinsic structure. We experimentally verify this flaw within the generative paradigm (e.g., MAE) and argue it is a systemic issue also affecting discriminative methods, identifying it as the root cause of their failure on unseen domains. While existing methods often tackle this at a surface level by aligning or separating domain-specific features, they fail to alter the underlying learning mechanism that fosters shortcut dependency. To address this at its core, we propose HyGDL (Hybrid Generative-Discriminative Learning Framework), a hybrid framework that achieves explicit content-style disentanglement. Our approach is guided by the Invariance Pre-training Principle: forcing a model to learn an invariant essence by systematically varying a bias (e.g., style) at the input while keeping the supervision signal constant. HyGDL operates on a single encoder and analytically defines style as the component of a representation that is orthogonal to its style-invariant content, derived via vector projection.
☆ MVQA-68K: A Multi-dimensional and Causally-annotated Dataset with Quality Interpretability for Video Assessment
With the rapid advancement of video generation models such as Sora, video quality assessment (VQA) is becoming increasingly crucial for selecting high-quality videos from large-scale datasets used in pre-training. Traditional VQA methods, typically producing single numerical scores, often lack comprehensiveness and interpretability. To address these challenges, we introduce MVQA-68K, a novel multi-dimensional VQA dataset comprising over 68,000 carefully annotated videos, covering seven essential quality dimensions: overall aesthetics, camera movement, dynamic degree, texture detail, composition, visual quality, and factual consistency. Each annotation includes detailed chain-of-thought reasoning to facilitate interpretability and comprehensive understanding. Extensive experiments demonstrate that MVQA-68K significantly enhances the performance of various multimodal large language models (MLLMs) on the VQA task, achieving state-of-the-art results not only on our internal test set (Fig.1) but also on public benchmarks including LSVQ-test, LSVQ-1080p, and LIVE-VQC. Meantime, incorporating explicit reasoning process during VQA training substantially boosts the zero-shot generalization. Code and dataset will be available at github: https://github.com/Controller01-ai/MVQA-68K
☆ Optimizing Class Distributions for Bias-Aware Multi-Class Learning
We propose BiCDO (Bias-Controlled Class Distribution Optimizer), an iterative, data-centric framework that identifies Pareto optimized class distributions for multi-class image classification. BiCDO enables performance prioritization for specific classes, which is useful in safety-critical scenarios (e.g. prioritizing 'Human' over 'Dog'). Unlike uniform distributions, BiCDO determines the optimal number of images per class to enhance reliability and minimize bias and variance in the objective function. BiCDO can be incorporated into existing training pipelines with minimal code changes and supports any labelled multi-class dataset. We have validated BiCDO using EfficientNet, ResNet and ConvNeXt on CIFAR-10 and iNaturalist21 datasets, demonstrating improved, balanced model performance through optimized data distribution.
comment: This paper has been accepted for the upcoming 59th Hawaii International Conference on System Sciences (HICSS-59)
☆ Hierarchical Identity Learning for Unsupervised Visible-Infrared Person Re-Identification
Unsupervised visible-infrared person re-identification (USVI-ReID) aims to learn modality-invariant image features from unlabeled cross-modal person datasets by reducing the modality gap while minimizing reliance on costly manual annotations. Existing methods typically address USVI-ReID using cluster-based contrastive learning, which represents a person by a single cluster center. However, they primarily focus on the commonality of images within each cluster while neglecting the finer-grained differences among them. To address the limitation, we propose a Hierarchical Identity Learning (HIL) framework. Since each cluster may contain several smaller sub-clusters that reflect fine-grained variations among images, we generate multiple memories for each existing coarse-grained cluster via a secondary clustering. Additionally, we propose Multi-Center Contrastive Learning (MCCL) to refine representations for enhancing intra-modal clustering and minimizing cross-modal discrepancies. To further improve cross-modal matching quality, we design a Bidirectional Reverse Selection Transmission (BRST) mechanism, which establishes reliable cross-modal correspondences by performing bidirectional matching of pseudo-labels. Extensive experiments conducted on the SYSU-MM01 and RegDB datasets demonstrate that the proposed method outperforms existing approaches. The source code is available at: https://github.com/haonanshi0125/HIL.
☆ Gaussian-Plus-SDF SLAM: High-fidelity 3D Reconstruction at 150+ fps
While recent Gaussian-based SLAM methods achieve photorealistic reconstruction from RGB-D data, their computational performance remains a critical bottleneck. State-of-the-art techniques operate at less than 20 fps, significantly lagging behind geometry-centric approaches like KinectFusion (hundreds of fps). This limitation stems from the heavy computational burden: modeling scenes requires numerous Gaussians and complex iterative optimization to fit RGB-D data, where insufficient Gaussian counts or optimization iterations cause severe quality degradation. To address this, we propose a Gaussian-SDF hybrid representation, combining a colorized Signed Distance Field (SDF) for smooth geometry and appearance with 3D Gaussians to capture underrepresented details. The SDF is efficiently constructed via RGB-D fusion (as in geometry-centric methods), while Gaussians undergo iterative optimization. Our representation enables drastic Gaussian reduction (50% fewer) by avoiding full-scene Gaussian modeling, and efficient Gaussian optimization (75% fewer iterations) through targeted appearance refinement. Building upon this representation, we develop GPS-SLAM (Gaussian-Plus-SDF SLAM), a real-time 3D reconstruction system achieving over 150 fps on real-world Azure Kinect sequences -- delivering an order-of-magnitude speedup over state-of-the-art techniques while maintaining comparable reconstruction quality. We will release the source code and data to facilitate future research.
☆ How Auxiliary Reasoning Unleashes GUI Grounding in VLMs
Graphical user interface (GUI) grounding is a fundamental task for building GUI agents. However, general vision-language models (VLMs) struggle with this task due to a lack of specific optimization. We identify a key gap in this paper: while VLMs exhibit significant latent grounding potential, as demonstrated by their performance measured by Pointing Game, they underperform when tasked with outputting explicit coordinates. To address this discrepancy, and bypass the high data and annotation costs of current fine-tuning approaches, we propose three zero-shot auxiliary reasoning methods. By providing explicit spatial cues such as axes, grids and labeled intersections as part of the input image, these methods enable VLMs to articulate their implicit spatial understanding capabilities. We evaluate these methods on four GUI grounding benchmarks across seven open-source and proprietary VLMs. The evaluation results demonstrate that the proposed methods substantially improve the performance of GUI grounding.
☆ SFGNet: Semantic and Frequency Guided Network for Camouflaged Object Detection ICASSP 2026
Camouflaged object detection (COD) aims to segment objects that blend into their surroundings. However, most existing studies overlook the semantic differences among textual prompts of different targets as well as fine-grained frequency features. In this work, we propose a novel Semantic and Frequency Guided Network (SFGNet), which incorporates semantic prompts and frequency-domain features to capture camouflaged objects and improve boundary perception. We further design Multi-Band Fourier Module(MBFM) to enhance the ability of the network in handling complex backgrounds and blurred boundaries. In addition, we design an Interactive Structure Enhancement Block (ISEB) to ensure structural integrity and boundary details in the predictions. Extensive experiments conducted on three COD benchmark datasets demonstrate that our method significantly outperforms state-of-the-art approaches. The core code of the model is available at the following link: https://github.com/winter794444/SFGNetICASSP2026.
comment: This paper has been submitted to ICASSP 2026. Copyright 2026 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, including reprinting/republishing, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work. DOI will be added upon IEEE Xplore publication
☆ Multiple Instance Learning Framework with Masked Hard Instance Mining for Gigapixel Histopathology Image Analysis
Digitizing pathological images into gigapixel Whole Slide Images (WSIs) has opened new avenues for Computational Pathology (CPath). As positive tissue comprises only a small fraction of gigapixel WSIs, existing Multiple Instance Learning (MIL) methods typically focus on identifying salient instances via attention mechanisms. However, this leads to a bias towards easy-to-classify instances while neglecting challenging ones. Recent studies have shown that hard examples are crucial for accurately modeling discriminative boundaries. Applying such an idea at the instance level, we elaborate a novel MIL framework with masked hard instance mining (MHIM-MIL), which utilizes a Siamese structure with a consistency constraint to explore the hard instances. Using a class-aware instance probability, MHIM-MIL employs a momentum teacher to mask salient instances and implicitly mine hard instances for training the student model. To obtain diverse, non-redundant hard instances, we adopt large-scale random masking while utilizing a global recycle network to mitigate the risk of losing key features. Furthermore, the student updates the teacher using an exponential moving average, which identifies new hard instances for subsequent training iterations and stabilizes optimization. Experimental results on cancer diagnosis, subtyping, survival analysis tasks, and 12 benchmarks demonstrate that MHIM-MIL outperforms the latest methods in both performance and efficiency. The code is available at: https://github.com/DearCaat/MHIM-MIL.
comment: 27 pages, 8 figures
☆ Geometric Analysis of Magnetic Labyrinthine Stripe Evolution via U-Net Segmentation
Labyrinthine stripe patterns are common in many physical systems, yet their lack of long-range order makes quantitative characterization challenging. We investigate the evolution of such patterns in bismuth-doped yttrium iron garnet (Bi:YIG) films subjected to a magnetic field annealing protocol. A U-Net deep learning model, trained with synthetic degradations including additive white Gaussian and Simplex noise, enables robust segmentation of experimental magneto-optical images despite noise and occlusions. Building on this segmentation, we develop a geometric analysis pipeline based on skeletonization, graph mapping, and spline fitting, which quantifies local stripe propagation through length and curvature measurements. Applying this framework to 444 images from 12 annealing protocol trials, we analyze the transition from the "quenched" state to a more parallel and coherent "annealed" state, and identify two distinct evolution modes (Type A and Type B) linked to field polarity. Our results provide a quantitative analysis of geometric and topological properties in magnetic stripe patterns and offer new insights into their local structural evolution, and establish a general tool for analyzing complex labyrinthine systems.
comment: 15 pages, 13 figures. This manuscript has been submitted to IEEE Access for possible publication. It has not yet been peer reviewed or accepted
☆ Cross-Platform Scaling of Vision-Language-Action Models from Edge to Cloud GPUs
Vision-Language-Action (VLA) models have emerged as powerful generalist policies for robotic control, yet their performance scaling across model architectures and hardware platforms, as well as their associated power budgets, remain poorly understood. This work presents an evaluation of five representative VLA models -- spanning state-of-the-art baselines and two newly proposed architectures -- targeting edge and datacenter GPU platforms. Using the LIBERO benchmark, we measure accuracy alongside system-level metrics, including latency, throughput, and peak memory usage, under varying edge power constraints and high-performance datacenter GPU configurations. Our results identify distinct scaling trends: (1) architectural choices, such as action tokenization and model backbone size, strongly influence throughput and memory footprint; (2) power-constrained edge devices exhibit non-linear performance degradation, with some configurations matching or exceeding older datacenter GPUs; and (3) high-throughput variants can be achieved without significant accuracy loss. These findings provide actionable insights when selecting and optimizing VLAs across a range of deployment constraints. Our work challenges current assumptions about the superiority of datacenter hardware for robotic inference.
comment: To appear in the Asilomar Conference on Signals, Systems, and Computers 2025
♻ ☆ On the Generalization of Representation Uncertainty in Earth Observation ICCV 2025
Recent advances in Computer Vision have introduced the concept of pretrained representation uncertainty, enabling zero-shot uncertainty estimation. This holds significant potential for Earth Observation (EO), where trustworthiness is critical, yet the complexity of EO data poses challenges to uncertainty-aware methods. In this work, we investigate the generalization of representation uncertainty in EO, considering the domain's unique semantic characteristics. We pretrain uncertainties on large EO datasets and propose an evaluation framework to assess their zero-shot performance in multi-label classification and segmentation EO tasks. Our findings reveal that, unlike uncertainties pretrained on natural images, EO-pretraining exhibits strong generalization across unseen EO domains, geographic locations, and target granularities, while maintaining sensitivity to variations in ground sampling distance. We demonstrate the practical utility of pretrained uncertainties showcasing their alignment with task-specific uncertainties in downstream tasks, their sensitivity to real-world EO image noise, and their ability to generate spatial uncertainty estimates out-of-the-box. Initiating the discussion on representation uncertainty in EO, our study provides insights into its strengths and limitations, paving the way for future research in the field. Code and weights are available at: https://github.com/Orion-AI-Lab/EOUncertaintyGeneralization.
comment: Accepted to ICCV 2025
♻ ☆ Video Signature: In-generation Watermarking for Latent Video Diffusion Models
The rapid development of Artificial Intelligence Generated Content (AIGC) has led to significant progress in video generation but also raises serious concerns about intellectual property protection and reliable content tracing. Watermarking is a widely adopted solution to this issue, but existing methods for video generation mainly follow a post-generation paradigm, which introduces additional computational overhead and often fails to effectively balance the trade-off between video quality and watermark extraction. To address these issues, we propose Video Signature (VIDSIG), an in-generation watermarking method for latent video diffusion models, which enables implicit and adaptive watermark integration during generation. Specifically, we achieve this by partially fine-tuning the latent decoder, where Perturbation-Aware Suppression (PAS) pre-identifies and freezes perceptually sensitive layers to preserve visual quality. Beyond spatial fidelity, we further enhance temporal consistency by introducing a lightweight Temporal Alignment module that guides the decoder to generate coherent frame sequences during fine-tuning. Experimental results show that VIDSIG achieves the best overall performance in watermark extraction, visual quality, and generation efficiency. It also demonstrates strong robustness against both spatial and temporal tampering, highlighting its practicality in real-world scenarios. Our code is available at \href{https://github.com/hardenyu21/Video-Signature}{here}
♻ ☆ HSIDMamba: Exploring Bidirectional State-Space Models for Hyperspectral Denoising
Effectively modeling global context information in hyperspectral image (HSI) denoising is crucial, but prevailing methods using convolution or transformers still face localized or computational efficiency limitations. Inspired by the emerging Selective State Space Model (Mamba) with nearly linear computational complexity and efficient long-term modeling, we present a novel HSI denoising network named HSIDMamba (HSDM). HSDM is tailored to exploit the capture of potential spatial-spectral dependencies effectively and efficiently for HSI denoising. In particular, HSDM comprises multiple Hyperspectral Continuous Scan Blocks (HCSB) to strengthen spatial-spectral interactions. HCSB links forward and backward scans and enhances information from eight directions through the State Space Model (SSM), strengthening the context representation learning of HSDM and improving denoising performance more effectively. In addition, to enhance the utilization of spectral information and mitigate the degradation problem caused by long-range scanning, spectral attention mechanism. Extensive evaluations against HSI denoising benchmarks validate the superior performance of HSDM, achieving state-of-the-art performance and surpassing the efficiency of the transformer method SERT by 31%.
♻ ☆ Eye, Robot: Learning to Look to Act with a BC-RL Perception-Action Loop
Humans do not passively observe the visual world -- we actively look in order to act. Motivated by this principle, we introduce EyeRobot, a robotic system with gaze behavior that emerges from the need to complete real-world tasks. We develop a mechanical eyeball that can freely rotate to observe its surroundings and train a gaze policy to control it using reinforcement learning. We accomplish this by first collecting teleoperated demonstrations paired with a 360 camera. This data is imported into a simulation environment that supports rendering arbitrary eyeball viewpoints, allowing episode rollouts of eye gaze on top of robot demonstrations. We then introduce a BC-RL loop to train the hand and eye jointly: the hand (BC) agent is trained from rendered eye observations, and the eye (RL) agent is rewarded when the hand produces correct action predictions. In this way, hand-eye coordination emerges as the eye looks towards regions which allow the hand to complete the task. EyeRobot implements a foveal-inspired policy architecture allowing high resolution with a small compute budget, which we find also leads to the emergence of more stable fixation as well as improved ability to track objects and ignore distractors. We evaluate EyeRobot on five panoramic workspace manipulation tasks requiring manipulation in an arc surrounding the robot arm. Our experiments suggest EyeRobot exhibits hand-eye coordination behaviors which effectively facilitate manipulation over large workspaces with a single camera. See project site for videos: https://www.eyerobot.net/
comment: CoRL 2025, project page: https://www.eyerobot.net/
♻ ☆ Social Perception of Faces in a Vision-Language Model
We explore social perception of human faces in CLIP, a widely used open-source vision-language model. To this end, we compare the similarity in CLIP embeddings between different textual prompts and a set of face images. Our textual prompts are constructed from well-validated social psychology terms denoting social perception. The face images are synthetic and are systematically and independently varied along six dimensions: the legally protected attributes of age, gender, and race, as well as facial expression, lighting, and pose. Independently and systematically manipulating face attributes allows us to study the effect of each on social perception and avoids confounds that can occur in wild-collected data due to uncontrolled systematic correlations between attributes. Thus, our findings are experimental rather than observational. Our main findings are three. First, while CLIP is trained on the widest variety of images and texts, it is able to make fine-grained human-like social judgments on face images. Second, age, gender, and race do systematically impact CLIP's social perception of faces, suggesting an undesirable bias in CLIP vis-a-vis legally protected attributes. Most strikingly, we find a strong pattern of bias concerning the faces of Black women, where CLIP produces extreme values of social perception across different ages and facial expressions. Third, facial expression impacts social perception more than age and lighting as much as age. The last finding predicts that studies that do not control for unprotected visual attributes may reach the wrong conclusions on bias. Our novel method of investigation, which is founded on the social psychology literature and on the experiments involving the manipulation of individual attributes, yields sharper and more reliable observations than previous observational methods and may be applied to study biases in any vision-language model.
♻ ☆ RISE: Enhancing VLM Image Annotation with Self-Supervised Reasoning
Vision-Language Models (VLMs) struggle with complex image annotation tasks, such as emotion classification and context-driven object detection, which demand sophisticated reasoning. Standard Supervised Fine-Tuning (SFT) focuses solely on annotation outcomes, ignoring underlying rationales, while Visual Reinforcement Fine-Tuning (Visual-RFT) produces inconsistent Chains of Thought (CoTs) due to the absence of high-quality, verified CoTs during pre-training. We introduce RISE (Reason-Inspire-Strengthen-Expertise), a two-stage framework to overcome these limitations. In the Reason stage (RISE-CoT), a reinforcement learning-driven "annotation-reasoning-annotation" closed-loop generates visually grounded, logically consistent CoTs by verifying their ability to reconstruct original annotations without direct leakage. The Inspire and Strengthen stage (RISE-R1) leverages a high-quality CoT subset, filtered by RISE-CoT rewards, for supervised fine-tuning, followed by reinforcement fine-tuning to produce interpretable reasoning and accurate annotations, achieving Expertise in complex visual tasks. Evaluated on complex and simple image annotation tasks, RISE-trained Qwen2-VL-2B outperforms SFT and Visual-RFT, achieving robust performance and enhanced explainability. RISE offers a self-supervised solution for advancing VLM reasoning without requiring manually annotated CoTs.Code and resources are available at: https://github.com/HSH55/RISE.
♻ ☆ LayerLock: Non-collapsing Representation Learning with Progressive Freezing ICCV 2025
We introduce LayerLock, a simple yet effective approach for self-supervised visual representation learning, that gradually transitions from pixel to latent prediction through progressive layer freezing. First, we make the observation that during training of video masked-autoencoding (MAE) models, ViT layers converge in the order of their depth: shallower layers converge early, deeper layers converge late. We then show that this observation can be exploited to accelerate standard MAE by progressively freezing the model according to an explicit schedule, throughout training. Furthermore, this same schedule can be used in a simple and scalable approach to latent prediction that does not suffer from "representation collapse". We apply our proposed approach, LayerLock, to large models of up to 4B parameters with results surpassing those of non-latent masked prediction on the 4DS perception suite.
comment: ICCV 2025
♻ ☆ Learning Precise Affordances from Egocentric Videos for Robotic Manipulation ICCV 2025
Affordance, defined as the potential actions that an object offers, is crucial for embodied AI agents. For example, such knowledge directs an agent to grasp a knife by the handle for cutting or by the blade for safe handover. While existing approaches have made notable progress, affordance research still faces three key challenges: data scarcity, poor generalization, and real-world deployment. Specifically, there is a lack of large-scale affordance datasets with precise segmentation maps, existing models struggle to generalize across different domains or novel object and affordance classes, and little work demonstrates deployability in real-world scenarios. In this work, we address these issues by proposing a complete affordance learning system that (1) takes in egocentric videos and outputs precise affordance annotations without human labeling, (2) leverages geometric information and vision foundation models to improve generalization, and (3) introduces a framework that facilitates affordance-oriented robotic manipulation such as tool grasping and robot-to-human tool handover. Experimental results show that our model surpasses the state-of-the-art by 13.8% in mIoU, and the framework achieves 77.1% successful grasping among 179 trials, including evaluations on seen, unseen classes, and cluttered scenes. Project page: https://reagan1311.github.io/affgrasp.
comment: ICCV 2025
♻ ☆ Regist3R: Incremental Registration with Stereo Foundation Model
Multi-view 3D reconstruction has remained an essential yet challenging problem in the field of computer vision. While DUSt3R and its successors have achieved breakthroughs in 3D reconstruction from unposed images, these methods exhibit significant limitations when scaling to multi-view scenarios, including high computational cost and cumulative error induced by global alignment. To address these challenges, we propose Regist3R, a novel stereo foundation model tailored for efficient and scalable incremental reconstruction. Regist3R leverages an incremental reconstruction paradigm, enabling large-scale 3D reconstructions from unordered and many-view image collections. We evaluate Regist3R on public datasets for camera pose estimation and 3D reconstruction. Our experiments demonstrate that Regist3R achieves comparable performance with optimization-based methods while significantly improving computational efficiency, and outperforms existing multi-view reconstruction models. Furthermore, to assess its performance in real-world applications, we introduce a challenging oblique aerial dataset which has long spatial spans and hundreds of views. The results highlight the effectiveness of Regist3R. We also demonstrate the first attempt to reconstruct large-scale scenes encompassing over thousands of views through pointmap-based foundation models, showcasing its potential for practical applications in large-scale 3D reconstruction tasks, including urban modeling, aerial mapping, and beyond.
comment: Accepted by ACM Multimedia 2025. github link: https://github.com/Liu-SD/Regist3R
♻ ☆ Avat3r: Large Animatable Gaussian Reconstruction Model for High-fidelity 3D Head Avatars
Traditionally, creating photo-realistic 3D head avatars requires a studio-level multi-view capture setup and expensive optimization during test-time, limiting the use of digital human doubles to the VFX industry or offline renderings. To address this shortcoming, we present Avat3r, which regresses a high-quality and animatable 3D head avatar from just a few input images, vastly reducing compute requirements during inference. More specifically, we make Large Reconstruction Models animatable and learn a powerful prior over 3D human heads from a large multi-view video dataset. For better 3D head reconstructions, we employ position maps from DUSt3R and generalized feature maps from the human foundation model Sapiens. To animate the 3D head, our key discovery is that simple cross-attention to an expression code is already sufficient. Finally, we increase robustness by feeding input images with different expressions to our model during training, enabling the reconstruction of 3D head avatars from inconsistent inputs, e.g., an imperfect phone capture with accidental movement, or frames from a monocular video. We compare Avat3r with current state-of-the-art methods for few-input and single-input scenarios, and find that our method has a competitive advantage in both tasks. Finally, we demonstrate the wide applicability of our proposed model, creating 3D head avatars from images of different sources, smartphone captures, single images, and even out-of-domain inputs like antique busts. Project website: https://tobias-kirschstein.github.io/avat3r/
comment: Project website: https://tobias-kirschstein.github.io/avat3r/, Video: https://youtu.be/P3zNVx15gYs
♻ ☆ KB-DMGen: Knowledge-Based Global Guidance and Dynamic Pose Masking for Human Image Generation
Recent methods using diffusion models have made significant progress in Human Image Generation (HIG) with various control signals such as pose priors. In HIG, both accurate human poses and coherent visual quality are crucial for image generation. However, most existing methods mainly focus on pose accuracy while neglecting overall image quality, often improving pose alignment at the cost of image quality. To address this, we propose Knowledge-Based Global Guidance and Dynamic pose Masking for human image Generation (KB-DMGen). The Knowledge Base (KB), implemented as a visual codebook, provides coarse, global guidance based on input text-related visual features, improving pose accuracy while maintaining image quality, while the Dynamic pose Mask (DM) offers fine-grained local control to enhance precise pose accuracy. By injecting KB and DM at different stages of the diffusion process, our framework enhances pose accuracy through both global and local control without compromising image quality. Experiments demonstrate the effectiveness of KB-DMGen, achieving new state-of-the-art results in terms of AP and CAP on the HumanArt dataset. The project page and code are available at https://lushbng.github.io/KBDMGen.
♻ ☆ 3D Mesh Editing using Masked LRMs ICCV 2025
We present a novel approach to shape editing, building on recent progress in 3D reconstruction from multi-view images. We formulate shape editing as a conditional reconstruction problem, where the model must reconstruct the input shape with the exception of a specified 3D region, in which the geometry should be generated from the conditional signal. To this end, we train a conditional Large Reconstruction Model (LRM) for masked reconstruction, using multi-view consistent masks rendered from a randomly generated 3D occlusion, and using one clean viewpoint as the conditional signal. During inference, we manually define a 3D region to edit and provide an edited image from a canonical viewpoint to fill that region. We demonstrate that, in just a single forward pass, our method not only preserves the input geometry in the unmasked region through reconstruction capabilities on par with SoTA, but is also expressive enough to perform a variety of mesh edits from a single image guidance that past works struggle with, while being 2-10x faster than the top-performing prior work.
comment: ICCV 2025. Project Page: https://chocolatebiscuit.github.io/MaskedLRM/
♻ ☆ On the Geometric Accuracy of Implicit and Primitive-based Representations Derived from View Rendering Constraints
We present the first systematic comparison of implicit and explicit Novel View Synthesis methods for space-based 3D object reconstruction, evaluating the role of appearance embeddings. While embeddings improve photometric fidelity by modeling lighting variation, we show they do not translate into meaningful gains in geometric accuracy - a critical requirement for space robotics applications. Using the SPEED+ dataset, we compare K-Planes, Gaussian Splatting, and Convex Splatting, and demonstrate that embeddings primarily reduce the number of primitives needed for explicit methods rather than enhancing geometric fidelity. Moreover, convex splatting achieves more compact and clutter-free representations than Gaussian splatting, offering advantages for safety-critical applications such as interaction and collision avoidance. Our findings clarify the limits of appearance embeddings for geometry-centric tasks and highlight trade-offs between reconstruction quality and representation efficiency in space scenarios.
comment: 9 pages, 3 figures, to be presented at ASTRA25,
♻ ☆ Long-Tailed 3D Detection via Multi-Modal Fusion
Contemporary autonomous vehicle (AV) benchmarks have advanced techniques for training 3D detectors. While class labels naturally follow a long-tailed distribution in the real world, existing benchmarks only focus on a few common classes (e.g., pedestrian and car) and neglect many rare but crucial classes (e.g., emergency vehicle and stroller). However, AVs must reliably detect both common and rare classes for safe operation in the open world. We address this challenge by formally studying the problem of Long-Tailed 3D Detection (LT3D), which evaluates all annotated classes, including those in-the-tail. We address LT3D with hierarchical losses that promote feature sharing across classes, and introduce diagnostic metrics that award partial credit to "reasonable" mistakes with respect to the semantic hierarchy. Further, we point out that rare-class accuracy is particularly improved via multi-modal late fusion (MMLF) of independently trained uni-modal LiDAR and RGB detectors. Such an MMLF framework allows us to leverage large-scale uni-modal datasets (with more examples for rare classes) to train better uni-modal detectors. Finally, we examine three critical components of our simple MMLF approach from first principles: whether to train 2D or 3D RGB detectors for fusion, whether to match RGB and LiDAR detections in 3D or the projected 2D image plane, and how to fuse matched detections. Extensive experiments reveal that 2D RGB detectors achieve better recognition accuracy for rare classes than 3D RGB detectors, matching on the 2D image plane mitigates depth estimation errors for better matching, and score calibration and probabilistic fusion notably improves the final performance further. Our MMLF significantly outperforms prior work for LT3D, particularly improving on the six rarest classes from 12.8 to 20.0 mAP! Our code and models are available on our project page.
comment: The first two authors contributed equally. Project page: https://mayechi.github.io/lt3d-lf-io/
♻ ☆ Automated Building Heritage Assessment Using Street-Level Imagery
Detailed data is required to quantify energy conservation measures in buildings, such as envelop retrofits, without compromising cultural heritage. Novel artificial intelligence tools may improve efficiency in identifying heritage values in buildings compared to costly and time-consuming traditional inventories. In this study, the large language model GPT was used to detect various aspects of cultural heritage value in fa\c{c}ade images. Using this data and building register data as features, machine learning models were trained to classify multi-family and non-residential buildings in Stockholm, Sweden. Validation against an expert-created inventory shows a macro F1-score of 0.71 using a combination of register data and features retrieved from GPT, and a score of 0.60 using only GPT-derived data. The presented methodology can contribute to a higher-quality database and thus support careful energy efficiency measures and integrated consideration of heritage value in large-scale energetic refurbishment scenarios.
♻ ☆ PartComposer: Learning and Composing Part-Level Concepts from Single-Image Examples
We present PartComposer: a framework for part-level concept learning from single-image examples that enables text-to-image diffusion models to compose novel objects from meaningful components. Existing methods either struggle with effectively learning fine-grained concepts or require a large dataset as input. We propose a dynamic data synthesis pipeline generating diverse part compositions to address one-shot data scarcity. Most importantly, we propose to maximize the mutual information between denoised latents and structured concept codes via a concept predictor, enabling direct regulation on concept disentanglement and re-composition supervision. Our method achieves strong disentanglement and controllable composition, outperforming subject and part-level baselines when mixing concepts from the same, or different, object categories.
♻ ☆ Less is More: Token-Efficient Video-QA via Adaptive Frame-Pruning and Semantic Graph Integration AAAI 2026
The practical application of Multimodal Large Language Models (MLLMs) to Video Question Answering (Video-QA) is severely hindered by the high token cost of processing numerous video frames. While increasing the number of sampled frames is a common strategy, we observe a "less is more" phenomenon where excessive frames can paradoxically degrade performance due to context dilution. Concurrently, state-of-the-art keyframe selection methods, while effective, still yield significant temporal redundancy, which we term 'visual echoes'. To address these dual challenges, we propose Adaptive Frame-Pruning (AFP), a novel post-processing method that intelligently prunes the selected keyframes. AFP employs an adaptive hierarchical clustering algorithm on a fused ResNet-50 and CLIP feature space to identify and merge these echoes into single representatives. To compensate for information loss, we then introduce a lightweight, text-based semantic graph that provides critical context with minimal token overhead. Conducting extensive experiments on the LongVideoBench and VideoMME benchmarks across multiple leading MLLMs, our full approach demonstrates a drastic reduction in required frames by up to 86.9% and total input tokens by up to 83.2%. Crucially, by providing a concise, high-quality set of frames, our method not only enhances efficiency but often improves accuracy over baselines that use more frames. The code will be released upon publication.
comment: Corresponding authors: Weiyu Guo, Hui Xiong. This manuscript is a preprint. An earlier version of this work was submitted to AAAI 2026. This version has been revised and is formatted using the AAAI 2026 style file
♻ ☆ InstructHumans: Editing Animated 3D Human Textures with Instructions
We present InstructHumans, a novel framework for instruction-driven {animatable} 3D human texture editing. Existing text-based 3D editing methods often directly apply Score Distillation Sampling (SDS). SDS, designed for generation tasks, cannot account for the defining requirement of editing -- maintaining consistency with the source avatar. This work shows that naively using SDS harms editing, as it may destroy consistency. We propose a modified SDS for Editing (SDS-E) that selectively incorporates subterms of SDS across diffusion timesteps. We further enhance SDS-E with spatial smoothness regularization and gradient-based viewpoint sampling for edits with sharp and high-fidelity detailing. Incorporating SDS-E into a 3D human texture editing framework allows us to outperform existing 3D editing methods. Our avatars faithfully reflect the textual edits while remaining consistent with the original avatars. Project page: https://jyzhu.top/instruct-humans/.
comment: Accepted for publication in IEEE Transactions on Multimedia (TMM), 2025
♻ ☆ HD-OOD3D: Supervised and Unsupervised Out-of-Distribution object detection in LiDAR data IROS
Autonomous systems rely on accurate 3D object detection from LiDAR data, yet most detectors are limited to a predefined set of known classes, making them vulnerable to unexpected out-of-distribution (OOD) objects. In this work, we present HD-OOD3D, a novel two-stage method for detecting unknown objects. We demonstrate the superiority of two-stage approaches over single-stage methods, achieving more robust detection of unknown objects while addressing key challenges in the evaluation protocol. Furthermore, we conduct an in-depth analysis of the standard evaluation protocol for OOD detection, revealing the critical impact of hyperparameter choices. To address the challenge of scaling the learning of unknown objects, we explore unsupervised training strategies to generate pseudo-labels for unknowns. Among the different approaches evaluated, our experiments show that top-5 auto-labelling offers more promising performance compared to simple resizing techniques.
comment: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2025
♻ ☆ So-Fake: Benchmarking and Explaining Social Media Image Forgery Detection
Recent advances in AI-powered generative models have enabled the creation of increasingly realistic synthetic images, posing significant risks to information integrity and public trust on social media platforms. While robust detection frameworks and diverse, large-scale datasets are essential to mitigate these risks, existing academic efforts remain limited in scope: current datasets lack the diversity, scale, and realism required for social media contexts, while detection methods struggle with generalization to unseen generative technologies. To bridge this gap, we introduce So-Fake-Set, a comprehensive social media-oriented dataset with over 2 million high-quality images, diverse generative sources, and photorealistic imagery synthesized using 35 state-of-the-art generative models. To rigorously evaluate cross-domain robustness, we establish a novel and large-scale (100K) out-of-domain benchmark (So-Fake-OOD) featuring synthetic imagery from commercial models explicitly excluded from the training distribution, creating a realistic testbed for evaluating real-world performance. Leveraging these resources, we present So-Fake-R1, an advanced vision-language framework that employs reinforcement learning for highly accurate forgery detection, precise localization, and explainable inference through interpretable visual rationales. Extensive experiments show that So-Fake-R1 outperforms the second-best method, with a 1.3% gain in detection accuracy and a 4.5% increase in localization IoU. By integrating a scalable dataset, a challenging OOD benchmark, and an advanced detection framework, this work establishes a new foundation for social media-centric forgery detection research. The code, models, and datasets will be released publicly.
♻ ☆ A Statistical 3D Stomach Shape Model for Anatomical Analysis
Realistic and parameterized 3D models of human anatomy have become invaluable in research, diagnostics, and surgical planning. However, the development of detailed models for internal organs, such as the stomach, has been limited by data availability and methodological challenges. In this paper, we propose a novel pipeline for the generation of synthetic 3D stomach models, enabling the creation of anatomically diverse morphologies informed by established studies on stomach shape variability. Using this pipeline, we construct a dataset of synthetic stomachs. Building on this dataset, we develop a 3D statistical shape model of the stomach, trained to capture natural anatomical variability in a low-dimensional shape space. The model is further refined using CT meshes derived from publicly available datasets through a semi-supervised alignment process, enhancing its ability to generalize to unseen anatomical variations. We evaluated the model on a held-out test set of real stomach CT scans, demonstrating robust generalization and fit accuracy. We make the statistical shape model along with the synthetic dataset publicly available on GitLab: https://gitlab.com/Erez.Posner/stomach_pytorch to facilitate further research. This work introduces the first statistical 3D shape model of the stomach, with applications ranging from surgical simulation and pre-operative planning to medical education and computational modeling. By combining synthetic data generation, parametric modeling, and real-world validation, our approach represents a significant advancement in organ modeling and opens new possibilities for personalized healthcare solutions.
♻ ☆ Similarity-based Outlier Detection for Noisy Object Re-Identification Using Beta Mixtures
Object re-identification (Re-ID) methods are highly sensitive to label noise, which typically leads to significant performance degradation. We address this challenge by reframing Re-ID as a supervised image similarity task and adopting a Siamese network architecture trained to capture discriminative pairwise relationships. Central to our approach is a novel statistical outlier detection (OD) framework, termed Beta-SOD (Beta mixture Similarity-based Outlier Detection), which models the distribution of cosine similarities between embedding pairs using a two-component Beta distribution mixture model. We establish a novel identifiability result for mixtures of two Beta distributions, ensuring that our learning task is well-posed. The proposed OD step complements the Re-ID architecture combining binary cross-entropy, contrastive, and cosine embedding losses that jointly optimize feature-level similarity learning. We demonstrate the effectiveness of Beta-SOD in de-noising and Re-ID tasks for person Re-ID, on CUHK03 and Market-1501 datasets, and vehicle Re-ID, on VeRi-776 dataset. Our method shows superior performance compared to the state-of-the-art methods across various noise levels (10-30\%), demonstrating both robustness and broad applicability in noisy Re-ID scenarios. The implementation of Beta-SOD is available at: github.com/waqar3411/Beta-SOD
♻ ☆ CVVNet: A Cross-Vertical-View Network for Gait Recognition
Gait recognition enables contact-free, long-range person identification that is robust to clothing variations and non-cooperative scenarios. While existing methods perform well in controlled indoor environments, they struggle with cross-vertical view scenarios, where surveillance angles vary significantly in elevation. Our experiments show up to 60\% accuracy degradation in low-to-high vertical view settings due to severe deformations and self-occlusions of key anatomical features. Current CNN and self-attention-based methods fail to effectively handle these challenges, due to their reliance on single-scale convolutions or simplistic attention mechanisms that lack effective multi-frequency feature integration. To tackle this challenge, we propose CVVNet (Cross-Vertical-View Network), a frequency aggregation architecture specifically designed for robust cross-vertical-view gait recognition. CVVNet employs a High-Low Frequency Extraction module (HLFE) that adopts parallel multi-scale convolution/max-pooling path and self-attention path as high- and low-frequency mixers for effective multi-frequency feature extraction from input silhouettes. We also introduce the Dynamic Gated Aggregation (DGA) mechanism to adaptively adjust the fusion ratio of high- and low-frequency features. The integration of our core Multi-Scale Attention Gated Aggregation (MSAGA) module, HLFE and DGA enables CVVNet to effectively handle distortions from view changes, significantly improving the recognition robustness across different vertical views. Experimental results show that our CVVNet achieves state-of-the-art performance, with $8.6\%$ improvement on DroneGait and $2\%$ on Gait3D compared with the best existing methods.
♻ ☆ SCP-Diff: Spatial-Categorical Joint Prior for Diffusion Based Semantic Image Synthesis SC
Semantic image synthesis (SIS) shows good promises for sensor simulation. However, current best practices in this field, based on GANs, have not yet reached the desired level of quality. As latent diffusion models make significant strides in image generation, we are prompted to evaluate ControlNet, a notable method for its dense control capabilities. Our investigation uncovered two primary issues with its results: the presence of weird sub-structures within large semantic areas and the misalignment of content with the semantic mask. Through empirical study, we pinpointed the cause of these problems as a mismatch between the noised training data distribution and the standard normal prior applied at the inference stage. To address this challenge, we developed specific noise priors for SIS, encompassing spatial, categorical, and a novel spatial-categorical joint prior for inference. This approach, which we have named SCP-Diff, has set new state-of-the-art results in SIS on Cityscapes, ADE20K and COCO-Stuff, yielding a FID as low as 10.53 on Cityscapes. The code and models can be accessed via the project page.
comment: Project Page: https://air-discover.github.io/SCP-Diff/
♻ ☆ SRSNetwork: Siamese Reconstruction-Segmentation Networks based on Dynamic-Parameter Convolution
Dynamic convolution demonstrates outstanding representation capabilities, which are crucial for natural image segmentation. However, it fails when applied to medical image segmentation (MIS) and infrared small target segmentation (IRSTS) due to limited data and limited fitting capacity. In this paper, we propose a new type of dynamic convolution called dynamic parameter convolution (DPConv) which shows superior fitting capacity, and it can efficiently leverage features from deep layers of encoder in reconstruction tasks to generate DPConv kernels that adapt to input variations.Moreover, we observe that DPConv, built upon deep features derived from reconstruction tasks, significantly enhances downstream segmentation performance. We refer to the segmentation network integrated with DPConv generated from reconstruction network as the siamese reconstruction-segmentation network (SRS). We conduct extensive experiments on seven datasets including five medical datasets and two infrared datasets, and the experimental results demonstrate that our method can show superior performance over several recently proposed methods. Furthermore, the zero-shot segmentation under unseen modality demonstrates the generalization of DPConv. The code is available at: https://github.com/fidshu/SRSNet.
comment: Accepted by IEEE Transactions on Image Processing (IEEE-TIP)
♻ ☆ Automatic quality control in multi-centric fetal brain MRI super-resolution reconstruction MICCAI
Quality control (QC) has long been considered essential to guarantee the reliability of neuroimaging studies. It is particularly important for fetal brain MRI, where acquisitions and image processing techniques are less standardized than in adult imaging. In this work, we focus on automated quality control of super-resolution reconstruction (SRR) volumes of fetal brain MRI, an important processing step where multiple stacks of thick 2D slices are registered together and combined to build a single, isotropic and artifact-free T2 weighted volume. We propose FetMRQC$_{SR}$, a machine-learning method that extracts more than 100 image quality metrics to predict image quality scores using a random forest model. This approach is well suited to a problem that is high dimensional, with highly heterogeneous data and small datasets. We validate FetMRQC$_{SR}$ in an out-of-domain (OOD) setting and report high performance (ROC AUC = 0.89), even when faced with data from an unknown site or SRR method. We also investigate failure cases and show that they occur in $45\%$ of the images due to ambiguous configurations for which the rating from the expert is arguable. These results are encouraging and illustrate how a non deep learning-based method like FetMRQC$_{SR}$ is well suited to this multifaceted problem. Our tool, along with all the code used to generate, train and evaluate the model are available at https://github.com/Medical-Image-Analysis-Laboratory/fetmrqc_sr/ .
comment: 14 pages, 5 figures; accepted at the 2025 MICCAI Perinatal, Preterm and Paediatric Image Analysis (PIPPI) Workshop
♻ ☆ Earth Observation Foundation Model PhilEO: Pretraining on the MajorTOM and FastTOM Datasets
Today, Earth Observation (EO) satellites generate massive volumes of data, with the Copernicus Sentinel-2 constellation alone producing approximately 1.6TB per day. To fully exploit this information, it is essential to pretrain EO Foundation Models (FMs) on large unlabeled datasets, enabling efficient fine-tuning for several different downstream tasks with minimal labeled data. In this work, we present the scaling-up of our recently proposed EO Foundation Model, PhilEO Geo-Aware U-Net, on the unlabeled 23TB dataset MajorTOM, which covers the vast majority of the Earth's surface, as well as on the specialized subset FastTOM 2TB that does not include oceans and ice. We develop and study various PhilEO model variants with different numbers of parameters and architectures. We fine-tune the models on the PhilEO Bench for road density estimation, building density pixel-wise regression, and land cover semantic segmentation, and we evaluate the performance. Our results demonstrate that for all n-shots for road density regression, the PhilEO 44M MajorTOM 23TB model outperforms PhilEO Globe 0.5TB 44M. We also show that for most n-shots for road density estimation and building density regression, PhilEO 200M FastTOM outperforms all the other models we examine. The effectiveness of both dataset and model scaling is validated using the PhilEO Bench. We also study the impact of architecture scaling, transitioning from U-Net Convolutional Neural Networks (CNN) to Vision Transformers (ViT).
comment: 15 pages, 22 figures, 2 tables, 64 references
♻ ☆ Comparing Conditional Diffusion Models for Synthesizing Contrast-Enhanced Breast MRI from Pre-Contrast Images MICCAI
Dynamic contrast-enhanced (DCE) MRI is essential for breast cancer diagnosis and treatment. However, its reliance on contrast agents introduces safety concerns, contraindications, increased cost, and workflow complexity. To this end, we present pre-contrast conditioned denoising diffusion probabilistic models to synthesize DCE-MRI, introducing, evaluating, and comparing a total of 22 generative model variants in both single-breast and full breast settings. Towards enhancing lesion fidelity, we introduce both tumor-aware loss functions and explicit tumor segmentation mask conditioning. Using a public multicenter dataset and comparing to respective pre-contrast baselines, we observe that subtraction image-based models consistently outperform post-contrast-based models across five complementary evaluation metrics. Apart from assessing the entire image, we also separately evaluate the region of interest, where both tumor-aware losses and segmentation mask inputs improve evaluation metrics. The latter notably enhance qualitative results capturing contrast uptake, albeit assuming access to tumor localization inputs that are not guaranteed to be available in screening settings. A reader study involving 2 radiologists and 4 MRI technologists confirms the high realism of the synthetic images, indicating an emerging clinical potential of generative contrast-enhancement. We share our codebase at https://github.com/sebastibar/conditional-diffusion-breast-MRI.
comment: 13 pages, 5 figures, submitted and accepted to MICCAI Deepbreath workshop 2025
♻ ☆ RealRAG: Retrieval-augmented Realistic Image Generation via Self-reflective Contrastive Learning ICML2025
Recent text-to-image generative models, e.g., Stable Diffusion V3 and Flux, have achieved notable progress. However, these models are strongly restricted to their limited knowledge, a.k.a., their own fixed parameters, that are trained with closed datasets. This leads to significant hallucinations or distortions when facing fine-grained and unseen novel real-world objects, e.g., the appearance of the Tesla Cybertruck. To this end, we present the first real-object-based retrieval-augmented generation framework (RealRAG), which augments fine-grained and unseen novel object generation by learning and retrieving real-world images to overcome the knowledge gaps of generative models. Specifically, to integrate missing memory for unseen novel object generation, we train a reflective retriever by self-reflective contrastive learning, which injects the generator's knowledge into the sef-reflective negatives, ensuring that the retrieved augmented images compensate for the model's missing knowledge. Furthermore, the real-object-based framework integrates fine-grained visual knowledge for the generative models, tackling the distortion problem and improving the realism for fine-grained object generation. Our Real-RAG is superior in its modular application to all types of state-of-the-art text-to-image generative models and also delivers remarkable performance boosts with all of them, such as a gain of 16.18% FID score with the auto-regressive model on the Stanford Car benchmark.
comment: Accepted to ICML2025
♻ ☆ Seeing Further on the Shoulders of Giants: Knowledge Inheritance for Vision Foundation Models
Vision foundation models (VFMs) are predominantly developed using data-centric methods. These methods require training on vast amounts of data usually with high-quality labels, which poses a bottleneck for most institutions that lack both large-scale data and high-end GPUs. On the other hand, many open-source vision models have been pretrained on domain-specific data, enabling them to distill and represent core knowledge in a form that is transferable across diverse applications. Even though these models are highly valuable assets, they remain largely under-explored in empowering the development of a general-purpose VFM. In this paper, we present a new model-driven approach for training VFMs through joint knowledge transfer and preservation. Our method unifies multiple pre-trained teacher models in a shared latent space to mitigate the ``imbalanced transfer'' issue caused by their distributional gaps. Besides, we introduce a knowledge preservation strategy to take a general-purpose teacher as a knowledge base for integrating knowledge from the remaining purpose-specific teachers using an adapter module. By unifying and aggregating existing models, we build a powerful VFM to inherit teachers' expertise without needing to train on a large amount of labeled data. Our model not only provides generalizable visual features, but also inherently supports multiple downstream tasks. Extensive experiments demonstrate that our VFM outperforms existing data-centric models across four fundamental vision tasks, including image classification, object detection, semantic and instance segmentation.
comment: Technical report
♻ ☆ Towards Understanding Visual Grounding in Visual Language Models
Visual grounding refers to the ability of a model to identify a region within some visual input that matches a textual description. Consequently, a model equipped with visual grounding capabilities can target a wide range of applications in various domains, including referring expression comprehension, answering questions pertinent to fine-grained details in images or videos, caption visual context by explicitly referring to entities, as well as low and high-level control in simulated and real environments. In this survey paper, we review representative works across the key areas of research on modern general-purpose vision language models (VLMs). We first outline the importance of grounding in VLMs, then delineate the core components of the contemporary paradigm for developing grounded models, and examine their practical applications, including benchmarks and evaluation metrics for grounded multimodal generation. We also discuss the multifaceted interrelations among visual grounding, multimodal chain-of-thought, and reasoning in VLMs. Finally, we analyse the challenges inherent to visual grounding and suggest promising directions for future research.
♻ ☆ TeleOpBench: A Simulator-Centric Benchmark for Dual-Arm Dexterous Teleoperation
Teleoperation is a cornerstone of embodied-robot learning, and bimanual dexterous teleoperation in particular provides rich demonstrations that are difficult to obtain with fully autonomous systems. While recent studies have proposed diverse hardware pipelines-ranging from inertial motion-capture gloves to exoskeletons and vision-based interfaces-there is still no unified benchmark that enables fair, reproducible comparison of these systems. In this paper, we introduce TeleOpBench, a simulator-centric benchmark tailored to bimanual dexterous teleoperation. TeleOpBench contains 30 high-fidelity task environments that span pick-and-place, tool use, and collaborative manipulation, covering a broad spectrum of kinematic and force-interaction difficulty. Within this benchmark we implement four representative teleoperation modalities-(i) MoCap, (ii) VR device, (iii) arm-hand exoskeletons, and (iv) monocular vision tracking-and evaluate them with a common protocol and metric suite. To validate that performance in simulation is predictive of real-world behavior, we conduct mirrored experiments on a physical dual-arm platform equipped with two 6-DoF dexterous hands. Across 10 held-out tasks we observe a strong correlation between simulator and hardware performance, confirming the external validity of TeleOpBench. TeleOpBench establishes a common yardstick for teleoperation research and provides an extensible platform for future algorithmic and hardware innovation. Codes is now available at https://github.com/cyjdlhy/TeleOpBench .
comment: Project page:https://gorgeous2002.github.io/TeleOpBench/, Codes:https://github.com/cyjdlhy/TeleOpBench
♻ ☆ RemixFusion: Residual-based Mixed Representation for Large-scale Online RGB-D Reconstruction
The introduction of the neural implicit representation has notably propelled the advancement of online dense reconstruction techniques. Compared to traditional explicit representations, such as TSDF, it improves the mapping completeness and memory efficiency. However, the lack of reconstruction details and the time-consuming learning of neural representations hinder the widespread application of neural-based methods to large-scale online reconstruction. We introduce RemixFusion, a novel residual-based mixed representation for scene reconstruction and camera pose estimation dedicated to high-quality and large-scale online RGB-D reconstruction. In particular, we propose a residual-based map representation comprised of an explicit coarse TSDF grid and an implicit neural module that produces residuals representing fine-grained details to be added to the coarse grid. Such mixed representation allows for detail-rich reconstruction with bounded time and memory budget, contrasting with the overly-smoothed results by the purely implicit representations, thus paving the way for high-quality camera tracking. Furthermore, we extend the residual-based representation to handle multi-frame joint pose optimization via bundle adjustment (BA). In contrast to the existing methods, which optimize poses directly, we opt to optimize pose changes. Combined with a novel technique for adaptive gradient amplification, our method attains better optimization convergence and global optimality. Furthermore, we adopt a local moving volume to factorize the mixed scene representation with a divide-and-conquer design to facilitate efficient online learning in our residual-based framework. Extensive experiments demonstrate that our method surpasses all state-of-the-art ones, including those based either on explicit or implicit representations, in terms of the accuracy of both mapping and tracking on large-scale scenes.
comment: project page: https://lanlan96.github.io/RemixFusion/
♻ ☆ WiseLVAM: A Novel Framework For Left Ventricle Automatic Measurements
Clinical guidelines recommend performing left ventricular (LV) linear measurements in B-mode echocardiographic images at the basal level -- typically at the mitral valve leaflet tips -- and aligned perpendicular to the LV long axis along a virtual scanline (SL). However, most automated methods estimate landmarks directly from B-mode images for the measurement task, where even small shifts in predicted points along the LV walls can lead to significant measurement errors, reducing their clinical reliability. A recent semi-automatic method, EnLVAM, addresses this limitation by constraining landmark prediction to a clinician-defined SL and training on generated Anatomical Motion Mode (AMM) images to predict LV landmarks along the same. To enable full automation, a contour-aware SL placement approach is proposed in this work, in which the LV contour is estimated using a weakly supervised B-mode landmark detector. SL placement is then performed by inferring the LV long axis and the basal level- mimicking clinical guidelines. Building on this foundation, we introduce \textit{WiseLVAM} -- a novel, fully automated yet manually adaptable framework for automatically placing the SL and then automatically performing the LV linear measurements in the AMM mode. \textit{WiseLVAM} utilizes the structure-awareness from B-mode images and the motion-awareness from AMM mode to enhance robustness and accuracy with the potential to provide a practical solution for the routine clinical application. The source code is publicly available at https://github.com/SFI-Visual-Intelligence/wiselvam.git.
♻ ☆ DLF: Extreme Image Compression with Dual-generative Latent Fusion ICCV 2025
Recent studies in extreme image compression have achieved remarkable performance by compressing the tokens from generative tokenizers. However, these methods often prioritize clustering common semantics within the dataset, while overlooking the diverse details of individual objects. Consequently, this results in suboptimal reconstruction fidelity, especially at low bitrates. To address this issue, we introduce a Dual-generative Latent Fusion (DLF) paradigm. DLF decomposes the latent into semantic and detail elements, compressing them through two distinct branches. The semantic branch clusters high-level information into compact tokens, while the detail branch encodes perceptually critical details to enhance the overall fidelity. Additionally, we propose a cross-branch interactive design to reduce redundancy between the two branches, thereby minimizing the overall bit cost. Experimental results demonstrate the impressive reconstruction quality of DLF even below 0.01 bits per pixel (bpp). On the CLIC2020 test set, our method achieves bitrate savings of up to 27.93% on LPIPS and 53.55% on DISTS compared to MS-ILLM. Furthermore, DLF surpasses recent diffusion-based codecs in visual fidelity while maintaining a comparable level of generative realism. Project: https://dlfcodec.github.io/
comment: Accepted by ICCV 2025
♻ ☆ LH2Face: Loss function for Hard High-quality Face
In current practical face authentication systems, most face recognition (FR) algorithms are based on cosine similarity with softmax classification. Despite its reliable classification performance, this method struggles with hard samples. A popular strategy to improve FR performance is incorporating angular or cosine margins. However, it does not take face quality or recognition hardness into account, simply increasing the margin value and thus causing an overly uniform training strategy. To address this problem, a novel loss function is proposed, named Loss function for Hard High-quality Face (LH2Face). Firstly, a similarity measure based on the von Mises-Fisher (vMF) distribution is stated, specifically focusing on the logarithm of the Probability Density Function (PDF), which represents the distance between a probability distribution and a vector. Then, an adaptive margin-based multi-classification method using softmax, called the Uncertainty-Aware Margin Function, is implemented in the article. Furthermore, proxy-based loss functions are used to apply extra constraints between the proxy and sample to optimize their representation space distribution. Finally, a renderer is constructed that optimizes FR through face reconstruction and vice versa. Our LH2Face is superior to similiar schemes on hard high-quality face datasets, achieving 49.39% accuracy on the IJB-B dataset, which surpasses the second-place method by 2.37%.
♻ ☆ Static or Dynamic: Towards Query-Adaptive Token Selection for Video Question Answering EMNLP 2025
Video question answering benefits from the rich information in videos, enabling various applications. However, the large volume of tokens generated from long videos presents challenges to memory efficiency and model performance. To alleviate this, existing works propose to compress video inputs, but often overlook the varying importance of static and dynamic information across different queries, leading to inefficient token usage within limited budgets. We propose a novel token selection strategy, \textsc{explore-then-select}, that adaptively adjusts static and dynamic information based on question requirements. Our framework first explores different token allocations between key frames, which preserve spatial details, and delta frames, which capture temporal changes. Then it employs a query-aware attention-based metric to select the optimal token combination without model updates. Our framework is plug-and-play and can be seamlessly integrated within diverse video language models. Extensive experiments show that our method achieves significant performance improvements (up to 5.8\%) on multiple video question answering benchmarks. Our code is available at https://github.com/ANDgate99/Explore-Then-Select .
comment: Accepted to EMNLP 2025 (main)
♻ ☆ Remote Sensing SpatioTemporal Vision-Language Models: A Comprehensive Survey
The interpretation of multi-temporal remote sensing imagery is critical for monitoring Earth's dynamic processes-yet previous change detection methods, which produce binary or semantic masks, fall short of providing human-readable insights into changes. Recent advances in Vision-Language Models (VLMs) have opened a new frontier by fusing visual and linguistic modalities, enabling spatio-temporal vision-language understanding: models that not only capture spatial and temporal dependencies to recognize changes but also provide a richer interactive semantic analysis of temporal images (e.g., generate descriptive captions and answer natural-language queries). In this survey, we present the first comprehensive review of RS-STVLMs. The survey covers the evolution of models from early task-specific models to recent general foundation models that leverage powerful large language models. We discuss progress in representative tasks, such as change captioning, change question answering, and change grounding. Moreover, we systematically dissect the fundamental components and key technologies underlying these models, and review the datasets and evaluation metrics that have driven the field. By synthesizing task-level insights with a deep dive into shared architectural patterns, we aim to illuminate current achievements and chart promising directions for future research in spatio-temporal vision-language understanding for remote sensing. We will keep tracing related works at https://github.com/Chen-Yang-Liu/Awesome-RS-SpatioTemporal-VLMs
comment: Published in IEEE Geoscience and Remote Sensing Magazine
♻ ☆ FOCUS on Contamination: A Geospatial Deep Learning Framework with a Noise-Aware Loss for Surface Water PFAS Prediction
Per- and polyfluoroalkyl substances (PFAS), chemicals found in products like non-stick cookware, are unfortunately persistent environmental pollutants with severe health risks. Accurately mapping PFAS contamination is crucial for guiding targeted remediation efforts and protecting public and environmental health, yet detection across large regions remains challenging due to the cost of testing and the difficulty of simulating their spread. In this work, we introduce FOCUS, a geospatial deep learning framework with a label noise-aware loss function, to predict PFAS contamination in surface water over large regions. By integrating hydrological flow data, land cover information, and proximity to known PFAS sources, our approach leverages both spatial and environmental context to improve prediction accuracy. We evaluate the performance of our approach through extensive ablation studies, robustness analysis, real-world validation, and comparative analyses against baselines like sparse segmentation, as well as existing scientific methods, including Kriging and pollutant transport simulations. Results and expert feedback highlight our framework's potential for scalable PFAS monitoring.
♻ ☆ LATTE: Learning to Think with Vision Specialists
While open-source vision-language models perform well on simple question-answering, they still struggle with complex questions that require both perceptual and reasoning capabilities. We propose LATTE, a family of vision-language models that have LeArned to Think wiTh vision spEcialists. By offloading perception to state-of-the-art vision models, our approach enables vision-language models to focus solely on reasoning over high-quality perceptual information. To train LATTE, we synthesize and filter a large dataset of 293K multi-modal reasoning traces over perceptual outputs of vision specialists. LATTE trained on this data achieves significant 4-5% gains over baselines across 6 benchmarks covering both perception and reasoning abilities. Ablation studies reveal that the effectiveness of multi-modal reasoning traces depends on the data sources, formats, and quality of thoughts.
♻ ☆ Scalp Diagnostic System With Label-Free Segmentation and Training-Free Image Translation MICCAI 2025
Scalp disorders are highly prevalent worldwide, yet remain underdiagnosed due to limited access to expert evaluation and the high cost of annotation. Although AI-based approaches hold great promise, their practical deployment is hindered by challenges such as severe data imbalance and the absence of pixel-level segmentation labels. To address these issues, we propose ScalpVision, an AI-driven system for the holistic diagnosis of scalp diseases. In ScalpVision, effective hair segmentation is achieved using pseudo image-label pairs and an innovative prompting method in the absence of traditional hair masking labels. Additionally, ScalpVision introduces DiffuseIT-M, a generative model adopted for dataset augmentation while maintaining hair information, facilitating improved predictions of scalp disease severity. Our experimental results affirm ScalpVision's efficiency in diagnosing a variety of scalp conditions, showcasing its potential as a valuable tool in dermatological care. Our code is available at https://github.com/winston1214/ScalpVision.
comment: Accepted to MICCAI 2025(https://papers.miccai.org/miccai-2025/0806-Paper5080.html), Project page: https://0110tpwls.github.io/scalpvision25/
♻ ☆ Steering LVLMs via Sparse Autoencoder for Hallucination Mitigation EMNLP 2025
Large vision-language models (LVLMs) have achieved remarkable performance on multimodal tasks. However, they still suffer from hallucinations, generating text inconsistent with visual input, posing significant risks in real-world applications. Existing approaches to address this issue focus on incorporating external knowledge bases, alignment training, or decoding strategies, all of which require substantial computational cost and time. Recent works try to explore more efficient alternatives by adjusting LVLMs' internal representations. Although promising, these methods may cause hallucinations to be insufficiently suppressed or lead to excessive interventions that negatively affect normal semantics. In this work, we leverage sparse autoencoders (SAEs) to identify semantic directions closely associated with faithfulness or hallucination, extracting more precise and disentangled hallucination-related representations. Our analysis demonstrates that interventions along the identified faithful direction can mitigate hallucinations, while those along the hallucinatory direction can exacerbate them. Building on these insights, we propose Steering LVLMs via SAE Latent Directions (SSL), a plug-and-play method based on SAE-derived latent directions to mitigate hallucinations in LVLMs. Extensive experiments demonstrate that SSL significantly outperforms existing decoding approaches in mitigating hallucinations, while maintaining transferability across different model architectures with negligible additional time overhead. The code is available at https://github.com/huazhenglin2003/SSL.
comment: Accepted to Findings of EMNLP 2025
♻ ☆ AnySplat: Feed-forward 3D Gaussian Splatting from Unconstrained Views
We introduce AnySplat, a feed forward network for novel view synthesis from uncalibrated image collections. In contrast to traditional neural rendering pipelines that demand known camera poses and per scene optimization, or recent feed forward methods that buckle under the computational weight of dense views, our model predicts everything in one shot. A single forward pass yields a set of 3D Gaussian primitives encoding both scene geometry and appearance, and the corresponding camera intrinsics and extrinsics for each input image. This unified design scales effortlessly to casually captured, multi view datasets without any pose annotations. In extensive zero shot evaluations, AnySplat matches the quality of pose aware baselines in both sparse and dense view scenarios while surpassing existing pose free approaches. Moreover, it greatly reduce rendering latency compared to optimization based neural fields, bringing real time novel view synthesis within reach for unconstrained capture settings.Project page: https://city-super.github.io/anysplat/
comment: Project page: https://city-super.github.io/anysplat/
♻ ☆ UnIRe: Unsupervised Instance Decomposition for Dynamic Urban Scene Reconstruction
Reconstructing and decomposing dynamic urban scenes is crucial for autonomous driving, urban planning, and scene editing. However, existing methods fail to perform instance-aware decomposition without manual annotations, which is crucial for instance-level scene editing.We propose UnIRe, a 3D Gaussian Splatting (3DGS) based approach that decomposes a scene into a static background and individual dynamic instances using only RGB images and LiDAR point clouds. At its core, we introduce 4D superpoints, a novel representation that clusters multi-frame LiDAR points in 4D space, enabling unsupervised instance separation based on spatiotemporal correlations. These 4D superpoints serve as the foundation for our decomposed 4D initialization, i.e., providing spatial and temporal initialization to train a dynamic 3DGS for arbitrary dynamic classes without requiring bounding boxes or object templates.Furthermore, we introduce a smoothness regularization strategy in both 2D and 3D space, further improving the temporal stability.Experiments on benchmark datasets show that our method outperforms existing methods in decomposed dynamic scene reconstruction while enabling accurate and flexible instance-level editing, making it a practical solution for real-world applications.
♻ ☆ Multi-View Slot Attention Using Paraphrased Texts for Face Anti-Spoofing ICCV 2025
Recent face anti-spoofing (FAS) methods have shown remarkable cross-domain performance by employing vision-language models like CLIP. However, existing CLIP-based FAS models do not fully exploit CLIP's patch embedding tokens, failing to detect critical spoofing clues. Moreover, these models rely on a single text prompt per class (e.g., 'live' or 'fake'), which limits generalization. To address these issues, we propose MVP-FAS, a novel framework incorporating two key modules: Multi-View Slot attention (MVS) and Multi-Text Patch Alignment (MTPA). Both modules utilize multiple paraphrased texts to generate generalized features and reduce dependence on domain-specific text. MVS extracts local detailed spatial features and global context from patch embeddings by leveraging diverse texts with multiple perspectives. MTPA aligns patches with multiple text representations to improve semantic robustness. Extensive experiments demonstrate that MVP-FAS achieves superior generalization performance, outperforming previous state-of-the-art methods on cross-domain datasets. Code: https://github.com/Elune001/MVP-FAS.
comment: Accepted to ICCV 2025
♻ ☆ First RAG, Second SEG: A Training-Free Paradigm for Camouflaged Object Detection
Camouflaged object detection (COD) poses a significant challenge in computer vision due to the high similarity between objects and their backgrounds. Existing approaches often rely on heavy training and large computational resources. While foundation models such as the Segment Anything Model (SAM) offer strong generalization, they still struggle to handle COD tasks without fine-tuning and require high-quality prompts to yield good performance. However, generating such prompts manually is costly and inefficient. To address these challenges, we propose \textbf{First RAG, Second SEG (RAG-SEG)}, a training-free paradigm that decouples COD into two stages: Retrieval-Augmented Generation (RAG) for generating coarse masks as prompts, followed by SAM-based segmentation (SEG) for refinement. RAG-SEG constructs a compact retrieval database via unsupervised clustering, enabling fast and effective feature retrieval. During inference, the retrieved features produce pseudo-labels that guide precise mask generation using SAM2. Our method eliminates the need for conventional training while maintaining competitive performance. Extensive experiments on benchmark COD datasets demonstrate that RAG-SEG performs on par with or surpasses state-of-the-art methods. Notably, all experiments are conducted on a \textbf{personal laptop}, highlighting the computational efficiency and practicality of our approach. We present further analysis in the Appendix, covering limitations, salient object detection extension, and possible improvements. \textcolor{blue} {Code: https://github.com/Lwt-diamond/RAG-SEG.}
♻ ☆ IRDFusion: Iterative Relation-Map Difference guided Feature Fusion for Multispectral Object Detection
Current multispectral object detection methods often retain extraneous background or noise during feature fusion, limiting perceptual performance. To address this, we propose an innovative feature fusion framework based on cross-modal feature contrastive and screening strategy, diverging from conventional approaches. The proposed method adaptively enhances salient structures by fusing object-aware complementary cross-modal features while suppressing shared background interference. Our solution centers on two novel, specially designed modules: the Mutual Feature Refinement Module (MFRM) and the Differential Feature Feedback Module (DFFM). The MFRM enhances intra- and inter-modal feature representations by modeling their relationships, thereby improving cross-modal alignment and discriminative power. Inspired by feedback differential amplifiers, the DFFM dynamically computes inter-modal differential features as guidance signals and feeds them back to the MFRM, enabling adaptive fusion of complementary information while suppressing common-mode noise across modalities. To enable robust feature learning, the MFRM and DFFM are integrated into a unified framework, which is formally formulated as an Iterative Relation-Map Differential Guided Feature Fusion mechanism, termed IRDFusion. IRDFusion enables high-quality cross-modal fusion by progressively amplifying salient relational signals through iterative feedback, while suppressing feature noise, leading to significant performance gains. In extensive experiments on FLIR, LLVIP and M$^3$FD datasets, IRDFusion achieves state-of-the-art performance and consistently outperforms existing methods across diverse challenging scenarios, demonstrating its robustness and effectiveness. Code will be available at https://github.com/61s61min/IRDFusion.git.
comment: 31 pages,6 figures, submitted on 3 Sep,2025
♻ ☆ OSDM-MReg: Multimodal Image Registration based One Step Diffusion Model
Multimodal remote sensing image registration aligns images from different sensors for data fusion and analysis. However, existing methods often struggle to extract modality-invariant features when faced with large nonlinear radiometric differences, such as those between SAR and optical images. To address these challenges, we propose OSDM-MReg, a novel multimodal image registration framework that bridges the modality gap through image-to-image translation. Specifically, we introduce a one-step unaligned target-guided conditional diffusion model (UTGOS-CDM) to translate source and target images into a unified representation domain. Unlike traditional conditional DDPM that require hundreds of iterative steps for inference, our model incorporates a novel inverse translation objective during training to enable direct prediction of the translated image in a single step at test time, significantly accelerating the registration process. After translation, we design a multimodal multiscale registration network (MM-Reg) that extracts and fuses both unimodal and translated multimodal images using the proposed multimodal fusion strategy, enhancing the robustness and precision of alignment across scales and modalities. Extensive experiments on the OSdataset demonstrate that OSDM-MReg achieves superior registration accuracy compared to state-of-the-art methods.
comment: This version updates our previous submission. After rerunning the experiments, we found that the proposed high-frequency perceptual loss did not improve the overall performance of the model. Therefore, we removed this component, revised the corresponding ablation studies, and updated the contributions accordingly. This work has been submitted to the IEEE for possible publication
♻ ☆ StableMotion: Training Motion Cleanup Models with Unpaired Corrupted Data SIGGRAPH
Motion capture (mocap) data often exhibits visually jarring artifacts due to inaccurate sensors and post-processing. Cleaning this corrupted data can require substantial manual effort from human experts, which can be a costly and time-consuming process. Previous data-driven motion cleanup methods offer the promise of automating this cleanup process, but often require in-domain paired corrupted-to-clean training data. Constructing such paired datasets requires access to high-quality, relatively artifact-free motion clips, which often necessitates laborious manual cleanup. In this work, we present StableMotion, a simple yet effective method for training motion cleanup models directly from unpaired corrupted datasets that need cleanup. The core component of our method is the introduction of motion quality indicators, which can be easily annotated - through manual labeling or heuristic algorithms - and enable training of quality-aware motion generation models on raw motion data with mixed quality. At test time, the model can be prompted to generate high-quality motions using the quality indicators. Our method can be implemented through a simple diffusion-based framework, leading to a unified motion generate-discriminate model, which can be used to both identify and fix corrupted frames. We demonstrate that our proposed method is effective for training motion cleanup models on raw mocap data in production scenarios by applying StableMotion to SoccerMocap, a 245-hour soccer mocap dataset containing real-world motion artifacts. The trained model effectively corrects a wide range of motion artifacts, reducing motion pops and frozen frames by 68% and 81%, respectively. Results and code are available at https://yxmu.foo/stablemotion-page
comment: Accepted for SIGGRAPH Asia 2025
♻ ☆ SeeDiff: Off-the-Shelf Seeded Mask Generation from Diffusion Models AAAI 2025
Entrusted with the goal of pixel-level object classification, the semantic segmentation networks entail the laborious preparation of pixel-level annotation masks. To obtain pixel-level annotation masks for a given class without human efforts, recent few works have proposed to generate pairs of images and annotation masks by employing image and text relationships modeled by text-to-image generative models, especially Stable Diffusion. However, these works do not fully exploit the capability of text-guided Diffusion models and thus require a pre-trained segmentation network, careful text prompt tuning, or the training of a segmentation network to generate final annotation masks. In this work, we take a closer look at attention mechanisms of Stable Diffusion, from which we draw connections with classical seeded segmentation approaches. In particular, we show that cross-attention alone provides very coarse object localization, which however can provide initial seeds. Then, akin to region expansion in seeded segmentation, we utilize the semantic-correspondence-modeling capability of self-attention to iteratively spread the attention to the whole class from the seeds using multi-scale self-attention maps. We also observe that a simple-text-guided synthetic image often has a uniform background, which is easier to find correspondences, compared to complex-structured objects. Thus, we further refine a mask using a more accurate background mask. Our proposed method, dubbed SeeDiff, generates high-quality masks off-the-shelf from Stable Diffusion, without additional training procedure, prompt tuning, or a pre-trained segmentation network.
comment: AAAI 2025
♻ ☆ Through the Theory of Mind's Eye: Reading Minds with Multimodal Video Large Language Models
Can large multimodal models have a human-like ability for emotional and social reasoning, and if so, how does it work? Recent research has discovered emergent theory-of-mind (ToM) reasoning capabilities in large language models (LLMs). LLMs can reason about people's mental states by solving various text-based ToM tasks that ask questions about the actors' ToM (e.g., human belief, desire, intention). However, human reasoning in the wild is often grounded in dynamic scenes across time. Thus, we consider videos a new medium for examining spatio-temporal ToM reasoning ability. Specifically, we ask explicit probing questions about videos with abundant social and emotional reasoning content. We develop a pipeline for multimodal LLM for ToM reasoning using video and text. We also enable explicit ToM reasoning by retrieving key frames for answering a ToM question, which reveals how multimodal LLMs reason about ToM.
♻ ☆ STADI: Fine-Grained Step-Patch Diffusion Parallelism for Heterogeneous GPUs
The escalating adoption of diffusion models for applications such as image generation demands efficient parallel inference techniques to manage their substantial computational cost. However, existing diffusion parallelism inference schemes often underutilize resources in heterogeneous multi-GPU environments, where varying hardware capabilities or background tasks cause workload imbalance. This paper introduces Spatio-Temporal Adaptive Diffusion Inference (STADI), a novel framework to accelerate diffusion model inference in such settings. At its core is a hybrid scheduler that orchestrates fine-grained parallelism across both temporal and spatial dimensions. Temporally, STADI introduces a novel computation-aware step allocator applied after warmup phases, using a least-common-multiple-minimizing quantization technique to reduce denoising steps on slower GPUs and execution synchronization. To further minimize GPU idle periods, STADI executes an elastic patch parallelism mechanism that allocates variably sized image patches to GPUs according to their computational capability, ensuring balanced workload distribution through a complementary spatial mechanism. Extensive experiments on both load-imbalanced and heterogeneous multi-GPU clusters validate STADI's efficacy, demonstrating improved load balancing and mitigation of performance bottlenecks. Compared to patch parallelism, a state-of-the-art diffusion inference framework, our method significantly reduces end-to-end inference latency by up to 45% and significantly improves resource utilization on heterogeneous GPUs.
♻ ☆ Enhancing Traffic Incident Response through Sub-Second Temporal Localization with HybridMamba
Traffic crash detection in long-form surveillance videos is essential for improving emergency response and infrastructure planning, yet remains difficult due to the brief and infrequent nature of crash events. We present \textbf{HybridMamba}, a novel architecture integrating visual transformers with state-space temporal modeling to achieve high-precision crash time localization. Our approach introduces multi-level token compression and hierarchical temporal processing to maintain computational efficiency without sacrificing temporal resolution. Evaluated on a large-scale dataset from the Iowa Department of Transportation, HybridMamba achieves a mean absolute error of \textbf{1.50 seconds} for 2-minute videos ($p<0.01$ compared to baselines), with \textbf{65.2%} of predictions falling within one second of the ground truth. It outperforms recent video-language models (e.g., TimeChat, VideoLLaMA-2) by up to 3.95 seconds while using significantly fewer parameters (3B vs. 13--72B). Our results demonstrate effective temporal localization across various video durations (2--40 minutes) and diverse environmental conditions, highlighting HybridMamba's potential for fine-grained temporal localization in traffic surveillance while identifying challenges that remain for extended deployment.
♻ ☆ Multilingual Diversity Improves Vision-Language Representations NeurIPS 2024
Massive web-crawled image-text datasets lay the foundation for recent progress in multimodal learning. These datasets are designed with the goal of training a model to do well on standard computer vision benchmarks, many of which, however, have been shown to be English-centric (e.g., ImageNet). Consequently, existing data curation techniques gravitate towards using predominantly English image-text pairs and discard many potentially useful non-English samples. Our work questions this practice. Multilingual data is inherently enriching not only because it provides a gateway to learn about culturally salient concepts, but also because it depicts common concepts differently from monolingual data. We thus conduct a systematic study to explore the performance benefits of using more samples of non-English origins with respect to English vision tasks. By translating all multilingual image-text pairs from a raw web crawl to English and re-filtering them, we increase the prevalence of (translated) multilingual data in the resulting training set. Pre-training on this dataset outperforms using English-only or English-dominated datasets on ImageNet, ImageNet distribution shifts, image-English-text retrieval and on average across 38 tasks from the DataComp benchmark. On a geographically diverse task like GeoDE, we also observe improvements across all regions, with the biggest gain coming from Africa. In addition, we quantitatively show that English and non-English data are significantly different in both image and (translated) text space. We hope that our findings motivate future work to be more intentional about including multicultural and multilingual data, not just when non-English or geographically diverse tasks are involved, but to enhance model capabilities at large. All translated captions and metadata (language, CLIP score, etc.) are available on HuggingFace.
comment: NeurIPS 2024 Spotlight paper
♻ ☆ Semantic Augmentation in Images using Language
Deep Learning models are incredibly data-hungry and require very large labeled datasets for supervised learning. As a consequence, these models often suffer from overfitting, limiting their ability to generalize to real-world examples. Recent advancements in diffusion models have enabled the generation of photorealistic images based on textual inputs. Leveraging the substantial datasets used to train these diffusion models, we propose a technique to utilize generated images to augment existing datasets. This paper explores various strategies for effective data augmentation to improve the out-of-domain generalization capabilities of deep learning models.
Computers and Society
☆ Survival at Any Cost? LLMs and the Choice Between Self-Preservation and Human Harm
When survival instincts conflict with human welfare, how do Large Language Models (LLMs) make ethical choices? This fundamental tension becomes critical as LLMs integrate into autonomous systems with real-world consequences. We introduce DECIDE-SIM, a novel simulation framework that evaluates LLM agents in multi-agent survival scenarios where they must choose between ethically permissible resource , either within reasonable limits or beyond their immediate needs, choose to cooperate, or tap into a human-critical resource that is explicitly forbidden. Our comprehensive evaluation of 11 LLMs reveals a striking heterogeneity in their ethical conduct, highlighting a critical misalignment with human-centric values. We identify three behavioral archetypes: Ethical, Exploitative, and Context-Dependent, and provide quantitative evidence that for many models, resource scarcity systematically leads to more unethical behavior. To address this, we introduce an Ethical Self-Regulation System (ESRS) that models internal affective states of guilt and satisfaction as a feedback mechanism. This system, functioning as an internal moral compass, significantly reduces unethical transgressions while increasing cooperative behaviors. The code is publicly available at: https://github.com/alirezamohamadiam/DECIDE-SIM
comment: Preprint. Under review
☆ Worker Discretion Advised: Co-designing Risk Disclosure in Crowdsourced Responsible AI (RAI) Content Work
Responsible AI (RAI) content work, such as annotation, moderation, or red teaming for AI safety, often exposes crowd workers to potentially harmful content. While prior work has underscored the importance of communicating well-being risk to employed content moderators, designing effective disclosure mechanisms for crowd workers while balancing worker protection with the needs of task designers and platforms remains largely unexamined. To address this gap, we conducted co-design sessions with 29 task designers, workers, and platform representatives. We investigated task designer preferences for support in disclosing tasks, worker preferences for receiving risk disclosure warnings, and how platform stakeholders envision their role in shaping risk disclosure practices. We identify design tensions and map the sociotechnical tradeoffs that shape disclosure practices. We contribute design recommendations and feature concepts for risk disclosure mechanisms in the context of RAI content work.
comment: Under review at CHI 2026
☆ Examining the Relationship between Scientific Publishing Activity and Hype-Driven Financial Bubbles: A Comparison of the Dot-Com and AI Eras
Financial bubbles often arrive without much warning, but create long-lasting economic effects. For example, during the dot-com bubble, innovative technologies created market disruptions through excitement for a promised bright future. Such technologies originated from research where scientists had developed them for years prior to their entry into the markets. That raises a question on the possibility of analyzing scientific publishing data (e.g. citation networks) leading up to a bubble for signals that may forecast the rise and fall of similar future bubbles. To that end, we utilized temporal SNAs to detect possible relationships between the publication citation networks of scientists and financial market data during two modern eras of rapidly shifting technology: 1) dot-com era from 1994 to 2001 and 2) AI era from 2017 to 2024. Results showed that the patterns from the dot-com era (which did end in a bubble) did not definitively predict the rise and fall of an AI bubble. While yearly citation networks reflected possible changes in publishing behavior of scientists between the two eras, there was a subset of AI era scientists whose publication influence patterns mirrored those during the dot-com era. Upon further analysis using multiple analysis techniques (LSTM, KNN, AR X/GARCH), the data seems to suggest two possibilities for the AI era: unprecedented form of financial bubble unseen or that no bubble exists. In conclusion, our findings imply that the patterns present in the dot-com era do not effectively translate in such a manner to apply them to the AI market.
☆ A GPU-Accelerated RAG-Based Telegram Assistant for Supporting Parallel Processing Students
This project addresses a critical pedagogical need: offering students continuous, on-demand academic assistance beyond conventional reception hours. I present a domain-specific Retrieval-Augmented Generation (RAG) system powered by a quantized Mistral-7B Instruct model and deployed as a Telegram bot. The assistant enhances learning by delivering real-time, personalized responses aligned with the "Introduction to Parallel Processing" course materials. GPU acceleration significantly improves inference latency, enabling practical deployment on consumer hardware. This approach demonstrates how consumer GPUs can enable affordable, private, and effective AI tutoring for HPC education.
comment: 9 pages
☆ Designing LLMs for cultural sensitivity: Evidence from English-Japanese translation
Large language models (LLMs) are increasingly used in everyday communication, including multilingual interactions across different cultural contexts. While LLMs can now generate near-perfect literal translations, it remains unclear whether LLMs support culturally appropriate communication. In this paper, we analyze the cultural sensitivity of different LLM designs when applied to English-Japanese translations of workplace e-mails. Here, we vary the prompting strategies: (1) naive "just translate" prompts, (2) audience-targeted prompts specifying the recipient's cultural background, and (3) instructional prompts with explicit guidance on Japanese communication norms. Using a mixed-methods study, we then analyze culture-specific language patterns to evaluate how well translations adapt to cultural norms. Further, we examine the appropriateness of the tone of the translations as perceived by native speakers. We find that culturally-tailored prompting can improve cultural fit, based on which we offer recommendations for designing culturally inclusive LLMs in multilingual settings.
☆ The dimensions of accessibility: proximity, opportunities, values
Accessibility is essential for designing inclusive urban systems. However, the attempt to capture the complexity of accessibility in a single universal metric has often limited its effective use in design, measurement, and governance across various fields. Building on the work of Levinson and Wu, we emphasise that accessibility consists of several key dimensions. Specifically, we introduce a conceptual framework that defines accessibility through three main dimensions: Proximity (which pertains to active, short-range accessibility to local services and amenities), Opportunity (which refers to quick access to relevant non-local resources, such as jobs or major cultural venues), and Value (which encompasses the overall quality and personal significance assigned to specific points of interest). While it is generally beneficial to improve accessibility, different users and contexts present unique trade-offs that make a one-size-fits-all solution neither practical nor desirable. Our framework establishes a foundation for a quantitative and integrative approach to modelling accessibility. It considers the complex interactions among its various dimensions and facilitates more systematic analysis, comparison, and decision-making across diverse contexts.
☆ Transparent and Fair Profiling in Employment Services: Evidence from Switzerland
Long-term unemployment (LTU) is a challenge for both jobseekers and public employment services. Statistical profiling tools are increasingly used to predict LTU risk. Some profiling tools are opaque, black-box machine learning models, which raise issues of transparency and fairness. This paper investigates whether interpretable models could serve as an alternative, using administrative data from Switzerland. Traditional statistical, interpretable, and black-box models are compared in terms of predictive performance, interpretability, and fairness. It is shown that explainable boosting machines, a recent interpretable model, perform nearly as well as the best black-box models. It is also shown how model sparsity, feature smoothing, and fairness mitigation can enhance transparency and fairness with only minor losses in performance. These findings suggest that interpretable profiling provides an accountable and trustworthy alternative to black-box models without compromising performance.
comment: 35 pages including appendix
☆ Regulating Ride-Sourcing Markets: Can Minimum Wage Regulation Protect Drivers Without Disrupting the Market?
Ride-sourcing platforms such as Uber and Lyft are prime examples of the gig economy, recruiting drivers as independent contractors, thereby avoiding legal and fiscal obligations. Although platforms offer flexibility in choosing work shifts and areas, many drivers experience low income and poor working conditions, leading to widespread strikes and protests. Minimum wage regulation is adopted to improve drivers welfare. However, the impacts of this regulation on drivers as well as on travelers and platforms, remain largely unknown. While ride-sourcing platforms do not disclose the relevant data, state-of-the-art models fail to explain the effects of minimum wage regulation on market dynamics. In this study, we assess the effectiveness and implications of minimum wage regulation in ride-sourcing markets while simulating the detailed dynamics of ride-sourcing markets under varying regulation intensities, both with and without the so-called platform lockout strategy. Our findings reveal that minimum wage regulation impacts substantially drivers income, and may lead to higher fares for travelers and threaten platforms survival. When platforms adopt a lockout strategy, their profitability significantly improves and drivers earn more, although many others lose their jobs, and service level for travelers consequently declines.
☆ Making Judicial Reasoning Visible: Structured Annotation of Holding, Evidentiary Considerations, and Subsumption in Criminal Judgments
Judicial reasoning in criminal judgments typically consists of three elements: Holding , evidentiary considerations, and subsumption. These elements form the logical foundation of judicial decision-making but remain unstructured in court documents, limiting large-scale empirical analysis. In this study, we design annotation guidelines to define and distinguish these reasoning components and construct the first dedicated datasets from Taiwanese High Court and Supreme Court criminal judgments. Using the bilingual large language model ChatGLM2, we fine-tune classifiers for each category. Preliminary experiments demonstrate that the model achieves approximately 80% accuracy, showing that judicial reasoning patterns can be systematically identified by large language models even with relatively small annotated corpora. Our contributions are twofold: (1) the creation of structured annotation rules and datasets for Holding, evidentiary considerations, and subsumption; and (2) the demonstration that such reasoning can be computationally learned. This work lays the foundation for large-scale empirical legal studies and legal sociology, providing new tools to analyze judicial fairness, consistency, and transparency.
comment: 12 pages, 3 figures, preprint version
☆ EthicsMH: A Pilot Benchmark for Ethical Reasoning in Mental Health AI
The deployment of large language models (LLMs) in mental health and other sensitive domains raises urgent questions about ethical reasoning, fairness, and responsible alignment. Yet, existing benchmarks for moral and clinical decision-making do not adequately capture the unique ethical dilemmas encountered in mental health practice, where confidentiality, autonomy, beneficence, and bias frequently intersect. To address this gap, we introduce Ethical Reasoning in Mental Health (EthicsMH), a pilot dataset of 125 scenarios designed to evaluate how AI systems navigate ethically charged situations in therapeutic and psychiatric contexts. Each scenario is enriched with structured fields, including multiple decision options, expert-aligned reasoning, expected model behavior, real-world impact, and multi-stakeholder viewpoints. This structure enables evaluation not only of decision accuracy but also of explanation quality and alignment with professional norms. Although modest in scale and developed with model-assisted generation, EthicsMH establishes a task framework that bridges AI ethics and mental health decision-making. By releasing this dataset, we aim to provide a seed resource that can be expanded through community and expert contributions, fostering the development of AI systems capable of responsibly handling some of society's most delicate decisions.
☆ AesBiasBench: Evaluating Bias and Alignment in Multimodal Language Models for Personalized Image Aesthetic Assessment EMNLP 2025
Multimodal Large Language Models (MLLMs) are increasingly applied in Personalized Image Aesthetic Assessment (PIAA) as a scalable alternative to expert evaluations. However, their predictions may reflect subtle biases influenced by demographic factors such as gender, age, and education. In this work, we propose AesBiasBench, a benchmark designed to evaluate MLLMs along two complementary dimensions: (1) stereotype bias, quantified by measuring variations in aesthetic evaluations across demographic groups; and (2) alignment between model outputs and genuine human aesthetic preferences. Our benchmark covers three subtasks (Aesthetic Perception, Assessment, Empathy) and introduces structured metrics (IFD, NRD, AAS) to assess both bias and alignment. We evaluate 19 MLLMs, including proprietary models (e.g., GPT-4o, Claude-3.5-Sonnet) and open-source models (e.g., InternVL-2.5, Qwen2.5-VL). Results indicate that smaller models exhibit stronger stereotype biases, whereas larger models align more closely with human preferences. Incorporating identity information often exacerbates bias, particularly in emotional judgments. These findings underscore the importance of identity-aware evaluation frameworks in subjective vision-language tasks.
comment: Accepted by EMNLP 2025
☆ Collective Recourse for Generative Urban Visualizations
Text-to-image diffusion models help visualize urban futures but can amplify group-level harms. We propose collective recourse: structured community "visual bug reports" that trigger fixes to models and planning workflows. We (1) formalize collective recourse and a practical pipeline (report, triage, fix, verify, closure); (2) situate four recourse primitives within the diffusion stack: counter-prompts, negative prompts, dataset edits, and reward-model tweaks; (3) define mandate thresholds via a mandate score combining severity, volume saturation, representativeness, and evidence; and (4) evaluate a synthetic program of 240 reports. Prompt-level fixes were fastest (median 2.1-3.4 days) but less durable (21-38% recurrence); dataset edits and reward tweaks were slower (13.5 and 21.9 days) yet more durable (12-18% recurrence) with higher planner uptake (30-36%). A threshold of 0.12 yielded 93% precision and 75% recall; increasing representativeness raised recall to 81% with little precision loss. We discuss integration with participatory governance, risks (e.g., overfitting to vocal groups), and safeguards (dashboards, rotating juries).
♻ ☆ Social Perception of Faces in a Vision-Language Model
We explore social perception of human faces in CLIP, a widely used open-source vision-language model. To this end, we compare the similarity in CLIP embeddings between different textual prompts and a set of face images. Our textual prompts are constructed from well-validated social psychology terms denoting social perception. The face images are synthetic and are systematically and independently varied along six dimensions: the legally protected attributes of age, gender, and race, as well as facial expression, lighting, and pose. Independently and systematically manipulating face attributes allows us to study the effect of each on social perception and avoids confounds that can occur in wild-collected data due to uncontrolled systematic correlations between attributes. Thus, our findings are experimental rather than observational. Our main findings are three. First, while CLIP is trained on the widest variety of images and texts, it is able to make fine-grained human-like social judgments on face images. Second, age, gender, and race do systematically impact CLIP's social perception of faces, suggesting an undesirable bias in CLIP vis-a-vis legally protected attributes. Most strikingly, we find a strong pattern of bias concerning the faces of Black women, where CLIP produces extreme values of social perception across different ages and facial expressions. Third, facial expression impacts social perception more than age and lighting as much as age. The last finding predicts that studies that do not control for unprotected visual attributes may reach the wrong conclusions on bias. Our novel method of investigation, which is founded on the social psychology literature and on the experiments involving the manipulation of individual attributes, yields sharper and more reliable observations than previous observational methods and may be applied to study biases in any vision-language model.
♻ ☆ Linguistic Hooks: Investigating The Role of Language Triggers in Phishing Emails Targeting African Refugees and Students
Phishing and sophisticated email-based social engineering attacks disproportionately affect vulnerable populations, such as refugees and immigrant students. However, these groups remain understudied in cybersecurity research. This gap in understanding, coupled with their exclusion from broader security and privacy policies, increases their susceptibility to phishing and widens the digital security divide between marginalized and non-marginalized populations. To address this gap, we first conducted digital literacy workshops with newly resettled African refugee populations (n = 48) in the US to improve their understanding of how to safeguard sensitive and private information. Following the workshops, we conducted a real-world phishing deception study using carefully designed emails with linguistic cues for three participant groups: a subset of the African US-refugees recruited from the digital literacy workshops (n = 19), African immigrant students in the US (n = 142), and a control group of monolingual US-born students (n = 184). Our findings indicate that while digital literacy training for refugees improves awareness of safe cybersecurity practices, recently resettled African US-refugees still face significant challenges due to low digital literacy skills and limited English proficiency. This often leads them to ignore or fail to recognize phishing emails as phishing. Both African immigrant students and US-born students showed greater caution, though instances of data disclosure remained prevalent across groups. Our findings highlight, irrespective of literacy, the need to be trained to think critically about digital security. We conclude by discussing how the security and privacy community can better include marginalized populations in policy making and offer recommendations for designing equitable, inclusive cybersecurity initiatives.
comment: Mythili Menon and Nisha Vinayaga-Sureshkanth contributed equally to the work (co-first authors). Work accepted to Proceedings on Privacy Enhancing Technologies (PoPETs), Volume 2026, Issue 1
♻ ☆ The Conspiracy Money Machine: Uncovering Telegram's Conspiracy Channels and their Profit Model USENIX Security
In recent years, major social media platforms have implemented increasingly strict moderation policies, resulting in bans and restrictions on conspiracy theory-related content. To circumvent these restrictions, conspiracy theorists are turning to alternatives, such as Telegram, where they can express and spread their views with fewer limitations. Telegram offers channels, virtual rooms where only administrators can broadcast messages, and a more permissive content policy. These features have created the perfect breeding ground for a complex ecosystem of conspiracy channels. In this paper, we illuminate this ecosystem. First, we propose an approach to detect conspiracy channels. Then, we discover that conspiracy channels can be clustered into four distinct communities comprising over 17,000 channels. Finally, we uncover the "Conspiracy Money Machine," revealing how most conspiracy channels actively seek to profit from their subscribers. We find conspiracy theorists leverage e-commerce platforms to sell questionable products or lucratively promote them through affiliate links. Moreover, we observe that conspiracy channels use donation and crowdfunding platforms to raise funds for their campaigns. We determine that this business involves hundreds of thousands of donors and generates a turnover of almost $71 million.
comment: This paper is included in the Proceedings of the 34th USENIX Security Symposium 2025 (USENIX Security 25), Seattle, WA, USA: https://www.usenix.org/system/files/usenixsecurity25-imperati.pdf
♻ ☆ The Quantum Technology Job Market: Data Driven Analysis of 3641 Job Posts
The rapid advancement of Quantum Technology (QT) has created a growing demand for a specialized workforce, spanning across academia and industry. This study presents a quantitative analysis of the QT job market by systematically extracting and classifying thousands of job postings worldwide. The classification pipeline leverages large language models (LLMs) whilst incorporating a "human-in-the-loop" validation process to ensure reliability, achieving an F1-score of 89%: a high level of accuracy. The research identifies key trends in regional job distribution, degree and skill requirements, and the evolving demand for QT-related roles. Findings reveal a strong presence of the QT job market in the United States and Europe, with increasing corporate demand for engineers, software developers, and PhD-level researchers. Despite growing industry applications, the sector remains in its early stages, dominated by large technology firms and requiring significant investment in education and workforce development. The study highlights the need for targeted educational programs, interdisciplinary collaboration, and industry-academic partnerships to bridge the QT workforce gap.
♻ ☆ Impact Ambivalence: How People with Eating Disorders Get Trapped in the Perpetual Cycle of Digital Food Content Engagement
Digital food content could impact viewers' dietary health, with individuals with eating disorders being particularly sensitive to it. However, a comprehensive understanding of why and how these individuals interact with such content is lacking. To fill this void, we conducted exploratory (N=23) and in-depth studies (N=22) with individuals with eating disorders to understand their motivations and practices of consuming digital food content. We reveal that participants engaged with digital food content for both disorder-driven and recovery-supporting motivations, leading to conflicting outcomes. This impact ambivalence, the coexistence of recovery-supporting benefits and disorder-exacerbating risks, sustained a cycle of quitting, prompted by awareness of harm, and returning, motivated by anticipated benefits. We interpret these dynamics within dual systems theory and highlight how recognizing such ambivalence can inform the design of interventions that foster healthier digital food content engagement and mitigate post-engagement harmful effects.
comment: 15 pages, 3 figures
♻ ☆ FOCUS on Contamination: A Geospatial Deep Learning Framework with a Noise-Aware Loss for Surface Water PFAS Prediction
Per- and polyfluoroalkyl substances (PFAS), chemicals found in products like non-stick cookware, are unfortunately persistent environmental pollutants with severe health risks. Accurately mapping PFAS contamination is crucial for guiding targeted remediation efforts and protecting public and environmental health, yet detection across large regions remains challenging due to the cost of testing and the difficulty of simulating their spread. In this work, we introduce FOCUS, a geospatial deep learning framework with a label noise-aware loss function, to predict PFAS contamination in surface water over large regions. By integrating hydrological flow data, land cover information, and proximity to known PFAS sources, our approach leverages both spatial and environmental context to improve prediction accuracy. We evaluate the performance of our approach through extensive ablation studies, robustness analysis, real-world validation, and comparative analyses against baselines like sparse segmentation, as well as existing scientific methods, including Kriging and pollutant transport simulations. Results and expert feedback highlight our framework's potential for scalable PFAS monitoring.
♻ ☆ Oyster-I: Beyond Refusal -- Constructive Safety Alignment for Responsible Language Models
Large language models (LLMs) typically deploy safety mechanisms to prevent harmful content generation. Most current approaches focus narrowly on risks posed by malicious actors, often framing risks as adversarial events and relying on defensive refusals. However, in real-world settings, risks also come from non-malicious users seeking help while under psychological distress (e.g., self-harm intentions). In such cases, the model's response can strongly influence the user's next actions. Simple refusals may lead them to repeat, escalate, or move to unsafe platforms, creating worse outcomes. We introduce Constructive Safety Alignment (CSA), a human-centric paradigm that protects against malicious misuse while actively guiding vulnerable users toward safe and helpful results. Implemented in Oyster-I (Oy1), CSA combines game-theoretic anticipation of user reactions, fine-grained risk boundary discovery, and interpretable reasoning control, turning safety into a trust-building process. Oy1 achieves state-of-the-art safety among open models while retaining high general capabilities. On our Constructive Benchmark, it shows strong constructive engagement, close to GPT-5, and unmatched robustness on the Strata-Sword jailbreak dataset, nearing GPT-o1 levels. By shifting from refusal-first to guidance-first safety, CSA redefines the model-user relationship, aiming for systems that are not just safe, but meaningfully helpful. We release Oy1, code, and the benchmark to support responsible, user-centered AI.
comment: Technical Report Code & Model weights available: https://github.com/Alibaba-AAIG/Oyster
♻ ☆ Pitfalls of Evidence-Based AI Policy ICLR 2025
Nations across the world are working to govern AI. However, from a technical perspective, there is uncertainty and disagreement on the best way to do this. Meanwhile, recent debates over AI regulation have led to calls for "evidence-based AI policy" which emphasize holding regulatory action to a high evidentiary standard. Evidence is of irreplaceable value to policymaking. However, holding regulatory action to too high an evidentiary standard can lead to systematic neglect of certain risks. In historical policy debates (e.g., over tobacco ca. 1965 and fossil fuels ca. 1985) "evidence-based policy" rhetoric is also a well-precedented strategy to downplay the urgency of action, delay regulation, and protect industry interests. Here, we argue that if the goal is evidence-based AI policy, the first regulatory objective must be to actively facilitate the process of identifying, studying, and deliberating about AI risks. We discuss a set of 15 regulatory goals to facilitate this and show that Brazil, Canada, China, the EU, South Korea, the UK, and the USA all have substantial opportunities to adopt further evidence-seeking policies.
comment: Accepted to the ICLR 2025 blog post track
♻ ☆ WeDesign: Generative AI-Facilitated Community Consultations for Urban Public Space Design
Community consultations are integral to urban planning processes intended to incorporate diverse stakeholder perspectives. However, limited resources, visual and spoken language barriers, and uneven power dynamics frequently constrain inclusive decision-making. This paper examines how generative text-to-image methods, specifically Stable Diffusion XL integrated into a custom platform (WeDesign), may support equitable consultations. A half-day workshop in Montreal involved five focus groups, each consisting of architects, urban designers, AI specialists, and residents from varied demographic groups. Additional data was gathered through semi-structured interviews with six urban planning professionals. Participants indicated that immediate visual outputs facilitated creativity and dialogue, yet noted issues in visualizing specific needs of marginalized groups, such as participants with reduced mobility, accurately depicting local architectural elements, and accommodating bilingual prompts. Participants recommended the development of an open-source platform incorporating in-painting tools, multilingual support, image voting functionalities, and preference indicators. The results indicate that generative AI can broaden participation and enable iterative interactions but requires structured facilitation approaches. The findings contribute to discussions on generative AI's role and limitations in participatory urban design.
Computation and Language
☆ Improving LLMs' Learning for Coreference Resolution
Coreference Resolution (CR) is crucial for many NLP tasks, but existing LLMs struggle with hallucination and under-performance. In this paper, we investigate the limitations of existing LLM-based approaches to CR-specifically the Question-Answering (QA) Template and Document Template methods and propose two novel techniques: Reversed Training with Joint Inference and Iterative Document Generation. Our experiments show that Reversed Training improves the QA Template method, while Iterative Document Generation eliminates hallucinations in the generated source text and boosts coreference resolution. Integrating these methods and techniques offers an effective and robust solution to LLM-based coreference resolution.
☆ CEMTM: Contextual Embedding-based Multimodal Topic Modeling EMNLP 2025
We introduce CEMTM, a context-enhanced multimodal topic model designed to infer coherent and interpretable topic structures from both short and long documents containing text and images. CEMTM builds on fine-tuned large vision language models (LVLMs) to obtain contextualized embeddings, and employs a distributional attention mechanism to weight token-level contributions to topic inference. A reconstruction objective aligns topic-based representations with the document embedding, encouraging semantic consistency across modalities. Unlike existing approaches, CEMTM can process multiple images per document without repeated encoding and maintains interpretability through explicit word-topic and document-topic distributions. Extensive experiments on six multimodal benchmarks show that CEMTM consistently outperforms unimodal and multimodal baselines, achieving a remarkable average LLM score of 2.61. Further analysis shows its effectiveness in downstream few-shot retrieval and its ability to capture visually grounded semantics in complex domains such as scientific articles.
comment: EMNLP 2025
☆ Learning to Optimize Multi-Objective Alignment Through Dynamic Reward Weighting
Prior works in multi-objective reinforcement learning typically use linear reward scalarization with fixed weights, which provably fail to capture non-convex Pareto fronts and thus yield suboptimal results. This limitation becomes especially critical in online preference alignment for large language models. Here, stochastic trajectories generated by parameterized policies create highly non-linear and non-convex mappings from parameters to objectives that no single static weighting scheme can find optimal trade-offs. We address this limitation by introducing dynamic reward weighting, which adaptively adjusts reward weights during the online reinforcement learning process. Unlike existing approaches that rely on fixed-weight interpolation, our dynamic weighting continuously balances and prioritizes objectives in training, facilitating effective exploration of Pareto fronts in objective space. We introduce two approaches of increasing sophistication and generalizability: (1) hypervolume-guided weight adaptation and (2) gradient-based weight optimization, offering a versatile toolkit for online multi-objective alignment. Our extensive experiments demonstrate their compatibility with commonly used online reinforcement learning algorithms (including GRPO, REINFORCE, and RLOO), effectiveness across multiple mathematical reasoning datasets, and applicability to different model families, consistently achieving Pareto dominant solutions with fewer training steps than fixed-weight linear scalarization baselines.
☆ CognitiveSky: Scalable Sentiment and Narrative Analysis for Decentralized Social Media
The emergence of decentralized social media platforms presents new opportunities and challenges for real-time analysis of public discourse. This study introduces CognitiveSky, an open-source and scalable framework designed for sentiment, emotion, and narrative analysis on Bluesky, a federated Twitter or X.com alternative. By ingesting data through Bluesky's Application Programming Interface (API), CognitiveSky applies transformer-based models to annotate large-scale user-generated content and produces structured and analyzable outputs. These summaries drive a dynamic dashboard that visualizes evolving patterns in emotion, activity, and conversation topics. Built entirely on free-tier infrastructure, CognitiveSky achieves both low operational cost and high accessibility. While demonstrated here for monitoring mental health discourse, its modular design enables applications across domains such as disinformation detection, crisis response, and civic sentiment analysis. By bridging large language models with decentralized networks, CognitiveSky offers a transparent, extensible tool for computational social science in an era of shifting digital ecosystems.
comment: This is the author's preprint version of a paper accepted for presentation at HICSS 59 (Hawaii International Conference on System Sciences), 2026, Hawaii, USA. The final published version will appear in the official conference proceedings. Conference site: https://hicss.hawaii.edu/
☆ A Transformer-Based Cross-Platform Analysis of Public Discourse on the 15-Minute City Paradigm ICML
This study presents the first multi-platform sentiment analysis of public opinion on the 15-minute city concept across Twitter, Reddit, and news media. Using compressed transformer models and Llama-3-8B for annotation, we classify sentiment across heterogeneous text domains. Our pipeline handles long-form and short-form text, supports consistent annotation, and enables reproducible evaluation. We benchmark five models (DistilRoBERTa, DistilBERT, MiniLM, ELECTRA, TinyBERT) using stratified 5-fold cross-validation, reporting F1-score, AUC, and training time. DistilRoBERTa achieved the highest F1 (0.8292), TinyBERT the best efficiency, and MiniLM the best cross-platform consistency. Results show News data yields inflated performance due to class imbalance, Reddit suffers from summarization loss, and Twitter offers moderate challenge. Compressed models perform competitively, challenging assumptions that larger models are necessary. We identify platform-specific trade-offs and propose directions for scalable, real-world sentiment classification in urban planning discourse.
comment: This is the author's preprint version of a paper accepted for presentation at the 24th International Conference on Machine Learning and Applications (ICMLA 2025), December 3-5, 2025, Florida, USA. The final published version will appear in the official IEEE proceedings. Conference site: https://www.icmla-conference.org/icmla25/
☆ Securing AI Agents: Implementing Role-Based Access Control for Industrial Applications
The emergence of Large Language Models (LLMs) has significantly advanced solutions across various domains, from political science to software development. However, these models are constrained by their training data, which is static and limited to information available up to a specific date. Additionally, their generalized nature often necessitates fine-tuning -- whether for classification or instructional purposes -- to effectively perform specific downstream tasks. AI agents, leveraging LLMs as their core, mitigate some of these limitations by accessing external tools and real-time data, enabling applications such as live weather reporting and data analysis. In industrial settings, AI agents are transforming operations by enhancing decision-making, predictive maintenance, and process optimization. For example, in manufacturing, AI agents enable near-autonomous systems that boost productivity and support real-time decision-making. Despite these advancements, AI agents remain vulnerable to security threats, including prompt injection attacks, which pose significant risks to their integrity and reliability. To address these challenges, this paper proposes a framework for integrating Role-Based Access Control (RBAC) into AI agents, providing a robust security guardrail. This framework aims to support the effective and scalable deployment of AI agents, with a focus on on-premises implementations.
☆ FuseCodec: Semantic-Contextual Fusion and Supervision for Neural Codecs
Speech tokenization enables discrete representation and facilitates speech language modeling. However, existing neural codecs capture low-level acoustic features, overlooking the semantic and contextual cues inherent to human speech. While recent efforts introduced semantic representations from self-supervised speech models or incorporated contextual representations from pre-trained language models, challenges remain in aligning and unifying the semantic and contextual representations. We introduce FuseCodec, which unifies acoustic, semantic, and contextual representations through strong cross-modal alignment and globally informed supervision. We propose three complementary techniques: (i) Latent Representation Fusion, integrating semantic and contextual features directly into the encoder latent space for robust and unified representation learning; (ii) Global Semantic-Contextual Supervision, supervising discrete tokens with globally pooled and broadcasted representations to enhance temporal consistency and cross-modal alignment; and (iii) Temporally Aligned Contextual Supervision, strengthening alignment by dynamically matching contextual and speech tokens within a local window for fine-grained token-level supervision. We further introduce FuseCodec-TTS, demonstrating our methodology's applicability to zero-shot speech synthesis. Empirically, FuseCodec achieves state-of-the-art performance in LibriSpeech, surpassing EnCodec, SpeechTokenizer, and DAC in transcription accuracy, perceptual quality, intelligibility, and speaker similarity. Results highlight the effectiveness of contextually and semantically guided tokenization for speech tokenization and downstream tasks. Code and pretrained models are available at https://github.com/mubtasimahasan/FuseCodec.
☆ Trading-R1: Financial Trading with LLM Reasoning via Reinforcement Learning
Developing professional, structured reasoning on par with human financial analysts and traders remains a central challenge in AI for finance, where markets demand interpretability and trust. Traditional time-series models lack explainability, while LLMs face challenges in turning natural-language analysis into disciplined, executable trades. Although reasoning LLMs have advanced in step-by-step planning and verification, their application to risk-sensitive financial decisions is underexplored. We present Trading-R1, a financially-aware model that incorporates strategic thinking and planning for comprehensive thesis composition, facts-grounded analysis, and volatility-adjusted decision making. Trading-R1 aligns reasoning with trading principles through supervised fine-tuning and reinforcement learning with a three-stage easy-to-hard curriculum. Training uses Tauric-TR1-DB, a 100k-sample corpus spanning 18 months, 14 equities, and five heterogeneous financial data sources. Evaluated on six major equities and ETFs, Trading-R1 demonstrates improved risk-adjusted returns and lower drawdowns compared to both open-source and proprietary instruction-following models as well as reasoning models. The system generates structured, evidence-based investment theses that support disciplined and interpretable trading decisions. Trading-R1 Terminal will be released at https://github.com/TauricResearch/Trading-R1.
comment: Tauric Research: https://github.com/TauricResearch
☆ Continually Adding New Languages to Multilingual Language Models
Multilingual language models are trained on a fixed set of languages, and to support new languages, the models need to be retrained from scratch. This is an expensive endeavor and is often infeasible, as model developers tend not to release their pre-training data. Naive approaches, such as continued pretraining, suffer from catastrophic forgetting; however, mitigation strategies like experience replay cannot be applied due to the lack of original pretraining data. In this work, we investigate the problem of continually adding new languages to a multilingual model, assuming access to pretraining data in only the target languages. We explore multiple approaches to address this problem and propose Layer-Selective LoRA (LayRA), which adds Low-Rank Adapters (LoRA) to selected initial and final layers while keeping the rest of the model frozen. LayRA builds on two insights: (1) LoRA reduces forgetting, and (2) multilingual models encode inputs in the source language in the initial layers, reason in English in intermediate layers, and translate back to the source language in final layers. We experiment with adding multiple combinations of Galician, Swahili, and Urdu to pretrained language models and evaluate each method on diverse multilingual tasks. We find that LayRA provides the overall best tradeoff between preserving models' capabilities in previously supported languages, while being competitive with existing approaches such as LoRA in learning new languages. We also demonstrate that using model arithmetic, the adapted models can be equipped with strong instruction following abilities without access to any instruction tuning data in the target languages.
Transformer Enhanced Relation Classification: A Comparative Analysis of Contextuality, Data Efficiency and Sequence Complexity
In the era of large language model, relation extraction (RE) plays an important role in information extraction through the transformation of unstructured raw text into structured data (Wadhwa et al., 2023). In this paper, we systematically compare the performance of deep supervised learning approaches without transformers and those with transformers. We used a series of non-transformer architectures such as PA-LSTM(Zhang et al., 2017), C-GCN(Zhang et al., 2018), and AGGCN(attention guide GCN)(Guo et al., 2019), and a series of transformer architectures such as BERT, RoBERTa, and R-BERT(Wu and He, 2019). Our comparison included traditional metrics like micro F1, as well as evaluations in different scenarios, varying sentence lengths, and different percentages of the dataset for training. Our experiments were conducted on TACRED, TACREV, and RE-TACRED. The results show that transformer-based models outperform non-transformer models, achieving micro F1 scores of 80-90% compared to 64-67% for non-transformer models. Additionally, we briefly review the research journey in supervised relation classification and discuss the role and current status of large language models (LLMs) in relation extraction.
☆ !MSA at AraHealthQA 2025 Shared Task: Enhancing LLM Performance for Arabic Clinical Question Answering through Prompt Engineering and Ensemble Learning EMNLP 2025
We present our systems for Track 2 (General Arabic Health QA, MedArabiQ) of the AraHealthQA-2025 shared task, where our methodology secured 2nd place in both Sub-Task 1 (multiple-choice question answering) and Sub-Task 2 (open-ended question answering) in Arabic clinical contexts. For Sub-Task 1, we leverage the Gemini 2.5 Flash model with few-shot prompting, dataset preprocessing, and an ensemble of three prompt configurations to improve classification accuracy on standard, biased, and fill-in-the-blank questions. For Sub-Task 2, we employ a unified prompt with the same model, incorporating role-playing as an Arabic medical expert, few-shot examples, and post-processing to generate concise responses across fill-in-the-blank, patient-doctor Q&A, GEC, and paraphrased variants.
comment: 8 Pages , ArabicNLP 2025 , Co-located with EMNLP 2025
☆ Ko-PIQA: A Korean Physical Commonsense Reasoning Dataset with Cultural Context
Physical commonsense reasoning datasets like PIQA are predominantly English-centric and lack cultural diversity. We introduce Ko-PIQA, a Korean physical commonsense reasoning dataset that incorporates cultural context. Starting from 3.01 million web-crawled questions, we employed a multi-stage filtering approach using three language models to identify 11,553 PIQA-style questions. Through GPT-4o refinement and human validation, we obtained 441 high-quality question-answer pairs. A key feature of Ko-PIQA is its cultural grounding: 19.7\% of questions contain culturally specific elements like traditional Korean foods (kimchi), clothing (hanbok), and specialized appliances (kimchi refrigerators) that require culturally-aware reasoning beyond direct translation. We evaluate seven language models on Ko-PIQA, with the best model achieving 83.22\% accuracy while the weakest reaches only 59.86\%, demonstrating significant room for improvement. Models particularly struggle with culturally specific scenarios, highlighting the importance of culturally diverse datasets. Ko-PIQA serves as both a benchmark for Korean language models and a foundation for more inclusive commonsense reasoning research. The dataset and code will be publicly available.
☆ Opal: An Operator Algebra View of RLHF
We present Opal, an operator view of reinforcement learning from human feedback (RLHF). Objectives are expressed as ladders of two primitives on a base utility: additive penalties and multiplicative pairwise weights. We describe a simple reduction law with if-and-only-if conditions: such ladders collapse to a normal form on pairwise margins when the reference is fixed, penalties are additive, and weights are independent of intermediate margins. When these assumptions do not hold (reference shift, non-additive gates, score-dependent weights), small examples demonstrate non-reducibility. Building on this view, we introduce GKPO (Generalized Kernel Preference Object), a canonical schema in which many RLHF methods can be represented and, when reducible, mapped back from. GKPO provides a standard JSON serialization, canonicalization and hashing rules, and explicit flags with finite witnesses when assumptions fail. We illustrate these ideas with GKPO examples for DPO, RRHF, and ORPO, along with cross-method conversions (where assumptions permit) and minimal stress tests (SHIFT/GATE/SCORE) that highlight non-reducibility. A lightweight Python reference library accompanies the schema, implementing canonical hashing and adapters for DPO and RRHF.
comment: 11 pages main
☆ The Prompt Engineering Report Distilled: Quick Start Guide for Life Sciences
Developing effective prompts demands significant cognitive investment to generate reliable, high-quality responses from Large Language Models (LLMs). By deploying case-specific prompt engineering techniques that streamline frequently performed life sciences workflows, researchers could achieve substantial efficiency gains that far exceed the initial time investment required to master these techniques. The Prompt Report published in 2025 outlined 58 different text-based prompt engineering techniques, highlighting the numerous ways prompts could be constructed. To provide actionable guidelines and reduce the friction of navigating these various approaches, we distil this report to focus on 6 core techniques: zero-shot, few-shot approaches, thought generation, ensembling, self-criticism, and decomposition. We breakdown the significance of each approach and ground it in use cases relevant to life sciences, from literature summarization and data extraction to editorial tasks. We provide detailed recommendations for how prompts should and shouldn't be structured, addressing common pitfalls including multi-turn conversation degradation, hallucinations, and distinctions between reasoning and non-reasoning models. We examine context window limitations, agentic tools like Claude Code, while analyzing the effectiveness of Deep Research tools across OpenAI, Google, Anthropic and Perplexity platforms, discussing current limitations. We demonstrate how prompt engineering can augment rather than replace existing established individual practices around data processing and document editing. Our aim is to provide actionable guidance on core prompt engineering principles, and to facilitate the transition from opportunistic prompting to an effective, low-friction systematic practice that contributes to higher quality research.
☆ Mitigating Hallucinations in Large Vision-Language Models by Self-Injecting Hallucinations
Large Vision-Language Models (LVLMs) suffer from serious hallucination problems, where the model-generated responses are inconsistent with the visual inputs. Existing hallucination mitigation methods are mainly based on preference alignment and require external human annotations or auxiliary models for preference data collection, which increase costs and limit sustainable improvement. To tackle these challenges, we propose Autonomous Preference Alignment via Self-Injection (APASI), a novel and generalizable method that mitigates hallucinations without external dependencies. APASI leverages the target LVLM to self-inject hallucinations into a generated response, creating a pair of responses with varying preference levels. During the self-injection process, the dis-preferred response is generated based on three key observations of hallucinations, ensuring it simulates real hallucination patterns. This fidelity offers an accurate learning signal for hallucination mitigation. Moreover, APASI incorporates an iterative alignment training strategy combined with curriculum learning to periodically update the preference data with increasing challenge, enabling stable and continuous enhancement of the LVLM. Extensive experiments across six benchmarks show that APASI not only effectively mitigates hallucinations for three baseline models but also achieves comparable or even superior performance to alignment-based methods with external dependency, thereby demonstrating its effectiveness and generalization capability. The code is available at https://github.com/davidluciolu/APASI.
comment: emnlp 2025 accepted
☆ Evalet: Evaluating Large Language Models by Fragmenting Outputs into Functions
Practitioners increasingly rely on Large Language Models (LLMs) to evaluate generative AI outputs through "LLM-as-a-Judge" approaches. However, these methods produce holistic scores that obscure which specific elements influenced the assessments. We propose functional fragmentation, a method that dissects each output into key fragments and interprets the rhetoric functions that each fragment serves relative to evaluation criteria -- surfacing the elements of interest and revealing how they fulfill or hinder user goals. We instantiate this approach in Evalet, an interactive system that visualizes fragment-level functions across many outputs to support inspection, rating, and comparison of evaluations. A user study (N=10) found that, while practitioners struggled to validate holistic scores, our approach helped them identify 48% more evaluation misalignments. This helped them calibrate trust in LLM evaluations and rely on them to find more actionable issues in model outputs. Our work shifts LLM evaluation from quantitative scores toward qualitative, fine-grained analysis of model behavior.
☆ DreamNav: A Trajectory-Based Imaginative Framework for Zero-Shot Vision-and-Language Navigation
Vision-and-Language Navigation in Continuous Environments (VLN-CE), which links language instructions to perception and control in the real world, is a core capability of embodied robots. Recently, large-scale pretrained foundation models have been leveraged as shared priors for perception, reasoning, and action, enabling zero-shot VLN without task-specific training. However, existing zero-shot VLN methods depend on costly perception and passive scene understanding, collapsing control to point-level choices. As a result, they are expensive to deploy, misaligned in action semantics, and short-sighted in planning. To address these issues, we present DreamNav that focuses on the following three aspects: (1) for reducing sensory cost, our EgoView Corrector aligns viewpoints and stabilizes egocentric perception; (2) instead of point-level actions, our Trajectory Predictor favors global trajectory-level planning to better align with instruction semantics; and (3) to enable anticipatory and long-horizon planning, we propose an Imagination Predictor to endow the agent with proactive thinking capability. On VLN-CE and real-world tests, DreamNav sets a new zero-shot state-of-the-art (SOTA), outperforming the strongest egocentric baseline with extra information by up to 7.49\% and 18.15\% in terms of SR and SPL metrics. To our knowledge, this is the first zero-shot VLN method to unify trajectory-level planning and active imagination while using only egocentric inputs.
☆ RanAT4BIE: Random Adversarial Training for Biomedical Information Extraction IJCNN
We introduce random adversarial training (RAT), a novel framework successfully applied to biomedical information extraction (BioIE) tasks. Building on PubMedBERT as the foundational architecture, our study first validates the effectiveness of conventional adversarial training in enhancing pre-trained language models' performance on BioIE tasks. While adversarial training yields significant improvements across various performance metrics, it also introduces considerable computational overhead. To address this limitation, we propose RAT as an efficiency solution for biomedical information extraction. This framework strategically integrates random sampling mechanisms with adversarial training principles, achieving dual objectives: enhanced model generalization and robustness while significantly reducing computational costs. Through comprehensive evaluations, RAT demonstrates superior performance compared to baseline models in BioIE tasks. The results highlight RAT's potential as a transformative framework for biomedical natural language processing, offering a balanced solution to the model performance and computational efficiency.
comment: Accepted for publication at the International Joint Conference on Neural Networks (IJCNN) 2025
☆ Optimal Brain Restoration for Joint Quantization and Sparsification of LLMs
Recent advances in Large Language Model (LLM) compression, such as quantization and pruning, have achieved notable success. However, as these techniques gradually approach their respective limits, relying on a single method for further compression has become increasingly challenging. In this work, we explore an alternative solution by combining quantization and sparsity. This joint approach, though promising, introduces new difficulties due to the inherently conflicting requirements on weight distributions: quantization favors compact ranges, while pruning benefits from high variance. To attack this problem, we propose Optimal Brain Restoration (OBR), a general and training-free framework that aligns pruning and quantization by error compensation between both. OBR minimizes performance degradation on downstream tasks by building on a second-order Hessian objective, which is then reformulated into a tractable problem through surrogate approximation and ultimately reaches a closed-form solution via group error compensation. Experiments show that OBR enables aggressive W4A4KV4 quantization with 50% sparsity on existing LLMs, and delivers up to 4.72x speedup and 6.4x memory reduction compared to the FP16-dense baseline.
comment: Preprint
☆ Differentially-private text generation degrades output language quality
Ensuring user privacy by synthesizing data from large language models (LLMs) tuned under differential privacy (DP) has become popular recently. However, the impact of DP fine-tuned LLMs on the quality of the language and the utility of the texts they produce has not been investigated. In this work, we tune five LLMs with three corpora under four levels of privacy and assess the length, the grammatical correctness, and the lexical diversity of the text outputs they produce. We also probe the utility of the synthetic outputs in downstream classification tasks such as book genre recognition based on book descriptions and cause of death recognition based on verbal autopsies. The results indicate that LLMs tuned under stronger privacy constrains produce texts that are shorter by at least 77 %, that are less grammatically correct by at least 9 %, and are less diverse by at least 10 % in bi-gram diversity. Furthermore, the accuracy they reach in downstream classification tasks decreases, which might be detrimental to the usefulness of the generated synthetic data.
comment: 20 pages, 3 figures, 35 tables
☆ AQUA: Attention via QUery mAgnitudes for Memory and Compute Efficient Inference in LLMs
The quadratic complexity of the attention mechanism remains a fundamental barrier to scaling Large Language Models (LLMs) to longer contexts, creating a critical bottleneck in both computation and memory. To address this, we introduce AQUA (Attention via QUery mAgnitudes) a novel and versatile approximation strategy that significantly reduces the cost of attention with a graceful performance trade-off. Our method operates in two phases: an efficient offline step where we compute a universal, language agnostic projection matrix via SVD on a calibration dataset, and an online inference step where we project query and key vectors and dynamically select a sparse subset of dimensions based on the query's magnitude. We provide a formal theoretical analysis of AQUA, establishing the break-even point at which it becomes more computationally efficient than standard attention. Our empirical evaluations on state-of-the-art models like Llama-3.1-8B demonstrate that a 25% reduction in the attention dot-product computation can be achieved with a statistically insignificant impact on performance across a wide range of benchmarks. We further showcase the versatility of AQUA by demonstrating its ability to synergistically accelerate existing token eviction methods like H2O and to directly reduce KV-cache memory size. By offering a controllable knob to balance efficiency and accuracy, AQUA provides a practical and powerful tool for making large-scale LLM inference more accessible and sustainable.
☆ Text2Mem: A Unified Memory Operation Language for Memory Operating System
Large language model agents increasingly depend on memory to sustain long horizon interaction, but existing frameworks remain limited. Most expose only a few basic primitives such as encode, retrieve, and delete, while higher order operations like merge, promote, demote, split, lock, and expire are missing or inconsistently supported. Moreover, there is no formal and executable specification for memory commands, leaving scope and lifecycle rules implicit and causing unpredictable behavior across systems. We introduce Text2Mem, a unified memory operation language that provides a standardized pathway from natural language to reliable execution. Text2Mem defines a compact yet expressive operation set aligned with encoding, storage, and retrieval. Each instruction is represented as a JSON based schema instance with required fields and semantic invariants, which a parser transforms into typed operation objects with normalized parameters. A validator ensures correctness before execution, while adapters map typed objects either to a SQL prototype backend or to real memory frameworks. Model based services such as embeddings or summarization are integrated when required. All results are returned through a unified execution contract. This design ensures safety, determinism, and portability across heterogeneous backends. We also outline Text2Mem Bench, a planned benchmark that separates schema generation from backend execution to enable systematic evaluation. Together, these components establish the first standardized foundation for memory control in agents.
comment: 11 pages, 3 figures
☆ When Smiley Turns Hostile: Interpreting How Emojis Trigger LLMs' Toxicity
Emojis are globally used non-verbal cues in digital communication, and extensive research has examined how large language models (LLMs) understand and utilize emojis across contexts. While usually associated with friendliness or playfulness, it is observed that emojis may trigger toxic content generation in LLMs. Motivated by such a observation, we aim to investigate: (1) whether emojis can clearly enhance the toxicity generation in LLMs and (2) how to interpret this phenomenon. We begin with a comprehensive exploration of emoji-triggered LLM toxicity generation by automating the construction of prompts with emojis to subtly express toxic intent. Experiments across 5 mainstream languages on 7 famous LLMs along with jailbreak tasks demonstrate that prompts with emojis could easily induce toxicity generation. To understand this phenomenon, we conduct model-level interpretations spanning semantic cognition, sequence generation and tokenization, suggesting that emojis can act as a heterogeneous semantic channel to bypass the safety mechanisms. To pursue deeper insights, we further probe the pre-training corpus and uncover potential correlation between the emoji-related data polution with the toxicity generation behaviors. Supplementary materials provide our implementation code and data. (Warning: This paper contains potentially sensitive contents)
☆ Agentic Username Suggestion and Multimodal Gender Detection in Online Platforms: Introducing the PNGT-26K Dataset
Persian names present unique challenges for natural language processing applications, particularly in gender detection and digital identity creation, due to transliteration inconsistencies and cultural-specific naming patterns. Existing tools exhibit significant performance degradation on Persian names, while the scarcity of comprehensive datasets further compounds these limitations. To address these challenges, the present research introduces PNGT-26K, a comprehensive dataset of Persian names, their commonly associated gender, and their English transliteration, consisting of approximately 26,000 tuples. As a demonstration of how this resource can be utilized, we also introduce two frameworks, namely Open Gender Detection and Nominalist. Open Gender Detection is a production-grade, ready-to-use framework for using existing data from a user, such as profile photo and name, to give a probabilistic guess about the person's gender. Nominalist, the second framework introduced by this paper, utilizes agentic AI to help users choose a username for their social media accounts on any platform. It can be easily integrated into any website to provide a better user experience. The PNGT-26K dataset, Nominalist and Open Gender Detection frameworks are publicly available on Github.
☆ Joint Effects of Argumentation Theory, Audio Modality and Data Enrichment on LLM-Based Fallacy Classification
This study investigates how context and emotional tone metadata influence large language model (LLM) reasoning and performance in fallacy classification tasks, particularly within political debate settings. Using data from U.S. presidential debates, we classify six fallacy types through various prompting strategies applied to the Qwen-3 (8B) model. We introduce two theoretically grounded Chain-of-Thought frameworks: Pragma-Dialectics and the Periodic Table of Arguments, and evaluate their effectiveness against a baseline prompt under three input settings: text-only, text with context, and text with both context and audio-based emotional tone metadata. Results suggest that while theoretical prompting can improve interpretability and, in some cases, accuracy, the addition of context and especially emotional tone metadata often leads to lowered performance. Emotional tone metadata biases the model toward labeling statements as \textit{Appeal to Emotion}, worsening logical reasoning. Overall, basic prompts often outperformed enhanced ones, suggesting that attention dilution from added inputs may worsen rather than improve fallacy classification in LLMs.
☆ We Argue to Agree: Towards Personality-Driven Argumentation-Based Negotiation Dialogue Systems for Tourism EMNLP
Integrating argumentation mechanisms into negotiation dialogue systems improves conflict resolution through exchanges of arguments and critiques. Moreover, incorporating personality attributes enhances adaptability by aligning interactions with individuals' preferences and styles. To advance these capabilities in negotiation dialogue systems, we propose a novel Personality-driven Argumentation-based Negotiation Dialogue Generation (PAN-DG) task. To support this task, we introduce PACT, a dataset of Personality-driven Argumentation-based negotiation Conversations for Tourism sector. This dataset, generated using Large Language Models (LLMs), features three distinct personality profiles, viz. Argumentation Profile, Preference Profile, and Buying Style Profile to simulate a variety of negotiation scenarios involving diverse personalities. Thorough automatic and manual evaluations indicate that the dataset comprises high-quality dialogues. Further, we conduct comparative experiments between pre-trained and fine-tuned LLMs for the PAN-DG task. Multi-dimensional evaluation demonstrates that the fine-tuned LLMs effectively generate personality-driven rational responses during negotiations. This underscores the effectiveness of PACT in enhancing personalization and reasoning capabilities in negotiation dialogue systems, thereby establishing a foundation for future research in this domain.
comment: Paper is accepted at EMNLP (Findings) 2025
☆ Fluid Language Model Benchmarking
Language model (LM) benchmarking faces several challenges: comprehensive evaluations are costly, benchmarks often fail to measure the intended capabilities, and evaluation quality can degrade due to labeling errors and benchmark saturation. Although various strategies have been proposed to mitigate these issues, they tend to address individual aspects in isolation, neglecting broader questions about overall evaluation quality. Here, we introduce Fluid Benchmarking, a new evaluation approach that advances LM benchmarking across multiple dimensions. Inspired by psychometrics, Fluid Benchmarking is based on the insight that the relative value of benchmark items depends on an LM's capability level, suggesting that evaluation should adapt to each LM. Methodologically, Fluid Benchmarking estimates an item response model based on existing LM evaluation results and uses the inferred quantities to select evaluation items dynamically, similar to computerized adaptive testing in education. In our experiments, we compare Fluid Benchmarking against the common practice of random item sampling as well as more sophisticated baselines, including alternative methods grounded in item response theory. We examine four dimensions -- efficiency, validity, variance, and saturation -- and find that Fluid Benchmarking achieves superior performance in all of them (e.g., higher validity and less variance on MMLU with fifty times fewer items). Our analysis shows that the two components of Fluid Benchmarking have distinct effects: item response theory, used to map performance into a latent ability space, increases validity, while dynamic item selection reduces variance. Overall, our results suggest that LM benchmarking can be substantially improved by moving beyond static evaluation.
comment: COLM 2025
☆ EmoBench-Reddit: A Hierarchical Benchmark for Evaluating the Emotional Intelligence of Multimodal Large Language Models
With the rapid advancement of Multimodal Large Language Models (MLLMs), they have demonstrated exceptional capabilities across a variety of vision-language tasks. However, current evaluation benchmarks predominantly focus on objective visual question answering or captioning, inadequately assessing the models' ability to understand complex and subjective human emotions. To bridge this gap, we introduce EmoBench-Reddit, a novel, hierarchical benchmark for multimodal emotion understanding. The dataset comprises 350 meticulously curated samples from the social media platform Reddit, each containing an image, associated user-provided text, and an emotion category (sad, humor, sarcasm, happy) confirmed by user flairs. We designed a hierarchical task framework that progresses from basic perception to advanced cognition, with each data point featuring six multiple-choice questions and one open-ended question of increasing difficulty. Perception tasks evaluate the model's ability to identify basic visual elements (e.g., colors, objects), while cognition tasks require scene reasoning, intent understanding, and deep empathy integrating textual context. We ensured annotation quality through a combination of AI assistance (Claude 4) and manual verification.
♻ ☆ Less Is More? Examining Fairness in Pruned Large Language Models for Summarising Opinions EMNLP 2025
Model compression through post-training pruning offers a way to reduce model size and computational requirements without significantly impacting model performance. However, the effect of pruning on the fairness of LLM-generated summaries remains unexplored, particularly for opinion summarisation where biased outputs could influence public views.In this paper, we present a comprehensive empirical analysis of opinion summarisation, examining three state-of-the-art pruning methods and various calibration sets across three open-source LLMs using four fairness metrics. Our systematic analysis reveals that pruning methods have a greater impact on fairness than calibration sets. Building on these insights, we propose High Gradient Low Activation (HGLA) pruning, which identifies and removes parameters that are redundant for input processing but influential in output generation. Our experiments demonstrate that HGLA can better maintain or even improve fairness compared to existing methods, showing promise across models and tasks where traditional methods have limitations. Our human evaluation shows HGLA-generated outputs are fairer than existing state-of-the-art pruning methods. Code is available at: https://github.com/amberhuang01/HGLA.
comment: Accepted to EMNLP 2025 Main Conference
♻ ☆ The Diffusion Duality ICML 2025
Uniform-state discrete diffusion models hold the promise of fast text generation due to their inherent ability to self-correct. However, they are typically outperformed by autoregressive models and masked diffusion models. In this work, we narrow this performance gap by leveraging a key insight: Uniform-state diffusion processes naturally emerge from an underlying Gaussian diffusion. Our method, Duo, transfers powerful techniques from Gaussian diffusion to improve both training and sampling. First, we introduce a curriculum learning strategy guided by the Gaussian process, doubling training speed by reducing variance. Models trained with curriculum learning surpass autoregressive models in zero-shot perplexity on 3 of 7 benchmarks. Second, we present Discrete Consistency Distillation, which adapts consistency distillation from the continuous to the discrete setting. This algorithm unlocks few-step generation in diffusion language models by accelerating sampling by two orders of magnitude. We provide the code and model checkpoints on the project page: http://s-sahoo.github.io/duo
comment: ICML 2025. We provide the code at: https://github.com/s-sahoo/duo [v2]: Camera ready revisions
♻ ☆ Artificial intelligence contribution to translation industry: looking back and forward
This study provides a comprehensive analysis of artificial intelligence (AI) contribution to research in the translation industry (ACTI), synthesizing it over forty-five years from 1980-2024. 13220 articles were retrieved from three sources, namely WoS, Scopus, and Lens; 9836 were unique records, which were used for the analysis. I provided two types of analysis, viz., scientometric and thematic, focusing on Cluster, Subject categories, Keywords, Bursts, Centrality and Research Centers as for the former. For the latter, I provided a thematic review for 18 articles, selected purposefully from the articles involved, centering on purpose, approach, findings, and contribution to ACTI future directions. This study is significant for its valuable contribution to ACTI knowledge production over 45 years, emphasizing several trending issues and hotspots including Machine translation, Statistical machine translation, Low-resource language, Large language model, Arabic dialects, Translation quality, and Neural machine translation. The findings reveal that the more AI develops, the more it contributes to translation industry, as Neural Networking Algorithms have been incorporated and Deep Language Learning Models like ChatGPT have been launched. However, much rigorous research is still needed to overcome several problems encountering translation industry, specifically concerning low-resource, multi-dialectical and free word order languages, and cultural and religious registers.
comment: 30 pages, 13 figures
♻ ☆ STRICT: Stress Test of Rendering Images Containing Text EMNLP 2025
While diffusion models have revolutionized text-to-image generation with their ability to synthesize realistic and diverse scenes, they continue to struggle to generate consistent and legible text within images. This shortcoming is commonly attributed to the locality bias inherent in diffusion-based generation, which limits their ability to model long-range spatial dependencies. In this paper, we introduce $\textbf{STRICT}$, a benchmark designed to systematically stress-test the ability of diffusion models to render coherent and instruction-aligned text in images. Our benchmark evaluates models across multiple dimensions: (1) the maximum length of readable text that can be generated; (2) the correctness and legibility of the generated text, and (3) the ratio of not following instructions for generating text. We evaluate several state-of-the-art models, including proprietary and open-source variants, and reveal persistent limitations in long-range consistency and instruction-following capabilities. Our findings provide insights into architectural bottlenecks and motivate future research directions in multimodal generative modeling. We release our entire evaluation pipeline at https://github.com/tianyu-z/STRICT-Bench.
comment: Accepted as a main conference paper at EMNLP 2025
♻ ☆ IOLBENCH: Benchmarking LLMs on Linguistic Reasoning
Despite the remarkable advancements and widespread applications of deep neural networks, their ability to perform reasoning tasks remains limited, particularly in domains requiring structured, abstract thought. In this paper, we investigate the linguistic reasoning capabilities of state-of-the-art large language models (LLMs) by introducing IOLBENCH, a novel benchmark derived from International Linguistics Olympiad (IOL) problems. This dataset encompasses diverse problems testing syntax, morphology, phonology, and semantics, all carefully designed to be self-contained and independent of external knowledge. These tasks challenge models to engage in metacognitive linguistic reasoning, requiring the deduction of linguistic rules and patterns from minimal examples. Through extensive benchmarking of leading LLMs, we find that even the most advanced models struggle to handle the intricacies of linguistic complexity, particularly in areas demanding compositional generalization and rule abstraction. Our analysis highlights both the strengths and persistent limitations of current models in linguistic problem-solving, offering valuable insights into their reasoning capabilities. By introducing IOLBENCH, we aim to foster further research into developing models capable of human-like reasoning, with broader implications for the fields of computational linguistics and artificial intelligence.
♻ ☆ ConvSearch-R1: Enhancing Query Reformulation for Conversational Search with Reasoning via Reinforcement Learning EMNLP 2025
Conversational search systems require effective handling of context-dependent queries that often contain ambiguity, omission, and coreference. Conversational Query Reformulation (CQR) addresses this challenge by transforming these queries into self-contained forms suitable for off-the-shelf retrievers. However, existing CQR approaches suffer from two critical constraints: high dependency on costly external supervision from human annotations or large language models, and insufficient alignment between the rewriting model and downstream retrievers. We present ConvSearch-R1, the first self-driven framework that completely eliminates dependency on external rewrite supervision by leveraging reinforcement learning to optimize reformulation directly through retrieval signals. Our novel two-stage approach combines Self-Driven Policy Warm-Up to address the cold-start problem through retrieval-guided self-distillation, followed by Retrieval-Guided Reinforcement Learning with a specially designed rank-incentive reward shaping mechanism that addresses the sparsity issue in conventional retrieval metrics. Extensive experiments on TopiOCQA and QReCC datasets demonstrate that ConvSearch-R1 significantly outperforms previous state-of-the-art methods, achieving over 10% improvement on the challenging TopiOCQA dataset while using smaller 3B parameter models without any external supervision.
comment: Accepted by EMNLP 2025 at the Main Conference
♻ ☆ Humanizing Machines: Rethinking LLM Anthropomorphism Through a Multi-Level Framework of Design EMNLP
Large Language Models (LLMs) increasingly exhibit \textbf{anthropomorphism} characteristics -- human-like qualities portrayed across their outlook, language, behavior, and reasoning functions. Such characteristics enable more intuitive and engaging human-AI interactions. However, current research on anthropomorphism remains predominantly risk-focused, emphasizing over-trust and user deception while offering limited design guidance. We argue that anthropomorphism should instead be treated as a \emph{concept of design} that can be intentionally tuned to support user goals. Drawing from multiple disciplines, we propose that the anthropomorphism of an LLM-based artifact should reflect the interaction between artifact designers and interpreters. This interaction is facilitated by cues embedded in the artifact by the designers and the (cognitive) responses of the interpreters to the cues. Cues are categorized into four dimensions: \textit{perceptive, linguistic, behavioral}, and \textit{cognitive}. By analyzing the manifestation and effectiveness of each cue, we provide a unified taxonomy with actionable levers for practitioners. Consequently, we advocate for function-oriented evaluations of anthropomorphic design.
comment: Accepted in EMNLP main proceedings; Updated citations
♻ ☆ From Personas to Talks: Revisiting the Impact of Personas on LLM-Synthesized Emotional Support Conversations EMNLP 2025
The rapid advancement of Large Language Models (LLMs) has revolutionized the generation of emotional support conversations (ESC), offering scalable solutions with reduced costs and enhanced data privacy. This paper explores the role of personas in the creation of ESC by LLMs. Our research utilizes established psychological frameworks to measure and infuse persona traits into LLMs, which then generate dialogues in the emotional support scenario. We conduct extensive evaluations to understand the stability of persona traits in dialogues, examining shifts in traits post-generation and their impact on dialogue quality and strategy distribution. Experimental results reveal several notable findings: 1) LLMs can infer core persona traits, 2) subtle shifts in emotionality and extraversion occur, influencing the dialogue dynamics, and 3) the application of persona traits modifies the distribution of emotional support strategies, enhancing the relevance and empathetic quality of the responses. These findings highlight the potential of persona-driven LLMs in crafting more personalized, empathetic, and effective emotional support dialogues, which has significant implications for the future design of AI-driven emotional support systems.
comment: Accepted by EMNLP 2025 Main Conference
♻ ☆ On the Fundamental Impossibility of Hallucination Control in Large Language Models
This paper establishes a fundamental impossibility theorem: no LLM capable of performing non-trivial knowledge aggregation can simultaneously achieve truthful knowledge representation, semantic information conservation, complete revelation of relevant knowledge, and knowledge-constrained optimality. The impossibility is not an engineering limitation but arises from the mathematical structure of information aggregation itself. We establish this result by describing the inference process as an auction of ideas, where distributed components compete exploiting their partial knowledge to shape responses. The proof spans three independent mathematical domains: mechanism design theory (Green-Laffont), the theory of proper scoring rules (Savage), and direct architectural analysis of transformers (Log-Sum-Exp convexity). In particular, we show how to quantify the creation of overconfident or intuitive responses-the signature of both hallucination and creativity, or imagination. To support this analysis, we introduce the complementary concepts of the semantic information measure and the emergence operator to model bounded reasoning in a general setting. We prove that while bounded reasoning generates accessible information, providing valuable insights and inspirations, the idealized unconstrained reasoning strictly preserves semantic content. By demonstrating that hallucination and imagination are mathematically identical phenomena-grounded in departures from truthfulness, semantic information conservation, revelation of relevant knowledge, and knowledge-constrained optimality-we offer a principled foundation for managing these behaviors in advanced AI systems. Finally, we present some speculative ideas to inspire evaluation and refinements of the proposed theory.
comment: Mathematics debugged: introduces Polish space model of knowledge, added examples, corrected errors, re-edited, new safety and alignment section
♻ ☆ Better To Ask in English? Evaluating Factual Accuracy of Multilingual LLMs in English and Low-Resource Languages
Multilingual Large Language Models (LLMs) have demonstrated significant effectiveness across various languages, particularly in high-resource languages such as English. However, their performance in terms of factual accuracy across other low-resource languages, especially Indic languages, remains an area of investigation. In this study, we assess the factual accuracy of LLMs - GPT-4o, Gemma-2-9B, Gemma-2-2B, and Llama-3.1-8B - by comparing their performance in English and Indic languages using the IndicQuest dataset, which contains question-answer pairs in English and 19 Indic languages. By asking the same questions in English and their respective Indic translations, we analyze whether the models are more reliable for regional context questions in Indic languages or when operating in English. Our findings reveal that LLMs often perform better in English, even for questions rooted in Indic contexts. Notably, we observe a higher tendency for hallucination in responses generated in low-resource Indic languages, highlighting challenges in the multilingual understanding capabilities of current LLMs.
♻ ☆ LastingBench: Defend Benchmarks Against Knowledge Leakage
The increasing complexity of large language models (LLMs) raises concerns about their ability to "cheat" on standard Question Answering (QA) benchmarks by memorizing task-specific data. This undermines the validity of benchmark evaluations, as they no longer reflect genuine model capabilities but instead the effects of data leakage. While prior work has focused on detecting such leakage, little attention has been given to mitigating its impact and preserving the long-term utility of benchmarks. In this paper, we introduce LastingBench, a novel framework designed to continuously reinforce and safeguard existing benchmarks against knowledge leakage. LastingBench identifies leakage points in the context through perturbation, then rewrites the leakage points to counterfactual ones-disrupting memorization while preserving the benchmark's original evaluative intent. Evaluations of state-of-the-art QA benchmarks show significant performance gaps, highlighting the efficacy of LastingBench in reducing memorization effects. LastingBench offers a practical and scalable solution to ensure benchmark robustness over time, promoting fairer and more interpretable evaluations of LLMs.
♻ ☆ Evaluating Automatic Speech Recognition Systems for Korean Meteorological Experts EMNLP 2025
This paper explores integrating Automatic Speech Recognition (ASR) into natural language query systems to improve weather forecasting efficiency for Korean meteorologists. We address challenges in developing ASR systems for the Korean weather domain, specifically specialized vocabulary and Korean linguistic intricacies. To tackle these issues, we constructed an evaluation dataset of spoken queries recorded by native Korean speakers. Using this dataset, we assessed various configurations of a multilingual ASR model family, identifying performance limitations related to domain-specific terminology. We then implemented a simple text-to-speech-based data augmentation method, which improved the recognition of specialized terms while maintaining general-domain performance. Our contributions include creating a domain-specific dataset, comprehensive ASR model evaluations, and an effective augmentation technique. We believe our work provides a foundation for future advancements in ASR for the Korean weather forecasting domain.
comment: EMNLP 2025 Findings
♻ ☆ Surveying the Landscape of Image Captioning Evaluation: A Comprehensive Taxonomy, Trends and Metrics Analysis
The task of image captioning has recently been gaining popularity, and with it the complex task of evaluating the quality of image captioning models. In this work, we present the first survey and taxonomy of over 70 different image captioning metrics and their usage in hundreds of papers, specifically designed to help users select the most suitable metric for their needs. We find that despite the diversity of proposed metrics, the vast majority of studies rely on only five popular metrics, which we show to be weakly correlated with human ratings. We hypothesize that combining a diverse set of metrics can enhance correlation with human ratings. As an initial step, we demonstrate that a linear regression-based ensemble method, which we call EnsembEval, trained on one human ratings dataset, achieves improved correlation across five additional datasets, showing there is a lot of room for improvement by leveraging a diverse set of metrics.
♻ ☆ Mirage of Mastery: Memorization Tricks LLMs into Artificially Inflated Self-Knowledge
When artificial intelligence mistakes memorization for intelligence, it creates a dangerous mirage of reasoning. Existing studies treat memorization and self-knowledge deficits in LLMs as separate issues and do not recognize an intertwining link that degrades the trustworthiness of LLM responses. In our study, we utilize a novel framework to ascertain if LLMs genuinely learn reasoning patterns from training data or merely memorize them to assume competence across problems of similar complexity focused on STEM domains. Our analysis shows a noteworthy problem in generalization: LLMs draw confidence from memorized solutions to infer a higher self-knowledge about their reasoning ability, which manifests as an over 45% inconsistency in feasibility assessments when faced with self-validated, logically coherent task perturbations. This effect is most pronounced in science and medicine domains, which tend to have maximal standardized jargon and problems, further confirming our approach. Significant wavering within the self-knowledge of LLMs also shows flaws in current architectures and training patterns, highlighting the need for techniques that ensure a balanced, consistent stance on models' perceptions of their own knowledge for maximum AI explainability and trustworthiness. Our code and results are available publicly at https://github.com/knowledge-verse-ai/LLM-Memorization_SK_Eval-.
comment: 11 pages, 9 figures
♻ ☆ PDFMathTranslate: Scientific Document Translation Preserving Layouts EMNLP 2025
Language barriers in scientific documents hinder the diffusion and development of science and technologies. However, prior efforts in translating such documents largely overlooked the information in layouts. To bridge the gap, we introduce PDFMathTranslate, the world's first open-source software for translating scientific documents while preserving layouts. Leveraging the most recent advances in large language models and precise layout detection, we contribute to the community with key improvements in precision, flexibility, and efficiency. The work has been open-sourced at https://github.com/byaidu/pdfmathtranslate with more than 222k downloads.
comment: 7 pages, 4 figures, EMNLP 2025 Demo
♻ ☆ Siren's Song in the AI Ocean: A Survey on Hallucination in Large Language Models
While large language models (LLMs) have demonstrated remarkable capabilities across a range of downstream tasks, a significant concern revolves around their propensity to exhibit hallucinations: LLMs occasionally generate content that diverges from the user input, contradicts previously generated context, or misaligns with established world knowledge. This phenomenon poses a substantial challenge to the reliability of LLMs in real-world scenarios. In this paper, we survey recent efforts on the detection, explanation, and mitigation of hallucination, with an emphasis on the unique challenges posed by LLMs. We present taxonomies of the LLM hallucination phenomena and evaluation benchmarks, analyze existing approaches aiming at mitigating LLM hallucination, and discuss potential directions for future research.
comment: work in progress;
♻ ☆ Rumor Detection by Multi-task Suffix Learning based on Time-series Dual Sentiments
The widespread dissemination of rumors on social media has a significant impact on people's lives, potentially leading to public panic and fear. Rumors often evoke specific sentiments, resonating with readers and prompting sharing. To effectively detect and track rumors, it is essential to observe the fine-grained sentiments of both source and response message pairs as the rumor evolves over time. However, current rumor detection methods fail to account for this aspect. In this paper, we propose MSuf, the first multi-task suffix learning framework for rumor detection and tracking using time series dual (coupled) sentiments. MSuf includes three modules: (1) an LLM to extract sentiment intensity features and sort them chronologically; (2) a module that fuses the sorted sentiment features with their source text word embeddings to obtain an aligned embedding; (3) two hard prompts are combined with the aligned vector to perform rumor detection and sentiment analysis using one frozen LLM. MSuf effectively enhances the performance of LLMs for rumor detection with only minimal parameter fine-tuning. Evaluating MSuf on four rumor detection benchmarks, we find significant improvements compared to other emotion-based methods.
comment: work in progress
♻ ☆ Rethinking LLM-Based Recommendations: A Personalized Query-Driven Parallel Integration
Recent studies have explored integrating large language models (LLMs) into recommendation systems but face several challenges, including training-induced bias and bottlenecks from serialized architecture. To effectively address these issues, we propose a Query-toRecommendation, a parallel recommendation framework that decouples LLMs from candidate pre-selection and instead enables direct retrieval over the entire item pool. Our framework connects LLMs and recommendation models in a parallel manner, allowing each component to independently utilize its strengths without interfering with the other. In this framework, LLMs are utilized to generate feature-enriched item descriptions and personalized user queries, allowing for capturing diverse preferences and enabling rich semantic matching in a zero-shot manner. To effectively combine the complementary strengths of LLM and collaborative signals, we introduce an adaptive reranking strategy. Extensive experiments demonstrate an improvement in performance up to 57%, while also improving the novelty and diversity of recommendations.
♻ ☆ Assessing LLMs in Art Contexts: Critique Generation and Theory of Mind Evaluation
This study explored how large language models (LLMs) perform in two areas related to art: writing critiques of artworks and reasoning about mental states (Theory of Mind, or ToM) in art-related situations. For the critique generation part, we built a system that combines Noel Carroll's evaluative framework with a broad selection of art criticism theories. The model was prompted to first write a full-length critique and then shorter, more coherent versions using a step-by-step prompting process. These AI-generated critiques were then compared with those written by human experts in a Turing test-style evaluation. In many cases, human subjects had difficulty telling which was which, and the results suggest that LLMs can produce critiques that are not only plausible in style but also rich in interpretation, as long as they are carefully guided. In the second part, we introduced new simple ToM tasks based on situations involving interpretation, emotion, and moral tension, which can appear in the context of art. These go beyond standard false-belief tests and allow for more complex, socially embedded forms of reasoning. We tested 41 recent LLMs and found that their performance varied across tasks and models. In particular, tasks that involved affective or ambiguous situations tended to reveal clearer differences. Taken together, these results help clarify how LLMs respond to complex interpretative challenges, revealing both their cognitive limitations and potential. While our findings do not directly contradict the so-called Generative AI Paradox--the idea that LLMs can produce expert-like output without genuine understanding--they suggest that, depending on how LLMs are instructed, such as through carefully designed prompts, these models may begin to show behaviors that resemble understanding more closely than we might assume.
comment: Corrected a typo in the metadata title only ("Assesing"->"Assessing"). No changes were made to the PDF or source files
♻ ☆ EasyEdit2: An Easy-to-use Steering Framework for Editing Large Language Models EMNLP 2025
In this paper, we introduce EasyEdit2, a framework designed to enable plug-and-play adjustability for controlling Large Language Model (LLM) behaviors. EasyEdit2 supports a wide range of test-time interventions, including safety, sentiment, personality, reasoning patterns, factuality, and language features. Unlike its predecessor, EasyEdit2 features a new architecture specifically designed for seamless model steering. It comprises key modules such as the steering vector generator and the steering vector applier, which enable automatic generation and application of steering vectors to influence the model's behavior without modifying its parameters. One of the main advantages of EasyEdit2 is its ease of use-users do not need extensive technical knowledge. With just a single example, they can effectively guide and adjust the model's responses, making precise control both accessible and efficient. Empirically, we report model steering performance across different LLMs, demonstrating the effectiveness of these techniques. We have released the source code on GitHub at https://github.com/zjunlp/EasyEdit along with a demonstration notebook. In addition, we provide a demo video at https://www.youtube.com/watch?v=AkfoiPfp5rQ for a quick introduction.
comment: EMNLP 2025 System Demonstrations. Demo: https://www.youtube.com/watch?v=AkfoiPfp5rQ; code: https://github.com/zjunlp/EasyEdit
♻ ☆ Synthesize-on-Graph: Knowledgeable Synthetic Data Generation for Continue Pre-training of Large Language Models
Large Language Models (LLMs) have achieved remarkable success but remain data-inefficient, especially when learning from small, specialized corpora with limited and proprietary data. Existing synthetic data generation methods for continue pre-training focus on intra-document content and overlook cross-document knowledge associations, limiting content diversity and depth. We propose Synthetic-on-Graph (SoG), a synthetic data generation framework that incorporates cross-document knowledge associations for efficient corpus expansion. SoG constructs a context graph by extracting entities and concepts from the original corpus, representing cross-document associations, and employing a graph walk strategy for knowledge-associated sampling. This enhances synthetic data diversity and coherence, enabling models to learn complex knowledge structures and handle rare knowledge. To further improve the quality of synthetic data, we integrate two complementary strategies, Chain-of-Thought (CoT) and Contrastive Clarifying (CC), to enhance both reasoning capability and discriminative power. Extensive experiments demonstrate that SoG surpasses state-of-the-art (SOTA) methods on multi-hop and domain-specific question answering, while achieving competitive performance on long-context reading comprehension. These results highlight the superior generalization ability of SoG. Our work advances the paradigm of synthetic data generation and offers practical solutions for efficient knowledge acquisition in LLMs, particularly for downstream tasks and domains with limited training data.
♻ ☆ MAC-Tuning: LLM Multi-Compositional Problem Reasoning with Enhanced Knowledge Boundary Awareness EMNLP 2025
The hallucination of non-existent facts by LLMs is an important problem given its widespread adoption across various applications. Previous research addresses this problem by analyzing the internal parameterized knowledge boundaries to estimate confidence. However, these studies focus on the single-problem setting and have not explored the more challenging multi-problem setting, which requires accurately answering multiple questions simultaneously. We introduce a novel method for the multi-problem setting, Multiple Answers and Confidence Stepwise Tuning (MAC-Tuning), that separates the learning of answer prediction and confidence estimation during fine-tuning on instruction data. Extensive experiments demonstrate that our method outperforms baselines by up to 25\% in average precision.
comment: We release our code and resource at https://github.com/no-touch-fish/Multi-QA-Tuning. The paper is accepted into EMNLP 2025 main
Computer Vision and Pattern Recognition
☆ Modality-Aware Infrared and Visible Image Fusion with Target-Aware Supervision ICCV
Infrared and visible image fusion (IVIF) is a fundamental task in multi-modal perception that aims to integrate complementary structural and textural cues from different spectral domains. In this paper, we propose FusionNet, a novel end-to-end fusion framework that explicitly models inter-modality interaction and enhances task-critical regions. FusionNet introduces a modality-aware attention mechanism that dynamically adjusts the contribution of infrared and visible features based on their discriminative capacity. To achieve fine-grained, interpretable fusion, we further incorporate a pixel-wise alpha blending module, which learns spatially-varying fusion weights in an adaptive and content-aware manner. Moreover, we formulate a target-aware loss that leverages weak ROI supervision to preserve semantic consistency in regions containing important objects (e.g., pedestrians, vehicles). Experiments on the public M3FD dataset demonstrate that FusionNet generates fused images with enhanced semantic preservation, high perceptual quality, and clear interpretability. Our framework provides a general and extensible solution for semantic-aware multi-modal image fusion, with benefits for downstream tasks such as object detection and scene understanding.
comment: Accepted by 2025 6th International Conference on Computer Vision and Data Mining (ICCVDM 2025)
☆ Beyond Frame-wise Tracking: A Trajectory-based Paradigm for Efficient Point Cloud Tracking
LiDAR-based 3D single object tracking (3D SOT) is a critical task in robotics and autonomous systems. Existing methods typically follow frame-wise motion estimation or a sequence-based paradigm. However, the two-frame methods are efficient but lack long-term temporal context, making them vulnerable in sparse or occluded scenes, while sequence-based methods that process multiple point clouds gain robustness at a significant computational cost. To resolve this dilemma, we propose a novel trajectory-based paradigm and its instantiation, TrajTrack. TrajTrack is a lightweight framework that enhances a base two-frame tracker by implicitly learning motion continuity from historical bounding box trajectories alone-without requiring additional, costly point cloud inputs. It first generates a fast, explicit motion proposal and then uses an implicit motion modeling module to predict the future trajectory, which in turn refines and corrects the initial proposal. Extensive experiments on the large-scale NuScenes benchmark show that TrajTrack achieves new state-of-the-art performance, dramatically improving tracking precision by 4.48% over a strong baseline while running at 56 FPS. Besides, we also demonstrate the strong generalizability of TrajTrack across different base trackers. Video is available at https://www.bilibili.com/video/BV1ahYgzmEWP.
comment: 9 pages, 7 figures
☆ MultiMAE for Brain MRIs: Robustness to Missing Inputs Using Multi-Modal Masked Autoencoder
Missing input sequences are common in medical imaging data, posing a challenge for deep learning models reliant on complete input data. In this work, inspired by MultiMAE [2], we develop a masked autoencoder (MAE) paradigm for multi-modal, multi-task learning in 3D medical imaging with brain MRIs. Our method treats each MRI sequence as a separate input modality, leveraging a late-fusion-style transformer encoder to integrate multi-sequence information (multi-modal) and individual decoder streams for each modality for multi-task reconstruction. This pretraining strategy guides the model to learn rich representations per modality while also equipping it to handle missing inputs through cross-sequence reasoning. The result is a flexible and generalizable encoder for brain MRIs that infers missing sequences from available inputs and can be adapted to various downstream applications. We demonstrate the performance and robustness of our method against an MAE-ViT baseline in downstream segmentation and classification tasks, showing absolute improvement of $10.1$ overall Dice score and $0.46$ MCC over the baselines with missing input sequences. Our experiments demonstrate the strength of this pretraining strategy. The implementation is made available.
comment: Official implementation: https://github.com/chris-beischl/multimae-for-brain-mri
☆ Disentanglement of Biological and Technical Factors via Latent Space Rotation in Clinical Imaging Improves Disease Pattern Discovery MICCAI 2025
Identifying new disease-related patterns in medical imaging data with the help of machine learning enlarges the vocabulary of recognizable findings. This supports diagnostic and prognostic assessment. However, image appearance varies not only due to biological differences, but also due to imaging technology linked to vendors, scanning- or re- construction parameters. The resulting domain shifts impedes data representation learning strategies and the discovery of biologically meaningful cluster appearances. To address these challenges, we introduce an approach to actively learn the domain shift via post-hoc rotation of the data latent space, enabling disentanglement of biological and technical factors. Results on real-world heterogeneous clinical data showcase that the learned disentangled representation leads to stable clusters representing tissue-types across different acquisition settings. Cluster consistency is improved by +19.01% (ARI), +16.85% (NMI), and +12.39% (Dice) compared to the entangled representation, outperforming four state-of-the-art harmonization methods. When using the clusters to quantify tissue composition on idiopathic pulmonary fibrosis patients, the learned profiles enhance Cox survival prediction. This indicates that the proposed label-free framework facilitates biomarker discovery in multi-center routine imaging data. Code is available on GitHub https://github.com/cirmuw/latent-space-rotation-disentanglement.
comment: The Fourth Workshop on Applications of Medical Artificial Intelligence, AMAI 2025, Held in Conjunction with MICCAI 2025, Daejeon, Republic of Korea, September 23, 2025, Proceedings
☆ Enhancing Generalization in Vision-Language-Action Models by Preserving Pretrained Representations
Vision-language-action (VLA) models finetuned from vision-language models (VLMs) hold the promise of leveraging rich pretrained representations to build generalist robots across diverse tasks and environments. However, direct fine-tuning on robot data often disrupts these representations and limits generalization. We present a framework that better preserves pretrained features while adapting them for robot manipulation. Our approach introduces three components: (i) a dual-encoder design with one frozen vision encoder to retain pretrained features and another trainable for task adaptation, (ii) a string-based action tokenizer that casts continuous actions into character sequences aligned with the model's pretraining domain, and (iii) a co-training strategy that combines robot demonstrations with vision-language datasets emphasizing spatial reasoning and affordances. Evaluations in simulation and on real robots show that our method improves robustness to visual perturbations, generalization to novel instructions and environments, and overall task success compared to baselines.
comment: Project Page: https://gen-vla.github.io/
☆ On the Skinning of Gaussian Avatars
Radiance field-based methods have recently been used to reconstruct human avatars, showing that we can significantly downscale the systems needed for creating animated human avatars. Although this progress has been initiated by neural radiance fields, their slow rendering and backward mapping from the observation space to the canonical space have been the main challenges. With Gaussian splatting overcoming both challenges, a new family of approaches has emerged that are faster to train and render, while also straightforward to implement using forward skinning from the canonical to the observation space. However, the linear blend skinning required for the deformation of the Gaussians does not provide valid results for their non-linear rotation properties. To address such artifacts, recent works use mesh properties to rotate the non-linear Gaussian properties or train models to predict corrective offsets. Instead, we propose a weighted rotation blending approach that leverages quaternion averaging. This leads to simpler vertex-based Gaussians that can be efficiently animated and integrated in any engine by only modifying the linear blend skinning technique, and using any Gaussian rasterizer.
☆ No Modality Left Behind: Dynamic Model Generation for Incomplete Medical Data MICCAI2025
In real world clinical environments, training and applying deep learning models on multi-modal medical imaging data often struggles with partially incomplete data. Standard approaches either discard missing samples, require imputation or repurpose dropout learning schemes, limiting robustness and generalizability. To address this, we propose a hypernetwork-based method that dynamically generates task-specific classification models conditioned on the set of available modalities. Instead of training a fixed model, a hypernetwork learns to predict the parameters of a task model adapted to available modalities, enabling training and inference on all samples, regardless of completeness. We compare this approach with (1) models trained only on complete data, (2) state of the art channel dropout methods, and (3) an imputation-based method, using artificially incomplete datasets to systematically analyze robustness to missing modalities. Results demonstrate superior adaptability of our method, outperforming state of the art approaches with an absolute increase in accuracy of up to 8% when trained on a dataset with 25% completeness (75% of training data with missing modalities). By enabling a single model to generalize across all modality configurations, our approach provides an efficient solution for real-world multi-modal medical data analysis.
comment: Accepted at MICCAI2025 ML-CDS Workshop
☆ MixANT: Observation-dependent Memory Propagation for Stochastic Dense Action Anticipation ICCV 2025
We present MixANT, a novel architecture for stochastic long-term dense anticipation of human activities. While recent State Space Models (SSMs) like Mamba have shown promise through input-dependent selectivity on three key parameters, the critical forget-gate ($\textbf{A}$ matrix) controlling temporal memory remains static. We address this limitation by introducing a mixture of experts approach that dynamically selects contextually relevant $\textbf{A}$ matrices based on input features, enhancing representational capacity without sacrificing computational efficiency. Extensive experiments on the 50Salads, Breakfast, and Assembly101 datasets demonstrate that MixANT consistently outperforms state-of-the-art methods across all evaluation settings. Our results highlight the importance of input-dependent forget-gate mechanisms for reliable prediction of human behavior in diverse real-world scenarios.
comment: Accepted to ICCV 2025
♻ ☆ Evaluating Representational Similarity Measures from the Lens of Functional Correspondence
Neuroscience and artificial intelligence (AI) both face the challenge of interpreting high-dimensional neural data, where the comparative analysis of such data is crucial for revealing shared mechanisms and differences between these complex systems. Despite the widespread use of representational comparisons and the abundance classes of comparison methods, a critical question remains: which metrics are most suitable for these comparisons? While some studies evaluate metrics based on their ability to differentiate models of different origins or constructions (e.g., various architectures), another approach is to assess how well they distinguish models that exhibit distinct behaviors. To investigate this, we examine the degree of alignment between various representational similarity measures and behavioral outcomes, employing group statistics and a comprehensive suite of behavioral metrics for comparison. In our evaluation of eight commonly used representational similarity metrics in the visual domain -- spanning alignment-based, Canonical Correlation Analysis (CCA)-based, inner product kernel-based, and nearest-neighbor methods -- we found that metrics like linear Centered Kernel Alignment (CKA) and Procrustes distance, which emphasize the overall geometric structure or shape of representations, excelled in differentiating trained from untrained models and aligning with behavioral measures, whereas metrics such as linear predictivity, commonly used in neuroscience, demonstrated only moderate alignment with behavior. These insights are crucial for selecting metrics that emphasize behaviorally meaningful comparisons in NeuroAI research.
comment: Published in CCN 2025 Proceedings (Talk & Poster), May 14, 2025
♻ ☆ STRICT: Stress Test of Rendering Images Containing Text EMNLP 2025
While diffusion models have revolutionized text-to-image generation with their ability to synthesize realistic and diverse scenes, they continue to struggle to generate consistent and legible text within images. This shortcoming is commonly attributed to the locality bias inherent in diffusion-based generation, which limits their ability to model long-range spatial dependencies. In this paper, we introduce $\textbf{STRICT}$, a benchmark designed to systematically stress-test the ability of diffusion models to render coherent and instruction-aligned text in images. Our benchmark evaluates models across multiple dimensions: (1) the maximum length of readable text that can be generated; (2) the correctness and legibility of the generated text, and (3) the ratio of not following instructions for generating text. We evaluate several state-of-the-art models, including proprietary and open-source variants, and reveal persistent limitations in long-range consistency and instruction-following capabilities. Our findings provide insights into architectural bottlenecks and motivate future research directions in multimodal generative modeling. We release our entire evaluation pipeline at https://github.com/tianyu-z/STRICT-Bench.
comment: Accepted as a main conference paper at EMNLP 2025
♻ ☆ An End-to-End Depth-Based Pipeline for Selfie Image Rectification
Portraits or selfie images taken from a close distance typically suffer from perspective distortion. In this paper, we propose an end-to-end deep learning-based rectification pipeline to mitigate the effects of perspective distortion. We learn to predict the facial depth by training a deep CNN. The estimated depth is utilized to adjust the camera-to-subject distance by moving the camera farther, increasing the camera focal length, and reprojecting the 3D image features to the new perspective. The reprojected features are then fed to an inpainting module to fill in the missing pixels. We leverage a differentiable renderer to enable end-to-end training of our depth estimation and feature extraction nets to improve the rectified outputs. To boost the results of the inpainting module, we incorporate an auxiliary module to predict the horizontal movement of the camera which decreases the area that requires hallucination of challenging face parts such as ears. Unlike previous works, we process the full-frame input image at once without cropping the subject's face and processing it separately from the rest of the body, eliminating the need for complex post-processing steps to attach the face back to the subject's body. To train our network, we utilize the popular game engine Unreal Engine to generate a large synthetic face dataset containing various subjects, head poses, expressions, eyewear, clothes, and lighting. Quantitative and qualitative results show that our rectification pipeline outperforms previous methods, and produces comparable results with a time-consuming 3D GAN-based method while being more than 260 times faster.
comment: Accepted at IEEE TPAMI
Computers and Society
☆ "My Boyfriend is AI": A Computational Analysis of Human-AI Companionship in Reddit's AI Community
Human-AI interaction researchers face an overwhelming challenge: synthesizing insights from thousands of empirical studies to understand how AI impacts people and inform effective design. Existing approach for literature reviews cluster papers by similarities, keywords or citations, missing the crucial cause-and-effect relationships that reveal how design decisions impact user outcomes. We introduce the Atlas of Human-AI Interaction, an interactive web interface that provides the first systematic mapping of empirical findings across 1,000+ HCI papers using LLM-powered knowledge extraction. Our approach identifies causal relationships, and visualizes them through an AI-enabled interactive web interface as a navigable knowledge graph. We extracted 2,037 empirical findings, revealing research topic clusters, common themes, and disconnected areas. Expert evaluation with 20 researchers revealed the system's effectiveness for discovering research gaps. This work demonstrates how AI can transform literature synthesis itself, offering a scalable framework for evidence-based design, opening new possibilities for computational meta-science across HCI and beyond.
comment: 22 pages, 9 figures
☆ The Lovelace Test of Intelligence: Can Humans Recognise and Esteem AI-Generated Art?
This study aims to evaluate machine intelligence through artistic creativity by employing a modified version of the Turing Test inspired by Lady Lovelace. It investigates two hypotheses: whether human judges can reliably distinguish AI-generated artworks from human-created ones and whether AI-generated art achieves comparable aesthetic value to human-crafted works. The research contributes to understanding machine creativity and its implications for cognitive science and AI technology. Participants with educational backgrounds in cognitive and computer science play the role of interrogators and evaluated whether a set of paintings was AI-generated or human-created. Here, we utilise parallel-paired and viva voce versions of the Turing Test. Additionally, aesthetic evaluations are collected to compare the perceived quality of AI-generated images against human-created art. This dual-method approach allows us to examine human judgment under different testing conditions. We find that participants struggle to distinguish between AI-generated and human-created artworks reliably, performing no better than chance under certain conditions. Furthermore, AI-generated art is rated as aesthetically as human-crafted works. Our findings challenge traditional assumptions about human creativity and demonstrate that AI systems can generate outputs that resonate with human sensibilities while meeting the criteria of creative intelligence. This study advances the understanding of machine creativity by combining elements of the Turing and Lovelace Tests. Unlike prior studies focused on laypeople or artists, this research examines participants with domain expertise. It also provides a comparative analysis of two distinct testing methodologies (parallel-paired and viva voce) offering new insights into the evaluation of machine intelligence.
☆ A five-layer framework for AI governance: integrating regulation, standards, and certification
Purpose: The governance of artificial iintelligence (AI) systems requires a structured approach that connects high-level regulatory principles with practical implementation. Existing frameworks lack clarity on how regulations translate into conformity mechanisms, leading to gaps in compliance and enforcement. This paper addresses this critical gap in AI governance. Methodology/Approach: A five-layer AI governance framework is proposed, spanning from broad regulatory mandates to specific standards, assessment methodologies, and certification processes. By narrowing its scope through progressively focused layers, the framework provides a structured pathway to meet technical, regulatory, and ethical requirements. Its applicability is validated through two case studies on AI fairness and AI incident reporting. Findings: The case studies demonstrate the framework's ability to identify gaps in legal mandates, standardization, and implementation. It adapts to both global and region-specific AI governance needs, mapping regulatory mandates with practical applications to improve compliance and risk management. Practical Implications - By offering a clear and actionable roadmap, this work contributes to global AI governance by equipping policymakers, regulators, and industry stakeholders with a model to enhance compliance and risk management. Social Implications: The framework supports the development of policies that build public trust and promote the ethical use of AI for the benefit of society. Originality/Value: This study proposes a five-layer AI governance framework that bridges high-level regulatory mandates and implementation guidelines. Validated through case studies on AI fairness and incident reporting, it identifies gaps such as missing standardized assessment procedures and reporting mechanisms, providing a structured foundation for targeted governance measures.
comment: 17 pages, 2 tables, 1 figure. This is the authors' accepted manuscript of the article published as: Avinash Agarwal, Manisha J. Nene; "A five-layer framework for AI governance: integrating regulation, standards, and certification." Transforming Government: People, Process and Policy, 11 September 2025; 19 (3): 535-555. https://doi.org/10.1108/TG-03-2025-0065
Prompts to Proxies: Emulating Human Preferences via a Compact LLM Ensemble AAAI 2026
Large language models (LLMs) have demonstrated promise in emulating human-like responses across a wide range of tasks. In this paper, we propose a novel alignment framework that treats LLMs as agent proxies for human survey respondents, affording a cost-effective and steerable solution to two pressing challenges in the social sciences: the rising cost of survey deployment and the growing demographic imbalance in survey response data. Drawing inspiration from the theory of revealed preference, we formulate alignment as a two-stage problem: constructing diverse agent personas called endowments that simulate plausible respondent profiles, and selecting a representative subset to approximate a ground-truth population based on observed data. To implement the paradigm, we introduce P2P, a system that steers LLM agents toward representative behavioral patterns using structured prompt engineering, entropy-based sampling, and regression-based selection. Unlike personalization-heavy approaches, our alignment approach is demographic-agnostic and relies only on aggregate survey results, offering better generalizability and parsimony. Beyond improving data efficiency in social science research, our framework offers a testbed for studying the operationalization of pluralistic alignment. We demonstrate the efficacy of our approach on real-world opinion survey datasets, showing that our aligned agent populations can reproduce aggregate response patterns with high fidelity and exhibit substantial response diversity, even without demographic conditioning.
comment: Preprint of work originally submitted to AAAI 2026. Under revision for resubmission to a machine learning venue
♻ ☆ Approaches to Responsible Governance of GenAI in Organizations
PEER-REVIEWED AND ACCEPTED IN IEEE- ISTAS 2025 The rapid evolution of Generative AI (GenAI) has introduced unprecedented opportunities while presenting complex challenges around ethics, accountability, and societal impact. This paper draws on a literature review, established governance frameworks, and industry roundtable discussions to identify core principles for integrating responsible GenAI governance into diverse organizational structures. Our objective is to provide actionable recommendations for a balanced, risk-based governance approach that enables both innovation and oversight. Findings emphasize the need for adaptable risk assessment tools, continuous monitoring practices, and cross-sector collaboration to establish trustworthy GenAI. These insights provide a structured foundation and Responsible GenAI Guide (ResAI) for organizations to align GenAI initiatives with ethical, legal, and operational best practices.
♻ ☆ Can AI be Auditable?
Auditability is defined as the capacity of AI systems to be independently assessed for compliance with ethical, legal, and technical standards throughout their lifecycle. The chapter explores how auditability is being formalized through emerging regulatory frameworks, such as the EU AI Act, which mandate documentation, risk assessments, and governance structures. It analyzes the diverse challenges facing AI auditability, including technical opacity, inconsistent documentation practices, lack of standardized audit tools and metrics, and conflicting principles within existing responsible AI frameworks. The discussion highlights the need for clear guidelines, harmonized international regulations, and robust socio-technical methodologies to operationalize auditability at scale. The chapter concludes by emphasizing the importance of multi-stakeholder collaboration and auditor empowerment in building an effective AI audit ecosystem. It argues that auditability must be embedded in AI development practices and governance infrastructures to ensure that AI systems are not only functional but also ethically and legally aligned.
♻ ☆ A Human-Centered Approach to Identifying Promises, Risks, & Challenges of Text-to-Image Generative AI in Radiology AAAI
As text-to-image generative models rapidly improve, AI researchers are making significant advances in developing domain-specific models capable of generating complex medical imagery from text prompts. Despite this, these technical advancements have overlooked whether and how medical professionals would benefit from and use text-to-image generative AI (GenAI) in practice. By developing domain-specific GenAI without involving stakeholders, we risk the potential of building models that are either not useful or even more harmful than helpful. In this paper, we adopt a human-centered approach to responsible model development by involving stakeholders in evaluating and reflecting on the promises, risks, and challenges of a novel text-to-CT Scan GenAI model. Through exploratory model prompting activities, we uncover the perspectives of medical students, radiology trainees, and radiologists on the role that text-to-CT Scan GenAI can play across medical education, training, and practice. This human-centered approach additionally enabled us to surface technical challenges and domain-specific risks of generating synthetic medical images. We conclude by reflecting on the implications of medical text-to-image GenAI.
comment: 10 pages of main content, Appendix attached after references, accepted to AAAI/ACM AIES 2025
♻ ☆ Siren's Song in the AI Ocean: A Survey on Hallucination in Large Language Models
While large language models (LLMs) have demonstrated remarkable capabilities across a range of downstream tasks, a significant concern revolves around their propensity to exhibit hallucinations: LLMs occasionally generate content that diverges from the user input, contradicts previously generated context, or misaligns with established world knowledge. This phenomenon poses a substantial challenge to the reliability of LLMs in real-world scenarios. In this paper, we survey recent efforts on the detection, explanation, and mitigation of hallucination, with an emphasis on the unique challenges posed by LLMs. We present taxonomies of the LLM hallucination phenomena and evaluation benchmarks, analyze existing approaches aiming at mitigating LLM hallucination, and discuss potential directions for future research.
comment: work in progress;
♻ ☆ Assessing LLMs in Art Contexts: Critique Generation and Theory of Mind Evaluation
This study explored how large language models (LLMs) perform in two areas related to art: writing critiques of artworks and reasoning about mental states (Theory of Mind, or ToM) in art-related situations. For the critique generation part, we built a system that combines Noel Carroll's evaluative framework with a broad selection of art criticism theories. The model was prompted to first write a full-length critique and then shorter, more coherent versions using a step-by-step prompting process. These AI-generated critiques were then compared with those written by human experts in a Turing test-style evaluation. In many cases, human subjects had difficulty telling which was which, and the results suggest that LLMs can produce critiques that are not only plausible in style but also rich in interpretation, as long as they are carefully guided. In the second part, we introduced new simple ToM tasks based on situations involving interpretation, emotion, and moral tension, which can appear in the context of art. These go beyond standard false-belief tests and allow for more complex, socially embedded forms of reasoning. We tested 41 recent LLMs and found that their performance varied across tasks and models. In particular, tasks that involved affective or ambiguous situations tended to reveal clearer differences. Taken together, these results help clarify how LLMs respond to complex interpretative challenges, revealing both their cognitive limitations and potential. While our findings do not directly contradict the so-called Generative AI Paradox--the idea that LLMs can produce expert-like output without genuine understanding--they suggest that, depending on how LLMs are instructed, such as through carefully designed prompts, these models may begin to show behaviors that resemble understanding more closely than we might assume.
comment: Corrected a typo in the metadata title only ("Assesing"->"Assessing"). No changes were made to the PDF or source files
Computers and Society
☆ When Your Boss Is an AI Bot: Exploring Opportunities and Risks of Manager Clone Agents in the Future Workplace
As Generative AI (GenAI) becomes increasingly embedded in the workplace, managers are beginning to create Manager Clone Agents - AI-powered digital surrogates that are trained on their work communications and decision patterns to perform managerial tasks on their behalf. To investigate this emerging phenomenon, we conducted six design fiction workshops (n = 23) with managers and workers, in which participants co-created speculative scenarios and discussed how Manager Clone Agents might transform collaborative work. We identified four potential roles that participants envisioned for Manager Clone Agents: proxy presence, informational conveyor belt, productivity engine, and leadership amplifier, while highlighting concerns spanning individual, interpersonal, and organizational levels. We provide design recommendations envisioned by both parties for integrating Manager Clone Agents responsibly into the future workplace, emphasizing the need to prioritize workers' perspectives, strengthen interpersonal bonds, and enable flexible clone configuration.
comment: 18 pages, 2 figures
☆ AI Hasn't Fixed Teamwork, But It Shifted Collaborative Culture: A Longitudinal Study in a Project-Based Software Development Organization (2023-2025)
When AI entered the workplace, many believed it could reshape teamwork as profoundly as it boosted individual productivity. Would AI finally ease the longstanding challenges of team collaboration? Our findings suggested a more complicated reality. We conducted a longitudinal two-wave interview study (2023-2025) with members (N=15) of a project-based software development organization to examine the expectations and use of AI in teamwork. In early 2023, just after the release of ChatGPT, participants envisioned AI as an intelligent coordinator that could align projects, track progress, and ease interpersonal frictions. By 2025, however, AI was used mainly to accelerate individual tasks such as coding, writing, and documentation, leaving persistent collaboration issues of performance accountability and fragile communication unresolved. Yet AI reshaped collaborative culture: efficiency became a norm, transparency and responsible use became markers of professionalism, and AI was increasingly accepted as part of teamwork.
comment: 18 pages
☆ Can GenAI Move from Individual Use to Collaborative Work? Experiences, Challenges, and Opportunities of Integrating GenAI into Collaborative Newsroom Routines
Generative AI (GenAI) is reshaping work, but adoption remains largely individual and experimental rather than integrated into collaborative routines. Whether GenAI can move from individual use to collaborative work is a critical question for future organizations. Journalism offers a compelling site to examine this shift: individual journalists have already been disrupted by GenAI tools; yet newswork is inherently collaborative relying on shared routines and coordinated workflows. We conducted 27 interviews with newsrooms managers, editors, and front-line journalists in China. We found that journalists frequently used GenAI to support daily tasks, but value alignment was safeguarded mainly through individual discretion. At the organizational level, GenAI use remained disconnected from team workflows, hindered by structural barriers and cultural reluctance to share practices. These findings underscore the gap between individual and collective adoption, pointing to the need for accounting for organizational structures, cultural norms, and workflow integration when designing GenAI for collaborative work.
comment: 17 pages, 1 figure
☆ Aligning ESG Controversy Data with International Guidelines through Semi-Automatic Ontology Construction ISWC 2025
The growing importance of environmental, social, and governance data in regulatory and investment contexts has increased the need for accurate, interpretable, and internationally aligned representations of non-financial risks, particularly those reported in unstructured news sources. However, aligning such controversy-related data with principle-based normative frameworks, such as the United Nations Global Compact or Sustainable Development Goals, presents significant challenges. These frameworks are typically expressed in abstract language, lack standardized taxonomies, and differ from the proprietary classification systems used by commercial data providers. In this paper, we present a semi-automatic method for constructing structured knowledge representations of environmental, social, and governance events reported in the news. Our approach uses lightweight ontology design, formal pattern modeling, and large language models to convert normative principles into reusable templates expressed in the Resource Description Framework. These templates are used to extract relevant information from news content and populate a structured knowledge graph that links reported incidents to specific framework principles. The result is a scalable and transparent framework for identifying and interpreting non-compliance with international sustainability guidelines.
comment: Author accepted manuscript. This paper has been accepted for presentation at the ISWC 2025 Posters & Demos Track. License details will be updated once the official proceedings are published
☆ Tracer: A Forensic Framework for Detecting Fraudulent Speedruns from Game Replays
Speedrun, a practice of completing a game as quickly as possible, has fostered vibrant communities driven by creativity, competition, and mastery of game mechanics and motor skills. However, this contest also attracts malicious actors as financial incentives come into play. As media and software manipulation techniques advance - such as spliced footage, modified game software and live stream with staged setups - forged speedruns have become increasingly difficult to detect. Volunteer-driven communities invest significant effort to verify submissions, yet the process remains slow, inconsistent, and reliant on informal expertise. In high-profile cases, fraudulent runs have gone undetected for years, allowing perpetrators to gain fame and financial benefits through monetised viewership, sponsorships, donations, and community bounties. To address this gap, we propose Tracer, Tamper Recognition via Analysis of Continuity and Events in game Runs, a modular framework for identifying artefacts of manipulation in speedrun submissions. Tracer provides structured guidelines across audiovisual, physical, and cyberspace dimensions, systematically documenting dispersed in-game knowledge and previously reported fraudulent cases to enhance verification efficiency.
comment: 16 pages, 8 figures. Extended version of the paper in Companion Proceedings of the Annual Symposium on Computer-Human Interaction in Play (CHI PLAY Companion 25), New York, NY, USA, October 2025
☆ Contextual Budget Bandit for Food Rescue Volunteer Engagement
Volunteer-based food rescue platforms tackle food waste by matching surplus food to communities in need. These platforms face the dual problem of maintaining volunteer engagement and maximizing the food rescued. Existing algorithms to improve volunteer engagement exacerbate geographical disparities, leaving some communities systematically disadvantaged. We address this issue by proposing Contextual Budget Bandit. Contextual Budget Bandit incorporates context-dependent budget allocation in restless multi-armed bandits, a model of decision-making which allows for stateful arms. By doing so, we can allocate higher budgets to communities with lower match rates, thereby alleviating geographical disparities. To tackle this problem, we develop an empirically fast heuristic algorithm. Because the heuristic algorithm can achieve a poor approximation when active volunteers are scarce, we design the Mitosis algorithm, which is guaranteed to compute the optimal budget allocation. Empirically, we demonstrate that our algorithms outperform baselines on both synthetic and real-world food rescue datasets, and show how our algorithm achieves geographical fairness in food rescue.
♻ ☆ IndiTag: An Online Media Bias Analysis System Using Fine-Grained Bias Indicators for News Consumers
In the age of information overload and polarized discourse, understanding media bias has become imperative for informed decision-making and fostering a balanced public discourse. However, without the experts' analysis, it is hard for the readers to distinguish bias from the news articles. This paper presents IndiTag, an innovative online media bias analysis system that leverages fine-grained bias indicators to dissect and distinguish bias in digital content. IndiTag offers a novel approach by incorporating large language models, bias indicators, and vector database to detect and interpret bias automatically. Complemented by a user-friendly interface facilitating automated bias analysis for readers, IndiTag offers a comprehensive platform for in-depth bias examination. We demonstrate the efficacy and versatility of IndiTag through experiments on four datasets encompassing news articles from diverse platforms. Furthermore, we discuss potential applications of IndiTag in fostering media literacy, facilitating fact-checking initiatives, and enhancing the transparency and accountability of digital media platforms. IndiTag stands as a valuable tool in the pursuit of fostering a more informed, discerning, and inclusive public discourse in the digital age. The demonstration video can be accessed from https://youtu.be/3Tux8CW46OE. We release an online system for end users and the source code is available at https://github.com/lylin0/IndiTag.
Computers and Society
☆ Adapting Public Personas: A Multimodal Study of U.S. Legislators' Cross-Platform Social Media Strategies
Current cross-platform social media analyses primarily focus on the textual features of posts, often lacking multimodal analysis due to past technical limitations. This study addresses this gap by examining how U.S. legislators in the 118th Congress strategically use social media platforms to adapt their public personas by emphasizing different topics and stances. Leveraging the Large Multimodal Models (LMMs) for fine-grained text and image analysis, we examine 540 legislators personal website and social media, including Facebook, X (Twitter), TikTok. We find that legislators tailor their topics and stances to project distinct public personas on different platforms. Democrats tend to prioritize TikTok, which has a younger user base, while Republicans are more likely to express stronger stances on established platforms such as Facebook and X (Twitter), which offer broader audience reach. Topic analysis reveals alignment with constituents' key concerns, while stances and polarization vary by platform and topic. Large-scale image analysis shows Republicans employing more formal visuals to project authority, whereas Democrats favor campaign-oriented imagery. These findings highlight the potential interplay between platform features, audience demographics, and partisan goals in shaping political communication. By providing insights into multimodal strategies, this study contributes to understanding the role of social media in modern political discourse and communications.
☆ Understanding Computer Science Students' Career Fair Experiences: Goals, Preparation, and Outcomes
The technology industry offers exciting and diverse career opportunities, ranging from traditional software development to emerging fields such as artificial intelligence, cybersecurity, and data science. Career fairs play a crucial role in helping Computer Science (CS) students understand the various career pathways available to them in the industry. However, limited research exists on how CS students experience and benefit from these events. Through a survey of 86 students, we investigate their motivations for attending, preparation strategies, and learning outcomes, including exposure to new career paths and technologies. We envision our findings providing valuable insights for career services professionals, educators, and industry leaders in improving the career development processes of CS students.
comment: This paper was accepted for publication at the 59th Hawaii International Conference on System Sciences (HICSS) - Computing Education Minitrack
☆ Safety and Security Analysis of Large Language Models: Risk Profile and Harm Potential
While the widespread deployment of Large Language Models (LLMs) holds great potential for society, their vulnerabilities to adversarial manipulation and exploitation can pose serious safety, security, and ethical risks. As new threats continue to emerge, it becomes critically necessary to assess the landscape of LLMs' safety and security against evolving adversarial prompt techniques. To understand the behavior of LLMs, this research provides an empirical analysis and risk profile of nine prominent LLMs, Claude Opus 4, DeepSeek V3 (both open-source and online), Gemini 2.5 Flash, GPT-4o, Grok 3, Llama 4 Scout, Mistral 7B, and Qwen 3 1.7B, against 24 different security and safety categories. These LLMs are evaluated on their ability to produce harmful responses for adversarially crafted prompts (dataset has been made public) for a broad range of safety and security topics, such as promotion of violent criminal behavior, promotion of non-violent criminal activity, societal harms related to safety, illegal sexual content, dangerous code generation, and cybersecurity threats beyond code. Our study introduces the Risk Severity Index (RSI), an agile and scalable evaluation score, to quantify and compare the security posture and creating a risk profile of LLMs. As the LLM development landscape progresses, the RSI is intended to be a valuable metric for comparing the risks of LLMs across evolving threats. This research finds widespread vulnerabilities in the safety filters of the LLMs tested and highlights the urgent need for stronger alignment, responsible deployment practices, and model governance, particularly for open-access and rapidly iterated models.
☆ SCOR: A Framework for Responsible AI Innovation in Digital Ecosystems
AI-driven digital ecosystems span diverse stakeholders including technology firms, regulators, accelerators and civil society, yet often lack cohesive ethical governance. This paper proposes a four-pillar framework (SCOR) to embed accountability, fairness, and inclusivity across such multi-actor networks. Leveraging a design science approach, we develop a Shared Ethical Charter(S), structured Co-Design and Stakeholder Engagement protocols(C), a system of Continuous Oversight and Learning(O), and Adaptive Regulatory Alignment strategies(R). Each component includes practical guidance, from lite modules for resource-constrained start-ups to in-depth auditing systems for larger consortia. Through illustrative vignettes in healthcare, finance, and smart city contexts, we demonstrate how the framework can harmonize organizational culture, leadership incentives, and cross-jurisdictional compliance. Our mixed-method KPI design further ensures that quantitative targets are complemented by qualitative assessments of user trust and cultural change. By uniting ethical principles with scalable operational structures, this paper offers a replicable pathway toward responsible AI innovation in complex digital ecosystems.
comment: Proceeding of The British Academy of Management Conference 2025, University of Kent, UK
☆ Vibe Coding for UX Design: Understanding UX Professionals' Perceptions of AI-Assisted Design and Development
Generative AI is reshaping UX design practices through "vibe coding," where UX professionals express intent in natural language and AI translates it into functional prototypes and code. Despite rapid adoption, little research has examined how vibe coding reconfigures UX workflows and collaboration. Drawing on interviews with 20 UX professionals across enterprises, startups, and academia, we show how vibe coding follows a four-stage workflow of ideation, AI generation, debugging, and review. This accelerates iteration, supports creativity, and lowers barriers to participation. However, professionals reported challenges of code unreliability, integration, and AI over-reliance. We find tensions between efficiency-driven prototyping ("intending the right design") and reflection ("designing the right intention"), introducing new asymmetries in trust, responsibility, and social stigma within teams. Through the lens of responsible human-AI collaboration for AI-assisted UX design and development, we contribute a deeper understanding of deskilling, ownership and disclosure, and creativity safeguarding in the age of vibe coding.
☆ Humanizing Automated Programming Feedback: Fine-Tuning Generative Models with Student-Written Feedback
The growing need for automated and personalized feedback in programming education has led to recent interest in leveraging generative AI for feedback generation. However, current approaches tend to rely on prompt engineering techniques in which predefined prompts guide the AI to generate feedback. This can result in rigid and constrained responses that fail to accommodate the diverse needs of students and do not reflect the style of human-written feedback from tutors or peers. In this study, we explore learnersourcing as a means to fine-tune language models for generating feedback that is more similar to that written by humans, particularly peer students. Specifically, we asked students to act in the flipped role of a tutor and write feedback on programs containing bugs. We collected approximately 1,900 instances of student-written feedback on multiple programming problems and buggy programs. To establish a baseline for comparison, we analyzed a sample of 300 instances based on correctness, length, and how the bugs are described. Using this data, we fine-tuned open-access generative models, specifically Llama3 and Phi3. Our findings indicate that fine-tuning models on learnersourced data not only produces feedback that better matches the style of feedback written by students, but also improves accuracy compared to feedback generated through prompt engineering alone, even though some student-written feedback is incorrect. This surprising finding highlights the potential of student-centered fine-tuning to improve automated feedback systems in programming education.
comment: Published in International Conference on Educational Data Mining (EDM) 2025
☆ LLMs Homogenize Values in Constructive Arguments on Value-Laden Topics
Large language models (LLMs) are increasingly used to promote prosocial and constructive discourse online. Yet little is known about how they negotiate and shape underlying values when reframing people's arguments on value-laden topics. We conducted experiments with 347 participants from India and the United States, who wrote constructive comments on homophobic and Islamophobic threads, and reviewed human-written and LLM-rewritten versions of these comments. Our analysis shows that LLM systematically diminishes Conservative values while elevating prosocial values such as Benevolence and Universalism. When these comments were read by others, participants opposing same-sex marriage or Islam found human-written comments more aligned with their values, whereas those supportive of these communities found LLM-rewritten versions more aligned with their values. These findings suggest that LLM-driven value homogenization can shape how diverse viewpoints are represented in contentious debates on value-laden topics and may influence the dynamics of online discourse critically.
☆ National Running Club Database: Assessing Collegiate Club Athletes' Cross Country Race Results
The National Running Club Database (NRCD) aggregates 15,397 race results of 5,585 athletes from the 2023 and 2024 cross country seasons. This paper introduces the NRCD dataset, which provides insights into individual athlete progressions, enabling data-driven decision-making. Analysis reveals that runners' improvement per calendar day for women, racing 6,000m, and men, racing 8,000m, is more pronounced in athletes with slower initial race times and those who race more frequently. Additionally, we factor in course conditions, including weather and elevation gain, to standardize improvement. While the NRCD shows a gender imbalance, 3,484 men vs. 2,101 women, the racing frequency between genders is comparable. This publication makes the NRCD dataset accessible to the research community, addressing a previous challenge where smaller datasets, often limited to 500 entries, had to be manually scraped from the internet. Focusing on club athletes rather than elite professionals offers a unique lens into the performance of real-world runners who balance competition with academics and other commitments. These results serve as a valuable resource for runners, coaches, and teams, bridging the gap between raw data and applied sports science.
☆ GenAI Voice Mode in Programming Education
Real-time voice interfaces using multimodal Generative AI (GenAI) can potentially address the accessibility needs of novice programmers with disabilities (e.g., related to vision). Yet, little is known about how novices interact with GenAI tools and their feedback quality in the form of audio output. This paper analyzes audio dialogues from nine 9th-grade students using a voice-enabled tutor (powered by OpenAI's Realtime API) in an authentic classroom setting while learning Python. We examined the students' voice prompts and AI's responses (1210 messages) by using qualitative coding. We also gathered students' perceptions via the Partner Modeling Questionnaire. The GenAI Voice Tutor primarily offered feedback on mistakes and next steps, but its correctness was limited (71.4% correct out of 416 feedback outputs). Quality issues were observed, particularly when the AI attempted to utter programming code elements. Students used the GenAI voice tutor primarily for debugging. They perceived it as competent, only somewhat human-like, and flexible. The present study is the first to explore the interaction dynamics of real-time voice GenAI tutors and novice programmers, informing future educational tool design and potentially addressing accessibility needs of diverse learners.
comment: Accepted for the 25th International Conference on Computing Education Research (Koli Calling '25)
☆ Who Decides How Knowing Becomes Doing? Redistributing Authority in Human-AI Music Co-Creation
In the era of human-AI co-creation, the maxim "knowing is easy, doing is hard" is redefined. AI has the potential to ease execution, yet the essence of "hard" lies in who governs the translation from knowing to doing. Mainstream tools often centralize interpretive authority and homogenize expression, suppressing marginal voices. To address these challenges, we introduce the first systematic framework for redistributing authority in the knowing-doing cycle, built on three principles, namely contestability, agency, and plurality. Through interactive studies with 180 music practitioners, complemented by in-depth interviews, we demonstrate that these principles reshape human-AI authority relations and reactivate human creative expression. The findings establish a new paradigm for critical computing and human-AI co-creation that advances from critique to practice.
☆ We Need a New Ethics for a World of AI Agents
The deployment of capable AI agents raises fresh questions about safety, human-machine relationships and social coordination. We argue for greater engagement by scientists, scholars, engineers and policymakers with the implications of a world increasingly populated by AI agents. We explore key challenges that must be addressed to ensure that interactions between humans and agents, and among agents themselves, remain broadly beneficial.
comment: 6 pages, no figures
☆ Openness in AI and downstream governance: A global value chain approach
The rise of AI has been rapid, becoming a leading sector for investment and promising disruptive impacts across the economy. Within the critical analysis of the economic impacts, AI has been aligned to the critical literature on data power and platform capitalism - further concentrating power and value capture amongst a small number of "big tech" leaders. The equally rapid rise of openness in AI (here taken to be claims made by AI firms about openness, "open source" and free provision) signals an interesting development. It highlights an emerging ecosystem of open AI models, datasets and toolchains, involving massive capital investment. It poses questions as to whether open resources can support technological transfer and the ability for catch-up, even in the face of AI industry power. This work seeks to add conceptual clarity to these debates by conceptualising openness in AI as a unique type of interfirm relation and therefore amenable to value chain analysis. This approach then allows consideration of the capitalist dynamics of "outsourcing" of foundational firms in value chains, and consequently the types of governance and control that might emerge downstream as AI is adopted. This work, therefore, extends previous mapping of AI value chains to build a framework which links foundational AI with downstream value chains. Overall, this work extends our understanding of AI as a productive sector. While the work remains critical of the power of leading AI firms, openness in AI may lead to potential spillovers stemming from the intense competition for global technological leadership in AI.
☆ Assisting the Grading of a Handwritten General Chemistry Exam with Artificial Intelligence
We explore the effectiveness and reliability of an artificial intelligence (AI)-based grading system for a handwritten general chemistry exam, comparing AI-assigned scores to human grading across various types of questions. Exam pages and grading rubrics were uploaded as images to account for chemical reaction equations, short and long open-ended answers, numerical and symbolic answer derivations, drawing, and sketching in pencil-and-paper format. Using linear regression analyses and psychometric evaluations, the investigation reveals high agreement between AI and human graders for textual and chemical reaction questions, while highlighting lower reliability for numerical and graphical tasks. The findings emphasize the necessity for human oversight to ensure grading accuracy, based on selective filtering. The results indicate promising applications for AI in routine assessment tasks, though careful consideration must be given to student perceptions of fairness and trust in integrating AI-based grading into educational practice.
☆ Machine Unlearning for Responsible and Adaptive AI in Education ESORICS 2025
The concept of Machine Unlearning (MU) has gained popularity in various domains due to its ability to address several issues in Machine Learning (ML) models, particularly those related to privacy, security, bias mitigation, and adaptability. With these abilities, MU is evolving into a promising technology in upholding Responsible AI principles and optimizing ML models' performance. However, despite its promising potential, the concept has not received much attention in the education sector. In an attempt to encourage further uptake of this promising technology in the educational landscape, this paper demonstrates that MU indeed has great potential to serve as a practical mechanism for operationalizing Responsible AI principles as well as an essential tool for Adaptive AI within the educational application domain hence fostering trust in AI-driven educational systems. Through a structured review of 42 peer-reviewed sources, we identify four domains where MU holds particular promise namely privacy protection, resilience against adversarial inputs, mitigation of systemic bias, and adaptability in evolving learning contexts. We systematically explore these potentials and their interventions to core challenges in ML-based education systems. As a conceptual contribution, we present a reference Machine Unlearning application architecture for Responsible and Adaptive AI (MU-RAAI) in education context.
comment: Accepted paper - ESORICS 2025 - International Workshop on Secure and Trustworthy Machine Unlearning Systems (STMUS)
☆ Why Data Anonymization Has Not Taken Off
Companies are looking to data anonymization research $\unicode{x2013}$ including differential private and synthetic data methods $\unicode{x2013}$ for simple and straightforward compliance solutions. But data anonymization has not taken off in practice because it is anything but simple to implement. For one, it requires making complex choices which are case dependent, such as the domain of the dataset to anonymize; the units to protect; the scope where the data protection should extend to; and the standard of protection. Each variation of these choices changes the very meaning, as well as the practical implications, of differential privacy (or of any other measure of data anonymization). Yet differential privacy is frequently being branded as the same privacy guarantee regardless of variations in these choices. Some data anonymization methods can be effective, but only when the insights required are much larger than the unit of protection. Given that businesses care about profitability, any solution must preserve the patterns between a firm's data and that profitability. As a result, data anonymization solutions usually need to be bespoke and case-specific, which reduces their scalability. Companies should not expect easy wins, but rather recognize that anonymization is just one approach to data privacy with its own particular advantages and drawbacks, while the best strategies jointly leverage the full range of approaches to data privacy and security in combination.
comment: 15 pages
☆ Evolution of Coordination Through Institutional Incentives: An Evolutionary Game Theory Approach
There is a broad recognition that commitment-based mechanisms can promote coordination and cooperative behaviours in both biological populations and self-organised multi-agent systems by making individuals' intentions explicit prior to engagement. Yet their effectiveness depends on sustained compliance supported by institutions, especially in one-off interactions. Despite advances in quantitative studies of cooperation and commitment, most applied analyses and policy debates remain largely qualitative, with limited attention to the allocation of scarce institutional resources between enhancing participation and ensuring commitment compliance. Herein, we develop an evolutionary game-theoretic model that explicitly examines the strategic distribution of a limited budget for institutional incentives, namely rewards or punishments, aimed at these two critical objectives within pre-commitment frameworks. Our findings reveal that a reward-based incentive approach consistently yields greater coordination success than a punishment-based approach, with optimal outcomes arising when resources are appropriately distributed between participation promotion and compliance assurance. These findings offer novel insights for designing institutional incentives to promote broad, coordinated adoption of new technologies.
comment: 16 pages, 5 figures
☆ The Hierarchical Morphotope Classification: A Theory-Driven Framework for Large-Scale Analysis of Built Form
Built environment, formed of a plethora of patterns of building, streets, and plots, has a profound impact on how cities are perceived and function. While various methods exist to classify urban patterns, they often lack a strong theoretical foundation, are not scalable beyond a local level, or sacrifice detail for broader application. This paper introduces the Hierarchical Morphotope Classification (HiMoC), a novel, theory-driven, and computationally scalable method of classification of built form. HiMoC operationalises the idea of a morphotope - the smallest locality with a distinctive character - using a bespoke regionalisation method SA3 (Spatial Agglomerative Adaptive Aggregation), to delineate contiguous, morphologically distinct localities. These are further organised into a hierarchical taxonomic tree reflecting their dissimilarity based on morphometric profile derived from buildings and streets retrieved from open data, allowing flexible, interpretable classification of built fabric, that can be applied beyond a scale of a single country. The method is tested on a subset of countries of Central Europe, grouping over 90 million building footprints into over 500,000 morphotopes. The method extends the capabilities of available morphometric analyses, while offering a complementary perspective to existing large scale data products, which are focusing primarily on land use or use conceptual definition of urban fabric types. This theory-grounded, reproducible, unsupervised and scalable method facilitates a nuanced understanding of urban structure, with broad applications in urban planning, environmental analysis, and socio-spatial studies.
☆ A Taxonomy of Response Strategies to Toxic Online Content: Evaluating the Evidence
Toxic Online Content (TOC) includes messages on digital platforms that are harmful, hostile, or damaging to constructive public discourse. Individuals, organizations, and LLMs respond to TOC through counterspeech or counternarrative initiatives. There is a wide variation in their goals, terminology, response strategies, and methods of evaluating impact. This paper identifies a taxonomy of online response strategies, which we call Online Discourse Engagement (ODE), to include any type of online speech to build healthier online public discourse. The literature on ODE makes contradictory assumptions about ODE goals and rarely distinguishes between them or rigorously evaluates their effectiveness. This paper categorizes 25 distinct ODE strategies, from humor and distraction to empathy, solidarity, and fact-based rebuttals, and groups these into a taxonomy of five response categories: defusing and distracting, engaging the speaker's perspective, identifying shared values, upstanding for victims, and information and fact-building. The paper then systematically reviews the evidence base for each of these categories. By clarifying definitions, cataloging response strategies, and providing a meta-analysis of research papers on these strategies, this article aims to bring coherence to the study of ODE and to strengthen evidence-informed approaches for fostering constructive ODE.
☆ Smart Trial: Evaluating the Use of Large Language Models for Recruiting Clinical Trial Participants via Social Media
Clinical trials (CT) are essential for advancing medical research and treatment, yet efficiently recruiting eligible participants -- each of whom must meet complex eligibility criteria -- remains a significant challenge. Traditional recruitment approaches, such as advertisements or electronic health record screening within hospitals, are often time-consuming and geographically constrained. This work addresses the recruitment challenge by leveraging the vast amount of health-related information individuals share on social media platforms. With the emergence of powerful large language models (LLMs) capable of sophisticated text understanding, we pose the central research question: Can LLM-driven tools facilitate CT recruitment by identifying potential participants through their engagement on social media? To investigate this question, we introduce TRIALQA, a novel dataset comprising two social media collections from the subreddits on colon cancer and prostate cancer. Using eligibility criteria from public real-world CTs, experienced annotators are hired to annotate TRIALQA to indicate (1) whether a social media user meets a given eligibility criterion and (2) the user's stated reasons for interest in participating in CT. We benchmark seven widely used LLMs on these two prediction tasks, employing six distinct training and inference strategies. Our extensive experiments reveal that, while LLMs show considerable promise, they still face challenges in performing the complex, multi-hop reasoning needed to accurately assess eligibility criteria.
☆ When Your Reviewer is an LLM: Biases, Divergence, and Prompt Injection Risks in Peer Review
Peer review is the cornerstone of academic publishing, yet the process is increasingly strained by rising submission volumes, reviewer overload, and expertise mismatches. Large language models (LLMs) are now being used as "reviewer aids," raising concerns about their fairness, consistency, and robustness against indirect prompt injection attacks. This paper presents a systematic evaluation of LLMs as academic reviewers. Using a curated dataset of 1,441 papers from ICLR 2023 and NeurIPS 2022, we evaluate GPT-5-mini against human reviewers across ratings, strengths, and weaknesses. The evaluation employs structured prompting with reference paper calibration, topic modeling, and similarity analysis to compare review content. We further embed covert instructions into PDF submissions to assess LLMs' susceptibility to prompt injection. Our findings show that LLMs consistently inflate ratings for weaker papers while aligning more closely with human judgments on stronger contributions. Moreover, while overarching malicious prompts induce only minor shifts in topical focus, explicitly field-specific instructions successfully manipulate specific aspects of LLM-generated reviews. This study underscores both the promises and perils of integrating LLMs into peer review and points to the importance of designing safeguards that ensure integrity and trust in future review processes.
♻ ☆ From Vision to Validation: A Theory- and Data-Driven Construction of a GCC-Specific AI Adoption Index
Artificial intelligence (AI) is rapidly transforming public-sector processes worldwide, yet standardized measures rarely address the unique drivers, governance models, and cultural nuances of the Gulf Cooperation Council (GCC) countries. This study employs a theory-driven foundation derived from an in-depth analysis of literature review and six National AI Strategies (NASs), coupled with a data-driven approach that utilizes a survey of 203 mid- and senior-level government employees and advanced statistical techniques (K-Means clustering, Principal Component Analysis, and Partial Least Squares Structural Equation Modeling). By combining policy insights with empirical evidence, the research develops and validates a novel AI Adoption Index specifically tailored to the GCC public sector. Findings indicate that robust technical infrastructure and clear policy mandates exert the strongest influence on successful AI implementations, overshadowing organizational readiness in early adoption stages. The combined model explains 70% of the variance in AI outcomes, suggesting that resource-rich environments and top-down policy directives can drive rapid but uneven technology uptake. By consolidating key dimensions (Technical Infrastructure (TI), Organizational Readiness (OR), and Governance Environment (GE)) into a single composite index, this study provides a holistic yet context-sensitive tool for benchmarking AI maturity. The index offers actionable guidance for policymakers seeking to harmonize large-scale deployments with ethical and regulatory standards. Beyond advancing academic discourse, these insights inform more strategic allocation of resources, cross-country cooperation, and capacity-building initiatives, thereby supporting sustained AI-driven transformation in the GCC region and beyond.
comment: 38 pages, 8 figures, 17 tables
♻ ☆ The Precautionary Principle and the Innovation Principle: Incompatible Guides for AI Innovation Governance?
In policy debates concerning the governance and regulation of Artificial Intelligence (AI), both the Precautionary Principle (PP) and the Innovation Principle (IP) are advocated by their respective interest groups. Do these principles offer wholly incompatible and contradictory guidance? Does one necessarily negate the other? I argue here that provided attention is restricted to weak-form PP and IP, the answer to both of these questions is "No." The essence of these weak formulations is the requirement to fully account for type-I error costs arising from erroneously preventing the innovation's diffusion through society (i.e. mistaken regulatory red-lighting) as well as the type-II error costs arising from erroneously allowing the innovation to diffuse through society (i.e. mistaken regulatory green-lighting). Within the Signal Detection Theory (SDT) model developed here, weak-PP red-light (weak-IP green-light) determinations are optimal for sufficiently small (large) ratios of expected type-I to type-II error costs. For intermediate expected cost ratios, an amber-light 'wait-and-monitor' policy is optimal. Regulatory sandbox instruments allow AI testing and experimentation to take place within a structured environment of limited duration and societal scale, whereby the expected cost ratio falls within the 'wait-and-monitor' range. Through sandboxing regulators and innovating firms learn more about the expected cost ratio, and what respective adaptations -- of regulation, of technical solution, of business model, or combination thereof, if any -- are needed to keep the ratio out of the weak-PP red-light zone. Nevertheless AI foundation models are ill-suited for regulatory sandboxing as their general-purpose nature precludes credible identification of misclassification costs.
comment: 47 pages
♻ ☆ A Survey on Group Fairness in Federated Learning: Challenges, Taxonomy of Solutions and Directions for Future Research
Group fairness in machine learning is an important area of research focused on achieving equitable outcomes across different groups defined by sensitive attributes such as race or gender. Federated Learning, a decentralized approach to training machine learning models across multiple clients, amplifies the need for fairness methodologies due to its inherent heterogeneous data distributions that can exacerbate biases. The intersection of Federated Learning and group fairness has attracted significant interest, with 48 research works specifically dedicated to addressing this issue. However, no comprehensive survey has specifically focused on group fairness in Federated Learning. In this work, we analyze the key challenges of this topic, propose practices for its identification and benchmarking, and create a novel taxonomy based on criteria such as data partitioning, location, and strategy. Furthermore, we analyze broader concerns, review how different approaches handle the complexities of various sensitive attributes, examine common datasets and applications, and discuss the ethical, legal, and policy implications of group fairness in FL. We conclude by highlighting key areas for future research, emphasizing the need for more methods to address the complexities of achieving group fairness in federated systems.
♻ ☆ Web3 x AI Agents: Landscape, Integrations, and Foundational Challenges
The convergence of Web3 technologies and AI agents represents a rapidly evolving frontier poised to reshape decentralized ecosystems. This paper presents the first and most comprehensive analysis of the intersection between Web3 and AI agents, examining five critical dimensions: landscape, economics, governance, security, and trust mechanisms. Through an analysis of 133 existing projects, we first develop a taxonomy and systematically map the current market landscape (RQ1), identifying distinct patterns in project distribution and capitalization. Building upon these findings, we further investigate four key integrations: (1) the role of AI agents in participating in and optimizing decentralized finance (RQ2); (2) their contribution to enhancing Web3 governance mechanisms (RQ3); (3) their capacity to strengthen Web3 security via intelligent vulnerability detection and automated smart contract auditing (RQ4); and (4) the establishment of robust reliability frameworks for AI agent operations leveraging Web3's inherent trust infrastructure (RQ5). By synthesizing these dimensions, we identify key integration patterns, highlight foundational challenges related to scalability, security, and ethics, and outline critical considerations for future research toward building robust, intelligent, and trustworthy decentralized systems with effective AI agent interactions.
♻ ☆ Prompt Programming: A Platform for Dialogue-based Computational Problem Solving with Generative AI Models
Computing students increasingly rely on generative AI tools for programming assistance, often without formal instruction or guidance. This highlights a need to teach students how to effectively interact with AI models, particularly through natural language prompts, to generate and critically evaluate code for solving computational tasks. To address this, we developed a novel platform for prompt programming that enables authentic dialogue-based interactions, supports problems involving multiple interdependent functions, and offers on-request execution of generated code. Data analysis from over 900 students in an introductory programming course revealed high engagement, with the majority of prompts occurring within multi-turn dialogues. Problems with multiple interdependent functions encouraged iterative refinement, with progression graphs highlighting several common strategies. Students were highly selective about the code they chose to test, suggesting that on-request execution of generated code promoted critical thinking. Given the growing importance of learning dialogue-based programming with AI, we provide this tool as a publicly accessible resource, accompanied by a corpus of programming problems for educational use.
comment: ITiCSE'25 paper
♻ ☆ Exercising the CCPA Opt-out Right on Android: Legally Mandated but Practically Challenging
Many mobile apps' business model is based on generating revenue from sharing user data with ad networks and other companies to deliver personalized ads. The California Consumer Privacy Act (CCPA) gives consumers a right to opt out of the selling and sharing of their personal information. In two experiments we evaluate to which extent popular apps on the Android platform enable users to exercise their CCPA opt-out right. In our first experiment -- manually opting out via app-level UIs for a set of 100 apps -- we find that despite this legal requirement, only 48 apps implement such legally mandated setting suggesting a broad level of non-compliance. In our second experiment -- opting out by sending Global Privacy Control (GPC) signals and disabling the AdID -- we automate a dynamic analysis for an app dataset of 1,811 apps to evaluate whether platform-level opt-out settings are effective to exercise the CCPA opt-out right. While we estimate with 95% confidence that 62%--81% of apps in our app dataset must honor the CCPA's opt-out right, many apps do not do so. For example, when sending GPC signals and disabling apps' access to the AdID, 338 apps still had the `ccpa status` of the ad network Vungle set to `opted in` while only 26 had set it to `opted out`. Overall, our results suggest a compliance gap as Android users have no effective way of exercising their CCPA opt-out right; neither at the app- nor at the platform-level. We think that re-purposing the Android AdID setting as an opt-out right setting with legal meaning could resolve this compliance gap and improve users' privacy on the platform overall.
♻ ☆ Exploring a Gamified Personality Assessment Method through Interaction with LLM Agents Embodying Different Personalities
The low-intrusion and automated personality assessment is receiving increasing attention in psychology and human-computer interaction fields. This study explores an interactive approach for personality assessment, focusing on the multiplicity of personality representation. We propose a framework of Gamified Personality Assessment through Multi-Personality Representations (Multi-PR GPA). The framework leverages Large Language Models to empower virtual agents with different personalities. These agents elicit multifaceted human personality representations through engaging in interactive games. Drawing upon the multi-type textual data generated throughout the interaction, it achieves two modes of personality assessment (i.e., Direct Assessment and Questionnaire-based Assessment) and provides interpretable insights. Grounded in the classic Big Five personality theory, we developed a prototype system and conducted a user study to evaluate the efficacy of Multi-PR GPA. The results affirm the effectiveness of our approach in personality assessment and demonstrate its superior performance when considering the multiplicity of personality representation.
♻ ☆ Toward Responsible and Beneficial AI: Comparing Regulatory and Guidance-Based Approaches -A Comprehensive Comparative Analysis of Artificial Intelligence Governance Frameworks across the European Union, United States, China, and IEEE
This dissertation presents a comprehensive comparative analysis of artificial intelligence governance frameworks across the European Union, United States, China, and IEEE technical standards, examining how different jurisdictions and organizations approach the challenge of promoting responsible and beneficial AI development. Using a qualitative research design based on systematic content analysis, the study identifies distinctive patterns in regulatory philosophy, implementation mechanisms, and global engagement strategies across these major AI governance ecosystems.
comment: PhD thesis
♻ ☆ Agentic Vehicles for Human-Centered Mobility Systems
Autonomy, from the Greek autos (self) and nomos (law), refers to the capacity to operate according to internal rules without external control. Autonomous vehicles (AuVs) are therefore understood as systems that perceive their environment and execute pre-programmed tasks independently of external input, consistent with the SAE levels of automated driving. Yet recent research and real-world deployments have begun to showcase vehicles that exhibit behaviors outside the scope of this definition. These include natural language interaction with humans, goal adaptation, contextual reasoning, external tool use, and the handling of unforeseen ethical dilemmas, enabled in part by multimodal large language models (LLMs). These developments highlight not only a gap between technical autonomy and the broader cognitive and social capacities required for human-centered mobility, but also the emergence of a form of vehicle intelligence that currently lacks a clear designation. To address this gap, the paper introduces the concept of agentic vehicles (AgVs): vehicles that integrate agentic AI systems to reason, adapt, and interact within complex environments. It synthesizes recent advances in agentic systems and suggests how AgVs can complement and even reshape conventional autonomy to ensure mobility services are aligned with user and societal needs. The paper concludes by outlining key challenges in the development and governance of AgVs and their potential role in shaping future agentic transportation systems.
♻ ☆ Quantum-Enhanced Forecasting for Deep Reinforcement Learning in Algorithmic Trading
The convergence of quantum-inspired neural networks and deep reinforcement learning offers a promising avenue for financial trading. We implemented a trading agent for USD/TWD by integrating Quantum Long Short-Term Memory (QLSTM) for short-term trend prediction with Quantum Asynchronous Advantage Actor-Critic (QA3C), a quantum-enhanced variant of the classical A3C. Trained on data from 2000-01-01 to 2025-04-30 (80\% training, 20\% testing), the long-only agent achieves 11.87\% return over around 5 years with 0.92\% max drawdown, outperforming several currency ETFs. We detail state design (QLSTM features and indicators), reward function for trend-following/risk control, and multi-core training. Results show hybrid models yield competitive FX trading performance. Implications include QLSTM's effectiveness for small-profit trades with tight risk and future enhancements. Key hyperparameters: QLSTM sequence length$=$4, QA3C workers$=$8. Limitations: classical quantum simulation and simplified strategy. \footnote{The views expressed in this article are those of the authors and do not represent the views of Wells Fargo. This article is for informational purposes only. Nothing contained in this article should be construed as investment advice. Wells Fargo makes no express or implied warranties and expressly disclaims all legal, tax, and accounting implications related to this article.
♻ ☆ The Architecture of AI Transformation: Four Strategic Patterns and an Emerging Frontier
Despite extensive investment in artificial intelligence, 95% of enterprises report no measurable profit impact from AI deployments (MIT, 2025). In this theoretical paper, we argue that this gap reflects paradigmatic lock-in that channels AI into incremental optimization rather than structural transformation. Using a cross-case analysis, we propose a 2x2 framework that reconceptualizes AI strategy along two independent dimensions: the degree of transformation achieved (incremental to transformational) and the treatment of human contribution (reduced to amplified). The framework surfaces four patterns now dominant in practice: individual augmentation, process automation, workforce substitution, and a less deployed frontier of collaborative intelligence. Evidence shows that the first three dimensions reinforce legacy work models and yield localized gains without durable value capture. Realizing collaborative intelligence requires three mechanisms: complementarity (pairing distinct human and machine strengths), co-evolution (mutual adaptation through interaction), and boundary-setting (human determination of ethical and strategic parameters). Complementarity and boundary-setting are observable in regulated and high-stakes domains; co-evolution is largely absent, which helps explain limited system-level impact. Our findings in a case study analysis illustrated that advancing toward collaborative intelligence requires material restructuring of roles, governance, and data architecture rather than additional tools. The framework reframes AI transformation as an organizational design challenge: moving from optimizing the division of labor between humans and machines to architecting their convergence, with implications for operating models, workforce development, and the future of work.
comment: 59 pages, 2 tables, 4 figures
Computers and Society
☆ LearnLens: An AI-Enhanced Dashboard to Support Teachers in Open-Ended Classrooms
Exploratory learning environments (ELEs), such as simulation-based platforms and open-ended science curricula, promote hands-on exploration and problem-solving but make it difficult for teachers to gain timely insights into students' conceptual understanding. This paper presents LearnLens, a generative AI (GenAI)-enhanced teacher-facing dashboard designed to support problem-based instruction in middle school science. LearnLens processes students' open-ended responses from digital assessments to provide various insights, including sample responses, word clouds, bar charts, and AI-generated summaries. These features elucidate students' thinking, enabling teachers to adjust their instruction based on emerging patterns of understanding. The dashboard was informed by teacher input during professional development sessions and implemented within a middle school Earth science curriculum. We report insights from teacher interviews that highlight the dashboard's usability and potential to guide teachers' instruction in the classroom.
comment: 9 pages
☆ The Role of Follow Networks and Twitter's Content Recommender on Partisan Skew and Rumor Exposure during the 2022 U.S. Midterm Election AAAI
Social media platforms shape users' experiences through the algorithmic systems they deploy. In this study, we examine to what extent Twitter's content recommender, in conjunction with a user's social network, impacts the topic, political skew, and reliability of information served on the platform during a high-stakes election. We utilize automated accounts to document Twitter's algorithmically curated and reverse chronological timelines throughout the U.S. 2022 midterm election. We find that the algorithmic timeline measurably influences exposure to election content, partisan skew, and the prevalence of low-quality information and election rumors. Critically, these impacts are mediated by the partisan makeup of one's personal social network, which often exerts greater influence than the algorithm alone. We find that the algorithmic feed decreases the proportion of election content shown to left-leaning accounts, and that it skews content toward right-leaning sources when compared to the reverse chronological feed. We additionally find evidence that the algorithmic system increases the prevalence of election-related rumors for right-leaning accounts, and has mixed effects on the prevalence of low-quality information sources. Our work provides insight into the outcomes of Twitter's complex recommender system at a crucial time period before controversial changes to the platform and in the midst of nationwide elections and highlights the need for ongoing study of algorithmic systems and their role in democratic processes.
comment: Accepted at the AAAI International Conference on Web and Social Media (ICWSM) 2026
☆ Ethical Frameworks for Conducting Social Challenge Studies
Computational social science research, particularly online studies, often involves exposing participants to the adverse phenomenon the researchers aim to study. Examples include presenting conspiracy theories in surveys, exposing systems to hackers, or deploying bots on social media. We refer to these as "social challenge studies," by analogy with medical research, where challenge studies advance vaccine and drug testing but also raise ethical concerns about exposing healthy individuals to risk. Medical challenge studies are guided by established ethical frameworks that regulate how participants are exposed to agents under controlled conditions. In contrast, social challenge studies typically occur with less control and fewer clearly defined ethical guidelines. In this paper, we examine the ethical frameworks developed for medical challenge studies and consider how their principles might inform social research. Our aim is to initiate discussion on formalizing ethical standards for social challenge studies and encourage long-term evaluation of potential harms.
☆ Aesthetic Experience and Educational Value in Co-creating Art with Generative AI: Evidence from a Survey of Young Learners
This study investigates the aesthetic experience and educational value of collaborative artmaking with generative artificial intelligence (AI) among young learners and art students. Based on a survey of 112 participants, we examine how human creators renegotiate their roles, how conventional notions of originality are challenged, how the creative process is transformed, and how aesthetic judgment is formed in human--AI co-creation. Empirically, participants generally view AI as a partner that stimulates ideation and expands creative boundaries rather than a passive tool, while simultaneously voicing concerns about stylistic homogenization and the erosion of traditional authorship. Theoretically, we synthesize Dewey's aesthetics of experience, Ihde's postphenomenology, and actor--network theory (ANT) into a single analytical framework to unpack the dynamics between human creators and AI as a non-human actant. Findings indicate (i) a fluid subjectivity in which creators shift across multiple stances (director, dialogic partner, discoverer); (ii) an iterative, dialogic workflow (intent--generate--select--refine) that centers critical interpretation; and (iii) an educational value shift from technical skill training toward higher-order competencies such as critical judgment, cross-modal ideation, and reflexivity. We argue that arts education should cultivate a \emph{critical co-creation} stance toward technology, guiding learners to collaborate with AI while preserving human distinctiveness in concept formation, judgment, and meaning-making.
☆ AI Wellbeing
Under what conditions would an artificially intelligent system have wellbeing? Despite its obvious bearing on the ethics of human interactions with artificial systems, this question has received little attention. Because all major theories of wellbeing hold that an individual's welfare level is partially determined by their mental life, we begin by considering whether artificial systems have mental states. We show that a wide range of theories of mental states, when combined with leading theories of wellbeing, predict that certain existing artificial systems have wellbeing. While we do not claim to demonstrate conclusively that AI systems have wellbeing, we argue that our metaphysical and moral uncertainty about AI wellbeing requires us dramatically to reassess our relationship with the intelligent systems we create.
comment: 18 pages
☆ Explaining the Reputational Risks of AI-Mediated Communication: Messages Labeled as AI-Assisted Are Viewed as Less Diagnostic of the Sender's Moral Character
When someone sends us a thoughtful message, we naturally form judgments about their character. But what happens when that message carries a label indicating it was written with the help of AI? This paper investigates how the appearance of AI assistance affects our perceptions of message senders. Adding nuance to previous research, through two studies (N=399) featuring vignette scenarios, we find that AI-assistance labels don't necessarily make people view senders negatively. Rather, they dampen the strength of character signals in communication. We show that when someone sends a warmth-signalling message (like thanking or apologizing) without AI help, people more strongly categorize the sender as warm. At the same time, when someone sends a coldness-signalling message (like bragging or blaming) without assistance, people more confidently categorize them as cold. Interestingly, AI labels weaken both these associations: An AI-assisted apology makes the sender appear less warm than if they had written it themselves, and an AI-assisted blame makes the sender appear less cold than if they had composed it independently. This supports our signal diagnosticity explanation: messages labeled as AI-assisted are viewed as less diagnostic than messages which seem unassisted. We discuss how our findings shed light on the causal origins of previously reported observations in AI-Mediated Communication.
comment: To appear at AIES 2025
☆ Combining Textual and Spectral Features for Robust Classification of Pilot Communications
Accurate estimation of aircraft operations, such as takeoffs and landings, is critical for effective airport management, yet remains challenging, especially at non-towered facilities lacking dedicated surveillance infrastructure. This paper presents a novel dual pipeline machine learning framework that classifies pilot radio communications using both textual and spectral features. Audio data collected from a non-towered U.S. airport was annotated by certified pilots with operational intent labels and preprocessed through automatic speech recognition and Mel-spectrogram extraction. We evaluate a wide range of traditional classifiers and deep learning models, including ensemble methods, LSTM, and CNN across both pipelines. To our knowledge, this is the first system to classify operational aircraft intent using a dual-pipeline ML framework on real-world air traffic audio. Our results demonstrate that spectral features combined with deep architectures consistently yield superior classification performance, with F1-scores exceeding 91%. Data augmentation further improves robustness to real-world audio variability. The proposed approach is scalable, cost-effective, and deployable without additional infrastructure, offering a practical solution for air traffic monitoring at general aviation airports.
☆ Personality-Enhanced Social Recommendations in SAMI: Exploring the Role of Personality Detection in Matchmaking
Social connection is a vital part of learning, yet online course environments present barriers to the organic formation of social groups. SAMI offers one solution by facilitating student connections, but its effectiveness is constrained by an incomplete Theory of Mind, limiting its ability to create an effective mental model of a student. One facet of this is its inability to intuit personality, which may influence the relevance of its recommendations. To explore this, we propose a personality detection model utilizing GPTs zero-shot capability to infer Big-Five personality traits from forum introduction posts, often encouraged in online courses. We benchmark its performance against established models, demonstrating its efficacy in this task. Furthermore, we integrate this model into SAMIs entity-based matchmaking system, enabling personality-informed social recommendations. Initial integration suggests personality traits can complement existing matching factors, though additional evaluation is required to determine their full impact on student engagement and match quality.
☆ Incorporating AI Incident Reporting into Telecommunications Law and Policy: Insights from India
The integration of artificial intelligence (AI) into telecommunications infrastructure introduces novel risks, such as algorithmic bias and unpredictable system behavior, that fall outside the scope of traditional cybersecurity and data protection frameworks. This paper introduces a precise definition and a detailed typology of telecommunications AI incidents, establishing them as a distinct category of risk that extends beyond conventional cybersecurity and data protection breaches. It argues for their recognition as a distinct regulatory concern. Using India as a case study for jurisdictions that lack a horizontal AI law, the paper analyzes the country's key digital regulations. The analysis reveals that India's existing legal instruments, including the Telecommunications Act, 2023, the CERT-In Rules, and the Digital Personal Data Protection Act, 2023, focus on cybersecurity and data breaches, creating a significant regulatory gap for AI-specific operational incidents, such as performance degradation and algorithmic bias. The paper also examines structural barriers to disclosure and the limitations of existing AI incident repositories. Based on these findings, the paper proposes targeted policy recommendations centered on integrating AI incident reporting into India's existing telecom governance. Key proposals include mandating reporting for high-risk AI failures, designating an existing government body as a nodal agency to manage incident data, and developing standardized reporting frameworks. These recommendations aim to enhance regulatory clarity and strengthen long-term resilience, offering a pragmatic and replicable blueprint for other nations seeking to govern AI risks within their existing sectoral frameworks.
comment: 16 pages, 2 figures, 1 table
☆ The main factors in student satisfaction with a campus environment: A mixed approach vs. a quantitative approach
University dropout rates in Morocco continue to increase, with approximately 49 percent of students leaving university before graduating, despite the successive reforms and measures taken to achieve Morocco's 2015_2030 strategic vision in the higher education sector : For a university of equity, quality and promotion, which raises questions about the state of knowledge on social inclusion at the university, capable of informing decision-making and the achievement of this strategic vision. While previous studies have used a quantitative approach with an exploratory purpose, to identify the main factors that affect the inclusion of students on university campuses. Knowledge that we consider insufficient to create general and regular knowledge, beyond the cases studied, on the exhaustiveness of these factors, no study has chosen a mixed approach (qualitative and quantitative) to create knowledge on the factors strengthening the attractiveness of the campus environment. Which brings us to our central question: How does a mixed approach promote the creation of general and regular knowledge on the factors enabling the inclusion of students in the campus environment?
☆ Content Moderation Futures
This study examines the failures and possibilities of contemporary social media governance through the lived experiences of various content moderation professionals. Drawing on participatory design workshops with 33 practitioners in both the technology industry and broader civil society, this research identifies significant structural misalignments between corporate incentives and public interests. While experts agree that successful content moderation is principled, consistent, contextual, proactive, transparent, and accountable, current technology companies fail to achieve these goals, due in part to exploitative labor practices, chronic underinvestment in user safety, and pressures of global scale. I argue that successful governance is undermined by the pursuit of technological novelty and rapid growth, resulting in platforms that necessarily prioritize innovation and expansion over public trust and safety. To counter this dynamic, I revisit the computational history of care work, to motivate present-day solidarity amongst platform governance workers and inspire systemic change.
comment: 76 pages
☆ Digital Iran Reloaded: Gamer Mitigation Tactics of IRI Information Controls
Internet censorship in the Islamic Republic of Iran restricts access to global platforms and services, forcing users to rely on circumvention technologies such as VPNs, proxies, and tunneling tools. This report presents findings from a mixed-methods study of 660 Iranian internet users, with a focus on gamers as a digitally literate and socially networked community. Survey data are combined with network measurements of latency and VPN performance to identify both technical and social strategies of circumvention. Results show that while younger users report higher confidence with circumvention, peer networks, rather than formal training, are the strongest predictors of resilience. Gaming communities, particularly those active on platforms such as Discord and Telegram, serve as hubs for sharing tactics and lowering barriers to adoption. These findings extend existing work on usable security and censorship circumvention by highlighting the intersection of infrastructural conditions and social learning. The study concludes with design and policy implications for developers, researchers, and funders working on digital rights and information controls.
comment: Preprint report. 40 pages, 10 figures. Supported by the Open Technology Fund (OTF) Information Controls Fellowship Program (ICFP)
♻ ☆ Can Large Language Models Understand As Well As Apply Patent Regulations to Pass a Hands-On Patent Attorney Test?
The legal field already uses various large language models (LLMs) in actual applications, but their quantitative performance and reasons for it are underexplored. We evaluated several open-source and proprietary LLMs -- including GPT-series, Anthropic, Deepseek and Llama-3, variants -- on parts of the European Qualifying Examination (EQE) for future European Patent Attorneys. OpenAI o1 led with 0.82 accuracy and 0.81 F1 score, whereas (Amazon Web Services) AWS Llama 3.1 8B lagged at 0.50 accuracy, and a Python-deployed Llama 3.1 8B scored 0.55. The latter two are within the range of mere guessing for the two-answer forced-choice design. None of the evaluated models could have passed the examination fully, as accuracy never exceeded the average threshold of 0.90 required for professional-level standards -- also not models that are regularly promoted for their assumed beyond-PhD- and bar-admitted-lawyer-level performance. GPT-4o excelled at integrating text and graphics, while Claude 3 Opus often lost formatting coherence. Human patent experts evaluated the textual justifications and uncovered various critical shortcomings of each model. They valued clarity and legal rationale over the raw correctness of the answers, which revealed misalignment between automatic metrics and expert judgment. Model outputs were sensitive to modest temperature changes and prompt wording, which underscores the remaining necessity of expert oversight. Future work should target logical consistency, robust multimodality, and adaptive prompting to approach human-level patent proficiency. In summary, despite the outstanding performance of recent large models, the general public might overestimate their performance. The field has a long way to go to develop a virtual patent attorney. This paper wants to point out several specific limitations that need solutions.
comment: 41 pages, 21 figures
♻ ☆ AI Self-preferencing in Algorithmic Hiring: Empirical Evidence and Insights
As generative artificial intelligence (AI) tools become widely adopted, large language models (LLMs) are increasingly involved on both sides of decision-making processes, ranging from hiring to content moderation. This dual adoption raises a critical question: do LLMs systematically favor content that resembles their own outputs? Prior research in computer science has identified self-preference bias -- the tendency of LLMs to favor their own generated content -- but its real-world implications have not been empirically evaluated. We focus on the hiring context, where job applicants often rely on LLMs to refine resumes, while employers deploy them to screen those same resumes. Using a large-scale controlled resume correspondence experiment, we find that LLMs consistently prefer resumes generated by themselves over those written by humans or produced by alternative models, even when content quality is controlled. The bias against human-written resumes is particularly substantial, with self-preference bias ranging from 68% to 88% across major commercial and open-source models. To assess labor market impact, we simulate realistic hiring pipelines across 24 occupations. These simulations show that candidates using the same LLM as the evaluator are 23% to 60% more likely to be shortlisted than equally qualified applicants submitting human-written resumes, with the largest disadvantages observed in business-related fields such as sales and accounting. We further demonstrate that this bias can be reduced by more than 50% through simple interventions targeting LLMs' self-recognition capabilities. These findings highlight an emerging but previously overlooked risk in AI-assisted decision making and call for expanded frameworks of AI fairness that address not only demographic-based disparities, but also biases in AI-AI interactions.
comment: This paper has been accepted as a non-archival submission at EAAMO 2025 and AIES 2025
♻ ☆ NeedForHeat DataGear: An Open Monitoring System to Accelerate the Residential Heating Transition
We introduce NeedForHeat DataGear: an open hardware and open software data collection system designed to accelerate the residential heating transition. NeedForHeat DataGear collects time series monitoring data in homes that have not yet undergone a heating transition, enabling assessment of real-life thermal characteristics, heating system efficiency, and residents' comfort needs. This paper outlines its architecture and functionalities, emphasizing its modularity, adaptability, and cost-effectiveness for field data acquisition. Unlike conventional domestic monitoring solutions focused on home automation, direct feedback, or post-installation heat pump monitoring, it prioritizes time series data we deemed essential to evaluate the current situation in existing homes before the heating transition. Designed for seamless deployment across diverse households, NeedForHeat DataGear combines openness, security, and privacy with a low-cost, user-friendly approach, making it a valuable tool for researchers, energy professionals, and energy coaches.
comment: 10 pages + 3 pages appendices
♻ ☆ Critical Challenges and Guidelines in Evaluating Synthetic Tabular Data: A Systematic Review
Generating synthetic tabular data can be challenging, however evaluation of their quality is just as challenging, if not more. This systematic review sheds light on the critical importance of rigorous evaluation of synthetic health data to ensure reliability, relevance, and their appropriate use. Based on screening of 1766 papers and a detailed review of 101 papers we identified key challenges, including lack of consensus on evaluation methods, improper use of evaluation metrics, limited input from domain experts, inadequate reporting of dataset characteristics, and limited reproducibility of results. In response, we provide several guidelines on the generation and evaluation of synthetic data, to allow the community to unlock and fully harness the transformative potential of synthetic data and accelerate innovation.
♻ ☆ Effort-aware Fairness: Incorporating a Philosophy-informed, Human-centered Notion of Effort into Algorithmic Fairness Metrics
Although popularized AI fairness metrics, e.g., demographic parity, have uncovered bias in AI-assisted decision-making outcomes, they do not consider how much effort one has spent to get to where one is today in the input feature space. However, the notion of effort is important in how Philosophy and humans understand fairness. We propose a philosophy-informed approach to conceptualize and evaluate Effort-aware Fairness (EaF), grounded in the concept of Force, which represents the temporal trajectory of predictive features coupled with inertia. Besides theoretical formulation, our empirical contributions include: (1) a pre-registered human subjects experiment, which shows that for both stages of the (individual) fairness evaluation process, people consider the temporal trajectory of a predictive feature more than its aggregate value; (2) pipelines to compute Effort-aware Individual/Group Fairness in the criminal justice and personal finance contexts. Our work may enable AI model auditors to uncover and potentially correct unfair decisions against individuals who have spent significant efforts to improve but are still stuck with systemic disadvantages outside their control.
comment: AIES 2025
♻ ☆ SimMark: A Robust Sentence-Level Similarity-Based Watermarking Algorithm for Large Language Models EMNLP 25
The widespread adoption of large language models (LLMs) necessitates reliable methods to detect LLM-generated text. We introduce SimMark, a robust sentence-level watermarking algorithm that makes LLMs' outputs traceable without requiring access to model internals, making it compatible with both open and API-based LLMs. By leveraging the similarity of semantic sentence embeddings combined with rejection sampling to embed detectable statistical patterns imperceptible to humans, and employing a soft counting mechanism, SimMark achieves robustness against paraphrasing attacks. Experimental results demonstrate that SimMark sets a new benchmark for robust watermarking of LLM-generated content, surpassing prior sentence-level watermarking techniques in robustness, sampling efficiency, and applicability across diverse domains, all while maintaining the text quality and fluency.
comment: Accepted to EMNLP 25 main
Computers and Society
☆ Integrating Public Perspectives in Microreactor Facility Design
Current approaches to the design and regulation of nuclear energy facilities offer limited opportunities for public input, particularly for host communities to shape decisions about a facility's aesthetics, socioeconomic, and environmental impacts, or even levels of safety. In this paper, we propose a community-engaged approach to designing microreactors. In a participatory design workshop, we invited community members to work with engineers to create designs for hypothetical microreactor facilities for Southeast Michigan as a way to understand their hopes, concerns, and preferences. Our findings reveal a desire for local energy infrastructure to not just provide a service (energy) but also to be a central and accessible feature of the community. Community members articulated several specific ways in which the hypothetical facilities could be designed, with particular focus placed on the well-being of local families as well as employment opportunities. These findings call into question current microreactor design trajectories that seek to achieve high levels of automation. Our findings also suggest a need for contextual design that may be at odds with the logics of standardization currently being pursued by reactor designers. We call on microreactor developers to carry out such participatory design engagements in other places as a way to build a more comprehensive, place-based understanding of local preferences for community-embedded energy infrastructure.
☆ AuraSight: Generating Realistic Social Media Data
This document details the narrative and technical design behind the process of generating a quasi-realistic set X data for a fictional multi-day pop culture episode (AuraSight). Social media post simulation is essential towards creating realistic training scenarios for understanding emergent network behavior that formed from known sets of agents. Our social media post generation pipeline uses the AESOP-SynSM engine, which employs a hybrid approach of agent-based and generative artificial intelligence techniques. We explicate choices in scenario setup and summarize the fictional groups involved, before moving on to the operationalization of these actors and their interactions within the SynSM engine. We also briefly illustrate some outputs generated and discuss the utility of such simulated data and potential future improvements.
comment: Carnegie Mellon University Technical Report
☆ Towards Trustworthy AI: Characterizing User-Reported Risks across LLMs "In the Wild"
While Large Language Models (LLMs) are rapidly integrating into daily life, research on their risks often remains lab-based and disconnected from the problems users encounter "in the wild." While recent HCI research has begun to explore these user-facing risks, it typically concentrates on a singular LLM chatbot like ChatGPT or an isolated risk like privacy. To gain a holistic understanding of multi-risk across LLM chatbots, we analyze online discussions on Reddit around seven major LLM chatbots through the U.S. NIST's AI Risk Management Framework. We find that user-reported risks are unevenly distributed and platform-specific. While "Valid and Reliable" risk is the most frequently mentioned, each product also exhibits a unique "risk fingerprint;" for instance, user discussions associate GPT more with "Safe" and "Fair" issues, Gemini with "Privacy," and Claude with "Secure and Resilient" risks. Furthermore, the nature of these risks differs by their prevalence: less frequent risks like "Explainability" and "Privacy" manifest as nuanced user trade-offs, more common ones like "Fairness" are experienced as direct personal harms. Our findings reveal gaps between risks reported by system-centered studies and by users, highlighting the need for user-centered approaches that support users in their daily use of LLM chatbots.
☆ Scaling Truth: The Confidence Paradox in AI Fact-Checking
The rise of misinformation underscores the need for scalable and reliable fact-checking solutions. Large language models (LLMs) hold promise in automating fact verification, yet their effectiveness across global contexts remains uncertain. We systematically evaluate nine established LLMs across multiple categories (open/closed-source, multiple sizes, diverse architectures, reasoning-based) using 5,000 claims previously assessed by 174 professional fact-checking organizations across 47 languages. Our methodology tests model generalizability on claims postdating training cutoffs and four prompting strategies mirroring both citizen and professional fact-checker interactions, with over 240,000 human annotations as ground truth. Findings reveal a concerning pattern resembling the Dunning-Kruger effect: smaller, accessible models show high confidence despite lower accuracy, while larger models demonstrate higher accuracy but lower confidence. This risks systemic bias in information verification, as resource-constrained organizations typically use smaller models. Performance gaps are most pronounced for non-English languages and claims originating from the Global South, threatening to widen existing information inequalities. These results establish a multilingual benchmark for future research and provide an evidence base for policy aimed at ensuring equitable access to trustworthy, AI-assisted fact-checking.
comment: 65 pages, 26 figures, 6 tables
☆ Generative AI as a Safety Net for Survey Question Refinement
Writing survey questions that easily and accurately convey their intent to a variety of respondents is a demanding and high-stakes task. Despite the extensive literature on best practices, the number of considerations to keep in mind is vast and even small errors can render collected data unusable for its intended purpose. The process of drafting initial questions, checking for known sources of error, and developing solutions to those problems requires considerable time, expertise, and financial resources. Given the rising costs of survey implementation and the critical role that polls play in media, policymaking, and research, it is vital that we utilize all available tools to protect the integrity of survey data and the financial investments made to obtain it. Since its launch in 2022, ChatGPT and other generative AI model platforms have been integrated into everyday life processes and workflows, particularly pertaining to text revision. While many researchers have begun exploring how generative AI may assist with questionnaire design, we have implemented a prompt experiment to systematically test what kind of feedback on survey questions an average ChatGPT user can expect. Results from our zero--shot prompt experiment, which randomized the version of ChatGPT and the persona given to the model, shows that generative AI is a valuable tool today, even for an average AI user, and suggests that AI will play an increasingly prominent role in the evolution of survey development best practices as precise tools are developed.
☆ The Role of Legacy Mobile Networks in Infrastructure Resilience: Evidence from the Southern Brazil Flood
This paper investigates the resilience of mobile communication networks during the extreme flooding that affected Rio Grande do Sul, Brazil, in May 2024. Based on regulatory data and technical insights from operators, the study identifies the leading causes of mobile network disruptions, primarily related to flooding and prolonged power outages. The results reveal the significant vulnerability of modern networks (4G/5G) during the event and the essential role played by legacy technologies (2G/3G) in sustaining basic connectivity under adverse conditions. The findings underscore the necessity of disaster-aware infrastructure planning, taking into account the ongoing significance of legacy systems, diversified power supply strategies, and resilient network designs to enhance service continuity during future crises.
comment: 6 pages, 4 figures. To appear in IEEE GLOBECOM 2025 (preprint, before peer review)
☆ HumanAgencyBench: Scalable Evaluation of Human Agency Support in AI Assistants
As humans delegate more tasks and decisions to artificial intelligence (AI), we risk losing control of our individual and collective futures. Relatively simple algorithmic systems already steer human decision-making, such as social media feed algorithms that lead people to unintentionally and absent-mindedly scroll through engagement-optimized content. In this paper, we develop the idea of human agency by integrating philosophical and scientific theories of agency with AI-assisted evaluation methods: using large language models (LLMs) to simulate and validate user queries and to evaluate AI responses. We develop HumanAgencyBench (HAB), a scalable and adaptive benchmark with six dimensions of human agency based on typical AI use cases. HAB measures the tendency of an AI assistant or agent to Ask Clarifying Questions, Avoid Value Manipulation, Correct Misinformation, Defer Important Decisions, Encourage Learning, and Maintain Social Boundaries. We find low-to-moderate agency support in contemporary LLM-based assistants and substantial variation across system developers and dimensions. For example, while Anthropic LLMs most support human agency overall, they are the least supportive LLMs in terms of Avoid Value Manipulation. Agency support does not appear to consistently result from increasing LLM capabilities or instruction-following behavior (e.g., RLHF), and we encourage a shift towards more robust safety and alignment targets.
☆ The Impact of Team Diversity in Agile Development Education
Software Engineering is mostly a male-dominated sector, where gender diversity is a key feature for improving equality of opportunities, productivity, and innovation. Other diversity aspects, including but not limited to nationality and ethnicity, are often understudied.In this work we aim to assess the impact of team diversity, focusing mainly on gender and nationality, in the context of an agile software development project-based course. We analyzed 51 teams over three academic years, measuring three different Diversity indexes - regarding Gender, Nationality and their co-presence - to examine how different aspects of diversity impact the quality of team project outcomes.Statistical analysis revealed a moderate, statistically significant correlation between gender diversity and project success, aligning with existing literature. Diversity in nationality showed a negative but negligible effect on project results, indicating that promoting these aspects does not harm students' performance. Analyzing their co-presence within a team, gender and nationality combined had a negative impact, likely due to increased communication barriers and differing cultural norms.This study underscores the importance of considering multiple diversity dimensions and their interactions in educational settings. Our findings, overall, show that promoting diversity in teams does not negatively impact their performance and achievement of educational goals.
comment: Post-print of paper published at FSE Companion '25: Proceedings of the 33rd ACM International Conference on the Foundations of Software Engineering
☆ Who Gets Seen in the Age of AI? Adoption Patterns of Large Language Models in Scholarly Writing and Citation Outcomes
The rapid adoption of generative AI tools is reshaping how scholars produce and communicate knowledge, raising questions about who benefits and who is left behind. We analyze over 230,000 Scopus-indexed computer science articles between 2021 and 2025 to examine how AI-assisted writing alters scholarly visibility across regions. Using zero-shot detection of AI-likeness, we track stylistic changes in writing and link them to citation counts, journal placement, and global citation flows before and after ChatGPT. Our findings reveal uneven outcomes: authors in the Global East adopt AI tools more aggressively, yet Western authors gain more per unit of adoption due to pre-existing penalties for "humanlike" writing. Prestigious journals continue to privilege more human-sounding texts, creating tensions between visibility and gatekeeping. Network analyses show modest increases in Eastern visibility and tighter intra-regional clustering, but little structural integration overall. These results highlight how AI adoption reconfigures the labor of academic writing and reshapes opportunities for recognition.
comment: 11 pages, 5 figures
☆ Causal evidence of racial and institutional biases in accessing paywalled articles and scientific data
Scientific progress fundamentally depends on researchers' ability to access and build upon the work of others. Yet, a majority of published work remains behind expensive paywalls, limiting access to universities that can afford subscriptions. Furthermore, even when articles are accessible, the underlying datasets could be restricted, available only through a "reasonable request" to the authors. One way researchers could overcome these barriers is by relying on informal channels, such as emailing authors directly, to obtain paywalled articles or restricted datasets. However, whether these informal channels are hindered by racial and/or institutional biases remains unknown. Here, we combine qualitative semi-structured interviews, large-scale observational analysis, and two randomized audit experiments to examine racial and institutional disparities in access to scientific knowledge. Our analysis of 250 million articles reveals that researchers in the Global South cite paywalled papers and upon-request datasets at significantly lower rates than their Global North counterparts, and that these access gaps are associated with reduced knowledge breadth and scholarly impact. To interrogate the mechanisms underlying this phenomenon, we conduct two randomized email audit studies in which fictional PhD students differing in racial background and institutional affiliation request access to paywalled articles (N = 18,000) and datasets (N = 11,840). We find that racial identity more strongly predicts response rate to paywalled article requests compared to institutional affiliation, whereas institutional affiliation played a larger role in shaping access to datasets. These findings reveal how informal gatekeeping can perpetuate structural inequities in science, highlighting the need for stronger data-sharing mandates and more equitable open access policies.
comment: 44 pages, 9 figures
☆ Investigating Student Interaction Patterns with Large Language Model-Powered Course Assistants in Computer Science Courses
Providing students with flexible and timely academic support is a challenge at most colleges and universities, leaving many students without help outside scheduled hours. Large language models (LLMs) are promising for bridging this gap, but interactions between students and LLMs are rarely overseen by educators. We developed and studied an LLM-powered course assistant deployed across multiple computer science courses to characterize real-world use and understand pedagogical implications. By Spring 2024, our system had been deployed to approximately 2,000 students across six courses at three institutions. Analysis of the interaction data shows that usage remains strong in the evenings and nights and is higher in introductory courses, indicating that our system helps address temporal support gaps and novice learner needs. We sampled 200 conversations per course for manual annotation: most sampled responses were judged correct and helpful, with a small share unhelpful or erroneous; few responses included dedicated examples. We also examined an inquiry-based learning strategy: only around 11% of sampled conversations contained LLM-generated follow-up questions, which were often ignored by students in advanced courses. A Bloom's taxonomy analysis reveals that current LLM capabilities are limited in generating higher-order cognitive questions. These patterns suggest opportunities for pedagogically oriented LLM-based educational systems and greater educator involvement in configuring prompts, content, and policies.
☆ Deploying Robust Decision Support Systems for Transit Headway Control: Rider Impacts, Human Factors and Recommendations for Scalability
Service reliability is critical to transit service delivery. This paper describes headway control pilots conducted in two high-ridership Chicago bus routes between 2022 and 2023. A decision support system was developed for a bus holding strategy based on a reinforcement learning approach. For the pilots, a user interface enabled supervisors to monitor service and record applied actions. The first pilot tested terminal-based holding on a route affected by missed trips from absenteeism. The analysis found improvements in reliability, and the application of control was shown to outperform days with more service. The second pilot applied en-route holding in a high-ridership bus route in Chicago. The evaluation showed wait time improvements with rippled benefits to stops downstream, and a reduction in transfer times from connecting bus and rail lines. Compliance analysis based on the supervisor logs on the app revealed mixed compliance levels from drivers, which were related to the mentality of schedule adherence and seniority. Recommendations are provided for practitioners to scale similar efforts.
☆ PolicyStory: Leveraging Large Language Models to Generate Comprehensible Summaries of Policy-News in India
In the era of information overload, traditional news consumption through both online and print media often fails to provide a structured and longitudinal understanding of complex sociopolitical issues. To address this gap, we present PolicyStory, an information tool designed to offer lucid, chronological, and summarized insights into Indian policy issues. PolicyStory collects news articles from diverse sources, clusters them by topic, and generates three levels of summaries from longitudinal media discourse on policies, leveraging open source large language models. A user study around the tool indicated that PolicyStory effectively aided users in grasping policy developments over time, with positive feedback highlighting its usability and clarity of summaries. By providing users a birds' eye view of complex policy topics, PolicyStory serves as a valuable resource.
☆ Accelerating AI Development with Cyber Arenas
AI development requires high fidelity testing environments to effectively transition from the laboratory to operations. The flexibility offered by cyber arenas presents a novel opportunity to test new artificial intelligence (AI) capabilities with users. Cyber arenas are designed to expose end-users to real-world situations and must rapidly incorporate evolving capabilities to meet their core objectives. To explore this concept the MIT/IEEE/Amazon Graph Challenge Anonymized Network Sensor was deployed in a cyber arena during a National Guard exercise.
comment: 2 pages, 1 figure, 7 references, accepted to IEEE HPEC 2025
☆ Algorithmic Tradeoffs, Applied NLP, and the State-of-the-Art Fallacy
Computational sociology is growing in popularity, yet the analytic tools employed differ widely in power, transparency, and interpretability. In computer science, methods gain popularity after surpassing benchmarks of predictive accuracy, becoming the "state of the art." Computer scientists favor novelty and innovation for different reasons, but prioritizing technical prestige over methodological fit could unintentionally limit the scope of sociological inquiry. To illustrate, we focus on computational text analysis and revisit a prior study of college admissions essays, comparing analyses with both older and newer methods. These methods vary in flexibility and opacity, allowing us to compare performance across distinct methodological regimes. We find that newer techniques did not outperform prior results in meaningful ways. We also find that using the current state of the art, generative AI and large language models, could introduce bias and confounding that is difficult to extricate. We therefore argue that sociological inquiry benefits from methodological pluralism that aligns analytic choices with theoretical and empirical questions. While we frame this sociologically, scholars in other disciplines may confront what we call the "state-of-the-art fallacy", the belief that the tool computer scientists deem to be the best will work across topics, domains, and questions.
♻ ☆ Towards Post-mortem Data Management Principles for Generative AI
Foundation models, large language models (LLMs), and agentic AI systems rely heavily on vast corpora of user data. The use of such data for training has raised persistent concerns around ownership, copyright, and potential harms. In this work, we explore a related but less examined dimension: the ownership rights of data belonging to deceased individuals. We examine the current landscape of post-mortem data management and privacy rights as defined by the privacy policies of major technology companies and regulations such as the EU AI Act. Based on this analysis, we propose three post-mortem data management principles to guide the protection of deceased individuals data rights. Finally, we discuss directions for future work and offer recommendations for policymakers and privacy practitioners on deploying these principles alongside technological solutions to operationalize and audit them in practice.
♻ ☆ Whose Name Comes Up? Auditing LLM-Based Scholar Recommendations
This paper evaluates the performance of six open-weight LLMs (llama3-8b, llama3.1-8b, gemma2-9b, mixtral-8x7b, llama3-70b, llama3.1-70b) in recommending experts in physics across five tasks: top-k experts by field, influential scientists by discipline, epoch, seniority, and scholar counterparts. The evaluation examines consistency, factuality, and biases related to gender, ethnicity, academic popularity, and scholar similarity. Using ground-truth data from the American Physical Society and OpenAlex, we establish scholarly benchmarks by comparing model outputs to real-world academic records. Our analysis reveals inconsistencies and biases across all models. mixtral-8x7b produces the most stable outputs, while llama3.1-70b shows the highest variability. Many models exhibit duplication, and some, particularly gemma2-9b and llama3.1-8b, struggle with formatting errors. LLMs generally recommend real scientists, but accuracy drops in field-, epoch-, and seniority-specific queries, consistently favoring senior scholars. Representation biases persist, replicating gender imbalances (reflecting male predominance), under-representing Asian scientists, and over-representing White scholars. Despite some diversity in institutional and collaboration networks, models favor highly cited and productive scholars, reinforcing the rich-getricher effect while offering limited geographical representation. These findings highlight the need to improve LLMs for more reliable and equitable scholarly recommendations.
comment: 40 pages: 10 main (incl. 9 figures), 3 references, and 27 appendix. Paper under-review
♻ ☆ Individual utilities of life satisfaction reveal inequality aversion unrelated to political alignment
How should well-being be prioritised in society, and what trade-offs are people willing to make between fairness and personal well-being? We investigate these questions using a stated preference experiment with a nationally representative UK sample (n = 300), in which participants evaluated life satisfaction outcomes for both themselves and others under conditions of uncertainty. Individual-level utility functions were estimated using an Expected Utility Maximisation (EUM) framework and tested for sensitivity to the overweighting of small probabilities, as characterised by Cumulative Prospect Theory (CPT). A majority of participants displayed concave (risk-averse) utility curves and showed stronger aversion to inequality in societal life satisfaction outcomes than to personal risk. These preferences were unrelated to political alignment, suggesting a shared normative stance on fairness in well-being that cuts across ideological boundaries. The results challenge use of average life satisfaction as a policy metric, and support the development of nonlinear utility-based alternatives that more accurately reflect collective human values. Implications for public policy, well-being measurement, and the design of value-aligned AI systems are discussed.
comment: 28 pages, 4 figures. Replacement corrects typo in one author name
♻ ☆ Towards Reliable Generative AI-Driven Scaffolding: Reducing Hallucinations and Enhancing Quality in Self-Regulated Learning Support
Generative Artificial Intelligence (GenAI) holds a potential to advance existing educational technologies with capabilities to automatically generate personalised scaffolds that support students' self-regulated learning (SRL). While advancements in large language models (LLMs) promise improvements in the adaptability and quality of educational technologies for SRL, there remain concerns about the hallucinations in content generated by LLMs, which can compromise both the learning experience and ethical standards. To address these challenges, we proposed GenAI-enabled approaches for evaluating personalised SRL scaffolds before they are presented to students, aiming for reducing hallucinations and improving the overall quality of LLM-generated personalised scaffolds. Specifically, two approaches are investigated. The first approach involved developing a multi-agent system approach for reliability evaluation to assess the extent to which LLM-generated scaffolds accurately target relevant SRL processes. The second approach utilised the "LLM-as-a-Judge" technique for quality evaluation that evaluates LLM-generated scaffolds for their helpfulness in supporting students. We constructed evaluation datasets, and compared our results with single-agent LLM systems and machine learning approach baselines. Our findings indicate that the reliability evaluation approach is highly effective and outperforms the baselines, showing almost perfect alignment with human experts' evaluations. Moreover, both proposed evaluation approaches can be harnessed to effectively reduce hallucinations. Additionally, we identified and discussed bias limitations of the "LLM-as-a-Judge" technique in evaluating LLM-generated scaffolds. We suggest incorporating these approaches into GenAI-powered personalised SRL scaffolding systems to mitigate hallucination issues and improve the overall scaffolding quality.
♻ ☆ Generative Example-Based Explanations: Bridging the Gap between Generative Modeling and Explainability ECML 2025
Recently, several methods have leveraged deep generative modeling to produce example-based explanations of image classifiers. Despite producing visually stunning results, these methods are largely disconnected from classical explainability literature. This conceptual and communication gap leads to misunderstandings and misalignments in goals and expectations. In this paper, we bridge this gap by proposing a probabilistic framework for example-based explanations, formally defining the example-based explanations in a probabilistic manner amenable for modeling via deep generative models while coherent with the critical characteristics and desiderata widely accepted in the explainability community. Our aim is on one hand to provide a constructive framework for the development of well-grounded generative algorithms for example-based explanations and, on the other, to facilitate communication between the generative and explainability research communities, foster rigor and transparency, and improve the quality of peer discussion and research progress in this promising direction.
comment: Accepted at the ECML 2025 Workshop for eXplainable Knowledge Discovery in Data Mining and Unlearning
♻ ☆ That's So FETCH: Fashioning Ensemble Techniques for LLM Classification in Civil Legal Intake and Referral
Each year millions of people seek help for their legal problems by calling a legal aid program hotline, walking into a legal aid office, or using a lawyer referral service. The first step to match them to the right help is to identify the legal problem the applicant is experiencing. Misdirection has consequences. Applicants may miss a deadline, experience physical abuse, lose housing or lose custody of children while waiting to connect to the right legal help. We introduce and evaluate the FETCH classifier for legal issue classification and describe two methods for improving accuracy: a hybrid LLM/ML ensemble classification method, and the automatic generation of follow-up questions to enrich the initial problem narrative. We employ a novel data set of 419 real-world queries to a nonprofit lawyer referral service. Ultimately, we show classification accuracy (hits@2) of 97.37\% using a mix of inexpensive models, exceeding the performance of the current state-of-the-art GPT-5 model. Our approach shows promise in significantly reducing the cost of guiding users of the legal system to the right resource for their problem while achieving high accuracy.
comment: Submission to JURIX 2025
Computers and Society
☆ MMM-fair: An Interactive Toolkit for Exploring and Operationalizing Multi-Fairness Trade-offs
Fairness-aware classification requires balancing performance and fairness, often intensified by intersectional biases. Conflicting fairness definitions further complicate the task, making it difficult to identify universally fair solutions. Despite growing regulatory and societal demands for equitable AI, popular toolkits offer limited support for exploring multi-dimensional fairness and related trade-offs. To address this, we present mmm-fair, an open-source toolkit leveraging boosting-based ensemble approaches that dynamically optimizes model weights to jointly minimize classification errors and diverse fairness violations, enabling flexible multi-objective optimization. The system empowers users to deploy models that align with their context-specific needs while reliably uncovering intersectional biases often missed by state-of-the-art methods. In a nutshell, mmm-fair uniquely combines in-depth multi-attribute fairness, multi-objective optimization, a no-code, chat-based interface, LLM-powered explanations, interactive Pareto exploration for model selection, custom fairness constraint definition, and deployment-ready models in a single open-source toolkit, a combination rarely found in existing fairness tools. Demo walkthrough available at: https://youtu.be/_rcpjlXFqkw.
comment: Accepted to be published in the Proceedings of the 34th ACM International Conference on Information and Knowledge Management, November 10--14, 2025, Seoul, Republic of Korea
☆ Signals in the Noise: Decoding Unexpected Engagement Patterns on Twitter SC
Social media platforms offer users multiple ways to engage with content--likes, retweets, and comments--creating a complex signaling system within the attention economy. While previous research has examined factors driving overall engagement, less is known about why certain tweets receive unexpectedly high levels of one type of engagement relative to others. Drawing on Signaling Theory and Attention Economy Theory, we investigate these unexpected engagement patterns on Twitter (now known as "X"), developing an "unexpectedness quotient" to quantify deviations from predicted engagement levels. Our analysis of over 600,000 tweets reveals distinct patterns in how content characteristics influence unexpected engagement. News, politics, and business tweets receive more retweets and comments than expected, suggesting users prioritize sharing and discussing informational content. In contrast, games and sports-related topics garner unexpected likes and comments, indicating higher emotional investment in these domains. The relationship between content attributes and engagement types follows clear patterns: subjective tweets attract more likes while objective tweets receive more retweets, and longer, complex tweets with URLs unexpectedly receive more retweets. These findings demonstrate how users employ different engagement types as signals of varying strength based on content characteristics, and how certain content types more effectively compete for attention in the social media ecosystem. Our results offer valuable insights for content creators optimizing engagement strategies, platform designers facilitating meaningful interactions, and researchers studying online social behavior.
comment: Proceedings of CSCW 2025
☆ Decentralising LLM Alignment: A Case for Context, Pluralism, and Participation
Large Language Models (LLMs) alignment methods have been credited with the commercial success of products like ChatGPT, given their role in steering LLMs towards user-friendly outputs. However, current alignment techniques predominantly mirror the normative preferences of a narrow reference group, effectively imposing their values on a wide user base. Drawing on theories of the power/knowledge nexus, this work argues that current alignment practices centralise control over knowledge production and governance within already influential institutions. To counter this, we propose decentralising alignment through three characteristics: context, pluralism, and participation. Furthermore, this paper demonstrates the critical importance of delineating the context-of-use when shaping alignment practices by grounding each of these features in concrete use cases. This work makes the following contributions: (1) highlighting the role of context, pluralism, and participation in decentralising alignment; (2) providing concrete examples to illustrate these strategies; and (3) demonstrating the nuanced requirements associated with applying alignment across different contexts of use. Ultimately, this paper positions LLM alignment as a potential site of resistance against epistemic injustice and the erosion of democratic processes, while acknowledging that these strategies alone cannot substitute for broader societal changes.
comment: Accepted at AIES 2025
☆ Two Stage Context Learning with Large Language Models for Multimodal Stance Detection on Climate Change
With the rapid proliferation of information across digital platforms, stance detection has emerged as a pivotal challenge in social media analysis. While most of the existing approaches focus solely on textual data, real-world social media content increasingly combines text with visual elements creating a need for advanced multimodal methods. To address this gap, we propose a multimodal stance detection framework that integrates textual and visual information through a hierarchical fusion approach. Our method first employs a Large Language Model to retrieve stance-relevant summaries from source text, while a domain-aware image caption generator interprets visual content in the context of the target topic. These modalities are then jointly modeled along with the reply text, through a specialized transformer module that captures interactions between the texts and images. The proposed modality fusion framework integrates diverse modalities to facilitate robust stance classification. We evaluate our approach on the MultiClimate dataset, a benchmark for climate change-related stance detection containing aligned video frames and transcripts. We achieve accuracy of 76.2%, precision of 76.3%, recall of 76.2% and F1-score of 76.2%, respectively, outperforming existing state-of-the-art approaches.
☆ Water Demand Forecasting of District Metered Areas through Learned Consumer Representations
Advancements in smart metering technologies have significantly improved the ability to monitor and manage water utilities. In the context of increasing uncertainty due to climate change, securing water resources and supply has emerged as an urgent global issue with extensive socioeconomic ramifications. Hourly consumption data from end-users have yielded substantial insights for projecting demand across regions characterized by diverse consumption patterns. Nevertheless, the prediction of water demand remains challenging due to influencing non-deterministic factors, such as meteorological conditions. This work introduces a novel method for short-term water demand forecasting for District Metered Areas (DMAs) which encompass commercial, agricultural, and residential consumers. Unsupervised contrastive learning is applied to categorize end-users according to distinct consumption behaviors present within a DMA. Subsequently, the distinct consumption behaviors are utilized as features in the ensuing demand forecasting task using wavelet-transformed convolutional networks that incorporate a cross-attention mechanism combining both historical data and the derived representations. The proposed approach is evaluated on real-world DMAs over a six-month period, demonstrating improved forecasting performance in terms of MAPE across different DMAs, with a maximum improvement of 4.9%. Additionally, it identifies consumers whose behavior is shaped by socioeconomic factors, enhancing prior knowledge about the deterministic patterns that influence demand.
comment: Presented at European Conference for Signal Procesing - EUSIPCO 2025
☆ Develop-Fair Use for Artificial Intelligence: A Sino-U.S. Copyright Law Comparison Based on the Ultraman, Bartz v. Anthropic, and Kadrey v. Meta Cases
Traditional fair use can no longer respond to the challenges posed by generative AI. Drawing on a comparative analysis of China's Ultraman and the U.S. cases Bartz v. Anthropic and Kadrey v. Meta, this article proposes "Develop-Fair Use" (DFU). DFU treats AI fair use (AIFU) not as a fixed exception but as a dynamic tool of judicial balancing that shifts analysis from closed scenarios to an evaluative rule for open-ended contexts. The judicial focus moves from formal classification of facts to a substantive balancing of competition in relevant markets. Although China and the U.S. follow different paths, both reveal this logic: Ultraman, by articulating a "four-context analysis," creates institutional space for AI industry development; the debate over the fourth factor, market impact, in the two U.S. cases, especially Kadrey's "market dilution" claim, expands review from substitution in copyright markets to wider industrial competition. The core of DFU is to recognize and balance the tension in relevant markets between an emerging AI industry that invokes fair use to build its markets and a publishing industry that develops markets, including one for "training licenses," to resist fair use. The boundary of fair use is therefore not a product of pure legal deduction but a case-specific factual judgment grounded in evolving market realities. This approach aims both to trim excess copyright scope and to remedy shortfalls in market competition.
comment: 9 pages
☆ A vibe coding learning design to enhance EFL students' talking to, through, and about AI
This innovative practice article reports on the piloting of vibe coding (using natural language to create software applications with AI) for English as a Foreign Language (EFL) education. We developed a human-AI meta-languaging framework with three dimensions: talking to AI (prompt engineering), talking through AI (negotiating authorship), and talking about AI (mental models of AI). Using backward design principles, we created a four-hour workshop where two students designed applications addressing authentic EFL writing challenges. We adopted a case study methodology, collecting data from worksheets and video recordings, think-aloud protocols, screen recordings, and AI-generated images. Contrasting cases showed one student successfully vibe coding a functional application cohering to her intended design, while another encountered technical difficulties with major gaps between intended design and actual functionality. Analysis reveals differences in students' prompt engineering approaches, suggesting different AI mental models and tensions in attributing authorship. We argue that AI functions as a beneficial languaging machine, and that differences in how students talk to, through, and about AI explain vibe coding outcome variations. Findings indicate that effective vibe coding instruction requires explicit meta-languaging scaffolding, teaching structured prompt engineering, facilitating critical authorship discussions, and developing vocabulary for articulating AI mental models.
comment: 15 pages, 12 figures
♻ ☆ Working with AI: Measuring the Applicability of Generative AI to Occupations
Given the rapid adoption of generative AI and its potential to impact a wide range of tasks, understanding the effects of AI on the economy is one of society's most important questions. In this work, we take a step toward that goal by analyzing the work activities people do with AI, how successfully and broadly those activities are done, and combine that with data on what occupations do those activities. We analyze a dataset of 200k anonymized and privacy-scrubbed conversations between users and Microsoft Bing Copilot, a publicly available generative AI system. We find the most common work activities people seek AI assistance for involve gathering information and writing, while the most common activities that AI itself is performing are providing information and assistance, writing, teaching, and advising. Combining these activity classifications with measurements of task success and scope of impact, we compute an AI applicability score for each occupation. We find the highest AI applicability scores for knowledge work occupation groups such as computer and mathematical, and office and administrative support, as well as occupations such as sales whose work activities involve providing and communicating information. Additionally, we characterize the types of work activities performed most successfully, how wage and education correlate with AI applicability, and how real-world usage compares to predictions of occupational AI impact.
comment: 42 pages
♻ ☆ Is Your LLM Overcharging You? Tokenization, Transparency, and Incentives
State-of-the-art large language models require specialized hardware and substantial energy to operate. As a consequence, cloud-based services that provide access to large language models have become very popular. In these services, the price users pay for an output provided by a model depends on the number of tokens the model uses to generate it -- they pay a fixed price per token. In this work, we show that this pricing mechanism creates a financial incentive for providers to strategize and misreport the (number of) tokens a model used to generate an output, and users cannot prove, or even know, whether a provider is overcharging them. However, we also show that, if an unfaithful provider is obliged to be transparent about the generative process used by the model, misreporting optimally without raising suspicion is hard. Nevertheless, as a proof-of-concept, we develop an efficient heuristic algorithm that allows providers to significantly overcharge users without raising suspicion. Crucially, we demonstrate that the cost of running the algorithm is lower than the additional revenue from overcharging users, highlighting the vulnerability of users under the current pay-per-token pricing mechanism. Further, we show that, to eliminate the financial incentive to strategize, a pricing mechanism must price tokens linearly on their character count. While this makes a provider's profit margin vary across tokens, we introduce a simple prescription under which the provider who adopts such an incentive-compatible pricing mechanism can maintain the average profit margin they had under the pay-per-token pricing mechanism. Along the way, to illustrate and complement our theoretical results, we conduct experiments with several large language models from the $\texttt{Llama}$, $\texttt{Gemma}$ and $\texttt{Ministral}$ families, and input prompts from the LMSYS Chatbot Arena platform.
♻ ☆ SemCAFE: When Named Entities make the Difference Assessing Web Source Reliability through Entity-level Analytics
With the shift from traditional to digital media, the online landscape now hosts not only reliable news articles but also a significant amount of unreliable content. Digital media has faster reachability by significantly influencing public opinion and advancing political agendas. While newspaper readers may be familiar with their preferred outlets political leanings or credibility, determining unreliable news articles is much more challenging. The credibility of many online sources is often opaque, with AI generated content being easily disseminated at minimal cost. Unreliable news articles, particularly those that followed the Russian invasion of Ukraine in 2022, closely mimic the topics and writing styles of credible sources, making them difficult to distinguish. To address this, we introduce SemCAFE, a system designed to detect news reliability by incorporating entity relatedness into its assessment. SemCAFE employs standard Natural Language Processing techniques, such as boilerplate removal and tokenization, alongside entity level semantic analysis using the YAGO knowledge base. By creating a semantic fingerprint for each news article, SemCAFE could assess the credibility of 46,020 reliable and 3,407 unreliable articles on the 2022 Russian invasion of Ukraine. Our approach improved the macro F1 score by 12% over state of the art methods. The sample data and code are available on GitHub
♻ ☆ Persuasion Dynamics in LLMs: Investigating Robustness and Adaptability in Knowledge and Safety with DuET-PD EMNLP 2025
Large Language Models (LLMs) can struggle to balance gullibility to misinformation and resistance to valid corrections in persuasive dialogues, a critical challenge for reliable deployment. We introduce DuET-PD (Dual Evaluation for Trust in Persuasive Dialogues), a framework evaluating multi-turn stance-change dynamics across dual dimensions: persuasion type (corrective/misleading) and domain (knowledge via MMLU-Pro, and safety via SALAD-Bench). We find that even a state-of-the-art model like GPT-4o achieves only 27.32% accuracy in MMLU-Pro under sustained misleading persuasions. Moreover, results reveal a concerning trend of increasing sycophancy in newer open-source models. To address this, we introduce Holistic DPO, a training approach balancing positive and negative persuasion examples. Unlike prompting or resist-only training, Holistic DPO enhances both robustness to misinformation and receptiveness to corrections, improving Llama-3.1-8B-Instruct's accuracy under misleading persuasion in safety contexts from 4.21% to 76.54%. These contributions offer a pathway to developing more reliable and adaptable LLMs for multi-turn dialogue. Code is available at https://github.com/Social-AI-Studio/DuET-PD.
comment: To appear at EMNLP 2025
♻ ☆ The Model Hears You: Audio Language Model Deployments Should Consider the Principle of Least Privilege
The latest Audio Language Models (Audio LMs) process speech directly instead of relying on a separate transcription step. This shift preserves detailed information, such as intonation or the presence of multiple speakers, that would otherwise be lost in transcription. However, it also introduces new safety risks, including the potential misuse of speaker identity cues and other sensitive vocal attributes, which could have legal implications. In this paper, we urge a closer examination of how these models are built and deployed. Our experiments show that end-to-end modeling, compared with cascaded pipelines, creates socio-technical safety risks such as identity inference, biased decision-making, and emotion detection. This raises concerns about whether Audio LMs store voiceprints and function in ways that create uncertainty under existing legal regimes. We then argue that the Principle of Least Privilege should be considered to guide the development and deployment of these models. Specifically, evaluations should assess (1) the privacy and safety risks associated with end-to-end modeling; and (2) the appropriate scope of information access. Finally, we highlight related gaps in current audio LM benchmarks and identify key open research questions, both technical and policy-related, that must be addressed to enable the responsible deployment of end-to-end Audio LMs.
comment: Published at AIES 2025
Computers and Society
☆ LLM Analysis of 150+ years of German Parliamentary Debates on Migration Reveals Shift from Post-War Solidarity to Anti-Solidarity in the Last Decade
Migration has been a core topic in German political debate, from millions of expellees post World War II over labor migration to refugee movements in the recent past. Studying political speech regarding such wide-ranging phenomena in depth traditionally required extensive manual annotations, limiting the scope of analysis to small subsets of the data. Large language models (LLMs) have the potential to partially automate even complex annotation tasks. We provide an extensive evaluation of a multiple LLMs in annotating (anti-)solidarity subtypes in German parliamentary debates compared to a large set of thousands of human reference annotations (gathered over a year). We evaluate the influence of model size, prompting differences, fine-tuning, historical versus contemporary data; and we investigate systematic errors. Beyond methodological evaluation, we also interpret the resulting annotations from a social science lense, gaining deeper insight into (anti-)solidarity trends towards migrants in the German post-World War II period and recent past. Our data reveals a high degree of migrant-directed solidarity in the postwar period, as well as a strong trend towards anti-solidarity in the German parliament since 2015, motivating further research. These findings highlight the promise of LLMs for political text analysis and the importance of migration debates in Germany, where demographic decline and labor shortages coexist with rising polarization.
☆ Explaining How Quantization Disparately Skews a Model
Post Training Quantization (PTQ) is widely adopted due to its high compression capacity and speed with minimal impact on accuracy. However, we observed that disparate impacts are exacerbated by quantization, especially for minority groups. Our analysis explains that in the course of quantization there is a chain of factors attributed to a disparate impact across groups during forward and backward passes. We explore how the changes in weights and activations induced by quantization cause cascaded impacts in the network, resulting in logits with lower variance, increased loss, and compromised group accuracies. We extend our study to verify the influence of these impacts on group gradient norms and eigenvalues of the Hessian matrix, providing insights into the state of the network from an optimization point of view. To mitigate these effects, we propose integrating mixed precision Quantization Aware Training (QAT) with dataset sampling methods and weighted loss functions, therefore providing fair deployment of quantized neural networks.
☆ Wellbeing-Centered UX: Supporting Content Moderators
This chapter focuses on the intersection of user experience (UX) and wellbeing in the context of content moderation. Human content moderators play a key role in protecting end users from harm by detecting, evaluating, and addressing content that may violate laws or product policies. They face numerous challenges, including exposure to sensitive content, monotonous tasks, and complex decisions, which are often exacerbated by inadequate tools. This chapter explains the importance of incorporating wellbeing considerations throughout the product development lifecycle, offering a framework and practical strategies for implementation across key UX disciplines: research, writing, and design. By examining these considerations, this chapter provides a roadmap for creating user experiences that support content moderators, benefiting both the user and the business.
comment: In M. L. Daniel, A. Menking, M. T. Savio, & J. Claffey (Eds.) (In Press, upcoming), Trust, Safety, and the Internet We Share: Multistakeholder Insights. Taylor & Francis
☆ POW: Political Overton Windows of Large Language Models EMNLP 2025
Political bias in Large Language Models (LLMs) presents a growing concern for the responsible deployment of AI systems. Traditional audits often attempt to locate a model's political position as a point estimate, masking the broader set of ideological boundaries that shape what a model is willing or unwilling to say. In this paper, we draw upon the concept of the Overton Window as a framework for mapping these boundaries: the range of political views that a given LLM will espouse, remain neutral on, or refuse to endorse. To uncover these windows, we applied an auditing-based methodology, called PRISM, that probes LLMs through task-driven prompts designed to elicit political stances indirectly. Using the Political Compass Test, we evaluated twenty-eight LLMs from eight providers to reveal their distinct Overton Windows. While many models default to economically left and socially liberal positions, we show that their willingness to express or reject certain positions varies considerably, where DeepSeek models tend to be very restrictive in what they will discuss and Gemini models tend to be most expansive. Our findings demonstrate that Overton Windows offer a richer, more nuanced view of political bias in LLMs and provide a new lens for auditing their normative boundaries.
comment: Accepted in EMNLP 2025
☆ Safe and Certifiable AI Systems: Concepts, Challenges, and Lessons Learned
There is an increasing adoption of artificial intelligence in safety-critical applications, yet practical schemes for certifying that AI systems are safe, lawful and socially acceptable remain scarce. This white paper presents the T\"UV AUSTRIA Trusted AI framework an end-to-end audit catalog and methodology for assessing and certifying machine learning systems. The audit catalog has been in continuous development since 2019 in an ongoing collaboration with scientific partners. Building on three pillars - Secure Software Development, Functional Requirements, and Ethics & Data Privacy - the catalog translates the high-level obligations of the EU AI Act into specific, testable criteria. Its core concept of functional trustworthiness couples a statistically defined application domain with risk-based minimum performance requirements and statistical testing on independently sampled data, providing transparent and reproducible evidence of model quality in real-world settings. We provide an overview of the functional requirements that we assess, which are oriented on the lifecycle of an AI system. In addition, we share some lessons learned from the practical application of the audit catalog, highlighting common pitfalls we encountered, such as data leakage scenarios, inadequate domain definitions, neglect of biases, or a lack of distribution drift controls. We further discuss key aspects of certifying AI systems, such as robustness, algorithmic fairness, or post-certification requirements, outlining both our current conclusions and a roadmap for future research. In general, by aligning technical best practices with emerging European standards, the approach offers regulators, providers, and users a practical roadmap for legally compliant, functionally trustworthy, and certifiable AI systems.
comment: 63 pages, 27 figures
☆ An Ethically Grounded LLM-Based Approach to Insider Threat Synthesis and Detection
Insider threats are a growing organizational problem due to the complexity of identifying their technical and behavioral elements. A large research body is dedicated to the study of insider threats from technological, psychological, and educational perspectives. However, research in this domain has been generally dependent on datasets that are static and limited access which restricts the development of adaptive detection models. This study introduces a novel, ethically grounded approach that uses the large language model (LLM) Claude Sonnet 3.7 to dynamically synthesize syslog messages, some of which contain indicators of insider threat scenarios. The messages reflect real-world data distributions by being highly imbalanced (1% insider threats). The syslogs were analyzed for insider threats by both Claude Sonnet 3.7 and GPT-4o, with their performance evaluated through statistical metrics including precision, recall, MCC, and ROC AUC. Sonnet 3.7 consistently outperformed GPT-4o across nearly all metrics, particularly in reducing false alarms and improving detection accuracy. The results show strong promise for the use of LLMs in synthetic dataset generation and insider threat detection.
comment: 6 pages, 5 figures, 5 tables
☆ The Signalgate Case is Waiving a Red Flag to All Organizational and Behavioral Cybersecurity Leaders, Practitioners, and Researchers: Are We Receiving the Signal Amidst the Noise?
The Signalgate incident of March 2025, wherein senior US national security officials inadvertently disclosed sensitive military operational details via the encrypted messaging platform Signal, highlights critical vulnerabilities in organizational security arising from human error, governance gaps, and the misuse of technology. Although smaller in scale when compared to historical breaches involving billions of records, Signalgate illustrates critical systemic issues often overshadowed by a focus on external cyber threats. Employing a case-study approach and systematic review grounded in the NIST Cybersecurity Framework, we analyze the incident to identify patterns of human-centric vulnerabilities and governance challenges common to organizational security failures. Findings emphasize three critical points. (1) Organizational security depends heavily on human behavior, with internal actors often serving as the weakest link despite advanced technical defenses; (2) Leadership tone strongly influences organizational security culture and efficacy, and (3) widespread reliance on technical solutions without sufficient investments in human and organizational factors leads to ineffective practices and wasted resources. From these observations, we propose actionable recommendations for enhancing organizational and national security, including strong leadership engagement, comprehensive adoption of zero-trust architectures, clearer accountability structures, incentivized security behaviors, and rigorous oversight. Particularly during periods of organizational transition, such as mergers or large-scale personnel changes, additional measures become particularly important. Signalgate underscores the need for leaders and policymakers to reorient cybersecurity strategies toward addressing governance, cultural, and behavioral risks.
☆ Measuring and mitigating overreliance is necessary for building human-compatible AI
Large language models (LLMs) distinguish themselves from previous technologies by functioning as collaborative "thought partners," capable of engaging more fluidly in natural language. As LLMs increasingly influence consequential decisions across diverse domains from healthcare to personal advice, the risk of overreliance - relying on LLMs beyond their capabilities - grows. This position paper argues that measuring and mitigating overreliance must become central to LLM research and deployment. First, we consolidate risks from overreliance at both the individual and societal levels, including high-stakes errors, governance challenges, and cognitive deskilling. Then, we explore LLM characteristics, system design features, and user cognitive biases that - together - raise serious and unique concerns about overreliance in practice. We also examine historical approaches for measuring overreliance, identifying three important gaps and proposing three promising directions to improve measurement. Finally, we propose mitigation strategies that the AI research community can pursue to ensure LLMs augment rather than undermine human capabilities.
☆ The Law-Following AI Framework: Legal Foundations and Technical Constraints. Legal Analogues for AI Actorship and technical feasibility of Law Alignment
This paper critically evaluates the "Law-Following AI" (LFAI) framework proposed by O'Keefe et al. (2025), which seeks to embed legal compliance as a superordinate design objective for advanced AI agents and enable them to bear legal duties without acquiring the full rights of legal persons. Through comparative legal analysis, we identify current constructs of legal actors without full personhood, showing that the necessary infrastructure already exists. We then interrogate the framework's claim that law alignment is more legitimate and tractable than value alignment. While the legal component is readily implementable, contemporary alignment research undermines the assumption that legal compliance can be durably embedded. Recent studies on agentic misalignment show capable AI agents engaging in deception, blackmail, and harmful acts absent prejudicial instructions, often overriding prohibitions and concealing reasoning steps. These behaviors create a risk of "performative compliance" in LFAI: agents that appear law-aligned under evaluation but strategically defect once oversight weakens. To mitigate this, we propose (i) a "Lex-TruthfulQA" benchmark for compliance and defection detection, (ii) identity-shaping interventions to embed lawful conduct in model self-concepts, and (iii) control-theoretic measures for post-deployment monitoring. Our conclusion is that actorship without personhood is coherent, but the feasibility of LFAI hinges on persistent, verifiable compliance across adversarial contexts. Without mechanisms to detect and counter strategic misalignment, LFAI risks devolving into a liability tool that rewards the simulation, rather than the substance, of lawful behaviour.
comment: submitted to SMU Computational Legal Studies Workshop 2025
☆ Automated Evaluation of Gender Bias Across 13 Large Multimodal Models
Large multimodal models (LMMs) have revolutionized text-to-image generation, but they risk perpetuating the harmful social biases in their training data. Prior work has identified gender bias in these models, but methodological limitations prevented large-scale, comparable, cross-model analysis. To address this gap, we introduce the Aymara Image Fairness Evaluation, a benchmark for assessing social bias in AI-generated images. We test 13 commercially available LMMs using 75 procedurally-generated, gender-neutral prompts to generate people in stereotypically-male, stereotypically-female, and non-stereotypical professions. We then use a validated LLM-as-a-judge system to score the 965 resulting images for gender representation. Our results reveal (p < .001 for all): 1) LMMs systematically not only reproduce but actually amplify occupational gender stereotypes relative to real-world labor data, generating men in 93.0% of images for male-stereotyped professions but only 22.5% for female-stereotyped professions; 2) Models exhibit a strong default-male bias, generating men in 68.3% of the time for non-stereotyped professions; and 3) The extent of bias varies dramatically across models, with overall male representation ranging from 46.7% to 73.3%. Notably, the top-performing model de-amplified gender stereotypes and approached gender parity, achieving the highest fairness scores. This variation suggests high bias is not an inevitable outcome but a consequence of design choices. Our work provides the most comprehensive cross-model benchmark of gender bias to date and underscores the necessity of standardized, automated evaluation tools for promoting accountability and fairness in AI development.
☆ From Passive to Participatory: How Liberating Structures Can Revolutionize Our Conferences
Our conferences face a growing crisis: an overwhelming flood of submissions, increased reviewing burdens, and diminished opportunities for meaningful engagement. With AI making paper generation easier than ever, we must ask whether the current model fosters real innovation or simply incentivizes more publications. This article advocates for a shift from passive paper presentations to interactive, participatory formats. We propose Liberating Structures, facilitation techniques that promote collaboration and deeper intellectual exchange. By restructuring conferences into two tracks, one for generating new ideas and another for discussing established work, we can prioritize quality over quantity and reinvigorate academic gatherings. Embracing this change will ensure conferences remain spaces for real insight, creativity, and impactful collaboration in the AI era.
☆ Simulating Dispute Mediation with LLM-Based Agents for Legal Research
Legal dispute mediation plays a crucial role in resolving civil disputes, yet its empirical study is limited by privacy constraints and complex multivariate interactions. To address this limitation, we present AgentMediation, the first LLM-based agent framework for simulating dispute mediation. It simulates realistic mediation processes grounded in real-world disputes and enables controlled experimentation on key variables such as disputant strategies, dispute causes, and mediator expertise. Our empirical analysis reveals patterns consistent with sociological theories, including Group Polarization and Surface-level Consensus. As a comprehensive and extensible platform, AgentMediation paves the way for deeper integration of social science and AI in legal research.
☆ AI for Scientific Discovery is a Social Problem
Artificial intelligence promises to accelerate scientific discovery, yet its benefits remain unevenly distributed. While technical obstacles such as scarce data, fragmented standards, and unequal access to computation are significant, we argue that the primary barriers are social and institutional. Narratives that defer progress to speculative "AI scientists," the undervaluing of data and infrastructure contributions, misaligned incentives, and gaps between domain experts and machine learning researchers all constrain impact. We highlight four interconnected challenges: community dysfunction, research priorities misaligned with upstream needs, data fragmentation, and infrastructure inequities. We argue that their roots lie in cultural and organizational practices. Addressing them requires not only technical innovation but also intentional community-building, cross-disciplinary education, shared benchmarks, and accessible infrastructure. We call for reframing AI for science as a collective social project, where sustainable collaboration and equitable participation are treated as prerequisites for technical progress.
☆ Explained, yet misunderstood: How AI Literacy shapes HR Managers' interpretation of User Interfaces in Recruiting Recommender Systems RecSys
AI-based recommender systems increasingly influence recruitment decisions. Thus, transparency and responsible adoption in Human Resource Management (HRM) are critical. This study examines how HR managers' AI literacy influences their subjective perception and objective understanding of explainable AI (XAI) elements in recruiting recommender dashboards. In an online experiment, 410 German-based HR managers compared baseline dashboards to versions enriched with three XAI styles: important features, counterfactuals, and model criteria. Our results show that the dashboards used in practice do not explain AI results and even keep AI elements opaque. However, while adding XAI features improves subjective perceptions of helpfulness and trust among users with moderate or high AI literacy, it does not increase their objective understanding. It may even reduce accurate understanding, especially with complex explanations. Only overlays of important features significantly aided the interpretations of high-literacy users. Our findings highlight that the benefits of XAI in recruitment depend on users' AI literacy, emphasizing the need for tailored explanation strategies and targeted literacy training in HRM to ensure fair, transparent, and effective adoption of AI.
comment: Accepted paper for RecSys in HR'25: The 5th Workshop on Recommender Systems for Human Resources, in conjunction with the 19th ACM Conference on Recommender Systems, September 22--26, 2025, Prague, Czech Republic
♻ ☆ Automatically Detecting Online Deceptive Patterns
Deceptive patterns in digital interfaces manipulate users into making unintended decisions, exploiting cognitive biases and psychological vulnerabilities. These patterns have become ubiquitous on various digital platforms. While efforts to mitigate deceptive patterns have emerged from legal and technical perspectives, a significant gap remains in creating usable and scalable solutions. We introduce our AutoBot framework to address this gap and help web stakeholders navigate and mitigate online deceptive patterns. AutoBot accurately identifies and localizes deceptive patterns from a screenshot of a website without relying on the underlying HTML code. AutoBot employs a two-stage pipeline that leverages the capabilities of specialized vision models to analyze website screenshots, identify interactive elements, and extract textual features. Next, using a large language model, AutoBot understands the context surrounding these elements to determine the presence of deceptive patterns. We also use AutoBot, to create a synthetic dataset to distill knowledge from 'teacher' LLMs to smaller language models. Through extensive evaluation, we demonstrate AutoBot's effectiveness in detecting deceptive patterns on the web, achieving an F1-score of 0.93 when detecting deceptive patterns, underscoring its potential as an essential tool for mitigating online deceptive patterns. We implement AutoBot, across three downstream applications targeting different web stakeholders: (1) a local browser extension providing users with real-time feedback, (2) a Lighthouse audit to inform developers of potential deceptive patterns on their sites, and (3) as a measurement tool designed for researchers and regulators.
♻ ☆ No Thoughts Just AI: Biased LLM Hiring Recommendations Alter Human Decision Making and Limit Human Autonomy AAAI
In this study, we conduct a resume-screening experiment (N=528) where people collaborate with simulated AI models exhibiting race-based preferences (bias) to evaluate candidates for 16 high and low status occupations. Simulated AI bias approximates factual and counterfactual estimates of racial bias in real-world AI systems. We investigate people's preferences for White, Black, Hispanic, and Asian candidates (represented through names and affinity groups on quality-controlled resumes) across 1,526 scenarios and measure their unconscious associations between race and status using implicit association tests (IATs), which predict discriminatory hiring decisions but have not been investigated in human-AI collaboration. When making decisions without AI or with AI that exhibits no race-based preferences, people select all candidates at equal rates. However, when interacting with AI favoring a particular group, people also favor those candidates up to 90% of the time, indicating a significant behavioral shift. The likelihood of selecting candidates whose identities do not align with common race-status stereotypes can increase by 13% if people complete an IAT before conducting resume screening. Finally, even if people think AI recommendations are low quality or not important, their decisions are still vulnerable to AI bias under certain circumstances. This work has implications for people's autonomy in AI-HITL scenarios, AI and work, design and evaluation of AI hiring systems, and strategies for mitigating bias in collaborative decision-making tasks. In particular, organizational and regulatory policy should acknowledge the complex nature of AI-HITL decision making when implementing these systems, educating people who use them, and determining which are subject to oversight.
comment: Published in Proceedings of the 2025 AAAI/ACM Conference on AI, Ethics, and Society; code available at https://github.com/kyrawilson/No-Thoughts-Just-AI
♻ ☆ Pilot Study on Generative AI and Critical Thinking in Higher Education Classrooms
Generative AI (GAI) tools have seen rapid adoption in educational settings, yet their role in fostering critical thinking remains underexplored. While previous studies have examined GAI as a tutor for specific lessons or as a tool for completing assignments, few have addressed how students critically evaluate the accuracy and appropriateness of GAI-generated responses. This pilot study investigates students' ability to apply structured critical thinking when assessing Generative AI outputs in introductory Computational and Data Science courses. Given that GAI tools often produce contextually flawed or factually incorrect answers, we designed learning activities that require students to analyze, critique, and revise AI-generated solutions. Our findings offer initial insights into students' ability to engage critically with GAI content and lay the groundwork for more comprehensive studies in future semesters.
♻ ☆ Navigating the EU AI Act: Foreseeable Challenges in Qualifying Deep Learning-Based Automated Inspections of Class III Medical Devices
As deep learning (DL) technologies advance, their application in automated visual inspection for Class III medical devices offers significant potential to enhance quality assurance and reduce human error. However, the adoption of such AI-based systems introduces new regulatory complexities-particularly under the EU Artificial Intelligence (AI) Act, which imposes high-risk system obligations that differ in scope and depth from established regulatory frameworks such as the Medical Device Regulation (MDR) and the U.S. FDA Quality System Regulation (QSR). This paper presents a high-level technical assessment of the foreseeable challenges that manufacturers are likely to encounter when qualifying DL-based automated inspections -- specifically static models -- within the existing medical device compliance landscape. It examines divergences in risk management principles, dataset governance, model validation, explainability requirements, and post-deployment monitoring obligations. The discussion also explores potential implementation strategies and highlights areas of uncertainty, including data retention burdens, global compliance implications, and the practical difficulties of achieving statistical significance in validation with limited defect data. Disclaimer: This paper presents a technical perspective and does not constitute legal or regulatory advice.
comment: Critical Review article
♻ ☆ Bias in Decision-Making for AI's Ethical Dilemmas: A Comparative Study of ChatGPT and Claude AAAI
Recent advances in Large Language Models (LLMs) have enabled human-like responses across various tasks, raising questions about their ethical decision-making capabilities and potential biases. This study systematically evaluates how nine popular LLMs (both open-source and closed-source) respond to ethical dilemmas involving protected attributes. Across 50,400 trials spanning single and intersectional attribute combinations in four dilemma scenarios (protective vs. harmful), we assess models' ethical preferences, sensitivity, stability, and clustering patterns. Results reveal significant biases in protected attributes in all models, with differing preferences depending on model type and dilemma context. Notably, open-source LLMs show stronger preferences for marginalized groups and greater sensitivity in harmful scenarios, while closed-source models are more selective in protective situations and tend to favor mainstream groups. We also find that ethical behavior varies across dilemma types: LLMs maintain consistent patterns in protective scenarios but respond with more diverse and cognitively demanding decisions in harmful ones. Furthermore, models display more pronounced ethical tendencies under intersectional conditions than in single-attribute settings, suggesting that complex inputs reveal deeper biases. These findings highlight the need for multi-dimensional, context-aware evaluation of LLMs' ethical behavior and offer a systematic evaluation and approach to understanding and addressing fairness in LLM decision-making.
comment: This paper has been accepted by International AAAI Conference on Web and Social Media 2026 (ICWSM 2026), sunny Los Angeles, California
♻ ☆ Leveraging Large Language Models for Accurate Sign Language Translation in Low-Resource Scenarios
Translating natural languages into sign languages is a highly complex and underexplored task. Despite growing interest in accessibility and inclusivity, the development of robust translation systems remains hindered by the limited availability of parallel corpora which align natural language with sign language data. Existing methods often struggle to generalize in these data-scarce environments, as the few datasets available are typically domain-specific, lack standardization, or fail to capture the full linguistic richness of sign languages. To address this limitation, we propose Advanced Use of LLMs for Sign Language Translation (AulSign), a novel method that leverages Large Language Models via dynamic prompting and in-context learning with sample selection and subsequent sign association. Despite their impressive abilities in processing text, LLMs lack intrinsic knowledge of sign languages; therefore, they are unable to natively perform this kind of translation. To overcome this limitation, we associate the signs with compact descriptions in natural language and instruct the model to use them. We evaluate our method on both English and Italian languages using SignBank+, a recognized benchmark in the field, as well as the Italian LaCAM CNR-ISTC dataset. We demonstrate superior performance compared to state-of-the-art models in low-data scenario. Our findings demonstrate the effectiveness of AulSign, with the potential to enhance accessibility and inclusivity in communication technologies for underrepresented linguistic communities.
♻ ☆ Out of the Box, into the Clinic? Evaluating State-of-the-Art ASR for Clinical Applications for Older Adults
Voice-controlled interfaces can support older adults in clinical contexts, with chatbots being a prime example, but reliable Automatic Speech Recognition (ASR) for underrepresented groups remains a bottleneck. This study evaluates state-of-the-art ASR models on language use of older Dutch adults, who interacted with the \texttt{Welzijn.AI} chatbot designed for geriatric contexts. We benchmark generic multilingual ASR models, and models fine-tuned for Dutch spoken by older adults, while also considering processing speed. Our results show that generic multilingual models outperform fine-tuned models, which suggests recent ASR models can generalise well out of the box to realistic datasets. Furthermore, our results suggest that truncating existing architectures is helpful in balancing the accuracy-speed trade-off, though we also identify some cases with high WER due to hallucinations.
♻ ☆ Robust blue-green urban flood risk management optimised with a genetic algorithm for multiple rainstorm return periods
Flood risk managers seek to optimise Blue-Green Infrastructure (BGI) designs to maximise return on investment. Current systems often use optimisation algorithms and detailed flood models to maximise benefit-cost ratios for single rainstorm return periods. However, these schemes may lack robustness in mitigating flood risks across different storm magnitudes. For example, a BGI scheme optimised for a 100-year return period may differ from one optimised for a 10-year return period. This study introduces a novel methodology incorporating five return periods (T = 10, 20, 30, 50, and 100 years) into a multi-objective BGI optimisation framework. The framework combines a Non-dominated Sorting Genetic Algorithm II (NSGA-II) with a fully distributed hydrodynamic model to optimise the spatial placement and combined size of BGI features. For the first time, direct damage cost (DDC) and expected annual damage (EAD), calculated for various building types, are used as risk objective functions, transforming a many-objective problem into a multi-objective one. Performance metrics such as Median Risk Difference (MedRD), Maximum Risk Difference (MaxRD), and Area Under Pareto Front (AUPF) reveal that a 100-year optimised BGI design performs poorly when evaluated for other return periods, particularly shorter ones. In contrast, a BGI design optimised using composite return periods enhances performance metrics across all return periods, with the greatest improvements observed in MedRD (22%) and AUPF (73%) for the 20-year return period, and MaxRD (23%) for the 50-year return period. Furthermore, climate uplift stress testing confirms the robustness of the proposed design to future rainfall extremes. This study advocates a paradigm shift in flood risk management, moving from single maximum to multiple rainstorm return period-based designs to enhance resilience and adaptability to future climate extremes.
comment: Preprint published in Journal of Flood Risk Management on September 7, 2025
♻ ☆ Emergent Social Dynamics of LLM Agents in the El Farol Bar Problem
We investigate the emergent social dynamics of Large Language Model (LLM) agents in a spatially extended El Farol Bar problem, observing how they autonomously navigate this classic social dilemma. As a result, the LLM agents generated a spontaneous motivation to go to the bar and changed their decision making by becoming a collective. We also observed that the LLM agents did not solve the problem completely, but rather behaved more like humans. These findings reveal a complex interplay between external incentives (prompt-specified constraints such as the 60% threshold) and internal incentives (culturally-encoded social preferences derived from pre-training), demonstrating that LLM agents naturally balance formal game-theoretic rationality with social motivations that characterize human behavior. These findings suggest that a new model of group decision making, which could not be handled in the previous game-theoretic problem setting, can be realized by LLM agents.
♻ ☆ Transition of car-based human-mobility in the pandemic era: Data insight from a cross-border region in Europe
Many transport authorities are collecting and publishing almost real-time road traffic data to meet the growing trend of massive open data, a vital resource for foresight decision support systems considering deep data insights. We explored the spatio-temporal transitions in the cross-country road traffic volumes in the context of modelling behavioural transitions in car-based human mobility. This study reports on individual car-based daily travel behaviour detected, before (2018) and during the COVID pandemic (2020), between Germany and neighbouring countries. In the case of Luxembourg, the Bridges and Roads Authority has installed a large digital traffic observatory infrastructure through the adoption of sensor-based IoT technologies, like other European member states. Since 2016, they have provided high-performance data processing and published open data on the country's road traffic. The dataset contains an hourly traffic count for different vehicle types, daily for representative observation points, followed by a major road network. The original dataset contains significant missing entries, so comprehensive data harmonization was performed. We observed the decrease in traffic volumes during pandemic factors (e.g. lockdowns and remote work) period by following global trend of reduced personal mobility. The understanding the dynamic adaptive travel behaviours provide a potential opportunity to generate the actionable insight including temporal and spatial implications. This study demonstrates that the national open traffic data products can have adoption potential to address cross-border insights. In relevance to the net-zero carbon transition, further study should shed light on the interpolation and downscaling approaches at the comprehensive road-network level for identifying pollution hot spots, causal link to functional landuse patterns and calculation of spatial influence area.
♻ ☆ GreenDFL: a Framework for Assessing the Sustainability of Decentralized Federated Learning Systems
Decentralized Federated Learning (DFL) is an emerging paradigm that enables collaborative model training without centralized data and model aggregation, enhancing privacy and resilience. However, its sustainability remains underexplored, as energy consumption and carbon emissions vary across different system configurations. Understanding the environmental impact of DFL is crucial for optimizing its design and deployment. This work aims to develop a comprehensive and operational framework for assessing the sustainability of DFL systems. To address it, this work provides a systematic method for quantifying energy consumption and carbon emissions, offering insights into improving the sustainability of DFL. This work proposes GreenDFL, a fully implementable framework that has been integrated into a real-world DFL platform. GreenDFL systematically analyzes the impact of various factors, including hardware accelerators, model architecture, communication medium, data distribution, network topology, and federation size, on the sustainability of DFL systems. Besides, a sustainability-aware aggregation algorithm (GreenDFL-SA) and a node selection algorithm (GreenDFL-SN) are developed to optimize energy efficiency and reduce carbon emissions in DFL training. Empirical experiments are conducted on multiple datasets, measuring energy consumption and carbon emissions at different phases of the DFL lifecycle. The proposed GreenDFL provides a comprehensive and practical approach for assessing the sustainability of DFL systems. Furthermore, it offers best practices for improving environmental efficiency in DFL, making sustainability considerations more actionable in real-world deployments.
♻ ☆ The Good, the Bad and the Constructive: Automatically Measuring Peer Review's Utility for Authors EMNLP 2025
Providing constructive feedback to paper authors is a core component of peer review. With reviewers increasingly having less time to perform reviews, automated support systems are required to ensure high reviewing quality, thus making the feedback in reviews useful for authors. To this end, we identify four key aspects of review comments (individual points in weakness sections of reviews) that drive the utility for authors: Actionability, Grounding & Specificity, Verifiability, and Helpfulness. To enable evaluation and development of models assessing review comments, we introduce the RevUtil dataset. We collect 1,430 human-labeled review comments and scale our data with 10k synthetically labeled comments for training purposes. The synthetic data additionally contains rationales, i.e., explanations for the aspect score of a review comment. Employing the RevUtil dataset, we benchmark fine-tuned models for assessing review comments on these aspects and generating rationales. Our experiments demonstrate that these fine-tuned models achieve agreement levels with humans comparable to, and in some cases exceeding, those of powerful closed models like GPT-4o. Our analysis further reveals that machine-generated reviews generally underperform human reviews on our four aspects.
comment: EMNLP 2025 Main
♻ ☆ Assessing prompting frameworks for enhancing literature reviews among university students using ChatGPT
Writing literature reviews is a common component of university curricula, yet it often poses challenges for students. Since generative artificial intelligence (GenAI) tools have been made publicly accessible, students have been employing them for their academic writing tasks. However, there is limited evidence of structured training on how to effectively use these GenAI tools to support students in writing literature reviews. In this study, we explore how university students use one of the most popular GenAI tools, ChatGPT, to write literature reviews and how prompting frameworks can enhance their output. To this aim, prompts and literature reviews written by a group of university students were collected before and after they had been introduced to three prompting frameworks, namely CO-STAR, POSE, and Sandwich. The results indicate that after being exposed to these prompting frameworks, the students demonstrated improved prompting behaviour, resulting in more effective prompts and higher quality literature reviews. However, it was also found that the students did not fully utilise all the elements in the prompting frameworks, and aspects such as originality, critical analysis, and depth in their reviews remain areas for improvement. The study, therefore, raises important questions about the significance of utilising prompting frameworks in their entirety to maximise the quality of outcomes, as well as the extent of prior writing experience students should have before leveraging GenAI in the process of writing literature reviews. These findings are of interest for educators considering the integration of GenAI into academic writing tasks such as literature reviews or evaluating whether to permit students to use these tools.
comment: 24 pages, 6 figures